Science.gov

Sample records for 60-deg delta wing

  1. An experimental study of pressures on 60 deg Delta wings with leading edge vortex flaps

    NASA Technical Reports Server (NTRS)

    Marchman, J. F., III; Terry, J. E.; Donatelli, D. A.

    1983-01-01

    An experimental study was conducted in the Virginia Tech Stability Wind Tunnel to determine surface pressures over a 60 deg sweep delta wing with three vortex flap designs. Extensive pressure data was collected to provide a base data set for comparison with computational design codes and to allow a better understanding of the flow over vortex flaps. The results indicated that vortex flaps can be designed which will contain the leading edge vortex with no spillage onto the wing upper surface. However, the tests also showed that flaps designed without accounting for flap thickness will not be optimum and the result can be oversized flaps, early flap vortex reattachment and a second separation and vortex at the wing/flap hinge line.

  2. Pressure investigation of NASA leading edge vortex flaps on a 60 deg Delta wing

    NASA Technical Reports Server (NTRS)

    Marchman, J. F., III; Donatelli, D. A.; Terry, J. E.

    1983-01-01

    Pressure distributions on a 60 deg Delta Wing with NASA designed leading edge vortex flaps (LEVF) were found in order to provide more pressure data for LEVF and to help verify NASA computer codes used in designing these flaps. These flaps were intended to be optimized designs based on these computer codes. However, the pressure distributions show that the flaps wre not optimum for the size and deflection specified. A second drag-producing vortex forming over the wing indicated that the flap was too large for the specified deflection. Also, it became apparent that flap thickness has a possible effect on the reattachment location of the vortex. Research is continuing to determine proper flap size and deflection relationships that provide well-behaved flowfields and acceptable hinge-moment characteristics.

  3. Transonic Loads Characteristics of a 3-Percent-Thick 60 deg Delta-Wing-Body

    NASA Technical Reports Server (NTRS)

    Swihart, John M.; Foss, Willard E., Jr.

    1961-01-01

    An investigation has been made in the Langley 16-foot transonic tunnel to determine the aerodynamic loading characteristics of a 3-percent-thick, aspect-ratio - 2.06, 60 deg delta-wing-body combination. The Mach number range was from 0.80 t o 1.05 and the average Reynolds number based on wing mean aerodynamic chord was 10 x 10(exp 6). The angle-of-attack range was from 0 deg to 26 deg but was limited at the highest Mach numbers by tunnel drive power. Pressure distributions, spanwise loadings, integrated wing coefficients, and tabulated pressure coefficients are presented for the range of Mach numbers and angles of attack. The results indicate that a free leading-edge separation vortex is the dominant flow-field phenomenon at all Mach numbers and that, consequently, there are only slight changes in the spanwise loadings with Mach number. There is a slight outboard shift in center of pressure with an increase in Mach number. The chord-wise position of the center of pressure varies from 46 t o 55 percent of the mean aerodynamic chord when the Mach number i s increased from 0.80 to l.05.

  4. Subsonic balance and pressure investigation of a 60 deg delta wing with leading edge devices

    NASA Technical Reports Server (NTRS)

    Tingas, S. A.; Rao, D. M.

    1982-01-01

    Low supersonic wave drag makes the thin highly swept delta wing the logical choice for use on aircraft designed for supersonic cruise. However, the high-lift maneuver capability of the aircraft is limited by severe induced-drag penalties attributed to loss of potential flow leading-edge suction. This drag increase may be alleviated through leading-edge flow control to recover lost aerodynamic thrust through either retention of attached leading-edge flow to higher angles of attack or exploitation of the increased suction potential of separation-induced vortex flow. A low-speed wind-tunnel investigation was undertaken to examine the high-lift devices such as fences, chordwise slots, pylon vortex generators, leading-edge vortex flaps, and sharp leading-edge extensions. The devices were tested individually and in combinations in an attempt to improve high-alpha drag performance with a minimum of low-alpha drag penalty. This report presents an analysis of the force, moment, and static pressure data obtained in angles of attack up to 23 deg, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter, respectively. The results indicate that all the devices produced drag and longitudinal/lateral stability improvements at high lift with, in most cases, minor drag penalties at low angles of attack.

  5. Subsonic balance and pressure investigation of a 60-deg delta wing with leading-edge devices (data report)

    NASA Technical Reports Server (NTRS)

    Rao, D. M.; Tingas, S. A.

    1981-01-01

    The drag reduction potential of leading edge devices on a 60 degree delta wing at high lift was examined. Geometric variations of fences, chordwise slots, pylon type vortex generators, leading edge vortex flaps, and sharp leading edge extensions were tested individually and in specific combinations to improve high-alpha drag performance with a minimum of low-alpha drag penalty. The force, moment, and surface static pressure data for angles of attack up to 23 degrees, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter are documented.

  6. Low-Speed Investigation of the Effects of Frequency and Amplitude of Oscillation in Sideslip on the Lateral Stability Derivatives of a 60 deg Delta Wing, a 45 deg Sweptback Wing and an Unswept Wing

    NASA Technical Reports Server (NTRS)

    Lichtenstein, Jacob H.; Williams, James L.

    1961-01-01

    A low-speed investigation has been conducted in the Langley stability tunnel to study the effects of frequency and amplitude of sideslipping motion on the lateral stability derivatives of a 60 deg. delta wing, a 45 deg. sweptback wing, and an unswept wing. The investigation was made for values of the reduced-frequency parameter of 0.066 and 0.218 and for a range of amplitudes from +/- 2 to +/- 6 deg. The results of the investigation indicated that increasing the frequency of the oscillation generally produced an appreciable change in magnitude of the lateral oscillatory stability derivatives in the higher angle-of-attack range. This effect was greatest for the 60 deg. delta wing and smallest for the unswept wing and generally resulted in a more linear variation of these derivatives with angle of attack. For the relatively high frequency at which the amplitude was varied, there appeared to be little effect on the measured derivatives as a result of the change in amplitude of the oscillation.

  7. Vortex lift augmentation by suction on a 60 deg swept Gothic wing

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Jackson, L. R.; Huffman, J. K.

    1982-01-01

    An experimental investigation was conducted in the Langley high-speed 7- by 10-foot wind tunnel to determine the aerodynamic performance of suction applied near the wing tips above the trailing edge of a 60 deg swept Gothic wing. Moveable suction inlets were symmetrically mounted in the proximity of the trailing edge, and the amount of suction was varied to maximize wing lift. Tests were conducted at Mach 0.15, 0.30, and 0.45, and the angle of attack was varied from -4 to 50 deg. The suction augmentation increases the lift coefficient over the entire range of angle of attack. The lift improvement exceeds the unaugmented wing lift by over 20%. Moreover, the augmented lift exceeds the lift predicted by vortex lattice theory to 30 deg angle of attack. Suction augmentation is postulated to strengthen the vortex system by increasing its velocity and making it more concentrated. This causes the vortex breakdown to be delayed to a higher angle of attack

  8. A low speed wind tunnel investigation of Reynolds number effects on a 60-deg swept wing configuration with leading and trailing edge flaps

    NASA Technical Reports Server (NTRS)

    Rao, Dhanvada M.; Hoffler, Keith D.

    1988-01-01

    A low-speed wind tunnel test was performed to investigate Reynolds number effects on the aerodynamic characteristics of a supersonic cruise wing concept model with a 60-deg swept wing incorporating leading-edge and trailing-edge flap deflections. The Reynolds number ranged from 0.3 to 1.6 x 10 to the 6th, and corresponding Mach numbers from .05 to 0.3. The objective was to define a threshold Reynolds number above which the flap aerodynamics basically remained unchanged, and also to generate a data base useful for validating theoretical predictions for the Reynolds number effects on flap performance. This report documents the test procedures used and the basic data acquired in the investigation.

  9. Low-speed wind tunnel investigation of the stability and control characteristics of a series of flying wings with sweep angles of 60 deg

    NASA Technical Reports Server (NTRS)

    Moul, Thomas M.; Fears, Scott P.; Ross, Holly M.; Foster, John V.

    1995-01-01

    A wind tunnel investigation was conducted in the Langley 12-Foot Low-Speed Wind Tunnel to study the low-speed stability and control characteristics of a series of four flying wings over an extended range of angle of attack (-8 deg to 48 deg). Because of the current emphasis on reducing the radar cross section of new military aircraft, the planform of each wing was composed of lines swept at a relatively high angle of 60 deg, and all the trailing-edge lines were aligned with one of the two leading edges. Three arrow planforms with different aspect ratios and one diamond planform were tested. The models incorporated leading-edge flaps for improved pitching-moment characteristics and lateral stability and had three sets of trailing-edge flaps that were deflected differentially for roll control, symmetrically for pitch control, and in a split fashion for yaw control. Top bodies of three widths and twin vertical tails of various sizes and locations were also tested on each model. A large aerodynamic database was compiled that could be used to evaluate some of the trade-offs involved in the design of a configuration with a reduced radar cross section and good flight dynamic characteristics.

  10. Supersonic aerodynamics of delta wings

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    1988-01-01

    Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.

  11. Surface Pressure Distribution at Hypersonic Speeds for Blunt Delta Wings at Angle of Attack

    NASA Technical Reports Server (NTRS)

    Creager, Marcus O.

    1959-01-01

    Surface pressures were measured over a blunt 60 deg delta wing with extended trailing edge at a Mach number of 5.7, a free-stream Reynolds number of 20,000 per inch, and angles of attack from -10 to +10 deg. Aft of four leading-edge thicknesses the pressure distributions evidenced no appreciable three-dimensional effects and were predicted qualitatively by a method described herein for calculation of pressure distribution in two-dimensional flow. Results of tests performed elsewhere on blunt triangular wings were found to substantiate the near two-dimensionality of the flow and were used to extend the range of applicability of the method of surface pressure predictions to Mach numbers of 11.5 in air and 13.3 in helium.

  12. Tabulated Pressure Data for a Series of Controls on a 60 Degree Delta Wing at Mach Numbers of 1.61 and 2.01

    NASA Technical Reports Server (NTRS)

    Lord, Douglas R; Czarnecki, K R

    1956-01-01

    An investigation has been made at Mach numbers of 1.61 and 2.01 and Reynolds numbers from 1.7 X 10 to 7.6 X 10 to determine the pressure distributions over a 60 deg. delta wing having 20 different control configurations. Measurements were made at angles of attack from O deg to 15 deg for control deflections from -30 deg to 30 deg. This report presents the complete tabulated pressure data for the range of test conditions.

  13. Computational study of the aerodynamics and control by blowing of asymmetric vortical flows over delta wings

    NASA Technical Reports Server (NTRS)

    Craig, Ken

    1991-01-01

    Some of the work is described which was done in a study of the flow field produced by tangential leading edge blowing on a 60 deg. delta wing. The flow is studied computationally by solving the Thin Layer Navier-Stokes equations. Steady state flow fields are calculated for various angles of attack and yaw, with and without the presence of tangential leading edge blowing. The effectiveness of blowing as a rolling moment control mechanism to extend the envelope of controllability is illustrated at pre- and post-stall angles of attack. The numerical grid is generated using algebraic grid generation and various interpolation and blending techniques. The jet emanates from a slot with linearly varying thickness and is introduced into the flow field using the concept of an actuator plane, thereby not requiring resolution of the jet slot geometry. The Baldwin-Lomax algebraic turbulence model is used to provide turbulent closure. The computational results are compared with those of experiments.

  14. Three-dimensional aerodynamic shape optimization of supersonic delta wings

    NASA Technical Reports Server (NTRS)

    Burgreen, Greg W.; Baysal, Oktay

    1994-01-01

    A recently developed three-dimensional aerodynamic shape optimization procedure AeSOP(sub 3D) is described. This procedure incorporates some of the most promising concepts from the area of computational aerodynamic analysis and design, specifically, discrete sensitivity analysis, a fully implicit 3D Computational Fluid Dynamics (CFD) methodology, and 3D Bezier-Bernstein surface parameterizations. The new procedure is demonstrated in the preliminary design of supersonic delta wings. Starting from a symmetric clipped delta wing geometry, a Mach 1.62 asymmetric delta wing and two Mach 1. 5 cranked delta wings were designed subject to various aerodynamic and geometric constraints.

  15. Subsonic investigations of vortex interaction control for enhanced high-alpha aerodynamics of a chine forebody/Delta wing configuration

    NASA Technical Reports Server (NTRS)

    Rao, Dhanvada M.; Bhat, M. K.

    1992-01-01

    A proposed concept to alleviate high alpha asymmetry and lateral/directional instability by decoupling of forebody and wing vortices was studied on a generic chine forebody/ 60 deg. delta configuration in the NASA Langley 7 by 10 foot High Speed Tunnel. The decoupling technique involved inboard leading edge flaps of varying span and deflection angle. Six component force/moment characteristics, surface pressure distributions and vapor-screen flow visualizations were acquired, on the basic wing-body configuration and with both single and twin vertical tails at M sub infinity = 0.1 and 0.4, and in the range alpha = 0 to 50 deg and beta = -10 to +10 degs. Results are presented which highlight the potential of vortex decoupling via leading edge flaps for enhanced high alpha lateral/directional characteristics.

  16. Nonlinear, unsteady aerodynamic loads on rectangular and delta wings

    NASA Technical Reports Server (NTRS)

    Atta, E. H.; Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.

    1977-01-01

    Nonlinear unsteady aerodynamic loads on rectangular and delta wings in an incompressible flow are calculated by using an unsteady vortex-lattice model. Examples include flows past fixed wings in unsteady uniform streams and flows past wings undergoing unsteady motions. The unsteadiness may be due to gusty winds or pitching oscillations. The present technique establishes a reliable approach which can be utilized in the analysis of problems associated with the dynamics and aeroelasticity of wings within a wide range of angles of attack.

  17. Birds' tails do act like delta wings but delta-wing theory does not always predict the forces they generate.

    PubMed

    Evans, Matthew R

    2003-07-07

    Delta-wing theory, which predicts the aerodynamics of aircraft like the Concorde, is the conventional explanation for the way in which a bird's tail operates in flight. Recently, doubt has been cast on the validity of applying a theory devised for supersonic aircraft to the small tails of slow-flying birds. By testing delta-wing models and birds' tails behind bodies with wings, I empirically show that the tails of birds produce lift in a very similar way to conventional delta-wing models. Both Perspex and birds' tail models produce lift similar to that predicted by delta-wing theory when narrowly spread and at low angles of attack. However, when widely spread and at high angles of attack, both tails and Perspex models produce much less lift than predicted, owing to vortex breakdown after which the assumptions of delta-wing theory are violated. These results indicate that birds' tails can be regarded as delta wings but that the theory predicting the forces produced by delta wings can only be applied within acceptable limits (i.e. tails spread less than 60 degrees and at angles of attack of less than 20 degrees).

  18. Theoretical studies on flapped delta wings

    NASA Technical Reports Server (NTRS)

    Oh, S.; Tavella, D.; Roberts, L.

    1988-01-01

    The effects of leading edge flaps on the aerodynamic characteristics of a low aspect-ratio delta wing are studied theoretically. As an extension of the classical crossflow plane analysis and in order to include separated shear layers, an analogy between three dimensional steady conical and two dimensional unsteady self-similar flows is explored. This analogy provides a simple steady-unsteady relationship. The criteria for the validity of the steady-unsteady analogy are also examined. Two different theoretical techniques are used to represent the separated shear layers based on the steady-unsteady analogy, neglecting the trailing edge effect. In the first approach, each vortex system is represented by a pair of concentrated vortices connected to the separation points by straight feeding sheets. In the second approach, the vortex cloud method is adopted for simulating the flow field in the crossflow plane. The separated shear layers are replaced with a cloud of discrete vortices and the boundary element method is employed to represent the wing trace by a vorticity distribution. A simple merging scheme is used to model the core region of the vortical flow as a single vortex by imposing a restriction on the shear layer rotation angle. The results are compared with experiments and with results from 3-D panel calculations.

  19. Navier-Stokes and Euler solutions for lee-side flows over supersonic delta wings. A correlation with experiment

    NASA Technical Reports Server (NTRS)

    Mcmillin, S. Naomi; Thomas, James L.; Murman, Earll M.

    1990-01-01

    An Euler flow solver and a thin layer Navier-Stokes flow solver were used to numerically simulate the supersonic leeside flow fields over delta wings which were observed experimentally. Three delta wings with 75, 67.5, and 60 deg leading edge sweeps were computed over an angle-of-attack range of 4 to 20 deg at a Mach number 2.8. The Euler code and Navier-Stokes code predict equally well the primary flow structure where the flow is expected to be separated or attached at the leading edge based on the Stanbrook-Squire boundary. The Navier-Stokes code is capable of predicting both the primary and the secondary flow features for the parameter range investigated. For those flow conditions where the Euler code did not predict the correct type of primary flow structure, the Navier-Stokes code illustrated that the flow structure is sensitive to boundary layer model. In general, the laminar Navier-Stokes solutions agreed better with the experimental data, especially for the lower sweep delta wings. The computational results and a detailed re-examination of the experimental data resulted in a refinement of the flow classifications. This refinement in the flow classification results in the separation bubble with the shock flow type as the intermediate flow pattern between separated and attached flows.

  20. An aerodynamic model for one and two degree of freedom wing rock of slender delta wings

    NASA Technical Reports Server (NTRS)

    Hong, John

    1993-01-01

    The unsteady aerodynamic effects due to the separated flow around slender delta wings in motion were analyzed. By combining the unsteady flow field solution with the rigid body Euler equations of motion, self-induced wing rock motion is simulated. The aerodynamic model successfully captures the qualitative characteristics of wing rock observed in experiments. For the one degree of freedom in roll case, the model is used to look into the mechanisms of wing rock and to investigate the effects of various parameters, like angle of attack, yaw angle, displacement of the separation point, and wing inertia. To investigate the roll and yaw coupling for the delta wing, an additional degree of freedom is added. However, no limit cycle was observed in the two degree of freedom case. Nonetheless, the model can be used to apply various control laws to actively control wing rock using, for example, the displacement of the leading edge vortex separation point by inboard span wise blowing.

  1. Vortex Breakdown over Slender Delta Wings (Eclatement tourbillonnaire sur les ailes delta effil es)

    DTIC Science & Technology

    2009-11-01

    Figure A-2: Effect of helix pitch on binormal and tangential induced velocity coefficients ‘ENGINEERING’ MODELS OF DELTA WING VORTEX BREAKDOWN AND... pitch rig in SARL wind tunnel 5-22 Fig. 9 OPLEC Coning rig in IAR water tunnel 5-23 Fig. 10 Skin friction topologies on 65° delta wing in roll 5-23...Cross-Flow Plane as a Function of Angle 6-17 of Attack for a Periodically Pitching Delta Wing Figure 23 Flow Visualization of Vortex Breakdown for

  2. The effect of asymmetric vortex wake characteristics on a slender delta wing undergoing wing rock motion

    NASA Technical Reports Server (NTRS)

    Arena, A. S., Jr.; Nelson, R. C.

    1989-01-01

    An experimental investigation into the fluid mechanisms responsible for wing rock on a slender delta wing with 80 deg leading edge sweep has been conducted. Time history and flow visualization data are presented for a wide angle-of-attack range. The use of an air bearing spindle has allowed the motion of the wing to be free from bearing friction or mechanical hysteresis. A bistable static condition has been found in vortex breakdown at an angle of attack of 40 deg which causes an overshoot of the steady state rocking amplitude. Flow visualization experiments also reveal a difference in static and dynamic breakdown locations on the wing. A hysteresis loop in dynamic breakdown location similar to that seen on pitching delta wings was observed as the wing was undergoing the limit cycle oscillation.

  3. Pitot-pressure distributions of the flow field of a delta-wing orbiter

    NASA Technical Reports Server (NTRS)

    Cleary, J. W.

    1972-01-01

    Pitot pressure distributions of the flow field of a 0.0075-scale model of a typical delta wing shuttle orbiter are presented. Results are given for the windward and leeward sides on centerline in the angle-of-attack plane from wind tunnel tests conducted in air. Distributions are shown for three axial stations X/L = .35, .60, and .98 and for angles of attack from 0 to 60 deg. The tests were made at a Mach number of 7.4 and for Reynolds numbers based on body length from 1,500,000 to 9,000,000. The windward distributions at the two survey stations forward of the body boat tail demonstrate the compressive aspects of the flow from the shock wave to the body. Conversely, the distributions at the aft station display an expansion of the flow that is attributed to body boat tail. On the lee side, results are given at low angles of attack that illustrate the complicating aspects of the canopy on the flow field, while results are given to show the effects of flow separation at high angles of attack.

  4. Conical Euler simulation of wing rock for a delta wing planform

    NASA Technical Reports Server (NTRS)

    Lee, Elizabeth M.; Batina, John T.

    1991-01-01

    Unsteady, vortex-dominated flowfields are presently studied by using the conical Euler equations as an efficient first step toward investigation of the full three-dimensional problem, under the assumption that the supersonic flow about a delta wing is conical and therefore allows the three-dimensional problem to be reduced to a two-dimensional one. Attention is given to the case of a delta wing undergoing wing-rock motion. The code developed has also been modified to allow treatment of the 'free-to-roll' case.

  5. The DELTA MONSTER: An RPV designed to investigate the aerodynamics of a delta wing platform

    NASA Technical Reports Server (NTRS)

    Connolly, Kristen; Flynn, Mike; Gallagher, Randy; Greek, Chris; Kozlowski, Marc; Mcdonald, Brian; Mckenna, Matt; Sellar, Rich; Shearon, Andy

    1989-01-01

    The mission requirements for the performance of aerodynamic tests on a delta wind planform posed some problems, these include aerodynamic interference; structural support; data acquisition and transmission instrumentation; aircraft stability and control; and propulsion implementation. To eliminate the problems of wall interference, free stream turbulence, and the difficulty of achieving dynamic similarity between the test and actual flight aircraft that are associated with aerodynamic testing in wind tunnels, the concept of the remotely piloted vehicle which can perform a basic aerodynamic study on a delta wing was the main objective for the Green Mission - the Delta Monster. The basic aerodynamic studies were performed on a delta wing with a sweep angle greater than 45 degrees. These tests were performed at various angles of attack and Reynolds numbers. The delta wing was instrumented to determine the primary leading edge vortex formation and location, using pressure measurements and/or flow visualization. A data acquisition system was provided to collect all necessary data.

  6. Static measurements of slender delta wing rolling moment hysteresis

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Levin, Daniel

    1991-01-01

    Slender delta wing planforms are susceptible to self-induced roll oscillations due to aerodynamic hysteresis during the limit cycle roll oscillation. Test results are presented which clearly establish that the static rolling moment hysteresis has a damping character; hysteresis tends to be greater when, due to either wing roll or side slip, the vortex burst moves back and forth over the wing trailing edge. These data are an indirect indication of the damping role of the vortex burst during limit cycle roll oscillations.

  7. Recent Loads Calibration Experience With a Delta Wing Airplane

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.; Kuhl, Albert E.

    1977-01-01

    Aircraft which are designed for supersonic and hypersonic flight are evolving with delta wing configurations. An integral part of the evolution of all new aircraft is the flight test phase. Included in the flight test phase is an effort to identify and evaluate the loads environment of the aircraft. The most effective way of examining the loads environment is to utilize calibrated strain gages to provide load magnitudes. Using strain gage data to accomplish this has turned out to be anything but a straightforward task. The delta wing configuration has turned out to be a very difficult type of wing structure to calibrate. Elevated structural temperatures result in thermal effects which contaminate strain gage data being used to deduce flight loads. The concept of thermally calibrating a strain gage system is an approach to solving this problem. This paper will address how these problems were approached on a program directed toward measuring loads on the wing of a large, flexible supersonic aircraft. Structural configurations typical of high-speed delta wing aircraft will be examined. The temperature environment will be examined to see how it induces thermal stresses which subsequently cause errors in loads equations used to deduce the flight loads.

  8. Lee side flow for slender delta wings of finite thickness

    NASA Technical Reports Server (NTRS)

    Szodruch, J. G.

    1980-01-01

    An experimental and theoretical investigation carried out to determine the lee side flow field over delta wings at supersonic speeds is presented. A theoretical method to described the flow field is described, where boundary conditions as a result of the experimental study are needed. The computed flow field with shock induced separation is satisfactory.

  9. Flutter analysis of highly swept delta wings by conventional methods

    NASA Technical Reports Server (NTRS)

    Gibbons, M. D.; Soistmann, D. L.; Bennett, R. M.

    1988-01-01

    The flutter boundaries of six thin highly-swept delta-platform wings have been calculated. Comparisons are made between experimental data and results using several aerodynamic methods. The aerodynamic methods used include a subsonic and supersonic kernel function, second order piston theory, and a transonic small disturbance code. The dynamic equations of motion are solved using analytically calculated mode shapes and frequencies.

  10. Aerodynamic performance of a wing with a deflected tip-mounted reverse half-delta wing

    NASA Astrophysics Data System (ADS)

    Lee, T.; Su, Y. Y.

    2012-11-01

    The impact of a tip-mounted 65°-sweep reverse half-delta wing (RHDW), set at different deflections, on the aerodynamic performance of a rectangular NACA 0012 wing was investigated experimentally at Re = 2.45 × 105. This study is a continuation of the work of Lee and Su (Exp Fluids 52(6):1593-1609, 2012) on the passive control of wing tip vortex by the use of a reverse half-delta wing. The present results show that for RHDW deflection with -5° ≤ δ ≤ +15°, the lift was found to increase nonlinearly with increasing δ compared to the baseline wing. The lift increment was accompanied by an increased total drag. For negative RHDW deflection with δ < -5°, the RHDW-induced lift decrement was, however, accompanied by an improved drag. The deflected RHDW also significantly modified and weakened the tip vortex, leading to a persistently lowered lift-induced drag, regardless of its deflection, compared to the baseline wing. Physical mechanisms responsible for the observed RHDW-induced phenomenon were also discussed.

  11. Experimental transonic flutter characteristics of two 72 deg-sweep delta-wing models

    NASA Technical Reports Server (NTRS)

    Doggett, Robert V., Jr.; Soistmann, David L.; Spain, Charles V.; Parker, Ellen C.; Silva, Walter A.

    1989-01-01

    Transonic flutter boundaries are presented for two simple, 72 deg. sweep, low-aspect-ratio wing models. One model was an aspect-ratio 0.65 delta wing; the other model was an aspect-ratio 0.54 clipped-delta wing. Flutter boundaries for the delta wing are presented for the Mach number range of 0.56 to 1.22. Flutter boundaries for the clipped-delta wing are presented for the Mach number range of 0.72 to 0.95. Selected vibration characteristics of the models are also presented.

  12. Applications of classical and zero-total-pressure-loss sets of Euler equations to delta wings

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Chuang, Andrew H.

    1987-01-01

    Classical and zero-total pressure-loss sets of Euler equations were applied to sharp- and round-edge delta wings. The origin of the total pressure was explained in the classical set. For sharp-edged delta wings, all sets of Euler equations produce the same separated flow solutions. For round-edged delta wings and for coarse grids, the solution depends on the level of dissipation, the accuracy of the surface boundary condition, and the type of Euler equations set. For round-edged delta wings and for fine grids, attached flow solutions are obtained. Also presented were three dimensional flow solutions and asymmetric flow solutions including unsteady flow for sharp-edged delta wings. Euler equations should be restricted to sharp-edged wings for real flow solutions. For roung-edged wings, Navier-Stokes equations must be used.

  13. Flow field predictions for a slab delta wing at incidence

    NASA Technical Reports Server (NTRS)

    Conti, R. J.; Thomas, P. D.; Chou, Y. S.

    1972-01-01

    Theoretical results are presented for the structure of the hypersonic flow field of a blunt slab delta wing at moderately high angle of attack. Special attention is devoted to the interaction between the boundary layer and the inviscid entropy layer. The results are compared with experimental data. The three-dimensional inviscid flow is computed numerically by a marching finite difference method. Attention is concentrated on the windward side of the delta wing, where detailed comparisons are made with the data for shock shape and surface pressure distributions. Surface streamlines are generated, and used in the boundary layer analysis. The three-dimensional laminar boundary layer is computed numerically using a specially-developed technique based on small cross-flow in streamline coordinates. In the rear sections of the wing the boundary layer decreases drastically in the spanwise direction, so that it is still submerged in the entropy layer at the centerline, but surpasses it near the leading edge. Predicted heat transfer distributions are compared with experimental data.

  14. Conical Euler solution for a highly-swept delta wing undergoing wing-rock motion

    NASA Technical Reports Server (NTRS)

    Lee, Elizabeth M.; Batina, John T.

    1990-01-01

    Modifications to an unsteady conical Euler code for the free-to-roll analysis of highly-swept delta wings are described. The modifications involve the addition of the rolling rigid-body equation of motion for its simultaneous time-integration with the governing flow equations. The flow solver utilized in the Euler code includes a multistage Runge-Kutta time-stepping scheme which uses a finite-volume spatial discretization on an unstructured mesh made up of triangles. Steady and unsteady results are presented for a 75 deg swept delta wing at a freestream Mach number of 1.2 and an angle of attack of 30 deg. The unsteady results consist of forced harmonic and free-to-roll calculations. The free-to-roll case exhibits a wing rock response produced by unsteady aerodynamics consistent with the aerodynamics of the forced harmonic results. Similarities are shown with a wing-rock time history from a low-speed wind tunnel test.

  15. Numerical study of the vortex burst phenomenon for delta wings

    NASA Technical Reports Server (NTRS)

    Hartwich, PETER-M.; Hsu, C.-H.; Luckring, James M.; Liu, C. H.

    1988-01-01

    A flux-difference splitting scheme is employed to compute low-speed flows over a delta wing for angles of attack from 0 to 40 deg as steady-state solutions to the three-dimensional, Reynolds-averaged Navier-Stokes equations in their thin-layer approximation. The finite-difference scheme is made spatially second-order accurate by applying a total variation diminishing-like discretization to the inviscid fluxes and central differencing to the viscous shear fluxes. Using first-order accurate Euler backward-time differencing, an efficient implicit algorithm is constructed, which combines approximate factorization in cross planes with a symmetric planar Gauss-Seidel relaxation in the remaining third spatial direction. The geometry of the thin (maximum thickness is 0.021), slender (aspect ratio is unity), sharp-edged delta wing is taken from Hummel's (1967, 1978) wind tunnel model. Over the entire angle-of-attack range, the computed values of lift and pitching moment are in good agreement with the experimental data. Also details of the flow-fieldlike spanwise surface pressure distributions compare well with the experiment. Computed flow-field results with a bubble-type vortex burst are analyzed in detail.

  16. Lee-side flow over delta wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Miller, D. S.; Wood, R. M.

    1985-01-01

    An experimental investigation of the lee-side flow on sharp leading-edge delta wings at supersonic speeds has been conducted. Pressure data were obtained at Mach numbers from 1.5 to 2.8, and three types of flow-visualization data (oil-flow, tuft, and vapor-screen) were obtained at Mach numbers from 1.7 to 2.8 for wing leading-edge sweep angles from 52.5 deg to 75 deg. From the flow-visualization data, the lee-side flows were classified into seven distinct types and a chart was developed that defines the flow mechanism as a function of the conditions normal to the wing leading edge, specifically, angle of attack and Mach number. Pressure data obtained experimentally and by a semiempirical prediction method were employed to investigate the effects of angle of attack, leading-edge sweep, and Mach number on vortex strength and vortex position. In general, the predicted and measured values of vortex-induced normal force and vortex position obtained from experimental data have the same trends with angle of attack, Mach number, and leading-edge sweep; however, the vortex-induced normal force is underpredicted by 15 to 30 percent, and the vortex spanwise location is overpredicted by approximately 15 percent.

  17. Thin-Layer Navier-Stokes Solutions for a Cranked Delta Wing

    DTIC Science & Technology

    1988-12-01

    and Purcell C., "Numerical Experiment with Inviscid Vortex- Streched Flow Around a Cranked Delta Wing: Supersonic Speed", Engineering Cns. Vol 3: pp...230-234, (1986). 8_! 16. Rizzi A. and Purcell C., "Numerical Experiment with Inviscid Vortex- Streched Flow Around a Cranked Delta Wing: Subsonic Speed

  18. Active control of wing rock of a delta wing at post-stall using tangential leading edge blowing

    NASA Technical Reports Server (NTRS)

    Wong, G. S.; Rock, S. M.; Wood, N. J.; Roberts, L.

    1993-01-01

    Post-stall roll control utilizing tangential leading edge blowing is demonstrated in a wind tunnel on a delta wing model that exhibited wing rock. The dampening effect of symmetric blowing alone on wing rock is found to be effective up to a certain maximum amount of blowing. A moderate amount of symmetric blowing was shown to be effective in linearizing the asymmetric blowing static rolling moment responses.

  19. Study of lee-side flows over conically cambered delta wings at supersonic speeds, part 1

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Watson, Carolyn B.

    1987-01-01

    An experimental investigation was performed in which surface pressure data, flow visualization data, and force and moment data were obtained on four conical delta wing models which differed in leading-edge camber only. Wing leading-edge camber was achieved through a deflection of the outboard 30% of the local wind semispan of a reference 75 degrees swept flat delta wing. The four wing models have leading-edge deflection angles delta sub F of 0, 5, 10, and 15 degrees measured streamwise. Data for the wings with delta sub F = 10 and 15 degrees showed that hinge-line separation dominated the lee-side wing loading and prohibited the develpment of leading-edge separation on the deflected portion of wing leading edge. However, data for the wing with delta sub F = 5 degrees, a vortex was positioned on the deflected leading edge with reattachment at the hinge line. Flow visualization results were presented which detail the influence of Mach number, angle of attack, and camber on the lee-side flow characteristics of conically cambered delta wings. Analysis of photgraphic data identified the existence of 12 distinctive lee-side flow types. In general, the aerodynamic force and moment data correlated well with the pressure and flow visualization data.

  20. Analytical study of vortex flaps on highly swept delta wings

    NASA Technical Reports Server (NTRS)

    Frink, N. T.

    1982-01-01

    This paper highlights some current results from ongoing analytical studies of vortex flaps on highly swept delta wings. A brief discussion of the vortex flow analysis tools is given along with comparisons of the theories to vortex flap force and pressure data. Theoretical trends in surface pressure distribution for both angle-of-attack variation and flap deflection are correctly predicted by Free Vortex Sheet theory. Also shown are some interesting calculations for attached-flow and vortex-flow flap hinge moments that indicate flaps utilizing vortex flow may generate less hinge moment than attached flow flaps. Finally, trailing-edge flap effects on leading-edge flap thrust potential are investigated and theory-experiment comparisons made.

  1. Numerical studies of incompressible flow around delta and double-delta wings

    NASA Technical Reports Server (NTRS)

    Krause, E.; Liu, C. H.

    1989-01-01

    The subject has been jointly investigated at NASA Langley Research Center and the Aerodynamisches Institut of the RWTH Aachen over a substantial period. The aim of this investigation has been to develop numerical integration procedures for the Navier-Stokes equations - particularly for incompressible three-dimensional viscous flows about simple and double delta wings - and to study the low speed flow behavior, with its complex vortex structures on the leeward side of the wing. The low speed flight regime poses unusual problems because high incidence flight conditions may, for example, encounter symmetric and asymmetric vortex breakdown. Because of the many difficulties to be expected in solving the problem, it was divided into two - analysis of the flow without vortex breakdown and analysis of the breakdown of isolated vortices. The major results obtained so far on the two topics are briefly described.

  2. An attached flow design of a noninterfering leading edge extension to a thick delta wing

    NASA Technical Reports Server (NTRS)

    Ghaffari, F.; Lamar, J. E.

    1985-01-01

    The analytical procedure presented for leading edge extension (LEE) determination, in keeping with such design criteria as noninterference at the wing design point, is applied to thick delta wings. The LEE device thus defined is to be mounted on a wing along a dividing stream surface that is associated with an attached flow design lift coefficient greater than zero. The delta wing in question is of twisted and cambered type. It is demonstrated that span reductions for the candidate LEEs has the most detrimental effect on overall aerodynamic efficiency, irrespective of area or shape.

  3. Flow-field in a vortex with breakdown above sharp edged delta wings

    NASA Technical Reports Server (NTRS)

    Hayashi, Y.; Nakaya, T.

    1978-01-01

    The behavior of vortex-flow, accompanied with breakdown, formed above sharp-edged delta wings, was studied experimentally as well as theoretically. Emphasis is placed particularly on the criterion for the breakdown at sufficiently large Reynolds numbers

  4. Effects of leading-edge camber on low-speed characteristics of slender delta wings

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.

    1972-01-01

    Wind-tunnel studies have been conducted to determine the effects of leading-edge camber on the low-speed aerodynamic characteristics of a thin, sharp-edge 74 deg delta wing. The results include force and moment measurements, pressure distributions, and flow visualization patterns determined from oil flow, tuft and water vapor observations. The study indicated that leading-edge camber near the apex is effective in controlling the pitch-up tendency of slender delta wings.

  5. Euler and Potential Experiment/CFD Correlations for a Transport and Two Delta-Wing Configurations

    NASA Technical Reports Server (NTRS)

    Hicks, R. M.; Cliff, S. E.; Melton, J. E.; Langhi, R. G.; Goodsell, A. M.; Robertson, D. D.; Moyer, S. A.

    1990-01-01

    A selection of successes and failures of Computational Fluid Dynamics (CFD) is discussed. Experiment/CFD correlations involving full potential and Euler computations of the aerodynamic characteristics of four commercial transport wings and two low aspect ratio, delta wing configurations are shown. The examples consist of experiment/CFD comparisons for aerodynamic forces, moments, and pressures. Navier-Stokes equations are not considered.

  6. An exploratory study of apex fence flaps on a 74 deg delta wing

    NASA Technical Reports Server (NTRS)

    Wahls, R. A.; Vess, R. J.

    1985-01-01

    An exploratory wind tunnel investigation was performed to observe the flow field effects produced by vertically deployed apex fences on a planar 74 degree delta wing. The delta shaped fences, each comprising approximately 3.375 percent of the wing area, were affixed along the first 25 percent of the wing leading edge in symmetric as well as asymmetric (i.e., fence on one side only) arrangements. The vortex flow field was visualized at angles of attack from 0 to 20 degrees using helium bubble and oil flow techniques; upper surface pressures were also measured along spanwise rows. The results were used to construct a preliminary description of the vortex patterns and induced pressures associated with vertical apex fence deployment. The objective was to obtain an initial evaluation of the potential of apex fences as vortex devices for subsonic lift modulation as well as lateral directional control of delta wing aircraft.

  7. Experimental investigation of the flow on the suction side of a thin Delta wing

    NASA Technical Reports Server (NTRS)

    Hummel, D.

    1981-01-01

    Surface oil flow patterns were photographed and pressure distribution measurements were carried out on a sharp edged delta wing of aspect ratio lambda = 1.0 in order to determine the influence of Reynolds number and of vortex breakdown on the flow on the suction side of the wing. The formation of the secondary vortex occurs due to separation of a laminar boundary layer in the front part of the wing and due to separation of a turbulent boundary layer in the rear part of the wing. In the case of turbulent separation, the secondary separation line is closer to the wing leading edge than in the laminar case. The position of the transition depends on the Reynolds number and on the angle of incidence. The breakdown of a vortex above the wing leads to a kink in the secondary separation line.

  8. A Discrete-Vortex Method for Studying the Wing Rock of Delta Wings

    NASA Technical Reports Server (NTRS)

    Gainer, Thomas G.

    2002-01-01

    A discrete-vortex method is developed to investigate the wing rock problem associated with highly swept wings. The method uses two logarithmic vortices placed above the wing to represent the vortex flow field and uses boundary conditions based on conical flow, vortex rate of change of momentum, and other considerations to position the vortices and determine their strengths. A relationship based on the time analogy and conical-flow assumptions is used to determine the hysteretic positions of the vortices during roll oscillations. Static and dynamic vortex positions and wing rock amplitudes and frequencies calculated by using the method are generally in good agreement with available experimental data. The results verify that wing rock is caused by hysteretic deflections of the vortices and indicate that the stabilizing moments that limit wing rock amplitudes are the result of the one primary vortex moving outboard of the wing where it has little influence on the wing.

  9. Prediction of unsteady loads on maneuvering delta wings using time-accurate Euler schemes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Chuang, H. Andrew

    1988-01-01

    Three-dimensional steady and unsteady vortex-dominated flows around sharp-edged delta wings are considered in this paper. The problem is formulated by using the unsteady conservative Euler equations for the flow relative motion with respect to a moving frame of reference. An implicit approximately-factored finite volume scheme is used to solve the resulting equations on a three-dimensional computational grid which is generated by using a modified Joukowski transformation in cross-flow planes at the grid chord stations. The scheme is applied to a delta wing undergoing pitching oscillation around a large angle of attack. The initial conditions correspond to a steady flow around a delta wing of aspect ratio of one, freestream Mach number of 0.3 and mean angle of attack of 20.5. The steady flow results are compared with those of an explicit computational scheme and the experimental data, and they are in good agreement.

  10. Unsteady delta-wing flow computation using an implicit factored Euler scheme

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Chuang, H. Andrew

    1988-01-01

    The conservative unsteady Euler equations for the flow relative motion in the moving frame of reference are used to solve for the steady and unsteady flows around sharp-edged delta wings. The resulting equations are solved by using an implicit approximately-factored finite-volume scheme. Implicit second-order and explicit second- and fourth-order dissipations are added to the scheme. The boundary conditions are explicitly satisfied. The grid is generated by locally using a modified Joukowski transformation in cross-flow planes at the grid chord stations. The computational applications cover a steady flow around a delta wing whose results serve as the initial conditions for the unsteady flow around a pitching delta wing about a large angle of attack. The steady results are compared with the experimental data and the periodic solution is achieved within the third cycle of oscillation.

  11. Computation of vortex-dominated flow for a delta wing undergoing pitching oscillation

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Chuang, H. Andrew

    1990-01-01

    The conservative, unsteady Euler equations for the flow relative to a moving frame of reference are used to solve for the three-dimensional steady and unsteady flows around a sharp-edged delta wing. The resulting equations are solved by using an implicit, approximately factored, finite-volume scheme. Implicit second-order and explicit second- and fourth-order dissipations are added to the scheme. The boundary conditions are explicitly satisfied. The grid is generated by locally using a modified Joukowski transformation in crossflow planes at the grid-chord stations. The computational applications cover a steady flow around a delta wing, whose results serve as the initial conditions for the unsteady flow around a pitching delta wing at a large mean angle of attack. The steady results are compared with the experimental data, and the unsteady results are compared with results of a flux-difference splitting scheme.

  12. Space shuttle: Static stability and control investigation of NR/GD delta wing booster (B-20) and delta wing orbiter (134-D), volume 3

    NASA Technical Reports Server (NTRS)

    Allen, E. C., Jr.; Eder, F. W.

    1972-01-01

    Experimental aerodynamic investigations have been made on a .0035 scale model North American Rockwell/General Dynamics version of the space shuttle in the NASA/MSFC 14 x 14 Inch Trisonic Wind Tunnel. Static stability and control data were obtained on the delta wing booster alone (B-20) and with the delta wing orbiter (134D) mounted in various positions on the booster. Six component aerodynamic force and moment data were recorded over an angle of attack range from -10 to 24 deg at 0 and 6 deg sideslip angles and from -10 to +10 deg sideslip at 0 deg angle of attack. Mach number ranged from 0.6 to 4.96.

  13. Pressure measurements on a thick cambered and twisted 58 deg delta wing at high subsonic speeds

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Lamar, John E.

    1987-01-01

    A pressure experiment at high subsonic speeds was conducted by a cambered and twisted thick delta wing at the design condition (Mach number 0.80), as well as at nearby Mach numbers (0.75 and 0.83) and over an angle-of-attack range. Effects of twin vertical tails on the wing pressure measurements were also assessed. Comparisons of detailed theoretical and experimental surface pressures and sectional characteristics for the wing alone are presented. The theoretical codes employed are FLO-57, FLO-28, PAN AIR, and the Vortex Lattice Method-Suction Analogy.

  14. Effects of spanwise camber on delta wing aerodynamics: An experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Traub, Lance Wayne

    1999-12-01

    An experimental and theoretical investigation into the effects of spanwise camber on delta wings is described. Twenty four flat plate delta wings, encompassing various spanwise camber variations were examined. Testing comprised force balance, surface pressure measurement, 7- hole probe surveys, on-surface flow visualization and measurement of vortex burst trajectories. The low speed experimental investigation was conducted in Texas A&M University's 3' x 4' low speed wind tunnel and a 2' x 3' water tunnel. Theoretical methods developed include an explicit analytic method to predict the lift of spanwise cambered delta wings of constant camber, as well as various other methods to predict the characteristics of vortex flows and their effects on delta wing aerodynamics. The investigation shows that the net effect of non-planarity is an increase in lift for anhedral and a decrease in lift for dihedral compared to the planar wing, with these effects increasing with wing sweep. Consequently, anhedral shows the greatest benefit for most applications. Small anhedral angles are most effective in augmenting lift. Anhedral increases wing efficiency over a comparative planar wing. Anhedral does not, appear to greatly augment the strength of the leading edge vortex as demonstrated by data detailing vortex circulation and from peak surface loading from surface pressures. The major benefit from anhedral would appear to be due to its displacing effect on the vortex trajectory: both drawing it closer to the wing surface and inboard. As the vortex is drawn inboard, its induced surface loading acts on a greater area of the wing. In addition anhedral does not appear to introduce any detrimental effects on longitudinal stability, and does not incur any penalties in terms of vortex burst characteristics. Somewhat surprisingly, although limited in scope, the present variations in the distribution of spanwise camber suggest that camber is most beneficial applied near the wing tips: as is

  15. Spanwise pressure distribution on delta wing with leading-edge vortex flap

    NASA Technical Reports Server (NTRS)

    Reddy, C. S.

    1987-01-01

    The aerodynamic characteristics of a highly swept planar delta wing employing conical leading edge flaps are numerically investigated, using a free vortex sheet method that is based on an advanced, three-dimensional inviscid flow panel method employing quadratic doublet distributions to represent the wing surface and the rolled-up vortex sheet and wake. Upward flap deflection shifts the negative pressure peak inboard of the basic wing and develops a significant suction pressure on the flap that then produces thrust component in the direction of flight; overall drag is thereby reduced.

  16. Computation of transonic vortex flows past delta wings Integral equation approach

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.; Yates, E. C., Jr.

    1985-01-01

    The steady full-potential equation is written in the form of Poisson's equation, and the solution of the velocity field is expressed in terms of an integral equation. The solution consists of a surface integral of vorticity distribution on the wing and its free-vortex sheets and a volume integral of source distribution within a volume around the wing and its free-vortex sheets. The solution is obtained through successive iteration cycles. The source distribution is computed by using a mixed finite-difference scheme of the Murman-Cole type. The method is applied to delta wings. Numerical examples show that a conical shock is captured on the suction side of the wing. It is attached to the lower surface of the leading-edge vortex but does not necessarily reach to the wing surface.

  17. Leading edge vortex dynamics on a pitching delta wing. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lemay, Scott P.

    1988-01-01

    The leading edge flow structure was investigated on a 70 deg flat plate delta wing which was pitched about its 1/2 chord position, to increase understanding of the high angle of attack aerodynamics on an unsteady delta wing. The wing was sinusoidally pitched at reduced frequencies ranging from k being identical with 2pi fc/u = 0.05 to 0.30 at chord Reynolds numbers between 90,000 and 350,000, for angle of attack ranges of alpha = 29 to 39 deg and alpha = 0 to 45 deg. The wing was also impulsively pitched at an approximate rate of 0.7 rad/s. During these dynamic motions, visualization of the leading edge vorticies was obtained by entraining titanium tetrachloride into the flow at the model apex. The location of vortex breakdown was recorded using 16mm high speed motion picture photography. When the wing was sinusoidally pitched, a hysteresis was observed in the location of breakdown position. This hysteresis increased with reduced frequency. The velocity of breakdown propagation along the wing, and the phase lag between model motion and breakdown location were also determined. When the wing was impulsively pitched, several convective times were required for the vortex flow to reach a steady state. Detailed information was also obtained on the oscillation of breakdown position in both static and dynamic cases.

  18. Effect of leading- and trailing-edge flaps on clipped delta wings with and without wing camber at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Hernandez, Gloria; Wood, Richard M.; Covell, Peter F.

    1994-01-01

    An experimental investigation of the aerodynamic characteristics of thin, moderately swept fighter wings has been conducted to evaluate the effect of camber and twist on the effectiveness of leading- and trailing-edge flaps at supersonic speeds in the Langley Unitary Plan Wind Tunnel. The study geometry consisted of a generic fuselage with camber typical of advanced fighter designs without inlets, canopy, or vertical tail. The model was tested with two wing configurations an uncambered (flat) wing and a cambered and twisted wing. Each wing had an identical clipped delta planform with an inboard leading edge swept back 65 deg and an outboard leading edge swept back 50 deg. The trailing edge was swept forward 25 deg. The leading-edge flaps were deflected 4 deg to 15 deg, and the trailing-edge flaps were deflected from -30 deg to 10 deg. Longitudinal force and moment data were obtained at Mach numbers of 1.60, 1.80, 2.00, and 2.16 for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.16 x 10(exp 6) per foot and for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.0 x 10(exp 6) per foot. Vapor screen, tuft, and oil flow visualization data are also included.

  19. Conical Euler analysis and active roll suppression for unsteady vortical flows about rolling delta wings

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Batina, John T.

    1993-01-01

    A conical Euler code was developed to study unsteady vortex-dominated flows about rolling, highly swept delta wings undergoing either forced motions or free-to-roll motions that include active roll suppression. The flow solver of the code involves a multistage, Runge-Kutta time-stepping scheme that uses a cell-centered, finite-volume, spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free to-roll case by simultaneously integrating in time the rigid-body equation of motion with the governing flow equations. Results are presented for a delta wing with a 75 deg swept, sharp leading edge at a free-stream Mach number of 1.2 and at 10 deg, 20 deg, and 30 deg angle of attack alpha. At the lower angles of attack (10 and 20 deg), forced-harmonic analyses indicate that the rolling-moment coefficients provide a positive damping, which is verified by free-to-roll calculations. In contrast, at the higher angle of attack (30 deg), a forced-harmonic analysis indicates that the rolling-moment coefficient provides negative damping at the small roll amplitudes. A free-to-roll calculation for this case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation, which is characteristic of highly swept delta wings. This limit cycle oscillation may be actively suppressed through the use of a rate-feedback control law and antisymmetrically deflected leading-edge flaps. Descriptions of the conical Euler flow solver and the free-to roll analysis are included in this report. Results are presented that demonstrate how the systematic analysis of the forced response of the delta wing can be used to predict the stable, neutrally stable, and unstable free response of the delta wing. These results also give insight into the flow physics associated with unsteady vortical flows about delta wings undergoing forced

  20. Navier-Stokes calculation of transonic flow past the NTF 65 deg delta wing

    NASA Technical Reports Server (NTRS)

    Wu, Chivey C.

    1991-01-01

    Models of four delta wings were built and tested in the 8 x 8 ft Transonic Wind Tunnel at LaRC. The wings are identical in planform shape with a swept-back angle of 65 degrees, but bear different leading edge profiles. The models were tested under pressurized and cryogenic conditions to simulate true flight Reynolds numbers. Data on the aerodynamic forces and pressure distributions at various locations on the wings were taken at various flight Mach numbers and angles of attack. Effects of high Reynolds number and leading edge radius on the aerodynamic characteristics of the wings are being accessed. To thoroughly understand the turbulent, vortical flow around the wings, an effort to perform computational aerodynamic analysis is being made. The objective of the analysis is to supplement and validate the experimental data and explain the high Reynolds number and leading edge effects. GRIDGEN, a software developed by General Dynamics, is being used to generate the grid topology for the flow field around the wings. The flow solver to be used is CFL3D, a computation fluid dynamics code developed at LaRC. Based on the geometric description of the wings, a FORTRAN program called WINGSURF was written to generate the databases defining the surface geometry of the wings. To match the true geometry of the models in the wind tunnel for realistic comparison with experimental results, databases defining the sting support for the wing models were also created by two other FORTRAN programs, STINJOIN and STINREAR. Listing of the programs are attached and the geometry of a typical wing model with the sting support is shown. Other aspects of the investigation are discussed.

  1. Natural Rolling Responses of a Delta Wing in Transonic and Subsonic Flows

    NASA Technical Reports Server (NTRS)

    Menzies, Margaret A.; Kandil, Osama A.

    1996-01-01

    The unsteady, three-dimensional, full Navier-Stokes (NS) equations and the Euler equations of rigid-body dynamics are sequentially solved to simulate the natural rolling response of slender delta wings of zero thickness at moderate to high angles of attack, to transonic and subsonic flows. The governing equations of fluid flow and dynamics of the present multi-disciplinary problem are solved using the time-accurate solution of the NS equations with the implicit, upwind, Roe flux-difference splitting, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. The main focus is to analyze the effect of Mach number and angle of attack on the leading edge vortices and their breakdown, the resultant rolling motion, and overall aerodynamic response of the wing. Three cases demonstrate the natural response of a 65 deg swept, cropped delta wing in a transonic flow with breakdown of the leading edge vortices and an 80 deg swept delta wing in a subsonic flow undergoing either damped or self-excited limit-cycle rolling oscillations as a function of angle of attack. Comparisons with an experimental investigation completes this study, validating the analysis and illustrating the complex details afforded by computational investigations.

  2. Conical Euler simulation and active suppression of delta wing rocking motion

    NASA Technical Reports Server (NTRS)

    Lee, Elizabeth M.; Batina, John T.

    1990-01-01

    A conical Euler code was developed to study unsteady vortex-dominated flows about rolling highly-swept delta wings, undergoing either forced or free-to-roll motions including active roll suppression. The flow solver of the code involves a multistage Runge-Kutta time-stepping scheme which uses a finite volume spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free-to-roll case, by including the rigid-body equation of motion for its simultaneous time integration with the governing flow equations. Results are presented for a 75 deg swept sharp leading edge delta wing at a freestream Mach number of 1.2 and at alpha equal to 10 and 30 deg angle of attack. A forced harmonic analysis indicates that the rolling moment coefficient provides: (1) a positive damping at the lower angle of attack equal to 10 deg, which is verified in a free-to-roll calculation; (2) a negative damping at the higher angle of attack equal to 30 deg at the small roll amplitudes. A free-to-roll calculation for the latter case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation. The wing rocking motion may be actively suppressed, however, through the use of a rate-feedback control law and antisymmetrically deflected leading edge flaps. The descriptions of the conical Euler flow solver and the free-to-roll analysis are presented. Results are also presented which give insight into the flow physics associated with unsteady vortical flows about forced and free-to-roll delta wings, including the active roll suppression of this wing-rock phenomenon.

  3. Flutter analysis and testing of pairs of aerodynamically interfering delta wings

    NASA Technical Reports Server (NTRS)

    Chipman, R. R.; Rauch, F. J.

    1973-01-01

    To examine the effect on flutter of the aerodynamic interference between pairs of closely spaced delta wings, several structurally uncoupled 1/80th-scale models were studied by experiment and analysis. Flutter test boundaries run in a 26-in transonic blowdown wind tunnel were compared with subsonic analytical results generated using the doublet lattice method. Trends for several combinations of vertical and longitudinal wing separation showed that flutter speeds can be significantly lowered in closely spaced configurations. For some configurations, a new flutter mechanism, characterized by coupling of the flexible modes from both surfaces at a distinctive flutter frequency, was predicted and observed.

  4. Reynolds Number, Compressibility, and Leading-Edge Bluntness Effects on Delta-Wing Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2004-01-01

    An overview of Reynolds number, compressibility, and leading edge bluntness effects is presented for a 65 degree delta wing. The results of this study address both attached and vortex-flow aerodynamics and are based upon a unique data set obtained in the NASA-Langley National Transonic Facility (NTF) for i) Reynolds numbers ranging from conventional wind-tunnel to flight values, ii) Mach numbers ranging from subsonic to transonic speeds, and iii) leading-edge bluntness values that span practical slender wing applications. The data were obtained so as to isolate the subject effects and they present many challenges for Computational Fluid Dynamics (CFD) studies.

  5. Some aspects of hybrid-zeppelins. [optimization of delta wings for airships

    NASA Technical Reports Server (NTRS)

    Mackrodt, P. A.

    1975-01-01

    To increase an airship's maneuverability and payload capacity as well as to save bouyant gas it is proposed to outfit it with a slender delta-wing, which carries about one half of the total take-off weight of the vehicle. An optimization calculation based on the data of LZ 129 (the last airship, which saw passenger-service) leads to a Hybrid-Zeppelin with a wing of aspect-ratio 1.5 and 105 m span. The vehicle carries a payload of 40% of it's total take-off weight and consumes 0.8 t fuel per ton payload over a distance of 10000 km.

  6. A Wind-Tunnel Investigation of the Development of Lift on Wings in Accelerated Longitudinal Motion

    NASA Technical Reports Server (NTRS)

    Turner, Thomas R.

    1960-01-01

    An investigation was made in the Langley 300 MPH 7- by 10-foot tunnel to determine the development of lift on a wing during a simulated constant-acceleration catapult take-off. The investigation included models of a two-dimensional wing, an unswept wing having an aspect ratio of 6, a 35 deg. swept wing having an aspect ratio of 3.05, and a 60 deg. delta wing having an aspect ratio of 2.31. All the wings investigated developed at least 90 percent of their steady-state lift in the first 7 chord lengths of travel. The development of lift was essentially independent of the acceleration when based on chord lengths traveled, and was in qualitative agreement with theory.

  7. Navier-Stokes calculation of transonic flow past the NTF 65-deg delta wing

    NASA Technical Reports Server (NTRS)

    Wu, Chivey

    1992-01-01

    Viscous flow past a wind tunnel model of a 65-degree swept angle Delta wing at transonic speeds is being studied. The model was tested in the 8-foot cryogenic transonic wind tunnel at the National Transonic Facility. Aerodynamic forces and wing surface pressure data were obtained at various angles of attack, Mach numbers, and Reynold's numbers for four different leading edges of the wing. The objectives of the present investigation are: (1) to perform numerical modeling of the flow around the wing; (2) to validate the experimental data with a Navier-Stokes computational fluid dynamics code and vice versa; (3) to investigate the effects of the sting mount of the wing; (4) to evaluate the effects of leading edge radius on the flow; and (5) to explain the Reynold's number effect as indicated by the test data. Several computer programs were developed to define the surfaces of the wing, the four leading edges, and the sting mount. Based on these geometric databases, the surface grids of a single-block computational domain was generated interactively on the IRIS workstation using the GRIDGEN2D module of GRIDGEN. To refine the grids and to avoid excessive loss of grid points due to collapsed edges, a 9-block computational domain containing approximately 750,000 grid points was developed with the GRIDBLOCK module to replace the single-block grid.

  8. Unsteady surface pressure measurements on a slender delta wing undergoing limit cycle wing rock

    NASA Technical Reports Server (NTRS)

    Arena, Andrew S., Jr.; Nelson, Robert C.

    1991-01-01

    An experimental investigation of slender wing limit cycle motion known as wing rock was investigated using two unique experimental systems. Dynamic roll moment measurements and visualization data on the leading edge vortices were obtained using a free to roll apparatus that incorporates an airbearing spindle. In addition, both static and unsteady surface pressure data was measured on the top and bottom surfaces of the model. To obtain the unsteady surface pressure data a new computer controller drive system was developed to accurately reproduce the free to roll time history motions. The data from these experiments include, roll angle time histories, vortex trajectory data on the position of the vortices relative to the model's surface, and surface pressure measurements as a function of roll angle when the model is stationary or undergoing a wing rock motion. The roll time history data was numerically differentiated to determine the dynamic roll moment coefficient. An analysis of these data revealed that the primary mechanism for the limit cycle behavior was a time lag in the position of the vortices normal to the wing surface.

  9. Navier-Stokes analysis of a delta wing in static and dynamic roll

    NASA Technical Reports Server (NTRS)

    Chaderjian, N.; Schiff, L.

    1995-01-01

    The three-dimensional, Reynolds-averaged, Navier-Stokes equations are used to numerically simulate non-steady high-incidence vortical flow about a 65 degree sweep delta wing under static roll and forced periodic roll motions. These computations have been previously reported in the literature, where emphasis was placed on validating the computational results with nonsteady experimental surface pressures, forces and moments. The emphasis of this research is to revisit these earlier computations and use nonsteady numerical flow visualization to analyze the nonlinear surface flow and vortex breakdown dynamics. Most notable are the periodic formation of surface-flow separation lines, and the periodic formation of vortex breakdown near the delta wing trailing edge.

  10. A Study of Grid Resolution, Transition and Turbulence Model Using the Transonic Simple Straked Delta Wing

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2001-01-01

    Three-dimensional transonic flow over a delta wing is investigated using several turbulence models. The performance of linear eddy viscosity models and an explicit algebraic stress model is assessed at the start of vortex flow, and the results compared with experimental data. To assess the effect of transition location, computations that either fix transition aft of the leading edge or are fully turbulent are performed. These computations show that grid resolution, transition location and turbulence model significantly affect the 3D flowfield.

  11. Visualization of leading edge vortices on a series of flat plate delta wings

    NASA Technical Reports Server (NTRS)

    Payne, Francis M.; Ng, T. Terry; Nelson, Robert C.

    1991-01-01

    A summary of flow visualization data obtained as part of NASA Grant NAG2-258 is presented. During the course of this study, many still and high speed motion pictures were taken of the leading edge vortices on a series of flat plate delta wings at varying angles of attack. The purpose is to present a systematic collection of photographs showing the state of vortices as a function of the angle of attack for the four models tested.

  12. Investigation of vortex breakdown on a delta wing using Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Agrawal, S.; Barnett, R. M.; Robinson, B. A.

    1991-01-01

    A numerical investigation of leading edge vortex breakdown in a delta wing at high angles of attack is presented. The analysis was restricted to low speed flows on a flat plate wing with sharp leading edges. Both Euler and Navier-Stokes equations were used and the results were compared with experimental data. Predictions of vortex breakdown progression with angle of attack with both Euler and Navier-Stokes equations are shown to be consistent with the experimental data. However, the Navier-Stokes predictions show significant improvements in breakdown location at angles of attack where the vortex breakdown approaches the wing apex. The predicted trajectories of the primary vortex are in very good agreement with the test data, the laminar solutions providing the overall best comparison. The Euler shows a small displacement of the primary vortex, relative to experiment, due to the lack of secondary vortices. The turbulent Navier-Stokes, in general, fall between the Euler and laminar solutions.

  13. Unsteady, Transonic Flow Around Delta Wings Undergoing Coupled and Natural Modes Response: A Multidisciplinary Problem

    NASA Technical Reports Server (NTRS)

    Menzies, Margaret Anne

    1996-01-01

    The unsteady, three-dimensional Navier-Stokes equations coupled with the Euler equations of rigid-body dynamics are sequentially solved to simulate and analyze the aerodynamic response of a high angle of attack delta wing undergoing oscillatory motion. The governing equations of fluid flow and dynamics of the multidisciplinary problem are solved using a time-accurate solution of the laminar, unsteady, compressible, full Navier- Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. The primary model under consideration consists of a 65 deg swept, sharp-edged, cropped delta wing of zero thickness at 20 deg angle of attack. In a freestream of Mach 0.85 and Reynolds number of 3.23 x 10(exp 6), the flow over the upper surface of the wing develops a complex shock system which interacts with the leading-edge primary vortices producing vortex breakdown. The effect of the oscillatory motion of the wing on the vortex breakdown and overall aerodynamic response is detailed to provide insight to the complicated physics associated with unsteady flows and the phenomenon of wing rock. Forced sinusoidal single and coupled mode rolling and pitching motion is presented for the wing in a transonic freestream. The Reynolds number, frequency of oscillation, and the phase angle are varied. Comparison between the single and coupled mode forced rolling and pitching oscillation cases illustrate the effects of coupling the motion. This investigation shows that even when coupled, forced rolling oscillation at a reduced frequency of 2(pi) eliminates the vortex breakdown which results in an increase in lift. The coupling effect for in phase forced oscillations show that the lift coefficient of the pitching-alone case and the rolling-moment coefficient of the rolling-alone case dominate the resulting response. However, with a phase lead in the pitching motion, the coupled motion results in a non

  14. Review of delta wing space shuttle vehicle dynamics

    NASA Technical Reports Server (NTRS)

    Reding, J. P.; Ericsson, L. E.

    1971-01-01

    The unsteady aerodynamics of the proposed delta planform, high cross range, shuttle orbiters, are investigated. It is found that these vehicles are subject to five unsteady-flow phenomena that could compromise the flight dynamics. The phenomena are as follows: (1) leeside shock-induced separation, (2) sudden leading-edge stall, (3) vortex burst, (4)bow shock-flap shock interaction, and (5) forebody vorticity. Trajectory shaping is seen as the most powerful means of avoiding deterimental effects of the stall phenomena; however, stall must be fixed or controlled when traversing the stall region. Other phenomana may be controlled by carefully programmed control deflections and some configuration modifications. Ways to alter the occurrence of the various flow conditions are explored.

  15. Delta wing vortex manipulation using pulsed and steady blowing during ramp pitching

    NASA Technical Reports Server (NTRS)

    Moreira, J.; Johari, H.

    1995-01-01

    The effectiveness of steady and pulsed blowing as a method of controlling delta wing vortices during ramp pitching has been investigated in flow visualization experiments conducted in a water tunnel. The recessed angled spanwise blowing technique was utilized for vortex manipulation. This technique was implemented on a beveled 60 delta wing using a pair of blowing ports located beneath the vortex core at 40% chord. The flow was injected primarily in the spanwise direction but was also composed of a component normal to the wing surface. The location of vortex burst was measured as a function of blowing intensity and pulsing frequency under static conditions, and the optimum blowing case was applied at three different wing pitching rates. Experimental results have shown that, when the burst location is upstream of the blowing port, pulsed blowing delays vortex breakdown in static and dynamic cases. Dynamic tests verified the existence of a hysteresis effect and demonstrated the improvements offered by pulsed blowing over both steady blowing and no-blowing scenarios. The application of blowing, at the optimum pulsing frequency, made the vortex breakdown location comparable in static and ramp pitch-up conditions.

  16. An Attached Flow Design of a Noninterferring Leading Edge Extension to a Thick Delta Wing

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Ghaffari, Farhad

    1985-01-01

    An analytical procedure for the determination of the shape of a Leading-Edge Extension (LEE) which satisfies design criteria, including especially noninterference at the wing design point, has been developed for thick delta wings. The LEE device best satisfying all criteria is designed to be mounted on a wing along a dividing stream surface associated with an attached flow design lift coefficient (C(sub L,d)) of greater than zero. This device is intended to improve the aerodynamic performance of transonic aircraft at C(sub L) greater than C(sub L,d) system emanating from the LEE leading edge. In order to quantify this process a twisted and cambered thick delta wing was chosen for the initial application of this design procedure. Appropriate computer codes representing potential and vortex flows were employed to determine the dividing stream surface at C(sub L,d) and an optimized LEE planform shape at C(sub L) greater than C(sub L,d), respectively. To aid in the LEE selection, the aerodynamic effectiveness of 36 planforms was investigated at C(sub L) greater than C(sub L,d). This study showed that reducing the span of the candidate LEEs has the most detrimental effect on overall aerodynamic efficiency, regardless of the shape or area. Furthermore, for a fixed area, constant-chord LEE candidates were relatively more efficient than those with sweep less than the wing. At C(sub L,d), the presence of the LEE planform best satisfying the design criteria was found to have no effect on the wing alone aerodynamic performance.

  17. A study of roll attractor and wing rock of delta wings at high angles of attack

    NASA Technical Reports Server (NTRS)

    Niranjana, T.; Rao, D. M.; Pamadi, Bandu N.

    1993-01-01

    Wing rock is a high angle of attack dynamic phenomenon of limited cycle motion predominantly in roll. The wing rock is one of the limitations to combat effectiveness of the fighter aircraft. Roll Attractor is the steady state or equilibrium trim angle (phi(sub trim)) attained by the free-to-roll model, held at some angle of attack, and released form rest at a given initial roll (bank) angle (phi(sub O)). Multiple roll attractors are attained at different trim angles depending on initial roll angle. The test facility (Vigyan's low speed wind tunnel) and experimental work is presented here along with mathematical modelling of roll attractor phenomenon and analysis and comparison of predictions with experimental data.

  18. Numerical Analysis on Aerodynamic Characteristics of Delta Wing with Variable Geometry Device in Supersonic Flow

    NASA Astrophysics Data System (ADS)

    Kanamori, Masashi; Imamura, Osamu; Suzuki, Kojiro

    The application of the variable geometry (VG) wing to a lifting re-entry body is expected to enhance the control capability of its aerodynamic characteristics and, as a result, to widen the corridor for the flight trajectory. In the present study, the flow field around a plain delta wing having three chord-wise hinges, one is on the wing root and the others on both sides of the mid-span of the wing, at Mach number 3 is numerically investigated by solving the Euler equations. The effects of the angle of attack and the “tip-down” bending angles around these hinges are clarified. The results show that the lift-to-drag ratio is hardly affected by the tip-down angle and that the overall lift and drag forces vary almost proportional to the change in the projected wing area by taking the tip-down configuration. The center of pressure moves backward by the tip-down effect.

  19. Conical Euler methodology for unsteady vortical flows about rolling delta wings

    NASA Technical Reports Server (NTRS)

    Lee, Elizabeth M.; Batina, John T.

    1991-01-01

    A conical Euler methodology was developed to study unsteady vortex-dominated flows about rolling highly swept delta wings undergoing either forced or free-to-roll motions. The flow solver of the code involves a multistage Runge-Kutta time-stepping scheme which uses a finite-volume spatial discretization of the Euler equations on an unstructured grid of triangles. Results are presented for a 75-deg swept sharp-leading-edge delta wing at a freestream Mach number of 1.2 and at alpha = 10, 20, and 30 deg. At the 10 and 20 deg, forced harmonic analyses indicate that the rolling moment coefficients provide a positive damping which is verified by free-to-roll calculations. In contrast, at 30 deg, a forced harmonic analysis indicates that the rolling moment coefficient provides a negative damping at the small roll amplitudes. A free-to-roll calculation for this case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation.

  20. Effects of Horizontal-Control Planform and Wing-Leading-Edge Modification on Low-Speed Longitudinal Aerodynamic Characteristics of a Canard Airplane Configuration

    NASA Technical Reports Server (NTRS)

    Spencer, Bernard, Jr.

    1981-01-01

    An investigation at low subsonic speeds has been conducted in the Langley 300-MPH 7- by 10-foot tunnel. The basic wing had a trapezoidal planform, an aspect ratio of 3.0., a taper ratio of 0.143, and an unswept 80-percent-chord line. Modifications to the basic wing included deflectable full-span and partial-span leading-edge chord-extensions. A trapezoidal horizontal control similar in planform to the basic wing and a 60 deg sweptback delta horizontal control were tested in conjunction with the wing. The total planform area of each horizontal control was 16 percent of the total basic-wing area. Modifications to these horizontal controls included addition of a full-span chord-extension to the trapezoidal planform and a fence to the delta planform.

  1. Sonic boom focusing prediction and delta wing shape optimization for boom mitigation studies

    NASA Astrophysics Data System (ADS)

    Khasdeo, Nitin

    Supersonic travel over land would be a reality if new aircraft are designed such that they produce quieter ground sonic booms, no louder than 0.3 psf according to the FAA requirement. An attempt is made to address the challenging goal of predicting the sonic boom focusing effects and mitigate the sonic boom ground overpressure for delta wing geometry. Sonic boom focusing is fundamentally a nonlinear phenomenon and can be predicted by numerically solving the nonlinear Tricomi equation. The conservative time domain scheme is developed to carry out the sonic boom focusing or super boom studies. The computational scheme is a type differencing scheme and is solved using a time-domain scheme, which is called a conservative type difference solution. The finite volume method is used on a structured grid topology. A number of input signals Concorde wave, symmetric and ax symmetric ramp, flat top and typical N wave type are simulated for sonic boom focusing prediction. A parametric study is launched in order to investigate the effects of several key parameters that affect the magnitude of shock wave amplification and location of surface of amplification or "caustics surface." A parametric studies includes the effects of longitudinal and lateral boundaries, footprint and initial shock strength of incoming wave and type of input signal on sonic boom focusing. Another very important aspect to be looked at is the mitigation strategies of sonic boom ground signature. It has been decided that aerodynamic reshaping and geometrical optimization are the main goals for mitigating the ground signal up to the acceptance level of FAA. Biconvex delta wing geometry with a chord length of 60 ft and maximum thickness ratio of 5% of the chord is used as a base line model to carry out the fundamental research focus. The wing is flying at an altitude 40,000 ft with a Mach number of 2.0. Boom mitigation work is focused on investigating the effects of wing thickness ratio, wing camber ratio, wing

  2. Analytical observations on the aerodynamics of a delta wing with leading edge flaps

    NASA Technical Reports Server (NTRS)

    Oh, S.; Tavella, D.

    1986-01-01

    The effect of a leading edge flap on the aerodynamics of a low aspect ratio delta wing is studied analytically. The separated flow field about the wing is represented by a simple vortex model composed of a conical straight vortex sheet and a concentrated vortex. The analysis is carried out in the cross flow plane by mapping the wing trace, by means of the Schwarz-Christoffel transformation into the real axis of the transformed plane. Particular attention is given to the influence of the angle of attack and flap deflection angle on lift and drag forces. Both lift and drag decrease with flap deflection, while the lift-to-drag ratioe increases. A simple coordinate transformation is used to obtain a closed form expression for the lift-to-drag ratio as a function of flap deflection. The main effect of leading edge flap deflection is a partial suppression of the separated flow on the leeside of the wing. Qualitative comparison with experiments is presented, showing agreement in the general trends.

  3. An analytical design procedure for the determination of effective leading edge extensions on thick delta wings

    NASA Technical Reports Server (NTRS)

    Ghaffari, F.; Chaturvedi, S. K.

    1984-01-01

    An analytical design procedure for leading edge extensions (LEE) was developed for thick delta wings. This LEE device is designed to be mounted to a wing along the pseudo-stagnation stream surface associated with the attached flow design lift coefficient of greater than zero. The intended purpose of this device is to improve the aerodynamic performance of high subsonic and low supersonic aircraft at incidences above that of attached flow design lift coefficient, by using a vortex system emanating along the leading edges of the device. The low pressure associated with these vortices would act on the LEE upper surface and the forward facing area at the wing leading edges, providing an additional lift and effective leading edge thrust recovery. The first application of this technique was to a thick, round edged, twisted and cambered wing of approximately triangular planform having a sweep of 58 deg and aspect ratio of 2.30. The panel aerodynamics and vortex lattice method with suction analogy computer codes were employed to determine the pseudo-stagnation stream surface and an optimized LEE planform shape.

  4. Surface pressure distributions on a delta wing undergoing large amplitude pitching oscillations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, Scott A.

    1989-01-01

    Wind tunnel experiments were performed on a 70 deg sweep delta wing to determine the effect of a sinusoidal pitching motion on the pressure field on the suction side of the wing. Twelve pressure taps were placed from 35 to 90 percent of the chord, at 60 percent of the local semi-span. Pressure coefficients were measured as a function of Reynolds number and pitch rate. The pressure coefficient was seen to vary at approximately the same frequency as the pitching frequency. The relative pressure variation at each chord location was comparable for each case. The average pressure distribution through each periodic motion was near the static distribution for the average angle of attack. Upon comparing the upstroke and downstroke pressures for a specific angle of attack, the downstroke pressures were slightly larger. Vortex breakdown was seen to have the most significant effect at the 40 to 45 percent chord location, where a decrease in pressure was apparent.

  5. Adaptive computations of flow around a delta wing with vortex breakdown

    NASA Technical Reports Server (NTRS)

    Modiano, David L.; Murman, Earll M.

    1993-01-01

    An adaptive unstructured mesh solution method for the three-dimensional Euler equations was used to simulate the flow around a sharp edged delta wing. Emphasis was on the breakdown of the leading edge vortex at high angle of attack. Large values of entropy, which indicate vortical regions of the flow, specified the region in which adaptation was performed. The aerodynamic normal force coefficients show excellent agreement with wind tunnel data measured by Jarrah, and demonstrate the importance of adaptation in obtaining an accurate solution. The pitching moment coefficient and the location of vortex breakdown are compared with experimental data measured by Hummel and Srinivasan, showing good agreement in cases in which vortex breakdown is located over the wing.

  6. Force and moment measurements on a 74 deg delta wing with an apex flap

    NASA Technical Reports Server (NTRS)

    Buter, T. A.; Rao, D. M.

    1984-01-01

    Results are presented of a subsonic experimental investigation of an apex flap concept on a 74 deg swept delta wing with trailing-edge flaps. The apex flap comprised approximately 6 percent of the wing area forward of a transverse hinge, allowing for upward and downward deflection angles from +40 deg to -20 deg. Upward deflection forces leading-edge vortex formation on the apex flap, resulting in an increased lift component on the apex area. The associated nose-up moment balances the nose-down moment due to trailing-edge flaps, resulting in sizeable increase in the trimmed lift coefficient particularly at low angles of attack. Nose-down apex deflection may be used to augment the pitch control for rapid recovery from high-alpha maneuvers. This report presents the balance data without analysis.

  7. A Computational and Experimental Investigation of a Delta Wing with Vertical Tails

    NASA Technical Reports Server (NTRS)

    Krist. Sherrie L.; Washburn, Anthony E.; Visser, Kenneth D.

    2004-01-01

    The flow over an aspect ratio 1 delta wing with twin vertical tails is studied in a combined computational and experimental investigation. This research is conducted in an effort to understand the vortex and fin interaction process. The computational algorithm used solves both the thin-layer Navier-Stokes and the inviscid Euler equations and utilizes a chimera grid-overlapping technique. The results are compared with data obtained from a detailed experimental investigation. The laminar case presented is for an angle of attack of 20 and a Reynolds number of 500; 000. Good agreement is observed for the physics of the flow field, as evidenced by comparisons of computational pressure contours with experimental flow-visualization images, as well as by comparisons of vortex-core trajectories. While comparisons of the vorticity magnitudes indicate that the computations underpredict the magnitude in the wing primary-vortex-core region, grid embedding improves the computational prediction.

  8. Adaptive Mesh Euler Equation Computation of Vortex Breakdown in Delta Wing Flow.

    NASA Astrophysics Data System (ADS)

    Modiano, David Laurence

    A solution method for the three-dimensional Euler equations is formulated and implemented. The solver uses an unstructured mesh of tetrahedral cells and performs adaptive refinement by mesh-point embedding to increase mesh resolution in regions of interesting flow features. The fourth-difference artificial dissipation is increased to a higher order of accuracy using the method of Holmes and Connell. A new method of temporal integration is developed to accelerate the explicit computation of unsteady flows. The solver is applied to the solution of the flow around a sharp edged delta wing, with emphasis on the behavior of the leading edge vortex above the leeside of the wing at high angle of attack, under which conditions the vortex suffers from vortex breakdown. Large deviations in entropy, which indicate vortical regions of the flow, specify the region in which adaptation is performed. Adaptive flow calculations are performed at ten different angles of attack, at seven of which vortex breakdown occurs. The aerodynamic normal force coefficients show excellent agreement with wind tunnel data measured by Jarrah, which demonstrates the importance of adaptation in obtaining an accurate solution. The pitching moment coefficient and the location of vortex breakdown are compared with experimental data measured by Hummel and Srinivasan, with which fairly good agreement is seen in cases in which the location of breakdown is over the wing. A series of unsteady calculations involving a pitching delta wing were performed. The use of the acceleration technique is validated. A hysteresis in the normal force is observed, as in experiments, and a lag in the breakdown position is demonstrated. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).

  9. Measurement of Leading Edge Vortices from a Delta Wing Using a Three Component Laser Velocimeter

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Hepner, Timothy E.

    1988-01-01

    A demonstration of the capabilities of a three component laser velocimeter to provide a detailed experimental database of a complex flow field i s presented. The orthogonal three component laser velocimeter was used to measure the leading edge vortex flow field above a 75 degrees delta wing at angles-of-attack of 20.5 degrees and 40.0 degrees. The resulting mean velocity and turbulence intensity measurements are presented. The laser velocimeter is described in detail including a description of the data processing algorithm. A full error analysis was conducted and the results presented.

  10. Reynolds Number and Leading-Edge Bluntness Effects on a 65 Deg Delta Wing

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2002-01-01

    A 65 deg delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at subsonic speeds (M = 0.4) from this data set. The results show significant effects of both these parameters on the onset and progression of leading-edge vortex separation.

  11. Compressibility and Leading-Edge Bluntness Effects for a 65 Deg Delta Wing

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2004-01-01

    A 65 deg. delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated a systematic variation of the leading edge bluntness. The analysis for this paper is focused on the compressibility and bluntness effects primarily at a Reynolds number of 6 million from this data set. Emphasis is placed upon on the onset and progression of leading-edge vortex separation, and compressibility is shown to promote this separation. Comparisons with recent publications show that compressibility and Reynolds number have opposite effects on blunt leading edge vortex separation

  12. Reynolds Number and Leading-Edge Bluntness Effects on a 65 deg Delta Wing

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2002-01-01

    A 65 degree delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at subsonic speeds (M = 0.4) from this data set. The results show significant effects of both these parameters on the onset and progression of leading-edge vortex separation.

  13. Transonic Reynolds Number and Leading-Edge Bluntness Effects on a 65 deg Delta Wing

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2003-01-01

    A 65 deg delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated a systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at transonic speeds (M = 0.85) from this data set. The results show significant effects of both these parameters on the onset and progression of leading- edge vortex separation.

  14. Transonic Reynolds Number and Leading-Edge Bluntness Effects on a 65 deg Delta Wing

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2003-01-01

    A 65 deg delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated a systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at transonic speeds (M=0.85) from this data set. The results show significant effects of both these parameters on the onset and progression of leading-edge vortex separation.

  15. Transonic Reynolds Number and Leading-Edge Bluntness Effects on a 65 deg Delta Wing

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2003-01-01

    A 65 degree delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated a systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at transonic speeds (M = 0.85) from this data set. The results show significant effects of both these parameters on the onset and progression of leading edge vortex separation.

  16. Applications of Euler equations to sharp edge delta wings with leading edge vortices

    NASA Technical Reports Server (NTRS)

    Murman, Earll M.; Rizzi, Arthur

    1986-01-01

    Studies on the solution of discrete Euler equations past swept delta wing configurations with sharp leding edges are presented. Freestream Mach numbers range from zero to supersonic, although the Mach number normal to the leading edge is subsonic for all cases discussed. A few examples are given to show the application of the numerical methods to representative problems. The major dicussion is directed at the application of Computational Fluid Dynamics to the understanding of the fundamental fluid mechanic mechanisms of this class of flows.

  17. A vortex-lattice method for calculating longitudinal dynamic stability derivatives of oscillating delta wings

    NASA Technical Reports Server (NTRS)

    Levin, D.

    1981-01-01

    A nonsteady vortex-lattice method is introduced for predicting the dynamic stability derivatives of a delta wing undergoing an oscillatory motion. The analysis is applied to several types of small oscillations in pitch. The angle of attack varied between + or - 1 deg, with the mean held at 0 deg when the flow was assumed to be attached and between + or - 1 deg and the mean held at 15 deg when both leading-edge separation and wake roll-up were included. The computed results for damping in pitch are compared with several other methods and with experiments, and are found to be consistent and in good agreement.

  18. Influence of airfoil geometry on delta wing leading-edge vortices and vortex-induced aerodynamics at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Byrd, James E.; Wesselmann, Gary F.

    1992-01-01

    An assessment of the influence of airfoil geometry on delta wing leading edge vortex flow and vortex induced aerodynamics at supersonic speeds is discussed. A series of delta wing wind tunnel models were tested over a Mach number range from 1.7 to 2.0. The model geometric variables included leading edge sweep and airfoil shape. Surface pressure data, vapor screen, and oil flow photograph data were taken to evaluate the complex structure of the vortices and shocks on the family of wings tested. The data show that airfoil shape has a significant impact on the wing upper surface flow structure and pressure distribution, but has a minimal impact on the integrated upper surface pressure increments.

  19. A study of the vortex flow over 76/40-deg double-delta wing

    NASA Astrophysics Data System (ADS)

    Verhaagen, N. G.; Jenkins, L. N.; Kern, S. B.; Washburn, A. E.

    1995-02-01

    A low-speed wind-tunnel study of the flow about a 76/40-deg double-delta wing is described for angles of attack ranging from -10 to 25 deg and Reynolds numbers ranging from 0.5 to 1.5 Million. The study was conducted to provide data for the purpose of understanding the vortical flow behavior and for validating Computational Fluid Dynamics methods. Flow visualization tests have provided insight into the effect of the angle of attack and Reynolds number of the vortex-dominated flow both on and off of the surface of the double-delta wing. Upper surface pressure recordings from pressure orifices and Pressure Sensitive Paint have provided data on the pressures induced by the vortices. Flowfield surveys were carried out at an angle of attack of 10 deg by using a thin 5-hole probe. Numerical solutions of the compressible thin-layer Navier-Stokes equations were conducted and compared to the experimental data.

  20. Controlled vortical flow on delta wings through unsteady leading edge blowing

    NASA Technical Reports Server (NTRS)

    Lee, K. T.; Roberts, Leonard

    1990-01-01

    The vortical flow over a delta wing contributes an important part of the lift - the so called nonlinear lift. Controlling this vortical flow with its favorable influence would enhance aircraft maneuverability at high angle of attack. Several previous studies have shown that control of the vortical flow field is possible through the use of blowing jets. The present experimental research studies vortical flow control by applying a new blowing scheme to the rounded leading edge of a delta wing; this blowing scheme is called Tangential Leading Edge Blowing (TLEB). Vortical flow response both to steady blowing and to unsteady blowing is investigated. It is found that TLEB can redevelop stable, strong vortices even in the post-stall angle of attack regime. Analysis of the steady data shows that the effect of leading edge blowing can be interpreted as an effective change in angle of attack. The examination of the fundamental time scales for vortical flow re-organization after the application of blowing for different initial states of the flow field is studied. Different time scales for flow re-organization are shown to depend upon the effective angle of attack. A faster response time can be achieved at angles of attack beyond stall by a suitable choice of the initial blowing momentum strength. Consequently, TLEB shows the potential of controlling the vortical flow over a wide range of angles of attack; i.e., in both for pre-stall and post-stall conditions.

  1. Detailed flow-field measurements over a 75 deg swept delta wing

    NASA Technical Reports Server (NTRS)

    Kjelgaard, Scott O.; Sellers, William L., III

    1990-01-01

    Results from an experimental investigation documenting the flowfield over a 75 deg swept delta wing at an angle-of-attack of 20.5 deg are presented. Results obtained include surface flow visualization, off-body flow visualization, and detailed flowfield surveys for various Reynolds numbers. Flowfield surveys at Reynolds numbers of 0.5, 1.0, and 1.5 million based on the root chord were conducted with both a Pitot pressure probe and a 5-hole pressure probe; and 3-component laser velocimeter surveys were conducted at a Reynolds number of 1.0 million. The Pitot pressure surveys were obtained at 5 chordwise stations, the 5-hole probe surveys were obtained at 3 chordwise stations and the laser velocimeter surveys were obtained at one station. The results confirm the classical roll up of the flow into a pair of primary vortices over the delta wing. The velocity measurements indicate that Reynolds number has little effect on the global structure of the flowfield for the Reynolds number range investigated. Measurements of the non-dimensional axial velocity in the core of the vortex indicate a jet like flow with values greater than twice freestream. Comparisons between velocity measurements from the 5-hole pressure probe and the laser velocimeter indicate that the pressure probe does a reasonable job of measuring the flowfield quantities where the velocity gradients in the flowfield are low.

  2. Analysis of the Flow About Delta Wings with Leading Edge Separation at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Nenni, J. P.; Tung, C.

    1973-01-01

    A research program was conducted to develop an improved theoretical flow model for the flow about sharp edge delta wings with leading-edge separation at supersonic speeds. The flow model incorporates a representation of the secondary separation region which occurs just inboard of the leading edge on such wings and is based on a slender-wing theory whereby the full three-dimensional problem is reduced to a quasi two-dimensional problem in the cross-flow plane. The secondary separation region was modeled by a surface distribution of singularities or a linearized type of cavity representation. The primary vortex and separation were modeled by a concentrated vortex and cut in the cross-flow potential which represents its feeding sheet. The cross-flow solutions for the cavity model were obtained, but these solutions have physical significance only in a very restricted range of angle of attack. The reasons for the failure of the flow model are discussed. The analysis is presented so that other interested researchers may critically review the work.

  3. Pressure-Sensitive Paint Investigation of Double-Delta Wing Vortex Flow Manipulation

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Gonzalez, Hugo A.

    2004-01-01

    A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the effect of wing fillets on the global vortex-induced surface static pressure field about a sharp leading-edge 76o/40o double delta wing, or strake-wing, model at subsonic and transonic speeds. Global calibrations of the PSP were obtained at M = 0.50, 0.70, 0.85, 0.95, and 1.20, a Reynolds number per unit length of 2.0 million, and angles of attack from 10 degrees to 20 degrees using an in-situ method featuring the simultaneous acquisition of electronically-scanned pressures (ESP) at discrete locations on the model. The mean error in the PSP measurements relative to the ESP data was approximately 2 percent or less at M = 0.50 to 0.85 but increased to several percent at M =0.95 and 1.20. The PSP pressure distributions and pseudo-colored planform view pressure maps clearly revealed the vortex-induced pressure signatures at all Mach numbers and angles of attack. Small fillets having a parabolic or diamond planform situated at the strake-wing intersection were designed to manipulate the vortical flows by, respectively, removing the leading-edge discontinuity or introducing additional discontinuities. The fillets caused global changes in the vortex-dominated surface pressure field that were effectively captured in the PSP measurements. The vortex surface pressure signatures were compared to available off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The fillet effects on the PSP pressure distributions and the observed leading-edge vortex flow characteristics were consistent with the trends in the measured lift, drag, and pitching moment coefficients.

  4. Pressure-Sensitive Paint Investigation of Double-Delta Wing Vortex Flow Manipulation

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Gonzalez, Hugo A.

    2005-01-01

    A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the effect of wing fillets on the global vortex-induced surface static pressure field about a sharp leading-edge 76 deg/40 deg double delta wing, or strake-wing, model at subsonic and transonic speeds. Global calibrations of the PSP were obtained at M = 0.50, 0.70, 0.85, 0.95, and 1.20, a Reynolds number per unit length of 2.0 million, and angles of attack from 10 degrees to 30 degrees using an in-situ method featuring the simultaneous acquisition of electronically-scanned pressures (ESP) at discrete locations on the model. The mean error in the PSP measurements relative to the ESP data was approximately 2 percent or less at M = 0.50 to 0.85 but increased to several percent at M = 0.95 and 1.20. The PSP pressure distributions and pseudo-colored planform view pressure maps clearly revealed the vortex-induced pressure signatures at all Mach numbers and angles of attack. Small fillets having a parabolic or diamond planform situated at the strake-wing intersection were designed to manipulate the vortical flows by, respectively, removing the leading-edge discontinuity or introducing additional discontinuities. The fillets caused global changes in the vortex-dominated surface pressure field that were effectively captured in the PSP measurements. The vortex surface pressure signatures were compared to available off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The fillet effects on the PSP pressure distributions and the observed leading-edge vortex flow characteristics were consistent with the trends in the measured lift, drag, and pitching moment coefficients.

  5. Numerical simulation of the laminar and turbulent three dimensional flow on a delta wing with sharp leading edge

    NASA Astrophysics Data System (ADS)

    Hilgenstock, A.

    The flows about a 65 deg swept delta wing were simulated using a block structured three dimensional Navier-Stokes computer program. The computational grid generation was performed with an algebraic method. Grid refinements reveal the strong sensitivity of the solution to refinement in the direction perpendicular to the surface. The numerical results agree well with experimental data.

  6. Control of Flow Structure on Non-Slender Delta Wing: Bio-inspired Edge Modifications, Passive Bleeding, and Pulsed Blowing

    NASA Astrophysics Data System (ADS)

    Yavuz, Mehmet Metin; Celik, Alper; Cetin, Cenk

    2016-11-01

    In the present study, different flow control approaches including bio-inspired edge modifications, passive bleeding, and pulsed blowing are introduced and applied for the flow over non-slender delta wing. Experiments are conducted in a low speed wind tunnel for a 45 degree swept delta wing using qualitative and quantitative measurement techniques including laser illuminated smoke visualization, particle image velocimety (PIV), and surface pressure measurements. For the bio-inspired edge modifications, the edges of the wing are modified to dolphin fluke geometry. In addition, the concept of flexion ratio, a ratio depending on the flexible length of animal propulsors such as wings, is introduced. For passive bleeding, directing the free stream air from the pressure side of the planform to the suction side of the wing is applied. For pulsed blowing, periodic air injection through the leading edge of the wing is performed in a square waveform with 25% duty cycle at different excitation frequencies and compared with the steady and no blowing cases. The results indicate that each control approach is quite effective in terms of altering the overall flow structure on the planform. However, the success level, considering the elimination of stall or delaying the vortex breakdown, depends on the parameters in each method.

  7. Three Component Doppler Global Velocimeter Measurements of the Flow Above A Delta Wing

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Lee, Joseph W.; Covone, Angelo A.

    1992-01-01

    A new measurement technique is being developed by NASA to measure off-surface flow fields. This method, Doppler global velocimetry, will allow quantification of complex three-dimensional flow fields at video camera rates. The entire flow field structure within a selected plane is measured simultaneously rather than by scanned, point-by-point measurements using conventional laser velocimetry. To assess the capability of this new technique, three - component velocity measurements of the vortical flow field above a thin 75-degree delta wing were made in the NASA Langley Basic Aerodynamics Research Tunnel. Measurements were made of the flow field at the 70-percent chord location at angles-of-attack of 20.5 and 40.0 degrees to investigate unburst and burst vortices. For comparison, previous fringe-type laser velocimeter measurements of the flow field at the same conditions are included.

  8. Euler and Navier-Stokes solutions for the leeside flow over delta wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Mcmillin, S. N.; Thomas, J. L.; Murman, E. M.

    1987-01-01

    Distinctly different types of leeside flowfields over highly swept sharp leading edge delta wings in supersonic flow were numerically simulated using Euler and Navier-Stokes solvers. The Euler code was seen to be adequate only in predicting primary flow structures (leading edge vortex and cross flow shock) whereas the Navier-Stokes code was capable of predicting secondary flow structures (i.e., secondary vortex). A comparison of laminar and turbulent Navier-Stokes solutions indicated that the turbulent boundary layer model is more accurate in predicting the effect of the boundary layer model on the flowfield. Also, the Navier-Stokes code indicated detailed flow structures not observed in the qualitative experimental data available (i.e., vapor screen photographs) indicating a need for quantitative flow field data.

  9. Measured forces and moments on a delta wing during pitch-up

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.; Soltani, M. R.

    1990-01-01

    A series of low-speed wind tunnel tests on a 70-deg, sharp, leading-edge delta wing undergoing ramp pitching motion of high amplitude were performed to investigate the aerodynamic forces and moments. Forces and moments were obtained from a six-component interanl balance. Large amplitude oscillatory motion was produced by sinusoidally oscillating the model over a range of reduced frequencies. Ramp motion was produced by pitching the model through a half cycle of sinusoidal motion at a root chord Reynolds number of 1.54 million. The effect of ramp and oscillatory motions on the forces and moments are almost identical at matched pitch rates. Pitch rate had strong effect on the magnitude of the aerodynamic forces and moments. Upon completion of the model motion, some time is required for the forces and moments to decay to their static values. This convergence of the dynamic values to the static ones was a function of the pitch rate.

  10. Experimental measurements on an oscillating 70-degree delta wing in subsonic flow

    NASA Technical Reports Server (NTRS)

    Soltani, M. R.; Bragg, M. B.; Brandon, J. M.

    1988-01-01

    A series of low-speed wind tunnel tests on a 70-degree sharp leading-edged delta wing at both static and dynamic conditions were performed to investigate the aerodynamic forces and moments. Forces and moments were obtained from a six component internal strain gauge balance. Static results compared well with the previous experimental findings. Large amplitude dynamic motion was produced by sinusoidally oscillating the model over a range of reduced frequencies. Substantial force and moment overshoots, a delay in dynamic stall, and hysteresis loops between the values of aerodynamnic loads in upstroke and downstroke motion were observed, all of which were strong functions of the reduced frequency. The aerodynamic forces and moments were influenced by the Reynolds number. Asymmetrical vortex bursting produced by nonzero sideslip angle created a complex rolling moment variations with angle of attack.

  11. DSMC calculations for the delta wing. [Direct Simulation Monte Carlo method

    NASA Technical Reports Server (NTRS)

    Celenligil, M. Cevdet; Moss, James N.

    1990-01-01

    Results are reported from three-dimensional direct simulation Monte Carlo (DSMC) computations, using a variable-hard-sphere molecular model, of hypersonic flow on a delta wing. The body-fitted grid is made up of deformed hexahedral cells divided into six tetrahedral subcells with well defined triangular faces; the simulation is carried out for 9000 time steps using 150,000 molecules. The uniform freestream conditions include M = 20.2, T = 13.32 K, rho = 0.00001729 kg/cu m, and T(wall) = 620 K, corresponding to lambda = 0.00153 m and Re = 14,000. The results are presented in graphs and briefly discussed. It is found that, as the flow expands supersonically around the leading edge, an attached leeside flow develops around the wing, and the near-surface density distribution has a maximum downstream from the stagnation point. Coefficients calculated include C(H) = 0.067, C(DP) = 0.178, C(DF) = 0.110, C(L) = 0.714, and C(D) = 1.089. The calculations required 56 h of CPU time on the NASA Langley Voyager CRAY-2 supercomputer.

  12. The lateral-directional characteristics of a 74-degree Delta wing employing gothic planform vortex flaps

    NASA Technical Reports Server (NTRS)

    Grantz, A. C.

    1984-01-01

    The low speed lateral/directional characteristics of a generic 74 degree delta wing body configuration employing the latest generation, gothic planform vortex flaps was determined. Longitudinal effects are also presented. The data are compared with theoretical estimates from VORSTAB, an extension of the Quasi vortex lattice Method of Lan which empirically accounts for vortex breakdown effects in the calculation of longitudinal and lateral/directional aerodynamic characteristics. It is indicated that leading edge deflections of 30 and 40 degrees reduce the magnitude of the wing effective dihedral relative to the baseline for a specified angle of attack or lift coefficient. For angles of attack greater than 15 degrees, these flap deflections reduce the configuration directional stability despite improved vertical tail effectiveness. It is shown that asymmetric leading edge deflections are inferior to conventional ailerons in generating rolling moments. VORSTAB calculations provide coarse lateral/directional estimates at low to moderate angles of attack. The theory does not account for vortex flow induced, vertical tail effects.

  13. A low-speed wind tunnel study of vortex interaction control techniques on a chine-forebody/delta-wing configuration

    NASA Technical Reports Server (NTRS)

    Rao, Dhanvada M.; Bhat, M. K.

    1992-01-01

    A low speed wind tunnel evaluation was conducted of passive and active techniques proposed as a means to impede the interaction of forebody chine and delta wing vortices, when such interaction leads to undesirable aerodynamic characteristics particularly in the post stall regime. The passive method was based on physically disconnecting the chine/wing junction; the active technique employed deflection of inboard leading edge flaps. In either case, the intent was to forcibly shed the chine vortices before they encountered the downwash of wing vortices. Flow visualizations, wing pressures, and six component force/moment measurements confirmed the benefits of forced vortex de-coupling at post stall angles of attack and in sideslip, viz., alleviation of post stall zero beta asymmetry, lateral instability and twin tail buffet, with insignificant loss of maximum lift.

  14. Theoretical and experimental study of twisted and cambered delta wings designed for a Mach number of 3.5

    NASA Technical Reports Server (NTRS)

    Sorrells, R. B., III; Landrum, E. J.

    1976-01-01

    Data are provided for the evaluation of the aerodynamic performance of a series of twisted and cambered delta wings designed for a Mach number of 3.5. Systematic force and pressure data are also presented for comparison with theory. Force tests were made at Mach numbers of 2.3, 3.0, 3.5, 4.0, and 4.6. Design lift coefficients of 0.0 and 0.1 were employed on the 55 deg and 68 deg sweep wings, and design lift coefficients of 0.0, 0.05, and 0.1 were employed on the 76 deg sweep wings. Pressure tests were conducted on the 55 deg and 76 deg sweep flat wings and on the 0.1 design lift coefficient 76 deg sweep wing. The results indicate that for the sweep angles tested, an increase in the zero-lift pitching-moment coefficient is the primary benefit of twist and camber at a Mach number of 3.5. Comparison of the experimental results with results obtained from several lift theories indicates that the Carlson-Middleton linear theory method gave the best overall agreement. The pressure data indicate, however, that there is a cancellation of error at high angle of attack where the lower surface pressures are significantly underpredicted over the inboard region of the wing and where the upper and lower surface pressures are overpredicted over the outboard region of the wing.

  15. Static internal performance of single-expansion-ramp nozzles with thrust-vectoring capability up to 60 deg

    NASA Technical Reports Server (NTRS)

    Berrier, B. L.; Leavitt, L. D.

    1984-01-01

    An investigation has been conducted at static conditions (wind off) in the static-test facility of the Langley 16-Foot Transonic Tunnel. The effects of geometric thrust-vector angle, sidewall containment, ramp curvature, lower-flap lip angle, and ramp length on the internal performance of nonaxisymmetric single-expansion-ramp nozzles were investigated. Geometric thrust-vector angle was varied from -20 deg. to 60 deg., and nozzle pressure ratio was varied from 1.0 (jet off) to approximately 10.0.

  16. The effect of Reynolds number on the boattail drag of two wing-body configurations

    NASA Technical Reports Server (NTRS)

    Reubush, D. E.

    1975-01-01

    An investigation has been conducted in the Langley 1/3-meter transonic cryogenic tunnel to determine the effects of varying Reynolds number on the boattail drag of wing-body configurations at subsonic speeds. Two boattailed cone-cylinder nacelle models were tested with a 60 deg delta wing at an angle of attack of 0 deg. Reynolds number, based on model length, was varied from about 2.5 million to 67 million. Even though the presence of the wing had large effects on the boattail pressure coefficients, the results of this investigation were similar to those previously found for a series of isolated boattails. Boattail pressure coefficients in the expansion region became more negative with increasing Reynolds number, while those in the recompression region became more positive. These two effects were compensating, and as a result, there was virtually no effect of Reynolds number on boattail pressure drag.

  17. Finite-volume Euler and Navier-Stokes solvers for three-dimensional and conical vortex flows over delta wings

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Chuang, Andrew H.; Shifflette, James M.

    1987-01-01

    A unified central-difference finite-volume Euler and Navier-Stokes solver with four-stage Runge-Kutta time stepping is presented. The computer code developed for this purpose is capable of solving the standard set and nonstandard sets (zero-total-pressure loss) of Euler equations and the thin-layer and full Navier-Stokes equations. Applications are presented for conical supersonic flows with weak shocks using the standard and nonstandard sets of Euler equations, and the thin-layer and full Navier-Stokes equations for sharp and round-edged delta wings. Applications are also presented for three-dimensional transonic and subsonic flows using the standard set of Euler equations for sharp-edged delta wings. The computational results of the different sets of equations are compared with each other and with the experimental results and conclusions on the validity of these sets to these applications, are presented.

  18. Exhaust Plume Effects on Sonic Boom for a Delta Wing and a Swept Wing-Body Model

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Lake, Troy

    2012-01-01

    Supersonic travel is not allowed over populated areas due to the disturbance caused by the sonic boom. Research has been performed on sonic boom reduction and has included the contribution of the exhaust nozzle plume. Plume effect on sonic boom has progressed from the study of isolated nozzles to a study with four exhaust plumes integrated with a wing-body vehicle. This report provides a baseline analysis of the generic wing-body vehicle to demonstrate the effect of the nozzle exhaust on the near-field pressure profile. Reductions occurred in the peak-to-peak magnitude of the pressure profile for a swept wing-body vehicle. The exhaust plumes also had a favorable effect as the nozzles were moved outward along the wing-span.

  19. Surface-flow, pressure, and heat-transfer studies on two conical delta wings at a Mach number of 6

    NASA Technical Reports Server (NTRS)

    Hefner, J. N.; Whitehead, A. H., Jr.

    1972-01-01

    An experimental investigation of the surface flow, pressures, and heat transfer on two conical delta wings having attached leading-edge shocks has been conducted at a Mach number of 6. The angle of attack was varied between 0 deg and 12 deg. The pressure data were compared with predictions obtained by the method-of-lines technique, and the heating data were compared with the heating levels predicted by the Spalding-Chi method.

  20. Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta-Notch signaling to the air sac primordium

    PubMed Central

    Huang, Hai; Kornberg, Thomas B

    2015-01-01

    The flight muscles, dorsal air sacs, wing blades, and thoracic cuticle of the Drosophila adult function in concert, and their progenitor cells develop together in the wing imaginal disc. The wing disc orchestrates dorsal air sac development by producing decapentaplegic and fibroblast growth factor that travel via specific cytonemes in order to signal to the air sac primordium (ASP). Here, we report that cytonemes also link flight muscle progenitors (myoblasts) to disc cells and to the ASP, enabling myoblasts to relay signaling between the disc and the ASP. Frizzled (Fz)-containing myoblast cytonemes take up Wingless (Wg) from the disc, and Delta (Dl)-containing myoblast cytonemes contribute to Notch activation in the ASP. Wg signaling negatively regulates Dl expression in the myoblasts. These results reveal an essential role for cytonemes in Wg and Notch signaling and for a signal relay system in the myoblasts. DOI: http://dx.doi.org/10.7554/eLife.06114.001 PMID:25951303

  1. Numerical prediction of vortex cores of the leading and trailing edges of delta wings

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.

    1980-01-01

    The purpose of the present paper is to predict the roll-up of the vortex sheets emanating from the leading- and trailing-edges of delta wings with emphasis on the interaction of vortex cores beyond the trailing edge. The motivation behind the present work is the recent experimental data published by Hummel. The Nonlinear Discrete-Vortex method (NDV-method) is modified and extended to predict the leading- and trailing-vortex cores beyond the trailing edge. The present model alleviates the problems previously encountered in predicting satisfactory pressure distributions. This is accomplished by lumping the free-vortex lines during the iteration procedure. The leading- and trailing-edge cores and their feeding sheets are obtained as parts of the solution. The numerical results show that the NDV-method is successful in confirming the formation of a trailing-edge core with opposite circulation and opposite roll-up to those of the leading-edge core. This work is a breakthrough in the high angle of attack aerodynamics and moreover, it is the first numerical prediction done on this problem

  2. Water tunnel results of leading-edge vortex flap tests on a delta wing vehicle

    NASA Technical Reports Server (NTRS)

    Delfrate, J. H.

    1986-01-01

    A water tunnel flow visualization test on leading edge vortex flaps was conducted at the flow visualization facility of the NASA Ames Research Center's Dryden Flight Research Facility. The purpose of the test was to visually examine the vortex structures caused by various leading edge vortex flaps on the delta wing of an F-106 model. The vortex flaps tested were designed analytically and empirically at the NASA Langley Research Center. The three flap designs were designated as full-span gothic flap, full-span untapered flap, and part-span flap. The test was conducted at a Reynolds number of 76,000/m (25,000/ft). This low Reynolds number was used because of the 0.076-m/s (0.25-ft/s) test section flow speed necessary for high quality flow visualization. However, this low Reynolds number may have influenced the results. Of the three vortex flaps tested, the part-span flap produced what appeared to be the strongest vortex structure over the flap area. The full-span gothic flap provided the next best performance.

  3. Effects of forebody strakes and Mach number on overall aerodynamic characteristics of configuration with 55 deg cropped delta wing

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Rogers, Lawrence W.

    1992-01-01

    A wind tunnel data base was established for the effects of chine-like forebody strakes and Mach number on the longitudinal and lateral-directional characteristics of a generalized 55 degree cropped delta wing-fuselage-centerline vertical tail configuration. The testing was conducted in the 7- by 10-Foot Transonic Tunnel at the David Taylor Research Center at free-stream Mach numbers of 0.40 to 1.10 and Reynolds numbers based on the wing mean aerodynamic chord of 1.60 x 10(exp 6) to 2.59 x 10(exp 6). The best matrix included angles of attack from 0 degree to a maximum of 28 degree, angles of sidesip of 0, +5, and -5 degrees, and wing leading-edge flat deflection angles of 0 and 30 degrees. Key flow phenomena at subsonic and transonic conditions were identified by measuring off-body flow visualization with a laser screen technique. These phenomena included coexisting and interacting vortex flows and shock waves, vortex breakdown, vortex flow interactions with the vertical tail, and vortices induced by flow separation from the hinge line of the deflected wing flap. The flow mechanisms were correlated with the longitudinal and lateral-directional aerodynamic data trends.

  4. A flow visualization and aerodynamic force data evaluation of spanwise blowing on full and half span delta wings

    NASA Technical Reports Server (NTRS)

    Visser, K. D.; Nelson, R. C.; Ng, T. T.

    1989-01-01

    A wind-tunnel investigation has been performed to quantify the effects of a jet on the leading-edge vortices generated by a 70-deg-sweep sharp-edged delta wing at low Reynolds numbers. Efforts were made ot optimize the jet nozzle position with respect to maximum lift increments. Both half-span force-balance testing and half- and full-span flow visualization tests were conducted. Two angles of attack were investigated, 30 and 35 deg, at Reynolds numbers of 150,000 and 200,000. Aerodynamic enhancement, including lift and drag gains of about 20 and 17 percent respectively, were measured. Results indicate an optimum jet nozzle location to be close to the leading edge, tangent to the upper wing surface, and in a direction aligned parallel to the leading edge. Nozzle interference effects, especially near the apex, were not negligible.

  5. Installed F/A-18 inlet flow calculations at 60 deg angle-of-attack and 10 deg side slip

    NASA Technical Reports Server (NTRS)

    Podleski, S. D.

    1993-01-01

    This paper presents the results of PARC3D numerical calculations on a 19.78 percent scale forebody/inlet model of the F/A-18 at a Mach number of 0.20, an angle-of-attack of 60 deg, and a side-slip angle of 10 deg. The main purpose of these calculations is to support an upcoming wind-tunnel test program in the prediction of engine inlet compressor face total pressure recovery and flow distortion. The GRIDGEN system was used to generate a grid which includes the inlet and lip, and other aircraft components which are considered to be important to inlet performance, such as the ramp/splitter plate, the diverter and slot, and the deflected leading edge flap. PARC3D shows complex flow patterns on the fuselage surfaces below the leading edge extensions, on the ramp/splitter plate, inlet lip, and inside the inlet. PARC3D tends to underpredict total pressure recovery and overpredict the flow distortion at the inlet compressor face.

  6. Vibration characteristics of Z-ring-stiffened 60 deg conical shell models of a planetary entry spacecraft

    NASA Technical Reports Server (NTRS)

    Naumann, E. C.; Mixon, J. S.

    1971-01-01

    An experimental investigation of the vibration characteristics of a 60 deg conical shell model of a planetary entry vehicle is described and the results presented. Model configurations include the shell with or without one or two Z-ring stiffeners and with or without a simulated payload. Tests were conducted with the model clamped at the small diameter and with the model suspended at the simulated payload. Additionally, calculated results obtained from application of several analytical procedures reported in the literature are presented together with comparisons between experimental and calculated frequencies and meridional mode shapes. Generally, very good frequency agreement between experimental and calculated results was obtained for all model configurations. For small values of circumferential mode number, however, the frequency agreement decreased as the number of ring stiffeners increased. Overall agreement between experimental and calculated mode shapes was generally good. The calculated modes usually showed much larger curvatures in the vicinity of the rings than were observed in the experimentally measured mode shapes. Dual resonances associated with modal preference were noted for the shell without Z-ring stiffeners, whereas the addition of stiffeners produced resonances for which the model responded in two or more modes over different sections of the shell length.

  7. Computational Test Cases for a Clipped Delta Wing with Pitching and Trailing-Edge Control Surface Oscillations

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Walker, Charlotte E.

    1999-01-01

    Computational test cases have been selected from the data set for a clipped delta wing with a six-percent-thick circular-arc airfoil section that was tested in the NASA Langley Transonic Dynamics Tunnel. The test cases include parametric variation of static angle of attack, pitching oscillation frequency, trailing-edge control surface oscillation frequency, and Mach numbers from subsonic to low supersonic values. Tables and plots of the measured pressures are presented for each case. This report provides an early release of test cases that have been proposed for a document that supplements the cases presented in AGARD Report 702.

  8. Computer program for calculating supersonic flow on the windward side conical delta wings by the method of lines

    NASA Technical Reports Server (NTRS)

    Klunker, E. B.; South, J. C., Jr.; Davis, R. M.

    1972-01-01

    A user's manual is presented for a program that calculates the supersonic flow on the windward side of conical delta wings with shock attached at the sharp leading edge by the method of lines. The program also has a limited capability for computing the flow about circular and elliptic cones at incidence. It provides information including the shock shape, flow field, isentropic surface-flow properties, and force coefficients. A description of the program operation, a sample computation, and a FORTRAN 4 program listing are included.

  9. Large-Amplitude, High-Rate Roll Oscillations of a 65 deg Delta Wing at High Incidence

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Schiff, Lewis B.

    2000-01-01

    The IAR/WL 65 deg delta wing experimental results provide both detail pressure measurements and a wide range of flow conditions covering from simple attached flow, through fully developed vortex and vortex burst flow, up to fully-stalled flow at very high incidence. Thus, the Computational Unsteady Aerodynamics researchers can use it at different level of validating the corresponding code. In this section a range of CFD results are provided for the 65 deg delta wing at selected flow conditions. The time-dependent, three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate the unsteady vertical flow. Two sting angles and two large- amplitude, high-rate, forced-roll motions and a damped free-to-roll motion are presented. The free-to-roll motion is computed by coupling the time-dependent RANS equations to the flight dynamic equation of motion. The computed results are compared with experimental pressures, forces, moments and roll angle time history. In addition, surface and off-surface flow particle streaks are also presented.

  10. Breaking down the delta wing vortex: The role of vorticity in the breakdown process. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Nelson, Robert C.; Visser, Kenneth D.

    1990-01-01

    Experimental x-wire measurements of the flowfield above a 70 and 75 deg flat plate delta wing were performed at a Reynolds number of 250,000. Grids were taken normal to the wing at various chordwise locations for angles of attack of 20 and 30 deg. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core and on chordwise location was also examined. The effects of nondimensionalization in comparison with other experimental data is made. The results indicate that the circulation distribution scales with the local semispan and grows in a nearly linear fashion in the chordwise direction. The spanwise distribution of axial vorticity is severely altered through the breakdown. The axial vorticity components with a negative sense, such as that found in the secondary vortex, seem to remain unaffected by changes in wind sweep or angle of attack, in direct contrast to the positive components. In addition, the inclusion of the local wing geometry into a previously derived correlation parameter allows the circulation of growing leading edge vortex flows to be reduced into a single curve.

  11. Effect of leading-edge vortex flaps on aerodynamic performance of delta wings

    NASA Technical Reports Server (NTRS)

    Reddy, C. S.

    1981-01-01

    The effect of leading-edge vortex flaps on the aerodynamic characteristics of highly swept-back wings is analytically investigated, using the free vortex sheet method. The method, based on a three-dimensional inviscid flow model, is an advanced panel type employing quadratic doublet distributions to represent the wing surface, rolled-up vortex sheet and wake and is capable of computing forces, moments and surface pressures.

  12. Numerical Simulation of Transient Vortex Breakdown above a Pitching Delta Wing

    DTIC Science & Technology

    1994-05-04

    of the vortex core. The angle between this plane and the wing symmetry plan • is approximately 10.30. Contours of constant axial velocity and selected...34LDA Measurements within a Vortex-Breakdown Bub- ble," Laser Anemometry in Fluid Mechanics, Ladoan-Instituto Superior Tecnico , 1984. 16. Magness, C

  13. Experimental Investigation of the Flow about a 65 deg Delta Wing in the NASA Langley National Transonic Facility. Chapter 4

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2009-01-01

    An experimental investigation for the flow about a 65 deg. delta wing has been conducted in the NASA Langley National Transonic Facility (NTF). The tests were conducted at Reynolds numbers, based on the mean aerodynamic chord, ranging from 6 million to 120 million and at Mach numbers ranging from 0.4 to 0.9. The model incorporated four different leading-edge bluntness values. The data include detailed static surfacepressure distributions as well as normal-force and pitching-moment coefficients. The test program was designed to quantify the effects of Mach number, Reynolds number, and leading-edge bluntness on the onset and progression of leading-edge vortex separation.

  14. Turbulent Vortex-Flow Simulation Over a 65 deg Sharp and Blunt Leading-Edge Delta Wing at Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Ghaffari, Farhad

    2005-01-01

    Turbulent thin-layer, Reynolds-Averaged Navier-Stokes solutions, based on a multi-block structured grid, are presented for a 65 deg delta wing having either a sharp leading edge (SLE) or blunt leading edge (BLE) geometry. The primary objective of the study is to assess the prediction capability of the method for simulating the leading-edge flow separation and the ensuing vortex flow characteristics. Computational results are obtained for two angles of attack of approximately 13 and 20 deg, at free-stream Mach number of 0.40 and Reynolds number of 6 million based on the wing mean aerodynamic chord. The effects of two turbulence models of Baldwin-Lomax with Degani-Schiff (BL/DS) and the Spalart-Allmaras (SA) on the numerical results are also discussed. The computations also explore the effects of two numerical flux-splitting schemes, i.e., flux difference splitting (fds) and flux vector splitting (fvs), on the solution development and convergence characteristics. The resulting trends in solution sensitivity to grid resolution for the selected leading-edge geometries, angles of attack, turbulence models and flux splitting schemes are also presented. The validity of the numerical results is evaluated against a unique set of experimental wind-tunnel data that was obtained in the National Transonic Facility at the NASA Langley Research Center.

  15. Effects of Canard Planform and Wing-Leading-Edge Modification on Low-Speed Longitudinal Aerodynamic Characteristics of a Canard Airplane Configuration

    NASA Technical Reports Server (NTRS)

    Spencer, Bernard, Jr.

    1961-01-01

    An investigation has been conducted at low subsonic speeds to study the effects of canard planform and wing-leading-edge modification on the longitudinal aerodynamic characteristics of a general research canard airplane configuration. The basic wing of the model had a trapezoidal planform, an aspect ratio of 3.0, a taper ratio of 0.143, and an unswept 80-percent-chord line. Modifications to the wing included addition of full-span and partial-span leading-edge chord-extensions. Two canard planforms were employed in the study; one was a 60 deg sweptback delta planform and the other was a trapezoidal planform similar to that of the basic wing. Modifications to these canards included addition of a full-span leading-edge chord-extension to the trapezoidal planform and a fence to the delta planform. For the basic-wing-trapezoidal-canard configuration, rather abrupt increases in stability occurred at about 12 deg angle of attack. A slight pitch-up tendency occurred for the delta-canard configuration at approximately 8 deg angle of attack. A comparison of the longitudinal control effectiveness for the basic-wing-trapezoidal-canard combination and for the basic-wing-delta-canard combination indicates higher values of control effectiveness at law angles of attack for the trapezoidal canard. The control effectiveness for the delta-canard configuration, however, is seen to hold up for higher canard deflections and to higher angles of attack. Use of a full-span chord-extension deflected approximately 30 deg on the trapezoidal canard greatly improved the control characteristics of this configuration and enabled a sizeable increase in trim lift to be realized.

  16. Experimental study of delta wing leading-edge devices for drag reduction at high lift

    NASA Technical Reports Server (NTRS)

    Johnson, T. D., Jr.; Rao, D. M.

    1982-01-01

    The drag reduction devices selected for evaluation were the fence, slot, pylon-type vortex generator, and sharp leading-edge extension. These devices were tested on a 60 degree flatplate delta (with blunt leading edges) in the Langley Research Center 7- by 10-foot high-speed tunnel at low speed and to angles of attack of 28 degrees. Balance and static pressure measurements were taken. The results indicate that all the devices had significant drag reduction capability and improved longitudinal stability while a slight loss of lift and increased cruise drag occurred.

  17. Heat transfer investigation of two Langley Research Center delta wing configurations at a Mach number of 10.5, volume 1

    NASA Technical Reports Server (NTRS)

    Eaves, R. H.; Buchanan, T. D.; Warmbrod, J. D.; Johnson, C. B.

    1972-01-01

    Heat transfer tests for two delta wing configurations were conducted in the hypervelocity wind tunnel. The 24-inch long models were tested at a Mach number of approximately 10.5 and at angles of attack of 20, 40, and 60 degrees over a length Reynolds number range from 5 million to 23 million on 4 May to 4 June 1971. Heat transfer results were obtained from model surface heat gage measurements and thermographic phosphor paint.

  18. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Vol. 3: Medium-radius leading edge

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 120 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6), 60 x 10(exp 6), and 120 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  19. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 2; Small-Radius Leading Edge

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg. delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 84 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  20. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Vol. 4: Large-radius leading edge

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 120 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  1. Numerical investigation of the effects of structural geometric and material nonlinearities on limit-cycle oscillation of a cropped delta wing

    NASA Astrophysics Data System (ADS)

    Peng, Cui; Han, Jinglong

    2011-05-01

    This article presents numerical simulations of the limit-cycle oscillation (LCO) of a cropped delta wing in order to investigate the effects of structural geometric and material nonlinearities on aeroelastic behavior. In the computational model, the structural part included both the geometric nonlinearity that arises from large deflections, and the material nonlinearity that originates from plasticity. The Euler equations were employed in the fluid part to describe the transonic aerodynamics. Moreover, the load transfer was conducted using a 3-D interpolating procedure, and the interfaces between the structural and aerodynamic domains were constructed in the form of an exact match. The flutter and LCO behaviors of the cropped delta wing were simulated using the coupling model, and the results were compared with existing experimental measurements. For lower dynamic pressures, the geometric nonlinearity provided the proper mechanism for the development of the LCO, and the numerical results correlated with the experimental values. For higher dynamic pressures, the material nonlinearity led to a rapid rise in the LCO amplitude, and the simulated varying trend was consistent with the experimental observation. This study demonstrated that the LCO of the cropped delta wing was not only closely related to geometric nonlinearity, but was also remarkably affected by material nonlinearity.

  2. Surface-Pressure and Flow-Visualization Data at Mach Number of 1.60 for Three 65 deg Delta Wings Varying in Leading-Edge Radius and Camber

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi; Bryd, James E.; Parmar, Devendra S.; Bezos-OConnor, Gaudy M.; Forrest, Dana K.; Bowen, Susan

    1996-01-01

    An experimental investigation of the effect of leading-edge radius, camber, Reynolds number, and boundary-layer state on the incipient separation of a delta wing at supersonic speeds was conducted at the Langley Unitary Plan Wind Tunnel at Mach number of 1.60 over a free-stream Reynolds number range of 1 x 106 to 5 x 106 ft-1. The three delta wing models examined had a 65 deg swept leading edge and varied in cross-sectional shape: a sharp wedge, a 20:1 ellipse, and a 20:1 ellipse with a -9.750 circular camber imposed across the span. The wings were tested with and without transition grit applied. Surface-pressure coefficient data and flow-visualization data indicated that by rounding the wing leading edge or cambering the wing in the spanwise direction, the onset of leading-edge separation on a delta wing can be raised to a higher angle of attack than that observed on a sharp-edged delta wing. The data also showed that the onset of leading-edge separation can be raised to a higher angle of attack by forcing boundary-layer transition to occur closer to the wing leading edge by the application of grit or the increase in free-stream Reynolds number.

  3. Surface-Pressure and Flow-Visualization Data at Mach Number of 1.60 for Three 65 deg Delta Wings Varying in Leading-Edge Radius and Camber

    NASA Technical Reports Server (NTRS)

    McMIllin, S. Naomi; Byrd, James E.; Parmar, Devendra S.; Bezos-O'Connor, Gaudy M.; Forrest, Dana K.; Bowen, Susan

    1996-01-01

    An experimental investigation of the effect of leading-edge radius, camber, Reynolds number, and boundary-layer state on the incipient separation of a delta wing at supersonic speeds was conducted at the Langley Unitary Plan Wind Tunnel at Mach number of 1.60 over a free-stream Reynolds number range of 1 x 106 to 5 x 106 ft-1. The three delta wing models examined had a 65 deg swept leading edge and varied in cross-sectional shape: a sharp wedge, a 20:1 ellipse, and a 20:1 ellipse with a -9.750 circular camber imposed across the span. The wings were tested with and without transition grit applied. Surface-pressure coefficient data and flow-visualization data are electronically stored on the CD-ROM. The data indicated that by rounding the wing leading edge or cambering the wing in the spanwise direction, the onset of leading-edge separation on a delta wing can be raised to a higher angle of attack than that observed on a sharp-edged delta wing. The data also showed that the onset of leading-edge separation can be raised to a higher angle of attack by forcing boundary-layer transition to occur closer to the wing leading edge by the application of grit or the increase in free-stream Reynolds number.

  4. Delta-wing function of webbed feet gives hydrodynamic lift for swimming propulsion in birds.

    PubMed

    Johansson, L Christoffer; Norberg, R Ake

    2003-07-03

    Most foot-propelled swimming birds sweep their webbed feet backwards in a curved path that lies in a plane aligned with the swimming direction. When the foot passes the most outward position, near the beginning of the power stroke, a tangent to the foot trajectory is parallel with the line of swimming and the foot web is perpendicular to it. But later in the stroke the foot takes an increasingly transverse direction, swinging towards the longitudinal axis of the body. Here we show that, early in the power stroke, propulsion is achieved mostly by hydrodynamic drag on the foot, whereas there is a gradual transition into lift-based propulsion later in the stroke. At the shift to lift mode, the attached vortices of the drag-based phase turn into a starting vortex, shed at the trailing edge, and into spiralling leading-edge vortices along the sides of the foot. Because of their delta shape, webbed feet can generate propulsive forces continuously through two successive modes, from drag at the beginning of the stroke, all the way through the transition to predominantly lift later in the stroke.

  5. DELTAE

    SciTech Connect

    Ward, W.C. ); Swift, G.W. )

    1993-11-01

    In thermoacoustic engines and refrigerators, and in many simple acoustic systems, a one dimensional wave equation determines the spatial dependence of the acoustic pressure and velocity. DELTAE numerically integrates such wave equations in the acoustic approximation, in gases or liquids, in user-defined geometries. Boundary conditions can include conventional acoustic boundary conditions of geometry and impedance, as well as temperature and thermal power in thermoacoustic systems. DELTAE can be used easily for apparatus ranging from simple duct networks and resonators to thermoacoustic engines refrigerators and combinations thereof. It can predict how a given apparatus will perform, or can allow the user to design an apparatus to achieve desired performance. DELTAE views systems as a series of segments; twenty segment types are supported. The purely acoustic segments include ducts and cones, and lumped impedances including compliances, series impedances, and endcaps. Electroacoustics tranducer segments can be defined using either frequency-independent coefficients or the conventional parameters of loudspeaker-style drivers: mass, spring constant, magnetic field strength, etc. Tranducers can be current driven, voltage driven, or connected to an electrical load impedance. Thermoacoustic segment geometries include parallel plates, circular and rectangular pores, and pin arrays. Side branches can be defined with fixed impedances, frequency-dependent radiation impedances, or as an auxiliary series of segments of any types. The user can select working fluids from among air, helium, neon, argon, hydrogen, deuterium, carbon dioxide, nitrogen, helium-argon mixtures, helium-xenon mixtures, liquid sodium, and eutectic sodium-potassium. Additional fluids and solids can be defined by the user.

  6. Investigation of Porous Gas-Heated Leading-Edge Section for Icing Protection of a Delta Wing

    NASA Technical Reports Server (NTRS)

    Bowden, Dean T.

    1955-01-01

    A tip section of a delta wing having an NACA 0004-65 airfoil section and a 600 leading-edge sweepback was equipped with a porous leading-edge section through which hot gas was 'bled for anti-icing. Heating rates for anti-icing were determined for a wide range of icing conditions. The effects of gas flow through the porous leading-edge section on airfoil pressure distribution and drag in dry air were investigated. The drag increase caused by an ice formation on the unheated airfoil was measured for several icing conditions. Experimental porous surface- to free-stream convective heat-transfer coefficients were obtained in dry air and compared with theory. Adequate icing protection was obtained at all icing conditions investigated. Savings in total gas-flow rate up to 42 percent may be obtained with no loss in anti-icing effectiveness by sealing half the upper-surface porous area. Gas flow through the leading-edge section had no appreciable effect on airfoil pressure distribution. The airfoil section drag increased slightly (5-percent average) with gas flow through the porous surface. A heavy glaze-ice formation produced after 10 minutes of icing caused an increase in section drag coefficient of 240 percent. Experimental convective heat-transfer coefficients obtained with hot-gas flow through the porous area in dry air and turbulent flow were 20 to 30 percent lower than the theoretical values for a solid surface under similar conditions. The transition region from laminar to turbulent flow moved forward as the ratio of gas velocity through the porous surface to air-stream velocity was increased.

  7. All the king's horses. The delta wing leading-edge vortex system undergoing vortex breakdown: A contribution to its characterization and control under dynamic conditions

    NASA Astrophysics Data System (ADS)

    Schaeffler, Norman Walter

    The quality of the flow over a 75sp°-sweep delta wing was documented for steady angles of attack and during dynamic maneuvers with and without the use of two control surfaces. The three-dimensional velocity field over a delta wing at a steady angle of attack of 38sp° and Reynolds number of 72,000 was mapped out using laser-Doppler velocimetry over one side of the wing. The three-dimensional streamline and vortex line distributions were visualized. Isosurfaces of vorticity, planar distributions of helicity and all three vorticity components, and the indicator of the stability of the core were studied and compared to see which indicated breakdown first. Visualization of the streamlines and vortex lines near the core of the vortex indicate that the core has a strong inviscid character, and hence Reynolds number independence, upstream of breakdown, with viscous effects becoming more important downstream of the breakdown location. The effect of cavity flaps on the flow over a delta wing was documented for steady angles of attack in the range 28sp° to 42sp° by flow visualization and surface pressure measurements at a Reynolds number of 470,000 and 1,000,000, respectively. It was found that the cavity flaps postpone the occurrence of vortex breakdown to higher angles of attack than can be realized by the basic delta wing. The effect of continuously deployed cavity flaps during a dynamic pitch-up maneuver of a delta wing on the surface pressure distribution were recorded for a reduced frequency of 0.0089 and a Reynolds number of 1,300,000. The effect of deploying a set of cavity flaps during a dynamic pitch-up maneuver on the surface pressure distribution was recorded for a reduced frequency of 0.0089 and a Reynolds number of 1,300,000 and 187,000. The active deployment of the cavity flaps was shown to have a short-lived beneficial effect on the surface pressure distribution. The effect on the surface pressure distribution of the varying the reduced frequency at

  8. Flow field over the wing of a delta-wing fighter model with vortex control devices at Mach 0.6 to 1.2

    NASA Technical Reports Server (NTRS)

    Bare, E. Ann; Reubush, David E.; Haddad, Raymond C.

    1992-01-01

    As part of a cooperative research program between NASA, McDonnell Douglas Corporation, and Wright Research and Development Center, a flow field investigation was conducted on a 7.52 percent scale windtunnel model of an advanced fighter aircraft design. The investigation was conducted in the Langley 16 ft Transonic Tunnel at Mach numbers of 0.6, 0.9, and 1.2. Angle of attack was varied from -4 degrees to 30 degrees and the model was tested at angles of sideslip of 0, 5, and -5 degrees. Data for the over the wing flow field were obtained at four axial survey stations by the use of six 5 hole conical probes mounted on a survey mechanism. The wing leading edge primary vortex exerted the greatest influence in terms of total pressure loss on the over the wing flow field in the area surveyed. A number of vortex control devices were also investigated. They included two different apex flaps, wing leading edge vortex flaps, and small large wing fences. The vortex flap and both apex flaps were beneficial in controlling the wing leading edge primary vortex.

  9. Evaluation of leading- and trailing-edge flaps on flat and cambered delta wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Hernandez, Gloria; Wood, Richard M.; Collins, Robert E.

    1989-01-01

    An experimental investigation has been conducted to evaluate the effectiveness of leading- and trailing-edge flaps on a flat and cambered wing at superconic speeds. Results from the experimental tests showed that highly complex and three-dimensional flow can occur over the wings with leading- and/or trailing-edge flaps deflected. An analysis of the data also showed that flap effectiveness varies significantly between a cambered and flat wing of identical planform and flap geometry. Mach number effects are similar for both flat and cambered wings for all aerodynamic parameters.

  10. Physical mechanisms of longitudinal vortexes formation, appearance of zones with high heat fluxes and early transition in hypersonic flow over delta wing with blunted leading edges

    NASA Astrophysics Data System (ADS)

    Alexandrov, S. V.; Vaganov, A. V.; Shalaev, V. I.

    2016-10-01

    Processes of vortex structures formation and they interactions with the boundary layer in the hypersonic flow over delta wing with blunted leading edges are analyzed on the base of experimental investigations and numerical solutions of Navier-Stokes equations. Physical mechanisms of longitudinal vortexes formation, appearance of abnormal zones with high heat fluxes and early laminar turbulent transition are studied. These phenomena were observed in many high-speed wind tunnel experiments; however they were understood only using the detailed analysis of numerical modeling results with the high resolution. Presented results allowed explaining experimental phenomena. ANSYS CFX code (the DAFE MIPT license) on the grid with 50 million nodes was used for the numerical modeling. The numerical method was verified by comparison calculated heat flux distributions on the wing surface with experimental data.

  11. Vortex flap flow reattachment line and subsonic longitudinal aerodynamic data on 50 deg to 74 deg Delta wings on common fuselage

    NASA Technical Reports Server (NTRS)

    Frink, N. T.; Huffman, J. K.; Johnson, T. D., Jr.

    1983-01-01

    Positions of the primary vortex flow reattachment line and longitudinal aerodynamic data were obtained at Mach number 0.3 for a systematic series of vortex flaps on delta wing body configurations with leading edge sweeps of 50, 58, 66, and 74 deg. The investigation was performed to study the parametric effects of wing sweep, vortex flap geometry and deflection, canards, and trailing edge flaps on the location of the primary vortex reattachment line relative to the flap hinge line. The vortex reattachment line was located via surface oil flow photographs taken at selected angles of attack. Force and moment measurements were taken over an angle of attack range of -1 deg to 22 deg at zero sideslip angle for many configurations to further establish the data base and to assess the aforementioned parametric effects on longitudinal aerodynamics. Both the flow reattachment and aerodynamic data are presented.

  12. Effects of Various Fillet Shapes on a 76/40 Double Delta Wing from Mach 0.18 to 0.7

    NASA Technical Reports Server (NTRS)

    Gonzalez, Hugo A.; McLachlan, Blair G.; Erickson, Gary E.; Bell, James H.

    2003-01-01

    The effects of linear, diamond, and parabolic fillets on a double delta wing were investigated in the NASA Langley 7 x 10 ft High Speed Tunnel from Mach 0.18 to 0.7 and angles of attack from 4 deg. to 42 deg. Force and moment, pneumatic pressures, pressure sensitive paint, and vapor screen flow visualization measurements were used to characterize the flow field and to determine longitudinal forces and moments. The fillets increased lift coefficient and reduced induced drag without significantly affecting pitching moment. Pressure sensitive paint showed the increase in lift is caused by an increase in suction and broadening of the vortex suction footprint. Vapor screen results showed the mixing and coalescing of the strake fillet and wing vortices causes the footprint to broaden.

  13. Effect of wing flexibility on the experimental aerodynamic characteristics of an oblique wing

    NASA Technical Reports Server (NTRS)

    Hopkins, E. J.; Yee, S. C.

    1977-01-01

    A solid-aluminum oblique wing was designed to deflect considerably under load so as to relieve the asymmetric spanwise stalling that is characteristic of this type of wing by creating washout on the trailing wing panel and washin on the leading wing panel. Experimental forces, and pitching, rolling and yawing moments were measured with the wing mounted on a body of revolution. In order to vary the dynamic pressure, measurements were made at several unit Reynolds numbers, and at Mach numbers. The wing was investigated when unswept (at subsonic Mach numbers only) and when swept 45 deg, 50 deg, and 60 deg. The wing was straight tapered in planform, had an aspect ratio of 7.9 (based on the unswept span), and a profile with a maximum thickness of 4 percent chord. The results substantiate the concept that an oblique wing designed with the proper amount of flexibility self relieves itself of asymmetric spanwise stalling and the associated nonlinear moment curves.

  14. Space shuttle: Heat transfer investigation of the McDonnell-Douglas delta wing orbiter at a nominal Mach number of 10.5

    NASA Technical Reports Server (NTRS)

    Eaves, R. H.; Buchanan, T. D.

    1972-01-01

    Heat transfer tests for the delta wing orbiter were conducted in a hypervelocity wind tunnel. A 1.1 percent scale model was tested at a Mach number of approximately 10.5 over an angle of attack range from 10 to 60 degrees over a length Reynolds number range from 5 times 10 to the 6th power to 24 times 10 to the 6th power. Heat transfer results were obtained from model surface heat gage measurements and thermographic phosphor paint. Limited pressure measurements were obtained.

  15. Experimental studies of vertical mixing patterns in open channel flow generated by two delta wings side-by-side

    NASA Astrophysics Data System (ADS)

    Vaughan, Garrett

    Open channel raceway bioreactors are a low-cost system used to grow algae for biofuel production. Microalgae have many promises when it comes to renewable energy applications, but many economic hurdles must be overcome to achieve an economic fuel source that is competitive with petroleum-based fuels. One way to make algae more competitive is to improve vertical mixing in algae raceway bioreactors. Previous studies show that mixing may be increased by the addition of mechanisms such as airfoils. The circulation created helps move the algae from the bottom to top surface for necessary photosynthetic exchange. This improvement in light utilization allowed a certain study to achieve 2.2-2.4 times the amount of biomass relative to bioreactors without airfoils. This idea of increasing mixing in open channel raceways has been the focus of the Utah State University (USU) raceway hydraulics group. Computational Fluid Dynamics (CFD), Acoustic Doppler Velocimetry (ADV), and Particle Image Velocimetry (PIV) are all methods used at USU to computationally and experimentally quantify mixing in an open channel raceway. They have also been used to observe the effects of using delta wings (DW) in increasing vertical mixing in the raceway. These efforts showed great potential in the DW in increasing vertical mixing in the open channel bioreactor. However, this research begged the question, does the DW help increase algae growth? Three algae growth experiments comparing growth in a raceway with and without DW were completed. These experiments were successful, yielding an average 27.1% increase in the biomass. The DW appears to be a promising method of increasing algae biomass production. The next important step was to quantify vertical mixing and understand flow patterns due to two DWs side-by-side. Raceway channels are wider as they increase in size; and arrays of DWs will need to be installed to achieve quality mixing throughout the bioreactor. Quality mixing was attained for

  16. Wind-Tunnel Tests of an NACA 44R-Series Tapered Wing with a Straight Trailing Edge and a Constant-Chord Center Section

    NASA Technical Reports Server (NTRS)

    Neely, Robert H.

    1943-01-01

    As part of a general investigation in the NACA 19-foot pressure tunnel to determine stall characteristics and effectiveness of high-lift devices on wings of various sections, tests were made of a tapered. wing having NACA 44R-series airfoil sections. Lift, drag, pitching-moment, and stall characteristics were determined at a Reynolds number of 4,850,000 for the plain wing and for the wing with partial-and with full-span split flaps. The stall progressed slowly over The plain wing; a gradual loss of lift for angles of attack up to and beyond that for the maximum lift coefficient resulted. As Compared with the stall of the plain wing, the initial stall of the wing with either partial-span or full-span flaps deflected occurred at a higher angle of attack and the stall progressed much more rapidly. The maximum lift coefficients at a Reynolds number of 4,850,000 were 1.35 for the plain wing, 2.25 for the wing with partial-span flaps at 60 deg, and 2.67 for the wing with full-span flaps at 60 deg. The positions of the aerodynamic center, in terms of mean chords back of the leading edge of the root section, were approximately 0.458 with no flaps, 0.483 with partial-span flaps at 60 deg, and 0.498 with full-span flaps at 60 deg.

  17. Inlet Distortion for an F/A-18A Aircraft During Steady Aerodynamic Conditions up to 60 deg Angle of Attack

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin R.; Yuhas, Andrew J.; Williams, John G.; Steenken, William G.

    1997-01-01

    The effects of high-angle-of-attack flight on aircraft inlet aerodynamic characteristics were investigated at NASA Dryden Flight Research Center, Edwards, California, as part of NASA's High Alpha Technology Program. The highly instrumented F/A-18A High Alpha Research Vehicle was used for this research. A newly designed inlet total-pressure rake was installed in front of the starboard F404-GE-400 engine to measure inlet recovery and distortion characteristics. One objective was to determine inlet total-pressure characteristics at steady high-angle-of-attack conditions. Other objectives include assessing whether significant differences exist in inlet distortion between rapid angle-of-attack maneuvers and corresponding steady aerodynamic conditions, assessing inlet characteristics during aircraft departures, providing data for developing and verifying computational fluid dynamic codes, and calculating engine airflow using five methods. This paper addresses the first objective by summarizing results of 79 flight maneuvers at steady aerodynamic conditions, ranging from -10 deg to 60 deg angle of attack and from -8 deg to 11 deg angle of sideslip at Mach 0.3 and 0.4. These data and the associated database have been rigorously validated to establish a foundation for understanding inlet characteristics at high angle of attack.

  18. Exploratory Investigation of Forebody Strakes for Yaw Control of a Generic Fighter with a Symmetric 60 deg Half-Angle Chine Forebody

    NASA Technical Reports Server (NTRS)

    Ross, Holly M.; ORourke, Matthew J.

    1997-01-01

    Forebody strakes were tested in a low-speed wind tunnel to determine their effectiveness producing yaw control on a generic fighter model with a symmetric 60 deg half-angle chine forebody. Previous studies conducted using smooth, conventionally shaped forebodies show that forebody strakes provide increased levels of yaw control at angles of attack where conventional rudders are ineffective. The chine forebody shape was chosen for this study because chine forebodies can be designed with lower radar cross section (RCS) values than smooth forebody shapes. Because the chine edges of the forebody would fix the point of flow separation, it was unknown if any effectiveness achieved could be modulated as was successfully done on the smooth forebody shapes. The results show that use of forebody strakes on a chine forebody produce high levels of yaw control, and when combined with the rudder effectiveness, significant yaw control is available for a large range of angles of attack. The strake effectiveness was very dependent on radial location. Very small strakes placed at the tip of the forebody were nearly as effective as very long strakes. An axial translation scheme provided almost linear increments of control effectiveness.

  19. Wind Tunnel Application of a Pressure-Sensitive Paint Technique to a Double Delta Wing Model at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Gonzalez, Hugo A.

    2006-01-01

    A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to study the effect of wing fillets on the global vortex induced surface static pressure field about a sharp leading-edge 76 deg./40 deg. double delta wing, or strake-wing, model at subsonic and transonic speeds. Global calibrations of the PSP were obtained at M(sub infinity) = 0.50, 0.70, 0.85, 0.95, and 1.20, a Reynolds number per unit length of 2.0 million, and angles of attack from 10 degrees to 20 degrees using an insitu method featuring the simultaneous acquisition of electronically scanned pressures (ESP) at discrete locations on the model. The mean error in the PSP measurements relative to the ESP data was approximately 2 percent or less at M(sub infinity) = 0.50 to 0.85 but increased to several percent at M(sub infinity) =0.95 and 1.20. The PSP pressure distributions and pseudo-colored, planform-view pressure maps clearly revealed the vortex-induced pressure signatures at all Mach numbers and angles of attack. Small fillets having parabolic or diamond planforms situated at the strake-wing intersection were respectively designed to manipulate the vortical flows by removing the leading-edge discontinuity or introducing additional discontinuities. The fillets caused global changes in the vortex-dominated surface pressure field that were effectively captured in the PSP measurements. The vortex surface pressure signatures were compared to available off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The fillet effects on the PSP pressure distributions and the observed leading-edge vortex flow characteristics were consistent with the trends in the measured lift, drag, and pitching moment coefficients.

  20. Wind-tunnel force and flow visualization data at Mach numbers from 1.6 to 4.63 for a series of bodies of revolution at angles of attack from minus 4 deg to 60 deg

    NASA Technical Reports Server (NTRS)

    Landrum, E. J.; Babb, C. D.

    1979-01-01

    Flow visualization and force data for a series of six bodies of revolution are presented without analysis. The data were obtained in the Langley Unitary Plan wind tunnel for angles of attack from -4 deg to 60 deg. The Reynolds number used for these tests was 6,600,000 per meter.

  1. Motion simulator study of longitudinal stability requirements for large delta wing transport airplanes during approach and landing with stability augmentation systems failed

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Fry, E. B.; Drinkwater, F. J., III; Forrest, R. D.; Scott, B. C.; Benefield, T. D.

    1972-01-01

    A ground-based simulator investigation was conducted in preparation for and correlation with an-flight simulator program. The objective of these studies was to define minimum acceptable levels of static longitudinal stability for landing approach following stability augmentation systems failures. The airworthiness authorities are presently attempting to establish the requirements for civil transports with only the backup flight control system operating. Using a baseline configuration representative of a large delta wing transport, 20 different configurations, many representing negative static margins, were assessed by three research test pilots in 33 hours of piloted operation. Verification of the baseline model to be used in the TIFS experiment was provided by computed and piloted comparisons with a well-validated reference airplane simulation. Pilot comments and ratings are included, as well as preliminary tracking performance and workload data.

  2. Static force tests of a sharp leading edge delta-wing model at ambient and cryogenic temperatures with a description of the apparatus employed

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.; Davenport, E. E.

    1976-01-01

    A sharp leading edge delta-wing model was tested through an angle-of-attack range at Mach numbers of 0.75, 0.80, and 0.85 at both ambient and cryogenic temperatures in the Langley 1/3-meter transonic cryogenic tunnel. Total pressure was varied with total temperature in order to hold test Reynolds number constant at a given Mach number. Agreement between the aerodynamic data obtained at ambient and cryogenic temperatures indicates that flows with leading-edge vortex effects are duplicated properly at cryogenic temperatures. The test results demonstrate that accurate aerodynamic data can be obtained by using conventional force-testing techniques if suitable measures are taken to minimize temperature gradients across the balance and to keep the balance at ambient (warm) temperatures during cryogenic operation of the tunnel.

  3. Winglets on low aspect ratio wings

    NASA Technical Reports Server (NTRS)

    Kuhlman, John M.; Liaw, Paul

    1987-01-01

    The drag reduction potentially available from the use of winglets at the tips of low aspect ratio (1.75-2.67) wings with pronounced (45-60 deg) leading edge sweep is assessed numerically for the case of a cruise design point at Mach of 0.8 and a lift coefficient of 0.3. Both wing-winglet and wing-alone design geometries are derived from a linear-theory, minimum induced drag design methodology. Relative performance is evaluated with a nonlinear extended small disturbance potential flow analysis code. Predicted lift coefficient/pressure drag coefficient increases at equal lift for the wing-winglet configurations over the wing-alone planform are of the order of 14.6-15.8, when boundary layer interaction is included.

  4. Aerodynamic characteristics of a hypersonic research airplane concept having a 70 degree swept double delta wing at Mach numbers from 1.50 to 2.86

    NASA Technical Reports Server (NTRS)

    Penland, J. A.; Fournier, R. H.; Marcum, D. C., Jr.

    1975-01-01

    An experimental investigation of the static longitudinal, lateral, and directional stability characteristics of a hypersonic research airplane concept having a 70 deg swept double-delta wing was conducted in the Langley unitary plan wind tunnel. The configuration variables included wing planform, tip fins, center fin, and scramjet engine modules. The investigation was conducted at Mach numbers from 1.50 to 2.86 and at a constant Reynolds number, based on fuselage length, of 3,330,000. Tests were conducted through an angle-of-attack range from about -4 deg to 24 deg with angles of sideslip of 0 deg and 3 deg and at elevon deflections of 0, -10, and -20 deg. The complete configuration was trimmable up to angles of attack of about 22 deg with the exception of regions at low angles of attack where positive elevon deflections should provide trim capability. The angle-of-attack range for which static longitudinal stability also exists was reduced at the higher Mach numbers due to the tendency of the complete configuration to pitch up at the higher angles of attack. The complete configuration was statically stable directionally up to trimmed angles of attack of at least 20 deg for all Mach numbers M with the exception of a region near 4 deg at M = 2.86 and exhibited positive effective dihedral at all positive trimmed angles of attack.

  5. Prediction de l’Eclatement Tourbillonnaire sur les Ailes Delta d’Avions Militaires (CFD Prediction of Vortex Breakdown on Delta Wings for Military Aircraft)

    DTIC Science & Technology

    2003-03-01

    contrôle spécifiques. Une première étape dans ce genre d’étude est de s’assurer que l’on peut simuler déjà de façon précise l’éclatement...tourbillonnaire sur une aile delta en l’absence de dispositif de contrôle . Dassault Aviation a réalisé des calculs (Euler et Navier-Stokes) sur la configuration...expérience Communication présentée lors du symposium RTO AVT sur «La gestion avancée des écoulements : Partie A – Les écoulements tourbillonnaires et les

  6. Wind-tunnel pressure data at Mach numbers from 1.6 to 4.63 for a series of bodies of revolution at angles of attack from -4 deg to 60 deg

    NASA Technical Reports Server (NTRS)

    Landrum, E. J.

    1977-01-01

    The tabulated results of wind tunnel pressure tests are presented without analysis. The data were obtained for a series of six bodies of revolution at Mach numbers of 1.6, 2.3, 2.96, and 4.63 for angles of attack from -4 deg. to 60 deg. The Reynolds number used for these tests was 6.6 x 6/million per meter.

  7. Unsteady Flow Structure on Low Aspect Ratio Wings

    DTIC Science & Technology

    2011-01-06

    4 EFFECT OF PITCH RATE ON NEAR-SURFACE TOPOLOGY ON A DELTA WING The near-surface flow structure and topology on a delta wing of...34Investigation of Flow Structure on a Pitching Delta Wing of Moderate Sweep Angle using Stereoscopic Particle Image Velocimetry", October, 2008. * All...for inducement of flow reattachment, were in the range fC/U = 1 to 2. The present configuration is a substantial departure from a flat delta wing

  8. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 1; Sharp Leading Edge; [conducted in the Langley National Transonic Facility (NTF)

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 36 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at a Reynolds number of 6 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  9. Transition of the Laminar Boundary Layer on a Delta Wing with 74 degree Sweep in Free Flight at Mach Numbers from 2.8 to 5.3

    NASA Technical Reports Server (NTRS)

    Chapman, Gary T.

    1961-01-01

    The tests were conducted at Mach numbers from 2.8 to 5.3, with model surface temperatures small compared to boundary-layer recovery temperature. The effects of Mach number, temperature ratio, unit Reynolds number, leading-edge diameter, and angle of attack were investigated in an exploratory fashion. The effect of heat-transfer condition (i.e., wall temperature to total temperature ratio) and Mach number can not be separated explicitly in free-flight tests. However, the data of the present report, as well as those of NACA TN 3473, were found to be more consistent when plotted versus temperature ratio. Decreasing temperature ratio increased the transition Reynolds number. The effect of unit Reynolds number was small as was the effect of leading-edge diameter within the range tested. At small values of angle of attack, transition moved forward on the windward surface and rearward on the leeward surface. This trend was reversed at high angles of attack (6 deg to 18 deg). Possible reasons for this are the reduction of crossflow on the windward side and the influence of the lifting vortices on the leeward surface. When the transition results on the 740 delta wing were compared to data at similar test conditions for an unswept leading edge, the results bore out the results of earlier research at nearly zero heat transfer; namely, sweep causes a large reduction in the transition Reynolds number.

  10. Flow-Field Measurement of a Hybrid Wing Body Model with Blown Flaps

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Jones, Gregory S.; Allan, Brian G.; Westra, Bryan W.; Collins, Scott W.; Zeune, Cal H.

    2008-01-01

    In this paper we describe flow-field measurements obtained in the wake of a full-span Hybrid Wing Body model with internally blown flaps. The test was performed at the NASA Langley 14 x 22 Foot Subsonic Tunnel at low speeds. Off-body measurements were obtained with a 7-hole probe rake survey system. Three model configurations were investigated. At 0deg angle of attack the surveys were completed with 0deg and 60deg flap deflections. At 10deg angle of attack the wake surveys were completed with a slat and a 60deg flap deflection. The 7-hole probe results further quantified two known swirling regions (downstream of the outboard flap edge and the inboard/outboard flap juncture) for the 60deg flap cases with blowing. Flow-field results and the general trends are very similar for the two blowing cases at nozzle pressure ratios of 1.37 and 1.56. High downwash velocities correlated with the enhanced lift for the 60deg flap cases with blowing. Jet-induced effects are the largest at the most inboard station for all (three) velocity components due in part to the larger inboard slot height. The experimental data are being used to improve computational tools for high-lift wings with integrated powered-lift technologies.

  11. Wake Measurement Downstream of a Hybrid Wing Body Model with Blown Flaps

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Jones, Gregory S.; Allan, Brian G.; Westra, Bryan W.; Collins, Scott W.; Zeune, Cale H.

    2010-01-01

    Flow-field measurements were obtained in the wake of a full-span Hybrid Wing Body model with internally blown flaps. The test was performed at the NASA Langley 14 x 22 Foot Subsonic Tunnel at low speeds. Off-body measurements were obtained with a 7-hole probe rake survey system. Three model configurations were investigated. At 0deg angle of attack the surveys were completed with 0deg and 60deg flap deflections. At 10deg angle of attack the wake surveys were completed with a slat and a 60deg flap deflection. The 7-hole probe results further quantified two known swirling regions (downstream of the outboard flap edge and the inboard/outboard flap juncture) for the 60deg flap cases with blowing. Flowfield results and the general trends are very similar for the two blowing cases at nozzle pressure ratios of 1.37 and 1.56. High downwash velocities correlated with the enhanced lift for the 60deg flap cases with blowing. Jet-induced effects are the largest at the most inboard station for all (three) velocity components due in part to the larger inboard slot height. The experimental data are being used to improve computational tools for high-lift wings with integrated powered-lift technologies.

  12. The natural flow wing-design concept

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1992-01-01

    A wing-design study was conducted on a 65 degree swept leading-edge delta wing in which the wing geometry was modified to take advantage of the naturally occurring flow that forms over a slender wing in a supersonic flow field. Three-dimensional nonlinear analysis methods were used in the study which was divided into three parts: preliminary design, initial design, and final design. In the preliminary design, the wing planform, the design conditions, and the near-conical wing-design concept were derived, and a baseline standard wing (conventional airfoil distribution) and a baseline near-conical wing were chosen. During the initial analysis, a full-potential flow solver was employed to determine the aerodynamic characteristics of the baseline standard delta wing and to investigate modifications to the airfoil thickness, leading-edge radius, airfoil maximum-thickness position, and wing upper to lower surface asymmetry on the baseline near-conical wing. The final design employed an Euler solver to analyze the best wing configurations found in the initial design and to extend the study of wing asymmetry to develop a more refined wing. Benefits resulting from each modification are discussed, and a final 'natural flow' wing geometry was designed that provides an improvement in aerodynamic performance compared with that of a baseline conventional uncambered wing, linear-theory cambered wing, and near-conical wing.

  13. Effect of wing planform and canard location and geometry on the longitudinal aerodynamic characteristics of a close-coupled canard wing model at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.

    1975-01-01

    A generalized wind-tunnel model with canard and wing planforms typical of highly maneuverable aircraft was tested in the Langley 7- by 10-foot high-speed tunnel at a Mach number of 0.30 to determine the effect of canard location, canard size, wing sweep, and canard strake on canard-wing interference to high angles of attack. The major results of this investigation may be summarized as follows: the high-canard configuration (excluding the canard strake and canard flap), for both the 60 deg and 44 deg swept leading-edge wings, produced the highest maximum lift coefficient and the most linear pitching-moment curves; substantially larger gains in the canard lift and total lift were obtained by adding a strake to the canard located below the wing chord plane rather than by adding a strake to the canard located above the wing chord plane.

  14. Space shuttle: Pressure investigation of a space shuttle launch configuration consisting of a delta-wing orbiter and a swept-wing booster with canard and tip fans (M equals 0.6 to 1.3). Volume 1, part A: Booster data

    NASA Technical Reports Server (NTRS)

    Rampy, J. M.; Blackwell, K. L.; Gomillion, G. R.

    1973-01-01

    Wind tunnel tests to determine the pressure distribution on a space shuttle launch configuration consisting of a delta wing orbiter and a swept wing booster with canard and tip fins were conducted. Pressure data were obtained for the combined orbiter and booster and for the booster alone at Mach numbers from 0.6 to 1.3, angles of attack from minus 8 degrees to plus 10 degrees, and sideslip angles from minus 6 degrees to plus 6 degrees. Pressure data were also obtained for the booster alone without canard at Mach numbers of 0.9 and 1.1. The pressure taps were distributed primarily over the booster upper surface and the orbiter lower surface.

  15. Assessment at full scale of exhaust nozzle to wing size on STOL-OTW acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Vonglahn, U.; Grosbeck, D.

    1979-01-01

    On the basis of static aero/acoustic data obtained at model scale, the effect of exhaust nozzle size on flyover noise is evaluated at full scale for different STOL-OTW nozzle configurations. Three types of nozzles are evaluated: a circular/deflector nozzle mounted above the wing; a slot/deflector nozzle mounted on the wing; and a slot nozzle mounted on the wing. The nozzle exhaust plane location, measured from the wing leading edge, was varied from 10 to 46 percent of the wing chord (flaps retracted). Flap angles of 20 deg (takeoff) and 60 deg (approach) are included in the study. Initially, perceived noise levels (PNL) are calculated as a function flyover distance at 152m altitude. From these plots, static EPNL values (defined as flyover relative noise levels), are obtained as functions of nozzle size for equal aerodynamic performance (lift and thrust). The acoustic benefits attributable to nozzle size relative to a given wing chord size are assessed.

  16. Flight-Test Evaluation of the Longitudinal Stability and Control Characteristics of 0.5-Scale Models of the Fairchild Lark Pilotless-Aircraft Configuration: Standard Configuration with Wing Flaps Deflected 60 Degrees and Model having Tail in Line with Wings, TED No. NACA 2387

    NASA Technical Reports Server (NTRS)

    Stone, David G.

    1947-01-01

    Flight tests were conducted at the Flight Test Station of the Pilotless Aircraft Research Division at Wallop Island, Va., to determine the longitudinal control and stability characteristics of 0.5-scale models of the Fairchild Lark pilotless aircraft with the tail in line with the wings a d with the horizontal wing flaps deflected 60 deg. The data were obtained by the use of a telemeter and by radar tracking.

  17. Studies of IRAS sources at high galactic latitudes. I - Source counts at /b/greater than 60 deg and evidence for a north-south anisotropy of cosmological significance

    NASA Technical Reports Server (NTRS)

    Rowan-Robinson, M.; Walker, D.; Chester, T.; Soifer, T.; Fairclough, J.

    1986-01-01

    A study of the IRAS sky at b with an absolute value greater than 60 deg is conducted. Source counts at 12, 25, 60 and 100 microns are presented, and it is shown that emission from interstellar dust at 100 microns is localized to a few small areas of tathe galactic polar caps. At 12 and 25 microns, the sky is dominated by stars; at 60 and 100 microns, by galaxies. Comparison with the minisurvey source counts indicates the 12and 25-micron source denstiy is lower at the present latitude than at a latitude whereby the absolute value of b equals 10-40 deg. Due to the greatly reduced effects of emission from interstellar dust, the 100 micron survey reaches a factor 1.6 deeper in flux at the present latitude than the minisurvey. An anisotropy significant at the 4-sigma level was found between the north and south galactic polar caps at 60 and 100 microns, after exclusion of the Virgo cluster and of the few remaining areas significantly affected by interstellar-dust emission. It is suggested that this anisotropy represents a cosmologically significant anisotropy in the galaxy distribution. The scale of associated inhomogeneity is of the order of at least 100(50/H)Mpc.

  18. Effect of canard location and size on canard-wing interference and aerodynamic center shift related to maneuvering aircraft at transonic speeds

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.

    1974-01-01

    A generalized wind-tunnel model, typical of highly maneuverable aircraft, was tested in the Langley 8-foot transonic pressure tunnel at Mach numbers from 0.70 to 1.20 to determine the effects of canard location and size on canard-wing interference effects and aerodynamic center shift at transonic speeds. The canards had exposed areas of 16.0 and 28.0 percent of the wing reference area and were located in the chord plane of the wing or in a position 18.5 percent of the wing mean geometric chord above or below the wing chord plane. Two different wing planforms were tested, one with leading-edge sweep of 60 deg and the other 44 deg; both wings had the same reference area and span. The results indicated that the largest benefits in lift and drag were obtained with the canard above the wing chord plane for both wings tested. The low canard configuration for the 60 deg swept wing proved to be more stable and produced a more linear pitching-moment curve than the high and coplanar canard configurations for the subsonic test Mach numbers.

  19. Static and unsteady pressure measurements on a 50 degree clipped delta wing at M = 0.9. [conducted in the Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Hess, R. W.; Wynne, E. C.; Cazier, F. W.

    1982-01-01

    Pressures were measured with Freon as the test medium. Data taken at M = 0.9 is presented for static and oscillatory deflections of the trailing edge control surface and for the wing in pitch. Comparisons of the static measured data are made with results computed using the Bailey-Ballhaus small disturbance code.

  20. Static Wind-Tunnel and Radio-Controlled Flight Test Investigation of a Remotely Piloted Vehicle Having a Delta Wing Planform

    NASA Technical Reports Server (NTRS)

    Yip, Long P.; Fratello, David J.; Robelen, David B.; Makowiec, George M.

    1990-01-01

    At the request of the United States Marine Corps, an exploratory wind-tunnel and flight test investigation was conducted by the Flight Dynamics Branch at the NASA Langley Research Center to improve the stability, controllability, and general flight characteristics of the Marine Corps Exdrone RPV (Remotely Piloted Vehicle) configuration. Static wind tunnel tests were conducted in the Langley 12 foot Low Speed Wind Tunnel to identify and improve the stability and control characteristics of the vehicle. The wind tunnel test resulted in several configuration modifications which included increased elevator size, increased vertical tail size and tail moment arm, increased rudder size and aileron size, the addition of vertical wing tip fins, and the addition of leading-edge droops on the outboard wing panel to improve stall departure resistance. Flight tests of the modified configuration were conducted at the NASA Plum Tree Test Site to provide a qualitative evaluation of the flight characteristics of the modified configuration.

  1. Assessment at full scale of nozzle/wing geometry effects on OTW aeroacoustic characteristics. [Over The Wing STOL engine configurations

    NASA Technical Reports Server (NTRS)

    Groesbeck, D.; Von Glahn, U.

    1979-01-01

    The effects on acoustic characteristics of nozzle type and location on a wing for STOL engine over-the-wing configurations are assessed at full scale on the basis of model-scale data. Three types of nozzle configurations are evaluated: a circular nozzle with external deflector mounted above the wing, a slot nozzle with external deflector mounted on the wing and a slot nozzle mounted on the wing. Nozzle exhaust plane locations with respect to the wing leading edge are varied from 10 to 46 percent chord (flaps retracted) with flap angles of 20 deg (take-off attitude) and 60 deg (approach attitude). Perceived noise levels (PNL) are calculated as a function of flyover distance at 152 m altitude. From these plots, static EPNL values, defined as flyover relative noise levels, are calculated and plotted as a function of lift and thrust ratios. From such plots the acoustic benefits attributable to variations in nozzle/deflector/wing geometry at full scale are assessed for equal aerodynamic performance.

  2. Distribution of ozone between 60 deg North and 60 deg South

    NASA Technical Reports Server (NTRS)

    Mravlag, E.; Scourfield, M. W. J.

    1994-01-01

    The distribution of total column ozone is investigated, using data from the TOMS (Total Ozone Mapping Spectrometer) experiment aboard the US Nimbus 7 satellite. The region of interest extends from 60 North to 60 South, encircling the earth. Data for several years have been used in order to assess the long-term variations in the distribution of total column ozone. First results are presented on the seasonal variability of total column ozone in each hemisphere. The effects of the seasons are strongest at the highest latitudes but can still be discerned at the equator. While the variations are similar in the two hemispheres, ozone levels in the north are larger than in the south. Strong similarities are also found in the drift patterns of total column ozone in the two hemispheres. These drift patterns are compared to meteorological phenomena. We find an almost stationary ozone distribution drifts eastward in both hemispheres and this drift shows a seasonal variation. At very high latitudes (70 deg and higher) during spring in the southern hemisphere the ozone distribution is once again almost stationary, indicating that these regions are inside the polar vortex.

  3. Tabulated Pressure Data for a Series of Controls on a 40 Deg Sweptback Wing at Mach Numbers of 1.61 and 2.01

    NASA Technical Reports Server (NTRS)

    Lord, D. R.

    1957-01-01

    An investigation has been made at Mach numbers of 1.61 and 2.01 and Reynolds numbers of 1.7 x l0(exp 6) and 3.6 x l0(exp 6) to determine the pressure distributions over a swept wing with a series of 14 control configurations. The wing had 40 deg of sweep of the quarter-chord line, an aspect ratio of 3.1, and a taper ratio of 0.4. Measurements were made at angles of attack from 0 deg to +/- 15 deg for control deflections from -60 deg to 60 deg. This report contains tabulated pressure data for the complete range of test conditions.

  4. Prediction of forces and moments for flight vehicle control effectors. Part 2: An analysis of delta wing aerodynamic control effectiveness in ground effect

    NASA Technical Reports Server (NTRS)

    Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.

    1990-01-01

    Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. Here, an investigation of the aerodynamic control effectiveness of highly swept delta planforms operating in ground effect is presented. A vortex-lattice computer program incorporating a free wake is developed as a tool to calculate aerodynamic stability and control derivatives. Data generated using this program are compared to experimental data and to data from other vortex-lattice programs. Results show that an elevon deflection produces greater increments in C sub L and C sub M in ground effect than the same deflection produces out of ground effect and that the free wake is indeed necessary for good predictions near the ground.

  5. Avian Wings

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  6. A Preliminary Analysis of the Flying Qualities of the Consolidated Vultee MX-813 Delta-Wing Airplane Configuration at Transonic and Low Supersonic Speeds as Determined from Flights of Rocket-Powered Models

    NASA Technical Reports Server (NTRS)

    Mitcham, Grady L.

    1949-01-01

    A preliminary analysis of the flying qualities of the Consolidated Vultee MX-813 delta-wing airplane configuration has been made based on the results obtained from the first two 1/8 scale models flown at the NACA Pilotless Aircraft Research Station, Wallop's Island, VA. The Mach number range covered in the tests was from 0.9 to 1.2. The analysis indicates adequate elevator control for trim in level flight over the speed range investigated. Through the transonic range there is a mild trim change with a slight tucking-under tendency. The elevator control effectiveness in the supersonic range is reduced to about one-half the subsonic value although sufficient control for maneuvering is available as indicated by the fact that 10 deg elevator deflection produced 5g acceleration at Mach number of 1.2 at 40,000 feet.The elevator control forces are high and indicate the power required of the boost system. The damping. of the short-period oscillation is adequate at sea-level but is reduced at 40,000 feet. The directional stability appears adequate for the speed range and angles of attack covered.

  7. Wing pressure distributions from subsonic tests of a high-wing transport model. [in the Langley 14- by 22-Foot Subsonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Applin, Zachary T.; Gentry, Garl L., Jr.; Takallu, M. A.

    1995-01-01

    A wind tunnel investigation was conducted on a generic, high-wing transport model in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data that document effects of various model configurations and free-stream conditions on wing pressure distributions. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a part-span, double-slotted trailing-edge flap system. The trailing-edge flap was tested at four different deflection angles (20 deg, 30 deg, 40 deg, and 60 deg). Four wing configurations were tested: cruise, flaps only, Krueger flap only, and high lift (Krueger flap and flaps deployed). Tests were conducted at free-stream dynamic pressures of 20 psf to 60 psf with corresponding chord Reynolds numbers of 1.22 x 10(exp 6) to 2.11 x 10(exp 6) and Mach numbers of 0.12 to 0.20. The angles of attack presented range from 0 deg to 20 deg and were determined by wing configuration. The angle of sideslip ranged from minus 20 deg to 20 deg. In general, pressure distributions were relatively insensitive to free-stream speed with exceptions primarily at high angles of attack or high flap deflections. Increasing trailing-edge Krueger flap significantly reduced peak suction pressures and steep gradients on the wing at high angles of attack. Installation of the empennage had no effect on wing pressure distributions. Unpowered engine nacelles reduced suction pressures on the wing and the flaps.

  8. Mathematical Fluid Dynamics of Plasma Flow Control over High Speed Wings

    DTIC Science & Technology

    2010-12-01

    asymmetric SDBD forcing Herein we discuss numerical simulations of aerodynamic moments induced by asymmetric SDBD forcing on the aforementioned delta wing ...1995, pp. 1743-1745. 54. Wahls, R.A., Vess, R.J. and Moskovitz C.A., "Experimental investigation of apex fence flaps on delta wings ," J. of...Vol. 34, No.7. 1996, pp. 1447-1456. 66. Vorobieff, P.V. and Rockwell, D.O., "Vortex breakdown on pitching delta wing : control by intermittent

  9. Survey of wing and flap lower-surface temperatures and pressures during full-scale ground tests of an externally blown flap system

    NASA Technical Reports Server (NTRS)

    Hughes, D. L.

    1972-01-01

    Full-scale ground tests of an externally blown flap system were made using the wing of an F-111B airplane and a CF700 engine. Pressure and temperature distributions were determined on the undersurface of the wing, vane, and flap for two engine exhaust nozzles (conical and daisy) at several engine power and engine/wing positions. The tests were made with no airflow over the wing. The leading-edge wing sweep angle was fixed at 26 deg, the angle of incidence between the engine and the wing was fixed at 3 deg, and the tests were conducted with the flap retracted, extended and deflected 35 deg, and extended and deflected 60 deg. The integrated local pressures on the undersurface of the flap produced loads approximately three times as great at the 60 deg flap position as at the 35 deg flap position. With both nozzle configurations, more than 90 percent of the integrated pressure loads were contained within plus or minus 20 percent of the flap span centered around the engine exhaust centerline. The maximum temperature recorded on the flaps was 218 C (424 F) for the conical nozzle and 180 C (356 F) for the daisy nozzle.

  10. Forward velocity effects on under-the-wing externally blown flap noise

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J.; Von Glahn, U.; Dorsch, R.

    1975-01-01

    Noise tests were conducted with small-scale models of externally blown-flap powered-lift systems that were subjected to simulated takeoff and landing free-stream velocities by placing the nozzle-wing models in a free jet. The nozzle configurations consisted of a conical and an 8-tube mixer nozzle. The results showed that the free-stream velocity attenuated the noise from the various configurations with the amount of attenuation depending on the flap setting. More attenuation was obtained with a flap setting of 20 deg than with a flap setting of 60 deg. The dynamic effect on the total attenuation caused by aircraft motion is also discussed.

  11. Subsonic longitudinal and lateral aerodynamic characteristics for a systematic series of strake-wing configurations

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    1979-01-01

    A systematic wind tunnel study was conducted in the Langley 7 by 10 foot high speed tunnel to help establish a parametric data base of the longitudinal and lateral aerodynamic characteristics for configurations incorporating strake-wing geometries indicative of current and proposed maneuvering aircraft. The configurations employed combinations of strakes with reflexed planforms having exposed spans of 10%, 20%, and 30% of the reference wing span and wings with trapezoidal planforms having leading edge sweep angles of approximately 30, 40, 44, 50, and 60 deg. Tests were conducted at Mach numbers ranging from 0.3 to 0.8 and at angles of attack from approximately -4 to 48 deg at zero sideslip.

  12. Theoretical-Numerical Study of Feasibility of Use of Winglets on Low Aspect Ration Wings at Subsonic and Transonic Mach Numbers to Reduce Drag

    NASA Technical Reports Server (NTRS)

    Kuhlman, John M.; Liaw, Paul; Cerney, Michael J.

    1988-01-01

    A numerical design study was conducted to assess the drag reduction potential of winglets installed on a series of low aspect ratio wings at a design point of M=0.8, C sub L=0.3. Wing-winglet and wing-alone design geometries were obtained for wings of aspect ratios between 1.75 and 2.67, having leading edge sweep angles between 45 and 60 deg. Winglet length was fixed at 15% of wing semispan. To assess the relative performance between wing-winglet and wing-alone configurations, the PPW nonlinear extended small disturbance potential flow code was utilized. This model has proven to yield plausible transonic flow field simulations for the series of low aspect ratio configurations selected. Predicted decreases in pressure drag coefficient for the wing-winglet configurations relative to the corresponding wing-alone planform are about 15% at the design point. Predicted decreases in wing-winglet total drag coefficient are about 12%, relative to the corresponding wing-alone design. Longer winglets (25% of the wing semispan) yielded decreases in the pressure drag of up to 22% and total drag of up to 16.4%. These predicted drag coefficient reductions are comparable to reductions already demonstrated by actual winglet designs installed on higher aspect ratio transport type aircraft.

  13. Aerodynamic characteristics of a hypersonic research airplane concept having a 70 deg swept double-delta wing at Mach numbers from 0.80 to 1.20, with summary of data from 0.20 to 6.0. [Langley 8-ft transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Penland, J. A.; Hallissy, J. B.; Dillon, J. L.

    1979-01-01

    The static longitudinal, lateral, and directional stability characteristics of a hypersonic research airplane concept having a 70 deg swept double-delta wing were investigated. Force tests were conducted in the Langley 8 foot transonic pressure tunnel for a Reynolds number (based on fuselage length) range of 6.30 x 10 to the 6th power to 7.03 x 10 to the 6th power, at angles of attack from about -4 deg to 23 deg, and at angles of sideslip of 0 deg and 5 deg. The configuration variables included the wing planform, tip fins, the center vertical tail, and scramjet engine modules. Variations of the more important aerodynamic parameters with Mach number for Mach numbers from 0.20 to 6.0 are summarized. A state-of-the-art example of theoretically predicting performance parameters and static longitudinal and directional stability over the Mach number range is included.

  14. Supersonic aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform at Mach 2.30 to 4.60

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1972-01-01

    An investigation has been made in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform. The model was tested at Mach numbers from 2.30 to 4.60, at nominal angles of attack from -4 deg to 60 deg and angles of sideslip from -4 deg to 10 deg, and at a Reynolds number of 2.5 million per foot.

  15. Aerodynamic characteristics of a distinct wing-body configuration at Mach 6: Experiment, theory, and the hypersonic isolation principle

    NASA Technical Reports Server (NTRS)

    Penland, J. A.; Pittman, J. L.

    1985-01-01

    An experimental investigation has been conducted to determine the effect of wing leading edge sweep and wing translation on the aerodynamic characteristics of a wing body configuration at a free stream Mach number of about 6 and Reynolds number (based on body length) of 17.9 x 10 to the 6th power. Seven wings with leading edge sweep angles from -20 deg to 60 deg were tested on a common body over an angle of attack range from -12 deg to 10 deg. All wings had a common span, aspect ratio, taper ratio, planform area, and thickness ratio. Wings were translated longitudinally on the body to make tests possible with the total and exposed mean aerodynamic chords located at a fixed body station. Aerodynamic forces were found to be independent of wing sweep and translation, and pitching moments were constant when the exposed wing mean aerodynamic chord was located at a fixed body station. Thus, the Hypersonic Isolation Principle was verified. Theory applied with tangent wedge pressures on the wing and tangent cone pressures on the body provided excellent predictions of aerodynamic force coefficients but poor estimates of moment coefficients.

  16. Wing rock suppression using forebody vortex control

    NASA Technical Reports Server (NTRS)

    Ng, T. T.; Ong, L. Y.; Suarez, C. J.; Malcolm, G. N.

    1991-01-01

    Static and free-to-roll tests were conducted in a water tunnel with a configuration that consisted of a highly-slender forebody and 78-deg sweep delta wings. Flow visualization was performed and the roll angle histories were obtained. The fluid mechanisms governing the wing rock of this configuration were identified. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetries had to be induced at the same time. On the other hand, alternating pulsed blowing on the left and right sides of the forebody was demonstrated to be potentially an effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  17. Annular wing

    NASA Technical Reports Server (NTRS)

    Walker, H. J. (Inventor)

    1981-01-01

    An annular wing particularly suited for use in supporting in flight an aircraft characterized by the absence of directional stabilizing surfaces is described. The wing comprises a rigid annular body of a substantially uniformly symmetrical configuration characterized by an annular positive lifting surface and cord line coincident with the segment of a line radiating along the surface of an inverted truncated cone. A decalage is established for the leading and trailing semicircular portions of the body, relative to instantaneous line of flight, and a dihedral for the laterally opposed semicircular portions of the body, relative to the line of flight. The direction of flight and climb angle or glide slope angle are established by selectively positioning the center of gravity of the wing ahead of the aerodynamic center along the radius coincident with an axis for a selected line of flight.

  18. Nile Delta

    Atmospheric Science Data Center

    2013-04-15

    article title:  The Nile River Delta     View Larger Image ... of eastern Africa. At the apex of the fertile Nile River Delta is the Egyptian capital city of Cairo. To the west are the Great Pyramids ...

  19. Volga Delta

    Atmospheric Science Data Center

    2013-04-17

    article title:  Volga Delta and the Caspian Sea     View ... appear reddish. A small cloud near the center of the delta separates into red, green, and blue components due to geometric parallax ... include several linear features located near the Volga Delta shoreline. These long, thin lines are artificially maintained shipping ...

  20. Scapular Winging

    PubMed Central

    Gooding, Benjamin W. T.; Geoghegan, John M.; Wallace, W. Angus; Manning, Paul A.

    2013-01-01

    This review explores the causes of scapula winging, with overview of the relevant anatomy, proposed aetiology and treatment. Particular focus is given to lesions of the long thoracic nerve, which is reported to be the most common aetiological factor. PMID:27582902

  1. A natural flow wing design employing 3-D nonlinear analysis applied at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Bauer, Steven X. S.; Wood, Richard M.; Brown, S. Melissa

    1989-01-01

    A wing-design study has been conducted on a 65-deg-swept leading-edge delta wing in which a near-conical geometry was employed to take advantage of the naturally occurring conical flow which arises over such a wing in a supersonic flow field. Three-dimensional nonlinear analysis methods were used in the study. In preliminary design, wing planform, design conditions, and near-conical concept were derived and a baseline standard wing (conventional airfoil distribution) and a baseline near-conical wing were chosen. During the initial analysis, a full-potential solver was employed to determine the aerodynamic characteristics of the baseline standard delta wing and the near-conical delta wing. Modifications due to airfoil thickness, leading-edge radius, and camber were then applied to the baseline near-conical wing. The final design employed a Euler solver to analyze the best wing configurations found in the initial design, and to extend this study to develop a more refined wing. Benefits due to each modification are discussed, and a final natural flow wing geometry is chosen and its aerodynamic characteristics are compared with the baseline wings.

  2. Experimental effects of wing location on wing-body pressures at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Allen, Jerry M.; Watson, Carolyn B.

    1993-01-01

    An experimental study was performed at supersonic speeds to measure wing and body spanwise pressure distributions on an axisymmetric-body delta wing model on which the wing vertical location on the body was systematically varied from low- to high-mounted positions. In addition, for two of these positions both horizontal and radial wing angular orientations relative to the body were tested, and roll angle effects were investigated for one of the positions. Seven different wing-body configurations and a body-alone configuration were studied. The test was conducted at Mach numbers from 1.70 to 2.86 at angles of attack from about -4 deg to 24 deg. Pressure orifices were located at three longitudinal stations on each wing-body model, and at each station the orifices were located completely around the body, along the lower surface of the right wing (looking upstream), and along the upper surface of the left wing. All pressure coefficient data are tabulated and selected samples are shown graphically to illustrate the effects of the test variables. The effects of angle of attack, roll angle, Mach number, longitudinal station, wing vertical location, wing angular orientation, and wing-body juncture are analyzed. The vertical location of the wing on the body had a very strong effect on the body pressures. For a given angle of attack at a roll angle of 0 deg, the pressures were virtually constant in the spanwise direction across the windward surfaces of the wing-body combination. Pressure-relieving, channeling, and vortex effects were noted in the data.

  3. Inflatable wing

    DOEpatents

    Priddy, Tommy G.

    1988-01-01

    An inflatable wing is formed from a pair of tapered, conical inflatable tubes in bonded tangential contact with each other. The tubes are further connected together by means of top and bottom reinforcement boards having corresponding longitudinal edges lying in the same central diametral plane passing through the associated tube. The reinforcement boards are made of a stiff reinforcement material, such as Kevlar, collapsible in a direction parallel to the spanwise wing axis upon deflation of the tubes. The stiff reinforcement material cooperates with the inflated tubes to impart structural I-beam characteristics to the composite structure for transferring inflation pressure-induced tensile stress from the tubes to the reinforcement boards. A plurality of rigid hoops shaped to provide airfoil definition are spaced from each other along the spanwise axis and are connected to the top and bottom reinforcement boards. Tension lines are employed for stabilizing the hoops along the trailing and leading edges thereof.

  4. Experimental and numerical analysis of the wing rock characteristics of a 'wing-body-tail' configuration

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Smith, Brooke C.; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll wind tunnel tests were conducted and a computer simulation exercise was performed in an effort to investigate in detail the mechanism of wing rock on a configuration that consisted of a highly-slender forebody and a 78 deg swept delta wing. In the wind tunnel test, the roll angle and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the wind tunnel test confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly showed the energy balance necessary to sustain the limit cycle oscillation. Pressure measurements on the wing revealed the hysteresis of the wing rock process. First, second and nth order models for the aerodynamic damping were developed and examined with a one degree of freedom computer simulation. Very good agreement with the observed behavior from the wind tunnel was obtained.

  5. Impingement of Droplets in 60 Deg Elbows with Potential Flow

    NASA Technical Reports Server (NTRS)

    Hacker, Paul T.; Saper, Paul G.; Kadow, Charles F.

    1956-01-01

    Trajectories were determined for water droplets or other aerosol particles in air flowing through 600 elbows especially designed for two-dimensional potential motion. The elbows were established by selecting as walls of each elbow two streamlines of a flow field produced by a complex potential function that establishes a two-dimensional flow around. a 600 bend. An unlimited number of elbows with slightly different shapes can be established by selecting different pairs of streamlines as walls. Some of these have a pocket on the outside wall. The elbows produced by the complex potential function are suitable for use in aircraft air-inlet ducts and have the following characteristics: (1) The resultant velocity at any point inside the elbow is always greater than zero but never exceeds the velocity at the entrance. (2) The air flow field at the entrance and exit is almost uniform and rectilinear. (3) The elbows are symmetrical with respect to the bisector of the angle of bend. These elbows should have lower pressure losses than bends of constant cross-sectional area. The droplet impingement data derived from the trajectories are presented along with equations so that collection efficiency, area, rate, and distribution of droplet impingement can be determined for any elbow defined by any pair of streamlines within a portion of the flow field established by the complex potential function. Coordinates for some typical streamlines of the flow field and velocity components for several points along these streamlines are presented in tabular form. A comparison of the 600 elbow with previous calculations for a comparable 90 elbow indicated that the impingement characteristics of the two elbows were very similar.

  6. Experimental Aerodynamic Characteristics of an Oblique Wing for the F-8 OWRA

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Carmichael, Ralph L.; Smith, Stephen C.; Strong, James M.; Kroo, Ilan M.

    1999-01-01

    An experimental investigation was conducted during June-July 1987 in the NASA Ames 11-Foot Transonic Wind Tunnel to study the aerodynamic performance and stability and control characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing. This effort was part of the Oblique Wing Research Aircraft (OWRA) program performed in conjunction with Rockwell International. The Ames-designed, aspect ratio 10.47, tapered wing used specially designed supercritical airfoils with 0.14 thickness/chord ratio at the root and 0.12 at the 85% span location. The wing was tested at two different mounting heights above the fuselage. Performance and longitudinal stability data were obtained at sweep angles of 0deg, 30deg, 45deg, 60deg, and 65deg at Mach numbers ranging from 0.30 to 1.40. Reynolds number varied from 3.1 x 10(exp 6)to 5.2 x 10(exp 6), based on the reference chord length. Angle of attack was varied from -5deg to 18deg. The performance of this wing is compared with that of another oblique wing, designed by Rockwell International, which was tested as part of the same development program. Lateral-directional stability data were obtained for a limited combination of sweep angles and Mach numbers. Sideslip angle was varied from -5deg to +5deg. Landing flap performance was studied, as were the effects of cruise flap deflections to achieve roll trim and tailor wing camber for various flight conditions. Roll-control authority of the flaps and ailerons was measured. A novel, deflected wing tip was evaluated for roll-control authority at high sweep angles.

  7. Augmentation of Fighter-Aircraft Performance by Spanwise Blowing over the Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Salomon, M.

    1983-01-01

    Spanwise blowing over the wing and canard of a 1:35 model of a close-coupled-canard fighter airplane configuration (similar to the Kfir-C2) was investigated experimentally in low-speed flow. Tests were conducted at airspeeds of 30 m/sec (Reynolds number of 1.8 x 10 to the 5th power based on mean aerodynamic chord) with angle-of-attack sweeps from -8 to 60 deg, and yaw-angle sweeps from -8 to 36 deg at fixed angles of attack 0, 10, 20, 25, 30, and 35 deg. Significant improvement in lift-curve slope, maximum lift, drag polar and lateral/directional stability was found, enlarging the flight envelope beyond its previous low-speed/maximum-lift limit. In spite of the highly swept (60 deg) leading edge, the efficiency of the lift augmentation by blowing was relatively high and was found to increase with increasing blowing momentum on the close-coupled-canard configuration. Interesting possibilities of obtaining much higher efficiencies with swirling jets were indicated.

  8. Augmentation of fighter-aircraft performance by spanwise blowing over the wing leading edge

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Salomon, M.

    1983-01-01

    Spanwise blowing over the wing and canard of a 1:35 model of a close-coupled-canard fighter-airplane configuration (similar to the Kfir-C2) was investigated experimentally in low-speed flow. Tests were conducted at airspeeds of 30 m/sec (Reynolds number of 1.8 x 10 to the 5th power based on mean aerodynamic chord) with angle-of-attack sweeps from -8 deg to 60 deg, and yaw-angle sweeps from -8 deg to 36 deg at fixed angles of attack 0 deg, 10 deg, 20 deg, 25 deg, 30 deg, and 35 deg. Significant improvement in lift-curve slope, maximum lift, drag polar and lateral/directional stability was found, enlarging the flight envelope beyond its previous low-speed/maximum-lift limit. In spite of the highly swept (60 deg) leading edge, the efficiency of the lift augmentation by blowing was relatively high and was found to increase with increasing blowing momentum on the close-coupled-canard configuration. Interesting possibilities of obtaining much higher efficiencies with swirling jets were indicated.

  9. Assessment at full scale of exhaust nozzle-to-wing size on STOL-OTW acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Von Glahn, U.; Groesbeck, D.

    1979-01-01

    On the basis of static zero/acoustic data obtained at model scale, the effect of exhaust nozzle size on flyover noise is evaluated at full scale for different STOL-OTW nozzle configurations. Three types of nozzles are evaluated: a circular/deflector nozzle mounted above the wing, a slot/deflector nozzle mounted on the wing, and a slot nozzle mounted on the wing. The nozzle exhaust plane location, measured from the wing leading edge was varied from 10 to 46 percent of the wing chord (flaps retracted). Flap angles of 20 deg (takeoff) and 60 deg (approach) are included in the study. Initially, perceived noise levels (PNL) are calculated as a function of flyover distance at 152 m altitude. From these plots static EPNL values, defined as flyover relative noise levels, then are obtained as functions of nozzle size for equal aerodynamic performance (lift and thrust). On the basis of these calculations, the acoustic benefits attributable to nozzle size relative to a given wing chord size are assessed.

  10. Aerodynamic and flowfield hysteresis of slender wing aircraft undergoing large-amplitude motions

    NASA Technical Reports Server (NTRS)

    Nelson, Robert C.; Arena, Andrew S., Jr.; Thompson, Scott A.

    1991-01-01

    The implication of maneuvers through large angles of incidence is discussed by examining the unsteady aerodynamic loads, surface pressures, vortical position, and breakdown on slender, flat plate delta wings. Two examples of large amplitude unsteady motions are presented. First, the unsteady characteristics of a 70 degree swept delta wing undergoing pitch oscillation from 0 to 60 degrees is examined. Data is presented that shows the relationship between vortex breakdown and the overshoot and undershoot of the aerodynamic loads and surface pressure distribution. The second example examines the leading edge vortical flow over an 80 degree swept wing undergoing a limit cycle roll oscillation commonly called wing rock.

  11. Flutter analysis of low aspect ratio wings

    NASA Technical Reports Server (NTRS)

    Parnell, L. A.

    1986-01-01

    Several very low aspect ratio flat plate wing configurations are analyzed for their aerodynamic instability (flutter) characteristics. All of the wings investigated are delta planforms with clipped tips, made of aluminum alloy plate and cantilevered from the supporting vehicle body. Results of both subsonic and supersonic NASTRAN aeroelastic analyses as well as those from another version of the program implementing the supersonic linearized aerodynamic theory are presented. Results are selectively compared with the experimental data; however, supersonic predictions of the Mach Box method in NASTRAN are found to be erratic and erroneous, requiring the use of a separate program.

  12. Geometry effects on STOL engine-over-the-wing acoustics with 5.1 slot nozzles

    NASA Technical Reports Server (NTRS)

    Vonglahn, U.; Groesbeck, D.

    1975-01-01

    The correspondence of far field acoustic trends with changes in the characteristics of the flow field at the wing trailing edge caused by alterations in the nozzle-wing geometry were determined for several STOL-OTW configurations. Nozzle roof angles of 10 to 40 deg were tested with and without cutback of the nozzle sidewalls. Three wing chord sizes were used: baseline (33 cm with flaps retracted), 2/3-baseline, and 3/2-baseline. Flap deflection angles of 20 and 60 deg were used. The nozzle locations were at 21 and 46-percent of chord. With increasing wing size the jet noise shielding benefits increased. With increasing nozzle roof angle, the jet velocity at the trailing edge was decreased, causing a decrease in trailing-edge and fluctuating lift noise. Cutback of the nozzle sides improved flow attachment and reduced far-field noise. The best flow attachment and least trailing-edge noise generally were obtained with a 40 deg external deflector configuration and a cutback nozzle with a 40 deg roof angle.

  13. The flow over a 'high' aspect ratio gothic wing at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Narayan, K. Y.

    1975-01-01

    Results are presented of an experimental investigation on a nonconical wing which supports an attached shock wave over a region of the leading edge near the vertex and a detached shock elsewhere. The shock detachment point is determined from planform schlieren photographs of the flow field and discrepancies are shown to exist between this and the one calculated by applying the oblique shock equations normal to the leading edge. On a physical basis, it is argued that the shock detachment has to obey the two-dimensional law normal to the leading edges. From this, and from other measurements on conical wings, it is thought that the planform schlieren technique may not be particularly satisfactory for detecting shock detachment. Surface pressure distributions are presented and are explained in terms of the flow over related delta wings which are identified as a vertex delta wing and a local delta wing.

  14. View east, showing Northwest Wing (Wing 5) and rear elevations ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View east, showing Northwest Wing (Wing 5) and rear elevations of facade and tis flaking wings (Wings 1 and 2) - Hospital for Sick Children, 1731 Bunker Hill Road, Northeast, Washington, District of Columbia, DC

  15. View east, showing Northwest Wing (Wing 5), west wall of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View east, showing Northwest Wing (Wing 5), west wall of the North Wing (Wing 2) and rear elevations of the facade and its flanking wings (Wings 1 and 2) - Hospital for Sick Children, 1731 Bunker Hill Road, Northeast, Washington, District of Columbia, DC

  16. AMC’s Future Strategic Airlifter: The Blended Wing Body?

    DTIC Science & Technology

    2010-06-01

    part of the century. The primary design that ended up being developed was the traditional fuselage and wing design. This first design was...with variations ( delta wings ) to encompass supersonic flight as in the XB-70 developed by NASA and the USAF (National Museum of the USAF). Some of...the wetted area of the BWB was 14,300 ft^2; a 33% reduction. “The fuselage is also a wing , an inlet for the engines, and a pitch control surface

  17. Chordwise and compressibility corrections for arbitrary planform slender wings

    NASA Technical Reports Server (NTRS)

    Levin, D.; Seginer, A.

    1982-01-01

    The Lomax and Sluder method for adapting slender-wing theory to delta or rectangular wings by making chordwise and compressibility corrections is extended to cover wings of any arbitrary planform in subsonic and supersonic flows. The numerical accuracy of the present work is better than that of the Lomax-Sluder results. Comparison of the results of this work with those of the vortex-lattice method and Kernel function method for a family of Gothic and arrowhead wings shows good agreement. A universal curve is proposed for the evaluation of the lift coefficient of a low aspect ratio wing of an arbitrary planform in subsonic flow. The location of the center of pressure can also be estimated.

  18. The aerodynamic design of the oblique flying wing supersonic transport

    NASA Technical Reports Server (NTRS)

    Vandervelden, Alexander J. M.; Kroo, Ilan

    1990-01-01

    The aerodynamic design of a supersonic oblique flying wing is strongly influenced by the requirement that passengers must be accommodated inside the wing. It was revealed that thick oblique wings of very high sweep angle can be efficient at supersonic speeds when transonic normal Mach numbers are allowed on the upper surface of the wing. The goals were motivated by the ability to design a maximum thickness, minimum size oblique flying wing. A 2-D Navier-Stokes solver was used to design airfoils up to 16 percent thickness with specified lift, drag and pitching moment. A new method was developed to calculate the required pressure distribution on the wing based on the airfoil loading, normal Mach number distribution and theoretical knowledge of the minimum drag of oblique configurations at supersonic speeds. The wing mean surface for this pressure distribution was calculated using an inverse potential flow solver. The lift to drag ratio of this wing was significantly higher than that of a comparable delta wing for cruise speeds up to Mach 2.

  19. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  20. Fluid-Structure Interaction of Oscillating Low Aspect Ratio Wings at Low Reynolds Numbers

    DTIC Science & Technology

    2010-03-01

    collaborators (Miguel Visbal), two wings were tested , a rectangular wing with aspect ratio of AR = 2 (a chord length of c = 68.8 mm) and a delta wing...increased frequency, even so, no thrust is produced within the frequency range tested . The phase-averaged vorticity and velocity magnitude, at the...same graph are the locations of the first and second time-averaged lift peaks for the three angles of attack that have been tested in the present

  1. Reduction of wing rock amplitudes using leading-edge vortex manipulations

    NASA Technical Reports Server (NTRS)

    Walton, James; Katz, Joseph

    1992-01-01

    A mechanically operated leading edge flap system was used to perturb leading edge vortex position on a free-to-roll double-delta wing. The motion of the flaps was synchronized with the wing rolling oscillations and the effect of the phase shift between the oscillations of the wing and the flaps was investigated. Experimental results indicated that this simple approach was effective in reducing the amplitude of the unintended rolling motion and its implementation to actual airplane configurations is rather simple.

  2. AMELIA CESTOL Test: Acoustic Characteristics of Circulation Control Wing with Leading-and Trailing-Edge Slot Blowing

    NASA Technical Reports Server (NTRS)

    Horne, Clifton; Burnside, Nathan J.

    2013-01-01

    Aeroacoustic measurements of the 11 % scale full-span AMELIA CESTOL model with leading- and trailing-edge slot blowing circulation control (CCW) wing were obtained during a recent test in the Arnold Engineering Development Center 40- by 80-Ft. Wind Tunnel at NASA Ames Research Center, Sound levels and spectra were acquired with seven in-flow microphones and a 48-element phased microphone array for a variety of vehicle configurations, CCW slot flow rates, and forward speeds, Corrections to the measurements and processing are in progress, however the data from selected configurations presented in this report confirm good measurement quality and dynamic range over the test conditions, Array beamform maps at 40 kts tunnel speed show that the trailing edge flap source is dominant for most frequencies at flap angles of 0deg and 60deg, The overall sound level for the 60deg flap was similar to the 0deg flap for most slot blowing rates forward of 90deg incidence, but was louder by up to 6 dB for downstream angles, At 100 kts, the in-flow microphone levels were louder than the sensor self-noise for the higher blowing rates, while passive and active background noise suppression methods for the microphone array revealed source levels as much as 20 dB lower than observed with the in-flow microphones,

  3. Forebody vortex control for suppressing wing rock on a highly-swept wing configuration

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Kramer, Brian R.; Ayers, Bert; Malcolm, Gerald N.

    1992-01-01

    Free-to-roll tests were conducted in a wind tunnel with a configuration that consisted of a highly-slender forebody and a 78 deg swept delta wing. A limit cycle oscillation was observed for angles of attack between 22 and 30 deg. In general, the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. Various blowing techniques were evaluated as means of wing rock suppression. Blowing tangentially aft from leeward side nozzles near the forebody tip can damp the roll motion at low blowing rates and stop it completely at higher blowing rates. At the high rates, significant vortex asymmetries are created, causing the model to stop at a non-zero roll angle. Forward blowing and alternating right/left pulsed blowing appear to be more efficient techniques for suppressing wing rock. The oscillations can be damped almost completely at lower blowing coefficients, and, apparently, no major vortex asymmetries are induced. Good agreement is observed between this study and previous water tunnel tests on the same configuration.

  4. Flapping of Insectile Wings

    NASA Astrophysics Data System (ADS)

    Huang, Yangyang; Kanso, Eva

    2015-11-01

    Insects use flight muscles attached at the base of the wings to produce impressive wing flapping frequencies. Yet the effects of muscle stiffness on the performance of insect wings remain unclear. Here, we construct an insectile wing model, consisting of two rigid wings connected at their base by an elastic torsional spring and submerged in an oscillatory flow. The wing system is free to rotate and flap. We first explore the extent to which the flyer can withstand roll perturbations, then study its flapping behavior and performance as a function of spring stiffness. We find an optimal range of spring stiffness that results in large flapping amplitudes, high force generation and good storage of elastic energy. We conclude by conjecturing that insects may select and adjust the muscle spring stiffness to achieve desired movement. These findings may have significant implications on the design principles of wings in micro air-vehicles.

  5. The winged scapula.

    PubMed

    Fiddian, N J; King, R J

    1984-05-01

    Twenty-five patients with 23 different types of winging of the scapula are described. A simple clinical and etiologic classification of the winged scapula is proposed based on the study of these patients in conjunction with a review of the literature. Winging of the scapula is either static or dynamic. Static winging is due to fixed deformity in the shoulder girdle, spine, or ribs. Dynamic winging is due to a neuromuscular disorder. The great variety of lesions that produce winging of the scapula may be classified anatomically into four types: Type I, nerve; Type II, muscle; Type III, bone; and Type IV, joint. Winging of the scapula is a surprisingly common physical sign, but because it is often asymptomatic it receives little attention. However, symptoms of pain, weakness, or cosmetic deformity may demand attention, and it is hoped that this classification will help in the diagnosis and assessment of these patients.

  6. Comparison of Theoretical Stresses and Deflections of Multicell Wings with Experimental Results Obtained from Plastic Models

    NASA Technical Reports Server (NTRS)

    Zender, George W

    1956-01-01

    The experimental deflections and stresses of six plastic multicell-wing models of unswept, delta, and swept plan form are presented and compared with previously published theoretical results obtained by the electrical analog method. The comparisons indicate that the theory is reliable except for the evaluation of stresses in the vicinity of the leading edge of delta wings and the leading and trailing edges of swept wings. The stresses in these regions are questionable, apparently because of simplifications employed in idealizing the actual structure for theoretical purposes and because of local effects of concentrated loads.

  7. Mississippi Delta

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The streamers of clouds draped over the Gulf of Mexico in this true-color MODIS image from February 27, 2002, suggest that a cold, dry wind was blowing southward over the United States and began to pick up moisture over the Gulf, causing these strips of clouds. That the clouds didn't pick up until some distance from the coastline allowed MODIS to get a perfect view of the dynamic Gulf Coast environment spanning (left to right) Texas, Louisiana, Mississippi, Alabama, and Florida's Western Panhandle. The Mississippi River runs roughly down the center of the image, and is joined in Louisiana by the Red River coming in from the northwest. Over the past 7000 years, the actual delta, where the main river channel empties into the Gulf, has wandered around what we now think of as the Louisiana coast. Considering all the sediment visible in this image, it's not hard to imagine that the river carries about 2.4 billion kilograms of sediment into the Gulf each year. Deposition of some of this sediment has been building up the current delta, called the Birdfoot Delta, for obvious reasons, for about 700 years. The coastal waters are alive with microscopic organisms called phytoplankton, which contain colorful pigments, including chlorophyll, for harvesting sunlight. Beyond the sediment plume off Louisiana, the waters are very dark, which could indicate that a large amount of chlorophyll is present, absorbing lots of sunlight and causing the water to appear dark. Farther south, the waters appear bright blue, which could be a signature of coccolithophores, which use highly reflective calcium carbonate to build scaly coverings for themselves. The brighter offshore waters could also be caused by a blue-green algae called Trichodesmium, an organism that can not only harness carbon dioxide for photosynthesis, but can also take nitrogen from the air and turn it into a form that can be used by living organisms. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  8. Natural flow wing

    NASA Technical Reports Server (NTRS)

    Wood, Richard M. (Inventor); Bauer, Steven X. S. (Inventor)

    1992-01-01

    The invention is a natural flow wing and a method for constructing the same. The method comprises contouring a three-dimensional upper surface and a three-dimensional lower surface of the natural flow wing independently of one another into a prescribed shape. Experimental data and theoretical analysis show that flow and pressure-loading over an upper surface of a wing tend to be conical about an apex of the wing, producing favorable and unfavorable regions of performance based on drag. The method reduces these unfavorable regions by shaping the upper surface such that the maximum thickness near a tip of the natural flow wing moves aft, thereby, contouring the wing to coincide more closely with the conical nature of the flow on the upper surface. Nearly constant compressive loading characterizes the flow field over a lower surface of the conventional wing. Magnitude of these compressive pressures on the lower surface depends on angle of attack and on a streamwise curvature of the lower surface of the wing and not on a cross-sectional spanwise curvature. The method, thereby, shapes the lower surface to create an area as large as possible with negative slopes. Any type of swept wing may be used to obtain the final, shaped geometry of the upper and lower surfaces of the natural flow wing.

  9. Winging of the scapula.

    PubMed

    Saeed, M A; Gatens, P F; Singh, S

    1981-10-01

    Common neurogenic causes of scapular winging are serratus anterior, trapezius and rhomboid palsy. Deformity is minimal in serratus anterior palsy (long thoracic nerve); winging is accentuated by forward elevation and pushing with outstretched arms. In trapezius palsy (spinal accessory nerve), the shoulder droops and winging is accentuated by arm abduction at the shoulder level. Rhomboid weakness (dorsal scapular nerve or C5 root) is best demonstrated by slowly lowering the arms from the forward elevated position.

  10. Slotted Aircraft Wing

    NASA Technical Reports Server (NTRS)

    McLean, James D. (Inventor); Witkowski, David P. (Inventor); Campbell, Richard L. (Inventor)

    2006-01-01

    A swept aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one full-span slot is defined by the wing during at least one transonic condition of the wing. The full-span slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.

  11. Propeller/wing interaction

    NASA Technical Reports Server (NTRS)

    Witkowski, David P.; Johnston, Robert T.; Sullivan, John P.

    1989-01-01

    The present experimental investigation of the steady-state and unsteady-state effects due to the interaction between a tractor propeller's wake and a wing employs, in the steady case, wind tunnel measurements at low subsonic speed; results are obtained which demonstrate wing performance response to variations in configuration geometry. Other steady-state results involve the propeller-hub lift and side-force due to the wing's influence on the propeller. The unsteady effects of interaction were studied through flow visualization of propeller-tip vortex distortion over a wing, again using a tractor-propeller configuration.

  12. A theory for lateral wing-tip blowing

    NASA Technical Reports Server (NTRS)

    Tavella, D.; Roberts, L.

    1985-01-01

    The concept of lateral blowing consists in utilizing thin jets of air, which are ejected in the spanwise direction from slots at the tips of straight and swept wings, or along the leading edges of delta wings, to generate aerodynamic forces without the assistance of deflecting solid surfaces. For weak intensities of blowing the so-generated forces could be used for roll and lateral control of aircraft. In this work a theory for this concept as applied to straight wings is presented, revealing the analytical relationship between blowing and aerodynamic forces. The approach is based on perturbing the span of an elliptically loaded wing. Scaling laws involving blowing intensity, aspect ratio, and angle of attack are derived and compared with experiments. It is concluded that this concept has potential as a novel roll and lateral control device.

  13. Mississippi Delta

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Mississippi River delta teems with sediment deposited by the river as it flows into the Gulf of Mexico in this true-color image captured by MODIS on October 15, 2001. The sediment, which is marked by brown swirls in the Gulf, provides nutrients for the bloom of phytoplankton visible as blue-green swirls off the coastline. In the high-resolution image the city of Memphis can be seen in the southwest corner of Tennessee, which is just to left of center at the top of the image. The brown coloration that encompasses Memphis and either side of the river, as flows north to south along the left side of the image, is the river's flood plain. Also visible, in the upper-right hand corner of the image is the southern end of the Appalachian Mountains.

  14. Adaptive wing and flow control technology

    NASA Astrophysics Data System (ADS)

    Stanewsky, E.

    2001-10-01

    The development of the boundary layer and the interaction of the boundary layer with the outer “inviscid” flow field, exacerbated at high speed by the occurrence of shock waves, essentially determine the performance boundaries of high-speed flight. Furthermore, flight and freestream conditions may change considerably during an aircraft mission while the aircraft itself is only designed for multiple but fixed design points thus impairing overall performance. Consequently, flow and boundary layer control and adaptive wing technology may have revolutionary new benefits for take-off, landing and cruise operating conditions for many aircraft by enabling real-time effective geometry optimization relative to the flight conditions. In this paper we will consider various conventional and novel means of boundary layer and flow control applied to moderate-to-large aspect ratio wings, delta wings and bodies with the specific objectives of drag reduction, lift enhancement, separation suppression and the improvement of air-vehicle control effectiveness. In addition, adaptive wing concepts of varying complexity and corresponding aerodynamic performance gains will be discussed, also giving some examples of possible structural realizations. Furthermore, penalties associated with the implementation of control and adaptation mechanisms into actual aircraft will be addressed. Note that the present contribution is rather application oriented.

  15. Wing planform effects at supersonic speeds for an advanced fighter configuration

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.

    1984-01-01

    Four advanced fighter configurations, which differed in wing planform and airfoil shape, were investigated in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, and 2.16. Supersonic data were obtained on the four uncambered wings, which were each attached to a single fighter fuselage. The fuselage geometry varied in cross-sectional shape and had two side-mounted, flow-through, half-axisymmetric inlets. Twin vertical tails were attached to the fuselage. The four planforms tested were a 65 deg delta wing, a combination of a 20 deg trapezoidal wing and a 45 deg horizontal tail, a 70 deg/30 deg cranked wing, and a 70 deg/66 deg crank wing, where the angle values refer to the leading-edge sweep angle of the lifting-surface planform. Planform effects on a single fuselage representative of an advanced fighter aircraft were studied. Results show that the highly swept cranked wings exceeded the aerodynamic performance levels, at low lift coefficients, of the 65 deg delta wing and the 20 deg trapezoidal wing at trimmed and untrimmed conditions.

  16. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers

    NASA Astrophysics Data System (ADS)

    Nelson, Robert C.; Pelletier, Alain

    2003-04-01

    Aircraft that maneuver through large angles of attack will experience large regions of flow separation over the wing and fuselage. The separated flow field is characterized by unsteadiness and strong vortical flow structures that can interact with various components of the aircraft. These complicated flow interactions are the primary cause of most flight dynamic instabilities, airload nonlinearities and flow field time lags. The aerodynamic and the vortical flow structure over simple delta wings undergoing either a pitching or rolling motion is presented. This article reviews experimental information on the flow structure over delta wings and complete aircraft configurations. First, the flow structure of leading-edge vortices and their influence on delta wing aerodynamics for stationary models is presented. This is followed by a discussion of the effect of large amplitude motion on the vortex structure and aerodynamic characteristic of pitching and rolling delta wings. The relationship between the flow structure and the unsteady airloads is reviewed. The unsteady motion of the delta wing results in a modification of the flow field. Delays in flow separation, vortex formation, vortex position and the onset of vortex breakdown are all affected by the model motion. These flow changes cause a corresponding modification in the aerodynamic loads. Data is presented which shows the importance of flow field hysteresis in either vortex position or breakdown and the influence on the aerodynamic characteristics of a maneuvering delta wing. The free-to-roll motion of a double-delta wing is also presented. The complicated flow structure over a double-delta wing gives rise to damped, chaotic and wing rock motions as the angle of attack is increased. The concept of a critical state is discussed and it is shown that crossing a critical state produces large transients in the dynamic airloads. Next, several aircraft configurations are examined to show the importance of unsteady

  17. Low-speed aerodynamic characteristics of a wing-canard configuration with underwing spanwise blowing on the trailing-edge flap system

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Paulson, John W., Jr.

    1987-01-01

    An investigation of the effects of spanwise blowing applied to the lower surface of a trailing-edge flap system on a wing-canard configuration has been conducted in the Langley 4- by 7-Meter Tunnel. The investigation studied spanwise-blowing angles of 30 deg., 45 deg., and 60 deg. measured from a perpendicular to the body center-line. The test conditions covered a range of free-stream dynamic pressures up to 50 psf for thrust coefficients up to 2.1 over a range of angles of attack from -2 deg. to 26 deg. Model height above the wind tunnel floor was varied from a height-to-span ratio of 1.70 down to 0.20 (a representative wheel touchdown height). The results indicate that blowing angles of 30 deg. and 45 deg. increase the induced-lift increment produced by spanwise blowing on the lower surface of a trailing-edge flap system. Increasing the blowing angle to 60 deg., in general, produces little further improvement.

  18. Effective Control of Computationally Simulated Wing Rock in Subsonic Flow

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Menzies, Margaret A.

    1997-01-01

    The unsteady compressible, full Navier-Stokes (NS) equations and the Euler equations of rigid-body dynamics are sequentially solved to simulate the delta wing rock phenomenon. The NS equations are solved time accurately, using the implicit, upwind, Roe flux-difference splitting, finite-volume scheme. The rigid-body dynamics equations are solved using a four-stage Runge-Kutta scheme. Once the wing reaches the limit-cycle response, an active control model using a mass injection system is applied from the wing surface to suppress the limit-cycle oscillation. The active control model is based on state feedback and the control law is established using pole placement techniques. The control law is based on the feedback of two states: the roll-angle and roll velocity. The primary model of the computational applications consists of a 80 deg swept, sharp edged, delta wing at 30 deg angle of attack in a freestream of Mach number 0.1 and Reynolds number of 0.4 x 10(exp 6). With a limit-cycle roll amplitude of 41.1 deg, the control model is applied, and the results show that within one and one half cycles of oscillation, the wing roll amplitude and velocity are brought to zero.

  19. F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  20. The Delta 2 launcher

    NASA Astrophysics Data System (ADS)

    Ousley, Gilbert W., Sr.

    1991-12-01

    The utilization of the Delta 2 as the vehicle for launching Aristoteles into its near Sun synchronous orbit is addressed. Delta is NASA's most reliable launch vehicle and is well suited for placing the present Aristoteles spacecraft into a 400 m circular orbit. A summary of some of the Delta 2 flight parameters is presented. Diagrams of a typical Delta 2 two stage separation are included along with statistics on delta reliability and launch plans.

  1. Flying wings / flying fuselages

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    2001-01-01

    The present paper has documented the historical relationships between various classes of all lifting vehicles, which includes the flying wing, all wing, tailless, lifting body, and lifting fuselage. The diversity in vehicle focus was to ensure that all vehicle types that map have contributed to or been influenced by the development of the classical flying wing concept was investigated. The paper has provided context and perspective for present and future aircraft design studies that may employ the all lifting vehicle concept. The paper also demonstrated the benefit of developing an understanding of the past in order to obtain the required knowledge to create future concepts with significantly improved aerodynamic performance.

  2. Slotted Aircraft Wing

    NASA Technical Reports Server (NTRS)

    Vassberg, John C. (Inventor); Gea, Lie-Mine (Inventor); McLean, James D. (Inventor); Witowski, David P. (Inventor); Krist, Steven E. (Inventor); Campbell, Richard L. (Inventor)

    2006-01-01

    An aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one slot is defined by the wing during at least one transonic condition of the wing. The slot may either extend spanwise along only a portion of the wingspan, or it may extend spanwise along the entire wingspan. In either case, the slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.

  3. Low subsonic aerodynamic characteristics of five irregular planform wings with systematically varying wing fillet geometry tested in the NASA/Ames 12 foot pressure tunnel (LA65)

    NASA Technical Reports Server (NTRS)

    Ball, J. W.; Watson, D. B.

    1976-01-01

    An experimental and analytical aerodynamic program to develop predesign guides for irregular planform wings (also referred to as cranked leading edge or double delta wings is reported; the benefits are linearization of subsonic lift curve slope to high angles of attack and avoidance of subsonic pitch instabilities at high lift by proper tailoring of the planform-fillet-wing combination while providing the desired hypersonic trim angle and stability. Because subsonic and hypersonic conditions were the two prime areas of concern in the initial application of this program to optimize shuttle orbiter landing and entry characteristics, the study was designated the Subsonic/Hypersonic Irregular Planforms Study (SHIPS).

  4. High transonic speed transport aircraft study. [aerodynamic characteristics of single-fuselage, yawed-wing configuration

    NASA Technical Reports Server (NTRS)

    Kulfan, R. M.; Neumann, F. D.; Nisbet, J. W.; Mulally, A. R.; Murakami, J. K.; Noble, E. C.; Mcbarron, J. P.; Stalter, J. L.; Gimmestad, D. W.; Sussman, M. B.

    1973-01-01

    An initial design study of high-transonic-speed transport aircraft has been completed. Five different design concepts were developed. These included fixed swept wing, variable-sweep wing, delta wing, double-fuselage yawed-wing, and single-fuselage yawed-wing aircraft. The boomless supersonic design objectives of range=5560 Km (3000 nmi), payload-18 143 kg (40 000lb), Mach=1.2, and FAR Part 36 aircraft noise levels were achieved by the single-fuselage yawed-wing configuration with a gross weight of 211 828 Kg (467 000 lb). A noise level of 15 EPNdB below FAR Part 36 requirements was obtained with a gross weight increase to 226 796 Kg (500 000 lb). Although wing aeroelastic divergence was a primary design consideration for the yawed-wing concepts, the graphite-epoxy wings of this study were designed by critical gust and maneuver loads rather than by divergence requirements. The transonic nacelle drag is shown to be very sensitive to the nacelle installation. A six-degree-of-freedom dynamic stability analysis indicated that the control coordination and stability augmentation system would require more development than for a symmetrical airplane but is entirely feasible. A three-phase development plan is recommended to establish the full potential of the yawed-wing concept.

  5. Aerodynamic control of NASP-type vehicles through vortex manipulation. Volume 3: Wing rock experiments

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Smith, Brooke C.; Kramer, Brian R.; Ng, T. Terry; Ong, Lih-Yenn; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll tests were conducted in water and wind tunnels in an effort to investigate the mechanisms of wing rock on a NASP-type vehicle. The configuration tested consisted of a highly-slender forebody and a 78 deg swept delta wing. In the water tunnel test, extensive flow visualization was performed and roll angle histories were obtained. In the wind tunnel test, the roll angle, forces and moments, and limited forebody and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the experiments confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly slowed the energy balance necessary to sustain the limit cycle oscillation. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetrices are created, causing the model to stop at a non-zero roll angle. On the other hand, alternating pulsed blowing on the left and right sides of the fore body was demonstrated to be a potentially effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  6. An experimental study of the nonlinear dynamic phenomenon known as wing rock

    NASA Technical Reports Server (NTRS)

    Arena, A. S., Jr.; Nelson, R. C.; Schiff, L. B.

    1990-01-01

    An experimental investigation into the physical phenomena associated with limit cycle wing rock on slender delta wings has been conducted. The model used was a slender flat plate delta wing with 80-deg leading edge sweep. The investigation concentrated on three main areas: motion characteristics obtained from time history plots, static and dynamic flow visualization of vortex position, and static and dynamic flow visualization of vortex breakdown. The flow visualization studies are correlated with model motion to determine the relationship between vortex position and vortex breakdown with the dynamic rolling moments. Dynamic roll moment coefficient curves reveal rate-dependent hysteresis, which drives the motion. Vortex position correlated with time and model motion show a time lag in the normal position of the upward moving wing vortex. This time lag may be the mechanism responsible for the hysteresis. Vortex breakdown is shown to have a damping effect on the motion.

  7. Lightplane Wing Design

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Venture, a kit airplane designed and manufactured by Questair, is a high performance lightplane with excellent low speed characteristics and enhanced safety due to NASA technology incorporated in its unusual wing design. In 1987, North Carolina State graduate students and Langley Research Center spent seven months researching and analyzing the Venture. The result was a wing modification, improving control and providing more usable lift. The plane subsequently set 10 world speed records.

  8. delta-Hexachlorocyclohexane (delta-HCH)

    Integrated Risk Information System (IRIS)

    delta - Hexachlorocyclohexane ( delta - HCH ) ; CASRN 319 - 86 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Ass

  9. Numerical study of delta wing leading edge blowing

    NASA Technical Reports Server (NTRS)

    Yeh, David; Tavella, Domingo; Roberts, Leonard

    1988-01-01

    Spanwise and tangential leading edge blowing as a means of controlling the position and strength of the leading edge vortices are studied by numerical solution of the three-dimensional Navier-Stokes equations. The leading edge jet is simulated by defining a permeable boundary, corresponding to the jet slot, where suitable boundary conditions are implemented. Numerical results are shown to compare favorably with experimental measurements. It is found that the use of spanwise leading edge blowing at moderate angle of attack magnifies the size and strength of the leading edge vortices, and moves the vortex cores outboard and upward. The increase in lift primarily comes from the greater nonlinear vortex lift. However, spanwise blowing causes earlier vortex breakdown, thus decreasing the stall angle. The effects of tangential blowing at low to moderate angles of attack tend to reduce the pressure peaks associated with leading edge vortices and to increase the suction peak around the leading edge, so that the integrated value of the surface pressure remains about the same. Tangential leading edge blowing in post-stall conditions is shown to re-establish vortical flow and delay vortex bursting, thus increasing C sub L sub max and stall angle.

  10. Reactive Flow Control of Delta Wing Vortex (Postprint)

    DTIC Science & Technology

    2006-08-01

    2Amitay, M., Washburn, A.E., Anders, S.G., Parekh, D.E., and Glezer, A., “Active Flow Control on the Stingray UAV: Transient Behavior,” AIAA Paper 2003...on the Stingray Uninhabited Air Vehicle: Transient Behavior,” AIAA Journal, Vol. 42. No. 11, Nov. 2004, pp. 2205-2215. 4 Bevacqua, T., Best, E

  11. Delta agent (Hepatitis D)

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000216.htm Delta agent (Hepatitis D) To use the sharing features on this page, please enable JavaScript. Delta agent is a type of virus called hepatitis ...

  12. Flight test results from a supercritical mission adaptive wing with smooth variable camber

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke; Webb, Lannie D.; Friend, Edward L.; Lokos, William A.

    1992-01-01

    The mission adaptive wing (MAW) consisted of leading- and trailing-edge variable-camber surfaces that could be deflected in flight to provide a near-ideal wing camber shape for any flight condition. These surfaces featured smooth, flexible upper surfaces and fully enclosed lower surfaces, distinguishing them from conventional flaps that have discontinuous surfaces and exposed or semiexposed mechanisms. Camber shape was controlled by either a manual or automatic flight control system. The wing and aircraft were extensively instrumented to evaluate the local flow characteristics and the total aircraft performance. This paper discusses the interrelationships between the wing pressure, buffet, boundary-layer and flight deflection measurement system analyses and describes the flight maneuvers used to obtain the data. The results are for a wing sweep of 26 deg, a Mach number of 0.85, leading and trailing-edge cambers (delta(sub LE/TE)) of 0/2 and 5/10, and angles of attack from 3.0 deg to 14.0 deg. For the well-behaved flow of the delta(sub LE/TE) = 0/2 camber, a typical cruise camber shape, the local and global data are in good agreement with respect to the flow properties of the wing. For the delta(sub LE/TE) = 5/10 camber, a maneuvering camber shape, the local and global data have similar trends and conclusions, but not the clear-cut agreement observed for cruise camber.

  13. Prediction and control of slender-wing rock

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Salman, Ahmed A.

    1992-01-01

    The unsteady Euler equations and the Euler equations of rigid-body dynamics, both written in the moving frame of reference, are sequentially solved to simulate the limit-cycle rock motion of slender delta wings. The governing equations of the fluid flow and the dynamics of the present multidisciplinary problem are solved using an implicit, approximately-factored, central-difference-like, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. For the control of wing-rock motion, leading-edge flaps are forced to oscillate anti-symmetrically at prescribed frequency and amplitude, which are tuned in order to suppress the rock motion. Since the computational grid deforms due to the leading-edge flaps motion, the grid is dynamically deformed using the Navier-displacement equations. Computational applications cover locally-conical and three-dimensional solutions for the wing-rock simulation and its control.

  14. Low-speed tests of a high-aspect-ratio, supercritical-wing transport model equipped with a high-lift flap system in the Langley 4- by 7-meter and Ames 12-foot pressure tunnels

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.; Kjelgaard, S. O.

    1983-01-01

    The Ames 12-Foot Pressure Tunnel was used to determine the effects of Reynolds number on the static longitudinal aerodynamic characteristics of an advanced, high-aspect-ratio, supercritical wing transport model equipped with a full span, leading edge slat and part span, double slotted, trailing edge flaps. The model had a wing span of 7.5 ft and was tested through a free stream Reynolds number range from 1.3 to 6.0 x 10 to 6th power per foot at a Mach number of 0.20. Prior to the Ames tests, an investigation was also conducted in the Langley 4 by 7 Meter Tunnel at a Reynolds number of 1.3 x 10 to 6th power per foot with the model mounted on an Ames strut support system and on the Langley sting support system to determine strut interference corrections. The data obtained from the Langley tests were also used to compare the aerodynamic charactertistics of the rather stiff, 7.5-ft-span steel wing model tested during this investigation and the larger, and rather flexible, 12-ft-span aluminum-wing model tested during a previous investigation. During the tests in both the Langley and Ames tunnels, the model was tested with six basic wing configurations: (1) cruise; (2) climb (slats only extended); (3) 15 deg take-off flaps; (4) 30 deg take-off flaps; (5) 45 deg landing flaps; and (6) 60 deg landing flaps.

  15. [A winged scapula].

    PubMed

    Faber, C G; Klaver, M M; Wokke, J H J

    2002-09-14

    Three patients, one woman aged 22 and two men aged 54 and 28, presented with scapular winging. In the first patient amyotrophic plexus neuralgia was diagnosed. The second patient most probably suffered from a stretch injury of the long thoracic nerve. The third patient had scapular winging due to an isolated paresis of the trapezius muscle, which was caused by an idiopathic lesion of the accessory nerve. In the first and second patient an improvement was noticeable after 9 months and 1.5 years respectively. There was no improvement in the third patient after 11 years. Paresis of the M. serratus anterior occurs due to paralysis of the N. thoracicus longus, as a result of direct compression, stump trauma, interventions such as thoracic operations, (repeated) stretch injuries or neuralgic brachial plexus amyotrophy; in these cases the scapular winging increases as the arm is lifted forwards. Paresis of the M. trapezius occurs due to the paralysis of the N. accessorius, due to trauma, interventions such as in the neck area, a space-occupying abnormality or an idiopathic abnormality; in these cases the scapular winging increases upon the arm being lifted sideways. Another possible cause of scapular winging is muscular dystrophy, especially fascioscapulohumeral muscular dystrophy (FSHD). Usually the prognosis for recovery from a neuropraxia and an idiopathic lesion of the N. thoracicus longus within a two-year period is good. The prognosis for an isolated lesion of the N. accessorius is much less favourable. An EMG is essential for establishing a diagnosis.

  16. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C. H.; Lan, C. E.

    1984-01-01

    A theory is developed for predicting wing rock characteristics. From available data, it can be concluded that wing rock is triggered by flow asymmetries, developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. A new nonlinear aerodynamic model that includes all essential aerodynamic nonlinearities is developed. The Beecham-Titchener method is applied to obtain approximate analytic solutions for the amplitude and frequency of the limit cycle based on the three degree-of-freedom equations of motion. An iterative scheme is developed to calculate the average aerodynamic derivatives and dynamic characteristics at limit cycle conditions. Good agreement between theoretical and experimental results is obtained.

  17. From Delta Glider to Airplane

    DTIC Science & Technology

    1988-01-06

    Flexible Wing Aerial Utility Vehicle, by H. Kredit , January 1964, 144 pages AD1 B252433, Pilot’s Handbook for the Flexible Wing Aerial Utility Vehicle...Flexible Wing Aerial Utility Vehicle, H. Kredit , Feb. 1965, 100 pages .- AD 460405. XV-8A Flexible Wing Aerial Utihity Vehicle. Final Report. Feb. 1965

  18. [Dynamic winged scapula].

    PubMed

    Perjés, K

    1990-01-01

    Author describes the paralysis of the serratus muscle in consequence of the paralysis of the long thoracic nerve. The form of appearance is the winged of "flying" scapula. Beside the presentation of the literary and anatomical data the own cases are described. Only conservative therapy was made, an operation was in no case necessary.

  19. SMA actuators for morphing wings

    NASA Astrophysics Data System (ADS)

    Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D.

    An experimental morphing laminar wing was developed to prove the feasibility of aircraft fuel consumption reduction through enhancement of the laminar flow regime over the wing extrados. The morphing wing prototype designed for subsonic cruise flight conditions (Mach 0.2 … 0.3; angle of attack - 1 … +2∘), combines three principal subsystems: (1) flexible extrados, (2) rigid intrados and (3) an actuator group located inside the wing box. The morphing capability of the wing relies on controlled deformation of the wing extrados under the action of shape memory alloys (SMA) actuators. A coupled fluid-structure model of the morphing wing was used to evaluate its mechanical and aerodynamic performances in different flight conditions. A 0.5 m chord and 1 m span prototype of the morphing wing was tested in a subsonic wind tunnel. In this work, SMA actuators for morphing wings were modeled using a coupled thermo-mechanical finite element model and they were windtunnel validated. If the thermo-mechanical model of SMA actuators presented in this work is coupled with the previously developed structureaerodynamic model of the morphing wing, it could serve for the optimization of the entire morphing wing system.

  20. When wings touch wakes: understanding locomotor force control by wake wing interference in insect wings.

    PubMed

    Lehmann, Fritz-Olaf

    2008-01-01

    Understanding the fluid dynamics of force control in flying insects requires the exploration of how oscillating wings interact with the surrounding fluid. The production of vorticity and the shedding of vortical structures within the stroke cycle thus depend on two factors: the temporal structure of the flow induced by the wing's own instantaneous motion and the flow components resulting from both the force production in previous wing strokes and the motion of other wings flapping in close proximity. These wake-wing interactions may change on a stroke-by-stroke basis, confronting the neuro-muscular system of the animal with a complex problem for force control. In a single oscillating wing, the flow induced by the preceding half stroke may lower the wing's effective angle of attack but permits the recycling of kinetic energy from the wake via the wake capture mechanism. In two-winged insects, the acceleration fields produced by each wing may strongly interact via the clap-and-fling mechanism during the dorsal stroke reversal. Four-winged insects must cope with the fact that the flow over their hindwings is affected by the presence of the forewings. In these animals, a phase-shift between the stroke cycles of fore- and hindwing modulates aerodynamic performance of the hindwing via leading edge vortex destruction and changes in local flow condition including wake capture. Moreover, robotic wings demonstrate that phase-lag during peak performance and the strength of force modulation depend on the vertical spacing between the two stroke planes and the size ratio between fore- and hindwing. This study broadly summarizes the most prominent mechanisms of wake-wing and wing-wing interactions found in flapping insect wings and evaluates the consequences of these processes for the control of locomotor forces in the behaving animal.

  1. The use of a Navier-Stokes code in the wing design process

    NASA Technical Reports Server (NTRS)

    Mcmillin, S. Naomi

    1989-01-01

    The feasibility was determined of incorporating the Navier-Stokes computational code, CFL3D, into the supersonic wing design process. The approach taken is of two steps. The first step was to calibrate CFL3D against existing experimental data sets obtained on thin sharp edged delta wings. The experimental data identified six flow types which are dependent on the similarity parameters of Mach number and angle of attack normal to the leading edge. The calibration showed CFL3D capable of simulating these various separated and attached flow conditions. The second step was to use CFL3D to study the initial formation of leading edge separation over delta wings at supersonic speeds. This consisted of examining solutions obtained on a 65 deg delta wing at Mach number of 1.6 with varying cross sectional shapes. Reynolds number was held constant at 1000000 and the Baldwin-Lomax turbulence model was used. The study showed that through the use of leading edge radius and/or camber, the onset of leading edge separation can be delayed to a higher angle of attack than observed on a flat sharp edged wing. Based on the geometries studied, three wind tunnel models are being designed to verify these results.

  2. Wind tunnel investigation of the interaction and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    1991-01-01

    The vortex dominated aerodynamic characteristics of a generic 65 degree cropped delta wing model were studied in a wind tunnel at subsonic through supersonic speeds. The lee-side flow fields over the wing-alone configuration and the wing with leading edge extension (LEX) added were observed at M (infinity) equals 0.40 to 1.60 using a laser vapor screen technique. These results were correlated with surface streamline patterns, upper surface static pressure distributions, and six-component forces and moments. The wing-alone exhibited vortex breakdown and asymmetry of the breakdown location at the subsonic and transonic speeds. An earlier onset of vortex breakdown over the wing occurred at transonic speeds due to the interaction of the leading edge vortex with the normal shock wave. The development of a shock wave between the vortex and wing surface caused an early separation of the secondary boundary layer. With the LEX installed, wing vortex breakdown asymmetry did not occur up to the maximum angle of attack in the present test of 24 degrees. The favorable interaction of the LEX vortex with the wing flow field reduced the effects of shock waves on the wing primary and secondary vortical flows. The direct interaction of the wing and LEX vortex cores diminished with increasing Mach number. The maximum attainable vortex-induced pressure signatures were constrained by the vacuum pressure limit at the transonic and supersonic speeds.

  3. Spanwise flow and the attachment of the leading-edge vortex on insect wings.

    PubMed

    Birch, J M; Dickinson, M H

    2001-08-16

    The flow structure that is largely responsible for the good performance of insect wings has recently been identified as a leading-edge vortex. But because such vortices become detached from a wing in two-dimensional flow, an unknown mechanism must keep them attached to (three-dimensional) flapping wings. The current explanation, analogous to a mechanism operating on delta-wing aircraft, is that spanwise flow through a spiral vortex drains energy from the vortex core. We have tested this hypothesis by systematically mapping the flow generated by a dynamically scaled model insect while simultaneously measuring the resulting aerodynamic forces. Here we report that, at the Reynolds numbers matching the flows relevant for most insects, flapping wings do not generate a spiral vortex akin to that produced by delta-wing aircraft. We also find that limiting spanwise flow with fences and edge baffles does not cause detachment of the leading-edge vortex. The data support an alternative hypothesis-that downward flow induced by tip vortices limits the growth of the leading-edge vortex.

  4. On Celestial Wings,

    DTIC Science & Technology

    1995-11-01

    warning at headquarters of Japanese planes approaching Clark Field. Despite all our warning systems and all the reconnaissance missions we had flown, the...late January 1942. 49 ON CELESTIAL WINGS Davao on 3 January 1942. They staged through Samarinda, Bomeo , and flew the 730 nautical miles to find the...knocking out our hydraulic system , our brakes, landing gear and bomb release mechanism. We kicked the bombs out manually over Bali and returned to Java

  5. Wing on a String

    ERIC Educational Resources Information Center

    Fitzgerald, Mike; Brand, Lance

    2004-01-01

    In this article, the authors present an activity that shows students how flight occurs. The "wing on a string" is a simple teacher-made frame that consists of PVC pipe, fishing line, and rubber bands--all readily available hardware store items. The only other materials/tools involved are a sheet of paper, some pieces of a soda straw, a stapler,…

  6. ACTE Wing Loads Analysis

    NASA Technical Reports Server (NTRS)

    Horn, Nicholas R.

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) project modified a Gulfstream III (GIII) aircraft with a new flexible flap that creates a seamless transition between the flap and the wing. As with any new modification, it is crucial to ensure that the aircraft will not become overstressed in flight. To test this, Star CCM a computational fluid dynamics (CFD) software program was used to calculate aerodynamic data for the aircraft at given flight conditions.

  7. Variable Camber Morphing Wings

    DTIC Science & Technology

    2016-02-02

    exploring smart materials , aiming at achieving more efficient morphing capability in terms of control authority and energy consump- tion. Other specific...collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT...methodology of variable camber morphing wings based on the use of active materials , namely piezoelectric materials and shape memory alloys. The research work

  8. Some effects of wing and body geometry on the aerodynamic characteristics of configurations designed for high supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.; Tice, David C.; Braswell, Dorothy O.

    1992-01-01

    Experimental and theoretical results are presented for a family of aerodynamic configurations for flight Mach numbers as high as Mach 8. All of these generic configurations involved 70-deg sweep delta planform wings of three different areas and three fuselage shapes with circular-to-elliptical cross sections. It is noted that fuselage ellipticity enhances lift-curve slope and maximum L/D, while decreasing static longitudinal stability (especially with smaller wing areas).

  9. Pen Branch delta expansion

    SciTech Connect

    Nelson, E.A.; Christensen, E.J.; Mackey, H.E.; Sharitz, R.R.; Jensen, J.R.; Hodgson, M.E.

    1984-02-01

    Since 1954, cooling water discharges from K Reactor ({anti X} = 370 cfs {at} 59 C) to Pen Branch have altered vegetation and deposited sediment in the Savannah River Swamp forming the Pen Branch delta. Currently, the delta covers over 300 acres and continues to expand at a rate of about 16 acres/yr. Examination of delta expansion can provide important information on environmental impacts to wetlands exposed to elevated temperature and flow conditions. To assess the current status and predict future expansion of the Pen Branch delta, historic aerial photographs were analyzed using both basic photo interpretation and computer techniques to provide the following information: (1) past and current expansion rates; (2) location and changes of impacted areas; (3) total acreage presently affected. Delta acreage changes were then compared to historic reactor discharge temperature and flow data to see if expansion rate variations could be related to reactor operations.

  10. Fog spontaneously folds mosquito wings

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew K.; Liu, Xing; Zhu, Ting; Hu, David L.

    2015-02-01

    The flexibility of insect wings confers aerodynamic benefits, but can also present a hazard if exposed to fog or dew. Fog can cause water to accumulate on wings, bending them into tight taco shapes and rendering them useless for flight. In this combined experimental and theoretical study, we use high-speed video to film the spontaneous folding of isolated mosquito wings due to the evaporation of a water drop. We predict shapes of the deformed wing using two-dimensional elastica theory, considering both surface tension and Laplace pressure. We also recommend fold-resistant geometries for the wings of flapping micro-aerial vehicles. Our work reveals the mechanism of insect wing folding and provides a framework for further study of capillarity-driven folding in both natural and biomimetic systems at small scales.

  11. Simulation of iced wing aerodynamics

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Bragg, M. B.; Kwon, O. J.; Sankar, L. N.

    1991-01-01

    The sectional and total aerodynamic load characteristics of moderate aspect ratio wings with and without simulated glaze leading edge ice were studied both computationally, using a three dimensional, compressible Navier-Stokes solver, and experimentally. The wing has an untwisted, untapered planform shape with NACA 0012 airfoil section. The wing has an unswept and swept configuration with aspect ratios of 4.06 and 5.0. Comparisons of computed surface pressures and sectional loads with experimental data for identical configurations are given. The abrupt decrease in stall angle of attack for the wing, as a result of the leading edge ice formation, was demonstrated numerically and experimentally.

  12. Measurements of the unsteady vortex flow over a wing-body at angle of attack

    NASA Technical Reports Server (NTRS)

    Debry, Benoit; Komerath, Narayanan M.; Liou, Shiuh-Guang; Caplin, J.; Lenakos, Jason

    1992-01-01

    Measurements of the unsteady vortex flow over a wing-body at high angles of attack were carried out on a generic test model of a pointed body of revolution with double-delta wings. Vortex patterns and trajectories were quantified from digitized laser sheet video images. The velocity-field measurements showed the jetlike flow in the unburst vortex, unsteady secondary structures below the primary core, and then the reversed flow in the burst vortex. Results of hot-film anemometry revealed the presence of peak frequencies in the velocity spectra over the wing and near the trailing edge, which varied linearly with freestream speed and increased as the measurement point moved upstream. Good Strouhal correlation was found with previous results obtained for a smaller generic wing-body model.

  13. Delta hepatitis in Malaysia.

    PubMed

    Sinniah, M; Dimitrakakis, M; Tan, D S

    1986-06-01

    Sera from one hundred and fifty nine Malaysian individuals were screened for the prevalence of delta markers. These included 15 HBsAg positive homosexuals, 16 acute hepatitis B cases, 9 chronic hepatitis B patients, 13 healthy HBsAg carriers and 106 intravenous (i.v.) drug abusers, of whom 27 were positive for HBsAg only and the rest were anti-HBc IgG positive but HBsAg negative. The prevalence of delta markers in the homosexuals was found to be 6.7%, in the HBsAg positive drug abusers 17.8%, in acute hepatitis B cases 12.5%. No evidence of delta infection was detected in healthy HBsAg carriers, chronic hepatitis B cases and HBsAg negative i.v. drug abusers. With reference to i.v. drug abusers, the prevalence of delta markers was higher in Malays (23%) than in Chinese (7%) although the latter had a higher HBsAg carrier rate. Although the HBsAg carrier rate in the homosexuals was high, their delta prevalence rate was low as compared to drug abusers. In Malaysia, as in other non-endemic regions, hepatitis delta virus transmission appeared to occur mainly via the parenteral and sexual routes. This is the first time in Malaysia that a reservoir of delta infection has been demonstrated in certain groups of the population at high risk for hepatitis B.

  14. Nile River Delta, Egypt

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Nile River Delta of Egypt (30.0N, 31.0E) irrigated by the Nile River and its many distributaries, is some of the richest farm land in the world and home to some 45 million people, over half of Egypt's population. The capital city of Cairo is at the apex of the delta. Just across the river from Cairo can be seen the ancient three big pyramids and sphinx at Giza and the Suez Canal is just to the right of the delta.

  15. Delta Scuti stars: Theory

    NASA Technical Reports Server (NTRS)

    Guzik, J. A.

    1998-01-01

    The purpose of asteroseismology is not only to derive the internal structure of individual stars from their observed oscillation frequencies, but also to test and extend one's understanding of the physics of matter under the extremes of temperature, density, and pressure found in stellar interiors. In this review, the author hopes to point out what one can learn about the Sun by studying (delta) Scuti stars, as well as what one can learn about stars more massive or evolved than the Sun. He discusses some of the difficulties in theoretical approaches to asteroseismology for (delta) Scuti stars, using FG Vir, (delta) Scuti, and CD-24(degree) 7599 as examples.

  16. Freight Wing Trailer Aerodynamics

    SciTech Connect

    Graham, Sean; Bigatel, Patrick

    2004-10-17

    Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

  17. Nonlinear aerodynamic wing design

    NASA Technical Reports Server (NTRS)

    Bonner, Ellwood

    1985-01-01

    The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.

  18. F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  19. F-16XL ship #1 - CAWAP boundary layer hot film, left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the boundary layer hot film on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. Hot film is used to measure temperature changes on a surface. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  20. Parallel Nonlinear Aeroelastic Computation for Fighter Wings in the Transonic Region

    NASA Astrophysics Data System (ADS)

    Larsen, Bradley Robert

    In this dissertation, a parallel three-dimensional aeroelastic simulation is applied to current and next generation fighter aircraft wings. The computational model is a nonlinear fluid and structural mesh coupled using the Direct Eulerian-Langrangian method. This method attaches unique local coordinates to each node and connects the fluid mesh to the structure in such a way that a transformation preserved to the global coordinates. This allows the fluid and structure to be updated in the same time step and maintains spatial accuracy at their interface. The structural mesh is modeled using modified nonlinear von Karman finite elements and is discretized using the Galerkin finite element method. The fluid mesh also used the Galerkin finite element method to discretize the unsteady Euler equations. Computational results over a large range of Mach numbers and densities are presented for two candidate fighter wing models for transonic wing tunnel testing. The FX-35 is a trapezoidal wing based on the F-35A, and the F-Wing is a truncated delta wing similar to the F-16. Both wings exhibit a variety of flutter behaviors including strong bending-torsion flutter, limit-cycle oscillations, and essentially single degree-of-freedom responses.

  1. Federal Funding in the Delta.

    ERIC Educational Resources Information Center

    Reeder, Richard J.; Calhoun, Samuel D.

    2002-01-01

    The Lower Mississippi Delta region, especially the rural Delta, faces many economic challenges. The rural Delta has received much federal aid in basic income support and funding for human resource development, but less for community resource programs, which are important for economic development. Federal aid to the Delta is analyzed in terms of…

  2. Beetle wings are inflatable origami

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  3. X-31 wing removal

    NASA Technical Reports Server (NTRS)

    1995-01-01

    U.S. and German personnel of the X-31 Enhanced Fighter Maneuverability Technology Demonstrator aircraft program removing the right wing of the aircraft, which was ferried from Edwards Air Force Base, California, to Europe on May 22, 1995 aboard an Air Force Reserve C-5 transport. The X-31, based at the NASA Dryden Flight Research Center was ferried to Europe and flown in the Paris Air Show in June. The wing of the X-31 was removed on May 18, 1995, to allow the aircraft to fit inside the C-5 fuselage. Officials of the X-31 project used Manching, Germany, as a staging base to prepare the aircraft for the flight demonstration. At the air show, the X-31 demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems to provide controlled flight at very high angles of attack. The aircraft arrived back at Edwards in a Air Force Reserve C-5 on June 25, 1995 and off loaded at Dryden June 27. The X-31 aircraft was developed jointly by Rockwell International's North American Aircraft Division (now part of Boeing) and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm), under sponsorship by the U.S. Department of Defense and The German Federal Ministry of Defense.

  4. Noise of the 10-bladed 60 deg swept SR-5 propeller in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Dittmar, J. H.; Stefko, G. L.; Jeracki, R. J.

    1983-02-01

    Noise generated by supersonic helical tip speed propellers is a possible cabin environment problem for future airplanes powered by these propellers. Noise characteristics of one of these propellers, designated SR-5, are presented. A matrix of tests was conducted to provide as much acoustic information as possible. During aerodynamic testing it was discovered that the propeller had an aeroelastic instability which prevented testing the propeller at its design advance ratio of 4.08 at axial Mach numbers over 0.7. Plots of the variation of the maximum blade passage tone with helical tip Mach number indicate that, at higher helical tip Mach numbers, the propeller operated on sharply increasing portion of the noise curve; therefore, extrapolations to the design condition would not be accurate. A possible extrapolation indicated that SR-5 at its design point should be quieter than SR-3 at its design point. Directivity plots at the higher helical tip Mach numbers indicate a lobed directivity pattern as was observed previously on the SR-3 propeller.

  5. Noise of the 10-bladed 60 deg swept SR-5 propeller in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Stefko, G. L.; Jeracki, R. J.

    1983-01-01

    Noise generated by supersonic helical tip speed propellers is a possible cabin environment problem for future airplanes powered by these propellers. Noise characteristics of one of these propellers, designated SR-5, are presented. A matrix of tests was conducted to provide as much acoustic information as possible. During aerodynamic testing it was discovered that the propeller had an aeroelastic instability which prevented testing the propeller at its design advance ratio of 4.08 at axial Mach numbers over 0.7. Plots of the variation of the maximum blade passage tone with helical tip Mach number indicate that, at higher helical tip Mach numbers, the propeller operated on sharply increasing portion of the noise curve; therefore, extrapolations to the design condition would not be accurate. A possible extrapolation indicated that SR-5 at its design point should be quieter than SR-3 at its design point. Directivity plots at the higher helical tip Mach numbers indicate a lobed directivity pattern as was observed previously on the SR-3 propeller.

  6. Two-stage reusable launch system utilizing a winged core vehicle and glideback boosters

    NASA Technical Reports Server (NTRS)

    Macconochie, Ian O.; Martin, James A.; Wood, James S.; Duquette, Miles O.

    1989-01-01

    A near-term technology launch system is described in which Space Shuttle main engines are used on a manned orbiter and also on twin strap-on unmanned boosters. The orbiter has a circular body and clipped delta wings. The twin strap-on boosters have a circular body and deployable oblique wings for a glideback recovery. The dry and gross weights of the system, capable of delivering 70klb of cargo to orbit, are compared with a similar system with hydrocarbon-fueled boosters and with the current Shuttle.

  7. Assembly modes of dragonfly wings.

    PubMed

    Zhao, Hong-Xiao; Yin, Ya-Jun; Zhong, Zheng

    2011-12-01

    The assembly modes of dragonfly wings are observed through FEG-ESEM. Different from airplane wings, dragonfly wings are found to be assembled through smooth transition mode and global package mode. First, at the vein/membrane conjunctive site, the membrane is divided into upper and lower portions from the center layer and transited smoothly to the vein. Then the two portions pack the vein around and form the outer surface of the vein. Second, at the vein/spike conjunctive site, the vein and spike are connected smoothly into a triplet. Last, at the vein/membrane/spike conjunctive site, the membrane (i.e., the outer layer of the vein) transits smoothly to the spike, packs it around, and forms its outer layer. In short, the membrane looks like a closed coat packing the wing as a whole. The smooth transition mode and the global package mode are universal assembly modes in dragonfly wings. They provide us the references for better understanding of the functions of dragonfly wings and the bionic manufactures of the wings of flights with mini sizes.

  8. Control of Drosophila wing growth by the vestigial quadrant enhancer.

    PubMed

    Zecca, Myriam; Struhl, Gary

    2007-08-01

    Following segregation of the Drosophila wing imaginal disc into dorsal (D) and ventral (V) compartments, the wing primordium is specified by activity of the selector gene vestigial (vg). In the accompanying paper, we present evidence that vg expression is itself driven by three distinct inputs: (1) short-range DSL (Delta/Serrate/LAG-2)-Notch signaling across the D-V compartment boundary; (2) long-range Wg signaling from cells abutting the D-V compartment boundary; and (3) a short-range signal sent by vg-expressing cells that entrains neighboring cells to upregulate vg in response to Wg. Furthermore, we showed that these inputs define a feed-forward mechanism of vg autoregulation that initiates in D-V border cells and propagates from cell to cell by reiterative cycles of vg upregulation. Here, we provide evidence that this feed-forward mechanism is required for normal wing growth and is mediated by two distinct enhancers in the vg gene. The first is a newly defined ;priming' enhancer (PE), that provides cryptic, low levels of Vg in most or all cells of the wing disc. The second is the previously defined quadrant enhancer (QE), which we show is activated by the combined action of Wg and the short-range vg-dependent entraining signal, but only if the responding cells are already primed by low-level Vg activity. Thus, entrainment and priming constitute distinct signaling and responding events in the Wg-dependent feed-forward circuit of vg autoregulation mediated by the QE. We posit that Wg controls the expansion of the wing primordium following D-V segregation by fueling this autoregulatory mechanism.

  9. Finite Span Wings in Compressible Flow

    NASA Technical Reports Server (NTRS)

    Krasilschchikova, E A

    1956-01-01

    Equations are developed using the source distribution method for the velocity potential function and pressure on thin wings in steady and unsteady motion. Closed form solutions are given for harmonically oscillating wings of general plan form including the effect of the wing wake. Some useful examples are presented in an appendix for arrow, semielliptical, and hexagonal plan form wings.

  10. Effect of outer wing separation on lift and thrust generation in a flapping wing system.

    PubMed

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-09-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  11. Aerostructures Test Wing

    NASA Technical Reports Server (NTRS)

    Lind, RIck; Voracek, David F.; Doyle, Tim; Truax, Roger; Potter, Starr; Brenner, Marty; Voelker, Len; Freudinger, Larry; Stocjt. C (off)

    2003-01-01

    The Aerostructures Test Wing (ATW) was an apparatus used in a flight experiment during a program of research on aeroelastic instabilities. The ATW experiment was performed to study a specific instability known as flutter. Flutter is a destructive phenomenon caused by adverse coupling of structural dynamics and aerodynamics. The process of determining a flight envelope within which an aircraft will not experience flutter, known as flight flutter testing, is very dangerous and expensive because predictions of the instability are often unreliable. The ATW was a small-scale airplane wing that comprised an airfoil and boom (see upper part of Figure 1). For flight tests, the ATW was mounted on the F-15B/FTF-II testbed, which is a second-generation flight-test fixture described in Flight-Test Fixture for Aerodynamic Research (DRC- 95-27), NASA Tech Briefs, Vol. 19, No. 9, September 1995, page 84. The ATW was mounted horizontally on this fixture, and the entire assembly was attached to the undercarriage of the F-15B airplane (see lower part of Figure 1). The primary objective of the ATW project was to investigate traditional and advanced methodologies for predicting the onset of flutter. In particular, the ATW generated data that were used to evaluate a flutterometer. This particular flutterometer is an on-line computer program that uses method analysis to estimate worst-case flight conditions associated with flutter. This software was described in A Flutterometer Flight Test Tool NASA Tech Briefs, Vol. 23, No. 1, January 1999, page 52.

  12. Mission Adaptive Wing test program

    NASA Technical Reports Server (NTRS)

    Birk, Frank T.; Smith, Rogers E.

    1986-01-01

    With the completion of the F-111 test-bed Mission Adaptive Wing (MAW) test program's manual flight control system, emphasis has been shifted to flight testing of MAW automatic control modes. These encompass (1) cruise camber control, (2) maneuver camber control, (3) maneuver load control, and (4) maneuver enhancement and load alleviation control. The aircraft is currently cleared to a 2.5-g maneuvering limit due to generally higher variable-incidence wing pivot loads than had been anticipated, especially at the higher wing-camber settings. Buffet is noted to be somewhat higher than expected at the higher camber settings.

  13. Wing design for spin resistance

    NASA Technical Reports Server (NTRS)

    Stough, H. P., III; Dicarlo, D. J.; Glover, K. E.; Stewart, E. C.

    1984-01-01

    Use of a discontinuous outboard wing leading edge to improve stall/spin characteristics has been evaluated through wind-tunnel and flight tests. Addition of such a discontinuous outboard wing leading-edge droop design to three light airplanes having NACA 6-series airfoil sections produced significant improvements in stall characteristics and spin resistance. The increased spin resistance of the modified airplanes has been related to the difference in angle of attack between the outer wing panel stall and the maximum attainable angle of attack.

  14. Delta II Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Final preparations for lift off of the DELTA II Mars Pathfinder Rocket are shown. Activities include loading the liquid oxygen, completing the construction of the Rover, and placing the Rover into the Lander. After the countdown, important visual events include the launch of the Delta Rocket, burnout and separation of the three Solid Rocket Boosters, and the main engine cutoff. The cutoff of the main engine marks the beginning of the second stage engine. After the completion of the second stage, the third stage engine ignites and then cuts off. Once the third stage engine cuts off spacecraft separation occurs.

  15. Origin Story: Blended Wing Body

    NASA Video Gallery

    NASA is partnering with the Boeing Company, among others, to develop and test the blended wing body aircraft. The BWB has the potential to significantly reduce fuel use and noise. In this video, Bo...

  16. Embedded Wing Propulsion Conceptual Study

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Saunders, John D.

    2003-01-01

    As a part of distributed propulsion work under NASA's Revolutionary Aeropropulsion Concepts or RAC project, a new propulsion-airframe integrated vehicle concept called Embedded Wing Propulsion (EWP) is developed and examined through system and computational fluid dynamics (CFD) studies. The idea behind the concept is to fully integrate a propulsion system within a wing structure so that the aircraft takes full benefits of coupling of wing aerodynamics and the propulsion thrust stream. The objective of this study is to assess the feasibility of the EWP concept applied to large transport aircraft such as the Blended-Wing-Body aircraft. In this paper, some of early analysis and current status of the study are presented. In addition, other current activities of distributed propulsion under the RAC project are briefly discussed.

  17. Oblique-wing supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Jones, R. T. (Inventor)

    1976-01-01

    An aircraft including a single fuselage having a main wing and a horizontal stabilizer airfoil pivotally attached at their centers to the fuselage is described. The pivotal attachments allow the airfoils to be yawed relative to the fuselage for high speed flight, and to be positioned at right angles with respect to the fuselage during takeoff, landing, and low speed flight. The main wing and the horizontal stabilizer are upwardly curved from their center pivotal connections towards their ends to form curvilinear dihedrals.

  18. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    NASA Technical Reports Server (NTRS)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic analysis on a business jet with a wing glove attached to one wing is presented and discussed. If a wing glove is placed over a portion of one wing, there will be asymmetries in the aircraft as well as overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to make sure the wing glove does not have a drastic effect on the aircraft flight characteristics. TRANAIR, a non-linear full potential solver was used to analyze a full aircraft, with and without a glove, at a variety of flight conditions and angles of attack and sideslip. Changes in the aircraft lift, drag and side force, along with roll, pitch and yawing moment are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove and its fairing are discussed. Results show that the glove used here does not present a drastic change in forces and moments on the aircraft, but an added torsional moment around the quarter-chord of the wing may be a cause for some structural concerns.

  19. Unsteady aerodynamics of missiles. Part 3: Determination of the longitudinal stability of wings at high angles of attack in supersonic flight

    NASA Astrophysics Data System (ADS)

    Schneider, C. P.

    1980-05-01

    A theoretical method for the determination of unsteady aerodynamic coefficients associated with the longitudinal stability of slender wings in supersonic flight is presented. It is based on the indicial functional theory of Tobak. Extension to higher incidences is effected by combining the indicial functions with steady nonlinear coefficients derived from a semiempiricial procedure. The unsteady nonlinear aerodynamic coefficients are determined for delta wings with subsonic and supersonic leading edges, respectively.

  20. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  1. A vortex-filament and core model for wings with edge vortex separation

    NASA Technical Reports Server (NTRS)

    Pao, J. L.; Lan, C. E.

    1982-01-01

    A vortex filament-vortex core method for predicting aerodynamic characteristics of slender wings with edge vortex separation was developed. Semi-empirical but simple methods were used to determine the initial positions of the free sheet and vortex core. Comparison with available data indicates that: (1) the present method is generally accurate in predicting the lift and induced drag coefficients but the predicted pitching moment is too positive; (2) the spanwise lifting pressure distributions estimated by the one vortex core solution of the present method are significantly better than the results of Mehrotra's method relative to the pressure peak values for the flat delta; (3) the two vortex core system applied to the double delta and strake wings produce overall aerodynamic characteristics which have good agreement with data except for the pitching moment; and (4) the computer time for the present method is about two thirds of that of Mehrotra's method.

  2. A vortex-filament and core model for wings with edge vortex separation

    NASA Technical Reports Server (NTRS)

    Pao, J. L.; Lan, C. E.

    1981-01-01

    A method for predicting aerodynamic characteristics of slender wings with edge vortex separation was developed. Semiempirical but simple methods were used to determine the initial positions of the free sheet and vortex core. Comparison with available data indicates that: the present method is generally accurate in predicting the lift and induced drag coefficients but the predicted pitching moment is too positive; the spanwise lifting pressure distributions estimated by the one vortex core solution of the present method are significantly better than the results of Mehrotra's method relative to the pressure peak values for the flat delta; the two vortex core system applied to the double delta and strake wing produce overall aerodynamic characteristics which have good agreement with data except for the pitching moment; and the computer time for the present method is about two thirds of that of Mehrotra's method.

  3. The Devil's in the Delta

    ERIC Educational Resources Information Center

    Luyben, William L.

    2007-01-01

    Students frequently confuse and incorrectly apply the several "deltas" that are used in chemical engineering. The deltas come in three different flavors: "out minus in", "big minus little" and "now versus then." The first applies to a change in a stream property as the stream flows through a process. For example, the "[delta]H" in an energy…

  4. Three-dimensional canard-wing shape optimization in aircraft cruise and maneuver environments

    NASA Technical Reports Server (NTRS)

    De Silva, B. M. E.; Carmichael, R. L.

    1978-01-01

    This paper demonstrates a numerical technique for canard-wing shape optimization at two operating conditions. For purposes of simplicity, a mean surface wing paneling code is employed for the aerodynamic calculations. The optimization procedures are based on the method of feasible directions. The shape functions for describing the thickness, camber, and twist are based on polynomial representations. The primary design requirements imposed restrictions on the canard and wing volumes and on the lift coefficients at the operating conditions. Results indicate that significant improvements in minimum drag and lift-to-drag ratio are possible with reasonable aircraft geometries. Calculations were done for supersonic speeds with Mach numbers ranging from 1 to 6. Planforms were mainly of a delta shape with aspect ratio of 1.

  5. Supersonic aerodynamic characteristics of a tail-control cruciform maneuverable missile with and without wings

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.; Fournier, R. H.

    1978-01-01

    The aerodynamic characteristics for a winged and a wingless cruciform missile are examined. The body was an ogive-cylinder with a 3.5 caliber forebody; an overall length-to-diameter ratio of 11.667; and has cruciform tails that were trapexoidal in planform. Tests were made both with and without 72.9 deg cruciform delta wings. The investigation was made for Mach numbers from 1.50 to 4.63, roll attitudes of 0 and 45 deg, angles of attack from -40 to 22 deg, and tail control deflections from 10 to -40 deg. The purpose is to determine the influence of the aerodynamic behavior on the design choice for maneuverable missiles intended primarily for air-to-air or surface-to-surface missions. The results indicate that the winged missile with its more linear aerodynamic characteristics and higher lift-curve slope, should provide the highest maneuverability over a large operational range.

  6. Results of recent experiments with slotted wings

    NASA Technical Reports Server (NTRS)

    Lachmann, G

    1925-01-01

    This report gives the results of a recent series of experiments performed on a wing designed for a cantilever monoplane. Both wings were trapezial in their ground plan, with their tips rounded elliptically. These wing sections combine all known devices for increasing the lift, namely, the slot, the increased camber and angle of attack by means of an aileron running the whole length of the span. The last advance included in the wing section was an increase in wing area by means of an auxiliary wing adjusted by a sort of rectangular joint.

  7. A computer program for calculating aerodynamic characteristics of low aspect-ratio wings with partial leading-edge separation

    NASA Technical Reports Server (NTRS)

    Mehrotra, S. C.; Lan, C. E.

    1978-01-01

    The necessary information for using a computer program to predict distributed and total aerodynamic characteristics for low aspect ratio wings with partial leading-edge separation is presented. The flow is assumed to be steady and inviscid. The wing boundary condition is formulated by the Quasi-Vortex-Lattice method. The leading edge separated vortices are represented by discrete free vortex elements which are aligned with the local velocity vector at midpoints to satisfy the force free condition. The wake behind the trailing edge is also force free. The flow tangency boundary condition is satisfied on the wing, including the leading and trailing edges. The program is restricted to delta wings with zero thickness and no camber. It is written in FORTRAN language and runs on CDC 6600 computer.

  8. A Summary of Numerous Strain-Gage Load Calibrations on Aircraft Wings and Tails in a Technological Format

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.; DeAngelis, V. Michael

    1997-01-01

    Fifteen aircraft structures that were calibrated for flight loads using strain gages are examined. The primary purpose of this paper is to document important examples of load calibrations on airplanes during the past four decades. The emphasis is placed on studying the physical procedures of calibrating strain-gaged structures and all the supporting analyses and computational techniques that have been used. The results and experiences obtained from actual data from 14 structures (on 13 airplanes and 1 laboratory test structure) are presented. This group of structures includes fins, tails, and wings with a wide variety of aspect ratios. Straight- wing, swept-wing, and delta-wing configurations are studied. Some of the structures have skin-dominant construction; others are spar-dominant. Anisotropic materials, heat shields, corrugated components, nonorthogonal primary structures, and truss-type structures are particular characteristics that are included.

  9. DELTAS: A new Global Delta Sustainability Initiative (Invited)

    NASA Astrophysics Data System (ADS)

    Foufoula-Georgiou, E.

    2013-12-01

    Deltas are economic and environmental hotspots, food baskets for many nations, home to a large part of the world population, and hosts of exceptional biodiversity and rich ecosystems. Deltas, being at the land-water interface, are international, regional, and local transport hubs, thus providing the basis for intense economic activities. Yet, deltas are deteriorating at an alarming rate as 'victims' of human actions (e.g. water and sediment reduction due to upstream basin development), climatic impacts (e.g. sea level rise and flooding from rivers and intense tropical storms), and local exploration (e.g. sand or aggregates, groundwater and hydrocarbon extraction). Although many efforts exist on individual deltas around the world, a comprehensive global delta sustainability initiative that promotes awareness, science integration, data and knowledge sharing, and development of decision support tools for an effective dialogue between scientists, managers and policy makers is lacking. Recently, the international scientific community proposed to establish the International Year of Deltas (IYD) to serve as the beginning of such a Global Delta Sustainability Initiative. The IYD was proposed as a year to: (1) increase awareness and attention to the value and vulnerability of deltas worldwide; (2) promote and enhance international and regional cooperation at the scientific, policy, and stakeholder level; and (3) serve as a launching pad for a 10-year committed effort to understand deltas as complex socio-ecological systems and ensure preparedness in protecting and restoring them in a rapidly changing environment. In this talk, the vision for such an international coordinated effort on delta sustainability will be presented as developed by a large number of international experts and recently funded through the Belmont Forum International Opportunities Fund. Participating countries include: U.S., France, Germany, U.K., India, Japan, Netherlands, Norway, Brazil, Bangladesh

  10. Elements of butterfly wing patterns.

    PubMed

    Nijhout, H F

    2001-10-15

    The color patterns on the wings of butterflies are unique among animal color patterns in that the elements that make up the overall pattern are individuated. Unlike the spots and stripes of vertebrate color patterns, the elements of butterfly wing patterns have identities that can be traced from species to species, and typically across genera and families. Because of this identity it is possible to recognize homologies among pattern elements and to study their evolution and diversification. Individuated pattern elements evolved from non-individuated precursors by compartmentalization of the wing into areas that became developmentally autonomous with respect to color pattern formation. Developmental compartmentalization led to the evolution of serially repeated elements and the emergence of serial homology. In these compartments, serial homologues were able to acquire site-specific developmental regulation and this, in turn, allowed them to diverge morphologically. Compartmentalization of the wing also reduced the developmental correlation among pattern elements. The release from this developmental constraint, we believe, enabled the great evolutionary radiation of butterfly wing patterns. During pattern evolution, the same set of individual pattern elements is arranged in novel ways to produce species-specific patterns, including such adaptations as mimicry and camouflage.

  11. Aircraft wing structural detail design (wing, aileron, flaps, and subsystems)

    NASA Technical Reports Server (NTRS)

    Downs, Robert; Zable, Mike; Hughes, James; Heiser, Terry; Adrian, Kenneth

    1993-01-01

    The goal of this project was to design, in detail, the wing, flaps, and ailerons for a primary flight trainer. Integrated in this design are provisions for the fuel system, the electrical system, and the fuselage/cabin carry-through interface structure. This conceptual design displays the general arrangement of all major components in the wing structure, taking into consideration the requirements set forth by the appropriate sections of Federal Aviation Regulation Part 23 (FAR23) as well as those established in the statement of work.

  12. Understanding pesticides in California's Delta

    USGS Publications Warehouse

    Kuivila, Kathryn; Orlando, James L.

    2012-01-01

    The Sacramento-San Joaquin River Delta (Delta) is the hub of California’s water system and also an important habitat for imperiled fish and wildlife. Aquatic organisms are exposed to mixtures of pesticides that flow through the maze of Delta water channels from sources including agricultural, landscape, and urban pest-control applications. While we do not know all of the effects pesticides have on the ecosystem, there is evidence that they cause some damage to organisms in the Delta. Decades of USGS research have provided a good understanding of when, where, and how pesticides enter the Delta. However, pesticide use is continually changing. New field studies and methods are needed so that scientists can analyze which pesticides are present in the Delta, and at what concentrations, enabling them to estimate exposure and ultimate effects on organisms. Continuing research will provide resource managers and stakeholders with crucial information to manage the Delta wisely.

  13. Martian deltas: Morphology and distribution

    NASA Technical Reports Server (NTRS)

    Rice, J. W., Jr.; Scott, D. H.

    1993-01-01

    Recent detailed mapping has revealed numerous examples of Martian deltas. The location and morphology of these deltas are described. Factors that contribute to delta morphology are river regime, coastal processes, structural stability, and climate. The largest delta systems on Mars are located near the mouths of Maja, Maumee, Vedra, Ma'adim, Kasei, and Brazos Valles. There are also several smaller-scale deltas emplaced near channel mouths situated in Ismenius Lacus, Memnonia, and Arabia. Delta morphology was used to reconstruct type, quantity, and sediment load size transported by the debouching channel systems. Methods initially developed for terrestrial systems were used to gain information on the relationships between Martian delta morphology, river regime, and coastal processes.

  14. Delta-doping of Semiconductors

    NASA Astrophysics Data System (ADS)

    Schubert, E. F.

    2005-08-01

    Part I: 1. Introduction E. F. Schubert; Part II: 2. Electronic structure of delta-doped semiconductors C. R. Proetto; Part III: 3. Recent progress in delta-like confinement of impurities in GaAs K. H. Ploog; 4. Flow-rate modulation epitaxy (FME) of III-V semiconductors T. Makimoto and Y. Horikoshi; 5. Gas source molecular beam epitaxy (MBE) of delta-doped III-V semiconductors D. Ritter; 6. Solid phase epitaxy for delta-doping in silicon I. Eisele; 7. Low temperature MBE of silicon H.-J. Gossmann; Part IV: 8. Secondary ion mass spectrometry of delta-doped semiconductors H. S. Luftmann; 9. Capacitance-voltage profiling E. F. Schubert; 10. Redistribution of impurities in III-V semiconductors E. F. Schubert; 11. Dopant diffusion and segregation in delta-doped silicon films H.-J. Gossmann; 12. Characterisation of silicon and delta-doped structures in GaAs R. C. Newman; 13. The DX-center in silicon delta-doped GaAs and AlxGa1-xAs P. M. Koenraad; Part V: 14. Luminescence and ellipsometry spectroscopy H. Yao and E. F. Schubert; 15. Photoluminescence and Raman spectroscopy of single delta-doped III-V semiconductor heterostructures J. Wagner and D. Richards; 16. Electron transport in delta-doped quantum wells W. T. Masselink; 17. Electron mobility in delta-doped layers P. M. Koenraad; 18. Hot electrons in delta-doped GaAs M. Asche; 19. Ordered delta-doping R. L. Headrick, L. C. Feldman and B. E. Weir; Part IV: 20. Delta-doped channel III-V field effect transistors (FETs) W.-P. Hong; 21. Selectively doped heterostructure devices E. F. Schubert; 22. Silicon atomic layer doping FET K. Nakagawa and K. Yamaguchi; 23. Planar doped barrier devices R. J. Malik; 24. Silicon interband and intersubband photodetectors I. Eisele; 25. Doping superlattice devices E. F. Schubert.

  15. Schooling of flapping wings: Simulations

    NASA Astrophysics Data System (ADS)

    Masoud, Hassan; Becker, Alexander; Ristroph, Leif; Shelley, Michael

    2014-11-01

    We examine the locomotion of an infinite array of wings that heave vertically with a prescribed sinusoidal motion and are free to translate in the horizontal direction. To do this, we simulate the motion of a freely translating flapping airfoil in a domain with periodic horizontal boundary conditions. These simulations indicate that the wings can ``take advantage'' of their collectively generated wake flows. In agreement with our experiments in a rotational geometry, we find ranges of flapping frequency over which there are multiple stable states of locomotion, with one of these swimming states having both higher speeds and efficiencies than an isolated flapping and locomoting wing. A simple mathematical model, which emphasizes the importance of history dependence in vortical flows, explains this multi-stability. These results may be important to understanding the role of hydrodynamic interactions in fish schooling and bird flocking.

  16. Aircraft wing structure detail design

    NASA Technical Reports Server (NTRS)

    Sager, Garrett L.; Roberts, Ron; Mallon, Bob; Alameri, Mohamed; Steinbach, Bill

    1993-01-01

    The provisions of this project call for the design of the structure of the wing and carry-through structure for the Viper primary trainer, which is to be certified as a utility category trainer under FAR part 23. The specific items to be designed in this statement of work were Front Spar, Rear Spar, Aileron Structure, Wing Skin, and Fuselage Carry-through Structure. In the design of these parts, provisions for the fuel system, electrical system, and control routing were required. Also, the total weight of the entire wing planform could not exceed 216 lbs. Since this aircraft is to be used as a primary trainer, and the SOW requires a useful life of 107 cycles, it was decided that all of the principle stresses in the structural members would be kept below 10 ksi. The only drawback to this approach is a weight penalty.

  17. The Nichols Wing Cutting Equipment

    NASA Technical Reports Server (NTRS)

    Ford, James B

    1923-01-01

    Described here is wing cutting equipment for the economical production of metal wings for wind tunnel models. The machine will make any size of constant-section wing or strut up to one-sixth inch chord by 36-inch span and up to a thickness of one and one-quarter inches. It cuts a smooth, true model that is accurate to within two-thousandths of an inch on any ordinate. The holding jaws are so designed as to leave the model free of chip marks, and the only hand finishing necessary after the cutting is a rub with amunite to remove burrs. The actual change on ordinate in this finishing rub is less than .0002 inches.

  18. Aerodynamic control with passively pitching wings

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  19. The function of resilin in beetle wings.

    PubMed Central

    Haas, F; Gorb, S; Blickhan, R

    2000-01-01

    This account shows the distribution of elastic elements in hind wings in the scarabaeid Pachnoda marginata and coccinellid Coccinella septempunctata (both Coleoptera). Occurrence of resilin, a rubber-like protein, in some mobile joints together with data on wing unfolding and flight kinematics suggest that resilin in the beetle wing has multiple functions. First, the distribution pattern of resilin in the wing correlates with the particular folding pattern of the wing. Second, our data show that resilin occurs at the places where extra elasticity is needed, for example in wing folds, to prevent material damage during repeated folding and unfolding. Third, resilin provides the wing with elasticity in order to be deformable by aerodynamic forces. This may result in elastic energy storage in the wing. PMID:10983820

  20. Evolution: taking wing with weak feathers.

    PubMed

    Xu, Xing

    2012-12-04

    Scientists long thought they knew what the wings of early birds looked like. But new reconstructions of Archaeopteryx and its kin suggest quite different feather arrangements on their wings with profound implications for the evolution of flight.

  1. Insect Evolution: The Origin of Wings.

    PubMed

    Ross, Andrew

    2017-02-06

    The debate on the evolution of wings in insects has reached a new level. The study of primitive fossil insect nymphs has revealed that wings developed from a combination of the dorsal part of the thorax and the body wall.

  2. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps. Wing flaps, their operating mechanisms, and their supporting structures must be designed for critical...

  3. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps. Wing flaps, their operating mechanisms, and their supporting structures must be designed for critical...

  4. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps. Wing flaps, their operating mechanisms, and their supporting structures must be designed for critical...

  5. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps. Wing flaps, their operating mechanisms, and their supporting structures must be designed for critical...

  6. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps. Wing flaps, their operating mechanisms, and their supporting structures must be designed for critical...

  7. Flexible-Wing-Based Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.; Jenkins, David A.; Ettinger, Scott; Lian, Yong-Sheng; Shyy, Wei; Waszak, Martin R.

    2002-01-01

    This paper documents the development and evaluation of an original flexible-wing-based Micro Air Vehicle (MAV) technology that reduces adverse effects of gusty wind conditions and unsteady aerodynamics, exhibits desirable flight stability, and enhances structural durability. The flexible wing concept has been demonstrated on aircraft with wingspans ranging from 18 inches to 5 inches. Salient features of the flexible-wing-based MAV, including the vehicle concept, flexible wing design, novel fabrication methods, aerodynamic assessment, and flight data analysis are presented.

  8. Flapping Wing Micro Air Vehicle Wing Manufacture and Force Testing

    DTIC Science & Technology

    2011-03-03

    Thankfully, nature has already optimized micro air vehicles with the evolution of birds and insects, which become the instinctual inspirational candidates...properties to those wings found in nature. More specifically, with size comparable to a hummingbird , elastic modulus comparable to a cicada, and

  9. On the autorotation of animal wings.

    PubMed

    Ortega-Jimenez, Victor Manuel; Martín-Alcántara, Antonio; Fernandez-Feria, Ramon; Dudley, Robert

    2017-01-01

    Botanical samaras spin about their centre of mass and create vertical aerodynamic forces which slow their rate of descent. Descending autorotation of animal wings, however, has never been documented. We report here that isolated wings from Anna's hummingbirds, and also from 10 species of insects, can stably autorotate and achieve descent speeds and aerodynamic performance comparable to those of samaras. A hummingbird wing loaded at its base with the equivalent of 50% of the bird's body mass descended only twice as fast as an unloaded wing, and rotated at frequencies similar to those of the wings in flapping flight. We found that even entire dead insects could stably autorotate depending on their wing postures. Feather removal trials showed no effect on descent velocity when the secondary feathers were removed from hummingbird wings. By contrast, partial removal of wing primaries substantially improved performance, except when only the outer primary was present. A scaling law for the aerodynamic performance of autorotating wings is well supported if the wing aspect ratio and the relative position of the spinning axis from the wing base are included. Autorotation is a useful and practical method that can be used to explore the aerodynamics of wing design.

  10. Natural processes in delta restoration: application to the Mississippi Delta.

    PubMed

    Paola, Chris; Twilley, Robert R; Edmonds, Douglas A; Kim, Wonsuck; Mohrig, David; Parker, Gary; Viparelli, Enrica; Voller, Vaughan R

    2011-01-01

    Restoration of river deltas involves diverting sediment and water from major channels into adjoining drowned areas, where the sediment can build new land and provide a platform for regenerating wetland ecosystems. Except for local engineered structures at the points of diversion, restoration mainly relies on natural delta-building processes. Present understanding of such processes is sufficient to provide a basis for determining the feasibility of restoration projects through quantitative estimates of land-building rates and sustainable wetland area under different scenarios of sediment supply, subsidence, and sea-level rise. We are not yet to the point of being able to predict the evolution of a restored delta in detail. Predictions of delta evolution are based on field studies of active deltas, deltas in mine-tailings ponds, experimental deltas, and countless natural experiments contained in the stratigraphic record. These studies provide input for a variety of mechanistic delta models, ranging from radially averaged formulations to more detailed models that can resolve channels, topography, and ecosystem processes. Especially exciting areas for future research include understanding the mechanisms by which deltaic channel networks self-organize, grow, and distribute sediment and nutrients over the delta surface and coupling these to ecosystem processes, especially the interplay of topography, network geometry, and ecosystem dynamics.

  11. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    NASA Technical Reports Server (NTRS)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic computational fluid dynamics analysis of a wing glove attached to one wing of a business jet is presented and discussed. A wing glove placed on only one wing will produce asymmetric aerodynamic effects that will result in overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to ensure that the wing glove does not have a significant effect on the aircraft flight characteristics. TRANAIR (Calmar Research Corporation, Cato, New York), a nonlinear full potential solver, and Star-CCM+ (CD-adapco, Melville, New York), a finite volume full Reynolds-averaged Navier-Stokes computational fluid dynamics solver, are used to analyze a full aircraft with and without the glove at a variety of flight conditions, aircraft configurations, and angles of attack and sideslip. Changes in the aircraft lift, drag, and side force along with roll, pitch, and yaw are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove are discussed. Results show that the glove produces only small changes in the aerodynamic forces and moments acting on the aircraft, most of which are insignificant.

  12. Bat flight with bad wings: is flight metabolism affected by damaged wings?

    PubMed

    Voigt, Christian C

    2013-04-15

    Infection of North American bats with the keratin-digesting fungus Geomyces destructans often results in holes and ruptures of wing membranes, yet it is unknown whether flight performance and metabolism of bats are altered by such injuries. I conducted flight experiments in a circular flight arena with Myotis albescens and M. nigricans individuals with an intact or ruptured trailing edge of one of the plagiopatagial membranes. In both species, individuals with damaged wings were lighter, had a higher aspect ratio (squared wing span divided by wing area) and an increased wing loading (weight divided by wing area) than conspecifics with intact wings. Bats with an asymmetric reduction of the wing area flew at similar speeds to conspecifics with intact wings but performed fewer flight manoeuvres. Individuals with damaged wings showed lower metabolic rates during flight than conspecifics with intact wings, even when controlling for body mass differences; the difference in mass-specific metabolic rate may be attributable to the lower number of flight manoeuvres (U-turns) by bats with damaged wings compared with conspecifics with intact wings. Possibly, bats compensated for an asymmetric reduction in wing area by lowering their body mass and avoiding flight manoeuvres. In conclusion, it may be that bats suffer from moderate wing damage not directly, by experiencing increased metabolic rate, but indirectly, by a reduced manoeuvrability and foraging success. This could impede a bat's ability to gain sufficient body mass before hibernation.

  13. Aerodynamic yawing moment characteristics of bird wings.

    PubMed

    Sachs, Gottfried

    2005-06-21

    The aerodynamic yawing moments due to sideslip are considered for wings of birds. Reference is made to the experience with aircraft wings in order to identify features which are significant for the yawing moment characteristics. Thus, it can be shown that wing sweep, aspect ratio and lift coefficient have a great impact. Focus of the paper is on wing sweep which can considerably increase the yawing moment due to sideslip when compared with unswept wings. There are many birds the wings of which employ sweep. To show the effect of sweep for birds, the aerodynamic characteristics of a gull wing which is considered as a representative example are treated in detail. For this purpose, a sophisticated aerodynamic method is used to compute results of high precision. The yawing moments of the gull wing with respect to the sideslip angle and the lift coefficient are determined. They show a significant level of yaw stability which strongly increases with the lift coefficient. It is particularly high in the lift coefficient region of best gliding flight conditions. In order to make the effect of sweep more perspicuous, a modification of the gull wing employing no sweep is considered for comparison. It turns out that the unswept wing yields yawing moments which are substantially smaller than those of the original gull wing with sweep. Another feature significant for the yawing moment characteristics concerns the fact that sweep is at the outer part of bird wings. By considering the underlying physical mechanism, it is shown that this feature is most important for the efficiency of wing sweep. To sum up, wing sweep provides a primary contribution to the yawing moments. It may be concluded that this is an essential reason why there is sweep in bird wings.

  14. Delta in Eberswalde

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This HiRISE image covers a portion of a delta that partially fills Eberswalde crater in Margaritifer Sinus. The delta was first recognized and mapped using MOC images that revealed various features whose presence required sustained flow and deposition into a lake that once occupied the crater. The HiRISE image resolves meter-scale features that record the migration of channels and delta distributaries as the delta grew over time. Differences in grain-size of sediments within the environments on the delta enable differential erosion of the deposits. As a result, coarser channel deposits are slightly more resistant and stand in relief relative to finer-grained over-bank and more easily eroded distal delta deposits. Close examination of the relict channel deposits confirms the presence of some meter-size blocks that were likely too coarse to have been transported by water flowing within the channels. These blocks may be formed of the sand and gravel that more likely moved along the channels that was lithified and eroded. Numerous meter-scale polygonal structures are common on many surfaces, but mostly those associated with more quiescent depositional environments removed from the channels. The polygons could be the result of deposition of fine-grained sediments that were either exposed and desiccated (dried out), rich in clays that shrunk when the water was removed, turned into rock and then fractured and eroded, or some combination of these processes.

    Image PSP_001336_1560 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 8, 2006. The complete image is centered at -23.8 degrees latitude, 326.4 degrees East longitude. The range to the target site was 256.3 km (160.2 miles). At this distance the image scale is 25.6 cm/pixel (with 1 x 1 binning) so objects 77 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel and north is up. The image was

  15. Pioneer Launch on Delta Vehicle

    NASA Technical Reports Server (NTRS)

    1969-01-01

    NASA launches the last in the series of interplanetary Pioneer spacecraft, Pioneer 10 from Cape Kennedy, Florida. The long-tank Delta launch vehicle placed the spacecraft in a solar orbit along the path of Earth's orbit. The spacecraft then passed inside and outside Earth's orbit, alternately speeding up and slowing down relative to Earth. The Delta launch vehicle family started development in 1959. The Delta was composed of parts from the Thor, an intermediate-range ballistic missile, as its first stage, and the Vanguard as its second. The first Delta was launched from Cape Canaveral on May 13, 1960 and was powerful enough to deliver a 100-pound spacecraft into geostationary transfer orbit. Delta has been used to launch civil, commercial, and military satellites into orbit. For more information about Delta, please see Chapter 3 in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  16. Wings: Women Entrepreneurs Take Flight.

    ERIC Educational Resources Information Center

    Baldwin, Fred D.

    1997-01-01

    Women's Initiative Networking Groups (WINGS) provides low- and moderate-income women in Appalachian Kentucky with training in business skills, contacts, and other resources they need to succeed as entrepreneurs. The women form informal networks to share business know-how and support for small business startup and operations. The program plans to…

  17. FLEXIBLE WING INDIVIDUAL DROP GLIDER

    DTIC Science & Technology

    The feasibility of the paraglider concept as a means of descent for individual airborne troops is presented. Full-scale 22-foot inflatable wings and...in an effort to achieve system reliability. The feasibility of using the paraglider as a means of controlled delivery of airborne paratroopers was successfully demonstrated.

  18. Wing Leading Edge Debris Analysis

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Jerman, Gregory

    2004-01-01

    This is a slide presentation showing the Left Wing Leading Edge (WLE) heat damage observations: Heavy "slag" deposits on select RCC panels. Eroded and knife-edged RCC rib sections. Excessive overheating and slumping of carrier panel tiles. Missing or molten attachment bolts but intact bushing. Deposit mainly on "inside" RCC panel. Deposit on some fractured RCC surface

  19. On Wings: Aerodynamics of Eagles.

    ERIC Educational Resources Information Center

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  20. The Wings for Angels Project

    ERIC Educational Resources Information Center

    McMillan, Liberty; McMillan, Ellen; Ayers, Ann

    2012-01-01

    How can the spirits of critically ill children be raised? Alexis Weisel (co-president of the Monarch High School National Art Honor Society, 2010-2011) had this question in mind when she initiated and developed the Wings for Angels Project after hearing about the Believe in Tomorrow (BIT) organization through her art teacher, Ellen McMillan. The…

  1. Active Flexible Wing (AFW) Technology

    DTIC Science & Technology

    1988-02-01

    copy of zeach of the fbllowing records: AD B253477, XV-8A Flexible Win& Aerial Utility Vehicle, by H-. Kredit . January 1964, 144 pages AD 13252433...Counterinsurgency Operations by R.A. Wise, Feb 0965, 74 pages - AD 461202. XV-8A Flexible Wing Aerial Utility Vehicle, H. Kredit , Feb. 1965. 100 pages _-AD

  2. [Winged scapula in lyme borreliosis].

    PubMed

    Rausch, V; Königshausen, M; Gessmann, J; Schildhauer, T A; Seybold, D

    2016-06-01

    Here we present the case of a young patient with one-sided winged scapula and lyme borreliosis. This disease can be very delimitating in daily life. If non-operative treatment fails, dynamic or static stabilization of the scapula can be a therapeutic option.

  3. F-8 oblique wing structural feasibility study

    NASA Technical Reports Server (NTRS)

    Koltko, E.; Katz, A.; Bell, M. A.; Smith, W. D.; Lauridia, R.; Overstreet, C. T.; Klapprott, C.; Orr, T. F.; Jobe, C. L.; Wyatt, F. G.

    1975-01-01

    The feasibility of fitting a rotating oblique wing on an F-8 aircraft to produce a full scale manned prototype capable of operating in the transonic and supersonic speed range was investigated. The strength, aeroelasticity, and fatigue life of such a prototype are analyzed. Concepts are developed for a new wing, a pivot, a skewing mechanism, control systems that operate through the pivot, and a wing support assembly that attaches in the F-8 wing cavity. The modification of the two-place NTF-8A aircraft to the oblique wing configuration is discussed.

  4. Generic Wing, Pylon, and Moving Finned Store

    DTIC Science & Technology

    2000-10-01

    66.4 cm 2.9 Area of planform 1425.8 cm’ 2.10 Location of reference of profiles and NACA 64A010 airfoil section over entire span definition of profiles...2.11 Lofting procedure between reference Straight line sections 2.12 Form of wing-body, or wing-root NACA 64A010 airfoil section; note references...below junction 2.13 Form of wing tip NACA 64A010 airfoil section 2.14 Wing centerbody Ogive-cylinder: Tangent at wailing edge of wing. Nose 16.51 cm from

  5. Steady/Oscillatory, Supersonic/Hypersonic Inviscid Flow Past Oscillating Wings and Wedge Combinations at Arbitrary Angles of Attack.

    DTIC Science & Technology

    1981-06-01

    relative velocity between the fluid and the solid must vanish. Thus for an inviscid fluid nothing can be said about the tangen - tial to the surface...reduced to the solution of Laplace’s equation or wave equation in two variables and the existing methods of conformal transformations and the theory of...22 1 3 Ilk2k0 f f(g-f)dn, 14 = k f f(g -f )dn k £b/S, n Y/b 79 . For delta wings with power law leading edges, i.e., wings with f(-) = n I / n and g(n

  6. Xylosylation of the Notch receptor preserves the balance between its activation by trans-Delta and inhibition by cis-ligands in Drosophila.

    PubMed

    Lee, Tom V; Pandey, Ashutosh; Jafar-Nejad, Hamed

    2017-04-10

    The Drosophila glucoside xylosyltransferase Shams xylosylates Notch and inhibits Notch signaling in specific contexts including wing vein development. However, the molecular mechanisms underlying context-specificity of the shams phenotype is not known. Considering the role of Delta-Notch signaling in wing vein formation, we hypothesized that Shams might affect Delta-mediated Notch signaling in Drosophila. Using genetic interaction studies, we find that altering the gene dosage of Delta affects the wing vein and head bristle phenotypes caused by loss of Shams or by mutations in the Notch xylosylation sites. Clonal analysis suggests that loss of shams promotes Delta-mediated Notch activation. Further, Notch trans-activation by ectopically overexpressed Delta shows a dramatic increase upon loss of shams. In agreement with the above in vivo observations, cell aggregation and ligand-receptor binding assays show that shams knock-down in Notch-expressing cells enhances the binding between Notch and trans-Delta without affecting the binding between Notch and trans-Serrate and cell surface levels of Notch. Loss of Shams does not impair the cis-inhibition of Notch by ectopic overexpression of ligands in vivo or the interaction of Notch and cis-ligands in S2 cells. Nevertheless, removing one copy of endogenous ligands mimics the effects of loss shams on Notch trans-activation by ectopic Delta. This favors the notion that trans-activation of Notch by Delta overcomes the cis-inhibition of Notch by endogenous ligands upon loss of shams. Taken together, our data suggest that xylosylation selectively impedes the binding of Notch with trans-Delta without affecting its binding with cis-ligands and thereby assists in determining the balance of Notch receptor's response to cis-ligands vs. trans-Delta during Drosophila development.

  7. Rotor/wing aerodynamic interactions in hover

    NASA Technical Reports Server (NTRS)

    Felker, F. F.; Light, J. S.

    1986-01-01

    An experimental and theoretical investigation of rotor/wing aerodynamic interactions in hover is described. The experimental investigation consisted of both a large-scale and small-scale test. A 0.658-scale, V-22 rotor and wing was used in the large-scale test. Wind download, wing surface pressure, rotor performance, and rotor downwash data from the large-scale test are presented. A small-scale experiment was conducted to determine how changes in the rotor/wing geometry affected the aerodynamic interactions. These geometry variations included the distance between the rotor and wing, wing incidence angle, and configurations both with the rotor axis at the tip of the wing (tilt rotor configuration) and with the rotor axis at the center of the wing (compound helicopter configuration). A wing with boundary-layer control was also tested to evaluate the effect of leading and trailing edge upper surface blowing on the wing download. A computationally efficient, semi-empirical theory was developed to predict the download on the wing. Finally, correlations between the theoretical predictions and test data are presented.

  8. AST Composite Wing Program: Executive Summary

    NASA Technical Reports Server (NTRS)

    Karal, Michael

    2001-01-01

    The Boeing Company demonstrated the application of stitched/resin infused (S/RFI) composite materials on commercial transport aircraft primary wing structures under the Advanced Subsonic technology (AST) Composite Wing contract. This report describes a weight trade study utilizing a wing torque box design applicable to a 220-passenger commercial aircraft and was used to verify the weight savings a S/RFI structure would offer compared to an identical aluminum wing box design. This trade study was performed in the AST Composite Wing program, and the overall weight savings are reported. Previous program work involved the design of a S/RFI-base-line wing box structural test component and its associated testing hardware. This detail structural design effort which is known as the "semi-span" in this report, was completed under a previous NASA contract. The full-scale wing design was based on a configuration for a MD-90-40X airplane, and the objective of this structural test component was to demonstrate the maturity of the S/RFI technology through the evaluation of a full-scale wing box/fuselage section structural test. However, scope reductions of the AST Composite Wing Program pre-vented the fabrication and evaluation of this wing box structure. Results obtained from the weight trade study, the full-scale test component design effort, fabrication, design development testing, and full-scale testing of the semi-span wing box are reported.

  9. Topology of Vortex-Wing Interaction

    NASA Astrophysics Data System (ADS)

    McKenna, Chris; Rockwell, Donald

    2016-11-01

    Aircraft flying together in an echelon or V formation experience aerodynamic advantages. Impingement of the tip vortex from the leader (upstream) wing on the follower wing can yield an increase of lift to drag ratio. This enhancement is known to depend on the location of vortex impingement on the follower wing. Particle image velocimetry is employed to determine streamline topology in successive crossflow planes, which characterize the streamwise evolution of the vortex structure along the chord of the follower wing and into its wake. Different modes of vortex-follower wing interaction are created by varying both the spanwise and vertical locations of the leader wing. These modes are defined by differences in the number and locations of critical points of the flow topology, and involve bifurcation, attenuation, and mutual induction. The bifurcation and attenuation modes decrease the strength of the tip vortex from the follower wing. In contrast, the mutual induction mode increases the strength of the follower tip vortex. AFOSR.

  10. [Delta-9-tetrahydrocannabinol pharmacokinetics].

    PubMed

    Goullé, J-P; Saussereau, E; Lacroix, C

    2008-08-01

    Delta-9-tetrahydrocannabinol (Delta-9-THC) is the main psychoactive ingredient of cannabis. Smoking is currently most common use of cannabis. The present review focuses on the pharmacokinetics of THC. The variability of THC in plant material which has significantly increased in recent years leads to variability in tissue THC levels from smoking, which is, in itself, a highly individual process. This variability of THC content has an important impact on drug pharmacokinetics and pharmacology. After smoking THC bioavailability averages 30%. With a 3.55% THC cigarette, a peak plasma level near 160 ng/mL occurs approximately 10 min after inhalation. THC is eliminated quickly from plasma in a multiphasic manner and is widely distributed to tissues, which is responsible for its pharmacologic effects. Body fat then serves as a long-term storage site. This particular pharmacokinetics explains the noncorrelation between THC blood level and clinical effects as is observed for ethanol. A major active 11-hydroxy metabolite is formed after both inhalation and oral dosing (20 and 100% of parent, respectively). The elimination of THC and its many metabolites, mainly THC-COOH, occurs via the feces and urine for several weeks. Thus, to confirm abstinence, urine THC-COOH analysis would be a useful tool. A positive result could be checked by gas chromatography-mass spectrometry THC blood analysis, indicative of a recent cannabis exposure.

  11. Evaluation of Blended Wing-Body Combinations with Curved Plan Forms at Mach Numbers Up to 3.50

    NASA Technical Reports Server (NTRS)

    Holdaway, George H.; Mellenthin, Jack A.

    1960-01-01

    This investigation is a continuation of the experimental and theoretical evaluation of the effects of wing plan-form variations on the aerodynamic performance characteristics of blended wing-body combinations. The present report compares previously tested straight-edged delta and arrow models which have leading-edge sweeps of 59.04 and 70-82 deg., respectively, with related models which have plan forms with curved leading and trailing edges designed to result in the same average sweeps in each case. All the models were symmetrical, without camber, and were generally similar having the same span, length, and aspect ratios. The wing sections had an average value of maximum thickness ratio of about 4 percent of the local wing chords in a streamwise direction. The wing sections were computed by varying their shapes along with the body radii (blending process) to match the selected area distribution and the given plan form. The models were tested with transition fixed at Reynolds numbers of roughly 4,000,000 to 9,000,000, based on the mean aerodynamic chord of the wing. The characteristic effect of the wing curvature of the delta and arrow models was an increase at subsonic and transonic speeds in the lift-curve slopes which was partially reflected in increased maximum lift-drag ratios. Curved edges were not evaluated on a diamond plan form because a preliminary investigation indicated that the curvature considered would increase the supersonic zero-lift wave drag. However, after the test program was completed, a suitable modification for the diamond plan form was discovered. The analysis presented in the appendix indicates that large reductions in the zero-lift wave drag would be obtained at supersonic Mach numbers if the leading- and trailing-edge sweeps are made to differ by indenting the trailing edge and extending the root of the leading edge.

  12. Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle.

    PubMed

    Nan, Yanghai; Karásek, Matěj; Lalami, Mohamed Esseghir; Preumont, André

    2017-03-06

    Flapping wing micro air vehicles (MAVs) take inspiration from natural fliers, such as insects and hummingbirds. Existing designs manage to mimic the wing motion of natural fliers to a certain extent; nevertheless, differences will always exist due to completely different building blocks of biological and man-made systems. The same holds true for the design of the wings themselves, as biological and engineering materials differ significantly. This paper presents results of experimental optimization of wing shape of a flexible wing for a hummingbird-sized flapping wing MAV. During the experiments we varied the wing 'slackness' (defined by a camber angle), the wing shape (determined by the aspect and taper ratios) and the surface area. Apart from the generated lift, we also evaluated the overall power efficiency of the flapping wing MAV achieved with the various wing design. The results indicate that especially the camber angle and aspect ratio have a critical impact on the force production and efficiency. The best performance was obtained with a wing of trapezoidal shape with a straight leading edge and an aspect ratio of 9.3, both parameters being very similar to a typical hummingbird wing. Finally, the wing performance was demonstrated by a lift-off of a 17.2 g flapping wing robot.

  13. Numerical simulation of a powered-lift landing, tracking flow features using overset grids, and simulation of high lift devices on a fighter-lift-and-control wing

    NASA Technical Reports Server (NTRS)

    Chawla, Kalpana

    1993-01-01

    Attached as appendices to this report are documents describing work performed on the simulation of a landing powered-lift delta wing, the tracking of flow features using overset grids, and the simulation of flaps on the Wright Patterson Lab's fighter-lift-and-control (FLAC) wing. Numerical simulation of a powered-lift landing includes the computation of flow about a delta wing at four fixed heights as well as a simulated landing, in which the delta wing descends toward the ground. Comparison of computed and experimental lift coefficients indicates that the simulations capture the qualitative trends in lift-loss encountered by thrust-vectoring aircraft operating in ground effect. Power spectra of temporal variations of pressure indicate computed vortex shedding frequencies close to the jet exit are in the experimentally observed frequency range; the power spectra of pressure also provide insights into the mechanisms of lift oscillations. Also, a method for using overset grids to track dynamic flow features is described and the method is validated by tracking a moving shock and vortices shed behind a circular cylinder. Finally, Chimera gridding strategies were used to develop pressure coefficient contours for the FLAC wing for a Mach no. of 0.18 and Reynolds no. of 2.5 million.

  14. Spinning Characteristics of Wings I : Rectangular Clark Y Monoplane Wing

    NASA Technical Reports Server (NTRS)

    Bamber, M J; Zimmerman, C H

    1936-01-01

    A series of wind tunnel tests of a rectangular Clark Y wing was made with the NACA spinning balance as part of a general program of research on airplane spinning. All six components of the aerodynamic force and moment were measured throughout the range of angles of attack, angles of sideslip, and values omega b/2v likely to be attained by a spinning airplane; the results were reduced to coefficient form. It is concluded that a conventional monoplane with a rectangular Clark y wing can be made to attain spinning equilibrium throughout a wide range of angles of attack but that provision of a yawing moment coefficient of -0.02 (against the spin) by the tail, fuselage, and interferences will insure against attainment of equilibrium in a steady spin.

  15. Aerodynamic effects of flexibility in flapping wings.

    PubMed

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  16. Aerodynamic-structural study of canard wing, dual wing, and conventional wing systems for general aviation applications

    NASA Technical Reports Server (NTRS)

    Selberg, B. P.; Cronin, D. L.

    1985-01-01

    An analytical aerodynamic-structural airplane configuration study was conducted to assess performance gains achievable through advanced design concepts. The mission specification was for 350 mph, range of 1500 st. mi., at altitudes between 30,000 and 40,000 ft. Two payload classes were studied - 1200 lb (6 passengers) and 2400 lb (12 passengers). The configurations analyzed included canard wings, closely coupled dual wings, swept forward - swept rearward wings, joined wings, and conventional wing tail arrangements. The results illustrate substantial performance gains possible with the dual wing configuration. These gains result from weight savings due to predicted structural efficiencies. The need for further studies of structural efficiencies for the various advanced configurations was highlighted.

  17. Swept wing ice accretion modeling

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Bidwell, C. S.

    1990-01-01

    An effort to develop a three-dimensional ice accretion modeling method is initiated. This first step toward creation of a complete aircraft icing simulation code builds on previously developed methods for calculating three-dimensional flowfields and particle trajectories combined with a two-dimensional ice accretion calculation along coordinate locations corresponding to streamlines. This work is intended as a demonstration of the types of calculations necessary to predict a three-dimensional ice accretion. Results of calculations using the 3D method for a MS-317 swept wing geometry are projected onto a 2D plane normal to the wing leading edge and compared to 2D results for the same geometry. These results indicate that the flowfield over the surface and the particle trajectories differed for the two calculations. This led to lower collection efficiencies, convective heat transfer coefficients, freezing fractions, and ultimately ice accumulation for the 3D calculation.

  18. Mackenzie River Delta, Canada

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Mackenzie River in the Northwest Territories, Canada, with its headstreams the Peace and Finley, is the longest river in North America at 4241 km, and drains an area of 1,805,000 square km. The large marshy delta provides habitat for migrating Snow Geese, Tundra Swans, Brant, and other waterfowl. The estuary is a calving area for Beluga whales. The Mackenzie (previously the Disappointment River) was named after Alexander Mackenzie who travelled the river while trying to reach the Pacific in 1789.

    The image was acquired on August 4, 2005, covers an area of 55.8 x 55.8 km, and is located at 68.6 degrees north latitude, 134.7 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  19. Colorado River Delta

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Colorado River ends its 2330 km journey in the Gulf of Mexico in Baja California. The heavy use of the river as an irrigation source for the Imperial Valley has dessicated the lower course of the river in Mexico such that it no longer consistently reaches the sea. Prior to the mid 20th century, the Colorado River Delta provided a rich estuarine marshland that is now essentially desiccated, but nonetheless is an important ecological resource.

    The image was acquired May 29, 2006, covers an area of 44.3 x 57.5 km, and is located at 32.1 degrees north latitude, 115.1 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  20. Methodologies for reproducing in-flight loads of aircraft wings on the ground and predicting their response to battle-induced damage

    NASA Astrophysics Data System (ADS)

    Bou-Mosleh, Charbel Fouad

    Survivability of an aircraft in combat is achieved by not getting hit or by withstanding the effects of some suffered hits. Combat damage is described by the removal of one or more portions of the wing or any other flight control surface. To determine whether a wing will survive a specific damage, the structural and aerodynamic response of the wing should be predicted and tested. The response of wings to battle-induced damage is currently addressed through live-fire testing on the ground. The loading methodology used in these live-fire tests does not reproduce the loads encountered during flight, and does not account for the changes in structural stiffness and mass of the wing after damage infliction. In addition, current live-fire tests fail to address the changes in the aerodynamic performance of the wing caused by the battle-induced damage. To better address the structural response of aircraft wings to combat damage, this thesis investigates a concept for an alternative loading methodology that exploits recent advances in nonlinear aeroelastic simulations and smart material actuators. The main idea behind this concept is to accurately predict the stress states of the wing before, during, and after sustaining a hit, for a given flight condition, and reproduce them on the ground by loading the spars and ribs of the wings with programmable actuators and/or a few external tethers. Mathematically, this entails solving an optimization problem to determine the locations and gains of the actuators. Two different types of actuators are investigated: 1D actuators or actuators with tension/compression capability and bimorph bender actuators. The potential of the investigated loading methodology is evaluated for "slender" wings (ARW-2 wing) and for "delta" wings (HSCT and F-16 wing) at a transonic flight condition. The obtained numerical results suggest that the investigated loading methodology can reproduce a desired stress state fairly accurately using external tethers

  1. Wing-wake interaction reduces power consumption in insect tandem wings

    NASA Astrophysics Data System (ADS)

    Lehmann, Fritz-Olaf

    2009-05-01

    Insects are capable of a remarkable diversity of flight techniques. Dragonflies, in particular, are notable for their powerful aerial manoeuvres and endurance during prey catching or territory flights. While most insects such as flies, bees and wasps either reduced their hinds wings or mechanically coupled fore and hind wings, dragonflies have maintained two independent-controlled pairs of wings throughout their evolution. An extraordinary feature of dragonfly wing kinematics is wing phasing, the shift in flapping phase between the fore and hind wing periods. Wing phasing has previously been associated with an increase in thrust production, readiness for manoeuvrability and hunting performance. Recent studies have shown that wing phasing in tandem wings produces a twofold modulation in hind wing lift, but slightly reduces the maximum combined lift of fore and hind wings, compared to two wings flapping in isolation. Despite this disadvantage, however, wing phasing is effective in improving aerodynamic efficiency during flight by the removal of kinetic energy from the wake. Computational analyses demonstrate that this increase in flight efficiency may save up to 22% aerodynamic power expenditure compared to insects flapping only two wings. In terms of engineering, energetic benefits in four-wing flapping are of substantial interest in the field of biomimetic aircraft design, because the performance of man-made air vehicles is often limited by high-power expenditure rather than by lift production. This manuscript provides a summary on power expenditures and aerodynamic efficiency in flapping tandem wings by investigating wing phasing in a dynamically scaled robotic model of a hovering dragonfly.

  2. Wing-wake interaction reduces power consumption in insect tandem wings

    NASA Astrophysics Data System (ADS)

    Lehmann, Fritz-Olaf

    Insects are capable of a remarkable diversity of flight techniques. Dragonflies, in particular, are notable for their powerful aerial manoeuvres and endurance during prey catching or territory flights. While most insects such as flies, bees and wasps either reduced their hinds wings or mechanically coupled fore and hind wings, dragonflies have maintained two independent-controlled pairs of wings throughout their evolution. An extraordinary feature of dragonfly wing kinematics is wing phasing, the shift in flapping phase between the fore and hind wing periods. Wing phasing has previously been associated with an increase in thrust production, readiness for manoeuvrability and hunting performance. Recent studies have shown that wing phasing in tandem wings produces a twofold modulation in hind wing lift, but slightly reduces the maximum combined lift of fore and hind wings, compared to two wings flapping in isolation. Despite this disadvantage, however, wing phasing is effective in improving aerodynamic efficiency during flight by the removal of kinetic energy from the wake. Computational analyses demonstrate that this increase in flight efficiency may save up to 22% aerodynamic power expenditure compared to insects flapping only two wings. In terms of engineering, energetic benefits in four-wing flapping are of substantial interest in the field of biomimetic aircraft design, because the performance of man-made air vehicles is often limited by high-power expenditure rather than by lift production. This manuscript provides a summary on power expenditures and aerodynamic efficiency in flapping tandem wings by investigating wing phasing in a dynamically scaled robotic model of a hovering dragonfly.

  3. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.

    PubMed

    Shang, J K; Combes, S A; Finio, B M; Wood, R J

    2009-09-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  4. Flexible Wing Model for Structural Sizing and Multidisciplinary Design Optimization of a Strut-Braced Wing

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.; Naghshineh, Amir H.; Sulaeman, Erwin; Kapania, Rakesh K.; Haftka, Raphael T.

    2000-01-01

    This paper describes a structural and aeroelastic model for wing sizing and weight calculation of a strut-braced wing. The wing weight is calculated using a newly developed structural weight analysis module considering the special nature of strut-braced wings. A specially developed aeroelastic model enables one to consider wing flexibility and spanload redistribution during in-flight maneuvers. The structural model uses a hexagonal wing-box featuring skin panels, stringers, and spar caps, whereas the aerodynamics part employs a linearized transonic vortex lattice method. Thus, the wing weight may be calculated from the rigid or flexible wing spanload. The calculations reveal the significant influence of the strut on the bending material weight of the wing. The use of a strut enables one to design a wing with thin airfoils without weight penalty. The strut also influences wing spanload and deformations. Weight savings are not only possible by calculation and iterative resizing of the wing structure according to the actual design loads. Moreover, as an advantage over the cantilever wing, employment of the strut twist moment for further load alleviation leads to increased savings in structural weight.

  5. Detection and measurement of the Wing-Ford band in the near-infrared spectra of elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Hardy, Edouardo; Couture, Jean

    1988-02-01

    An absorption feature was detected at the location of the Wing-Ford band near 9916 A in high-quality CCD spectra of five elliptical galaxies taken with the Cerro Tololo 4-m RC spectrograph. Measurements reveal that the mean strength is 0.013 mag (1 sigma of the mean) and individual galaxy strengths have 1 sigma errors of the order 0.002 mag. The (3-4) band of the delta system of TiO with band head at 9986 A was also detected, suggesting that the observed Wing-Ford feature is affected by the (2-3) band of the delta system of TiO at 9899 A which is present in late giants. Therefore, this feature is not due exclusively to the FeH molecule strong in late M dwarfs.

  6. Erosion Between Two Delta Fronts, the Mekong Delta Case

    NASA Astrophysics Data System (ADS)

    Unverricht, D.; Heinrich, C.; Nguyen, T. C.; Szczucinski, W.; Schwarzer, K.; Stattegger, K.

    2013-12-01

    Human activities, like embanking, sand mining, groundwater extraction and deforestation lead to strong changes of the deltaic environment. Especially, mangrove cutting influences strongly the coastal erosion along large areas of the southern Mekong delta coast. However, all currently published data document erosion from subaerial areas excluding the subaqueous Mekong delta. Our study fills this gap along the subaqueous Mekong Delta between the Bassac River mouth and the Gulf of Thailand. Hydroacoustic profiles and sediment coring were carried out during two cruises in 2007 and 2008. Analyses of ADCP measurements provide valuable information of current direction and velocity during the inter-monsoon season. Fine sediment dynamics including SPM were analyzed applying laser in situ scattering and Transmissiometry (LISST) at vertical profiles. Two delta fronts were found more than 200 km apart, one in front of the main Mekong river distributaries and the other around Ca Mau Cape, the south-western most spit of the Mekong River Delta. Although the delta front around Ca Mau Cape is not directly supplied by the main distributaries of the Mekong River, it is the fastest prograding region of the subaqueous Mekong delta. Alongshore sediment transport takes place from the north-eastern main distributaries towards south-west (Ca Mau Cape). Between both delta fronts, a large scale alternating sand-ridge-system, at least 120 km long and 6 to 10 km wide (ridge crest distance), has developed where erosional channels separate two sand-ridge bodies. The origin of the sand-ridge system is situated at the delta slope off Ganh Hao around water depths between 10 and 18 m. Here, the delta slope consists mainly of fine sand in the upper layer (up to 20 cm thickness) and is separated by an erosional hiatus from the lower muddy layer. The mangroves and sandy beaches at the coast in this region are also under erosion. It is assumed that the eroded beach sand feeds the sand-ridge-system. The

  7. Space shuttle: Static stability and control investigation of NR/GD delta wing booster (B-20) and delta wing orbiter (134D), volume 4

    NASA Technical Reports Server (NTRS)

    Allen, E. C., Jr.; Eder, F. W.

    1972-01-01

    Test results of booster and orbiter models of various component buildup configurations are reported. Dataset Collation Sheets, which give a complete summary of the configurations, are presented along with a description of the test facility. Data reduction procedures are described.

  8. Elements of the Wing Section Theory and of the Wing Theory

    NASA Technical Reports Server (NTRS)

    Munk, Max M.

    1979-01-01

    Results are presented of the theory of wings and of wing sections which are of immediate practical value. They are proven and demonstrated by the use of the simple conceptions of kinetic energy and momentum only.

  9. Constraints on the wing morphology of pterosaurs.

    PubMed

    Palmer, Colin; Dyke, Gareth

    2012-03-22

    Animals that fly must be able to do so over a huge range of aerodynamic conditions, determined by weather, wind speed and the nature of their environment. No single parameter can be used to determine-let alone measure-optimum flight performance as it relates to wing shape. Reconstructing the wings of the extinct pterosaurs has therefore proved especially problematic: these Mesozoic flying reptiles had a soft-tissue membranous flight surface that is rarely preserved in the fossil record. Here, we review basic mechanical and aerodynamic constraints that influenced the wing shape of pterosaurs, and, building on this, present a series of theoretical modelling results. These results allow us to predict the most likely wing shapes that could have been employed by these ancient reptiles, and further show that a combination of anterior sweep and a reflexed proximal wing section provides an aerodynamically balanced and efficient theoretical pterosaur wing shape, with clear benefits for their flight stability.

  10. Rotor/Wing Interactions in Hover

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Derby, Michael R.

    2002-01-01

    Hover predictions of tiltrotor aircraft are hampered by the lack of accurate and computationally efficient models for rotor/wing interactional aerodynamics. This paper summarizes the development of an approximate, potential flow solution for the rotor-on-rotor and wing-on-rotor interactions. This analysis is based on actuator disk and vortex theory and the method of images. The analysis is applicable for out-of-ground-effect predictions. The analysis is particularly suited for aircraft preliminary design studies. Flow field predictions from this simple analytical model are validated against experimental data from previous studies. The paper concludes with an analytical assessment of the influence of rotor-on-rotor and wing-on-rotor interactions. This assessment examines the effect of rotor-to-wing offset distance, wing sweep, wing span, and flaperon incidence angle on tiltrotor inflow and performance.

  11. Constraints on the wing morphology of pterosaurs

    PubMed Central

    Palmer, Colin; Dyke, Gareth

    2012-01-01

    Animals that fly must be able to do so over a huge range of aerodynamic conditions, determined by weather, wind speed and the nature of their environment. No single parameter can be used to determine—let alone measure—optimum flight performance as it relates to wing shape. Reconstructing the wings of the extinct pterosaurs has therefore proved especially problematic: these Mesozoic flying reptiles had a soft-tissue membranous flight surface that is rarely preserved in the fossil record. Here, we review basic mechanical and aerodynamic constraints that influenced the wing shape of pterosaurs, and, building on this, present a series of theoretical modelling results. These results allow us to predict the most likely wing shapes that could have been employed by these ancient reptiles, and further show that a combination of anterior sweep and a reflexed proximal wing section provides an aerodynamically balanced and efficient theoretical pterosaur wing shape, with clear benefits for their flight stability. PMID:21957137

  12. An explanation of the instability of the free vortex cores occurring over delta winds with raised edges

    NASA Technical Reports Server (NTRS)

    Ludwieg, H.

    1980-01-01

    By rolling up the surfaces of discontinuity originating from the leading edge of delta wings, free vortex cores are formed above the wing. In case of greater angles of incidence, the flow in these vortex cores shows an instability which abruptly produces strong turbulence. In the present paper an explanation is given of this instability being a "frictionless instability" of the vortex core flow by increasing helical interference vortices. The occurring vortex core flows are calculated and investigated for stability by means of a stability criterion concerning flows with helical streamlines given by H. Ludwieg.

  13. Definition of the unsteady vortex flow over a wing/body configuration

    NASA Technical Reports Server (NTRS)

    Liou, S. G.; Debry, B.; Lenakos, J.; Caplin, J.; Komerath, N. M.

    1991-01-01

    A problem of current interest in computational aerodynamics is the prediction of unsteady vortex flows over aircraft at high angles of attack. A six-month experimental effort was conducted at the John H. Harper Wind Tunnel to acquire qualitative and quantitative information on the unsteady vortex flow over a generic wing-body configuration at high angles of attack. A double-delta flat-plate wing with beveled edges was combined with a slender sharp-nosed body-of-revolution fuselage to form the generic configuration. This configuration produces a strong attached leading edge vortex on the wing, as well as sharply-peaked flow velocity spectra above the wing. While it thus produces flows with several well-defined features of current interest, the model was designed for efficiency of representation in computational codes. A moderate number of surface pressure ports and two unsteady pressure sensors were used to study the pressure distribution over the wing and body surface at high angles of attack; the unsteady pressure sensing did not succeed because of inadequate signal-to-noise ratio. A pulsed copper vapor laser sheet was used to visualize the vortex flow over the model, and vortex trajectories, burst locations, mutual induction of vortex systems from the forebody, strake, and wing, were quantified. Laser Doppler velocimetry was used to quantify all 3 components of the time-average velocity in 3 data planes perpendicular to the freestream direction. Statistics of the instantaneous velocity were used to study intermittency and fluctuation intensity. Hot-film anemometry was used to study the fluctuation energy content in the velocity field, and the spectra of these fluctuations. In addition, a successful attempt was made to measure velocity spectra, component by component, using laser velocimetry, and these were compared with spectra measured by hot-film anemometry at several locations.

  14. Artificial delta growth

    NASA Astrophysics Data System (ADS)

    Mikeš, Daniel

    2010-05-01

    A deltaic sedimentary system has a point source; sediment is carried over the delta plain by distributary channels away from the point source and deposited at the delta front by distributary mouth bars. The established methods to describe such a sedimentary system are "bedding analysis", "facies analysis", and "basin analysis". We shall call the ambient conditions "input" and the rock record "output". There exist a number of methods to deduce input from output, e.g. "Sequence stratigraphy" (a.o. Vail et al. 1977, Catuneanu et al. 2009), "Shoreline trajectory" (a.o. Helland-Hansen & Martinsen 1996, Helland-Hansen & Hampson 2009) on the one hand and the complex use of established techniques on the other (a.o. Miall & Miall 2001, Miall & Miall 2002). None of these deductive methods seems to be sufficient. I claim that the common errors in all these attempts are the following: (1) a sedimentary system is four-dimensional (3+1) and a lesser dimensional analysis is insufficient; (2) a sedimentary system is complex and any empirical/deductive analysis is non-unique. The proper approach to the problem is therefore the theoretical/inductive analysis. To that end we performed six scenarios of a scaled version of a passive margin delta in a flume tank. The scenarios have identical stepwise tectonic subsidence and semi-cyclic sealevel, but different supply curves, i.e. supply is: constant, highly-frequent, proportional to sealevel, inversely proportional to sealevel, lagging to sealevel, ahead of sealevel. The preliminary results are indicative. Lobe-switching occurs frequently and hence locally sedimentation occurs shortly and hiatuses are substantial; therefore events in 2D (+1) cross-sections don't correlate temporally. The number of sedimentary cycles disequals the number of sealevel cycles. Lobe-switching and stepwise tectonic subsidence cause onlap/transgression. Erosional unconformities are local diachronous events, whereas maximum flooding surfaces are regional

  15. Extension of leading-edge-suction analogy to wings with separated flow around the side edges at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.

    1974-01-01

    A method for determining the lift, drag, and pitching moment for wings which have separated flow at the leading and side edges with subsequently reattached flow downstream and inboard is presented. Limiting values of the contribution to lift of the side-edge reattached flow are determined for rectangular wings. The general behavior of this contribution is computed for rectangular, cropped-delta, cropped-diamond, and cropped-arrow wings. Comparisons of the results of the method and experiment indicate reasonably good correlation of the lift, drag, and pitching moment for a wide planform range. The agreement of the method with experiment was as good as, or better than, that obtained by other methods. The procedure is computerized and is available from COSMIC as NASA Langley computer program A0313.

  16. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Du, Hai; Shi, Zhiwei; Cheng, Keming; Wei, Dechen; Li, Zheng; Zhou, Danjie; He, Haibo; Yao, Junkai; He, Chengjun

    2016-06-01

    Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.

  17. Subtractive Structural Modification of Morpho Butterfly Wings.

    PubMed

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings.

  18. Digest: Imperfect convergence in butterfly wing patterns.

    PubMed

    Earl, Chandra; Guralnick, Robert P; Kawahara, Akito Y

    2017-02-27

    Butterfly wing patterns are among the most diverse morphological characteristics in nature, with many of the 18,000 or so described butterfly species readily distinguished by wing pattern alone. Wing pattern serves as one of the primary means of communication among species and is thus subject to strong natural selection for mimicry and warning color (aposematism). Convergent wing patterns are particularly evident across the butterfly genus Adelpha, suggesting this genus may be a good system to study the underlying mechanisms behind mimicry. This article is protected by copyright. All rights reserved.

  19. Optimal redesign study of the harm wing

    NASA Technical Reports Server (NTRS)

    Mcintosh, S. C., Jr.; Weynand, M. E.

    1984-01-01

    The purpose of this project was to investigate the use of optimization techniques to improve the flutter margins of the HARM AGM-88A wing. The missile has four cruciform wings, located near mid-fuselage, that are actuated in pairs symmetrically and antisymmetrically to provide pitch, yaw, and roll control. The wings have a solid stainless steel forward section and a stainless steel crushed-honeycomb aft section. The wing restraint stiffness is dependent upon wing pitch amplitude and varies from a low value near neutral pitch attitude to a much higher value at off-neutral pitch attitudes, where aerodynamic loads lock out any free play in the control system. The most critical condition for flutter is the low-stiffness condition in which the wings are moved symmetrically. Although a tendency toward limit-cycle flutter is controlled in the current design by controller logic, wing redesign to improve this situation is attractive because it can be accomplished as a retrofit. In view of the exploratory nature of the study, it was decided to apply the optimization to a wing-only model, validated by comparison with results obtained by Texas Instruments (TI). Any wing designs that looked promising were to be evaluated at TI with more complicated models, including body modes. The optimization work was performed by McIntosh Structural Dynamics, Inc. (MSD) under a contract from TI.

  20. Waving Wing Aerodynamics at Low Reynolds Numbers

    DTIC Science & Technology

    2010-07-01

    canonical pitch - up , pitch -down wing maneuver, in 39th AIAA Fluid Dynamics Conference, AIAA 2009-3687, San Antonio, TX, 22-25 June 2009. [7] C. P. Ellington...unsteady lift generation on three-dimensional flapping wings in the MAV flight regime and, if a leading edge vortex develops at MAV-like Reynolds numbers... wing rotates in a propeller-like motion through a wing stroke angle up to 90 degrees. Unsteady lift and drag force data was acquired throughout the

  1. A magnetic fluid microdevice using insect wings

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Tsuyuki, K.; Yano, T.; Takagi, K.

    2008-05-01

    A magnetic fluid microdevice using Diptera insect wings is proposed and constructed. The magnetic fluid device is composed of insect wings, a small permanent magnet, coil, and kerosene-based magnetic fluid. First, the structural properties of insect wings are studied through measurements of certain morphological parameters. Secondly, the novel type of microwind energy converter is constructed. Thirdly, the power generation characteristics of the magnetic fluid microdevice using insect wings are examined. It is found that the output power is roughly proportional to the cube of the airflow velocity.

  2. High performance forward swept wing aircraft

    NASA Technical Reports Server (NTRS)

    Koenig, David G. (Inventor); Aoyagi, Kiyoshi (Inventor); Dudley, Michael R. (Inventor); Schmidt, Susan B. (Inventor)

    1988-01-01

    A high performance aircraft capable of subsonic, transonic and supersonic speeds employs a forward swept wing planform and at least one first and second solution ejector located on the inboard section of the wing. A high degree of flow control on the inboard sections of the wing is achieved along with improved maneuverability and control of pitch, roll and yaw. Lift loss is delayed to higher angles of attack than in conventional aircraft. In one embodiment the ejectors may be advantageously positioned spanwise on the wing while the ductwork is kept to a minimum.

  3. The function of resilin in honeybee wings.

    PubMed

    Ma, Yun; Ning, Jian Guo; Ren, Hui Lan; Zhang, Peng Fei; Zhao, Hong Yan

    2015-07-01

    The present work aimed to reveal morphological characteristics of worker honeybee (Apis mellifera) wings and demonstrate the function of resilin on camber changes during flapping flight. Detailed morphological investigation of the wings showed that different surface characteristics appear on the dorsal and ventral side of the honeybee wings and the linking structure connecting the forewing and hindwing plays an indispensable role in honeybee flapping flight. Resilin stripes were found on both the dorsal and ventral side of the wings, and resilin patches mostly existed on the ventral side. On the basis of resilin distribution, five flexion lines and three cambered types around the lines of passive deformation of the coupled-wing profile were obtained, which defined the deformation mechanism of the wing along the chord, i.e. concave, flat plate and convex. From a movie obtained using high-speed photography from three orthogonal views of free flight in honeybees, periodic changes of the coupled-wing profile were acquired and further demonstrated that the deformation mechanism is a fundamental property for variable deformed shapes of the wing profile during flapping flight, and, in particular, the flat wing profile achieves a nice transition between downstrokes and upstrokes.

  4. Veins improve fracture toughness of insect wings.

    PubMed

    Dirks, Jan-Henning; Taylor, David

    2012-01-01

    During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  5. Aeroelastic tailoring for oblique wing lateral trim

    NASA Technical Reports Server (NTRS)

    Bohlmann, Jonathan D.; Weisshaar, Terrence A.; Eckstrom, Clinton V.

    1988-01-01

    Composite material aeroelastic tailoring is presently explored as a means for the correction of the roll trim imbalance of oblique-wing aircraft configurations. The concept is demonstrated through the analysis of a realistic oblique wing by a static aeroelastic computational procedure encompassing the full potential transonic aerodynamic code FLO22 and a Ritz structural plate program that models the stiffness due to symmetrical-but-unbalanced composite wing skins. Results indicate that asymetric composite tailoring reduces the aileron deflection needed for roll equilibrium, and reduces control surface hinge moment and drag. Wing skin stresses are, however, very high.

  6. Euler calculations for wings using Cartesian grids

    NASA Technical Reports Server (NTRS)

    Gaffney, R. L., Jr.; Hassan, H. A.; Salas, M. D.

    1987-01-01

    A method is presented for the calculation of transonic flows past wings using Cartesian grids. The calculations are based on a finite volume formulation of the Euler equations. Results are presented for a rectangular wing with a flat tip and the ONERA M6 wing. In general, the results are in good agreement with other computations and available experiment. However, Cartesian grids require a greater number of points than body fitted grids in order to resolve the flow properties near the leading edge of a swept wing.

  7. Pegasus Rocket Wing and PHYSX Glove Undergoes Stress Loads Testing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Pegasus Hypersonic Experiment (PHYSX) Project's Pegasus rocket wing with attached PHYSX glove rests after load-tests at Scaled Composites, Inc., in Mojave, California, in January 1997. Technicians slowly filled water bags beneath the wing, to create the pressure, or 'wing-loading,' required to determine whether the wing could withstand its design limit for stress. The wing sits in a wooden triangular frame which serves as the test-rig, mounted to the floor atop the waterbags. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research

  8. Projection Moire Interferometry Measurements of Micro Air Vehicle Wings

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Bartram, Scott M.; Waszak, Martin R.; Jenkins, Luther N.

    2001-01-01

    Projection Moire Interferometry (PMI) has been used to measure the structural deformation of micro air vehicle (MAV) wings during a series of wind tunnel tests. The MAV wings had a highly flexible wing structure, generically reminiscent of a bat s wing, which resulted in significant changes in wing shape as a function of MAV angle-of-attack and simulated flight speed. This flow-adaptable wing deformation is thought to provide enhanced vehicle stability and wind gust alleviation compared to rigid wing designs. Investigation of the potential aerodynamic benefits of a flexible MAV wing required measurement of the wing shape under aerodynamic loads. PMI was used to quantify the aerodynamically induced changes in wing shape for three MAV wings having different structural designs and stiffness characteristics. This paper describes the PMI technique, its application to MAV testing, and presents a portion of the PMI data acquired for the three different MAV wings tested.

  9. The proper combination of lift loadings for least drag on a supersonic wing

    NASA Technical Reports Server (NTRS)

    Grant, Frederick C

    1956-01-01

    Lagrange's method of undetermined multipliers is applied to the problem of properly combining lift loadings for the least drag at a given lift on supersonic wings. The method shows the interference drag between the optimum loading and any loading at the same lift coefficient to be constant. This is an integral form of the criterion established by Robert T. Jones for optimum loadings. The best combination of four loadings on a delta wing with subsonic leading edges is calculated as a numerical example. The loadings considered have finite pressures everywhere on the plan form. Through the sweepback range the optimum combination of the four nonsingular loadings has about the same drag coefficient as a flat plate with leading-edge thrust.

  10. Winged launcher thermal design aspects

    NASA Astrophysics Data System (ADS)

    Keller, K.

    1991-12-01

    The need for significant reduction in launch cost favors the consideration of reusable space transportation systems which are assisted by aerodynamic lift. The thermomechanical and thermochemical environments and the basic design requirements of two airbreathing vehicle classes are put in relation to vehiles like Shuttle and Hermes. Similarities as well as essential differences between the various vehicles are highlighted. State of the art thermal protection concepts and materials are analyzed with respect to winged launcher concepts. Future development trends for design and materials with potential application are identified. The need for improved thermostructural analysis and optimization techniques is outlined.

  11. Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics.

    PubMed

    Muijres, Florian T; Iwasaki, Nicole A; Elzinga, Michael J; Melis, Johan M; Dickinson, Michael H

    2017-02-06

    Using high-speed videography, we investigated how fruit flies compensate for unilateral wing damage, in which loss of area on one wing compromises both weight support and roll torque equilibrium. Our results show that flies control for unilateral damage by rolling their body towards the damaged wing and by adjusting the kinematics of both the intact and damaged wings. To compensate for the reduction in vertical lift force due to damage, flies elevate wingbeat frequency. Because this rise in frequency increases the flapping velocity of both wings, it has the undesired consequence of further increasing roll torque. To compensate for this effect, flies increase the stroke amplitude and advance the timing of pronation and supination of the damaged wing, while making the opposite adjustments on the intact wing. The resulting increase in force on the damaged wing and decrease in force on the intact wing function to maintain zero net roll torque. However, the bilaterally asymmetrical pattern of wing motion generates a finite lateral force, which flies balance by maintaining a constant body roll angle. Based on these results and additional experiments using a dynamically scaled robotic fly, we propose a simple bioinspired control algorithm for asymmetric wing damage.

  12. Wing Deployment Sequence #2: The deployable, inflatable wing technology demonstrator experiment airc

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Wing Deployment Sequence #2: The deployable, inflatable wing technology demonstrator experiment aircraft's wings continue deploying following separation from its carrier aircraft during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  13. Wing Deployment Sequence #3: The deployable, inflatable wing technology demonstrator experiment airc

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Wing Deployment Sequence #3: The deployable, inflatable wing technology demonstrator experiment aircraft's wings fully deployed during flight following separation from its carrier aircraft during a flight conducted by the NASA Dryden Flight Research Center, Edwards, Californiaornia. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  14. Wing Deployment Sequence #1: The deployable, inflatable wing technology demonstrator experiment airc

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Wing Deployment Sequence #1: The deployable, inflatable wing technology demonstrator experiment aircraft's wings begin deploying following separation from its carrier aircraft during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  15. Numerical investigation of insect wing fracture behaviour.

    PubMed

    Rajabi, H; Darvizeh, A; Shafiei, A; Taylor, D; Dirks, J-H

    2015-01-02

    The wings of insects are extremely light-weight biological composites with exceptional biomechanical properties. In the recent years, numerical simulations have become a very powerful tool to answer experimentally inaccessible questions on the biomechanics of insect flight. However, many of the presented models require a sophisticated balance of biomechanical material parameters, many of which are not yet available. In this article we show the first numerical simulations of crack propagation in insect wings. We have used a combination of the maximum-principal stress theory, the traction separation law and basic biomechanical properties of cuticle to develop simple yet accurate finite element (FE) models of locust wings. The numerical results of simulated tensile tests on wing samples are in very good qualitative, and interestingly, also in excellent quantitative agreement with previously obtained experimental data. Our study further supports the idea that the cross-veins in insect wings act as barriers against crack propagation and consequently play a dominant role in toughening the whole wing structure. The use of numerical simulations also allowed us to combine experimental data with previously inaccessible data, such as the distribution of the first principal stress through the wing membrane and the veins. A closer look at the stress-distribution within the wings might help to better understand fracture-toughening mechanisms and also to design more durable biomimetic micro-air vehicles.

  16. Wing-Design And -Analysis Code

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.; Carlson, Harry W.

    1990-01-01

    WINGDES2 computer program provides wing-design algorithm based on modified linear theory taking into account effects of attainable leading-edge thrust. Features improved numerical accuracy and additional capabilities. Provides analysis as well as design capability and applicable to both subsonic and supersonic flow. Replaces earlier wing-design code designated WINGDES (see LAR-13315). Written in FORTRAN V.

  17. The Realization and Study of Optical Wings

    NASA Astrophysics Data System (ADS)

    Artusio-Glimpse, Alexandra Brae

    Consider the airfoil: a carefully designed structure capable of stable lift in a uniform air flow. It so happens that air pressure and radiation (light) pressure are similar phenomena because each transfer momentum to flow-disturbing objects. This, then, begs the question: does an optical analogue to the airfoil exist? Though an exceedingly small effect, scientists harness radiation pressure in a wide gamut of applications from micromanipulation of single biological particles to the propulsion of large spacecrafts called solar sails. We introduce a cambered, refractive rod that is subjected to optical forces analogous to those seen in aerodynamics, and I call this analogue the optical wing. Flight characteristics of optical wings are determined by wing shape and material in a uniform radiation field. Theory predicts the lift force and axial torque are functions of the wing's angle of attack with stable and unstable orientations. These structures can operate as intensity-dependent, parametrically driven oscillators. In two-dimensions, the wings exhibit bistability when analyzed in an accelerating frame. In three-dimensions, the motion of axially symmetric spinning hemispherical wings is analogous to a spinning top. Experiments on semi-buoyant wings in water found semicylindrically shaped, refractive microparticles traversed a laser beam and rotated to an illumination-dependent stable orientation. Preliminary tests aid in the development of a calibrated force measurement experiment to directly evaluate the optical forces and torque on these samples. A foundational study of the optical wing, this work contributes to future advancements of flight-by-light.

  18. Effect of aileron displacement on wing characteristics

    NASA Technical Reports Server (NTRS)

    Heald, R H

    1933-01-01

    The effect of aileron displacement on wing characteristics has been investigated for the Clark Y and the U.S.A. 27 wing sections equipped with rectangular ailerons. The airfoils, rectangular in plan, and having a 10 inch chord and 60 inch span, were mounted on a model fuselage.

  19. Materials Analysis of Foreign Produced Flex Wings

    DTIC Science & Technology

    1995-03-01

    Vehicle, by H. Kredit , January 1964, 144 pages AD B252433, Pilot’s Handbook for tbe Flexible Wing Aerial Utility Vehicle XV-8A, Match 1964, 52 pp AD...Vehicle. H. Kredit , Feb. 1965. 100 pages _AD 460405, XV-8A Flexible Wing Aerial Utility Vehicle. Final Report. Feb. 1965, 113 page; -AD 431128

  20. Flex Wing Fabrication and Static Pressure Testing

    DTIC Science & Technology

    1995-06-01

    Vehicle, by H. Kredit , January 1964, 144 pages AD. B252433, Pilot’s Handbook for the Flexible Wing Aerial Utility Vehicle XV-8A, Match 1964, 52 pp AD...Vehicle, H. Kredit , Feb. 1965. 100 pages .- AD 460405, XV-8A Flexible Wing Aerial Utility Vehicle. Final Report. Feb. 1965, 113 page; -- AD 431128

  1. Computer Code Aids Design Of Wings

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.

    1993-01-01

    AERO2S computer code developed to aid design engineers in selection and evaluation of aerodynamically efficient wing/canard and wing/horizontal-tail configurations that includes simple hinged-flap systems. Code rapidly estimates longitudinal aerodynamic characteristics of conceptual airplane lifting-surface arrangements. Developed in FORTRAN V on CDC 6000 computer system, and ported to MS-DOS environment.

  2. Advanced wing design survivability testing and results

    NASA Technical Reports Server (NTRS)

    Bruno, J.; Tobias, M.

    1992-01-01

    Composite wings on current operational aircraft are conservatively designed to account for stress/strain concentrations, and to assure specified damage tolerance. The technology that can lead to improved composite wing structures and associated structural efficiency is to increase design ultimate strain levels beyond their current limit of 3500 to 4000 micro-in/in to 6000 micro-in/in without sacrificing structural integrity, durability, damage tolerance, or survivability. Grumman, under the sponsorship of the Naval Air Development Center (NADC), has developed a high-strain composite wing design for a subsonic aircraft wing using novel and innovative design concepts and manufacturing methods, while maintaining a state-of-the-art fiber/resin system. The current advanced wing design effort addressed a tactical subsonic aircraft wing using previously developed, high-strain wing design concepts in conjunction with newer/emerging fiber and polymer matrix composite (PMC) materials to achieve the same goals, while reducing complexity. Two categories of advanced PMC materials were evaluated: toughened thermosets; and engineered thermoplastics. Advanced PMC materials offer the technological opportunity to take maximum advantage of improved material properties, physical characteristics, and tailorability to increase performance and survivability over current composite structure. Damage tolerance and survivability to various threats, in addition to structural integrity and durability, were key technical issues addressed during this study, and evaluated through test. This paper focuses on the live-fire testing, and the results performed to experimentally evaluate the survivability of the advanced wing design.

  3. Modeling flexible flapping wings oscillating at resonance

    NASA Astrophysics Data System (ADS)

    Alexeev, Alexander; Masoud, Hassan

    2010-03-01

    Using a hybrid approach for fluid-structure interactions that integrates the lattice Boltzmann and lattice spring models, we study the three-dimensional aerodynamics of flexible flapping wings at hovering. The wings are a pair of flat elastic plates tilted from the horizontal and driven to oscillate according to the sinusoidal law. Our simulations reveal that resonance oscillations of flexible wings dramatically increase aerodynamic lift at low Reynolds number. Comparing to otherwise identical rigid wings, flexible wings at resonance generate up to two orders of magnitude greater lift. Within the resonance band, we identify two operation regimes leading to the maximum lift and the maximum efficiency, respectively. The maximum lift occurs when the wing tip and root move with a phase lag of 90 degrees, whereas the maximum efficiency occurs at the frequency where the wing tip and root oscillate in counterphase. Our results suggest that the resonance regimes would be optimal for the design of microscale flying machines using flexible flapping wings driven by simple kinematic strokes.

  4. Collective Flow Enhancement by Tandem Flapping Wings.

    PubMed

    Gravish, Nick; Peters, Jacob M; Combes, Stacey A; Wood, Robert J

    2015-10-30

    We examine the fluid-mechanical interactions that occur between arrays of flapping wings when operating in close proximity at a moderate Reynolds number (Re≈100-1000). Pairs of flapping wings are oscillated sinusoidally at frequency f, amplitude θ_{M}, phase offset ϕ, and wing separation distance D^{*}, and outflow speed v^{*} is measured. At a fixed separation distance, v^{*} is sensitive to both f and ϕ, and we observe both constructive and destructive interference in airspeed. v^{*} is maximized at an optimum phase offset, ϕ_{max}, which varies with wing separation distance, D^{*}. We propose a model of collective flow interactions between flapping wings based on vortex advection, which reproduces our experimental data.

  5. Wing extensions for improving climb performance

    NASA Technical Reports Server (NTRS)

    Nicks, O. W.

    1983-01-01

    Recent wind tunnel studies have shown that significant improvements in wing efficiency and climb performance can be achieved using wing extensions having sharp edges and unmodified upper airfoil contours. Based on tests of six configurations, a simple tip shape provided the best wing efficiency at high lift conditions without penalty during cruise conditions. The best configuration tested exhibited more than 20 percent improvement in the maximum rate of climb, plus a reduction in stall speed and a slight improvement in cruise performance over a baseline tip with a round edge. In addition to measurements that were used to determine performance, flow visualization studies provided insight into reasons for improved wing efficiency. Tests were conducted using a high performance general aviation aircraft model with a tapered, cantilevered wing.

  6. Design of a transonically profiled wing

    NASA Technical Reports Server (NTRS)

    Kiekebusch, B.

    1978-01-01

    The application of well known design concepts with the combined use of thick transonic profiles to aircraft wing design was investigated. Optimization in terms of weight and operational costs was emphasized. It is shown that the usual design criteria and concepts are too restricted and do not sufficiently represent the physical processes over the wing. Suggestions are made for improving this situation, and a design example given. Compared with a wing design according to previously used criteria, the new design is found to be superior in the most important functions. It is concluded that an isobar concept adjusted to the planform in conjunction with an 'organically' designed wing will lead to the weight optimum solutions of wing profiles.

  7. Strain monitoring of a composite wing

    NASA Astrophysics Data System (ADS)

    Strathman, Joseph; Watkins, Steve E.; Kaur, Amardeep; Macke, David C.

    2016-04-01

    An instrumented composite wing is described. The wing is designed to meet the load and ruggedness requirements for a fixed-wing unmanned aerial vehicle (UAV) in search-and-rescue applications. The UAV supports educational systems development and has a 2.1-m wingspan. The wing structure consists of a foam core covered by a carbon-fiber, laminate composite shell. To quantify the wing characteristics, a fiber-optic strain sensor was surface mounted to measure distributed strain. This sensor is based on Rayleigh scattering from local index variations and it is capable of high spatial resolution. The use of the Rayleigh-scattering fiber-optic sensors for distributed measurements is discussed.

  8. High speed flow past wings

    NASA Technical Reports Server (NTRS)

    Norstrud, H.

    1973-01-01

    The analytical solution to the transonic small perturbation equation which describes steady compressible flow past finite wings at subsonic speeds can be expressed as a nonlinear integral equation with the perturbation velocity potential as the unknown function. This known formulation is substituted by a system of nonlinear algebraic equations to which various methods are applicable for its solution. Due to the presence of mathematical discontinuities in the flow solutions, however, a main computational difficulty was to ensure uniqueness of the solutions when local velocities on the wing exceeded the speed of sound. For continuous solutions this was achieved by embedding the algebraic system in an one-parameter operator homotopy in order to apply the method of parametric differentiation. The solution to the initial system of equations appears then as a solution to a Cauchy problem where the initial condition is related to the accompanying incompressible flow solution. In using this technique, however, a continuous dependence of the solution development on the initial data is lost when the solution reaches the minimum bifurcation point. A steepest descent iteration technique was therefore, added to the computational scheme for the calculation of discontinuous flow solutions. Results for purely subsonic flows and supersonic flows with and without compression shocks are given and compared with other available theoretical solutions.

  9. Surgical treatment of winged scapula.

    PubMed

    Galano, Gregory J; Bigliani, Louis U; Ahmad, Christopher S; Levine, William N

    2008-03-01

    Injuries to the long thoracic and spinal accessory nerves present challenges in diagnosis and treatment. Palsies of the serratus anterior and trapezius muscles lead to destabilization of the scapula with medial and lateral scapular winging, respectively. Although nonoperative treatment is successful in some patients, failures have led to the evolution of surgical techniques involving various combinations of fascial graft and/or transfer of adjacent muscles. Our preferred method of reconstruction for serratus anterior palsy is a two-incision, split pectoralis major transfer without fascial graft. For trapezius palsy, we prefer a modified version of the Eden-Lange procedure. At a minimum followup of 16 months (mean, 47 months), six patients who underwent the Eden-Lange procedure showed improvement in mean American Shoulder and Elbow Surgeons Shoulder scores (33.3-64.6), forward elevation (141.7-151.0), and visual analog scale (7.0-2.3). At a minimum followup of 16 months (mean, 44 months), 10 patients (11 shoulders) who underwent split pectoralis transfer also improved American Shoulder and Elbow Surgeons Shoulder scores (53.3-63.8), forward elevation (158.2-164.5), and visual analog scale (5.0-2.9). We encountered two complications, both superficial wound infections. These tendon transfers were effective for treating scapular winging in patients who did not respond to nonoperative treatment.

  10. Numerical computation of viscous flow around bodies and wings moving at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Tannehill, J. C.

    1984-01-01

    Research in aerodynamics is discussed. The development of equilibrium air curve fits; computation of hypersonic rarefield leading edge flows; computation of 2-D and 3-D blunt body laminar flows with an impinging shock; development of a two-dimensional or axisymmetric real gas blunt body code; a study of an over-relaxation procedure forthe MacCormack finite-difference scheme; computation of 2-D blunt body turbulent flows with an impinging shock; computation of supersonic viscous flow over delta wings at high angles of attack; and computation of the Space Shuttle Orbiter flowfield are discussed.

  11. Habitat variation and wing coloration affect wing shape evolution in dragonflies.

    PubMed

    Outomuro, D; Dijkstra, K-D B; Johansson, F

    2013-09-01

    Habitats are spatially and temporally variable, and organisms must be able to track these changes. One potential mechanism for this is dispersal by flight. Therefore, we would expect flying animals to show adaptations in wing shape related to habitat variation. In this work, we explored variation in wing shape in relation to preferred water body (flowing water or standing water with tolerance for temporary conditions) and landscape (forested to open) using 32 species of dragonflies of the genus Trithemis (80% of the known species). We included a potential source of variation linked to sexual selection: the extent of wing coloration on hindwings. We used geometric morphometric methods for studying wing shape. We also explored the phenotypic correlation of wing shape between the sexes. We found that wing shape showed a phylogenetic structure and therefore also ran phylogenetic independent contrasts. After correcting for the phylogenetic effects, we found (i) no significant effect of water body on wing shape; (ii) male forewings and female hindwings differed with regard to landscape, being progressively broader from forested to open habitats; (iii) hindwings showed a wider base in wings with more coloration, especially in males; and (iv) evidence for phenotypic correlation of wing shape between the sexes across species. Hence, our results suggest that natural and sexual selection are acting partially independently on fore- and hindwings and with differences between the sexes, despite evidence for phenotypic correlation of wing shape between males and females.

  12. Design, fabrication, and characterization of multifunctional wings to harvest solar energy in flapping wing air vehicles

    NASA Astrophysics Data System (ADS)

    Perez-Rosado, Ariel; Gehlhar, Rachel D.; Nolen, Savannah; Gupta, Satyandra K.; Bruck, Hugh A.

    2015-06-01

    Currently, flapping wing unmanned aerial vehicles (a.k.a., ornithopters or robotic birds) sustain very short duration flight due to limited on-board energy storage capacity. Therefore, energy harvesting elements, such as flexible solar cells, need to be used as materials in critical components, such as wing structures, to increase operational performance. In this paper, we describe a layered fabrication method that was developed for realizing multifunctional composite wings for a unique robotic bird we developed, known as Robo Raven, by creating compliant wing structure from flexible solar cells. The deformed wing shape and aerodynamic lift/thrust loads were characterized throughout the flapping cycle to understand wing mechanics. A multifunctional performance analysis was developed to understand how integration of solar cells into the wings influences flight performance under two different operating conditions: (1) directly powering wings to increase operation time, and (2) recharging batteries to eliminate need for external charging sources. The experimental data is then used in the analysis to identify a performance index for assessing benefits of multifunctional compliant wing structures. The resulting platform, Robo Raven III, was the first demonstration of a robotic bird that flew using energy harvested from solar cells. We developed three different versions of the wing design to validate the multifunctional performance analysis. It was also determined that residual thrust correlated to shear deformation of the wing induced by torsional twist, while biaxial strain related to change in aerodynamic shape correlated to lift. It was also found that shear deformation of the solar cells induced changes in power output directly correlating to thrust generation associated with torsional deformation. Thus, it was determined that multifunctional solar cell wings may be capable of three functions: (1) lightweight and flexible structure to generate aerodynamic forces, (2

  13. The DELTA Synchrotron Light Interferometer

    SciTech Connect

    Berges, U.

    2004-05-12

    Synchrotron radiation sources like DELTA, the Dortmund Electron Accelerator, a third generation synchrotron light source, need an optical monitoring system to measure the beam size at different points of the ring with high resolution and accuracy. These measurements also allow an investigation of the emittance of the storage ring, an important working parameter for the efficiency of working beamlines with experiments using the synchrotron radiation. The resolution limits of the different types of optical synchrotron light monitors at DELTA are investigated. The minimum measurable beamsize with the normal synchrotron light monitor using visible light at DELTA is about 80 {mu}m. Due to this a synchrotron light interferometer was built up and tested at DELTA. The interferometer uses the same beamline in the visible range. The minimum measurable beamsize is with about 8 {mu}m one order of magnitude smaller. This resolution is sufficient for the expected small vertical beamsizes at DELTA. The electron beamsize and emittance were measured with both systems at different electron beam energies of the storage ring. The theoretical values of the present optics are smaller than the measured emittance. So possible reasons for beam movements are investigated.

  14. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  15. Insect Wing Displacement Measurement Using Digital Holography

    SciTech Connect

    Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la; Caloca Mendez, Cristian I.

    2008-04-15

    Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame rate digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement.

  16. Experiments on a Slotted Wing

    NASA Technical Reports Server (NTRS)

    Ruden, P

    1939-01-01

    The results of pressure distribution measurements that were made on a model wing section of a Fieseler F 5 R type airplane are presented. Comparison of those model tests with the corresponding flight tests indicates the limitations and also the advantages of wind tunnel investigations, the advantages being particularly that through the variety of measuring methods employed the more complicated flow conditions may also be clarified. A fact brought out in these tests is that even in the case of "well rounded" slots it is possible for a vortex to be set up at the slot entrance and this vortex is responsible for certain irregularities in the pressure distribution and in the efficiency of the slot.

  17. Integrated technology wing design study

    NASA Technical Reports Server (NTRS)

    Hays, A. P.; Beck, W. E.; Morita, W. H.; Penrose, B. J.; Skarshaug, R. E.; Wainfan, B. S.

    1984-01-01

    The technology development costs and associated benefits in applying advanced technology associated with the design of a new wing for a new or derivative trijet with a capacity for 350 passengers and maximum range of 8519 km, entering service in 1990 were studied. The areas of technology are: (1) airfoil technology; (2) planform parameters; (3) high lift; (4) pitch active control system; (5) all electric systems; (6) E to 3rd power propulsion; (7) airframe/propulsion integration; (8) graphite/epoxy composites; (9) advanced aluminum alloys; (10) titanium alloys; and (11) silicon carbide/aluminum composites. These technologies were applied to the reference aircraft configuration. Payoffs were determined for block fuel reductions and net value of technology. These technologies are ranked for the ratio of net value of technology (NVT) to technology development costs.

  18. Novel Control Effectors for Truss Braced Wing

    NASA Technical Reports Server (NTRS)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  19. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  20. 14 CFR 23.697 - Wing flap controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Wing flap controls. 23.697 Section 23.697... Systems § 23.697 Wing flap controls. (a) Each wing flap control must be designed so that, when the flap... with § 23.145(b)(3) necessitates wing flap retraction to positions that are not fully retracted,...

  1. 14 CFR 23.697 - Wing flap controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Wing flap controls. 23.697 Section 23.697... Systems § 23.697 Wing flap controls. (a) Each wing flap control must be designed so that, when the flap... with § 23.145(b)(3) necessitates wing flap retraction to positions that are not fully retracted,...

  2. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  3. 14 CFR 23.697 - Wing flap controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Wing flap controls. 23.697 Section 23.697... Systems § 23.697 Wing flap controls. (a) Each wing flap control must be designed so that, when the flap... with § 23.145(b)(3) necessitates wing flap retraction to positions that are not fully retracted,...

  4. 14 CFR 23.697 - Wing flap controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Wing flap controls. 23.697 Section 23.697... Systems § 23.697 Wing flap controls. (a) Each wing flap control must be designed so that, when the flap... with § 23.145(b)(3) necessitates wing flap retraction to positions that are not fully retracted,...

  5. 14 CFR 23.697 - Wing flap controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Wing flap controls. 23.697 Section 23.697... Systems § 23.697 Wing flap controls. (a) Each wing flap control must be designed so that, when the flap... with § 23.145(b)(3) necessitates wing flap retraction to positions that are not fully retracted,...

  6. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  7. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  8. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  9. Surgical Treatment of Winged Scapula

    PubMed Central

    Galano, Gregory J.; Bigliani, Louis U.; Ahmad, Christopher S.

    2008-01-01

    Injuries to the long thoracic and spinal accessory nerves present challenges in diagnosis and treatment. Palsies of the serratus anterior and trapezius muscles lead to destabilization of the scapula with medial and lateral scapular winging, respectively. Although nonoperative treatment is successful in some patients, failures have led to the evolution of surgical techniques involving various combinations of fascial graft and/or transfer of adjacent muscles. Our preferred method of reconstruction for serratus anterior palsy is a two-incision, split pectoralis major transfer without fascial graft. For trapezius palsy, we prefer a modified version of the Eden-Lange procedure. At a minimum followup of 16 months (mean, 47 months), six patients who underwent the Eden-Lange procedure showed improvement in mean American Shoulder and Elbow Surgeons Shoulder scores (33.3–64.6), forward elevation (141.7–151.0), and visual analog scale (7.0–2.3). At a minimum followup of 16 months (mean, 44 months), 10 patients (11 shoulders) who underwent split pectoralis transfer also improved American Shoulder and Elbow Surgeons Shoulder scores (53.3–63.8), forward elevation (158.2–164.5), and visual analog scale (5.0–2.9). We encountered two complications, both superficial wound infections. These tendon transfers were effective for treating scapular winging in patients who did not respond to nonoperative treatment. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18196359

  10. Sensitivity Analysis of Wing Aeroelastic Responses

    NASA Technical Reports Server (NTRS)

    Issac, Jason Cherian

    1995-01-01

    Design for prevention of aeroelastic instability (that is, the critical speeds leading to aeroelastic instability lie outside the operating range) is an integral part of the wing design process. Availability of the sensitivity derivatives of the various critical speeds with respect to shape parameters of the wing could be very useful to a designer in the initial design phase, when several design changes are made and the shape of the final configuration is not yet frozen. These derivatives are also indispensable for a gradient-based optimization with aeroelastic constraints. In this study, flutter characteristic of a typical section in subsonic compressible flow is examined using a state-space unsteady aerodynamic representation. The sensitivity of the flutter speed of the typical section with respect to its mass and stiffness parameters, namely, mass ratio, static unbalance, radius of gyration, bending frequency, and torsional frequency is calculated analytically. A strip theory formulation is newly developed to represent the unsteady aerodynamic forces on a wing. This is coupled with an equivalent plate structural model and solved as an eigenvalue problem to determine the critical speed of the wing. Flutter analysis of the wing is also carried out using a lifting-surface subsonic kernel function aerodynamic theory (FAST) and an equivalent plate structural model. Finite element modeling of the wing is done using NASTRAN so that wing structures made of spars and ribs and top and bottom wing skins could be analyzed. The free vibration modes of the wing obtained from NASTRAN are input into FAST to compute the flutter speed. An equivalent plate model which incorporates first-order shear deformation theory is then examined so it can be used to model thick wings, where shear deformations are important. The sensitivity of natural frequencies to changes in shape parameters is obtained using ADIFOR. A simple optimization effort is made towards obtaining a minimum weight

  11. A Miniature Controllable Flapping Wing Robot

    NASA Astrophysics Data System (ADS)

    Arabagi, Veaceslav Gheorghe

    The agility and miniature size of nature's flapping wing fliers has long baffled researchers, inspiring biological studies, aerodynamic simulations, and attempts to engineer their robotic replicas. Flapping wing flight is characterized by complex reciprocating wing kinematics, transient aerodynamic effects, and very small body lengths. These characteristics render robotic flapping wing aerial vehicles ideal for surveillance and defense applications, search and rescue missions, and environment monitoring, where their ability to hover and high maneuverability is immensely beneficial. One of the many difficulties in creating flapping wing based miniature robotic aerial vehicles lies in generating a proper wing trajectory that would result in sufficient lift forces for hovering and maneuvering. Since design of a flapping wing system is a balance between overall weight and the number of actuated inputs, we take the approach of having minimal controlled inputs, allowing passive behavior wherever possible. Hence, we propose a completely passive wing pitch reversal design that relies on wing inertial dynamics, an elastic energy storage mechanism, and low Reynolds number aerodynamic effects. Theoretical models, compiling previous research on piezoelectric actuators, four-bar transmissions, and aerodynamics effects, are developed and used as basis for a complete numerical simulation. Limitations of the model are discussed in comparison to experimental results obtained from a working prototype of the proposed passive pitch reversal flapping wing mechanism. Given that the mechanism is under-actuated, methods to control lift force generation by actively varying system parameters are proposed, discussed, and tested experimentally. A dual wing aerial platform is developed based on the passive pitch reversal wing concept. Design considerations are presented, favoring controllability and structural rigidity of the final platform. Finite element analysis and experimental

  12. Moveable Leading Edge Device for a Wing

    NASA Technical Reports Server (NTRS)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.

  13. Generic Wing-Body Aerodynamics Data Base

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  14. Wing design with attainable thrust considerations

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.; Shrout, B. L.; Darden, C. M.

    1984-01-01

    A CAD process that includes leading-edge thrust considerations for wings with high aerodynamic efficiencies is outlined. Rectangular grids are used for evaluation of both subsonic and supersonic pressure loadings. Account is taken of the Mach number, Re, the wing planform, the presence of camber, the airfoil geometry and the locations and forces induced by shed vortices. Optimization techniques are applied to the candidate surfaces in order to consider the attainable thrust. Inclusion of the optimization techniques permits analyses of mission-adaptive wings and various flap systems and the elimination of singularities in the flight envelope.

  15. The plane problem of the flapping wing

    NASA Technical Reports Server (NTRS)

    Birnbaum, Walter

    1954-01-01

    In connection with an earlier report on the lifting vortex sheet which forms the basis of the following investigations this will show how the methods developed there are also suitable for dealing with the air forces for a wing with a circulation variable with time. The theory of a propulsive wing flapping up and down periodically in the manner of a bird's wing is developed. This study shows how the lift and its moment result as a function of the flapping motion, what thrust is attainable, and how high is the degree of efficiency of this flapping propulsion unit if the air friction is disregarded.

  16. Transonic flow theory of airfoils and wings

    NASA Technical Reports Server (NTRS)

    Garabedian, P. R.

    1976-01-01

    There are plans to use the supercritical wing on the next generation of commercial aircraft so as to economize on fuel consumption by reducing drag. Computer codes have served well in meeting the consequent demand for new wing sections. The possibility of replacing wind tunnel tests by computational fluid dynamics is discussed. Another approach to the supercritical wing is through shockless airfoils. A novel boundary value problem in the hodograph plane is studied that enables one to design a shockless airfoil so that its pressure distribution very nearly takes on data that are prescribed.

  17. Active Dihedral Control System for a Torisionally Flexible Wing

    NASA Technical Reports Server (NTRS)

    Kendall, Greg T. (Inventor); Lisoski, Derek L. (Inventor); Morgan, Walter R. (Inventor); Griecci, John A. (Inventor)

    2015-01-01

    A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied.

  18. Aerodynamic shape optimization of wing and wing-body configurations using control theory

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony

    1995-01-01

    This paper describes the implementation of optimization techniques based on control theory for wing and wing-body design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for airfoils and wings in which the shape and the surrounding body-fitted mesh are both generated analytically, and the control is the mapping function. Recently, the method has been implemented for both potential flows and flows governed by the Euler equations using an alternative formulation which employs numerically generated grids, so that it can more easily be extended to treat general configurations. Here results are presented both for the optimization of a swept wing using an analytic mapping, and for the optimization of wing and wing-body configurations using a general mesh.

  19. The effect of over-the-wing nacelles on wing-body aerodynamics

    NASA Technical Reports Server (NTRS)

    Reubush, D. E.

    1978-01-01

    An investigation was conducted in the Langley 16-foot transonic tunnel to further study benefits in climb and cruise performance due to blowing the jet over the wing for a transport-type wing-body configuration. In this investigation a wing-body model/powered-nacelle test rig combination was tested at Mach numbers of 0.5 and 0.8 at angles of attack from -2 to 4 deg and jet total-pressure ratios from jet off to 3 or 4 (depending on Mach number) for a variety of nacelle locations relative to the wing. Results from this investigation show that positioning of the nacelles can have very large effects on the wing-body drag (nacelles were nonmetric). Some positions yielded much higher drag than the baseline wing-body while others yielded drag which was somewhat lower than the baseline.

  20. A proto-Okavango Delta?

    NASA Astrophysics Data System (ADS)

    Podgorski, J. E.; Kgotlhang, L.; Ngwisanyi, T.; Ploug, C.; Auken, E.; Kinzelbach, W. K.; Green, A. G.

    2010-12-01

    The Okavango Delta within the Kalahari Desert of northwestern Botswana is one of the world's largest inland deltas and the largest wetland in southern Africa. An annual flood originating from the Okavango River in the northwest passes through the upper panhandle region of the delta before inundating the 150 km x 150 km fan where most water is lost to evapotranspiration. The fan occupies an active graben at the southwestern end of the East Africa rift zone. The focus of faulting is along the fan’s southeastern end where the Kunyere-Thamalakane faults show 200-300 m of dip-slip offset, forming a backstop to the movement of water and sediments. An airborne TEM survey was flown over the entire delta in 2007 with 2 km line spacing. A preliminary inversion of the entire data set has been undertaken using a quasi-2D inversion scheme that includes resistivity, layer thickness, and transmitter height as parameters. Tests with a many-layer model indicate that a four-layer model explains the data. Inversion results are corroborated by limited borehole data. The TEM model includes significant lateral and vertical variations in electrical resistivity. In the central region of the fan, a near-surface high resistivity layer is underlain sequentially by a more conductive layer (about 100 m depth) and a more resistive half-space (about 160 m depth), the latter of which could be a fresh water aquifer. This resistive feature has a fan-like form. A plausible evolutionary scenario that explains the TEM data includes a proto-Okavango Delta (highly resistive half-space ) and a lake (intermediate-depth conductive layer). During a climatic episode similar to today’s, a proto-Okavango Delta sequence would have been deposited against a fault, much as the Kunyere-Thamalakane faults today delineate the southeastern margin of the present Okavango Delta. This region would have then been flooded by a Pleistocene lake system that inundated much of northern Botswana and was the source of

  1. Global behavior of the height/seasonal structure of tides between 40 deg and 60 deg latitude

    NASA Technical Reports Server (NTRS)

    Manson, A. H.; Meek, C. E.; Teitelbaum, H.; Fraser, G. J.; Smith, M. J.; Clark, R. R.; Schminder, R.; Kuerschner, D.

    1989-01-01

    The radars utilized are meteor (2), medium frequency (2) and the new low frequency (1) systems: analysis techniques were exhaustively studied internally and comparatively and are not thought to affect the results. Emphasis is placed upon the new height-time contours of 24-, 12-h tidal amplitudes and phases, which best display height and seasonal structures; where possible high resolution (10 d) is used (Saskatoon), but all stations provide monthly mean resolution. At these latitudes the diurnal tide is generally smaller than the semidiurnal, and displays more variability. However, there is a tendency for vertical wavelengths and amplitudes to be larger during summer months. On occasions in winter and fall, wavelengths may be less than 50 km. The dominant semidiurnal tide shows significant regular season structure; wavelengths are generally small (about 50 km) in winter, large in summer (equal to or greater than 100 km), and these states are separated by rapid equinoctial transitions. There is some evidence for less regularity toward 40 deg. Coupling with mean winds is apparent. Data from earlier ATMAP campaigns are mentioned, and reasons for their inadequacies presented.

  2. Recalculated values of the total ozone amount over Oslo, 60 deg N, for the period 1979-1992

    NASA Technical Reports Server (NTRS)

    Larsen, Soren H. H.; Svendby, Tove; Tonnessen, Finn; Dahlback, Arne

    1994-01-01

    The total ozone amount over Oslo has been measured with the Dobson spectrophotometer No 56. The instrument was modified, calibrated, and intercompared in 1977 in Boulder. A new intercomparison was made in 1986 in Arosa. Much work has been done to make the zenith charts reliable. A new method has been introduced where one takes into account the change in the shape of the zenith chart curves which is caused by a change of the ozone profile when the ozone amount changes. According to the conclusion derived from the intercomparison in Arosa 1986, the instrument has not been stable. The R-N tables had to be altered, but not the Q-tables. We have tried to account for this change in our handling of the observation data. No statistical analyses of these data has yet been made, but the monthly averages of the raw data show a negative linear trend of about 4 percent for the whole period.

  3. Narrow multibeam satellite ground station antenna employing a linear array with a geosynchronous arc coverage of 60 deg. I - Theory

    NASA Astrophysics Data System (ADS)

    Amitay, N.; Gans, M. J.

    1982-11-01

    The feasibility of using an appropriately squinted linear scan in narrow multibeam satellite ground station antennas employing phased arrays is demonstrated. This linear scan has the potential of reducing the complexity of a narrow-beam planar array to that of a linear array. Calculations for such antennas placed at cities throughout the U.S. show that the peak beam pointing error in covering the 70 deg W to 130 deg W geosynchronous equatorial arc (GEA) is under 5/1000th of a degree. Communication at a 300 MBd rate in the 12/14 GHz band can be made feasible, for a grating lobe-free scan and 0.5 deg beamwidth antenna, by using a relatively simple time equalization.

  4. Parametric weight evaluation of joined wings by structural optimization

    NASA Technical Reports Server (NTRS)

    Miura, Hirokazu; Shyu, Albert T.; Wolkovitch, Julian

    1988-01-01

    Joined-wing aircraft employ tandem wings having positive and negative sweep and dihedral, arranged to form diamond shapes in both plan and front views. An optimization method was applied to study the effects of joined-wing geometry parameters on structural weight. The lightest wings were obtained by increasing dihedral and taper ratio, decreasing sweep and span, increasing fraction of airfoil chord occupied by structural box, and locating the joint inboard of the front wing tip.

  5. Fruit fly scale robots can hover longer with flapping wings than with spinning wings.

    PubMed

    Hawkes, Elliot W; Lentink, David

    2016-10-01

    Hovering flies generate exceptionally high lift, because their wings generate a stable leading edge vortex. Micro flying robots with a similar wing design can generate similar high lift by either flapping or spinning their wings. While it requires less power to spin a wing, the overall efficiency depends also on the actuator system driving the wing. Here, we present the first holistic analysis to calculate how long a fly-inspired micro robot can hover with flapping versus spinning wings across scales. We integrate aerodynamic data with data-driven scaling laws for actuator, electronics and mechanism performance from fruit fly to hummingbird scales. Our analysis finds that spinning wings driven by rotary actuators are superior for robots with wingspans similar to hummingbirds, yet flapping wings driven by oscillatory actuators are superior at fruit fly scale. This crossover is driven by the reduction in performance of rotary compared with oscillatory actuators at smaller scale. Our calculations emphasize that a systems-level analysis is essential for trading-off flapping versus spinning wings for micro flying robots.

  6. Spinning Characteristics of Wings III : a Rectangular and Tapered Clark Y Monoplane Wing with Rounded Tips

    NASA Technical Reports Server (NTRS)

    Bamber, M J; House, R O

    1937-01-01

    An investigation was made to determine the spinning characteristics of Clark Y monoplane wings with different plan forms. A rectangular wing and a wing tapered 5:2, both with rounded tips, were tested on the N.A.C.A. spinning balance in the 5-foot vertical wind tunnel. The aerodynamic characteristics of the models and a prediction of the angles of sideslip for steady spins are given. Also included is an estimate of the yawning moment that must be furnished by the parts of the airplane to balance the inertia couples and wing yawing moment for spinning equilibrium. The effects on the spin of changes in plan form and of variations of some of the important parameters are discussed and the results are compared with those for a rectangular wing with square tips. It is concluded that for a conventional monoplane using Clark Y wing the sideslip will be algebraically larger for the wing with the rounded tip than for the wing with the square tip and will be largest for the tapered wing. The effect of plan form on the spin will vary with the type of airplane; and the provision of a yawing-moment coefficient of -0.025 (i.e., opposing the spin) by the tail, fuselage, and interference effects will insure against the attainment of equilibrium on a steady spin for any of the plan forms tested and for any of the parameters used in the analysis.

  7. Resilin in dragonfly and damselfly wings and its implications for wing flexibility.

    PubMed

    Donoughe, Seth; Crall, James D; Merz, Rachel A; Combes, Stacey A

    2011-12-01

    Although there is mounting evidence that passive mechanical dynamics of insect wings play an integral role in insect flight, our understanding of the structural details underlying insect wing flexibility remains incomplete. Here, we use comparative morphological and mechanical techniques to illuminate the function and diversity of two mechanisms within Odonata wings presumed to affect dynamic wing deformations: flexible resilin vein-joints and cuticular spikes. Mechanical tests show that joints with more resilin have lower rotational stiffness and deform more in response to a load applied to an intact wing. Morphological studies of 12 species of Odonata reveal that resilin joints and cuticular spikes are widespread taxonomically, yet both traits display a striking degree of morphological and functional diversity that follows taxonomically distinct patterns. Interestingly, damselfly wings (suborder Zygoptera) are mainly characterized by vein-joints that are double-sided (containing resilin both dorsally and ventrally), whereas dragonfly wings (suborder Epiprocta) are largely characterized by single-sided vein-joints (containing resilin either ventrally or dorsally, but not both). The functional significance and diversity of resilin joints and cuticular spikes could yield insight into the evolutionary relationship between form and function of wings, as well as revealing basic principles of insect wing mechanical design.

  8. Evolution of wing shape in hornets: why is the wing venation efficient for species identification?

    PubMed

    Perrard, A; Baylac, M; Carpenter, J M; Villemant, C

    2014-12-01

    Wing venation has long been used for insect identification. Lately, the characterization of venation shape using geometric morphometrics has further improved the potential of using the wing for insect identification. However, external factors inducing variation in wing shape could obscure specific differences, preventing accurate discrimination of species in heterogeneous samples. Here, we show that interspecific difference is the main source of wing shape variation within social wasps. We found that a naive clustering of wing shape data from taxonomically and geographically heterogeneous samples of workers returned groups congruent with species. We also confirmed that individuals can be reliably attributed to their genus, species and populations on the basis of their wing shape. Our results suggested that the shape variation reflects the evolutionary history with a potential influence of other factors such as body shape, climate and mimicry selective pressures. However, the high dimensionality of wing shape variation may have prevented absolute convergences between the different species. Wing venation shape is thus a taxonomically relevant marker combining the accuracy of quantitative characters with the specificity required for identification criteria. This marker may also highlight adaptive processes that could help understand the wing's influence on insect flight.

  9. On the Minimum Induced Drag of Wings

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.

    2007-01-01

    This viewgraph presentation reviews the minimum induced drag of wings. The topics include: 1) The History of Spanload Development of the optimum spanload Winglets and their implications; 2) Horten Sailplanes; and 3) Flight Mechanics & Adverse yaw.

  10. The Design of Airplane Wing Ribs

    NASA Technical Reports Server (NTRS)

    Newlin, J A; Trayer, George W

    1931-01-01

    The purpose of this investigation was to obtain information for use in the design of truss and plywood forms, particularly with reference to wing ribs. Tests were made on many designs of wing ribs, comparing different types in various sizes. Many tests were also made on parallel-chord specimens of truss and plywood forms in place of the actual ribs and on parts of wing ribs, such as truss diagonals and sections of cap strips. It was found that for ribs of any size or proportions, when they were designed to obtain a well-balanced construction and were carefully manufactured, distinct types are of various efficiencies; the efficiency is based on the strength per unit of weight. In all types of ribs the heavier are the stronger per unit of weight. Reductions in the weight of wing ribs are accompanied even in efficient designs by a much greater proportional reduction in strength.

  11. Mallard age and sex determination from wings

    USGS Publications Warehouse

    Carney, S.M.; Geis, A.D.

    1960-01-01

    This paper describes characters on the wing plumage of the mallard that indicate age and sex. A key outlines a logical order in which to check age and sex characters on wings. This method was tested and found to be more than 95 percent reliable, although it was found that considerable practice and training with known-age specimens was required to achieve this level of accuracy....The implications of this technique and the sampling procedure it permits are discussed. Wing collections could provide information on production, and, if coupled with a banding program could permit seasonal population estimates to be calculated. In addition, representative samples of wings would provide data to check the reliability of several other waterfowl surveys.

  12. Oblique Wing Research Aircraft on ramp

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This 1976 photograph of the Oblique Wing Research Aircraft was taken in front of the NASA Flight Research Center hangar, located at Edwards Air Force Base, California. In the photograph the noseboom, pitot-static probe, and angles-of-attack and sideslip flow vanes(covered-up) are attached to the front of the vehicle. The clear nose dome for the television camera, and the shrouded propellor for the 90 horsepower engine are clearly seen. The Oblique Wing Research Aircraft was a small, remotely piloted, research craft designed and flight tested to look at the aerodynamic characteristics of an oblique wing and the control laws necessary to achieve acceptable handling qualities. NASA Dryden Flight Research Center and the NASA Ames Research Center conducted research with this aircraft in the mid-1970s to investigate the feasibility of flying an oblique wing aircraft.

  13. Coriolis effects enhance lift on revolving wings.

    PubMed

    Jardin, T; David, L

    2015-03-01

    At high angles of attack, an aircraft wing stalls. This dreaded event is characterized by the development of a leading edge vortex on the upper surface of the wing, followed by its shedding which causes a drastic drop in the aerodynamic lift. At similar angles of attack, the leading edge vortex on an insect wing or an autorotating seed membrane remains robustly attached, ensuring high sustained lift. What are the mechanisms responsible for both leading edge vortex attachment and high lift generation on revolving wings? We review the three main hypotheses that attempt to explain this specificity and, using direct numerical simulations of the Navier-Stokes equations, we show that the latter originates in Coriolis effects.

  14. Evaluation and treatment of the winged scapula.

    PubMed

    Duralde, X A

    1995-01-01

    Winging of the scapula is often associated with palsy of the serratus anterior muscle, but can be due to numerous pathologic processes. Often representing more than just a cosmetic deformity of the shoulder, it can lead to significant pain and functional impairment. Winging can be due to disease in the nerves, muscles, bones, and joints in the periscapular area and may be either a static or dynamic deformity. Treatment of the winged scapula depends on the severity of the patient's complaints, and the exact treatment required is determined by the underlying pathologic process. A systematic approach to the winged scapula is essential to ascertain the underlying cause and successfully manage this deformity of the shoulder girdle.

  15. Measurements of Supersonic Wing Tip Vortices

    NASA Technical Reports Server (NTRS)

    Smart, Michael K.; Kalkhoran, Iraj M.; Benston, James

    1994-01-01

    An experimental survey of supersonic wing tip vortices has been conducted at Mach 2.5 using small performed 2.25 chords down-stream of a semi-span rectangular wing at angle of attack of 5 and 10 degrees. The main objective of the experiments was to determine the Mach number, flow angularity and total pressure distribution in the core region of supersonic wing tip vortices. A secondary aim was to demonstrate the feasibility of using cone probes calibrated with a numerical flow solver to measure flow characteristics at supersonic speeds. Results showed that the numerically generated calibration curves can be used for 4-hole cone probes, but were not sufficiently accurate for conventional 5-hole probes due to nose bluntness effects. Combination of 4-hole cone probe measurements with independent pitot pressure measurements indicated a significant Mach number and total pressure deficit in the core regions of supersonic wing tip vortices, combined with an asymmetric 'Burger like' swirl distribution.

  16. Territoriality in the Red-winged Blackbird

    ERIC Educational Resources Information Center

    Newhouse, Chris

    1977-01-01

    Reports findings on research in Red-winged Blackbird territoriality and describes the educational potential of use of similar studies in the classroom. Territorial mapping and observational techniques are explained. (CS)

  17. Left-Wing Extremism: The Current Threat

    SciTech Connect

    Karl A. Seger

    2001-04-30

    Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

  18. Strake-wing analysis and design

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.

    1978-01-01

    The technology is still evolving for improving the transonic maneuver capability of strake-wing configurations. Much of the work to date has been of an experimental nature; whereas, the theories that are available to handle vortex-flow aerodynamics have mostly treated wings of constant sweep. Hence, two efforts were undertaken. They are: (1) to extend the suction analogy to more general configurations and evaluate the method by using selected critical planforms; and (2) to develop a procedure for strake planform shaping and test the resulting shape in conjunction with a wing-body. The conclusions from this study are that (1) some improvement has been made in estimating high-angle-of-attack longitudinal aerodynamics, and (2) the gothic strake designed with the developed procedure does produce a stable vortex system in the presence of a wing body and flat post-maximum-lift characteristics.

  19. Delta launch vehicle inertial guidance system (DIGS)

    NASA Technical Reports Server (NTRS)

    Duck, K. I.

    1973-01-01

    The Delta inertial guidance system, part of the Delta launch vehicle improvement effort, has been flown on three launches and was found to perform as expected for a variety of mission profiles and vehicle configurations.

  20. Revisiting double Dirac delta potential

    NASA Astrophysics Data System (ADS)

    Ahmed, Zafar; Kumar, Sachin; Sharma, Mayank; Sharma, Vibhu

    2016-07-01

    We study a general double Dirac delta potential to show that this is the simplest yet still versatile solvable potential to introduce double wells, avoided crossings, resonances and perfect transmission (T = 1). Perfect transmission energies turn out to be the critical property of symmetric and anti-symmetric cases wherein these discrete energies are found to correspond to the eigenvalues of a Dirac delta potential placed symmetrically between two rigid walls. For well(s) or barrier(s), perfect transmission (or zero reflectivity, R(E)) at energy E=0 is non-intuitive. However, this has been found earlier and called the ‘threshold anomaly’. Here we show that it is a critical phenomenon and we can have 0≤slant R(0)\\lt 1 when the parameters of the double delta potential satisfy an interesting condition. We also invoke a zero-energy and zero curvature eigenstate (\\psi (x)={Ax}+B) of the delta well between two symmetric rigid walls for R(0)=0. We resolve that the resonant energies and the perfect transmission energies are different and they arise differently.

  1. N-{Delta} weak transition

    SciTech Connect

    Graczyk, Krzysztof M.

    2011-11-23

    A short review of the Rein-Sehgal and isobar models is presented. The attention is focused on the nucleon-{Delta}(1232) weak transition form-factors. The results of the recent re-analyses of the ANL and BNL bubble chamber neutrino-deuteron scattering data are discussed.

  2. Delta-ALA urine test

    MedlinePlus

    ... increased level of urinary delta-ALA may indicate: Lead poisoning Porphyria (several types) A decreased level may occur ... A.M. Editorial team. Related MedlinePlus Health Topics Lead Poisoning Porphyria Browse the Encyclopedia A.D.A.M., ...

  3. Spongeplant Spreading in the Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive, exotic aquatic plants impact a range of important economic and ecological functions in the Sacramento-San Joaquin Delta of California, and the state now spends over $5 million to control water hyacinth and Brazilian waterweed. In 2007, a new exotic floating plant South American Spongeplan...

  4. Phytoplankton fuels Delta food web

    USGS Publications Warehouse

    Jassby, Alan D.; Cloern, James E.; Muller-Solger, A. B.

    2003-01-01

    Populations of certain fishes and invertebrates in the Sacramento-San Joaquin Delta have declined in abundance in recent decades and there is evidence that food supply is partly responsible. While many sources of organic matter in the Delta could be supporting fish populations indirectly through the food web (including aquatic vegetation and decaying organic matter from agricultural drainage), a careful accounting shows that phytoplankton is the dominant food source. Phytoplankton, communities of microscopic free-floating algae, are the most important food source on a Delta-wide scale when both food quantity and quality are taken into account. These microscopic algae have declined since the late 1960s. Fertilizer and pesticide runoff do not appear to be playing a direct role in long-term phytoplankton changes; rather, species invasions, increasing water transparency and fluctuations in water transport are responsible. Although the potential toxicity of herbicides and pesticides to plank- ton in the Delta is well documented, the ecological significance remains speculative. Nutrient inputs from agricultural runoff at current levels, in combination with increasing transparency, could result in harmful al- gal blooms. 

  5. Aircraft noise propagation. [sound diffraction by wings

    NASA Technical Reports Server (NTRS)

    Hadden, W. J.; Pierce, A. D.

    1978-01-01

    Sound diffraction experiments conducted at NASA Langley Research Center to study the acoustical implications of the engine over wing configuration (noise-shielding by wing) and to provide a data base for assessing various theoretical approaches to the problem of aircraft noise reduction are described. Topics explored include the theory of sound diffraction around screens and wedges; the scattering of spherical waves by rectangular patches; plane wave diffraction by a wedge with finite impedence; and the effects of ambient flow and distribution sources.

  6. Modal control of an oblique wing aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, James D.

    1989-01-01

    A linear modal control algorithm is applied to the NASA Oblique Wing Research Aircraft (OWRA). The control law is evaluated using a detailed nonlinear flight simulation. It is shown that the modal control law attenuates the coupling and nonlinear aerodynamics of the oblique wing and remains stable during control saturation caused by large command inputs or large external disturbances. The technique controls each natural mode independently allowing single-input/single-output techniques to be applied to multiple-input/multiple-output systems.

  7. Numerical simulation of swept-wing flows

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.

    1991-01-01

    The transition process characteristics of flows over swept wings were computationally modelled. The crossflow instability and crossflow/T-S wave interaction are analyzed through the numerical solution of the full three dimensional Navier-Stokes equations including unsteadiness, curvature, and sweep. The leading-edge region of a swept wing is considered in a three-dimensional spatial simulation with random disturbances as the initial conditions.

  8. Omnidirectional and Controllable Wing Using Fluid Ejection

    DTIC Science & Technology

    1996-10-22

    8217 Q edge along a continuous perimeter from which fluid outflow tangential to the Coanda edge is -1 o selectively effected by omnidirectional...the air flow over the wing ’ ^ surfaces is directed internally within the fuselage. The tangential ejection of fluid outflow over Coanda edge...tangential ejection 2 outflow from a Coanda edge of a lift wing independently of its translation direction through an d ambient fluid so as

  9. Integrated technology wing study (oral presentation)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The design of a plan for a commercial transport manufacturer to integrate advanced technology into a new wing for a derivative and/or new aircraft that could enter service in the late 1980s to early 1990s time period is proposed. The development of a new wing for a derivative or a new long range commercial aircraft and the incorporation of cost effective technologies are studied. The decision provides guidelines for the best allocation of research funds.

  10. Kinematics and dynamics of sphenisciform wings

    NASA Astrophysics Data System (ADS)

    Noca, Flavio; Crisinel, Fabien; Munier, Pierre

    2011-11-01

    Three-dimensional scans of three different species of taxidermied penguins (Aptenodytes patagonicus, Pygoscelis papua, and Spheniscus magellanicus) have been performed. A three-dimensional reproduction of an African penguin (Sphenicus demersus) wing was manufactured and tested in a hydrodynamic channel. A six-degree-of-freedom robot was programmed to perform the three dimensional kinematics, obtained from actual footage. A six-component force balance was used to retrieve the dynamics of the wing motion. Results will be presented and discussed.

  11. Butterfly wing color: A photonic crystal demonstration

    NASA Astrophysics Data System (ADS)

    Proietti Zaccaria, Remo

    2016-01-01

    We have theoretically modeled the optical behavior of a natural occurring photonic crystal, as defined by the geometrical characteristics of the Teinopalpus Imperialis butterfly. In particular, following a genetic algorithm approach, we demonstrate how its wings follow a triclinic crystal geometry with a tetrahedron unit base. By performing both photonic band analysis and transmission/reflection simulations, we are able to explain the characteristic colors emerging by the butterfly wings, thus confirming their crystal form.

  12. The oscillating wing with aerodynamically balanced elevator

    NASA Technical Reports Server (NTRS)

    Kussner, H G; Schwartz, I

    1941-01-01

    The two-dimensional problem of the oscillating wing with aerodynamically balanced elevator is treated in the manner that the wing is replaced by a plate with bends and stages and the airfoil section by a mean line consisting of one or more straights. The computed formulas and tables permit, on these premises, the prediction of the pressure distribution and of the aerodynamic reactions of oscillating elevators and tabs with any position of elevator hinge in respect to elevator leading edge.

  13. Maintenance of large deltas through channelization

    NASA Astrophysics Data System (ADS)

    Giosan, L.; Constatinescu, S.; Filip, F.

    2013-12-01

    A new paradigm for delta restoration is currently taking shape using primarily Mississippi delta examples. Here we propose an alternative for delta maintenance primarily envisioned for wave-influenced deltas based on Danube delta experiences. Over the last half century, while the total sediment load of the Danube dramatically decreased due to dam construction on tributaries and its mainstem, a grand experiment was inadvertently run in the Danube delta: the construction of a dense network of canals, which almost tripled the water discharge toward the interior of the delta plain. We use core-based and chart-based sedimentation rates and patterns to explore the delta transition from the natural to an anthropogenic regime, to understand the effects of far-field damming and near-field channelization, and to construct a conceptual model for delta development as a function sediment partition between the delta plain and the delta coastal fringe. We show that sediment fluxes increased to the delta plain due to channelization, counteracting sea level rise. In turn, the delta coastal fringe was most impacted by the Danube's sediment load collapse. Furthermore, we show that morphodynamic feedbacks at the river mouth are crucial in trapping sediment near the coast and constructing wave-dominated deltas or lobes or delaying their destruction. As a general conclusion, we suggest that increased channelization that mimics and enhances natural processes may provide a simple solution for keeping delta plains above sea level and that abandonment of wave-dominated lobes may be the most long term efficient solution for protecting the internal fluvial regions of deltas and provide new coastal growth downcoast.

  14. Topology of vortex-wing interaction

    NASA Astrophysics Data System (ADS)

    McKenna, C.; Rockwell, D.

    2016-10-01

    A trailing vortex incident upon a wing can generate different modes of vortex-wing interaction. These modes, which may involve either enhancement or suppression of the vortex generated at the tip of the wing, are classified on the basis of the present experiments together with computations at the Air Force Research Laboratory. Occurrence of a given mode of interaction is predominantly determined by the dimensionless location of the incident vortex relative to the tip of the wing and is relatively insensitive to the Reynolds number and dimensionless circulation of the incident vortex. The genesis of the basic interaction modes is clarified using streamline topology with associated critical points that show compatibility between complex streamline patterns in the vicinity of the tip of the wing. Whereas formation of an enhanced tip vortex involves a region of large upwash in conjunction with localized flow separation, complete suppression of the tip vortex is associated with a small-scale separation-reattachment bubble bounded by downwash at the wing tip.

  15. Limited junctional diversity of V delta 5-J delta 1 rearrangement in multiple sclerosis patients.

    PubMed

    Nowak, J S; Michałowska-Wender, G; Januszkiewicz, D; Wender, M

    1997-01-01

    T-cell receptor (TCR) delta gene repertoire, as assessed by V delta-J delta rearrangements, has been analyzed in nine multiple sclerosis (MS) cases and in 30 healthy individuals by seminested PCR technique. Among the V delta-J delta junctional diversities studied, the most striking result has been observed in V delta 5-J delta 1 rearrangement. The detection of repeated V delta 5-J delta 1 nucleotide sequences in all analyzed clones from seven out of nine patients studied proved the monoclonal nature of gamma delta T-cells with V delta 5-J delta 1 rearrangement. The clonal nature of this rearrangement proved by PAGE and sequencing analysis may suggest an antigen-driven expansion of gamma delta T cells and argues for a significant role of gamma delta T-cells with V delta 5-J delta 1 rearrangement in MS pathogenesis. However, it cannot be excluded that clonal expansion of these lymphocytes may represent secondary change to central nervous system damage.

  16. Numerical study of the trailing vortex of a wing with wing-tip blowing

    NASA Technical Reports Server (NTRS)

    Lim, Hock-Bin

    1994-01-01

    Trailing vortices generated by lifting surfaces such as helicopter rotor blades, ship propellers, fixed wings, and canard control surfaces are known to be the source of noise, vibration, cavitation, degradation of performance, and other hazardous problems. Controlling these vortices is, therefore, of practical interest. The formation and behavior of the trailing vortices are studied in the present research. In addition, wing-tip blowing concepts employing axial blowing and spanwise blowing are studied to determine their effectiveness in controlling these vortices and their effects on the performance of the wing. The 3D, unsteady, thin-layer compressible Navier-Stokes equations are solved using a time-accurate, implicit, finite difference scheme that employs LU-ADI factorization. The wing-tip blowing is simulated using the actuator plane concept, thereby, not requiring resolution of the jet slot geometry. Furthermore, the solution blanking feature of the chimera scheme is used to simplify the parametric study procedure for the wing-tip blowing. Computed results are shown to compare favorably with experimental measurements. It is found that axial wing-tip blowing, although delaying the rolling-up of the trailing vortices and the near-field behavior of the flowfield, does not dissipate the circulation strength of the trailing vortex farther downstream. Spanwise wing-tip blowing has the effect of displacing the trailing vortices outboard and upward. The increased 'wing-span' due to the spanwise wing-tip blowing has the effect of lift augmentation on the wing and the strengthening of the trailing vortices. Secondary trailing vortices are created at high spanwise wing-tip blowing intensities.

  17. 27 CFR 9.96 - Mississippi Delta.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Mississippi Delta. 9.96... Mississippi Delta. (a) Name. The name of the viticultural area described in this section is “Mississippi Delta.” (b) Approved maps. The appropriate maps for determining the boundaries of the Mississippi...

  18. 27 CFR 9.96 - Mississippi Delta.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Mississippi Delta. 9.96... Mississippi Delta. (a) Name. The name of the viticultural area described in this section is “Mississippi Delta.” (b) Approved maps. The appropriate maps for determining the boundaries of the Mississippi...

  19. 27 CFR 9.96 - Mississippi Delta.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Mississippi Delta. 9.96... Mississippi Delta. (a) Name. The name of the viticultural area described in this section is “Mississippi Delta.” (b) Approved maps. The appropriate maps for determining the boundaries of the Mississippi...

  20. 27 CFR 9.96 - Mississippi Delta.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Mississippi Delta. 9.96... Mississippi Delta. (a) Name. The name of the viticultural area described in this section is “Mississippi Delta.” (b) Approved maps. The appropriate maps for determining the boundaries of the Mississippi...

  1. 27 CFR 9.96 - Mississippi Delta.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Mississippi Delta. 9.96... Mississippi Delta. (a) Name. The name of the viticultural area described in this section is “Mississippi Delta.” (b) Approved maps. The appropriate maps for determining the boundaries of the Mississippi...

  2. Transonic Pitch Damping of a Delta Wing Aircraft Determined from Flight Measurements,

    DTIC Science & Technology

    1979-07-01

    and theoretical estimates where possible. 2. MATHEMATICAL MODEL In this section a mathematical model is developed which describes the aircraft ... longitudinal short period response to an elevator input. A basic linear model is extended to include possible non-linearities with incidence in the pitching

  3. An experimental study of the effect of pitch rate on delta wing aerodynamics and stability

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.

    1988-01-01

    The final report for the research conducted under this grant (NAG1-641) are contained in the two documents attached as Apendices A and B. The first is the presentation made to NASA Langley personnel on 10 December, 1987, which gave a brief analysis of the experiments. The second is a copy of an AIAA paper given in June 1988, which describes in detail the test setup, data acquisition and reduction, and results obtained.

  4. Spanwise Wing Loads on the Space Shuttle Orbiter during Roll Maneuver

    NASA Technical Reports Server (NTRS)

    Doggett, Glen P.

    2007-01-01

    Spanwise aerodynamic loads for the low-Mach, high-attitude portion of ascent for the Space Shuttle Orbiter are presented. In this Mach 0.3 flight regime, also called the roll maneuver, pre-stall and post-stall distributions of aerodynamic wing shear force, bending moment, and torsion moment were obtained from wind tunnel test data and computational fluid dynamics simulations of the Space Shuttle Launch Vehicle. The spanwise loads were computed by integration of surface pressure data. The existing historical operational database of spanwise wing loads for the Orbiter does not cover this low-Mach, high-attitude condition, however for Mach 0.6 low-attitude conditions the experimental and computational results compare well with the operational data which has been validated by past flight measurements. Spanwise load distributions exhibit typical delta-wing characteristics. The computational results capture well the peak loading condition in the pre-stall case, but show more load relief for the post-stall case than was observed in the wind tunnel test data.

  5. Theoretical damping in roll and rolling moment due to differential wing incidence for slender cruciform wings and wing-body combinations

    NASA Technical Reports Server (NTRS)

    Adams, Gaynor J; DUGAN DUANE W

    1952-01-01

    A method of analysis based on slender-wing theory is developed to investigate the characteristics in roll of slender cruciform wings and wing-body combinations. The method makes use of the conformal mapping processes of classical hydrodynamics which transform the region outside a circle and the region outside an arbitrary arrangement of line segments intersecting at the origin. The method of analysis may be utilized to solve other slender cruciform wing-body problems involving arbitrarily assigned boundary conditions. (author)

  6. Imaging and Laser Spectroscopy Investigation of Insect Wings

    NASA Astrophysics Data System (ADS)

    Shiver, Tegan; Lawhead, Carlos; Anderson, Josiah; Cooper, Nathan; Ujj, Laszlo; Pall Life Sciences Collaboration

    2014-03-01

    Measuring the surface morphology and chemical composition of insect wings is important to understand the extreme mechanical properties and the biophysical functionalities of the wings. We have measured the image of the membrane of the cicada (genus Tibicen) wing with the help of Scanning Electron Microscopy (SEM). The results confirm the existing periodic structure of the wing measured previously. The SEM imaging can be used to measure the surface morphology of any insect species wings. The physical surface structure of the cicada wing is an example of a new class of biomaterials that can kill bacteria on contact. In order to identify the chemical composition of the wing, we have measured the vibrational spectra of the wing's membrane (Raman and CARS). The measured spectra are consistent with the original assumption that the wing membrane is composed of protein, wax, and chitin. The results of these studies can be used to make artificial materials in the future.

  7. Nonlinear Aerodynamics and the Design of Wing Tips

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan

    1991-01-01

    The analysis and design of wing tips for fixed wing and rotary wing aircraft still remains part art, part science. Although the design of airfoil sections and basic planform geometry is well developed, the tip regions require more detailed consideration. This is important because of the strong impact of wing tip flow on wing drag; although the tip region constitutes a small portion of the wing, its effect on the drag can be significant. The induced drag of a wing is, for a given lift and speed, inversely proportional to the square of the wing span. Concepts are proposed as a means of reducing drag. Modern computational methods provide a tool for studying these issues in greater detail. The purpose of the current research program is to improve the understanding of the fundamental issues involved in the design of wing tips and to develop the range of computational and experimental tools needed for further study of these ideas.

  8. Functional Gustatory Role of Chemoreceptors in Drosophila Wings.

    PubMed

    Raad, Hussein; Ferveur, Jean-François; Ledger, Neil; Capovilla, Maria; Robichon, Alain

    2016-05-17

    Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca(2+) levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechanical grooming, which facilitates the contact between tastants and wing chemoreceptors, and the vibrations of flapping wings that nebulize volatile molecules as carboxylic acids. Together, these data demonstrate that the Drosophila wing chemosensory sensilla are a functional taste organ and that they may have a role in the exploration of ecological niches.

  9. Aerodynamics of two-dimensional flapping wings in tandem configuration

    NASA Astrophysics Data System (ADS)

    Lua, K. B.; Lu, H.; Zhang, X. H.; Lim, T. T.; Yeo, K. S.

    2016-12-01

    This paper reports a fundamental investigation on the aerodynamics of two-dimensional flapping wings in tandem configuration in forward flight. Of particular interest are the effects of phase angle (φ) and center-to-center distance (L) between the front wing and the rear wing on the aerodynamic force generation at a Reynolds number of 5000. Both experimental and numerical methods were employed. A force sensor was used to measure the time-history aerodynamic forces experienced by the two wings and digital particle image velocimetry was utilized to obtain the corresponding flow structures. Both the front wing and the rear wing executed the same simple harmonic motions with φ ranging from -180° to 180° and four values of L, i.e., 1.5c, 2c, 3c, and 4c (c is the wing chord length). Results show that at fixed L = 2c, tandem wings perform better than the sum of two single wings that flap independently in terms of thrust for phase angle approximately from -90° to 90°. The maximum thrust on the rear wing occurs during in-phase flapping (φ = 0°). Correlation of transient thrust and flow structure indicates that there are generally two types of wing-wake interactions, depending on whether the rear wing crosses the shear layer shed from the front wing. Finally, increasing wing spacing has similar effect as reducing the phase angle, and an approximate mathematical model is derived to describe the relationship between these two parameters.

  10. Structural Design of Wing Twist for Pitch Control of Joined Wing Sensor Craft

    DTIC Science & Technology

    2006-03-01

    obtained deflections either. Although the strain induced into the structure by the aft wing twist was on the order of the aerodynamic forces alone...4-14 4.14 Slit Vertical Restraint Forces for Configuration #4 with Twist and Aerodynamic ...4-4 4.3 Aft Wing Strains Due to Twist and Aerodynamic Loads . . . . . . . . . . . . . . . . 4-4

  11. 3. N elevation, E wing; 3/4 view of W wing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. N elevation, E wing; 3/4 view of W wing showing E and N elevations; N elevation of Building 69, Plating and Tinning Shop; looking SW. (Ceronie) - Rock Island Arsenal, Building No. 66, Rodman Avenue between Third & Fourth Streets, Rock Island, Rock Island County, IL

  12. Effect of wing-wake interaction on aerodynamic force generation on a 2D flapping wing

    NASA Astrophysics Data System (ADS)

    Lua, K. B.; Lim, T. T.; Yeo, K. S.

    2011-07-01

    This paper is motivated by the works of Dickinson et al. (Science 284:1954-1960, 1999) and Sun and Tang (J Exp Biol 205:55-70, 2002) which provided two different perspectives on the influence of wing-wake interaction (or wake capture) on lift generation during flapping motion. Dickinson et al. (Science 284:1954-1960, 1999) hypothesize that wake capture is responsible for the additional lift generated at the early phase of each stroke, while Sun and Tang (J Exp Biol 205:55-70, 2002) believe otherwise. Here, we take a more fundamental approach to study the effect of wing-wake interaction on the aerodynamic force generation by carrying out simultaneous force and flow field measurements on a two-dimensional wing subjected to two different types of motion. In one of the motions, the wing at a fixed angle of attack was made to follow a motion profile described by "acceleration-constant velocity-deceleration". Here, the wing was first linearly accelerated from rest to a predetermined maximum velocity and remains at that speed for set duration before linearly decelerating to a stop. The acceleration and deceleration phase each accounted for only 10% of the stroke, and the stroke covered a total distance of three chord lengths. In another motion, the wing was subjected to the same above-mentioned movement, but in a back and forth manner over twenty strokes. Results show that there are two possible outcomes of wing-wake interaction. The first outcome occurs when the wing encounters a pair of counter-rotating wake vortices on the reverse stroke, and the induced velocity of these vortices impinges directly on the windward side of the wing, resulting in a higher oncoming flow to the wing, which translates into a higher lift. Another outcome is when the wing encounters one vortex on the reverse stroke, and the close proximity of this vortex to the windward surface of the wing, coupled with the vortex suction effect (caused by low pressure region at the center of the vortex

  13. Wing Torsional Stiffness Tests of the Active Aeroelastic Wing F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Olney, Candida D.; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.

    2002-01-01

    The left wing of the Active Aeroelastic Wing (AAW) F/A-18 airplane has been ground-load-tested to quantify its torsional stiffness. The test has been performed at the NASA Dryden Flight Research Center in November 1996, and again in April 2001 after a wing skin modification was performed. The primary objectives of these tests were to characterize the wing behavior before the first flight, and provide a before-and-after measurement of the torsional stiffness. Two streamwise load couples have been applied. The wing skin modification is shown to have more torsional flexibility than the original configuration has. Additionally, structural hysteresis is shown to be reduced by the skin modification. Data comparisons show good repeatability between the tests.

  14. A Fundamental Study for Aerodynamic Characteristics of Supersonic Biplane Wing and Wing-Body Configurations

    NASA Astrophysics Data System (ADS)

    Odaka, Yusuke; Kusunose, Kazuhiro

    In order to develop a quiet supersonic transport, it is necessary to reduce shock waves around the transport. Shock waves, in general, are the cause of the airplane's sonic boom. Authors have been studying an aerodynamic feasibility of supersonic biplanes based on the concept of the Busemann biplane. In this paper, the three dimensional effect of wing geometries on their wave drags, including wing tip effects and the interference effects between the wing and a body (Wing-Body configurations) are investigated, using CFD code in Euler (inviscid) mode. As a result, we can conclude that the supersonic biplane wings at their design Mach number (M∞=1.7) are still capable of reducing wave drag significantly similar to that of the 2-D supersonic biplane.

  15. Experimental investigation of a flapping wing model

    NASA Astrophysics Data System (ADS)

    Hubel, Tatjana Y.; Tropea, Cameron

    2009-05-01

    The main objective of this research study was to investigate the aerodynamic forces of an avian flapping wing model system. The model size and the flow conditions were chosen to approximate the flight of a goose. Direct force measurements, using a three-component balance, and PIV flow field measurements parallel and perpendicular to the oncoming flow, were performed in a wind tunnel at Reynolds numbers between 28,000 and 141,000 (3-15 m/s), throughout a range of reduced frequencies between 0.04 and 0.20. The appropriateness of quasi-steady assumptions used to compare 2D, time-averaged particle image velocimetry (PIV) measurements in the wake with direct force measurements was evaluated. The vertical force coefficient for flapping wings was typically significantly higher than the maximum coefficient of the fixed wing, implying the influence of unsteady effects, such as delayed stall, even at low reduced frequencies. This puts the validity of the quasi-steady assumption into question. The (local) change in circulation over the wing beat cycle and the circulation distribution along the wingspan were obtained from the measurements in the tip and transverse vortex planes. Flow separation could be observed in the distribution of the circulation, and while the circulation derived from the wake measurements failed to agree exactly with the absolute value of the circulation, the change in circulation over the wing beat cycle was in excellent agreement for low and moderate reduced frequencies. The comparison between the PIV measurements in the two perpendicular planes and the direct force balance measurements, show that within certain limitations the wake visualization is a powerful tool to gain insight into force generation and the flow behavior on flapping wings over the wing beat cycle.

  16. Experimental investigation of a flapping wing model

    NASA Astrophysics Data System (ADS)

    Hubel, Tatjana Y.; Tropea, Cameron

    The main objective of this research study was to investigate the aerodynamic forces of an avian flapping wing model system. The model size and the flow conditions were chosen to approximate the flight of a goose. Direct force measurements, using a three-component balance, and PIV flow field measurements parallel and perpendicular to the oncoming flow, were performed in a wind tunnel at Reynolds numbers between 28,000 and 141,000 (3-15 m/s), throughout a range of reduced frequencies between 0.04 and 0.20. The appropriateness of quasi-steady assumptions used to compare 2D, time-averaged particle image velocimetry (PIV) measurements in the wake with direct force measurements was evaluated. The vertical force coefficient for flapping wings was typically significantly higher than the maximum coefficient of the fixed wing, implying the influence of unsteady effects, such as delayed stall, even at low reduced frequencies. This puts the validity of the quasi-steady assumption into question. The (local) change in circulation over the wing beat cycle and the circulation distribution along the wingspan were obtained from the measurements in the tip and transverse vortex planes. Flow separation could be observed in the distribution of the circulation, and while the circulation derived from the wake measurements failed to agree exactly with the absolute value of the circulation, the change in circulation over the wing beat cycle was in excellent agreement for low and moderate reduced frequencies. The comparison between the PIV measurements in the two perpendicular planes and the direct force balance measurements, show that within certain limitations the wake visualization is a powerful tool to gain insight into force generation and the flow behavior on flapping wings over the wing beat cycle.

  17. Reynolds number effects on the aerodynamic characteristics of irregular planform wings at Mach number 0.3. [in the Ames 12 ft pressure wind tunnel

    NASA Technical Reports Server (NTRS)

    Kruse, R. L.; Lovette, G. H.; Spencer, B., Jr.

    1977-01-01

    The subsonic aerodynamic characteristics of a series of irregular planform wings were studied in wind tunnel tests conducted at M = 0.3 over a range of Reynolds numbers from 1.6 million to 26 million/m. The five basic wing planforms varied from a trapezoidal to a delta shape. Leading edge extensions, added to the basic shape, varied in approximately 5 deg increments from the wing leading edge sweep-back angle to a maximum 80 deg. Most of the tests were conducted using an NACA 0008 airfoil section with grit boundary layer trips. Tests were also conducted using an NACA 0012 airfoil section and an 8% thick wedge. In addition, the effect of free transition (no grit) was investigated. A body was used on all models.

  18. Discharge Asymmetry in Delta Bifurcations

    NASA Astrophysics Data System (ADS)

    Salter, G.; Paola, C.; Voller, V. R.

    2015-12-01

    Distributary networks are formed by channels which bifurcate downstream in a river delta. Sediment and water fluxes are often split unequally in delta bifurcations. Understanding flux asymmetry in distributary networks is important for predicting how a delta will respond to sea-level rise. We present results of a quasi-1D model of a delta bifurcation. Consistent with previous results, in the absence of deposition, stable bifurcations may be either symmetric or asymmetric, depending on flow conditions. However, in a depositional setting, a stable asymmetric flow partitioning is no longer possible, as the dominant branch becomes less and less steep relative to the other branch. This feedback eventually causes the second branch to become favored. For the depositional case, we identify three regimes of bifurcation behavior: 1) stable symmetric bifurcation, 2) "soft" avulsions where the dominant branch switches without complete abandonment of the previous channel, and 3) complete avulsions where one branch is completely abandoned. In each case, the bifurcation is symmetric in the long-term average, but the latter two allow for short-term asymmetry. We find that keeping upstream sediment and water discharges fixed, as downstream channel length increases the regime shifts from symmetric to soft avulsions to complete avulsions. In the two avulsion regimes we examine the effect of upstream sediment and water discharges and downstream channel length on avulsion period and maximum discharge ratio. Finally, we compare numerical modeling results to a fixed-wall bifurcation experiment. As in the numerical model, the presence or absence of a downstream sink exerts a strong control on system behavior. If a sink is present, a bifurcation may be asymmetric indefinitely. Conversely, without a sink the system is depositional, and the feedback between sediment discharge asymmetry and slope causes the bifurcation to remain symmetric in the long-term average.

  19. Recruitment of cells into the Drosophila wing primordium by a feed-forward circuit of vestigial autoregulation.

    PubMed

    Zecca, Myriam; Struhl, Gary

    2007-08-01

    The Drosophila wing primordium is defined by expression of the selector gene vestigial (vg) in a discrete subpopulation of cells within the wing imaginal disc. Following the early segregation of the disc into dorsal (D) and ventral (V) compartments, vg expression is governed by signals generated along the boundary between the two compartments. Short-range DSL (Delta/Serrate/LAG-2)-Notch signaling between D and V cells drives vg expression in ;border' cells that flank the boundary. It also induces these same cells to secrete the long-range morphogen Wingless (Wg), which drives vg expression in surrounding cells up to 25-30 cell diameters away. Here, we show that Wg signaling is not sufficient to activate vg expression away from the D-V boundary. Instead, Wg must act in combination with a short-range signal produced by cells that already express vg. We present evidence that this vg-dependent, vg-inducing signal feeds forward from one cell to the next to entrain surrounding cells to join the growing wing primordium in response to Wg. We propose that Wg promotes the expansion of the wing primordium following the D-V segregation by fueling this non-autonomous autoregulatory mechanism.

  20. Mission adaptive wing soars at NASA Facility

    NASA Technical Reports Server (NTRS)

    Rahn, D.; Reinertson, L.

    1986-01-01

    Research pilots have flown the Mission Adaptive Wing (MAW) aircraft, a highly modified F-111 jet fighter, from subsonic speeds up to Mach 1.4 in initial flight tests. The inital test flights are clearing the envelope with the wings flexed at various curvatures. This process allows further research data to be safely gathered so that designers of future variable camber wing aircraft have the best information possible. The altitude envelope was cleared from 27,500 down to 7,500 feet where denser air can cause more stress on the aircraft. Testing with the aircraft was conducted with wing sweep angles of 26 and 58 degrees. At the conclusion of the performance tests in the manual configuration, the system will be reconfigured for automatic mode tests. The limited automatic modes include maneuver camber control where the wings are deflected automatically to the best lift versus drag combination for a particular speed; cruise camber control which can help protect the aircraft from high G stresses; and maneuver enhancement/gust alleviation which is designed to improve the aircraft's up and down movement response to pilot commands and reduce the aircraft response to turbulence.