Science.gov

Sample records for 60-inch cyclotron program

  1. The Automated Palomar 60 Inch Telescope

    NASA Astrophysics Data System (ADS)

    Cenko, S. Bradley; Fox, Derek B.; Moon, Dae-Sik; Harrison, Fiona A.; Kulkarni, S. R.; Henning, John R.; Guzman, C. Dani; Bonati, Marco; Smith, Roger M.; Thicksten, Robert P.; Doyle, Michael W.; Petrie, Hal L.; Gal-Yam, Avishay; Soderberg, Alicia M.; Anagnostou, Nathaniel L.; Laity, Anastasia C.

    2006-10-01

    We have converted the Palomar 60 inch (1.52 m) telescope from a classic night-assistant-operated telescope to a fully robotic facility. The automated system, which has been operational since 2004 September, is designed for moderately fast (t<~3 minutes) and sustained (R<~23 mag) observations of gamma-ray burst afterglows and other transient events. Routine queue-scheduled observations can be interrupted in response to electronic notification of transient events. An automated pipeline reduces data in real time, which is then stored on a searchable Web-based archive for ease of distribution. We describe here the design requirements, hardware and software upgrades, and lessons learned from roboticization. We present an overview of the current system performance as well as plans for future upgrades.

  2. Cyclotron Requirements for Multi-disciplinary Programs

    SciTech Connect

    Armbruster, John M.

    2009-03-10

    As time has passed, the various Cyclotron programs have changed over the years. In the ''early'' times of Cyclotron operations, the emphasis was on a more single sided approach such as Clinical or Research or Production. However, as time passed, the disciplines became more interconnected until today, it is unusual to have a Cyclotron and only have a single program unless it is pure production. More and more, especially in public areas such as Universities or Health Centers, you are seeing programs that do all three types of disciplines: Production; Clinical or Patient Diagnostics and/or Treatment; and Research, either in the development and manufacture of new Radio-Isotopes, new Diagnostic or Therapeutic Compound Development, or Clinical Research involving subject testing. While all three of these disciplines have some common requirements, they also have some very different requirements that may be completely counterproductive to other requirements. For a program where all three disciplines are required to be successful, it is necessary come up with some sort of compromise that meets all the various requirements. During this talk, we will try to identify some of these different requirements for the various disciplines and how these could impact the other disciplines. We will also discuss ideas for some possible compromises that might reduce the conflict between the various disciplines.

  3. Modernization of the 60-inch telescope at the Mount Wilson Observatory

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A contract for modernization of the Mount Wilson 60-inch telescope was awarded. Under this contract, the original hour angle and declination drives were replaced, digital coordinate readouts were added, a Cassegrain/ coude flip cage was built and installed, the telescope was completely rewired, a new control console was installed, and a coude spectrograph was completed. Extensive building modifications also were made to provide a working floor at mezzanine level for a computer and a coude observing room. These modifications and additions were completed by February 1970, and the telescope returned to regular and continuous use for stellar and planetary astronomy.

  4. PET computer programs for use with the 88-inch cyclotron

    SciTech Connect

    Gough, R.A.; Chlosta, L.

    1981-06-01

    This report describes in detail several offline programs written for the PET computer which provide an efficient data management system to assist with the operation of the 88-Inch Cyclotron. This function includes the capability to predict settings for all cyclotron and beam line parameters for all beams within the present operating domain of the facility. The establishment of a data base for operational records is also described from which various aspects of the operating history can be projected.

  5. Spectroscopic classification of optical transients with the SEDM (Spectral Energy Distribution Machine) on Palomar 60-inch (P60) telescope

    NASA Astrophysics Data System (ADS)

    Blagorodnova, N.; Neill, D.; Walters, R.

    2016-07-01

    The Caltech Time Domain Astronomy group reports the classification of the optical transients SN 2016czr, SN 2016ejc and AT 2016eki. The candidates were discovered by the PMO-Tsinghua Supernova Survey (PTSS: http://119.78.210.3/ptss2/ ), the Gaia ESA survey (Rixon et al,2014, ATel #6593) and the All Sky Automated Survey for SuperNovae ASAS-SN (see Shappee et al. 2014, ApJ, 788, 48 and http://www.astronomy.ohio-state.edu/~assassin/index.shtml ). The observations were performed on 2016-07-28 and 2016-07-29 with the Palomar 60-inch (P60) telescope and the Spectral Energy Distribution Machine (SEDM) (http://www.astro.caltech.edu/sedm/, range 350-950nm, spectral resolution R~100) on Palomar 60-inch (P60) telescope.

  6. Spectroscopic classification of Gaia16atw and Gaia16aui with the SEDM (Spectra Energy Distribution Machine) on Palomar 60-inch (P60) telescope

    NASA Astrophysics Data System (ADS)

    Blagorodnova, N.; Neill, D.; Walters, R.

    2016-07-01

    The Caltech Time Domain Astronomy group reports the classification of Gaia16atw and Gaia16aui, discovered by the Gaia ESA survey. The observations were performed with the Spectral Energy Distribution Machine (SEDM)(http://www.astro.caltech.edu/sedm/, range 350-950nm, spectral resolution R~100) on Palomar 60-inch (P60) telescope.

  7. a Search for Cyclotron Resonance Scattering Features in Transient Accreting X-Ray Pulsars (core Program)

    NASA Astrophysics Data System (ADS)

    We propose to renew our Cycle 4-11 TOO program to search for and study cyclotron lines in transient accreting X-ray pulsars. By discovering cyclotron lines and studying cyclotron lines, we will directly measure neutron star magnetic fields and investigate the emission mechanism. While most of the transient pulsars have been awarded in previous cycles, we make observations optimized for cyclotron line studies. In particular, observations made for other purposes may not be long enough to provide the high statistics necessary to detect shallow, broad lines or high energy lines and harmonics which appear on the steeply falling part of the spectrum. In cycle 4, our strategy succeeded in discovering 3rd-5th harmonic cyclotron lines in 4U 0115+63.

  8. Cyclotron development program at Jyväskylä

    NASA Astrophysics Data System (ADS)

    Heikkinen, P.; Liukkonen, E.

    2001-12-01

    The Jyväskylä K130 cyclotron has been modified to allow also negative ion acceleration with stripping extraction. A multi-cusp ion source for negative ions (H- and d-) was built [1]. The source gives over 5 mA at a voltage of 5.9 kV, which is used for 30 MeV protons. The extracted 30 MeV proton beam of 60 μA from the cyclotron has been reached. Due to very good extraction efficiency the dose rate in the cyclotron vault has decreased by a factor of 10-20 with 30 MeV protons compared to positive ion extraction. Also the inflector change was automated in order to reduce the dose for personnel.

  9. ECR (Electron Cyclotron Resonance) ion sources for cyclotrons

    SciTech Connect

    Lyneis, C.M.

    1986-10-01

    In the last decade ECR (Electron Cyclotron Resonance) ion sources have evolved from a single large, power consuming, complex prototype into a variety of compact, simple, reliable, efficient, high performance sources of high charge state ions for accelerators and atomic physics. The coupling of ECR sources to cyclotrons has resulted in significant performance gains in energy, intensity, reliability, and variety of ion species. Seven ECR sources are in regular operation with cyclotrons and numerous other projects are under development or in the planning stag. At least four laboratories have ECR sources dedicated for atomic physics research and other atomic physics programs share ECR sources with cyclotrons. An ECR source is now installed on the injector for the CERN SPS synchrotron to accelerate O/sup 8 +/ to relativistic energies. A project is underway at Argonne to couple an ECR source to a superconducting heavy-ion linac. Although tremendous progress has been made, the field of ECR sources is still a relatively young technology and there is still the potential for further advances both in source development and understanding of the plasma physics. The development of ECR sources is reviewed. The important physics mechanisms which come into play in the operation of ECR Sources are discussed, along with various models for charge state distributions (CSD). The design and performance of several ECR sources are compared. The 88-Inch Cyclotron and the LBL ECR is used as an example of cyclotron+ECR operation. The future of ECR sources is considered.

  10. CLOVERLEAF CYCLOTRON

    DOEpatents

    McMillan, E.M.; Judd, D.L.

    1959-02-01

    A cyclotron is presented embodying a unique magnetic field configuration, which configuration increases in intensity with radius and therefore compensates for the reltivistic mass effect, the field having further convolutions productive of axial stability in the particle beam. By reconciling the seemingly opposed requirements of mass increase compensation on one hand and anial stability on the other, the production of extremely high current particle beams in the relativistie energy range is made feasible. Certain further advantages inhere in the invention, notably an increase in the usable magnet gap, simplified and more efficient extraction of the beam from the accelerator, and ready adaptation to the use of multiply phased excitation as contrasted with the single phased systems herstofore utilized. General

  11. Superconducting cyclotrons at Michigan State University

    NASA Astrophysics Data System (ADS)

    Blosser, H. G.

    1987-04-01

    This paper describes the status of the three superconducting cyclotrons which are in operation or under construction at the National Superconducting Cyclotron Laboratory. The oldest of these, the K500, has been in operation since September 1982 supporting a national user program in heavy ion nuclear physics. A second large research cyclotron, the K800, is now nearing completion. This cyclotron will accelerate lighter heavy ions to 200 MeV/nuc and heavier particles up to energies given by 1200 Q2/ A MeV/nucleon. The magnet for this cyclotron came into operation in May 1984 and has performed smoothly and reliably in three extended operating periods. At present, K800 construction activity centers on fabrication and installation of the rf system, the extraction system, and the ECR injection line. The third NSCL superconducting cyclotron is a smaller 50 MeV deuteron cyclotron to be used for neutron therapy in the radiation oncology center of a major Detroit hospital (Harper Hospital). Design features of this small, application oriented, cyclotron are described in some detail.

  12. Extending the feasibility boundary of the isochronous cyclotron

    NASA Astrophysics Data System (ADS)

    Schubert, Jeffrey R.

    A number of recent design innovations have made the isochronous cyclotron a design option for applications that were previously considered best served by other types of accelerators. Several such proposed and existing applications of cyclotron technology are described. To provide a basis for these reviews the general characteristics of the isochronous cyclotron are summarized, including investigations of improved methods of computer simulations of cyclotron features. The possibility of reducing cyclotron size and cost by raising the maximum magnetic field from 5 to 8 tesla has been studied; the magnetic and electric fields for such an ultra compact cyclotron have been simulated and beam quality satisfactory for applications in nuclear physics is indicated. The feasibility of a cyclotron based accelerator mass spectrometry (AMS) program at the National superconducting Cyclotron Laboratory (NSCL) has also being studied; a feasibility example of an inexpensive high resolution AMS cyclotron is developed based on the use of an existing magnet and scaling from the handful of existing designs. A review of the central region of the first commercial 235 MeV proton cyclotron for cancer therapy is presented; orbit studies are summarized and an improved central region is discussed.

  13. Electron cyclotron heating and current drive in toroidal geometry

    SciTech Connect

    Kritz, A.H.

    1993-03-01

    The Principal Investigator has continued to work on problems associated both with the deposition and with the emission of electron cyclotron heating power electron cyclotron heating in toroidal plasmas. Inparticular, the work has focused on the use of electron cyclotron heating to stabilize q = 1 and q = 2 instabilities in tokamaks and on the use of electron cyclotron emission as a plasma diagnostic. The research described in this report has been carried out in collaboration with scientists at Princeton, MIT and Livermore. The Principal Investigator is now employed at Lehigh University, and a small group effort on electron cyclotron heating in plasmas has begun to evolve at Lehigh involving undergraduate and graduate students. Work has also been done in support of the electron cyclotron heating and current drive program at the Center for Research in Plasma Physics in Lausanne, Switzerland.

  14. The Michigan State University Cyclotron Laboratory: Its Early Years

    NASA Astrophysics Data System (ADS)

    Austin, Sam M.

    2016-01-01

    The Michigan State University Cyclotron Laboratory was founded in 1958 and over the years grew in stature, becoming the highest-ranked university-based program in nuclear science. Its K50 cyclotron had unmatched capability as a light-ion accelerator and helped to define what a modern cyclotron could do to advance our understanding of nuclei. This paper describes the first twenty years of the Cyclotron Laboratory's evolution and gives some insight into the cultural characteristics of the laboratory, and of its early members, that led it to thrive.

  15. Ernest Orlando Lawrence (1901-1958), Cyclotron and Medicine

    SciTech Connect

    Chu, William T.

    2005-09-01

    cyclotrons, accelerating protons to 80,000 volts using less than 1,000 volts on a semi-circular accelerating electrode, now called the ''dee''. Following the discovery by J. D. Cockcroft and E. T. S. Walton of how to produce larger currents at higher voltages, Lawrence constructed the first two-dee 27-Inch (69-cm) Cyclotron, which produced protons and deuterons of 4.8 MeV. The 27-Inch Cyclotron was used extensively in early investigations of nuclear reactions involving neutrons and artificial radioactivity. In 1939, working with William Brobeck, Lawrence constructed the 60-Inch (150-cm) Cyclotron, which accelerated deuterons to 19 MeV. It was housed in the Crocker Laboratory, where scientists first made transmutations of some elements, discovered several transuranic elements, and created hundreds of radioisotopes of known elements. At the Crocker Laboratory the new medical modality called nuclear medicine was born, which used radioisotopes for diagnosis and treatment of human diseases. In 1939 Lawrence was awarded the Nobel Prize in Physics, and later element 103 was named ''Lawrencium'' in his honor.

  16. Improving cancer treatment with cyclotron produced radionuclides

    SciTech Connect

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author's continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  17. Cyclotron Institute Upgrade Project

    SciTech Connect

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  18. Improving cancer treatment with cyclotron produced radionuclides. Progress report

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1993-11-01

    This report describes our continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section will be employed in the Pharmacology and Immunology sections during the next year. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  19. Cyclotron Research and Applications

    SciTech Connect

    Mach, Rostislav

    2010-01-05

    The twenty years old cyclotron U-120M was upgraded for R and D and Production of Radiopharmaceuticals. R and D on short-lived Radiopharmaceuticals production is done at this accelerator. These Radiopharmaceuticals are eventually delivered to nearby hospitals. Development of new diagnostic radiopharmaceuticals is also pursued at the facility. your paper.

  20. Ion Cyclotron Waves at Titan

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Wei, H.; Cowee, M.; Neubauer, F. M.; Dougherty, M. K.

    2014-12-01

    The observation of ion cyclotron waves was generally expected well before Cassini arrived at Titan in 2004, because strong ion cyclotron waves were seen at Io where its atmosphere interacted with the corotating magnetospheric plasma. However, the region of the interaction of the Saturnian magnetospheric plasma with the Titan atmosphere has been quite devoid of ion cyclotron waves. Finally, on pass T63, ion cyclotron waves were seen briefly. More recently, on pass T98, a longer sequence of ion cyclotron waves also occurred. On pass T63, the pick-up ion signature is that of both H+ and H2+, while on pass T98, only H+ ion cyclotron waves are observed. We examine the strength of these waves and their region of occurrence in the light of our previous work on the expected occurrence of these waves.

  1. Design Study Of Cyclotron Magnet With Permanent Magnet

    SciTech Connect

    Kim, Hyun Wook; Chai, Jong Seo

    2011-06-01

    Low energy cyclotrons for Positron emission tomography (PET) have been wanted for the production of radio-isotopes after 2002. In the low energy cyclotron magnet design, increase of magnetic field between the poles is needed to make a smaller size of magnet and decrease power consumption. The Permanent magnet can support this work without additional electric power consumption in the cyclotron. In this paper the study of cyclotron magnet design using permanent magnet is shown and also the comparison between normal magnet and the magnet which is designed with permanent magnet is shown. Maximum energy of proton is 8 MeV and RF frequency is 79.3 MHz. 3D CAD design was done by CATIA P3 V5 R18 and the All field calculations had been performed by OPERA-3D TOSCA. The self-made beam dynamics program OPTICY is used for making isochronous field and other calculations.

  2. Design Study Of Cyclotron Magnet With Permanent Magnet

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Wook; Chai, Jong Seo

    2011-06-01

    Low energy cyclotrons for Positron emission tomography (PET) have been wanted for the production of radio-isotopes after 2002. In the low energy cyclotron magnet design, increase of magnetic field between the poles is needed to make a smaller size of magnet and decrease power consumption. The Permanent magnet can support this work without additional electric power consumption in the cyclotron. In this paper the study of cyclotron magnet design using permanent magnet is shown and also the comparison between normal magnet and the magnet which is designed with permanent magnet is shown. Maximum energy of proton is 8 MeV and RF frequency is 79.3 MHz. 3D CAD design was done by CATIA P3 V5 R18 [1] and the All field calculations had been performed by OPERA-3D TOSCA [2]. The self-made beam dynamics program OPTICY [3] is used for making isochronous field and other calculations.

  3. Cyclotrons and positron emitting radiopharmaceuticals

    SciTech Connect

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  4. Improving cancer treatment with cyclotron produced radionuclides

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1992-08-04

    Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunology projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.

  5. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  6. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R.

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  7. Electron cyclotron heating and current drive in toroidal geometry. Technical progress report

    SciTech Connect

    Kritz, A.H.

    1993-03-01

    The Principal Investigator has continued to work on problems associated both with the deposition and with the emission of electron cyclotron heating power electron cyclotron heating in toroidal plasmas. Inparticular, the work has focused on the use of electron cyclotron heating to stabilize q = 1 and q = 2 instabilities in tokamaks and on the use of electron cyclotron emission as a plasma diagnostic. The research described in this report has been carried out in collaboration with scientists at Princeton, MIT and Livermore. The Principal Investigator is now employed at Lehigh University, and a small group effort on electron cyclotron heating in plasmas has begun to evolve at Lehigh involving undergraduate and graduate students. Work has also been done in support of the electron cyclotron heating and current drive program at the Center for Research in Plasma Physics in Lausanne, Switzerland.

  8. EC-5 fifth international workshop on electron cyclotron emission and electron cyclotron heating

    SciTech Connect

    Prater, R.; Lohr, J.

    1985-12-31

    This report contains papers on the following topics: electron cyclotron emission measurements; electron cyclotron emission theory; electron cyclotron heating; gyrotron development; and ECH systems and waveguide development. These paper have been indexed separately elsewhere. (LSP).

  9. FEL on slow cyclotron wave

    SciTech Connect

    Silivra, A.

    1995-12-31

    A physical mechanism of interaction of fast electromagnetic wave with slow cyclotron wave of relativistic electron beam in a FEL with helical wiggler field is described. It is shown that: (1) interaction is possible for both group of steady state electron trajectories (2) positive gain is achieved within certain interval of guide field strength (3) operation wavelength for group 1 trajectories ({Omega}{sub 0}/{gamma} < k{omega}{upsilon}{parallel}) is shorter than for the conventional FEL synchronism. A nonlinear analysis shows that efficiency of slow cyclotron FEL is restricted mainly by a breakdown of a single electron synchronism due to dependence of (modified) electron cyclotron frequency on an energy of electron. Nevertheless, as numerical simulation shows, typical efficiency of 15 % order is achieved in millimeter wavelength band for the midrelativistic ({gamma}= 3 {divided_by} 4) slow cyclotron wave FEL. Tapering of magnetic field results in a substantial increase of efficiency.

  10. BEST medical radioisotope production cyclotrons

    SciTech Connect

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Johnson, Richard R.; Gelbart, W. Z.

    2013-04-19

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 {mu}A to 1000 {mu}A, depending on the cyclotron energy and application.

  11. Cyclotron Production of Medical Radioisotopes

    SciTech Connect

    Avila-Rodriguez, M. A.; Zarate-Morales, A.; Flores-Moreno, A.

    2010-08-04

    The cyclotron production of radioisotopes for medical applications is gaining increased significance in diagnostic molecular imaging techniques such as PET and SPECT. In this regard, radioisotope production has never been easier or more convenient until de introduction of compact medical cyclotrons in the last few decades, which allowed the use of short-lived radioisotopes in in vivo nuclear medicine studies on a routine basis. This review outlines some general considerations about the production of radioisotopes using charged particle accelerators.

  12. Electron-cyclotron-heating experiments in tokamaks and stellarators

    SciTech Connect

    England, A.C.

    1983-01-01

    This paper reviews the application of high-frequency microwave radiation to plasma heating near the electron-cyclotron frequency in tokamaks and stellarators. Successful plasma heating by microwave power has been demonstrated in numerous experiments. Predicted future technological developments and current theoretical understanding suggest that a vigorous program in plasma heating will continue to yield promising results.

  13. Business models for academic medical center cyclotron operations.

    PubMed

    LeGarde, Caroline; Bledsoe, Martin L; Wahl, Richard L

    2005-06-01

    A cyclotron facility may provide a significant strategic advantage for an academic medical center that desires to build a strong research program in nuclear medicine. Such a facility may provide an advantage in obtaining support from the National Institutes of Health. A nuclear medicine research program often requires the production of short-lived radioisotopes for clinical patients. Combining the research program with a commercial production and distribution program can increase the synergies and efficiencies of an organization. This article describes various business models that combine research, clinical, and commercial operations to align an academic medical center's cyclotron program operation to its goals and resources. By coordinating these three functions, an academic medical center may be able to support extensive research capabilities that would otherwise be unattainable.

  14. a Search for Cyclotron Resonance Scattering Features in Transient Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Pottschmidt, Katja

    We propose to renew our Cycle 4-11 TOO program to search for and study cyclotron lines in transient accreting X-ray pulsars. By discovering cyclotron lines and studying cyclotron lines, we will directly measure neutron star magnetic fields and investigate the emission mechanism. While most of the transient pulsars have been awarded in previous cycles, we make observations optimized for cyclotron line studies. In particular, observations made for other purposes may not be long enough to provide the high statistics necessary to detect shallow, broad lines or high energy lines and harmonics which appear on the steeply falling part of the spectrum. In cycle 4, our strategy succeeded in discovering 3rd-5th harmonic cyclotron lines in 4U 0115+63.

  15. Use of cyclotrons in medicine

    NASA Astrophysics Data System (ADS)

    Qaim, S. M.

    2004-10-01

    Cyclotrons are versatile ion-accelerating machines which find many applications in medicine. In this short review their use in hadron therapy is briefly discussed. Proton therapy is gaining significance because of its capability to treat deep-lying tumours. A strong area of application of cyclotrons involves the production of short-lived neutron deficient radiotracers for use in emission tomography, especially positron emission tomography. This fast and quantitative in vivo diagnostic technique is being increasingly used in neurology, cardiology and oncology. Besides routine patient care, considerable interdisciplinary work on development of new positron emitters is under way. A short account of those efforts is given. The use of cyclotrons in the production of radionuclides for internal radiotherapy is also briefly described.

  16. Electron cyclotron harmonic wave acceleration

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  17. The isochronous cyclotron: principles and recent developments.

    PubMed

    Strijckmans, K

    2001-01-01

    The principals of a cyclotron are described. A magnetic field guides the ions in circular paths, while an electric field accelerates them. The main problem in any accelerator is not to accelerate ions, but to focus them. An isochronous cyclotron overrules the problems related to relativistic mass increase during acceleration. Harmonic operation and negative (vs positive) ion acceleration (and extraction) are explained, as they make dedicated PET cyclotrons a simple, reliable, and suitable tool. The characteristics of such PET cyclotrons are described, as well as their technical implementation. The IBA 18/9 PET cyclotron is given as an example.

  18. Phase Resolved Cyclotron Spectroscopy of Polars

    NASA Astrophysics Data System (ADS)

    Dealaman, Shannon J.

    2010-01-01

    This research was conducted through the REU program at Cerro Tololo Interamerican Observatory in La Serena, Chile. For this research we reduced and modeled phase-resolved cyclotron spectroscopy of four AM Her stars: MN Hya, HU Aqu, VV Pup, and QS Tel. Two of the four spectra show good cyclotron harmonics while the other two were taken during a high state with too much noise in the spectra. Using a Constant-Lambda code (Schwope et al., 1990) we modeled the two good spectra and further modeled the harmonic motion of HU Aqr. The models produced for MN Hya gave parameters with a magnetic field strength between 44 MG and 43.4 MG, a plasma temperature between 4.1 keV and 5.6 keV, a log Λ of 4.2 ± 0.3, and a viewing angle set between 83.0 degrees and 70.0 degrees and HU Aqr a magnetic field between 36.0 MG and 37.6 MG, a plasma temperature between 15.0 keV and 15.5 keV, a log Λ of 4.0 ± 0.3, and a viewing angle between 89.5 degrees and 70.5 degrees. This was the first attempt to model MN Hya with a constant lambda code and the first harmonic motion model of HU Aqr.

  19. Electromagnetic ion cyclotron waves at proton cyclotron harmonics

    NASA Astrophysics Data System (ADS)

    Chaston, C. C.; Bonnell, J. W.; McFadden, J. P.; Ergun, R. E.; Carlson, C. W.

    2002-11-01

    Waves with frequencies in the vicinity of the proton cyclotron frequency and its harmonics are commonly observed from the Fast Auroral Snapshot spacecraft when traversing regions of auroral particle acceleration. In areas of upward current, large-amplitude electromagnetic waves with frequencies within 5% of the local proton gyrofrequency Ωp and its harmonics are often observed where upstreaming ion beams exist. These waves have electric field (E1) and magnetic field (B1) amplitudes of up to 1 V m-1 and 2 nT with the ratio E1/B1 as small as c. The waves occur in the low-altitude portion of the primary auroral acceleration potential, where plasma densities are ≤1 cm-3. It is shown how these waves grow through inverse Landau resonance with a cold field-aligned electron beam superimposed on an accelerated and magnetically mirrored plasma sheet electron component in the absence of any significant plasma densities at energies below ˜100 eV. Significantly, the drift velocity of the cold beam (voeb) is several times larger than its thermal velocity veb, and it is this feature that allows the wave to become electromagnetic at cyclotron harmonics while simultaneously giving rise to broadband electrostatic emissions spanning the first few cyclotron harmonics as is observed.

  20. Cyclotron Resonance in Accreting Pulsars

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dipankar

    2016-07-01

    Cyclotron Resonance Absorption/Scattering features provide direct measurement of magnetic field strength in the line forming region. This has enabled the estimation of magnetic field strengths of nearly two dozen neutron stars in accreting high mass binary systems. With improved spectroscopic sensitivity, new X-ray observatories such as NuSTAR, Astrosat and Hitomi are opening the doors to studying detailed features such as the line shape and phase dependence with high significance. Such studies will help understand the nature of matter accumulation in, and outflow from, the magnetically confined accretion column on the neutron star. This talk will describe the results of MHD simulations of the matter flow in such systems, the diagnostics of such flows using cyclotron lines, and comparison with recent observations from NuSTAR and Astrosat.

  1. Beamline pulsing system for cyclotrons

    NASA Astrophysics Data System (ADS)

    Heikkinen, Jouko; Gustafsson, Jouni; Kivikoski, Markku; Liukkonen, Esko; Nieminen, Veikko

    A beamline pulsing system for cyclotrons is presented. The function of this system is to modify the structure of a cyclotron ion beam guided to the desired research target by a beamline. In some in-beam experiments, an adjustment of the time structure of the beam is sometimes needed. This kind of situation occurs if, for example, the life time of the target material is longer than the period corresponding to the beam frequency. In this case, the frequency of the ion pulses hitting the target is 10-21 MHz depending on the frequency of the acceleration voltage. The adjustment of the ion beam pulse frequency is carried out by a beamline deflector. Deflection is achieved by feeding a high-amplitude (10-15 kV) RF-signal between the deflection plates positioned into the beamline. This signal is generated from the cyclotron reference signal by frequency division, phase adjustment and amplification. Simulation and test results indicate that the specified deflection signal level is achieved with 1 kW of RF-power.

  2. Method and apparatus for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2010-08-17

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  3. Commercial compact cyclotrons in the 90`s

    SciTech Connect

    Milton, B.F.

    1995-09-01

    Cyclotrons continue to be efficient accelerators for radio-isotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicate a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology, as they relate to the new generation of commercial cyclotrons. Design criteria for the different types of commercial cyclotrons will be presented, with reference to those demands that differ from those in a research oriented cyclotron project. The authors also discuss the possibility of systems designed for higher energies and capable of extracted beam currents of up to 2.0 mA.

  4. a Search for Cyclotron Resonance Scattering Features in Transient Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Heindl, William

    We propose to renew our Cycle 4-7 ToO program to search for and study cyclotron lines in transient accreting X-ray pulsars. By discovering and studying cyclotron lines, we will directly measure neutron star magnetic fields and investigate the emission mechanism. While some of the transient pulsars have been observed in previous cycles, we make observations optimized for cyclotron line studies. In particular, observations made for other purposes may not be long enough to provide the high statistics necessary to detect shallow, broad lines like in Cen X-3 (discovered with RXTE), or high energy lines and harmonics which appear on the steeply falling part of the spectrum. In cycle 4, our strategy succeeded in discovering 3rd-5th harmonic cyclotron lines in 4U 0115+63.

  5. a Search for Cyclotron Resonance Scattering Features in Transient Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Coburn, Wayne

    We propose to renew our cycle 4-9 TOO program to search for and study cyclotron lines in transient accreting x-ray pulsars. By discovering and studying cyclotron lines, we will directly measure neutron star magnetic fields and investigate the emission mechanism. While some of the transient pulsars have been observed in previous cycles, we make observations optimized for cyclotron line studies. In particular, observations made for other purposes may not be long enough to provide the high statistics necessary to detect shallow, broad lines like in Cen X-3 (discovered with RXTE), or high energy lines and harmonics which appear on the steeply falling part of the spectrum. In cycle 4, our strategy succeeded in discovering the 3rd-5th harmonic cyclotron lines in 4U 0115+63.

  6. a Search for Cyclotron Resonance Scattering Features in Transient Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Heindl, William

    We propose to renew our Cycle 4-8 ToO program to search for and study cyclotron lines in transient accreting X-ray pulsars. By discovering and studying cyclotron lines, we will directly measure neutron star magnetic fields and investigate the emission mechanism. While some of the transient pulsars have been observed in previous cycles, we make observations optimized for cyclotron line studies. In particular, observations made for other purposes may not be long enough to provide the high statistics necessary to detect shallow, broad lines like in Cen X-3 (discovered with RXTE), or high energy lines and harmonics which appear on the steeply falling part of the spectrum. In cycle 4, our strategy succeeded in discovering 3rd-5th harmonic cyclotron lines in 4U 0115+63.

  7. a Search for Cyclotron Resonance Scattering Features in Transient Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Coburn, Wayne

    We propose to renew our cycle 4-10 TOO program to search for and study cyclotron lines in transient accreting x-ray pulsars. By discovering and studying cyclotron lines, we will directly measure neutron star magnetic fields and investigate the emission mechanism. While some of the transient pulsars have been observed in previous cycles, we make observations optimized for cyclotron line studies. In particular, observations made for other purposes may not be long enough to provide the high statistics necessary to detect shallow, broad lines, or high energy lines and harmonics which appear on the steeply falling part of the spectrum. In cycle 4, our strategy succeeded in discovering the 3rd-5th harmonic cyclotron lines in 4U 0115+63.

  8. Cyclotron Line Measurements with INTEGRAL

    NASA Technical Reports Server (NTRS)

    Pottschmidt, K.; Kreykenbohm, I.; Caballero, I.; Fritz, S.; Schoenherr, G.; Kretschmar, P.; Wilms, J.; McBride, V. A.; Suchy, S.; Rothschild, R. E.

    2008-01-01

    Due to its broadband energy coverage, INTEGRAL has made important contributions to observing and interpreting cyclotron lines, which are present in the 10-100 keV range of a sample of accreting pulsars. In these systems photons with energies fulfilling the resonance condition inelastically Compton scatter off electrons quantized in the accretion column above the neutron star's magnetic pole(s). This process gives rise to the broad, absorption-like lines or 'cyclotron resonant scattering features' (CRSF). The observed lines allow to directly measure the B-fields of these sources, resulting in values of a few times 1E12G. In this overview I will present recent highlights regarding CRSF observations as well as discuss current ideas and models for the physical conditions in the accretion column. Among the former are the stability of the spectrum of Vela X-1 during giant flares in 2003, the observation of three cyclotron lines during the 2004 outburst of V0332+53, the confirmation of the fundamental line at approximately 45 keV during a 2005 normal outburst of A0535-26, and the simultaneous detection of the two lines in the dipping source 4U 1907+09 (for which also a torque reversal was detected for the first time). Through these and other observations it has become increasingly apparent that two types of observations can potentially be used to constrain the accretion column geometry: the determination of energy ratios for multiple harmonic lines (only two sources with greater than 2 lines are known), was well as the evolution of the fundamental line centroid, which, for different sources, may or may not be correlated with flux. Furthermore, first steps have been taken away from the usual phenomenological description of the lines, towards a physical approach based on self-consistent CRSF modeling. Initial applications are presented.

  9. Ion cyclotron waves at Titan

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Wei, H. Y.; Cowee, M. M.; Neubauer, F. M.; Dougherty, M. K.

    2016-03-01

    During the interaction of Titan's thick atmosphere with the ambient plasma, it was expected that ion cyclotron waves would be generated by the free energy of the highly anisotropic velocity distribution of the freshly ionized atmospheric particles created in the interaction. However, ion cyclotron waves are rarely observed near Titan, due to the long growth times of waves associated with the major ion species from Titan's ionosphere, such as CH4+ and N2+. In the over 100 Titan flybys obtained by Cassini to date, there are only two wave events, for just a few minutes during T63 flyby and for tens of minutes during T98 flyby. These waves occur near the gyrofrequencies of proton and singly ionized molecular hydrogen. They are left-handed, elliptically polarized, and propagate nearly parallel to the field lines. Hybrid simulations are performed to understand the wave growth under various conditions in the Titan environment. The simulations using the plasma and field conditions during T63 show that pickup protons with densities ranging from 0.01 cm-3 to 0.02 cm-3 and singly ionized molecular hydrogens with densities ranging from 0.015 cm-3 to 0.25 cm-3 can drive ion cyclotron waves with amplitudes of ~0.02 nT and of ~0.04 nT within appropriate growth times at Titan, respectively. Since the T98 waves were seen farther upstream than the T63 waves, it is possible that the instability was stronger and grew faster on T98 than T63.

  10. Lawrence's Legacy : Seaborg's Cyclotron - The 88-Inch Cyclotron turns 40

    NASA Astrophysics Data System (ADS)

    McMahan, Margaret; Clark, David

    2003-04-01

    In 1958, Sputnik had recently been launched by the Russians, leading to worry in Congress and increased funding for science and technology. Ernest Lawrence was director of the "Rad Lab" at Berkeley. Another Nobel Prize winner, Glenn Seaborg, was Associate Laboratory Director and Director of the Nuclear Chemistry Division. In this atmosphere, Lawrence was phoned by commissioners of the Atomic Energy Commission and asked what they could do for Seaborg, "because he did such a fine job of setting up the chemistry for extracting plutonium from spent reactor fuel" [1]. In this informal way, the 90-Inch (eventually 88-Inch) Cyclotron became a line item in the federal budget at a cost of 3M (later increased to 5M). The 88-Inch Cyclotron achieved first internal beam on Dec. 12, 1961 and first external beam in May 1962. Forty years later it is still going strong. Pieced together from interviews with the retirees who built it, Rad Lab reports and archives from the Seaborg and Lawrence collections, the story of its design and construction - on-time and under-budget - provides a glimpse into the early days of big science. [1] remarks made by Elmer Kelly, "Physicist-in-charge' of the project on the occasion of the 40th anniversary celebration.

  11. Improving cancer treatment with cyclotron produced radionuclides. Progress report

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1992-08-04

    Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunology projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.

  12. H- source development for Jyväskylä cyclotron

    NASA Astrophysics Data System (ADS)

    Kuo, T.; Baartman, R.; Dutto, G.; Hahto, S.; ńrje, J.; Liukkonen, E.

    2001-12-01

    A new H- ion source terminal has been constructed since 2000 for the Jyväskylä cyclotron "H- acceleration Project." The source-extraction system design is based on the development work performed at TRIUMF. The source generates more than 5 mA of H- at 5.8 keV with an un-normalized emittance within 100π-mm-mr. Special devices for H- injection, extraction and beam merging have been completed by the Jyväskylä cyclotron group. 60 μA of proton beam at 30 MeV has been successfully extracted for physics experiments and will be used for IGISOL program and isotope production. Efforts in improving the source emittance and the injection line to bring the target current up to 100 μA are in progress.

  13. The cyclotron development activities at CIAE

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjue; Li, Zhenguo; An, Shizhong; Yin, Zhiguo; Yang, Jianjun; Yang, Fang

    2011-12-01

    The cyclotron has an obvious advantage in offering high average current and beam power. Cyclotron development for various applications, e.g. radioactive ion-beam (RIB) generation, clean nuclear energy systems, medical diagnostics and isotope production, were performed at China Institute of Atomic Energy (CIAE) for over 50 years. At the moment two cyclotrons are being built at CIAE, the 100 MeV, CYCIAE-100, and a 14 MeV, the CYCIAE-14. Meanwhile, we are designing and proposing to build a number of cyclotrons with different energies, among them are the CYCIAE-70, the CYCIAE-800, and the upgrading of CYCIAE-CRM, which is going to increase its beam current to mA level. The contribution will present an overall introduction to the cyclotron development activities conducted at CIAE, with different emphasis to each project in order to demonstrate the design and construction highlights.

  14. K-130 Cyclotron vacuum system

    NASA Astrophysics Data System (ADS)

    Yadav, R. C.; Bhattacharya, S.; Bhole, R. B.; Roy, Anindya; Pal, Sarbajit; Mallik, C.; Bhandari, R. K.

    2012-11-01

    The vacuum system for K-130 cyclotron has been operational since 1977. It consists of two sub-systems, main vacuum system and beam line vacuum system. The main vacuum system is designed to achieve and maintain vacuum of about 1 × 10-6 mbar inside the 23 m3 volume of acceleration chamber comprising the Resonator tank and the Dee tank. The beam line vacuum system is required for transporting the extracted beam with minimum loss. These vacuum systems consist of diffusion pumps backed by mechanical pumps like roots and rotary pumps. The large vacuum pumps and valves of the cyclotron vacuum system were operational for more than twenty five years. In recent times, problems of frequent failures and maintenance were occurring due to aging and lack of appropriate spares. Hence, modernisation of the vacuum systems was taken up in order to ensure a stable high voltage for radio frequency system and the extraction system. This is required for efficient acceleration and transportation of high intensity ion beam. The vacuum systems have been upgraded by replacing several pumps, valves, gauges and freon units. The relay based control system for main vacuum system has also been replaced by PLC based state of the art control system. The upgraded control system enables inclusion of additional operational logics and safety interlocks into the system. The paper presents the details of the vacuum system and describes the modifications carried out for improving the performance and reliability of the vacuum system.

  15. [Use of a cyclotron in the production of positron emitting radionuclides].

    PubMed

    Martí-Climent, J; Peñuelas, I; Calvo, R; Giménez, M; Gámez, C; Richter, J

    1999-08-01

    The experience acquired by our center during the first two years of using cyclotron 18/9 (IBA) dedicated to the production of clinical positron emission radionuclides is described. The cyclotron performance characteristics, production yields, quality control and synthesized radiotracers are analyzed. Cyclotron makes it possible to produce up to 3,300 mCi of 18F-, 270 mCi of 18F2, 3,100 mCi of 11C, 502 mCi of 13N (in 120, 60, 35 and 20 minutes respectively) and 540 mCi/min of 15O. In our center, about 85% of the PET studies are performed with 18F-FDG, whereas the remaining are done with 15O-water, 11C-bicarbonate, 11C-methionine, 13N-ammonia or 18F-. Cyclotron is included in the Radiopharmacy Unit of our PET facility and is subjected to a global quality control program. Follow-up of the bombardment parameters and periodic verifications of the cyclotron performance have made it possible to prevent equipment functioning problems, increase mean time between stoppage and decrease downtime. We conclude that cyclotron has high production capabilities and allows enough flexibility for a clinical and research positron emission tomography center; furthermore, it can also be used for regional distribution of 18F-FDG to satellite PET centers.

  16. Electron cyclotron resonance plasma photos

    SciTech Connect

    Racz, R.; Palinkas, J.; Biri, S.

    2010-02-15

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  17. Converting an AEG Cyclotron to H- Acceleration and Extraction

    NASA Astrophysics Data System (ADS)

    Ramsey, Fred; Carroll, Lewis; Rathmann, Tom; Huenges, Ernst; Bechtold, Matthias Mentler Volker

    2009-03-01

    Clinical Trials are under way to evaluate agents labeled with the nuclide 225Ac and its decay product 213Bi, in targeted alpha-immuno-therapy [1]. 225Ac can be produced on a medium-energy cyclotron via the nuclear reaction 226Ra(p,n)225Ac. To demonstrate proof-of-principle, a vintage AEG cyclotron, Model E33 [2], with an internal target, had been employed in a pilot production program at the Technical University of Munich (TUM). To enhance production capability and further support the clinical studies, the TUM facility has recently been refurbished and upgraded, adding a new external beam-line, automated target irradiation and transport systems, new laboratories, hot cells, etc. [3]. An improved high-power rotating target has been built and installed [4]. The AEG cyclotron itself has also been modified and upgraded to accelerate and extract H- ions. We have designed, built, and tested a new axial Penning-type ion source which is optimized for the production of H- ions. The ion source has continued to evolve through experiment and experience. Steady improvements in materials and mechanics have led to enhanced source stability, life-time, and H- production. We have also designed and built a precision H- charge-exchange beam-extraction system which is equipped with a vacuum lock. To fit within the tight mechanical constraint imposed by the narrow magnet gap, the system incorporates a novel chain-drive foil holder and foil-changer mechanism. The reconfigured cyclotron system has now been in operation for more than 1 year. Three long-duration target irradiations have been conducted. The most recent bombardment ran 160 continuous hours at a beam on target of ˜80 microamperes for a total yield of ˜70 milli-curies of 225Ac.

  18. Relativistic electromagnetic ion cyclotron instabilities.

    PubMed

    Chen, K R; Huang, R D; Wang, J C; Chen, Y Y

    2005-03-01

    The relativistic instabilities of electromagnetic ion cyclotron waves driven by MeV ions are analytically and numerically studied. As caused by wave magnetic field and in sharp contrast to the electrostatic case, interesting characteristics such as Alfve nic behavior and instability transition are discovered and illuminated in detail. The instabilities are reactive and are raised from the coupling of slow ions' first-order resonance and fast ions' second-order resonance, that is an essential extra mechanism due to relativistic effect. Because of the wave magnetic field, the nonresonant plasma dielectric is usually negative and large, that affects the instability conditions and scaling laws. A negative harmonic cyclotron frequency mismatch between the fast and slow ions is required for driving a cubic (and a coupled quadratic) instability; the cubic (square) root scaling of the peak growth rate makes the relativistic effect more important than classical mechanism, especially for low fast ion density and Lorentz factor being close to unity. For the cubic instability, there is a threshold (ceiling) on the slow ion temperature and density (the external magnetic field and the fast ion energy); the Alfve n velocity is required to be low. This Alfve nic behavior is interesting in physics and important for its applications. The case of fast protons in thermal deuterons is numerically studied and compared with the analytical results. When the slow ion temperature or density (the external magnetic field or the fast ion energy) is increased (reduced) to about twice (half) the threshold (ceiling), the same growth rate peak transits from the cubic instability to the coupled quadratic instability and a different cubic instability branch appears. The instability transition is an interesting new phenomenon for instability. PMID:15903591

  19. All-magnetic extraction for cyclotron beam reacceleration

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-07-22

    An isochronous cyclotron can be modified to provide an initial electron stripping stage, a complete acceleration of the stripped ions through the cyclotron to a first energy state, means for returning the ions to an intermediate cyclotron orbit through a second stripping stage, further acceleration of the now higher energy stripped ions through the cyclotron to their final energy, and final extraction of the ions from the cyclotron. (auth)

  20. Improving cancer treatment with cyclotron produced radionuclides. Comprehensive progress report, February 1, 1990--January 31, 1993

    SciTech Connect

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author`s continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  1. Cyclotron-Cherenkov and Cherenkov instabilities

    SciTech Connect

    Kho, T.H.; Lin, A.T. . Dept. of Physics)

    1990-06-01

    The effect of the conventional Cherenkov instability on the cyclotron-Cherenkov maser is investigated for the case of a relativistic electron beam propagating along a background magnetic field in a dielectric using particle simulations. Both Cherenkov and cyclotron-Cherenkov instabilities are excited when the phase velocity of light in the dielectric is less than the beam velocity. It is demonstrated in the high-power regime, where the cyclotron-Cherenkov mode has the higher growth rate, that the Cherenkov mode has little effect on the nonlinear efficiency of the cyclotron-Cherenkov mode. High efficiency is possible, affirming previous predictions based on single mode calculations. The effect of beam momentum spread is studied.

  2. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1985-01-01

    The author built and tested a low energy cyclotron for radiocarbon dating similar to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. The author found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. The author shows how a conventional carbon negative ion source located outside the cyclotron magnet, would produce sufficient beam and provide for quick sample changing to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  3. Method and apparatuses for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A.; Scott, Jill R.; McJunkin, Timothy R.

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  4. Cyclotron axial ion-beam-buncher system

    SciTech Connect

    Hamm, R.W.; Swenson, D.A.; Wangler, T.P.

    1982-02-11

    Adiabatic ion bunching is achieved in a cyclotron axial ion injection system through the incorporation of a radio frequency quadrupole system, which receives ions from an external ion source via an accelerate-decelerate system and a focusing einzel lens system, and which adiabatically bunches and then injects the ions into the median plane of a cyclotron via an electrostatic quadrupole system and an inflection mirror.

  5. Building 211 cyclotron characterization survey report

    SciTech Connect

    1998-03-30

    The Building 211 Cyclotron Characterization Survey includes an assessment of the radioactive and chemical inventory of materials stored within the facility; an evaluation of the relative distribution of accelerator-produced activation products within various cyclotron components and adjacent structures; measurement of the radiation fields throughout the facility; measurement and assessment of internal and external radioactive surface contamination on various equipment, facility structures, and air-handling systems; and an assessment of lead (Pb) paint and asbestos hazards within the facility.

  6. Rotatable superconducting cyclotron adapted for medical use

    DOEpatents

    Blosser, Henry G.; Johnson, David A.; Riedel, Jack; Burleigh, Richard J.

    1985-01-01

    A superconducting cyclotron (10) rotatable on a support structure (11) in an arc of about 180.degree. around a pivot axis (A--A) and particularly adapted for medical use is described. The rotatable support structure (13, 15) is balanced by being counterweighted (14) so as to allow rotation of the cyclotron and a beam (12), such as a subparticle (neutron) or atomic particle beam, from the cyclotron in the arc around a patient. Flexible hose (25) is moveably attached to the support structure for providing a liquified gas which is supercooled to near 0.degree. K. to an inlet means (122) to a chamber (105) around superconducting coils (101, 102). The liquid (34) level in the cyclotron is maintained approximately half full so that rotation of the support structure and cyclotron through the 180.degree. can be accomplished without spilling the liquid from the cyclotron. With the coils vertically oriented, each turn of the winding is approximately half immersed in liquid (34) and half exposed to cold gas and adequate cooling to maintain superconducting temperatures in the section of coil above the liquid level is provided by the combination of cold gas/vapor and by the conductive flow of heat along each turn of the winding from the half above the liquid to the half below.

  7. Hospital based superconducting cyclotron for neutron therapy: Medical physics perspective

    NASA Astrophysics Data System (ADS)

    Yudelev, M.; Burmeister, J.; Blosser, E.; Maughan, R. L.; Kota, C.

    2001-12-01

    The neutron therapy facility at the Gershenson Radiation Oncology Center, Harper University Hospital in Detroit has been operational since September 1991. The d(48.5)+Be beam is produced in a gantry mounted superconducting cyclotron designed and built at the National Superconducting Cyclotron Laboratory (NSCL). Measurements were performed in order to obtain the physical characteristics of the neutron beam and to collect the data necessary for treatment planning. This included profiles of the dose distribution in a water phantom, relative output factors and the design of various beam modifiers, i.e., wedges and tissue compensators. The beam was calibrated in accordance with international protocol for fast neutron dosimetry. Dosimetry and radiobiology intercomparions with three neutron therapy facilities were performed prior to clinical use. The radiation safety program was established in order to monitor and reduce the exposure levels of the personnel. The activation products were identified and the exposure in the treatment room was mapped. A comprehensive quality assurance (QA) program was developed to sustain safe and reliable operation of the unit at treatment standards comparable to those for conventional photon radiation. The program can be divided into three major parts: maintenance of the cyclotron and related hardware; QA of the neutron beam dosimetry and treatment delivery; safety and radiation protection. In addition the neutron beam is used in various non-clinical applications. Among these are the microdosimetric characterization of the beam, the effects of tissue heterogeneity on dose distribution, the development of boron neutron capture enhanced fast neutron therapy and variety of radiobiology experiments.

  8. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  9. Electron cyclotron resonance heating on TEXTOR

    NASA Astrophysics Data System (ADS)

    Westerhof, E.; Hoekzema, J. A.; Hogeweij, G. M. D.; Jaspers, R. J. E.; Schüller, F. C.; Barth, C. J.; Bongers, W. A.; Donné, A. J. H.; Dumortier, P.; van der Grift, A. F.; van Gorkom, J. C.; Kalupin, D.; Koslowski, H. R.; Krämer-Flecken, A.; Kruijt, O. G.; Lopes Cardozo, N. J.; Mantica, P.; van der Meiden, H. J.; Merkulov, A.; Messiaen, A.; Oosterbeek, J. W.; Oyevaar, T.; Poelman, A. J.; Polman, R. W.; Prins, P. R.; Scholten, J.; Sterk, A. B.; Tito, C. J.; Udintsev, V. S.; Unterberg, B.; Vervier, M.; van Wassenhove, G.; TEC Team

    2003-11-01

    The 110 GHz and the new 140 GHz gyrotron systems for electron cyclotron resonance heating (ECRH) and ECCD on TEXTOR are described and results of ECRH experiments with the 110 GHz system are reported. Central ECRH on Ohmic plasmas shows the presence of an internal electron transport barrier near q = 1. This is confirmed by modulated ECRH experiments. A central barrier is also indicated by ECRH in radiatively improved (RI) mode discharges and up to two barriers are seen with ECRH during the current ramp phase. ECRH control of sawteeth is reported for both Ohmic and RI mode target plasmas. This paper is an expanded version of the two papers presented on the TEXTOR ECRH system (J.A. Hoekzema et al) and experimental results (E. Westerhof et al) at the 12th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (Aix-en-Provence, France, 13-16 May 2002).

  10. A room temperature electron cyclotron resonance ion source for the DC-110 cyclotron

    SciTech Connect

    Efremov, A. Bogomolov, S.; Lebedev, A.; Loginov, V.; Yazvitsky, N.

    2014-02-15

    The project of the DC-110 cyclotron facility to provide applied research in the nanotechnologies (track pore membranes, surface modification of materials, etc.) has been designed by the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research (Dubna). The facility includes the isochronous cyclotron DC-110 for accelerating the intensive Ar, Kr, Xe ion beams with 2.5 MeV/nucleon fixed energy. The cyclotron is equipped with system of axial injection and ECR ion source DECRIS-5, operating at the frequency of 18 GHz. This article reviews the design and construction of DECRIS-5 ion source along with some initial commissioning results.

  11. Magnetic-field measurements for the Lewis Research Center cyclotron

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1973-01-01

    The magnetic field of the Lewis Center cyclotron was mapped by using a Hall-effect magnetic-field transducer. Main-field Fourier coefficients were determined on a polar mesh of 40 radii for each of seven levels of main-field coil current. Incremental fields for eight sets of trim coils and two sets of harmonic coils were also determined at four of these main-field levels. A stored-program, digital computer was used to perform the measurements. The process was entirely automatic; all data-taking and data-reduction activities were specified by the computer programs. A new method for temperature compensation of a Hall element was used. This method required no temperature control of the element. Measurements of the Hall voltage and Hall-element resistance were sufficient to correct for temperature effects.

  12. Cyclotron-based neutron source for BNCT

    NASA Astrophysics Data System (ADS)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-01

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation & treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8×109 neutrons/cm2/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with 10B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  13. Imaging Cyclotron Orbits of Electrons in Graphene.

    PubMed

    Bhandari, Sagar; Lee, Gil-Ho; Klales, Anna; Watanabe, Kenji; Taniguchi, Takashi; Heller, Eric; Kim, Philip; Westervelt, Robert M

    2016-03-01

    Electrons in graphene can travel for several microns without scattering at low temperatures, and their motion becomes ballistic, following classical trajectories. When a magnetic field B is applied perpendicular to the plane, electrons follow cyclotron orbits. Magnetic focusing occurs when electrons injected from one narrow contact focus onto a second contact located an integer number of cyclotron diameters away. By tuning the magnetic field B and electron density n in the graphene layer, we observe magnetic focusing peaks. We use a cooled scanning gate microscope to image cyclotron trajectories in graphene at 4.2 K. The tip creates a local change in density that casts a shadow by deflecting electrons flowing nearby; an image of flow can be obtained by measuring the transmission between contacts as the tip is raster scanned across the sample. On the first magnetic focusing peak, we image a cyclotron orbit that extends from one contact to the other. In addition, we study the geometry of orbits deflected into the second point contact by the tip.

  14. Beam buncher for the K130-cyclotron

    NASA Astrophysics Data System (ADS)

    Saario, J.; Gustafsson, J.; Kotilainen, P.; Kaski, K.; Lassila, A.; Liukkonen, E.

    1996-02-01

    A beam buncher, developed to improve the beam efficiency in the K130 cyclotron at University of Jyväskylä, is described. The basic acceleration frequency and the second harmonic component were used to simulate a saw-tooth wave, needed for axial injection of the beam. With this method up to eight times increase in the beam intensity was achieved.

  15. Numerical investigation of auroral cyclotron maser processes

    SciTech Connect

    Speirs, D. C.; Ronald, K.; McConville, S. L.; Gillespie, K. M.; Phelps, A. D. R.; Cross, A. W.; Robertson, C. W.; Whyte, C. G.; He, W.; Bingham, R.; Vorgul, I.; Cairns, R. A.; Kellett, B. J.

    2010-05-15

    When a mainly rectilinear electron beam is subject to significant magnetic compression, conservation of magnetic moment results in the formation of a horseshoe shaped velocity distribution. It has been shown that such a distribution is unstable to cyclotron emission and may be responsible for the generation of auroral kilometric radiation--an intense rf emission sourced at high altitudes in the terrestrial auroral magnetosphere. Particle-in-cell code simulations have been undertaken to investigate the dynamics of the cyclotron emission process in the absence of cavity boundaries with particular consideration of the spatial growth rate, spectral output and rf conversion efficiency. Computations reveal that a well-defined cyclotron emission process occurs albeit with a low spatial growth rate compared with waveguide bounded simulations. The rf output is near perpendicular to the electron beam with a slight backward-wave character reflected in the spectral output with a well defined peak at 2.68 GHz, just below the relativistic electron cyclotron frequency. The corresponding rf conversion efficiency of 1.1% is comparable to waveguide bounded simulations and consistent with the predictions of kinetic theory that suggest efficient, spectrally well defined emission can be obtained from an electron horseshoe distribution in the absence of radiation boundaries.

  16. Ion-cyclotron instability in magnetic mirrors

    SciTech Connect

    Pearlstein, L.D.

    1987-02-02

    This report reviews the role of ion-cyclotron frequency instability in magnetic mirrors. The modes discussed here are loss-cone or anisotropy driven. The discussion includes quasilinear theory, explosive instabilities of 3-wave interaction and non-linear Landau damping, and saturation due to non-linear orbits. (JDH)

  17. Cyclotron-based neutron source for BNCT

    SciTech Connect

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  18. Electron-cyclotron-resonance ion sources (review)

    SciTech Connect

    Golovanivskii, K.S.; Dougar-Jabon, V.D.

    1992-01-01

    The physical principles are described and a brief survey of the present state is given of ion sources based on electron-cyclotron heating of plasma in a mirror trap. The characteristics of ECR sources of positive and negative ions used chiefly in accelerator technology are presented. 20 refs., 10 figs., 3 tabs.

  19. Physics of Cyclotron Resonance Scattering Features

    NASA Astrophysics Data System (ADS)

    Sschoenherr, Gabriele; Schwarm, Fritz-Walter; Falkner, Sebastian; Dauser, Thomas; Pottschmidt, Katja; Kretschmar, Peter; Klochkov, Dmitry; Ferrigno, Carlo; Britton Hemphill, Paul; Wilms, Joern

    2016-04-01

    Cyclotron resonant scattering features (short: cyclotron lines) are sensitive tracers of the physics of the accretion columns and mounds of X-ray pulsars. They form by interaction of X-ray photons with magnetically quantized electrons in the accreted plasma close to the neutron star. Such lines have been observed as absorption-like features for about 20 X-ray pulsars. Their energies provide a direct measure of the magnetic field strength in the line-forming region. By detailed modelling of the lines and of their parameter dependencies we can further decipher the physical conditions in the accretion column. For instance the fact that the complex scattering cross sections have a strong angle-dependence relates the phase-resolved cyclotron line shapes to parameters that constrain the systems’ still poorly understood geometry. Modelling the physics of cyclotron lines to a degree that allows for detailed and solid comparison to data therefore provides a unique access also to a better understanding of the overall picture of magnetically accreting neutron star systems.

  20. Development of an Accelerator Mass Spectrometer based on a Cyclotron

    SciTech Connect

    Kim, Dogyun; Bhang, Hyeongchan; Kim, Jongwon

    2011-12-13

    An accelerator mass spectrometer based on a cyclotron has been developed, and a prototype of the injection beam line has been constructed. Mass resolution of the cyclotron is designed to be over 4000. A sawtooth RF buncher in the beam line and a flat-topping RF system for the cyclotron were utilized to enhance beam transmission efficiency, which is a primary factor for improvement compared to previous cyclotron mass spectrometers. The injection beam line comprises an ion source, Einzel lens, RF buncher, 90 deg. dipole magnet and a slit box containing beam diagnostic devices. A carbon beam was measured at the location of the slit box, and beam phase spaces will be measured. The design of a cyclotron magnet was done, and orbit tracking was carried out using cyclotron optics codes. A scheme of radial injection was chosen to place a beam on the equilibrium orbit of the cyclotron. The injection scheme will be optimized after the beam measurements are completed.

  1. Cyclotron resonance cooling by strong laser field

    SciTech Connect

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-12-31

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers.

  2. Optimized magnet for a 250 MeV proton radiotherapy cyclotron

    NASA Astrophysics Data System (ADS)

    Kim, J.; Blosser, H.

    2001-12-01

    The NSCL accelerator group in 1993 carried out an extensive design study [1] for a K250 superconducting cyclotron for advanced cancer therapy. A private company ACCEL now offers cyclotrons based on this study on a commercial basis, and actual construction of a first such cyclotron is likely in the near future. In view of this, further optimization of the design of the superconducting magnet is currently underway. The configuration of the cyclotron has many similarities with previous NSCL-built superconducting cyclotrons—notable differences are the peak average field of 3 T (required by the focusing limit for protons) vs the 5 tesla of other MSU designs, and the use of four sectors rather than three to avoid the νr=3/2 stopband. The further optimization of the magnetic design described here keys on using the true 3D magnetic field program to more precisely match the design to an optimized orbital frequency configuration and to explore reducing the amount of spiral in the hills which then shortens the linear length of the rf elements and therefore reduces capacity and power consumption.

  3. Design study of a 9 MeV compact cyclotron system for PET

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-No; Shin, Seung-Wook; Song, Hoseung; Kim, Hyun-Wook; Chai, Jong-Seo

    2013-06-01

    A cyclotron is an accelerator which can be applied to both cancer diagnosis and treatment. Among commercially sold cyclotrons, the major energy is used for positron emission tomography (PET) ranges from 10 to 20 MeV. In this research, 9 MeV compact cyclotron for PET was designed. The research was conducted on the response cross section and the yield for the energy distribution to decide the design features. Also, it was determined the specifications on the basis of the fluoro-deoxy-glucose (FDG) maximum dose. The machine, which has a 20 uA beam current, is designed to be installed in small-to-medium-sized hospitals in local cities because of its relatively light weight (6 tons). This compact cyclotron, which provides 9-MeV proton beams, is composed of a azimuthally varying field (AVF) electromagnet, 83-MHz RF systems with a 20 kW amplifier, a panning ion gauge (PIG) type ion-source for negative hydrogen, and a double-stage high-vacuum system. The basic model design was done by using 3-D CAD program, CATIA and all the field calculations were performed using commercial electromagnetic field analysis code, OPERA-3D TOSCA. From this research, we expect a time reduction for FDG production, a decrease of radioactive exposure for workers, and an equipment cost reduction.

  4. Xe/+/ -induced ion-cyclotron harmonic waves

    NASA Astrophysics Data System (ADS)

    Jones, D.

    Xenon ion sources on an ejectable package separated from the main payload during the flights of Porcupine rockets F3 and F4 which were launched from Kiruna, Sweden on March 19 and 31, 1979, respectively. The effects of the xenon ion beam, detected by the LF (f less than 16 kHz) wideband electric field experiment and analyzed by using a sonograph, are discussed. Particular attention is given to the stimulation of the ion-cyclotron harmonic waves which are usually linked to the local proton gyro-frequency, but are sometimes related to half that frequency. It was found that in a plasma dominated by O(+) ions, a small amount (1-10%) of protons could cause an effect such that the O(+) cyclotron harmonic waves are set up by the hydrogen ions, the net result being the observation of harmonic emissions separated by the hydrogen ion gyro frequency.

  5. New magnet pole shape for isochronous cyclotrons

    SciTech Connect

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-01-01

    A new design has been developed for shaping pole tips to produce the radially increasing fields required for isochronous cyclotrons. The conventional solid hill poles are replaced by poles mounted over a small secondary gap which tapers radially from maximum at the magnet edge to zero near the center. Field measurements with a model magnet and calculations with the code TRIM show an increase in field at the edge of the magnet without the usual corresponding large increase in fringing, and a radial field shape more nearly field independent than for conventional hills. The flying hills have several advantages for variable energy multiparticle cyclotrons: (1) a large reduction in the power dissipated by isochronizing trim coils; (2) a more constant shape and magnitude flutter factor, eliminating flutter coils and increasing the operating range; and (3) a sharper fall-off of the fringe field, simplifying beam extraction.

  6. Electrostatic ion cyclotron velocity shear instability

    NASA Technical Reports Server (NTRS)

    Lemons, D. S.; Winske, D.; Gary, S. P.

    1992-01-01

    A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).

  7. Project 8: Towards cyclotron radiation emission spectroscopy on tritium

    NASA Astrophysics Data System (ADS)

    Fertl, Martin; Project 8 Collaboration

    2016-03-01

    Project 8 aims to determine the neutrino mass by making a precise measurement of the β--decay of molecular tritium (Q = 18.6 keV) using the recently demonstrated the technique of cyclotron radiation emission spectroscopy (CRES). Here we discuss the production of a gas cell that fulfills the stringent requirements for cryogenic operation, safe tritium handling, a non-magnetic design, and a good microwave guide performance. The phased program that allows Project 8 to probe the neutrino mass range accessible using molecular tritium is described. Major financial support by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics to the University of Washington under Award Number DE-FG02-97ER41020 is acknowledged.

  8. The Jyvaskyla (Finland) K130 cyclotron project

    NASA Astrophysics Data System (ADS)

    Liukkonen, Esko

    Tests and delivery dates of the components and cyclotron building and installation are given. A vacuum level of 0.00002 Pa was obtained after 200 hours pumping of the vacuum chamber. After venting with nitrogen the vacuum level of 0.0001 Pa was achieved. The specified level of 0.00001 Pa could not be achieved. It is possible that first experiments can be run just before the end of the year 1992.

  9. Resonant Plasma Heating Below the Cyclotron Frequency

    SciTech Connect

    Roscoe White; Liu Chen; Zhihong Lin

    2001-11-26

    Resonant heating of a magnetized plasma by low-frequency waves of large amplitude is considered. It is shown that the magnetic moment can be changed nonadiabatically by a single large amplitude wave, even at frequencies normally considered nonresonant. Two examples clearly demonstrate the existence of the resonances leading to chaos and the generic nature of heating below the cyclotron frequency. First, the classical case of an electrostatic wave of large amplitude propagating across a confining uniform magnetic field, and second, a large amplitude Alfvén wave, propagating obliquely across the magnetic field. Waves with frequencies a small fraction of the cyclotron frequency are shown to produce significant heating; bringing, in the case of Alfvén waves, particles to speeds comparable to the Alfvén velocity in a few hundred cyclotron periods. Stochastic threshold for heating occurs at significantly lower amplitude with a perturbation spectrum consisting of a number of modes. This phenomenon may have relevance for the heating of ions in the solar corona as well as for ion heating in some toroidal confinement fusion devices.

  10. Operation of a quasioptical electron cyclotron maser

    SciTech Connect

    Morse, E.C.; Pyle, R.V.

    1984-12-01

    The electron cyclotron maser or gyrotron concept has been developed to produce sources producing 200 kW at 28 GHz continuously, and higher power outputs and frequencies in pulsed mode. These sources have been useful in electron cyclotron resonance heating (ECRH) in magnetically confined fusion devices. However, higher frequencies and higher power levels will be required in reactor-grade fusion plasmas, with likely requirements of 1.0 MW or more per source at 140 GHz. Conventional gyrotrons follow a trend of decreasing power for increasing frequency. In order to circumvent this problem, the quasioptical electron cyclotron maser was proposed. In this device, the closed resonator of the conventional gyrotron is replaced with an open, Fabry-Perot type resonator. The cavity modes are then the TEM-type modes of an optical laser. The advantage of this configuration is that the cavity size is not a function of frequency, since the length can be any half-integer number of wavelengths. Furthermore, the beam traverses across the cavity transverse to the direction of radiation output, and thus the rf window design is less complicated than in conventional tubes. The rf output, if obtained by diffraction coupling around one of the mirrors, could be in a TEM mode, which would allow for quasioptical transmission of the microwaves into the plasma in fusion devices. 4 references, 1 figure.

  11. Transparency of Magnetized Plasma at Cyclotron Frequency

    SciTech Connect

    G. Shvets; J.S. Wurtele

    2002-03-14

    Electromagnetic radiation is strongly absorbed by a magnetized plasma if the radiation frequency equals the cyclotron frequency of plasma electrons. It is demonstrated that absorption can be completely canceled in the presence of a magnetostatic field of an undulator or a second radiation beam, resulting in plasma transparency at the cyclotron frequency. This effect is reminiscent of the electromagnetically induced transparency (EIT) of the three-level atomic systems, except that it occurs in a completely classical plasma. Unlike the atomic systems, where all the excited levels required for EIT exist in each atom, this classical EIT requires the excitation of the nonlocal plasma oscillation. The complexity of the plasma system results in an index of refraction at the cyclotron frequency that differs from unity. Lagrangian description was used to elucidate the physics and enable numerical simulation of the plasma transparency and control of group and phase velocity. This control naturally leads to applications for electromagnetic pulse compression in the plasma and electron/ion acceleration.

  12. Suppression of cyclotron instability in Electron Cyclotron Resonance ion sources by two-frequency heating

    SciTech Connect

    Skalyga, V.; Izotov, I.; Mansfeld, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O.

    2015-08-15

    Multiple frequency heating is one of the most effective techniques to improve the performance of Electron Cyclotron Resonance (ECR) ion sources. The method increases the beam current and average charge state of the extracted ions and enhances the temporal stability of the ion beams. It is demonstrated in this paper that the stabilizing effect of two-frequency heating is connected with the suppression of electron cyclotron instability. Experimental data show that the interaction between the secondary microwave radiation and the hot electron component of ECR ion source plasmas plays a crucial role in mitigation of the instabilities.

  13. Electrostatic electron and ion cyclotron harmonic waves in Neptune's magnetosphere

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Kurth, W. S.; Cairns, I. H.; Gurnett, D. A.; Poynter, R. L.

    1990-01-01

    Voyager 2 observations of electrostatic electron and ion cyclotron waves detected in Neptune's magnetosphere are presented. Both types of emission appear in a frequency band above the electron and ion (proton) cyclotron frequencies, respectively, and are tightly confined to the magnetic equator occurring within a few degrees of it. The electron cyclotron modes including an intense upper hybrid resonance emission excited by an unstable loss cone distribution of low-density superthermal electrons. The ion cyclotron waves are interpreted as hydrogen Bernstein modes including an intense lower hybrid resonance emission excited by an unstable ring distribution of low-density pickup N(+) ions deriving from the satellite Triton.

  14. Preliminary production of 211At at the Texas A&M University Cyclotron Institute.

    PubMed

    Martin, Thomas Michael; Bhakta, Vihar; Al-Harbi, Abeer; Hackemack, Michael; Tabacaru, Gabriel; Tribble, Robert; Shankar, Sriram; Akabani, Gamal

    2014-07-01

    A feasibility study for the production of the alpha particle-emitting radionuclide At was performed at the Texas A&M University Cyclotron Institute as part of the Interdisciplinary Radioisotope Production and Radiochemistry Program. The mission of this program centers upon the production of radionuclides for use in diagnostic and therapeutic nuclear medicine with the primary focus on development of novel therapeutic strategies. As a first step in establishing this program, two goals were outlined: (i) verify production of At and compare results to published data, and (ii) evaluate shielding and radiological safety issues for large-scale implementation using an external target. The radionuclide At was produced via the Bi (α, 2n) At reaction using the K500 cyclotron. Two experiments were conducted, using beam energies of 27.8 MeV and 25.3 MeV, respectively. The resulting yields for At were found to be 36.0 MBq μA h and 12.4 MBq μA h, respectively, which fall within the range of published yield data. Strategies for increasing absolute yield and production efficiency were also evaluated, which focused chiefly on using a new target designed for use with the K150 cyclotron, which will enable the use of a higher beam current. Finally, neutron and gamma dose rates during production were evaluated by using the Monte Carlo code MCNPX. It was determined that a simple structure consisting of 4-in thick borated polyethylene will reduce the neutron dose rate within the cyclotron production vault by approximately a factor of 2, thereby decreasing activation of equipment.

  15. Preliminary production of 211At at the Texas A&M University Cyclotron Institute.

    PubMed

    Martin, Thomas Michael; Bhakta, Vihar; Al-Harbi, Abeer; Hackemack, Michael; Tabacaru, Gabriel; Tribble, Robert; Shankar, Sriram; Akabani, Gamal

    2014-07-01

    A feasibility study for the production of the alpha particle-emitting radionuclide At was performed at the Texas A&M University Cyclotron Institute as part of the Interdisciplinary Radioisotope Production and Radiochemistry Program. The mission of this program centers upon the production of radionuclides for use in diagnostic and therapeutic nuclear medicine with the primary focus on development of novel therapeutic strategies. As a first step in establishing this program, two goals were outlined: (i) verify production of At and compare results to published data, and (ii) evaluate shielding and radiological safety issues for large-scale implementation using an external target. The radionuclide At was produced via the Bi (α, 2n) At reaction using the K500 cyclotron. Two experiments were conducted, using beam energies of 27.8 MeV and 25.3 MeV, respectively. The resulting yields for At were found to be 36.0 MBq μA h and 12.4 MBq μA h, respectively, which fall within the range of published yield data. Strategies for increasing absolute yield and production efficiency were also evaluated, which focused chiefly on using a new target designed for use with the K150 cyclotron, which will enable the use of a higher beam current. Finally, neutron and gamma dose rates during production were evaluated by using the Monte Carlo code MCNPX. It was determined that a simple structure consisting of 4-in thick borated polyethylene will reduce the neutron dose rate within the cyclotron production vault by approximately a factor of 2, thereby decreasing activation of equipment. PMID:24849899

  16. Electron cyclotron emission imaging in tokamak plasmas

    SciTech Connect

    Munsat, Tobin; Domier, Calvin W.; Kong, Xiangyu; Liang, Tianran; Luhmann, Jr.; Neville C.; Tobias, Benjamin J.; Lee, Woochang; Park, Hyeon K.; Yun, Gunsu; Classen, Ivo. G. J.; Donne, Anthony J. H.

    2010-07-01

    We discuss the recent history and latest developments of the electron cyclotron emission imaging diagnostic technique, wherein electron temperature is measured in magnetically confined plasmas with two-dimensional spatial resolution. The key enabling technologies for this technique are the large-aperture optical systems and the linear detector arrays sensitive to millimeter-wavelength radiation. We present the status and recent progress on existing instruments as well as new systems under development for future experiments. We also discuss data analysis techniques relevant to plasma imaging diagnostics and present recent temperature fluctuation results from the tokamak experiment for technology oriented research (TEXTOR).

  17. Electron cyclotron emission diagnostics on KSTAR tokamak.

    PubMed

    Jeong, S H; Lee, K D; Kogi, Y; Kawahata, K; Nagayama, Y; Mase, A; Kwon, M

    2010-10-01

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  18. Method of enhancing cyclotron beam intensity

    DOEpatents

    Hudson, Ed D.; Mallory, Merrit L.

    1977-01-01

    When an easily ionized support gas such as xenon is added to the cold cathode in sources of the Oak Ridge Isochronous Cyclotron, large beam enhancements are produced. For example, .sup.20 Ne.sup.7+ is increased from 0.05 enA to 27 enA, and .sup.16 O.sup.5+ intensities in excess of 35 e.mu.A have been extracted for periods up to 30 minutes. Approximately 0.15 cc/min of the easily ionized support gas is supplied to the ion source through a separate gas feed line and the primary gas flow is reduced by about 30%.

  19. Slow-wave electron cyclotron maser

    SciTech Connect

    Kho, T.H.; Lin, A.T.

    1988-09-15

    The basic physics of a slow-wave electron cyclotron maser (ECM) operating in the Cherenkov regime is considered. This device has the advantage over fast-wave ECM's in that it can be operated with direct axial injection of the electron beam, thus allowing for better control over beam quality and a potentially more compact design. The nonlinear evolution and saturation of the instability are studied using computer simulation. It is shown that high efficiency is attainable and, furthermore, that beam momentum spread is better tolerated in the Doppler-shift-dominated regime than is the case for a fast-wave ECM.

  20. Electron cyclotron heating in TMX-Upgrade

    SciTech Connect

    Stallard, B.W.; Hooper, E.B. Jr.

    1981-01-01

    TMX-Upgrade, an improved tandem mirror experiment under construction at LLNL, will use electron cyclotron resonance heating (ECRH) to create thermal barriers and to increase the center cell ion confining potential. Gyrotron oscillators (200 kW, 28 GHz) supply the heating power for the potential confined electron (fundamental heating) and the mirror-confined electrons (harmonic heating) in the thermal barriers. Important issues are temperature limitation and microstability for the hot electrons. Off-midplane heating can control anisotropy-driven microstability. Spacially restricting heating offers the possibility of temperature control by limiting the energy for resonant interaction.

  1. Electron cyclotron emission diagnostics on KSTAR tokamak

    SciTech Connect

    Jeong, S. H.; Lee, K. D.; Kwon, M.; Kogi, Y.; Kawahata, K.; Nagayama, Y.; Mase, A.

    2010-10-15

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  2. Numerical Simulation of a Multi-Cusp Ion Source for High Current H- Cyclotron at RISP

    NASA Astrophysics Data System (ADS)

    Kim, J. H.

    The rare isotope science project (RISP) has been launched in 2011 to support a wide range science program in nuclear, material, and bio-medical sciences as well as interdisciplinary programs. The production of rare isotope beams at RISP is currently configured to include facilities for both an In-flight Fragmentation (IF) system and an Isotope Separator On-Line (ISOL) system, which will utilize a 70 MeV H- cyclotron. The cyclotron will deliver 70 kW proton beam power to ISOL targets, where rare isotopes are generated and re-accelerated by a linear accelerator. A multi-cusp ion source used widely in H- cyclotrons is designed to have cusp geometries of magnetic field inside the ion source chamber, where ions are confined and enhanced plasma densities. Therefore the magnetic confinement fields produced by a number of permanent magnetic poles help to increase H- beam currents. In this work a numerical simulation is performed to understand the effect of multi-cusp magnetic fields when the number of magnetic poles is varied from 6 to 14. It is found that the larger number of magnetic poles provides a stronger ion confinement yielding higher extracted H- ion currents while the extracted electron current becomes lower.

  3. Gamma ray facilities at the University of Maryland cyclotron. [data acquisition and radiation measurement

    NASA Technical Reports Server (NTRS)

    Hornyak, W. F.

    1978-01-01

    A special beam line was set up in a separate shielded experimental room to provide a low background station for gamma-ray measurements at the University of Maryland cyclotron. The transmitted beam leaving the target is gathered in by a magnetic quadrupole lens located 1.8 m further downstream and focused on a Faraday cup located on the far side of the 2.5 m thick concrete shielding wall of the experimental room. A software computer program permits timing information ot be obtained using the cyclotron beam fine structure as a time reference for the observed gamma-ray events. Measurements indicate a beam fine structure width of less than 1.2 nanoseconds repeated, for example, in the case of 140 MeV alpha particles every 90 nanoseconds. Twelve contiguous time channels of adjustable width may be set as desired with reference to the RF signal. This allows the creation of 12 separate 8192 channel analyzers.

  4. A new generation of medical cyclotrons for the 90`s

    SciTech Connect

    Milton, B.F.

    1995-08-01

    Cyclotrons continue to be efficient accelerators for use in radio-isotope production. In recent years, developments in accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology as they relate to the new generation of commercial cyclotrons. Existing and potential markets for these cyclotrons will be presented. They will also discuss the possibility of systems capable of extracted energies up to 150 MeV and extracted beam currents of up to 2.0 mA.

  5. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Astrophysics Data System (ADS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-09-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  6. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  7. Development of accelerator mass spectrometer based on a compact cyclotron

    NASA Astrophysics Data System (ADS)

    Kim, J.-W.; Kim, D.-G.

    2011-07-01

    A small cyclotron has been designed for accelerator mass spectrometry, and the injection beam line is constructed as part of prototyping. Mass resolution of the cyclotron is estimated to be around 4000. The design of the cyclotron was performed with orbit-tracking computations using 3D magnetic and electric fields, and beam optics of the injection line was calculated using the codes such as IGUN and TRANSPORT. The radial injection scheme is chosen to place a beam on equilibrium orbit of the cyclotron. The injection line includes an ion source, Einzel lens, rf buncher, 90° dipole magnet, and quadrupole triplet magnet. A carbon beam was extracted from the front part of the injection line. An rf cavity system for the cyclotron was built and tested. A multi channel plates (MCP) detector to measure low-current ion beams was also tested. Design considerations are given to analyzing a few different radioisotopes in form of positive ions as well as negative ions.

  8. Coherent cyclotron motion beyond Kohn's theorem

    NASA Astrophysics Data System (ADS)

    Maag, T.; Bayer, A.; Baierl, S.; Hohenleutner, M.; Korn, T.; Schüller, C.; Schuh, D.; Bougeard, D.; Lange, C.; Huber, R.; Mootz, M.; Sipe, J. E.; Koch, S. W.; Kira, M.

    2016-02-01

    In solids, the high density of charged particles makes many-body interactions a pervasive principle governing optics and electronics. However, Walter Kohn found in 1961 that the cyclotron resonance of Landau-quantized electrons is independent of the seemingly inescapable Coulomb interaction between electrons. Although this surprising theorem has been exploited in sophisticated quantum phenomena, such as ultrastrong light-matter coupling, superradiance and coherent control, the complete absence of nonlinearities excludes many intriguing possibilities, such as quantum-logic protocols. Here, we use intense terahertz pulses to drive the cyclotron response of a two-dimensional electron gas beyond the protective limits of Kohn's theorem. Anharmonic Landau ladder climbing and distinct terahertz four- and six-wave mixing signatures occur, which our theory links to dynamic Coulomb effects between electrons and the positively charged ion background. This new context for Kohn's theorem unveils previously inaccessible internal degrees of freedom of Landau electrons, opening up new realms of ultrafast quantum control for electrons.

  9. Cyclotron and linac production of Ac-225.

    PubMed

    Melville, Graeme; Allen, Barry J

    2009-04-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. The reduction of radium by photonuclear transmutation by bombarding Ra-226 with high-energy photons from a medical linear accelerator (linac) has been investigated. A linac dose of 2800 Gy produced about 2.4 MBq (64 microCi) of Ra-225, which decays to Ac-225 and can then be used for 'Targeted Alpha Therapy' (TAT) of cancer. This result, while consistent with theoretical calculations, is far too low to be of practical use unless much larger quantities of radium are irradiated. The increasing application of Ac-225 for cancer therapy indicates the potential need for its increased production and availability. This paper investigates the possibility of producing of Ac-225 in commercial quantities, which could potentially reduce obsolete radioactive material and displace the need for expensive importation of Ac-225 from the USA and Russia in the years ahead. Scaled up production of Ac-225 could theoretically be achieved by the use of a high current cyclotron or linac. Production specifications are determined for a linac in terms of current, pulse length and frequency, as well as an examination of other factors such as radiation issues and radionuclei separation. Yields are compared with those calculated for the Australian National Cyclotron in Sydney.

  10. Ion cyclotron emission studies: Retrospects and prospects

    NASA Astrophysics Data System (ADS)

    Gorelenkov, N. N.

    2016-05-01

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfvénic cyclotron instabilities with the linear growth rate √ {n_α /n_e } driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. More recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. We discuss further prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  11. Acceleration of tritons with a compact cyclotron

    NASA Astrophysics Data System (ADS)

    Wegmann, H.; Huenges, E.; Muthig, H.; Morinaga, H.

    1981-01-01

    With the compact cyclotron at the Faculty of the Technical University of Munich, tritons have been accelerated to an energy of 7 MeV. A safe and reliable operation of the gas supply for the ion source was obtained by a new tritium storage system. A quantity of 1500 Ci tritium is stored by two special Zr-Al getter pumps in a non-gaseous phase. The tritium can be released in well-defined amounts by heating the getter material. During triton acceleration the pressure in the cyclotron vacuum chamber is maintained only by a large titanium sputter-ion pump, thus forming a closed vacuum system without any exhaust of tritium contaminated gas. Any tritium contaminations in the air can be detected by an extremely sensitive tritium monitoring system. The triton beam with a maximum intensity of 30 μA has been used so far to produce neutron-rich radioisotopes such as 28Mg, 43K or 72Zn, which are successfully applied in tracer techniques in the studies of biological systems.

  12. Ion cyclotron emission studies: Retrospects and prospects

    DOE PAGES

    Gorelenkov, N. N.

    2016-06-05

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar ~ √(nα/ne) driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. Recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusionmore » devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. Finally, we discuss prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.« less

  13. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C M; Furman, M A; Vay, J L; Grote, D P; Ng, J T; Pivi, M F; Wang, L F

    2009-05-05

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where l{sub b} << 2{pi}{omega}{sub c}, (l{sub b} = bunch duration, {omega}{sub c} = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor {approx} 3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined density 'stripes' of multipactoring found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations, the reason for the bunch-length dependence, and details of the dynamics will be discussed.

  14. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C. M.; Furman, Miguel A.; Vay, J.-L.; Ng, J. S.T.; Grote, D. P.; Pivi, M. T. F.; Wang, L. F.

    2009-04-29

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where lb<< 2pi c/omega c (with lb = bunch length, omega c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the electron cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ~;;3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined vertical density"stripes" found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The existence of the resonances has been confirmed in experiments at PEP-II. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations and experimental observations, the reason for the bunch-length dependence, and details of the dynamics are discussed here.

  15. Cyclotron Production of Technetium-99m

    NASA Astrophysics Data System (ADS)

    Gagnon, Katherine M.

    Technetium-99m (99mTc) has emerged as the most widely used radionuclide in medicine and is currently obtained from a 99Mo/ 99mTc generator system. At present, there are only a handful of ageing reactors worldwide capable of producing large quantities of the parent isotope, 99Mo, and owing to the ever growing shutdown periods for maintenance and repair of these ageing reactors, the reliable supply 99mTc has been compromised in recent years. With an interest in alternative strategies for producing this key medical isotope, this thesis focuses on several technical challenges related to the direct cyclotron production of 99mTc via the 100Mo(p,2n)99mTc reaction. In addition to evaluating the 100Mo(p,2n)99mTc and 100Mo(p,x)99Mo reactions, this work presented the first experimental evaluation of the 100Mo(p,2n) 99gTc excitation function in the range of 8-18 MeV. Thick target calculations suggested that large quantities of cyclotron-produced 99mTc may be possible. For example, a 6 hr irradiation at 500 μA with an energy window of 18→10 MeV is expected to yield 1.15 TBq of 99mTc. The level of coproduced 99gTc contaminant was found to be on par with the current 99Mo/99mTc generator standard eluted with a 24 hr frequency. Highly enriched 100Mo was required as the target material for 99mTc production and a process for recycling of this expensive material is presented. An 87% recovery yield is reported, including metallic target preparation, irradiation, 99mTc extraction, molybdate isolation, and finally hydrogen reduction to the metal. Further improvements are expected with additional optimization experiments. A method for forming structurally stable metallic molybdenum targets has also been developed. These targets are capable of withstanding more than a kilowatt of beam power and the reliable production and extraction of Curie quantities of 99mTc has been demonstrated. With the end-goal of using the cyclotron-produced 99mTc clinically, the quality of the cyclotron

  16. Electrostatic hydrogen-cyclotron wave emission below the hydrogen-cyclotron frequency in the auroral acceleration region

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Conrad, J. R.

    1984-01-01

    A mechanism is suggested for the excitation of electrostatic ion-cyclotron waves at frequencies below the ion-cyclotron frequency in the midst of the auroral acceleration region, which is assumed to consist of downward moving double layers. The mechanism involves upward flowing ions interacting with a downward flowing background plasma. The upward flowing ions are the ion beams accelerated by the double layer. The downward motion of the background plasma corresponds to a plasma expansion into the density cavity that develops in connection with double layer formation in the acceleration region. The ion-cyclotron waves excited by the counterstreaming flows are doppler shifted to frequencies below the harmonics of the ion cyclotron frequency. It is suggested that such wave emissions could account for some very narrow-banded waves at frequencies below the hydrogen cyclotron frequency that were observed by the S3-3 satellite.

  17. Spectroscopic classification of SN 2016esm with the SEDM (Spectral Energy Distribution Machine) on Palomar 60-inch (P60) telescope

    NASA Astrophysics Data System (ADS)

    Blagorodnova, N.; Dugas, A.; Neill, J. D.; Walters, R.; Kasliwal, M.

    2016-08-01

    The Caltech Time Domain Astronomy group reports the classification of the optical transients SN 2016esm. The candidate was discovered by Mr. Koichi Itagaki (https://wis-tns.weizmann.ac.il/object/2016esm).

  18. Compact superconducting cyclotron C400 for hadron therapy

    NASA Astrophysics Data System (ADS)

    Jongen, Y.; Abs, M.; Blondin, A.; Kleeven, W.; Zaremba, S.; Vandeplassche, D.; Aleksandrov, V.; Gursky, S.; Karamyshev, O.; Karamysheva, G.; Kazarinov, N.; Kostromin, S.; Morozov, N.; Samsonov, E.; Shirkov, G.; Shevtsov, V.; Syresin, E.; Tuzikov, A.

    2010-12-01

    The compact superconducting isochronous cyclotron C400 has been designed by the IBA-JINR collaboration. It will be the first cyclotron in the world capable of delivering protons, carbon and helium ions for cancer treatment. The cyclotron construction is started this year within the framework of the Archade project (Caen, France). 12C 6+ and 4He 2+ ions will be accelerated to 400 MeV/uu energy and extracted by the electrostatic deflector, H2+ ions will be accelerated to the energy of 265 MeV/uu and extracted by stripping. The magnet yoke has a diameter of 6.6 m, the total weight of the magnet is about 700 t. The designed magnetic field corresponds to 4.5 T in the hills and 2.45 T in the valleys. Superconducting coils will be enclosed in a cryostat; all other parts of the cyclotron will be warm. Three external ion sources will be mounted on the switching magnet on the injection line located below the cyclotron. The main parameters of the cyclotron, its design, the current status of the development work on the cyclotron systems are presented.

  19. Electromagnetic Ion Cyclotron Waves in the Helium Branch Induced by Multiple Electromagnetic Ion Cyclotron Triggered Emissions

    NASA Astrophysics Data System (ADS)

    Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.

    2011-12-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  20. Ionospheric modification at twice the electron cyclotron frequency.

    PubMed

    Djuth, F T; Pedersen, T R; Gerken, E A; Bernhardt, P A; Selcher, C A; Bristow, W A; Kosch, M J

    2005-04-01

    In 2004, a new transmission band was added to the HAARP high-frequency ionospheric modification facility that encompasses the second electron cyclotron harmonic at altitudes between approximately 220 and 330 km. Initial observations indicate that greatly enhanced airglow occurs whenever the transmission frequency approximately matches the second electron cyclotron harmonic at the height of the upper hybrid resonance. This is the reverse of what happens at higher electron cyclotron harmonics. The measured optical emissions confirm the presence of accelerated electrons in the plasma. PMID:15903924

  1. Electron Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-06-25

    We report a previously unknown resonance for electron cloud dynamics. The 2D simulation code"POSINST" was used to study the electron cloud buildup at different z positions in the International Linear Collider positron damping ring wiggler. An electron equilibrium density enhancement of up to a factor of 3 was found at magnetic field values for which the bunch frequency is an integral multiple of the electron cyclotron frequency. At low magnetic fields the effects of the resonance are prominent, but when B exceeds ~;;(2 pi mec/(elb)), with lb = bunch length, effects of the resonance disappear. Thus short bunches and low B fields are required for observing the effect. The reason for the B field dependence, an explanation of the dynamics, and the results of the 2D simulations and of a single-particle tracking code used to elucidate details of the dynamics are discussed.

  2. Analysis of the electron cyclotron maser instability

    NASA Astrophysics Data System (ADS)

    Kuo, S. P.; Cheo, B. R.

    1984-07-01

    The nonlinear evolution of the electron cyclotron maser instability is investigated analytically, with a focus on the saturation due to phase trapping of gyrating particles in the wave. The equations of motion of a single electron moving in the wave are solved; the collective response of electrons to wave fields is obtained by averaging over the initial random phase distribution; and a single nonlinear equation governing the time evolution of the amplitude is derived self-consistently. Numerical results are presented in graphs and shown to be in good agreement with those of a particle simulation, at a significant savings in computational effort. The results are applicable to the improvement of high-power gyrotron-type mm and sub-mm emitters for radar communications or plasma heating in controlled-fusion devices.

  3. Folded waveguide coupler for ion cyclotron heating

    SciTech Connect

    Owens, T.L.; Chen, G.L.

    1986-01-01

    A new type of waveguide coupler for plasma heating in the ion cyclotron range of frequencies is described. The coupler consists of a series of interleaved metallic vanes within a rectangular enclosure analogous to a wide rectangular waveguide that has been ''folded'' several times. At the mouth of the coupler, a plate is attached which contains coupling apertures in each fold or every other fold of the waveguide, depending upon the wavenumber spectrum desired. This plate serves primarily as a wave field polarizer that converts coupler fields to the polarization of the fast magnetosonic wave within the plasma. Theoretical estimates indicate that the folded waveguide is capable of high-efficiency, multimegawatt operation into a plasma. Bench tests have verified the predicted field structure within the waveguide in preparation for high-power tests on the Radio Frequency Test Facility at the Oak Ridge National Laboratory.

  4. Converting an AEG Cyclotron to H{sup -} Acceleration and Extraction

    SciTech Connect

    Ramsey, Fred; Carroll, Lewis; Rathmann, Tom; Huenges, Ernst; Bechtold, Matthias Mentler Volker

    2009-03-10

    Clinical Trials are under way to evaluate agents labeled with the nuclide {sup 225}Ac and its decay product {sup 213}Bi, in targeted alpha-immuno-therapy. {sup 225}Ac can be produced on a medium-energy cyclotron via the nuclear reaction {sup 226}Ra(p,n){sup 225}Ac. To demonstrate proof-of-principle, a vintage AEG cyclotron, Model E33, with an internal target, had been employed in a pilot production program at the Technical University of Munich (TUM). To enhance production capability and further support the clinical studies, the TUM facility has recently been refurbished and upgraded, adding a new external beam-line, automated target irradiation and transport systems, new laboratories, hot cells, etc.. An improved high-power rotating target has been built and installed. The AEG cyclotron itself has also been modified and upgraded to accelerate and extract H{sup -} ions. We have designed, built, and tested a new axial Penning-type ion source which is optimized for the production of H{sup -} ions. The ion source has continued to evolve through experiment and experience. Steady improvements in materials and mechanics have led to enhanced source stability, life-time, and H{sup -} production. We have also designed and built a precision H{sup -} charge-exchange beam-extraction system which is equipped with a vacuum lock. To fit within the tight mechanical constraint imposed by the narrow magnet gap, the system incorporates a novel chain-drive foil holder and foil-changer mechanism. The reconfigured cyclotron system has now been in operation for more than 1 year. Three long-duration target irradiations have been conducted. The most recent bombardment ran 160 continuous hours at a beam on target of {approx}80 microamperes for a total yield of {approx}70 milli-curies of {sup 225}Ac.

  5. The NSCL cyclotron gas stopper - Entering commissioning

    NASA Astrophysics Data System (ADS)

    Schwarz, S.; Bollen, G.; Chouhan, S.; Das, J. J.; Green, M.; Magsig, C.; Morrissey, D. J.; Ottarson, J.; Sumithrarachchi, C.; Villari, A. C. C.; Zeller, A.

    2016-06-01

    Linear gas stopping cells have been used successfully at NSCL to slow down ions produced by projectile fragmentation from the 100 MeV/u to the keV energy range. These 'stopped beams' have first been used for low-energy high precision experiments and more recently for NSCLs re-accelerator ReA. A gas-filled reverse cyclotron is currently under construction by the NSCL to complement the existing stopping cells: Due to its extended stopping length, efficient stopping and fast extraction is expected even for light and medium-mass ions, which are difficult to thermalize in linear gas cells. The device is based on a 2.6 T maximum-field cyclotron-type magnet to confine the injected beam while it is slowed down in ≈100 mbar of LN2-temperature helium gas. Once thermalized, the beam will be transported to the center of the device by a traveling-wave RF-carpet system, extracted along the symmetry axis with an ion conveyor and miniature RF-carpets, and accelerated to a few tens of keV of energy for delivery to the users. The superconducting magnet has been constructed on a 60 kV platform and energized to its nominal field strength. The magnet's two cryostats use 3 cryo-refrigerators each and liquid-nitrogen cooled thermal shields to cool the coil pair to superconductivity. This concept, chosen not to have to rely on external liquid helium, has been working well. Measurements of axial and radial field profiles confirm the field calculations. The individual RF-ion guiding components for low-energy ion transport through the device have been tested successfully. The beam stopping chamber with its 0.9 m-diameter RF carpet system and the ion extraction system are being prepared for installation inside the magnet for low-energy ion transport tests.

  6. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern

  7. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis

  8. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    SciTech Connect

    Oosterbeek, J. W.; Buerger, A.; Westerhof, E.; Baar, M. R. de; Berg, M. A. van den; Bongers, W. A.; Graswinckel, M. F.; Hennen, B. A.; Kruijt, O. G.; Thoen, J.; Heidinger, R.; Korsholm, S. B.; Leipold, F.; Nielsen, S. K.

    2008-09-15

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) beam. ECE measurements are obtained during high power ECRH operation. This demonstrates the successful operation of the diagnostic and, in particular, a sufficient suppression of the gyrotron component preventing it from interfering with ECE measurements. When integrated into a feedback system for the control of plasma instabilities this line-of-sight ECE diagnostic removes the need to localize the instabilities in absolute coordinates.

  9. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes.

    PubMed

    Oosterbeek, J W; Bürger, A; Westerhof, E; de Baar, M R; van den Berg, M A; Bongers, W A; Graswinckel, M F; Hennen, B A; Kruijt, O G; Thoen, J; Heidinger, R; Korsholm, S B; Leipold, F; Nielsen, S K

    2008-09-01

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) beam. ECE measurements are obtained during high power ECRH operation. This demonstrates the successful operation of the diagnostic and, in particular, a sufficient suppression of the gyrotron component preventing it from interfering with ECE measurements. When integrated into a feedback system for the control of plasma instabilities this line-of-sight ECE diagnostic removes the need to localize the instabilities in absolute coordinates.

  10. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    SciTech Connect

    Asner, David M.; Bradley, Rich; De Viveiros Souza Filho, Luiz A.; Doe, Peter J.; Fernandes, Justin L.; Fertl, M.; Finn, Erin C.; Formaggio, Joseph; Furse, Daniel L.; Jones, Anthony M.; Kofron, Jared N.; LaRoque, Benjamin; Leber, Michelle; MCBride, Lisa; Miller, M. L.; Mohanmurthy, Prajwal T.; Monreal, Ben; Oblath, Noah S.; Robertson, R. G. H.; Rosenberg, Leslie; Rybka, Gray; Rysewyk, Devyn M.; Sternberg, Michael G.; Tedeschi, Jonathan R.; Thummler, Thomas; VanDevender, Brent A.; Woods, N. L.

    2015-04-01

    It has been understood since 1897 that accelerating charges should emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spectrometer. We observe the cyclotron radiation emitted by individual electrons that are produced with mildly-relativistic energies by a gaseous radioactive source and are magnetically trapped. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work is a proof-of-concept for future neutrino mass experiments using this technique.

  11. Heavy-ion injection from tandems into an isochronous cyclotron

    SciTech Connect

    LeVine, M.J.; Chasman, C.

    1981-01-01

    A design has been realized for the injection of heavy ion beams generated by the BNL 3-stage tandem facility into a proposed isochronous cyclotron. The tandem beams are bunched into +- 1/sup 0/ R.F. phase (less than or equal to 0.5 nsec) in two stages. The beam is then injected into the cyclotron through a valley, past a hill, and into the next valley on to a stripper foil. Only a single steerer is required to make trajectory corrections for the different beams. Two achromats are used to regulate the tandem potential and to provide phase control. A final section of the injection optics provides matching of transverse phase space to the acceptance of the cyclotron. The calculations use realistic tandem emittances and magnetic fields for the cyclotron based on measurements with a model magnet.

  12. Undergraduate Education with the Rutgers 12-Inch Cyclotron

    NASA Astrophysics Data System (ADS)

    Koeth, Timothy W.

    The Rutgers 12-Inch Cyclotron is a research grade accelerator dedicated to undergraduate education. From its inception, it has been intended for instruction and has been designed to demonstrate classic beam physics phenomena and provides students hands on experience with accelerator technology. The cyclotron is easily reconfigured, allowing experiments to be designed and performed within one academic semester. Our cyclotron offers students the opportunity to operate an accelerator and directly observe many fundamental beam physics concepts, including axial and radial betatron motion, destructive resonances, weak and azimuthally varying field (AVF) focusing schemes, RF and DEE voltage effects, diagnostic techniques, and perform low energy nuclear reactions. This paper emphasizes the unique beam physics measurements and beam manipulations capable at the Rutgers 12-Inch Cyclotron.

  13. Cyclotrons for clinical and biomedical research with PET

    SciTech Connect

    Wolf, A.P.

    1987-01-01

    The purpose of this commentary is to present some background material on cyclotrons and other particle accelerators particularly with a view toward the considerations behind acquiring and installing such a machine for purely clinical and/or biomedical research use.

  14. Transverse-longitudinal coupling by space charge in cyclotrons

    NASA Astrophysics Data System (ADS)

    Baumgarten, C.

    2011-11-01

    A method is presented that enables one to compute the parameters of matched beams with space charge in cyclotrons with emphasis on the effect of the transverse-longitudinal coupling. Equations describing the transverse-longitudinal coupling and corresponding tune shifts in first order are derived for the model of an azimuthally symmetric cyclotron. The eigenellipsoid of the beam is calculated and the transfer matrix is transformed into block-diagonal form. The influence of the slope of the phase curve on the transverse-longitudinal coupling is accounted for. The results are generalized and numerical procedures for the case of an azimuthally varying field cyclotron are presented. The algorithm is applied to the PSI injector II and ring cyclotron and the results are compared to TRANSPORT.

  15. Cyclotron accelerated beams applied in wear and corrosion studies

    NASA Astrophysics Data System (ADS)

    Racolta, P. M.; Popa-Simil, L.; Ivanov, E. A.; Alexandreanu, B.

    1996-05-01

    Wear and corrosion processes are characterized by a loss of material that is, for machine parts and components, usually in a micrometer's range. That is why, in the last two decades, many direct applications in machine construction, petrochemical and metallurgical industries based on the Thin Layer Activation (TLA) technique have been developed. In this paper general working patterns together with a few examples of TLA applications carried out using our laboratory's U-120 Cyclotron are presented. The relation between the counting rate of the radiation originating from the component's irradiated zone and the loss of the worn material can be determined mainly by two methods: the oil circulation method and the remnant radioactivity measuring method. The first method is illustrated with some typical examples such as the optimization of the running-in program of a diesel engine and anti-wear features certifying of lubricant oils. There is also presented an example where the second method mentioned above has been applied to corrosion rate determinations for different kinds of unoxidable steels used in inert gas generator construction.

  16. A new way to measure the electron cyclotron frequency

    NASA Astrophysics Data System (ADS)

    Palmer, F. L.

    1993-03-01

    A method is described for using spin flips to measure the 0 to 1 cyclotron transition frequency of a single electron in a Penning trap. Detection can be accomplished with magnetic bottles of 10 T/m2 or less, thereby greatly reducing the thermal broadening of the cyclotron line. This method complements a recently published technique for measuring the anomaly frequency, making a more precise measurement of the electron anomaly ratio possible.

  17. Ion source and injection line for high intensity medical cyclotron

    SciTech Connect

    Jia, XianLu Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  18. Ion source and injection line for high intensity medical cyclotron

    NASA Astrophysics Data System (ADS)

    Jia, XianLu; Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-01

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H- ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H- ion source (CIAE-CH-I type) and a short injection line, which the H- ion source of 3 mA/25 keV H- beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  19. Electromagnetic cyclotron waves near the proton cyclotron frequency in the solar wind

    NASA Astrophysics Data System (ADS)

    Jian, Lan K.; Boardsen, Scott; Moya, Pablo; Stevens, Michael; Alexander, Robert; Vinas, Adolfo

    2015-04-01

    Strong narrow-band electromagnetic waves around the proton cyclotron frequency (fpc) have been found sporadically in the solar wind from 0.3 to 0.7 AU during MESSENGER spacecraft’s cruise phase. These waves are transverse and circularly polarized, and they propagate in directions quasi-parallel to the magnetic field. The wave power decreases quadratically with heliocentric distance, faster than the trend if assuming the conservation of Poynting flux for wave packets, suggesting there is energy dissipation from the waves, which could contribute to the heating and acceleration of solar wind plasma. Although the wave frequency is a few times of fpc in the spacecraft frame, it is a fraction of fpc in the solar wind plasma frame after removing the Doppler shift effect. In this frequency range, the waves can be left-hand (LH) polarized ion cyclotron waves or right-hand (RH) polarized magnetosonic waves. Because the waves are LH or RH polarized in the spacecraft frame with otherwise nearly identical characteristics, they could be due to Doppler shift of a same type of waves or a mixture of waves with intrinsically different polarizations. Through the assistance of audification, we have studied the long-lasting wave events in 2005 using high-cadence magnetic field data from the Wind mission. Statistically, in contrast with general solar wind, the protons at these waves are distributed closer to the proton instability thresholds, while the alpha particles at these waves are distributed further away from the alpha instability thresholds. For selected events of extensive waves, the ion distribution is analyzed in detail. A mixture of temperature anisotropies for core protons, beam protons, and alpha particles, as well as proton beam drift are often found in such events. We conduct linear wave dispersion analysis using these ion moments to examine whether these waves can be explained by the local generation of kinetic instabilities such as the LH ion cyclotron, the RH

  20. Theoretical analysis of the EAST 4-strap ion cyclotron range of frequency antenna with variational theory

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Hui; Zhang, Xin-Jun; Zhao, Yan-Ping; Qin, Cheng-Ming; Chen, Zhao; Yang, Lei; Wang, Jian-Hua

    2016-08-01

    A variational principle code which can calculate self-consistently currents on the conductors is used to assess the coupling characteristic of the EAST 4-strap ion cyclotron range of frequency (ICRF) antenna. Taking into account two layers of antenna conductors without lateral frame but with slab geometry, the antenna impedances as a function of frequency and the structure of RF field excited inside the plasma in various phasing cases are discussed in this paper. Project supported by the National Magnetic Confinement Fusion Science Program, China (Grant No. 2015GB101001) and the National Natural Science Foundation of China (Grant Nos. 11375236 and 11375235).

  1. Theoretical analysis of the EAST 4-strap ion cyclotron range of frequency antenna with variational theory

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Hui; Zhang, Xin-Jun; Zhao, Yan-Ping; Qin, Cheng-Ming; Chen, Zhao; Yang, Lei; Wang, Jian-Hua

    2016-08-01

    A variational principle code which can calculate self-consistently currents on the conductors is used to assess the coupling characteristic of the EAST 4-strap ion cyclotron range of frequency (ICRF) antenna. Taking into account two layers of antenna conductors without lateral frame but with slab geometry, the antenna impedances as a function of frequency and the structure of RF field excited inside the plasma in various phasing cases are discussed in this paper. Project supported by the National Magnetic Confinement Fusion Science Program, China (Grant No. 2015GB101001) and the National Natural Science Foundation of China (Grant Nos. 11375236 and 11375235).

  2. Improving cancer treatment with cyclotron produced radionuclides. Progress report, February 1987--September 1989

    SciTech Connect

    Larson, S.M.

    1989-12-31

    This report is divided into six sections, each section dealing with a separate aspect of the program. The six sections are entitled (1) In Vivo Measurement of Amino Acid Transport and Protein Synthesis, (2) Angiogenesis in Human Gliomas: Correlations with Blood Flow and Transport of C-11 AIB, (3) Use of F-18 Fluoropyrimidines for Design and Evaluation of Regional and Systemic Chemotherapeutic Strategies in Human Adenocarcinomas of the Gastrointestinal Tract, (4) Enzymatic Synthesis of Metabolites Labeled with N-13 or C-11, (5) Synthesis of Amino Acids Labeled with C-11, and (6) Instrumentation: Cyclotron and Imaging Systems.

  3. Electron cyclotron emission diagnostic for ITER

    SciTech Connect

    Rowan, W.; Austin, M.; Phillips, P.; Beno, J.; Ouroua, A.; Ellis, R.; Feder, R.; Patel, A.

    2010-10-15

    Electron temperature measurements and electron thermal transport inferences will be critical to the nonactive and deuterium phases of ITER operation and will take on added importance during the alpha heating phase. The diagnostic must meet stringent criteria on spatial coverage and spatial resolution during full field operation. During the early phases of operation, it must operate equally well at half field. The key to the diagnostic is the front end design. It consists of a quasioptical antenna and a pair of calibration sources. The radial resolution of the diagnostic is less than 0.06 m. The spatial coverage extends at least from the core to the separatrix with first harmonic O-mode being used for the core and second harmonic X-mode being used for the pedestal. The instrumentation used for the core measurement at full field can be used for detection at half field by changing the detected polarization. Intermediate fields are accessible. The electron cyclotron emission systems require in situ calibration, which is provided by a novel hot calibration source. The critical component for the hot calibration source, the emissive surface, has been successfully tested. A prototype hot calibration source has been designed, making use of extensive thermal and mechanical modeling.

  4. Electron cyclotron emission diagnostic for ITER.

    PubMed

    Rowan, W; Austin, M; Beno, J; Ellis, R; Feder, R; Ouroua, A; Patel, A; Phillips, P

    2010-10-01

    Electron temperature measurements and electron thermal transport inferences will be critical to the nonactive and deuterium phases of ITER operation and will take on added importance during the alpha heating phase. The diagnostic must meet stringent criteria on spatial coverage and spatial resolution during full field operation. During the early phases of operation, it must operate equally well at half field. The key to the diagnostic is the front end design. It consists of a quasioptical antenna and a pair of calibration sources. The radial resolution of the diagnostic is less than 0.06 m. The spatial coverage extends at least from the core to the separatrix with first harmonic O-mode being used for the core and second harmonic X-mode being used for the pedestal. The instrumentation used for the core measurement at full field can be used for detection at half field by changing the detected polarization. Intermediate fields are accessible. The electron cyclotron emission systems require in situ calibration, which is provided by a novel hot calibration source. The critical component for the hot calibration source, the emissive surface, has been successfully tested. A prototype hot calibration source has been designed, making use of extensive thermal and mechanical modeling.

  5. Fullerenes in electron cyclotron resonance ion sources

    SciTech Connect

    Biri, S.; Fekete, E.; Kitagawa, A.; Muramatsu, M.; Janossy, A.; Palinkas, J.

    2006-03-15

    Fullerene plasmas and beams have been produced in our electron cyclotron resonance ion sources (ECRIS) originally designed for other purposes. The ATOMKI-ECRIS is a traditional ion source with solenoid mirror coils to generate highly charged ions. The variable frequencies NIRS-KEI-1 and NIRS-KEI-2 are ECR ion sources built from permanent magnets and specialized for the production of carbon beams. The paper summarizes the experiments and results obtained by these facilities with fullerenes. Continuous effort has been made to get the highest C{sub 60} beam intensities. Surprisingly, the best result was obtained by moving the C{sub 60} oven deep inside the plasma chamber, very close to the resonance zone. Record intensity singly and doubly charged fullerene beams were obtained (600 and 1600 nA, respectively) at lower C{sub 60} material consumption. Fullerene derivatives were also produced. We mixed fullerenes with other plasmas (N, Fe) with the aim of making new materials. Nitrogen encapsulated fullerenes (mass: 720+14=734) were successfully produced. In the case of iron, two methods (ferrocene, oven) were tested. Molecules with mass of 720+56=776 were detected in the extracted beam spectra.

  6. Cyclotron-based effects on plant gravitropism

    NASA Astrophysics Data System (ADS)

    Kordyum, E.; Sobol, M.; Kalinina, Ia.; Bogatina, N.; Kondrachuk, A.

    Primary roots exhibit positive gravitropism and grow in the direction of the gravitational vector, while shoots respond negatively and grow opposite to the gravitational vector. We first demonstrated that the use of a weak combined magnetic field (CMF), which is comprised of a permanent magnetic field and an alternating magnetic field with the frequency resonance of the cyclotron frequency of calcium ions, can change root gravitropism from a positive direction to negative direction. Two-day-old cress seedlings were gravistimulated in a chamber that was placed into a μ-metal shield where this CMF was created. Using this "new model" of a root gravitropic response, we have studied some of its components including the movement of amyloplasts-statoliths in root cap statocytes and the distribution of Ca 2+ ions in the distal elongation zone during gravistimulation. Unlike results from the control, amyloplasts did not sediment in the distal part of a statocyte, and more Ca 2+ accumulation was observed in the upper side of a gravistimulated root for seedlings treated with the CMF. For plants treated with the CMF, it appears that a root gravitropic reaction occurs by a normal physiological process resulting in root bending although in the opposite direction. These results support the hypothesis that both the amyloplasts in the root cap statocytes and calcium are important signaling components in plant gravitropism.

  7. Cyclotron autoresonance maser in the millimeter region

    NASA Astrophysics Data System (ADS)

    Nikolov, N. A.; Spasovski, I. P.; Kostov, K. G.; Velichkov, J. N.; Spasov, V. A.

    1990-06-01

    This paper investigates the optimal experimental conditions for a cyclotron autoresonance maser (CARM) regime realized by a nonadiabatic magnetic beam pumping in the millimeter wavelength region. In the experiment, a Blumline-type accelerator with a voltage up to 650 kV and maximal current up to 10 kA is used to generate a hollow beam with a pulse duration of 30 ns. The electron beam, emitted from a graphite cathode with a 10-mm diameter, propagates in a cylindrical drift tube of 56 mm diam and a length of 500 mm. The external magnetic field B, provided by a solenoidal magnet, is homogeneous along the drift tube up to a distance of 300 mm from the cathode. The experiment demonstrated the generation of microwave radiation in the time interval from 0.0016 to 0.0023 sec after the switch-on of the external magnetic field. Two maxima of the output microwave power (8 and 10 MW) at a wavelength of 5 and 5.5 mm, respectively, were observed.

  8. The Oak Ridge Isochronous Cyclotron Refurbishment Project

    SciTech Connect

    Mendez, II, Anthony J; Ball, James B; Dowling, Darryl T; Mosko, Sigmund W; Tatum, B Alan

    2011-01-01

    The Oak Ridge Isochronous Cyclotron (ORIC) has been in operation for nearly fifty years at the Oak Ridge National Laboratory (ORNL). Presently, it serves as the driver accelerator for the ORNL Holifield Radioactive Ion Beam Facility (HRIBF), where radioactive ion beams are produced using the Isotope Separation Online (ISOL) technique for post-acceleration by the 25URC tandem electrostatic accelerator. Operability and reliability of ORIC are critical issues for the success of HRIBF and have presented increasingly difficult operational challenges for the facility in recent years. In February 2010, a trim coil failure rendered ORIC inoperable for several months. This presented HRIBF with the opportunity to undertake various repairs and maintenance upgrades aimed at restoring the full functionality of ORIC and improving the reliability to a level better than what had been typical over the previous decade. In this paper, we present details of these efforts, including the replacement of the entire trim coil set and measurements of their radial field profile. Comparison of measurements and operating tune parameters with setup code predictions will also be presented.

  9. Modelling of Ion Cyclotron Wall Conditioning plasmas

    NASA Astrophysics Data System (ADS)

    Douai, D.; Wauters, T.; Lyssoivan, A.; Marchuk, O.; Wünderlich, D.; Brémond, S.; Lombard, G.; Mollard, P.; Pegourié, B.; Van Oost, G.

    2011-12-01

    Ion Cyclotron Wall Conditioning (ICWC) is envisioned in ITER to clean the wall from impurities, to control the wall isotopic ratio and the hydrogen recycling in the presence of the toroidal magnetic field. Various experiments and modelling are advancing to consolidate this technique. In this contribution the modeling of ICWC is presented, which can be divided in two parts: plasma description and plasma wall interaction. Firstly a 0D plasma model, based on a set of energy and particle balance equations for Maxwellian Hydrogen and Helium species, is presented. The model takes into account elementary collision processes, coupled RF power, particle confinement, wall recycling, and active gas injection and pumping. The RF plasma production process is based mainly on electron collisional ionization. The dependency of the plasma parameters, the Hydrogen and Helium partial pressures and neutral or ionic fluxes on pressure and RF power are quantitatively in good agreement with those obtained experimentally on TORE SUPRA. Secondly an extension of the 0D model including the description of the wall interaction is presented and compared to TORE SUPRA multi-pulse ICWC discharges.

  10. Restoration of accelerator facilities damaged by Great East Japan Earthquake at Cyclotron and Radioisotope Center, Tohoku University.

    PubMed

    Wakui, Takashi; Itoh, Masatoshi; Shimada, Kenzi; Yoshida, Hidetomo P; Shinozuka, Tsutomu; Sakemi, Yasuhiro

    2014-01-01

    The Cyclotron and Radioisotope Center (CYRIC) of Tohoku University is a joint-use institution for education and research in a wide variety of fields ranging from physics to medicine. Accelerator facilities at the CYRIC provide opportunities for implementing a broad research program, including medical research using positron emission tomography (PET), with accelerated ions and radioisotopes. At the Great East Japan Earthquake on March 11, 2011, no human injuries occurred and a smooth evacuation was made in the CYRIC, thanks to the anti-earthquake measures such as the renovation of the cyclotron building in 2009 mainly to provide seismic strengthening, fixation of shelves to prevent the falling of objects, and securement of the width of the evacuation route. The preparation of an emergency response manual was also helpful. However, the accelerator facilities were damaged because of strong shaking that continued for a few minutes. For example, two columns on which a 930 cyclotron was placed were damaged, and thereby the 930 cyclotron was inclined. All the elements of beam transport lines were deviated from the beam axis. Some peripheral devices in a HM12 cyclotron were broken. Two shielding doors fell from the carriage onto the floor and blocked the entrances to the rooms. The repair work on the accelerator facilities was started at the end of July 2011. During the repair work, the joint use of the accelerator facilities was suspended. After the repair work was completed, the joint use was re-started at October 2012, one and a half years after the earthquake.

  11. Ion Cyclotron Waves at Titan: Harbingers of Atmospheric Loss

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Wei, H. Y.; Cowee, M. M.; Neubauer, F.; Dougherty, M. K.

    2014-04-01

    When a flowing magnetized plasma intercepts a neutral atmosphere such as Titan's exosphere, we expect that any atoms or molecules that become ionized by photoionization impact ionization or charge exchange could lead to the acceleration and pick-up of those newly formed ions. This process creates an ion distribution function that often is highly unstable to the production of ion-cyclotron waves. Such waves have been observed in the Earth's polar cusp [1], at the Moon [2], at Mars [3], at Io [4], and at Enceladus [5]. We had expected also to observe these waves at Titan but neither the Voyager Titan passage nor the early Cassini Titan flybys produced ion-cyclotron waves. Modelling studies have suggested that the growth time is long and the waves will not grow until some distance far downstream. However, on two passes by Titan T63 and T98, ion cyclotron waves have been seen with the T98 wave field having been much more pronounced. Figure 1 below shows the transverse and compressional power as dynamic spectra versus time on the T98 inbound pass to Titan. The ion cyclotron waves clearly arise at the expected frequency just below the piston cyclotron frequency. It is remarkable that no such waves are seen outbound at T98.This is in agreement with the initial trajectories of newborn ions which lead away from the dense deeper atmosphere inbound and into the dense deeper atmosphere outbound. On the T63 pass, a short period of waves was seen near the proton and H2+ cyclotron frequencies. We discuss these rare ion cyclotron waves at Titan in the light of hybrid simulations of ion pickup under conditions in Saturn's outer magnetosphere.

  12. A small low energy cyclotron for radioisotope measurements

    SciTech Connect

    Bertsche, K.J.

    1989-11-01

    Direct detection of {sup 14}C by accelerator mass spectrometry has proved to be a much more sensitive method for radiocarbon dating than the decay counting method invented earlier by Libby. A small cyclotron (the cyclotrino'') was proposed for direct detection of radiocarbon in 1980. This combined the suppression of background through the use of negative ions, which had been used effectively in tandem accelerators, with the high intrinsic mass resolution of a cyclotron. Development of a small electrostatically-focused cyclotron for use as a mass spectrometer was previously reported but the sensitivity needed for detection of {sup 14}C at natural abundance was not achieved. The major contributions of this work are the integration of a high current external ion source with a small flat-field, electrostatically-focused cyclotron to comprise a system capable of measuring {sup 14}C at natural levels, and the analysis of ion motion in such a cyclotron, including a detailed analysis of phase bunching and its effect on mass resolution. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with a Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-grated output. In its present form the system is capable of improving the sensitivity of detecting {sup 14}C in some biomedical experiments by a factor of 10{sup 4}. Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes, such as {sup 3}H, and {sup 10}Be, and {sup 26}Al, are discussed. 70 refs.

  13. Ion cyclotron waves around Mars: observations and simulations

    NASA Astrophysics Data System (ADS)

    Wei, H. Y.; Cowee, M. M.; Russell, C. T.

    2012-04-01

    Ion cyclotron waves are generated during the interaction between the solar wind and the Martian exosphere. When the atmospheric neutrals are ionized in the solar wind, the fresh ions are accelerated by the electric field and gyrate around the magnetic field in the solar wind, in a process called ion pick-up. In the meanwhile, ion cyclotron waves grow from the free energy of the largely anisotropic distribution of these fresh ions, with left-handed polarization and a wave frequency near the ion's gyrofrequency. Observations of the ion cyclotron waves enable us to study the atmospheric loss due to solar wind pick-up process. At Mars, the exospheric hydrogen is picked up by the solar wind and produces proton cyclotron waves. The Mars Global Surveyor detected proton cyclotron waves which extend from the magnetosheath of Mars to over 12 Mars radii with amplitudes that vary slowly with distance. A hybrid simulation is applied to study the wave generation and evolution due to solar wind pick-up to try to understand the relation between the wave energy and pickup rate. By comparing the wave observations and the hybrid simulation results, we hope better understand the hydrogen exosphere configuration and the loss of water from Mars.

  14. Probing the hydrogen exosphere of Mars with ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Wei, H. Y.; Cowee, M. M.; Russell, C. T.

    2013-09-01

    Ion cyclotron waves are generated during the interaction between the solar wind and the Martian exosphere. When the atmospheric neutrals are ionized in the solar wind, the fresh ions are accelerated by the electric field and gyrate around the magnetic field in the solar wind, in a process called ion pick-up. As the ions gyrate, ion cyclotron waves grow from the free energy of the highly anisotropic distribution of these fresh ions, with left-handed polarization and a wave frequency near the ion's gyro-frequency. Observations of the ion cyclotron waves enable us to study the atmospheric loss due to solar wind pick-up process. At Mars, the exospheric hydrogen is picked up by the solar wind and produces proton cyclotron waves. The Mars Global Surveyor detected proton cyclotron waves which extend from the magnetosheath of Mars to over 12 Mars radii with amplitudes that vary slowly with distance. A hybrid simulation is applied to study the wave generation and evolution due to solar wind pick-up to try to understand the relation between the wave energy and pickup rate. By comparing the wave observations and the hybrid simulation results, we hope to better understand the hydrogen exosphere configuration and the loss of water from Mars.

  15. Relativistic Cyclotron Resonance Shape in Magnetic Bottle Geonium

    NASA Astrophysics Data System (ADS)

    Dehmelt, Hans; Mittleman, Richard; Liu, Yuan

    1988-10-01

    The thermally excited axial oscillation of the electron through the weak magnetic bottle needed for the continuous Stern-Gerlach effect modulates the cyclotron frequency and produces a characteristic ≈ 12-kHz-wide vertical rise-exponential decline line shape of the cyclotron resonance. At the same time the relativistic mass shift decreases the frequency by ≈ 200 Hz per cyclotron motion quantum level n. Nevertheless, our analysis of the complex line shape shows that it should be possible to produce an abrupt rise in the cyclotron quantum number n from 0 to ≈ 20 over a small fraction of 200 Hz, when the 160-GHz microwave drive approaches the n = 0 → 1 transition, and a jump of 14 levels over a frequency increment of 200 Hz has already been observed in preliminary work. This realizes an earlier proposal to generate a very sharp cyclotron resonance feature by quasithermal excitation with a square noise band and should provide a way to detect spin flips when a weak bottle is used to reduce the broadening of the g - 2 resonance by a factor of 20.

  16. Cyclotron targets and production technologies used for radiopharmaceuticals in NPI

    NASA Astrophysics Data System (ADS)

    Fišer, M.; Kopička, K.; Hradilek, P.; Hanč, P.; Lebeda, O.; Pánek, J.; Vognar, M.

    2003-01-01

    This paper deals with some technical aspects of the development and production of cyclotronmade radiopharmaceuticals (excluding PET). In this field, nuclear chemistry and pharmacy are in a close contact; therefore, requirements of the both should be taken into account. The principles of cyclotron targetry, separation/recovery of materials and synthesis of active substances are given, as well as issues connected with formulation of pharmaceutical forms. As the radiopharmaceuticals should fulfil the requirements on in vivo preparations, there exist a variety of demands pertaining to Good Manufacturing Practice (GMP) concept, which is also briefly discussed. A typical production chain is presented and practical examples of real technologies based on cyclotron-made radionuclides are given as they have been used in Nuclear Physics Institute of CAS (NPI). Special attention is devoted to the technology of enriched cyclotron targets. Frequently used medicinal products employing cyclotron-produced active substances are characterised (Rb/Kr generators, 123I-labelled MIBG, OIH and MAB's). The cyclotron produced radioactive implants for transluminal coronary angioplasty (radioactive stents) are introduced as an example of a medical device developed for therapeutic application.

  17. Cyclotron-based of plant gravisensing

    NASA Astrophysics Data System (ADS)

    Kordyum, E.; Kalinina, Ia.; Bogatina, N.; Kondrachuk, A.

    Roots exhibit positive gravitropism they grow in the direction of a gravitational vector while shoots respond negatively and grow opposite to a gravitational vector We first demonstrated the inversion of roots gravitropism from positive to negative one under gravistimulation in the weak combined magnetic field WCMF consisted of permanent magnetic field PMF with the magnitude of order of 50 mu T and altering magnetic field AMF with the 6 mu T magnitude and a frequency of 32 Hz It was found that the effect of inversion has a resonance nature It means that in the interval of frequencies 1-45 Hz inversion of root gravitropism occurs only at frequency 32 Hz 2-3-day old cress seedlings were gravistimulated in moist chambers which are placed in mu -metal shields Inside mu -metal shields combined magnetic fields have been created The magnitude of magnetic fields was measured by a flux-gate magnetometer Experiments were performed in darkness at temperature 20 pm 1 0 C We measured the divergence angle of a growing root from its horizontal position After 1 h of gravistimulation in the WCMF we observed negative gravitropism of cress roots i e they grow in the opposite direction to a gravitational vector Frequency of 32 Hz for the magnitude of the PMF applied formally corresponds to cyclotron frequency of Ca 2 ions This indicates possible participation of calcium ions in root gravitropism There are many evidences of resonance effects of the WCMF on the biological processes that involve Ca 2 but the nature of

  18. Issues in the analysis and interpretation of cyclotron lines in gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.

    1992-01-01

    The Bayesian approach is discussed to establishing the existence of lines, the importance of observing multiple cyclotron harmonics in determining physical parameters from the lines, and evidence from cyclotron lines of neutron star rotation.

  19. Conversion of compressional Alfven waves into ion-cyclotron waves in inhomogeneous magnetic fields

    SciTech Connect

    Amagishi, Y.; Tsushima, A.; Inutake, M.

    1982-04-26

    Axisymmetric compressional Alfven (fast) waves, which propagate into a region of an increasing magnetic field in a cylindrical plasma, are observed to be converted into ion-cyclotron (slow) waves via ion-cyclotron resonances.

  20. Development of a fast scintillator based beam phase measurement system for compact superconducting cyclotrons

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Tanushyam; Kanti Dey, Malay; Dhara, Partha; Roy, Suvodeep; Debnath, Jayanta; Balakrishna Bhole, Rajendra; Dutta, Atanu; Pradhan, Jedidiah; Pal, Sarbajit; Pal, Gautam; Roy, Amitava; Chakrabarti, Alok

    2013-05-01

    In an isochronous cyclotron, measurements of central phase of the ion beam with respect to rf and the phase width provide a way to tune the cyclotron for maximum energy gain per turn and efficient extraction. We report here the development of a phase measurement system and the measurements carried out at the Variable Energy Cyclotron Centre's (VECC's) K = 500 superconducting cyclotron. The technique comprises detecting prompt γ-rays resulting from the interaction of cyclotron ion beam with an aluminium target mounted on a radial probe in coincidence with cyclotron rf. An assembly comprising a fast scintillator and a liquid light-guide inserted inside the cyclotron was used to detect the γ-rays and to transfer the light signal outside the cyclotron where a matching photo-multiplier tube was used for light to electrical signal conversion. The typical beam intensity for this measurement was a few times 1011 pps.

  1. Precision phase control for the radio frequency system of K500 superconducting cyclotron at Variable Energy Cyclotron Centre, Kolkata.

    PubMed

    Som, Sumit; Ghosh, Surajit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Roy, Suprakash

    2013-11-01

    Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A&M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loop consists of both analogue In-phase∕Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata.

  2. Precision phase control for the radio frequency system of K500 superconducting cyclotron at Variable Energy Cyclotron Centre, Kolkata

    SciTech Connect

    Som, Sumit; Ghosh, Surajit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Roy, Suprakash

    2013-11-15

    Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A and M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9–27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loop consists of both analogue In-phase/Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata.

  3. Design study of the KIRAMS-430 superconducting cyclotron magnet

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Wook; Kang, Joonsun; Hong, Bong Hwan; Jung, In Su

    2016-07-01

    Design study of superconducting cyclotron magnet for the carbon therapy was performed at the Korea Institute of Radiological and Medical Science (KIRAMS). The name of this project is The Korea Heavy Ion Medical Accelerator (KHIMA) project and a fixed frequency cyclotron with four spiral sector magnet was one of the candidate for the accelerator type. Basic parameters of the cyclotron magnet and its characteristics were studied. The isochronous magnetic field which can guide the 12C6+ ions up to 430 MeV/u was designed and used for the single particle tracking simulation. The isochronous condition of magnetic field was achieved by optimization of sector gap and width along the radius. Operating range of superconducting coil current was calculated and changing of the magnetic field caused by mechanical deformations of yokes was considered. From the result of magnetic field design, structure of the magnet yoke was planned.

  4. Simultaneous observations of electrostatic oxygen cyclotron waves and ion conics

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Scales, W.; Vago, J.; Arnoldy, R.; Garbe, G.; Moore, T.

    1989-01-01

    A sounding rocket launched to 927 km apogee during an auroral substorm encountered regions of large quasi-static electric fields (not greater than 400 mV/m), ion conics (up to 700 eV maximum observed energy), and fluctuating electric fields near the oxygen cyclotron frequency. Since the fluctuating electric fields frequently exhibited spectral peaks just above the local oxygen cyclotron frequency, and since the fluctuating electric fields were linearly polarized, they are positively identified as electrostatic oxygen cyclotron waves (EOCW). The maximum amplitude of the EOCW was about 5 mV/m rms. The EOCW closely correlated with the presence of ion conics. Because of the relatively low amplitude of the EOCW and their relatively low coherence, it cannot be concluded that they are solely responsible for the production of the ion conics.

  5. A laboratory study of collisional electrostatic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Suszcynsky, D. M.; Cartier, S. L.; Merlino, R. L.; Dangelo, N.

    1986-01-01

    The effects of neutral-particle collisions on electrostatic ion cyclotron instability are analyzed. Experiments were conducted in the Q machine of Motley (1975) with a cesium plasma in which the neutral gas pressure in the main chamber varied from about 5 microtorr-10 mtorr. The relation between electrostatic ion cyclotron wave amplitude and frequency and neutral argon pressure is examined. It is observed that over the full range of neutral pressure the frequency changes by less than 10 percent and the ion cyclotron waves continue to be excited and reach amplitudes of at least several percent at values of the neutral pressure where the ion-neutral collision frequency/ion gyrofrequency is about 0.3.

  6. Energization of ionospheric ions by electrostatic hydrogen cyclotron waves

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1981-01-01

    Interactions between ionospheric ions and electrostatic hydrogen cyclotron waves are studied numerically in an investigation of a possible mechanism for the energization of the low-energy ionospheric ions flowing along geomagnetic field lines to high altitudes. Ion equations of motion are solved numerically for a given number of O(+), He(+) and He(2+) ions initially in a Maxwellian distribution. All the ions considered are found capable of undergoing stochastic acceleration by a coherent electrostatic hydrogen cyclotron wave with parameters typical of the auroral plasma above 1 earth radius. The fraction of the initial ion population undergoing heating depends strongly on the mass, charge and initial temperature of the ion species, with O(+) ions only heated when their initial temperature is approximately greater than the hydrogen temperature and the lighter ions able to be heated even when cold, due to cyclotron resonant stochastic heating.

  7. Cassini observations of ion cyclotron waves and ions anisotropy

    NASA Astrophysics Data System (ADS)

    Crary, F. J.; Dols, V. J.; Cassidy, T. A.; Tokar, R. L.

    2013-12-01

    In Saturn's equatorial, inner magnetosphere, the production of fresh ions in a pick-up distribution generates ion cyclotron waves. These waves are a sensitive indicator of fresh plasma production, but the quantitative relation between wave properties and ionization rates is nontrivial. We present a combined analysis of Cassini MAG and CAPS data, from a variety of equatorial orbits between 2005 and 2012. Using the MAG data, we determine the amplitude and peak frequency of ion cyclotron waves. From the CAPS data we extract the parallel and perpendicular velocity distribution of water group ions. We compare these results with hybrid simulations of the ion cyclotron instability and relate the observed wave amplitudes and ion velocity distributions to the production rate of pickup ions. The resulting relation between wave and plasma properties will allow us to infer ion production rates even at times when no direct ion measurements are available.

  8. Radiation effects testing at the 88-inch cyclotron at LBNL

    SciTech Connect

    McMahan, Margaret A.; Koga, Rokotura

    2001-10-09

    The effects of ionizing particles on sensitive microelectronics is an important component of the design of systems as diverse as satellites and space probes, detectors for high energy physics experiments and even internet server farms. Understanding the effects of radiation on human cells is an equally important endeavor directed towards future manned missions in space and towards cancer therapy. At the 88-Inch Cyclotron at the Berkeley Laboratory, facilities are available for radiation effects testing (RET) with heavy ions and with protons. The techniques for doing these measurements and the advantages of using a cyclotron will be discussed, and the Cyclotron facilities will be compared with other facilities worldwide. RET of the same part at several facilities of varying beam energy can provide tests of the simple models used in this field and elucidate the relative importance of atomic and nuclear effects. The results and implications of such measurements will be discussed.

  9. Distribution of thermal neutron flux around a PET cyclotron.

    PubMed

    Ogata, Yoshimune; Ishigure, Nobuhito; Mochizuki, Shingo; Ito, Kengo; Hatano, Kentaro; Abe, Junichiro; Miyahara, Hiroshi; Masumoto, Kazuyoshi; Nakamura, Hajime

    2011-05-01

    The number of positron emission tomography (PET) examinations has greatly increased world-wide. Since positron emission nuclides for the PET examinations have short half-lives, they are mainly produced using on-site cyclotrons. During the production of the nuclides, significant quantities of neutrons are generated from the cyclotrons. Neutrons have potential to activate the materials around the cyclotrons and cause exposure to the staff. To investigate quantities and distribution of the thermal neutrons, thermal neutron fluxes were measured around a PET cyclotron in a laboratory associating with a hospital. The cyclotron accelerates protons up to 18 MeV, and the mean particle current is 20 μA. The neutron fluxes were measured during both 18F production and C production. Gold foils and thermoluminescent dosimeter (TLD) badges were used to measure the neutron fluxes. The neutron fluxes in the target box averaged 9.3 × 10(6) cm(-2) s(-1) and 1.7 × 10(6) cm(-2) s(-1) during 18F and 11C production, respectively. Those in the cyclotron room averaged 4.1 × 10(5) cm(-2) s(-1) and 1.2 × 10(5) cm(-2) s(-1), respectively. Those outside the concrete wall shielding were estimated as being equal to or less than ∼3 cm s, which corresponded to 0.1 μSv h(-1) in effective dose. The neutron fluxes outside the concrete shielding were confirmed to be quite low compared to the legal limit.

  10. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    SciTech Connect

    Classen, I. G. J.; Boom, J. E.; Vries, P. C. de; Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A.; Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr.; Donne, A. J. H.; Jaspers, R. J. E.; Park, H. K.; Munsat, T.

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  11. Purification of cyclotron-produced 203Pb for labeling Herceptin.

    PubMed

    Garmestani, Kayhan; Milenic, Diane E; Brady, Erik D; Plascjak, Paul S; Brechbiel, Martin W

    2005-04-01

    A simple and rapid procedure was developed for the purification of cyclotron-produced 203Pb via the 203Tl(d,2n) 203Pb reaction. A Pb(II) selective ion-exchange resin, with commercial name Pb Resin from Eichrom Technologies, Inc., was used to purify 203Pb from the cyclotron-irradiated Tl target with excellent recovery of the enriched Tl target material. The purified 203Pb was used to radiolabel the monoclonal antibody Herceptin. The in vitro and in vivo properties of the 203Pb radioimmunoconjugate were evaluated.

  12. Residual radioactivity in a cyclotron and its surroundings.

    PubMed

    Phillips, A B; Prull, D E; Ristinen, R A; Kraushaar, J J

    1986-09-01

    Neutron-induced gamma-ray-emitting radionuclides in components and surroundings of the University of Colorado 1.3-m sector-focusing cyclotron have been measured with Ge(Li) and HPGe detectors. These measurements were made before decommissioning of the cyclotron and before approving release of the accelerator components and building space for other uses. In addition to the activities expected from previous published work, 13.3-y 152Eu and 8.6-y 154Eu were found in the concrete shielding with specific activities of tens of becquerels per kilogram (a few nanocuries per kilogram).

  13. Backward wave cyclotron-maser emission in the auroral magnetosphere.

    PubMed

    Speirs, D C; Bingham, R; Cairns, R A; Vorgul, I; Kellett, B J; Phelps, A D R; Ronald, K

    2014-10-10

    In this Letter, we present theory and particle-in-cell simulations describing cyclotron radio emission from Earth's auroral region and similar phenomena in other astrophysical environments. In particular, we find that the radiation, generated by a down-going electron horseshoe distribution is due to a backward-wave cyclotron-maser emission process. The backward wave nature of the radiation contributes to upward refraction of the radiation that is also enhanced by a density inhomogeneity. We also show that the radiation is preferentially amplified along the auroral oval rather than transversely. The results are in agreement with recent Cluster observations. PMID:25375713

  14. Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation.

    PubMed

    Asner, D M; Bradley, R F; de Viveiros, L; Doe, P J; Fernandes, J L; Fertl, M; Finn, E C; Formaggio, J A; Furse, D; Jones, A M; Kofron, J N; LaRoque, B H; Leber, M; McBride, E L; Miller, M L; Mohanmurthy, P; Monreal, B; Oblath, N S; Robertson, R G H; Rosenberg, L J; Rybka, G; Rysewyk, D; Sternberg, M G; Tedeschi, J R; Thümmler, T; VanDevender, B A; Woods, N L

    2015-04-24

    It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay end point, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

  15. N-bursty emission from Uranus: A cyclotron maser source?

    NASA Technical Reports Server (NTRS)

    Curran, D. B.; Menietti, J. D.

    1993-01-01

    Ray tracing studies of RX-mode emission from the north polar regions of Uranus indicate that the n-bursty radio emission may have a source along field lines with footprints near the northern magnetic pole (perhaps in the cusp), but not necessarily associated with regions of strong UV emission. This is in contrast with similar studies for the Uranus nightside smooth radio emission, which are believed to be due to the cyclotron maser instability. Source regions can be found for both hollow and filled emission cones and for frequencies well above the local gyrofreuquency implying that mechanisms other than the cyclotron maser mechanism may be operating.

  16. Backward wave cyclotron-maser emission in the auroral magnetosphere.

    PubMed

    Speirs, D C; Bingham, R; Cairns, R A; Vorgul, I; Kellett, B J; Phelps, A D R; Ronald, K

    2014-10-10

    In this Letter, we present theory and particle-in-cell simulations describing cyclotron radio emission from Earth's auroral region and similar phenomena in other astrophysical environments. In particular, we find that the radiation, generated by a down-going electron horseshoe distribution is due to a backward-wave cyclotron-maser emission process. The backward wave nature of the radiation contributes to upward refraction of the radiation that is also enhanced by a density inhomogeneity. We also show that the radiation is preferentially amplified along the auroral oval rather than transversely. The results are in agreement with recent Cluster observations.

  17. Vacuum measurements of the K500 cyclotron accelerator chamber

    SciTech Connect

    Mallory, M.L.; Miller, P.S.; Kuchar, J.; Hudson, E.D.

    1986-01-01

    To evaluate the effectiveness of the unique internal cryopumping system, the pressure in the K500 superconducting cyclotron was measured as a function of radius for various gas flow rates emanating from the internal PIG source. For the test, a nude ion gauge with vertical dimension less than 2.3 cm was built and mounted on the internal beam probe. The effect of magnetic field on the ion gauge reading was determined and a method of degaussing the cyclotron was devised. Data from the normal shielded ion gauge located approximately 6 m away from the median plane was correlated with the internal vacuum measurements.

  18. Performance of the beam chamber vacuum system of K = 500 cyclotron at Variable Energy Cyclotron Centre Kolkata

    SciTech Connect

    Pal, Gautam DuttaGupta, Anjan; Chakrabarti, Alok

    2014-07-15

    The beam chamber of Variable Energy Cyclotron Centre, Kolkata's K = 500 superconducting cyclotron is pumped by liquid helium cooled cryopanel with liquid nitrogen cooled radiation shield. Performance of the vacuum system was evaluated by cooling the cryopanel assembly with liquid nitrogen and liquid helium. Direct measurement of beam chamber pressure is quite difficult because of space restrictions and the presence of high magnetic field. Pressure gauges were placed away from the beam chamber. The beam chamber pressure was evaluated using a Monte Carlo simulation software for vacuum system and compared with measurements. The details of the vacuum system, measurements, and estimation of pressure of the beam chamber are described in this paper.

  19. Measurement of cyclotron resonance relaxation time in the two-dimensional electron system

    SciTech Connect

    Andreev, I. V. Muravev, V. M.; Kukushkin, I. V.; Belyanin, V. N.

    2014-11-17

    Dependence of cyclotron magneto-plasma mode relaxation time on electron concentration and temperature in the two-dimensional electron system in GaAs/AlGaAs quantum wells has been studied. Comparative analysis of cyclotron and transport relaxation time has been carried out. It was demonstrated that with the temperature increase transport relaxation time tends to cyclotron relaxation time. It was also shown that cyclotron relaxation time, as opposed to transport relaxation time, has a weak electron density dependence. The cyclotron time can exceed transport relaxation time by an order of magnitude in a low-density range.

  20. 150 MeV proton medical cyclotron design study.

    PubMed

    Burleigh, R J; Clark, D J; Flood, W S

    1975-01-01

    A brief design study has been done for a 150 MeV proton sector cyclotron. The object was to minimize cost but maintain good reliability and easy maintenance. The use of the proton beam would be for therapy, radiography and isotope production.

  1. Cyclotron Resonance of Electrons Trapped in a Microwave Cavity

    ERIC Educational Resources Information Center

    Elmore, W. C.

    1975-01-01

    Describes an experiment in which the free-electron cyclotron resonance of electrons trapped in a microwave cavity by a Penning trap is observed. The experiment constitutes an attractive alternative to one of the Gardner-Purcell variety. (Author/GS)

  2. Cyclotron waves in a non-neutral plasma column

    SciTech Connect

    Dubin, Daniel H. E.

    2013-04-15

    A kinetic theory of linear electrostatic plasma waves with frequencies near the cyclotron frequency {Omega}{sub c{sub s}} of a given plasma species s is developed for a multispecies non-neutral plasma column with general radial density and electric field profiles. Terms in the perturbed distribution function up to O(1/{Omega}{sub c{sub s}{sup 2}}) are kept, as are the effects of finite cyclotron radius r{sub c} up to O(r{sub c}{sup 2}). At this order, the equilibrium distribution is not Maxwellian if the plasma temperature or rotation frequency is not uniform. For r{sub c}{yields}0, the theory reproduces cold-fluid theory and predicts surface cyclotron waves propagating azimuthally. For finite r{sub c}, the wave equation predicts that the surface wave couples to radially and azimuthally propagating Bernstein waves, at locations where the wave frequency equals the local upper hybrid frequency. The equation also predicts a second set of Bernstein waves that do not couple to the surface wave, and therefore have no effect on the external potential. The wave equation is solved both numerically and analytically in the WKB approximation, and analytic dispersion relations for the waves are obtained. The theory predicts that both types of Bernstein wave are damped at resonances, which are locations where the Doppler-shifted wave frequency matches the local cyclotron frequency as seen in the rotating frame.

  3. High intensity ion beam injection into the 88-inch cyclotron

    SciTech Connect

    Wutte, Daniela; Clark, Dave J.; Laune, Bernard; Leitner,Matthaeus A.; Lyneis, Claude M.

    2000-05-31

    Low cross section experiments to produce super-heavyelements have increased the demand for high intensity heavy ion beams atenergies of about 5 MeV/nucleon at the 88-Inch Cyclotron at the LawrenceBerkeley National Laboratory. Therefore, efforts are underway to increasethe overall ion beam transmission through the axial injection line andthe cyclotron. The ion beam emittance has been measured for various ionmasses and charge states. Beam transport simulations including spacecharge effects were performed for both of the injection line and the ionsource extraction. The relatively low nominal injection voltage of 10 kVwas found to be the main factor for ion beam losses, because of beam blowup due to space charge forces at higher intensities. Consequently,experiments and simulations have been performed at higherinjectionenergies, and it was demonstrated that the ion beams could still becentered in the cyclotron at these energies. Therefore, the new injectorion source VENUS and its ion beam transport system (currently underconstruction at the 88-Inch Cyclotron) are designed for extractionvoltages up to 30 kV.

  4. Silicon meets cyclotron: muon spin resonance of organosilicon radicals.

    PubMed

    West, Robert; Samedov, Kerim; Percival, Paul W

    2014-07-21

    Muons, generated at a high-powered cyclotron, can capture electrons to form muonium atoms. Muon spin resonance spectra can be recorded for organosilyl radicals obtained by addition of muonium atoms to silylenes and silenes. We present a brief summary of progress in this new area since the first such experiments were reported in 2008.

  5. Digital control in LLRF system for CYCIAE-100 cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Fu, Xiaoliang; Ji, Bin; Zhang, Tianjue; Wang, Chuan

    2016-05-01

    As a driven accelerator, the CYCIAE-100 cyclotron is designed by China Institute of Atomic Energy for the Beijing Radio Ion-beam Facility project. The cyclotron RF system is designed to use two RF power sources of 100 kW to drive two half-wavelength cavities respectively. Two Dee accelerating electrodes are kept separately from each other inside the cyclotron, while their accelerating voltages are maintained in phase by the efforts of LLRF control. An analog-digital hybrid LLRF system has been developed to achieve cavity tuning control, dee voltage amplitude and phase stabilization etc. The analog subsystems designs are focused on RF signal up/down conversion, tuning control, and dee voltage regulation. The digital system provides an RF signal source, aligns the cavity phases and maintains a Finite State Machine. The digital parts combine with the analog functions to provide the LLRF control. A brief system hardware introduction will be given in this paper, followed by the review of several major characteristics of the digital control in the 100 MeV cyclotron LLRF system. The commissioning is also introduced, and most of the optimization during the process was done by changing the digital parts.

  6. Status of ECR (Electron Cyclotron Resonance) source technology

    SciTech Connect

    Lyneis, C.M.

    1987-03-01

    ECR (Electron Cyclotron Resonance) ion sources are now in widespread use for the production of high quality multiply charged ion beams for accelerators and atomic physics experiments, and industrial applications are being explored. Several general characteristics of ECR sources explain their widespread acceptance. For use with cyclotrons which require CW multiply charged ion beams, the ECR source has many advantages over heavy-ion PIG sources. Most important is the ability to produce higher charge states at useful intensities for nuclear physics experiments. Since the maximum energy set by the bending limit of a cyclotron scales with the square of the charge state, the installation of ECR sources on cyclotrons has provided an economical path to raise the energy. Another characteristic of ECR sources is that the discharge is produced without cathodes, so that only the source material injected into an ECR source is consumed. As a result, ECR sources can be operated continuously for periods of weeks without interruption. Techniques have been developed in the last few years, which allow these sources to produce beams from solid materials. The beam emittance from ECR sources is in the range of 50 to 200 ..pi.. mm-mrad at 10 kV. The principles of ECR ion sources are discussed, and present and future ECR sources are reviewed.

  7. Electron-cyclotron-resonant-heated electron distribution functions

    SciTech Connect

    Matsuda, Y.; Nevins, W.M.; Cohen, R.H.

    1981-06-26

    Recent studies at Lawrence Livermore National Laboratory (LLNL) with a bounce-averaged Fokker-Planck code indicate that the energetic electron tail formed by electron-cyclotron resonant heating (ECRH) at the second harmonic is not Maxwellian. We present the results of our bounce-averaged Fokker-Planck code along with some simple analytic models of hot-electron distribution functions.

  8. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    NASA Astrophysics Data System (ADS)

    Roy, Anindya; Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  9. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    SciTech Connect

    Roy, Anindya Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava

    2015-03-15

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  10. Conductance Control Iris for the K150 Cyclotron H- Ion Source

    NASA Astrophysics Data System (ADS)

    Maldonado, Armando; Clark, Henry; Tabacaru, Gabriel

    2011-10-01

    A multi-cusp H- ion source has been installed on the K150 cyclotron for the production of high intensity proton beams. These beams will be used to create secondary radioactive ions for the Upgrade Project [1]. One of the limiting factors in creating an intense beam comes from poor vacuum along the injection line caused by the ion source itself. A large flow of hydrogen gas is required to make the Hydrogen negative (H-) ions in the ion source. As a result, many of the hydrogen molecules exit the ion source and migrate into the injection line and deteriorate the vacuum. To reduce the flow of these molecules into the injection line, a computer controlled iris will be installed between the ion source and the injection line. With the iris set at the correct diameter, the vacuum in the injection line should improve the transport efficiency of the H- ions to the cyclotron inflector should increase. For the project we used an 8'' OD Conflat DVM brand iris with an MDrive 17 Plus motor which will be controlled by a Labview software interface. Funded by DOE and NSF-REU Program.

  11. Improving cancer treatment with cyclotron produced radionuclides. Comprehensive progress report, February 1, 1992--July 15, 1995

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1995-07-17

    This research continues the long term goals of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. This program fits into the nuclear medicine component of DOE`s mission, which is aimed at enhancing the beneficial applications of radiation, radionuclides, and stable isotopes in the diagnosis, study and treatment of human diseases. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology/Immunology; and Imaging Physics. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Section under the DOE grant during the 1992--1995 will be employed in the Pharmacology/Immunology component in the period 1996--1999. Imaging Physics resolves relevant imaging related physics issues that arise during the experimentation that results. In addition to the basic research mission, this project also provides a basis for training of research scientists in radiochemistry, immunology, bioengineering and imaging physics.

  12. Progress in research, April 1, 1992--March 31, 1993, Texas A and M University Cyclotron Institute

    SciTech Connect

    1993-07-01

    This Institute annual report for the period 1 April 1992--31 March 1993 covers a period which has seen the initial runs of three new spectrometers which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP), the Mass Achromat Recoil Mass Spectrometer (MARS), and the Multipole dipole Multipole (MDM) Particle Spectrometer. These devices are now available to pursue the studies of Gamow Teller states, reactions of astrophysical interest, and giant resonance studies for which they were constructed, as well as for other experiments. A beam analysis system which will deliver high resolution beams to the MDM spectrometer is currently under construction. With the completion of these spectrometer projects, the facility emphasis is now focused on the development of the full capabilities of the K500 cyclotron and on the research program. During the report period, the ECR-K500 cyclotron combination operated 5,849 hours. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons, the latter as a probe of the QCD phase transition. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. In atomic physics, new measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported.

  13. Dynamic regimes of cyclotron instability in the afterglow mode of minimum-B electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Mansfeld, D.; Izotov, I.; Skalyga, V.; Tarvainen, O.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2016-04-01

    The paper is concerned with the dynamic regimes of cyclotron instabilities in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source operated in pulsed mode. The instability appears in decaying ion source plasma shortly (1-10 ms) after switching off the microwave radiation of the klystron, and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high-energy electrons along the magnetic field lines. Recently it was shown that this plasma instability causes perturbations of the extracted ion current, which limits the performance of the ion source and generates strong bursts of bremsstrahlung emission. In this article we present time-resolved diagnostics of electromagnetic emission bursts related to cyclotron instability in the decaying plasma. The temporal resolution is sufficient to study the fine structure of the dynamic spectra of the electromagnetic emission at different operating regimes of the ion source. It was found that at different values of magnetic field and heating power the dynamic spectra demonstrate common features: Decreasing frequency from burst to burst and an always falling tone during a single burst of instability. The analysis has shown that the instability is driven by the resonant interaction of hot electrons, distributed between the electron cyclotron resonance (ECR) zone and the trap center, with slow extraordinary wave propagation quasi-parallel with respect to the external magnetic field.

  14. Characterization of the onset of ion cyclotron parametric decay instability of lower hybrid waves in a diverted tokamak

    SciTech Connect

    Baek, S. G. Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Porkolab, M.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B.; Lau, C.; Takase, Y.

    2014-06-15

    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize reactor-relevant steady-state plasmas by controlling current density profile. However, current drive efficiency precipitously decreases as the line averaged density (n{sup ¯}{sub e}) increases above ∼1 × 10{sup 20} m{sup −3}. Previous simulations show that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer plasmas [Wallace et al., Phys. Plasmas 19, 062505 (2012)]. A recent observation [Baek et al., Plasma Phys. Controlled Fusion 55, 052001 (2013)] shows that the configuration dependent ion cyclotron parametric decay instability (PDI) is excited in the density range where the discrepancy between the experiments and simulations remains. Comparing the observed spectra with the homogeneous growth rate spectra indicates that the observed ion cyclotron PDI can be excited not only at the low-field-side but also at the high-field-side (HFS) edge of the tokamak. The model analysis shows that a relevant PDI process to Alcator C-Mod LHCD experiments is decay into ion cyclotron quasi-mode driven by parallel coupling. The underlying cause of the observed onset of ion cyclotron PDI is likely due to the weaker radial penetration of the LH wave in high density plasmas, which can lead to enhanced convective growth. Configuration-dependent PDIs are found to be correlated with different edge density profiles in different magnetic configurations. While the HFS edge of the tokamak can be potentially susceptible to PDI, as evidenced by experimental observations and ray-tracing analyses, enhancing single-pass absorption is expected to help recover the LHCD efficiency at reactor-relevant densities because it could suppress several parasitic loss mechanisms that are exacerbated in multi-pass regimes.

  15. Characterization of the onset of ion cyclotron parametric decay instability of lower hybrid waves in a diverted tokamak

    NASA Astrophysics Data System (ADS)

    Baek, S. G.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Porkolab, M.; Takase, Y.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B.; Lau, C.

    2014-06-01

    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize reactor-relevant steady-state plasmas by controlling current density profile. However, current drive efficiency precipitously decreases as the line averaged density (n¯e) increases above ˜1 × 1020 m-3. Previous simulations show that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer plasmas [Wallace et al., Phys. Plasmas 19, 062505 (2012)]. A recent observation [Baek et al., Plasma Phys. Controlled Fusion 55, 052001 (2013)] shows that the configuration dependent ion cyclotron parametric decay instability (PDI) is excited in the density range where the discrepancy between the experiments and simulations remains. Comparing the observed spectra with the homogeneous growth rate spectra indicates that the observed ion cyclotron PDI can be excited not only at the low-field-side but also at the high-field-side (HFS) edge of the tokamak. The model analysis shows that a relevant PDI process to Alcator C-Mod LHCD experiments is decay into ion cyclotron quasi-mode driven by parallel coupling. The underlying cause of the observed onset of ion cyclotron PDI is likely due to the weaker radial penetration of the LH wave in high density plasmas, which can lead to enhanced convective growth. Configuration-dependent PDIs are found to be correlated with different edge density profiles in different magnetic configurations. While the HFS edge of the tokamak can be potentially susceptible to PDI, as evidenced by experimental observations and ray-tracing analyses, enhancing single-pass absorption is expected to help recover the LHCD efficiency at reactor-relevant densities because it could suppress several parasitic loss mechanisms that are exacerbated in multi-pass regimes.

  16. Programs.

    ERIC Educational Resources Information Center

    Community College Journal, 1996

    1996-01-01

    Includes a collection of eight short articles describing model community college programs. Discusses a literacy program, a mobile computer classroom, a support program for at-risk students, a timber-harvesting program, a multimedia presentation on successful women graduates, a career center, a collaboration with NASA, and an Israeli engineering…

  17. High Power Cyclotrons for Accelerator Driven System (ADS)

    NASA Astrophysics Data System (ADS)

    Calabretta, Luciano

    2012-03-01

    We present an accelerator module based on a injector cyclotron and a Superconducting Ring Cyclotron (SRC) able to accelerate H2+ molecules. H2+ molecules are extracted from the SRC stripping the binding electron by a thin carbon foil. The SRC will be able to deliver proton beam with maximum energy of 800 MeV and a maximum power of 8 MW. This module is forecasted for the DAEdALUS (Decay At rest Experiment for δcp At Laboratory for Underground Science) experiment, which is a neutrino experiment proposed by groups of MIT and Columbia University. Extensive beam dynamics studies have been carrying out in the last two years and proved the feasibility of the design. The use of H2+ molecules beam has three main advantages: 1) it reduces the space charge effects, 2) because of stripping extraction, it simplifies the extraction process w.r.t. single turn extraction and 3) we can extract more than one beam out of one SRC. A suitable upgraded version of the cyclotron module able to deliver up to 10MW beam is proposed to drive ADS. The accelerator system which is presented, consists of having three accelerators modules. Each SRC is equipped with two extraction systems delivering two beams each one with a power up to 5 MW. Each accelerator module, feeds both the two reactors at the same time. The three accelerators modules assure to maintain continuity in functioning of the two reactors. In normal operation, all the three accelerators module will deliver 6.6 MW each one, just in case one of the three accelerator module will be off, due to a fault or maintenance, the other two modules are pushed at maximum power of 10 MW. The superconducting magnetic sector of the SRC, as well as the normal conducting sector of the injector cyclotron, is calculated with the TOSCA module of OPERA3D. Here the main features of the injector cyclotron, of the SRC and the beam dynamic along the cyclotrons are presented.

  18. Neutron spectra due (13)N production in a PET cyclotron.

    PubMed

    Benavente, J A; Vega-Carrillo, H R; Lacerda, M A S; Fonseca, T C F; Faria, F P; da Silva, T A

    2015-05-01

    Monte Carlo and experimental methods have been used to characterize the neutron radiation field around PET (Positron Emission Tomography) cyclotrons. In this work, the Monte Carlo code MCNPX was used to estimate the neutron spectra, the neutron fluence rates and the ambient dose equivalent (H*(10)) in seven locations around a PET cyclotron during (13)N production. In order to validate these calculations, H*(10) was measured in three sites and were compared with the calculated doses. All the spectra have two peaks, one above 0.1MeV due to the evaporation neutrons and another in the thermal region due to the room-return effects. Despite the relatively large difference between the measured and calculated H*(10) for one point, the agreement was considered good, compared with that obtained for (18)F production in a previous work.

  19. Sawtooth control in ITER using ion cyclotron resonance heating

    SciTech Connect

    Chapman, I. T.; Graves, J P; Johnson, T.; Asunta, O.; Bonoli, P.; Choi, M.; Jaeger, E. F.; Jucker, M.; Sauter, O.

    2011-01-01

    Numerical modeling of the effects of ion cyclotron resonance heating (ICRH) on the stability of the internal kink mode suggests that ICRH should be considered as an essential sawtooth control tool in ITER. Sawtooth control using ICRH is achieved by directly affecting the energy of the internal kink mode rather than through modification of the magnetic shear by driving localized currents. Consequently, ICRH can be seen as complementary to the planned electron cyclotron current drive actuator, and indeed will improve the efficacy of current drive schemes. Simulations of the ICRH distribution using independent RF codes give confidence in numerical predictions that the stabilizing influence of the fusion-born alphas can be negated by appropriately tailored minority (3)He ICRH heating in ITER. Finally, the effectiveness of all sawtooth actuators is shown to increase as the q = 1 surface moves towards the manetic axis, whilst the passive stabilization arising from the alpha and NBI particles decreases.

  20. Nonlinear particle simulation of ion cyclotron waves in toroidal geometry

    SciTech Connect

    Kuley, A. Lin, Z.; Bao, J.; Wei, X. S.; Xiao, Y.

    2015-12-10

    Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.

  1. Ion cyclotron heating experiments in magnetosphere plasma device RT-1

    SciTech Connect

    Nishiura, M. Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Mushiake, T.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-12-10

    The ion cyclotron range of frequencies (ICRF) heating with 3 MHz and ∼10 kW is being prepared in RT-1. The operation regime for electron cyclotron resonance (ECR) heating is surveyed as the target plasmas. ECRH with 8.2 GHz and ∼50 kW produces the plasmas with high energy electrons in the range of a few ten keV, but the ions still remain cold at a few ten eV. Ion heating is expected to access high ion beta state and to change the aspect of plasma confinement theoretically. The ICRF heating is applied to the target plasma as an auxiliary heating. The preliminary result of ICRF heating is reported.

  2. Ion Behavior in an Electrically Compensated Ion Cyclotron Resonance Trap

    PubMed Central

    Brustkern, Adam M.; Rempel, Don L.; Gross, Michael L.

    2010-01-01

    We recently described a new electrically compensated trap in FT ion cyclotron resonance mass spectrometry and developed a means of tuning traps of this general design. Here, we describe a continuation of that research by comparing the ion transient lifetimes and the resulting mass resolving powers and signal-to-noise (S/N) ratios that are achievable in the compensated vs. uncompensated modes of this trap. Transient lifetimes are ten times longer under the same conditions of pressure, providing improved mass resolving power and S/N ratios. The mass resolving power as a function of m/z is linear (log-log plot) and nearly equal to the theoretical maximum. Importantly, the ion cyclotron frequency as a function of ion number decreases linearly in accord with theory, unlike its behavior in the uncompensated mode. This linearity should lead to better control in mass calibration and increased mass accuracy than achievable in the uncompensated mode. PMID:21499521

  3. Examination of the plasma located in PSI Ring Cyclotron

    NASA Astrophysics Data System (ADS)

    Pogue, N. J.; Adelmann, A.; Schneider, M.; Stingelin, L.

    2016-06-01

    A plasma has been observed inside the vacuum chamber of the PSI Ring Cyclotron. This ionized gas cloud may be a substantial contributor to several interior components having reduced lifetimes. The plasma's generation has been directly linked to the voltage that is applied to the Flat Top cavity through visual confirmation using CCD cameras. A spectrometer was used to correlate the plasma's intensity and ignition to the Flat Top cavity voltage as well as to determine the composition of the plasma. This paper reports on the analysis of the plasma using spectroscopy. The spectrometer data was analyzed to determine the composition of the plasma and that the plasma intensity (luminosity) directly corresponds to the Flat Top voltage. The results show that the plasma is comprised of elements consistent with the cyclotrons vacuum interior.

  4. Evidence for proton cyclotron waves near Comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Tsurutani, B. T.

    1993-01-01

    We have computed frequency spectra of power density and polarization parameters of magnetohydrodynamic waves from observations on board the ICE spacecraft as it flew past Comet Giacobini-Zinner on September 11, 1985. Since the spectral parameters are frequency dependent, we find that the analysis is best carried out in a 'wave' reference frame where one of the major axes is along the wave normal direction for each frequency component. The power density along the wave normal direction shows a systematic peak structure which we identify as belonging to cyclotron wave harmonics of pickup ions near the comet. The fundamental harmonics of the cyclotron waves are also consistent with the gyrofrequencies calculated from the magnetic field data.

  5. Heating by waves in the ion cyclotron frequency range

    SciTech Connect

    Koch, R.

    1996-03-01

    The main aspects of heating with the fast wave in the ion cyclotron range of frequencies (ICRF) are reviewed. First, the ion cyclotron resonance mechanism, fundamental and harmonics, is examined. Then the properties of fast wave dispersion are reviewed, and the principles of minority and higher cylcotron harmonic heating are discussed. An elementary coupling model is worked out in order to outline the computation of the electrical properties of ICRF antennas. Using the simple model, the antenna radiation pattern inside the plasma is computed and the effect of phasing on the k spectrum and on the antenna radiation properties is illustrated. The quasi linear-Fokker-Planck computation of the deformation of distribution functions due to Radio-Frequency (RF) and tail formation are briefly discussed. 11 refs., 5 figs.

  6. Double-peaked electrostatic ion cyclotron harmonic waves

    NASA Technical Reports Server (NTRS)

    Boardsen, S. A.; Gurnett, D. A.; Peterson, W. K.

    1990-01-01

    Electrostatic H(+) cyclotron harmonic waves are often observed along the auroral field lines at altitudes of 1-3.5 R(E) by the Dynamics Explorer 1 satellite. A small fraction of these waves are found to have two peaks associated with each harmonic instead of one peak. The waves occur below the lower hybrid frequency and are usually relatively weak, about a factor of 4 smaller than typical electric field amplitudes of other H(+) cyclotron harmonic wave events. The double-peaked spectral signature is believed to be produced by Doppler shifts arising from the satellite velocity relative to the plasma rest frame. The waves were found to have wavelengths of the order of 300 m and phase velocities of the order of 150 km/s.

  7. Electrostatic ion-cyclotron waves in magnetospheric plasmas Nonlocal aspects

    NASA Technical Reports Server (NTRS)

    Ganguli, G.; Bakshi, P.; Palmadesso, P.

    1984-01-01

    The importance of the effect of the magnetic shear and the finite size of current channel on the electrostatic ion-cyclotron instability for the space plasmas is illustrated. A non-local treatment is used. When the channel width Lc, is larger than the shear length Ls, there is a large reduction in the growth rate along with a noteworthy reduction of the band of the unstable perpendicular wavelengths. For Lc less than or = Ls/10 the growth rate is not much altered from its local value, however for Lc/pi i less than or = 10 to the second power the growth rate starts falling below the local value and vanishes for Lc pi i. The non-local effects lead to enhanced coherence in the ion cyclotron waves. Previously announced in STAR as N84-14917

  8. Sawtooth control in ITER using ion cyclotron resonance heating

    NASA Astrophysics Data System (ADS)

    Chapman, I. T.; Graves, J. P.; Johnson, T.; Asunta, O.; Bonoli, P.; Choi, M.; Jaeger, E. F.; Jucker, M.; Sauter, O.

    2011-12-01

    Numerical modelling of the effects of ion cyclotron resonance heating (ICRH) on the stability of the internal kink mode suggests that ICRH should be considered as an essential sawtooth control tool in ITER. Sawtooth control using ICRH is achieved by directly affecting the energy of the internal kink mode rather than through modification of the magnetic shear by driving localized currents. Consequently, ICRH can be seen as complementary to the planned electron cyclotron current drive actuator, and indeed will improve the efficacy of current drive schemes. Simulations of the ICRH distribution using independent RF codes give confidence in numerical predictions that the stabilizing influence of the fusion-born alphas can be negated by appropriately tailored minority 3He ICRH heating in ITER. Finally, the effectiveness of all sawtooth actuators is shown to increase as the q = 1 surface moves towards the manetic axis, whilst the passive stabilization arising from the alpha and NBI particles decreases.

  9. PHYSICS OF ELCTRON CYCLOTRON CURRENT DRIVE ON DIII-D

    SciTech Connect

    PETTY,CC; PRATER,R; LUCE,TC; ELLIS,RA; HARVEY,RW; KINSEY,JE; LAO,LL; LOHR,J; MAKOWSKI,MA

    2002-09-01

    OAK A271 PHYSICS OF ELCTRON CYCLOTRON CURRENT DRIVE ON DIII-D. Recent experiments on the DIII-D tokamak have focused on determining the effect of trapped particles on the electron cyclotron current drive (ECCD) efficiency. The measured ECCD efficiency increases as the deposition location is moved towards the inboard midplane or towards smaller minor radius for both co and counter injection. The measured ECCD efficiency also increases with increasing electron density and/or temperature. The experimental ECCD is compared to both the linear theory (Toray-GA) as well as a quasilinear Fokker-Planck model (CQL3D). The experimental ECCD is found to be in better agreement with the more complete Fokker-Planck calculation, especially for cases of high rf power density and/or loop voltage. The narrow width of the measured ECCD profile is consistent with only low levels of radial transport for the current carrying electrons.

  10. Radiation protection aspects of the operation in a cyclotron facility

    NASA Astrophysics Data System (ADS)

    Silva, P. P. N.; Carneiro, J. C. G. G.

    2014-02-01

    The activated accelerator cyclotron components and the radioisotope production may impact on the personnel radiation exposure of the workers during the routine maintenance and emergency repair procedures and any modification of the equipment. Since the adherence of the principle of ALARA (as low as reasonable achievable) constitutes a major objective of the cyclotron management, it has become imperative to investigate the radiation levels at the workplace and the probable health effects to the worker caused by radiation exposure. The data analysis in this study was based on the individual monitoring records during the period from 2007 to 2011. Monitoring of the workplace was also performed using gamma and neutron detectors to determine the dose rate in various predetermined spots. The results of occupational radiation exposures were analysed and compared with the values established in national standards and international recommendations. Important guidelines have been developed to reduce the individual dose.

  11. Evidence for proton cyclotron waves near Comet Giacobini-Zinner

    NASA Astrophysics Data System (ADS)

    Tan, L. C.; Mason, G. M.; Tsurutani, B. T.

    1993-02-01

    We have computed frequency spectra of power density and polarization parameters of magnetohydrodynamic waves from observations on board the ICE spacecraft as it flew past Comet Giacobini-Zinner on September 11, 1985. Since the spectral parameters are frequency dependent, we find that the analysis is best carried out in a 'wave' reference frame where one of the major axes is along the wave normal direction for each frequency component. The power density along the wave normal direction shows a systematic peak structure which we identify as belonging to cyclotron wave harmonics of pickup ions near the comet. The fundamental harmonics of the cyclotron waves are also consistent with the gyrofrequencies calculated from the magnetic field data.

  12. Investigations of proton beam energy of the MC-50 cyclotron at KIRAMS

    NASA Astrophysics Data System (ADS)

    Khandaker, Mayeen Uddin; Kim, Guinyun; Kim, Kwangsoo; Bin Abu Kassim, Hasan; Nikouravan, Bijan

    2011-07-01

    The accuracy of the measured excitation functions of nuclear reactions largely depend on the precise measurements of the exposed beam energy in activation experiment. We investigated the proton beam energy of the MC-50 cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS) employing the method natCu(p,xn)62Zn / natCu(p,xn)65Zn together with a stacked-foil activation technique. The beam energy along with the stacked samples was also theoretically calculated using computer program SRIM-2003. The measured beam energy showed generally a good agreement with the calculated ones, and this fact demonstrated that the energy (<30 MeV) of the proton beam could be determined by irradiating thin metallic Cu foil target with natural isotopic compositions. Hence, this may be considered as a useful technique for beam monitoring purposes in activation experiment.

  13. Nature and effects of ion-cyclotron fluctuations in TMX

    SciTech Connect

    Casper, T.A.; Poulsen, P.; Smith, G.R.

    1982-02-19

    In the tandem mirror experiment (TMX), coherent oscillations have been identified as resulting from the Alfven ion-cyclotron instability. Although the drive for this instability is localized in the end cell, the waves generated propagate out of the unstable region and interact with the central-cell ions. This interaction leads to an experimentally observed scaling of the stored end-cell energy with axial ion end-loss current.

  14. Positron-emitting isotopes produced on biomedical cyclotrons.

    PubMed

    McQuade, Paul; Rowland, Douglas J; Lewis, Jason S; Welch, Michael J

    2005-01-01

    This review will discuss the production and applications of positron-emitting radionuclides for use in Positron Emission Tomography (PET), with emphasis on radionuclides that can be produced onsite with a biomedical cyclotron. In PET the traditional radionuclides of choice are (11)C, (113)N, (15)O and (18)F and although they will be briefly discussed in this article, the emphasis of this review will be on 'non-standard' PET radionuclides that are generating increased interest by the medical research community.

  15. Pencil Beam Scanning System Based On A Cyclotron

    SciTech Connect

    Tachikawa, Toshiki; Nonaka, Hideki; Kumata, Yukio; Nishio, Teiji; Ogino, Takashi

    2011-06-01

    Sumitomo Heavy Industries, Ltd. (SHI) has developed a new pencil beam scanning system (PBS) for proton therapy in collaboration with National Cancer Center Hospital East (NCCHE). Taking advantage of the continuous beam from the cyclotron P235, the line scanning method is employed in order to realize continuous irradiation with high dose rate. 3D uniform and sphere field was irradiated and compared with the simulation.

  16. Compressibility and cyclotron damping in the oblique Alfven wave

    SciTech Connect

    Harmon, J.K. )

    1989-11-01

    Compressibility, magnetic compressibility, and damping rate are calculated for the obliquely propagating Alfven shear wave in high- and low-beta Vlasov plasmas. There is an overall increase in compressibility as beta is reduced from {beta} = 1 to {beta}{much lt}1. For high obliquity {theta} and low frequency ({omega} {much lt} {Omega}{sub p}) the compressibility C follows a k{sup 2} wave number dependence; for high {theta} and low {beta} the approximation C(k) {approx} k{sub n}{sup 2} {identical to} (kV{sub A}/{Omega}{sub p}){sup 2} holds for wave numbers up to the proton cyclotron resonance, where {Omega}{sub p} is the proton cyclotron frequency and V{sub A} is the Alfven velocity. Strong proton cyclotron damping sets in at k{sub n} of the order of unity; the precise k{sub n} position of the damping cutoff increases with decreasing {beta} and increasing {theta}. Hence compressibility can exceed unity near the damping cutoff for high-{theta} waves in a low-{beta} plasma. The magnetic compressibility of the oblique Alfven wave also has a k{sup 2} dependence and can reach a maximum value of the order of 10% at high wave number. It is shown that Alfven compressibility could be the dominant contributor to the near-Sun solar wind density fluctuation spectrum for k>10{sup {minus}2} km{sup {minus}1} and hence might cause some of the flattening at high wave number seen in radio scintillation measurements. This would also be consistent with the notion that the observed density spectrum inner scale is a signature of cyclotron damping.

  17. Design options for an ITER ion cyclotron system

    NASA Astrophysics Data System (ADS)

    Swain, D. W.; Baity, F. W.; Bigelow, T. S.; Ryan, P. M.; Goulding, R. H.; Carter, M. D.; Stallings, D. C.; Batchelor, D. B.; Hoffman, D. J.

    1996-02-01

    Recent changes have occurred in the design requirements for the ITER ion cyclotron system, requiring in-port launchers in four main horizontal ports to deliver 50 MW of power to the plasma. The design is complicated by the comparatively large antenna-separatrix distance of 10-20 cm. Designs of a conventional strap launcher and a folded waveguide launcher that can meet the new requirements are presented.

  18. Cyclotron resonance maser experiments in first and second harmonics

    NASA Astrophysics Data System (ADS)

    Shahadi, Avi; Drori, Rami; Jerby, Eli

    1995-09-01

    Cyclotron-resonance maser (CRM) oscillator experiments in a nondispersive (TEM-mode) waveguide are reported in this paper. The table-top CRM oscillator constructed in our laboratory operates with a low-energy (< 5 keV), low-current (< 1 A) electron beam. The electron beam is rotating in the cyclotron frequency due to an axial magnetic field produced by an external solenoid. The large electron transverse velocity, needed to obtain amplification in a TEM-CRM, is achieved by a strong kicker coil. The coplanar waveguide used in this experiment supports odd and even TEM-modes, and enables cyclotron interactions with both first and second harmonics. Microwave output power at the first cycoltron harmonic is observed in the range of 3-6 GHz, where the frequency is tuned by the axial magnetic field in this range. A considerable second harmonic emission is observed around 7 GHz frequency. This experiment may lead to the developement of a new compact high-power microwave source.

  19. Linear analysis of ion cyclotron interaction in a multicomponent plasma

    NASA Technical Reports Server (NTRS)

    Gendrin, R.; Ashour-Abdalla, M.; Omura, Y.; Quest, K.

    1984-01-01

    The mechanism by which hot anisotropic protons generate electromagnetic ion cyclotron waves in a plasma containing cold H(+) and He(+) ions is quantitatively studied. Linear growth rates (both temporal and spatial) are computed for different plasma parameters: concentration, temperature,and anisotropy of cold He(+) ions and of hot protons. It is shown that: (1) for parameters typical of the geostationary altitude the maximum growth rates are not drastically changed when a small proportion (about 1 to 20 percent) of cold He(+) ions is present; (2) because of the important cyclotron absorption by thermal He(+) ions in the vicinity of the He(+) gyrofrequency, waves which could resonate with the bulk of the He(+) distribution cannot be generated. Therefore quasi-linear effects, in a homogeneous medium at least, cannot be responsible for the heating of He(+) ions which is often observed in conjunction with ion cyclotron waves. The variation of growth rate versus wave number is also studied for its importance in selecting suitable parameters in numerical simulation experiments.

  20. Modern compact accelerators of cyclotron type for medical applications

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.

    2016-09-01

    Ion beam therapy and hadron therapy are types of external beam radiotherapy. Recently, the vast majority of patients have been treated with protons and carbon ions. Typically, the types of accelerators used for therapy were cyclotrons and synchrocyclotrons. It is intuitively clear that a compact facility fits best to a hospital environment intended for particle therapy and medical diagnostics. Another criterion for selection of accelerators to be mentioned in this article is application of superconducting technology to the magnetic system design of the facility. Compact isochronous cyclotrons, which accelerate protons in the energy range 9-30 MeV, have been widely used for production of radionuclides. Energy of 230 MeV has become canonical for all proton therapy accelerators. Similar application of a carbon beam requires ion energy of 430 MeV/u. Due to application of superconducting coils the magnetic field in these machines can reach 4-5 T and even 9 T in some cases. Medical cyclotrons with an ironless or nearly ironless magnetic system that have a number of advantages over the classical accelerators are in the development stage. In this work an attempt is made to describe some conceptual and technical features of modern accelerators under consideration. The emphasis is placed on the magnetic and acceleration systems along with the beam extraction unit, which are very important from the point of view of the facility compactness and compliance with the strict medical requirements.

  1. The cyclotron laboratory and the RFQ accelerator in Bern

    SciTech Connect

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Weber, M.; Scampoli, P.; Bremen, K. von

    2013-07-18

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  2. RF control hardware design for CYCIAE-100 cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Fu, Xiaoliang; Ji, Bin; Zhao, Zhenlu; Zhang, Tianjue; Li, Pengzhan; Wei, Junyi; Xing, Jiansheng; Wang, Chuan

    2015-11-01

    The Beijing Radioactive Ion-beam Facility project is being constructed by BRIF division of China Institute of Atomic Energy. In this project, a 100 MeV high intensity compact proton cyclotron is built for multiple applications. The first successful beam extraction of CYCIAE-100 cyclotron was done in the middle of 2014. The extracted proton beam energy is 100 MeV and the beam current is more than 20 μA. The RF system of the CYCIAE-100 cyclotron includes two half-wavelength cavities, two 100 kW tetrode amplifiers and power transmission line systems (all above are independent from each other) and two sets of Low Level RF control crates. Each set of LLRF control includes an amplitude control unit, a tuning control unit, a phase control unit, a local Digital Signal Process control unit and an Advanced RISC Machines based EPICS IOC unit. These two identical LLRF control crates share one common reference clock and take advantages of modern digital technologies (e.g. DSP and Direct Digital Synthesizer) to achieve closed loop voltage and phase regulations of the dee-voltage. In the beam commission, the measured dee-voltage stability of RF system is better than 0.1% and phase stability is better than 0.03°. The hardware design of the LLRF system will be reviewed in this paper.

  3. Electrostatic ion-cyclotron waves in a nonuniform magnetic field

    NASA Technical Reports Server (NTRS)

    Cartier, S. L.; Dangelo, N.; Merlino, R. L.

    1985-01-01

    The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f is approximately greater than fci, where fci is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism.

  4. Apparent electrostatic ion cyclotron waves in the diffuse aurora

    NASA Technical Reports Server (NTRS)

    Bering, E. A.

    1983-01-01

    Emissions that have properties consistent with electrostatic ion cyclotron (EIC) waves have been observed at low altitude in the diffuse aurora by a sounding rocket payload. Peaks were observed in the power spectrum of the electric field near the hydrogen and oxygen ion cyclotron frequencies. Doppler shift and polarization analyses have been performed using EIC wave parameters derived from linear theory. Both analyses indicated that these emissions had properties consistent with those expected for H(+) and O(+) EIC waves. The two analyses indicated that both emission bands were due to waves propagating eastward parallel to the poleward boundary of the diffuse aurora. The large local cold plasma density and resulting Landau damping require that the source be local. Magnetometer data indicated the presence of a downward parallel current density of 5 microamps/sq m. Sufficient free energy for the waves was available from this current, although the waves were observed frequently at altitudes where the ion-neutral collision frequency exceeded the oxygen cyclotron frequency.

  5. A Suzaku View of Cyclotron Line Sources and Candidates

    NASA Technical Reports Server (NTRS)

    Pottschmidt, K.; Suchy, S.; Rivers, E.; Rothschild, R. E.; Marcu, D. M.; Barragan, L.; Kuehnel, M.; Fuerst, F.; Schwarm, F.; Kreykenbohm, I.; Wilms, J.; Schoenherr, G.; Caballero, I.; Camero-Arranz, A.; Bodaghee, A.; Doroshenko, V.; Klochkov, D.; Santangelo, A.; Staubert, R.; Kretschmar, P.; Wilson-Hodge, C.; Finger, M. H.; Terada, Y.

    2012-01-01

    Seventeen accreting neutron star pulsars, mostly high mass X-ray binaries with half of them Be-type transients, are known to exhibit Cyclotron Resonance Scattering Features (CRSFs) in their X-ray spectra, with characteristic line energies from 10 to 60 keY. To date about two thirds of them, plus a few similar systems without known CRSFs, have been observed with Suzaku. We present an overview of results from these observations, including the discovery of a CRSF in the transient IA1118-61 and pulse phase resolved spectroscopy of OX 301-2. These observations allow for the determination of cyclotron line parameters to an unprecedented degree of accuracy within a moderate amount of observing time. This is important since these parameters vary - e.g., with orbital phase, pulse phase, or luminosity - depending on the geometry of the magnetic field of the pulsar and the properties of the accretion column at the magnetic poles. We briefly introduce a spectral model for CRSFs that is currently being developed and that for the first time is based on these physical properties. In addition to cyclotron line measurements, selected highlights from the Suzaku analyses include dip and flare studies, e.g., of 4U 1907+09 and Vela X-I, which show clumpy wind effects (like partial absorption and/or a decrease in the mass accretion rate supplied by the wind) and may also display magnetospheric gating effects.

  6. Electromagnetic ion beam instabilities - Growth at cyclotron harmonic wave numbers

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Gary, S. Peter

    1987-01-01

    The linear theory of electromagnetic ion beam instabilities for arbitrary angles of propagation is studied, with an emphasis on the conditions necessary to generate unstable modes at low harmonics of the ion cyclotron resonance condition. The present results extend the analysis of Smith et al. (1985). That paper considered only the plasma parameters at a time during which harmonic wave modes were observed in the earth's foreshock. The parameters of that paper are used as the basis of parametric variations here to establish the range of beam properties which may give rise to observable harmonic spectra. It is shown that the growth rates of both left-hand and right-hand cyclotron harmonic instabilities are enhanced by an increase in the beam temperature anisotropy and/or the beam speed. Decreases in the beam density and/or the core-ion beta reduce the overall growth of the cyclotron harmonic instabilities but favor the growth of these modes over the growth of the nonresonant instability and thereby enhance the observability of the harmonics.

  7. The cyclotron laboratory and the RFQ accelerator in Bern

    NASA Astrophysics Data System (ADS)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Scampoli, P.; von Bremen, K.; Weber, M.

    2013-07-01

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  8. Considerations, measurements and logistics associated with low-energy cyclotron decommissioning

    NASA Astrophysics Data System (ADS)

    Sunderland, J. J.; Erdahl, C. E.; Bender, B. R.; Sensoy, L.; Watkins, G. L.

    2012-12-01

    The University of Iowa's 20-year-old 17 MeV Scanditronix cyclotron underwent decommissioning in the summer of 2011. To satisfy local, state and federal regulations defining removal, transportation and long-term safe and environmentally secure disposal of the 22 ton activated cyclotron, a series of nuclear spectroscopic measurements were performed to characterize the nature and extent of proton and neutron activation of the 22-ton cyclotron, its associated targets, and the concrete wall that was demolished to remove the old cyclotron. Neutron activation of the concrete wall was minimal and below exempt concentrations resulting in standard landfill disposal. The cyclotron assessment revealed the expected array of short and medium-lived radionuclides. Subsequent calculations suggest that meaningful levels residual activity will have decayed virtually to background after 15 years, with the total residual activity of the entire cyclotron dropping below 37 MBq (1 mCi).

  9. Backward mode of the ion-cyclotron wave in a semi-bounded magnetized Lorentzian plasma

    SciTech Connect

    Ki, Dae-Han; Jung, Young-Dae

    2012-08-15

    The backward modes of the surface ion-cyclotron wave are investigated in a semi-bounded magnetized Lorentzian plasma. The dispersion relation of the backward mode of the surface ion-cyclotron wave is obtained using the specular reflection boundary condition with the plasma dielectric function. The result shows that the nonthermal effect suppresses the wave frequency as well as the group velocity of the surface ion-cyclotron wave. It is also found that the nonthermal effect on the surface ion-cyclotron wave increases with an increase of the wave number. In addition, it is found that the propagation domain of the surface ion-cyclotron wave increases with an increase of the ratio of the electron plasma frequency to the electron gyrofrequency. It is also found that the nonthermal effect increases the propagation domain of the surface ion-cyclotron wave in a semi-bounded magnetized Lorentzian plasma.

  10. Considerations, measurements and logistics associated with low-energy cyclotron decommissioning

    SciTech Connect

    Sunderland, J. J.; Erdahl, C. E.; Bender, B. R.; Sensoy, L.; Watkins, G. L.

    2012-12-19

    The University of Iowa's 20-year-old 17 MeV Scanditronix cyclotron underwent decommissioning in the summer of 2011. To satisfy local, state and federal regulations defining removal, transportation and long-term safe and environmentally secure disposal of the 22 ton activated cyclotron, a series of nuclear spectroscopic measurements were performed to characterize the nature and extent of proton and neutron activation of the 22-ton cyclotron, its associated targets, and the concrete wall that was demolished to remove the old cyclotron. Neutron activation of the concrete wall was minimal and below exempt concentrations resulting in standard landfill disposal. The cyclotron assessment revealed the expected array of short and medium-lived radionuclides. Subsequent calculations suggest that meaningful levels residual activity will have decayed virtually to background after 15 years, with the total residual activity of the entire cyclotron dropping below 37 MBq (1 mCi).

  11. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron.

    PubMed

    Hojo, S; Katagiri, K; Nakao, M; Sugiura, A; Muramatsu, M; Noda, A; Okada, T; Takahashi, Y; Komiyama, A; Honma, T; Noda, K

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C(4+) ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C(4+), for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.

  12. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron

    NASA Astrophysics Data System (ADS)

    Hojo, S.; Katagiri, K.; Nakao, M.; Sugiura, A.; Muramatsu, M.; Noda, A.; Okada, T.; Takahashi, Y.; Komiyama, A.; Honma, T.; Noda, K.

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C4+ ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C4+, for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.

  13. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron.

    PubMed

    Hojo, S; Katagiri, K; Nakao, M; Sugiura, A; Muramatsu, M; Noda, A; Okada, T; Takahashi, Y; Komiyama, A; Honma, T; Noda, K

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C(4+) ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C(4+), for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source. PMID:24593538

  14. Electrostatic ion-cyclotron waves in a two-ion component plasma

    NASA Technical Reports Server (NTRS)

    Suszcynsky, David M.; Merlino, Robert L.; D'Angelo, Nicola

    1988-01-01

    The excitation of electrostatic ion cyclotron (EIC) waves is studied in a single-ended Q machine in a two-ion component plasma (Ca+ and K+). Over a large range of relative concentrations of Cs+ and K+ ions, two modes are excited with frequencies greater than the respective cyclotron frequencies of the ions. The results are discussed in terms of a fluid theory of electrostatic ion cyclotron waves in a two-ion component plasma.

  15. Observation of a high-confinement regime in a tokamak plasma with ion cyclotron resonance heating

    NASA Astrophysics Data System (ADS)

    Steinmetz, K.; Noterdaeme, J.-M.; Wagner, F.; Wesner, F.; Bäumler, J.; Becker, G.; Bosch, H. S.; Brambilla, M.; Braun, F.; Brocken, H.; Eberhagen, A.; Fritsch, R.; Fussmann, G.; Gehre, O.; Gernhardt, J.; v. Gierke, G.; Glock, E.; Gruber, O.; Haas, G.; Hofmann, J.; Hofmeister, F.; Izvozchikov, A.; Janeschitz, G.; Karger, F.; Keilhacker, M.; Klüber, O.; Kornherr, M.; Lackner, K.; Lisitano, G.; van Mark, E.; Mast, F.; Mayer, H. M.; McCormick, K.; Meisel, D.; Mertens, V.; Müller, E. R.; Murmann, H.; Niedermeyer, H.; Poschenrieder, W.; Puri, S.; Rapp, H.; Röhr, H.; Ryter, F.; Schmitter, K.-H.; Schneider, F.; Setzensack, C.; Siller, G.; Smeulders, P.; Söldner, F.; Speth, E.; Steuer, K.-H.; Vollmer, O.; Wedler, H.; Zasche, D.

    1987-01-01

    The H mode in ion cyclotron-resonance-heated plasmas has been investigated with and without additional neutral beam injection. Ion cyclotron-resonance heating can cause the transition into a high-confinement regime (H mode) in combination with beam heating. The H mode, however, has also been realized-for the first time-with ion cyclotron-resonance heating alone in the D (H)-hydrogen minority scheme at an absorbed rf power of 1.1 MW.

  16. The cyclotron maser theory of AKR and Z-mode radiation. [Auroral Kilometric Radiation

    NASA Technical Reports Server (NTRS)

    Wu, C. S.

    1985-01-01

    The cyclotron maser mechanism which may be responsible for the generation of auroral kilometric radiation and Z-mode radiation is discussed. Emphasis is placed on the basic concepts of the cyclotron maser theory, particularly the relativistic effect of the cyclotron resonance condition. Recent development of the theory is reviewed. Finally, the results of a computer simulation study which helps to understand the nonlinear saturation of the maser instability are reported.

  17. Laboratory modeling of pulsed regimes of electron cyclotron instabilities

    NASA Astrophysics Data System (ADS)

    Golubev, S. V.; Mansfeld, D. A.; Viktorov, M. E.; Izotov, I. V.; Vodopyanov, A. V.; Demekhov, A. G.; Shalashov, A. G.

    2012-04-01

    One of the most interesting electron cyclotron resonance (ECR) manifestations is the generation of bursts of electromagnetic radiation that are related to the explosive growth of cyclotron instabilities of the magnetoactive plasma confined in magnetic traps of various kinds and that are accompanied by particle precipitations from the trap. Such phenomena are observed in a wide range of plasma parameters under various conditions: in the magnetospheres of the Earth and planets, in solar coronal loops, and in laboratory magnetic traps. We demonstrate the use of a laboratory setup based on a magnetic mirror trap with plasma sustained by a gyrotron radiation under ECR conditions for investigation of the cyclotron instabilities similar to the ones which take place in space plasmas. Two regimes of the cyclotron instability are studied. In the first place, quasi-periodic pulsed precipitation of energetic electrons from the trap, accompanied by microwave bursts at frequencies below the electron gyrofrequency in the center of the trap, is detected. The study of the microwave plasma emission and the energetic electrons precipitated from the trap shows that the precipitation is related to the excitation of whistlers propagating nearly parallel to the trap axis. The observed instability has much in common with phenomena in space magnetic traps, such as radiation belts of magnetized planets and solar coronal loops. Such regimes have much in common with the quasi-periodic VLF radiation in the Earth's inner magnetosphere (with periods of T ~ 100 s) and can also be met in solar flaring loops and at other space objects. In the second place, we have detected and investigated quasi-periodic series of pulsed energetic electron precipitations in the decaying plasma of a pulsed ECR discharge in a mirror axisymmetric magnetic trap. The observed particle ejections from the trap are interpreted as the result of resonant interaction between energetic electrons and a slow extraordinary wave

  18. Linear and nonlinear physics of the magnetoacoustic cyclotron instability of fusion-born ions in relation to ion cyclotron emission

    SciTech Connect

    Carbajal, L. Cook, J. W. S.; Dendy, R. O.; Chapman, S. C.

    2014-01-15

    The magnetoacoustic cyclotron instability (MCI) probably underlies observations of ion cyclotron emission (ICE) from energetic ion populations in tokamak plasmas, including fusion-born alpha-particles in JET and TFTR [Dendy et al., Nucl. Fusion 35, 1733 (1995)]. ICE is a potential diagnostic for lost alpha-particles in ITER; furthermore, the MCI is representative of a class of collective instabilities, which may result in the partial channelling of the free energy of energetic ions into radiation, and away from collisional heating of the plasma. Deep understanding of the MCI is thus of substantial practical interest for fusion, and the hybrid approximation for the plasma, where ions are treated as particles and electrons as a neutralising massless fluid, offers an attractive way forward. The hybrid simulations presented here access MCI physics that arises on timescales longer than can be addressed by fully kinetic particle-in-cell simulations and by analytical linear theory, which the present simulations largely corroborate. Our results go further than previous studies by entering into the nonlinear stage of the MCI, which shows novel features. These include stronger drive at low cyclotron harmonics, the re-energisation of the alpha-particle population, self-modulation of the phase shift between the electrostatic and electromagnetic components, and coupling between low and high frequency modes of the excited electromagnetic field.

  19. Electromagnetic cyclotron waves in the solar wind: Wind observation and wave dispersion analysis

    NASA Astrophysics Data System (ADS)

    Jian, L. K.; Moya, P. S.; Viñas, A. F.; Stevens, M.

    2016-03-01

    Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and α-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.

  20. The Cyclotron Production and Nuclear Imaging of BROMINE-77.

    NASA Astrophysics Data System (ADS)

    Galiano, Eduardo

    In this investigation, bromine-77 was produced with a medical cyclotron and imaged with gamma cameras. Br -77 emits a 240 kev photon with a half life of 56 hours. The C-Br bond is stronger than the C-I bond and bromine is not collected in the thyroid. Bromine can be used to label many organic molecules by methods analogous to radioiodination. The only North American source of Br-77 in the 70's and 80's was Los Alamos National Laboratory, but it discontinued production in 1989. In this method, a p,3n reaction on Br-77 produces Kr-77 which decays with a 1.2 hour half life to Br-77. A cyclotron generated 40 MeV proton beam is incident on a nearly saturated NaBr or LiBr solution contained in a copper or titanium target. A cooling chamber through which helium gas is flowed separates the solution from the cyclotron beam line. Helium gas is also flowed through the solution to extract Kr-77 gas. The mixture flows through a nitrogen trap where Kr-77 freezes and is allowed to decay to Br-77. Eight production runs were performed, three with a copper target and five with a titanium target with yields of 40, 104, 180, 679, 1080, 685, 762 and 118 uCi respectively. Gamma ray spectroscopy has shown the product to be very pure, however corrosion has been a major obstacle, causing the premature retirement of the copper target. Phantom and in-vivo rat nuclear images, and an autoradiograph in a rat are presented. The quality of the nuclear scans is reasonable and the autoradiograph reveals high isotope uptake in the renal parenchyma, a more moderate but uniform uptake in pulmonary and hepatic tissue, and low soft tissue uptake. There is no isotope uptake in the brain or the gastric mucosa.

  1. Electromagnetic Waves near the Proton Cyclotron Frequency: STEREO Observations

    NASA Astrophysics Data System (ADS)

    Jian, L. K.; Wei, H. Y.; Russell, C. T.; Luhmann, J. G.; Klecker, B.; Omidi, N.; Isenberg, P. A.; Goldstein, M. L.; Figueroa-Viñas, A.; Blanco-Cano, X.

    2014-05-01

    Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named "LFW storms." Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.

  2. Electromagnetic waves near the proton cyclotron frequency: Stereo observations

    SciTech Connect

    Jian, L. K.; Wei, H. Y.; Russell, C. T.; Luhmann, J. G.; Klecker, B.; Omidi, N.; Isenberg, P. A.; Goldstein, M. L.; Figueroa-Viñas, A.; Blanco-Cano, X.

    2014-05-10

    Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.

  3. Cyclotron production of Ac-225 for targeted alpha therapy.

    PubMed

    Apostolidis, C; Molinet, R; McGinley, J; Abbas, K; Möllenbeck, J; Morgenstern, A

    2005-03-01

    The feasibility of producing Ac-225 by proton irradiation of Ra-226 in a cyclotron through the reaction Ra-226(p,2n)Ac-225 has been experimentally demonstrated for the first time. Proton energies were varied from 8.8 to 24.8 MeV and cross-sections were determined by radiochemical analysis of reaction yields. Maximum yields were reached at incident proton energies of 16.8 MeV. Radiochemical separation of Ac-225 from the irradiated target yielded a product suitable for targeted alpha therapy of cancer.

  4. Experimental monitoring of ozone production in a PET cyclotron facility.

    PubMed

    Zanibellato, L; Cicoria, G; Pancaldi, D; Boschi, S; Mostacci, D; Marengo, M

    2010-10-01

    Ozone produced from radiolytic processes was investigated as a possible health hazard in the working environment at the University Hospital "S.Orsola--Malpighi" PET facility. Intense radiation fields can generate ozone, known to be the most toxic gas produced by ionizing radiation around a particle accelerator. To evaluate ozone concentration in air, two different measurement campaigns were conducted with passive diffusion detectors. Comparison of the results with the concentration limits recommended by American Conference of Governmental Industrial Hygienists (ACGIH) demonstrated that ozone poses no health hazard to workers around a biomedical cyclotron.

  5. Calibration of electron cyclotron emission radiometer for KSTAR.

    PubMed

    Kogi, Y; Jeong, S H; Lee, K D; Akaki, K; Mase, A; Kuwahara, D; Yoshinaga, T; Nagayama, Y; Kwon, M; Kawahata, K

    2010-10-01

    We developed and installed an electron cyclotron emission radiometer for taking measurements of Korea Superconducting Tokamak Advanced Research (KSTAR) plasma. In order to precisely measure the absolute value of electron temperatures, a calibration measurement of the whole radiometer system was performed, which confirmed that the radiometer has an acceptably linear output signal for changes in input temperature. It was also found that the output power level predicted by a theoretical calculation agrees with that obtained by the calibration measurement. We also showed that the system displays acceptable noise-temperature performance around 0.23 eV.

  6. Numerical model of electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Mironov, V.; Bogomolov, S.; Bondarchenko, A.; Efremov, A.; Loginov, V.

    2015-12-01

    Important features of the electron cyclotron resonance ion source (ECRIS) operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model the dynamics of ions in ECRIS plasma. It is shown that a gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for a few sources. Changes in the simulated extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.

  7. Cyclotron scattering lines in gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Preece, Robert D.

    1989-01-01

    If cyclotron scattering, rather than absorption, is responsible for the line features observed recently in two gamma-ray burst spectra (Murakami et al., 1988), then the second and higher harmonics are due to resonant scattering events that excite the electron to Landau levels above the ground state. Here, relativistic Compton scattering cross sections are used to estimate the expected ratio of third to second harmonics in the presence of Doppler broadening. At the field strength (1.7 TG) required to give first and second harmonics at 19 keV and 38 keV, there should be no detectable third harmonic in the spectrum.

  8. Twisted electrostatic ion-cyclotron waves in dusty plasmas.

    PubMed

    Shukla, P K

    2013-01-01

    We show the existence of a twisted electrostatic ion-cyclotron (ESIC) wave carrying orbital angular momentum (OAM) in a magnetized dusty plasma. For our purposes, we derive a 3D wave equation for the coupled ESIC and dust ion-acoustic (DIA) waves from the hydrodynamic equations that are composed of the continuity and momentum equations, together with Poisson's equation. The 3D wave equation reveals the formation of a braided or twisted ESIC wave structure carrying OAM. The braided or twisted ESIC wave structure can trap and transport plasma particles in magnetoplasmas, such as those in Saturn's F-ring and in the forthcoming magnetized dusty plasma experiments. PMID:23410477

  9. Cyclotron production of Ac-225 for targeted alpha therapy.

    PubMed

    Apostolidis, C; Molinet, R; McGinley, J; Abbas, K; Möllenbeck, J; Morgenstern, A

    2005-03-01

    The feasibility of producing Ac-225 by proton irradiation of Ra-226 in a cyclotron through the reaction Ra-226(p,2n)Ac-225 has been experimentally demonstrated for the first time. Proton energies were varied from 8.8 to 24.8 MeV and cross-sections were determined by radiochemical analysis of reaction yields. Maximum yields were reached at incident proton energies of 16.8 MeV. Radiochemical separation of Ac-225 from the irradiated target yielded a product suitable for targeted alpha therapy of cancer. PMID:15607913

  10. Linear coupling of acoustic and cyclotron waves in plasma flows

    SciTech Connect

    Rogava, Andria; Gogoberidze, Grigol

    2005-05-15

    It is found that in magnetized electrostatic plasma flows the velocity shear couples ion-acoustic waves with ion-cyclotron waves and leads, under favorable conditions, to their efficient reciprocal transformations. It is shown that in a two-dimensional setup this coupling has a remarkable feature: it is governed by equations that are mathematically equal to the ones describing coupling of sound waves with internal gravity waves [Rogava and Mahajan, Phys. Rev. E 55, 1185 (1997)] in neutral fluids. For flows with low shearing rates a fully analytic, quantitative description of the coupling efficiency, based on a noteworthy quantum-mechanical analogy, is given and transformation coefficients are calculated.

  11. Prospects and limitations of cyclotron resonance laser acceleration

    SciTech Connect

    Chen, C. )

    1992-07-01

    The cyclotron resonance laser (CRL) accelerator is a novel concept of accelerating continuous charged-particle beams to moderately or highly relativistic energies. This paper discusses prospects and limitations of this concept. In particular, a three-dimensional, self-consistent theory is used to analyze the nonlinear interaction of an electron beam with an intense traveling electromagnetic wave in such an accelerator. The parameter regimes of experimental interest are identified on the basis of scaling calculations. The results of simulation modeling of a multimegavolt electron CRL accelerator are presented. The possibility of building continuous-wave (cw) CRL accelerators is discussed.

  12. Development of a high current H(-) ion source for cyclotrons.

    PubMed

    Etoh, H; Aoki, Y; Mitsubori, H; Arakawa, Y; Mitsumoto, T; Yajima, S; Sakuraba, J; Kato, T; Okumura, Y

    2014-02-01

    A multi-cusp DC H(-) ion source has been designed and fabricated for medical applications of cyclotrons. Optimization of the ion source is in progress, such as the improvement of the filament configuration, magnetic filter strength, extraction electrode's shape, configuration of electron suppression magnets, and plasma electrode material. A small quantity of Cs has been introduced into the ion source to enhance the negative ion beam current. The ion source produced 16 mA of DC H(-) ion beam with the Cs-seeded operation at a low arc discharge power of 2.8 kW.

  13. Superthermal electron distribution measurements from polarized electron cyclotron emission

    SciTech Connect

    Luce, T.C.; Efthimion, P.C.; Fisch, N.J.

    1988-06-01

    Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway conditions is varied are presented for discharges in the PLT tokamak. 15 refs., 8 figs.

  14. RF physics of ICWC discharge at high cyclotron harmonics

    SciTech Connect

    Lyssoivan, A.; Van Eester, D.; Wauters, T.; Vervier, M.; Van Schoor, M.; Bobkov, V.; Rohde, V.; Schneider, P.; Douai, D.; Kogut, D.; Kreter, A.; Möller, S.; Philipps, V.; Sergienko, G.; Moiseenko, V.; Noterdaeme, J.-M.; Collaboration: TEXTOR Team; ASDEX Upgrade Team

    2014-02-12

    Recent experiments on Ion Cyclotron Wall Conditioning (ICWC) performed in tokamaks TEXTOR and ASDEX Upgrade with standard ICRF antennas operated at fixed frequencies but variable toroidal magnetic field demonstrated rather contrasting parameters of ICWC discharge in scenarios with on-axis fundamental ion cyclotron resonance (ICR) for protons,ω=ω{sub H+}, and with its high cyclotron harmonics (HCH), ω=10ω{sub cH+}⋅ HCH scenario: very high antenna coupling to low density RF plasmas (P{sub pl}≈0.9P{sub RF-G}) and low energy Maxwellian distribution of CX hydrogen atoms with temperature T{sub H}≈350 eV. Fundamental ICR: lower antenna-plasma coupling efficiency (by factor of about 1.5 times) and generation of high energy non-Maxwellian CX hydrogen atoms (with local energy E{sub ⊥H} ≥1.0 keV). In the present paper, we analyze the obtained experimental results numerically using (i) newly developed 0-D transport code describing the process of plasma production with electron and ion collisional ionization in helium-hydrogen gas mixture and (ii) earlier developed 1-D Dispersion Relation Solver accounting for finite temperature effects and collision absorption mechanisms for all plasma species in addition to conventionally examined Landau/TTPM damping for electrons and cyclotron absorption for ions. The numerical study of plasma production in helium with minor hydrogen content in low and high toroidal magnetic fields is presented. The investigation of the excitation, conversion and absorption of plasma waves as function of B{sub T}-field suggests that only fast waves (FW) may give a crucial impact on antenna coupling and characteristics of the ICWC discharge using standard poloidally polarized ICRF antennas designed to couple RF power mainly to FW. The collisional (non-resonant) absorption by electrons and ions and IC absorption by resonant ions of minor concentration in low T{sub e} plasmas is studied at fundamental ICR and its high harmonics.

  15. Beam injection improvement for electron cyclotron resonance charge breeders

    SciTech Connect

    Lamy, T.; Angot, J.; Sortais, P.; Thuillier, T.

    2012-02-15

    The injection of a 1+ beam into an electron cyclotron resonance (ECR) charge breeder is classically performed through a grounded tube placed on its axis at the injection side. This tube presents various disadvantages for the operation of an ECR charge breeder. First experiments without a grounded tube show a better use of the microwave power and a better charge breeding efficiency. The optical acceptance of the charge breeder without decelerating tube allows the injection of high intensity 1+ ion beams at high energy, allowing metals sputtering inside the ion source. The use of this method for refractory metallic ion beams production is evaluated.

  16. Generating electron cyclotron resonance plasma using distributed scheme

    SciTech Connect

    Huang, C. C.; Chang, T. H.; Chen, N. C.; Chao, H. W.; Chen, C. C.; Chou, S. F.

    2012-08-06

    This study employs a distributed microwave input system and permanent magnets to generate large-area electron cyclotron resonance (ECR) plasma. ECR plasmas were generated with nitrogen gas, and the plasma density was measured by Langmuir probe. A uniform ECR plasma with the electron density fluctuation of {+-}9.8% over 500 mm Multiplication-Sign 500 mm was reported. The proposed idea of generating uniform ECR plasma can be scaled to a much larger area by using n Multiplication-Sign n microwave input array system together with well-designed permanent magnets.

  17. Optimized calculation of the synergy conditions between electron cyclotron current drive and lower hybrid current drive on EAST

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Bo-Jiang, Ding; Y, Peysson; J, Decker; Miao-Hui, Li; Xin-Jun, Zhang; Xiao-Jie, Wang; Lei, Zhang

    2016-01-01

    The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on the understanding of the synergy mechanisms so as to obtain a higher synergistic current and provide theoretical reference for the synergistic effect in the EAST experiment. The dependences of the synergistic effect on the parameters of two waves (lower hybrid wave (LHW) and electron cyclotron wave (ECW)), including the radial position of the power deposition, the power value of the LH and EC waves, and the parallel refractive indices of the LHW (N∥) are presented and discussed. Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2011GB102000, 2012GB103000, and 2013GB106001), the National Natural Science Foundation of China (Grant Nos. 11175206 and 11305211), the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (Grant No. 11261140328), and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2015HGBZ0472).

  18. Quantum non demolition measurement of cyclotron excitations in a Penning trap

    NASA Technical Reports Server (NTRS)

    Marzoli, Irene; Tombesi, Paolo

    1993-01-01

    The quantum non-demolition measurement of the cyclotron excitations of an electron confined in a Penning trap could be obtained by measuring the resonance frequency of the axial motion, which is coupled to the cyclotron motion through the relativistic shift of the electron mass.

  19. Electron-cyclotron maser instability driven by a loss-cone distribution

    SciTech Connect

    Lau, Y.Y.; Chu, K.

    1983-01-24

    It is shown that the electron-cyclotron maser instabilities may readily be excited in a plasma with a loss-cone distribution when the electron temperature exceeds a few tens of kiloelectronvolts. The growth rate is typically a few percent of the electron-cyclotron frequency. The appearance of the instability can be avoided by proper control of the plasma density.

  20. Differential turbulent heating of different ions in electron cyclotron resonance ion source plasma

    SciTech Connect

    Elizarov, L.I.; Ivanov, A.A.; Serebrennikov, K.S.; Vostrikova, E.A.

    2006-03-15

    The article considers the collisionless ion sound turbulent heating of different ions in an electron cyclotron resonance ion source (ECRIS). The ion sound arises due to parametric instability of pumping wave propagating along the magnetic field with the frequency close to that of electron cyclotron. Within the framework of turbulent heating model the different ions temperatures are calculated in gas-mixing ECRIS plasma.

  1. Plasma injection and capture at electron cyclotron resonance in a mirror system with additional rf fields

    SciTech Connect

    Golovanivskii, K.S.; Dugar-Zhabon, V.D.; Karyaka, V.I.; Milant'ev, V.P.; Turikov, V.A.

    1980-03-01

    Experiments and numerical simulations have been carried out to determine how cyclotron-resonance rf fields in an open magnetic mirror system affect the capture and confinement of a plasma injected along the axis. The results show that at electron cyclotron resonance the fields greatly improve the longitudinal plasma confinement.

  2. 76 FR 80982 - International Cyclotron, Inc., Hato Rey, Puerto Rico; Order Suspending Licensed Activities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... radioactive material above specified amounts must provide a guarantee or other financial arrangement that... authorization to possess and use radioactive material of half-life greater than 120 days and in quantities... International Cyclotron, Inc. (International Cyclotron; Licensee) is the holder of Byproduct Materials...

  3. Evolution of the axial electron cyclotron maser instability, with applications to solar microwave spikes

    NASA Technical Reports Server (NTRS)

    Vlahos, Loukas; Sprangle, Phillip

    1987-01-01

    The nonlinear evolution of cyclotron radiation from streaming and gyrating electrons in an external magnetic field is analyzed. The nonlinear dynamics of both the fields and the particles are treated fully relativistically and self-consistently. The model includes a background plasma and electrostatic effects. The analytical and numerical results show that a substantial portion of the beam particle energy can be converted to electromagnetic wave energy at frequencies far above the electron cyclotron frequency. In general, the excited radiation can propagate parallel to the magnetic field and, hence, escape gyrothermal absorption at higher cyclotron harmonics. The high-frequency Doppler-shifted cyclotron instability can have saturation efficiencies far higher than those associated with well-known instabilities of the electron cyclotron maser type. Although the analysis is general, the possibility of using this model to explain the intense radio emission observed from the sun is explored in detail.

  4. Safety-factor profile tailoring by improved electron cyclotron system for sawtooth control and reverse shear scenarios in ITER

    SciTech Connect

    Zucca, C.; Sauter, O.; Fable, E.; Henderson, M. A.; Polevoi, A.; Saibene, G.

    2008-11-01

    The effect of the predicted local electron cyclotron current driven by the optimized electron cyclotron system on ITER is discussed. A design variant was recently proposed to enlarge the physics program covered by the upper and equatorial launchers. By extending the functionality range of the upper launcher, significant control capabilities of the sawtooth period can be obtained. The upper launcher improvement still allows enough margin to exceed the requirements for neoclassical tearing mode stabilization, for which it was originally designed. The analysis of the sawtooth control is carried on with the ASTRA transport code, coupled with the threshold model by Por-celli, to study the control capabilities of the improved upper launcher on the sawtooth instability. The simulations take into account the significant stabilizing effect of the fusion alpha particles. The sawtooth period can be increased by a factor of 1.5 with co-ECCD outside the q = 1 surface, and decreased by at least 30% with co-ECCD inside q = 1. The present ITER base-line design has the electron cyclotron launchers providing only co-ECCD. The variant for the equatorial launcher proposes the possibility to drive counter-ECCD with 1 of the 3 rows of mirrors: the counter-ECCD can then be balanced with co-ECCD and provide pure ECH with no net driven current. The difference between full co-ECCD off-axis using all 20MW from the equatorial launcher and 20MW co-ECCD driven by 2/3 from the equatorial launcher and 1/3 from the upper launcher is shown to be negligible. Cnt-ECCD also offers greater control of the plasma current density, therefore this analysis addresses the performance of the equatorial launcher to control the central q profile. The equatorial launcher is shown to control very efficiently the value of q{sub 0.2}-q{sub min} in advanced scenarios, if one row provides counter-ECCD.

  5. Robust Matching System for the ITER Ion Cyclotron System

    NASA Astrophysics Data System (ADS)

    Swain, D.; Goulding, R.; Rasmussen, D.; Vervier, M.; Messiaen, A.; Dumortier, P.

    2008-11-01

    The ITER ion cyclotron system is required to deliver 20 MW to the ITER plasma under a number of different operating scenarios. The EU will fabricate the antenna, the US will supply the matching system and transmission lines, and India will deliver the rf sources and high-voltage power supplies. A brief description of the complete ion cyclotron system will be presented, and different design options for the matching system will be discussed. Emphasis will be on analyzing the ability of the system to operate effectively during sudden changes caused by plasma perturbations (e. g., ELMs), and on the robustness of matching algorithms. Particular challenges are: the possibility of relatively low loading of the antenna by the plasma because of a large plasma-antenna distance; the resulting high voltages in the matching system (which must be minimized by good system design); the need to install a number of large matching components in the tight space available near the tokamak; and the requirement for operation and maintenance in a radiation environment.

  6. Vacuum system of the cyclotrons in VECC, Kolkata

    SciTech Connect

    Roy, Anindya; Bhole, R.B.; Akhtar, J.; Yadav, R.C.; Pal, Sarbajit; Sarkar, D.; Bhandari, R.K. E-mail: rbb@vecc.gov.in E-mail: yadav@vecc.gov.in E-mail: dsarkar@vecc.gov.in

    2011-07-01

    The vacuum system of the K=130 Room Temperature Cyclotron (RTC) (operational since 1978) has been recently modernized and the same of the K{sub bend}=520 Superconducting Cyclotron (SCC), currently under commissioning, is being deployed for remote monitoring and control. The vacuum system of RTC is designed to achieve and maintain vacuum level of 2 X 10{sup -6} mbar inside 23 m{sup 3} volume of Resonator tank and DEE tank. This has been upgraded by replacing several valves, Freon units, gauges and pumps. The relay based manual control system has been replaced by PLC based automated system. The SCC vacuum system also has an elaborate arrangement comprising of turbo molecular pumping modules with associated isolation valves and characteristic gauges. This paper describes essential elements, typically used to obtain high (1X10{sup -7} mbar) vacuum using rotary pumps, diffusion pumps and cold traps/turbo-molecular pumps and other system components such as valves, gauges and baffles. The supervisory control methodology/scheme of both the vacuum systems, developed in-house using EPICS (Experimental Physics and Industrial Control System), a standard open-source software tool for designing distributed control system, is also elaborated here. (author)

  7. Electronuclear ion fusion in an ion cyclotron resonance reactor

    SciTech Connect

    Cowgill, Donald F.

    1996-12-01

    A method and apparatus for generating nuclear fusion by ion cyclotron resonance in an ion trap reactor. The reactor includes a cylindrical housing having an axial axis, an internal surface, and first and second ends. First and second end plates that are charged are respectively located at the first and second ends of the cylindrical housing. A gas layer is adsorbed on the internal surface of the cylindrical housing. Ions are desorbed from the gas layer, forming a plasma layer adjacent to the cylindrical housing that includes first ions that have a same charge sign as the first and second end plates. A uniform magnetic field is oriented along the axial axis of the cylindrical housing. Second ions, that are unlike the first ions, but have the same charge sign, are injected into the cylindrical housing along the axial axis of the cylindrical housing. A radio frequency field resonantly accelerates the injected second ions at the cyclotron resonance frequency of the second ions. The second ions circulate in increasing helical orbits and react with the first ions, at the optimum energy for nuclear fusion. The amplitude of the radio frequency field is adjusted to accelerate the second ions at a rate equal to the rate of tangential energy loss of the second ions by nuclear scattering in the first ions, causing the ions to continually interact until fusion occurs.

  8. Design of the ion cyclotron system for TPX

    NASA Astrophysics Data System (ADS)

    Swain, D.; Shipley, S.; Yugo, J.; Goulding, R.; Batchelor, D.; Stallings, D.; Fredd, E.

    The TPX experiment will operate for very long pulse times (greater than or equal to 1000 s) and will require current drive of several different types to explore the advanced physics operating modes as one of its main missions. Fast wave current drive (FWCD) using ion cyclotron waves in the 40-80 MHz range will be used as one of the main current-drive mechanisms. For initial operation, 8 MW of RF will be supplied, along with 8 MW of neutral beams and 1.5 MW of lower hybrid power. The ion cyclotron (IC) system is a major part of the TPX heating and current drive system. The IC system must: supply 8 MW of power through two main horizontal ports; be upgradable to provide up to 12 MW of RF power through two ports; operate, for 1000-s pulses every 75 min; drive current using FWCD with high reliability; be bakeable to 350(degree)C for cleaning; and incorporate shielding to attenuate the neutron and gamma flux from DD operation so that hands-on maintenance can be performed exterior to the vacuum vessel. The system will consist of four modified FMIT power units that will be upgraded to deliver 2 MW each to the plasma. Two antennas, each with six current straps, will be located in adjacent ports. A sophisticated matching system is needed to provide experimental flexibility and reliability.

  9. Ray tracing of lower hybrid and ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Brambilla, Marco

    1986-08-01

    We review the use of ray tracing codes for the investigation of wave propagation and plasma heating in toroidal axisymmetric geometry, with particular emphasis to the lower hybrid and ion cyclotron frequency ranges. After a summary of the approximations involved, we point out that, at these low frequencies, a full-wave treatment of the launching structure on the one hand, and of singular layers (wave and particle resonances) on the other hand, are an essential part of any ray tracing code. The spectral approach to ray tracing, which makes explicit use of the decomposition of the hf fields in toroidal modes allowed by axisymmetry, is instrumental to cope with electrically short antennas whose radiation pattern is dominated by diffraction, and to allow a plausible evaluation of Landau and cyclotron damping, and of wave behaviour near conversion layers. Numerical methods and structure of ray tracing briefly discussed, and a few examples are presented, obtained with the RAYLH and RAYIC codes developed by the author. The rapidly growing number of applications of ray tracing in the literature is also briefly summarised; it is the best proof that this approximate method, if its possibilities and limits are properly understood, can give precious insight into the physics of hf heating of tokamak plasmas.

  10. Stimulated Electromagnetic Emissions near the Second Electron Cyclotron Harmonic

    NASA Astrophysics Data System (ADS)

    Pau, J.; Cheung, P. Y.; Zwi, H.; Wong, A. Y.

    1996-11-01

    First results of broadband stimulated electromagnetic emissions (SEE) near the second electron cyclotron harmonic (2Ω_e) are presented. The results were obtained at a recent HF heating campaign at the HIPAS Observatory with the heater frequency ωo near 2Ωe at 2.85 MHz. Experiments were performed for both O and X-mode polarizations, and under both continuous (CW) and low duty-cycle short pulse heating conditions. Typical SEE spectral features, such as the Downshifted Maximum (DM), the Broad Upshifted Maximum (BUM), and the Broad Symmetric Sidebands (BSS) were observed. While such spectral features were observed routinely at heater frequencies near the third electron cyclotron harmonic and higher at other heating facilities, this is the first observation that demonstrates that such features can also be excited near 2Ω_e. Comparison will be made between our results and past observations at higher frequencies. Physics issues involving the generation of these features such as the formation of field aligned striations and the conversion of HF pump wave to upper hybrid wave will also be discussed.

  11. Surface cyclotron resonance on InSb in Voigt configuration

    NASA Astrophysics Data System (ADS)

    Merkt, U.

    1985-11-01

    Magnetic fields parallel to space-charge layers on semiconductors define a crossed-field configuration with strong electric fields. Analytical expressions for the resulting hybrid electric-magnetic surface band structure and its optical transitions are derived in the triangular-well approximation of the electrostatic potential. The results of the one-band effective-mass approximation are extended to a two-level model that accounts for the nonparabolicity of narrow-band-gap semiconductors such as InSb. In the hybrid surface band structure, electrons with bulklike wave functions exist, allowing the experimental study of conduction-band cyclotron resonance in crossed fields. This is done in a wide range of frequencies, magnetic fields, and inversion electron densities, i.e., electric field strengths. The experimental results are discussed within the proposed models and are compared with experiments on other semiconductors. Specifically, the destruction of the Landau quantization in crossed electric and magnetic fields is investigated, both theoretically and experimentally; polarons are also studied. This is possible because of the absence of coupled plasma cyclotron-LO-phonon modes in the present degenerate electron system.

  12. Spiral design and beam dynamics for a variable energy cyclotron

    SciTech Connect

    Baltz, A.J.; Chasman, C.; Thorn, C.E.

    1981-01-01

    Beam-orbit studies were performed for the conversion of the SREL synchrocyclotron magnet for use as a room temperature, multiparticle, isochronous cyclotron. Based on model magnet measurements of field profiles for 8 to 23/sup 0/K gauss hill fields, a four sector spiral pole tip design has been realized which allows all isotope species of heavy ion beams to be accelerated to required final energies. The total spiral angle of 38/sup 0/ allows injection of the beams from the MP tandem into the cyclotron through a valley. The two valey RF system of 140 kV peak accelerates beams on harmonic numbers 2, 3, 4, 6 and 10 at 14 to 21 MHz. Computer calculations indicated acceptable ..nu../sub z/, ..nu../sub r/ and phase space beam characteristics and passing of resonances for typical beams considered: /sup 16/O at 8 and 150 MeV/amu, /sup 60/Ni at 100 MeV/amu and /sup 238/U at 2.5 and 16 MeV/amu. Single turn extraction is achieved with electrostatic deflection.

  13. The cyclotron resonance klystron: a novel HPM source*

    NASA Astrophysics Data System (ADS)

    Jackson, C. J.; Le Sage, G. P.; Hartemann, F. V.; Luhmann, N. C., Jr.

    1996-11-01

    A novel high power microwave (HPM) device, the cyclotron resonance klystron (CRK), is presented. The interaction relies on enhanced resonant bunching in a highly chromatic transport section between a buncher and a catcher cavity. The chromatic section is a helical wiggler / guide field combination operating close to the cyclotron resonance. The slow group II electrons propagate on long trajectories with a large transverse excursion, while the faster group I electrons have a much shorter transit time, thus resulting in resonantly enhanced bunching. In addition, space-charge effects are alleviated because the beam is spread over a large transverse area. The design parameters of a power amplifier operating at X-band, with an output power in the GW range will be given. Computer simulations of the input and output cavities, electron gun and resonant bunching region, including 3D and space-charge effects will also be presented, as well as a design for a compact, efficient 1/2 GW tube. *Work supported in part by DoD/AFOSR (MURI) F49620-95-1-0253, AFOSR (ATRI) F30602-94-2-001, ARO DAAHO4-95-1-0336 and LLNL/LDRD DoE W-7405-ENG-48

  14. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron

    SciTech Connect

    Hojo, S. Katagiri, K.; Nakao, M.; Sugiura, A.; Muramatsu, M.; Noda, A.; Noda, K.; Okada, T.; Takahashi, Y.; Komiyama, A.; Honma, T.

    2014-02-15

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C{sup 4+} ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8–10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C{sup 4+}, for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.

  15. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Delahaye, P.; Kutsaev, Sergey; Maunoury, L.

    2012-11-01

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a 252Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species 143Ba27+. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for 23Na7+ and 17.9% for 39K10+ were obtained injecting stable Na+ and K+ beams from a surface ionization source.

  16. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    SciTech Connect

    Vondrasek, R.; Kutsaev, Sergey; Delahaye, P.; Maunoury, L.

    2012-11-15

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a {sup 252}Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species {sup 143}Ba{sup 27+}. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for {sup 23}Na{sup 7+} and 17.9% for {sup 39}K{sup 10+} were obtained injecting stable Na{sup +} and K{sup +} beams from a surface ionization source.

  17. Electron cyclotron emission imaging and applications in magnetic fusion energy

    NASA Astrophysics Data System (ADS)

    Tobias, Benjamin John

    Energy production through the burning of fossil fuels is an unsustainable practice. Exponentially increasing energy consumption and dwindling natural resources ensure that coal and gas fueled power plants will someday be a thing of the past. However, even before fuel reserves are depleted, our planet may well succumb to disastrous side effects, namely the build up of carbon emissions in the environment triggering world-wide climate change and the countless industrial spills of pollutants that continue to this day. Many alternatives are currently being developed, but none has so much promise as fusion nuclear energy, the energy of the sun. The confinement of hot plasma at temperatures in excess of 100 million Kelvin by a carefully arranged magnetic field for the realization of a self-sustaining fusion power plant requires new technologies and improved understanding of fundamental physical phenomena. Imaging of electron cyclotron radiation lends insight into the spatial and temporal behavior of electron temperature fluctuations and instabilities, providing a powerful diagnostic for investigations into basic plasma physics and nuclear fusion reactor operation. This dissertation presents the design and implementation of a new generation of Electron Cyclotron Emission Imaging (ECEI) diagnostics on toroidal magnetic fusion confinement devices, or tokamaks, around the world. The underlying physics of cyclotron radiation in fusion plasmas is reviewed, and a thorough discussion of millimeter wave imaging techniques and heterodyne radiometry in ECEI follows. The imaging of turbulence and fluid flows has evolved over half a millennium since Leonardo da Vinci's first sketches of cascading water, and applications for ECEI in fusion research are broad ranging. Two areas of physical investigation are discussed in this dissertation: the identification of poloidal shearing in Alfven eigenmode structures predicted by hybrid gyrofluid-magnetohydrodynamic (gyrofluid-MHD) modeling, and

  18. Cyclotrons with fast variable and/or multiple energy extraction

    NASA Astrophysics Data System (ADS)

    Baumgarten, C.

    2013-10-01

    We discuss the possibility in principle of stripping extraction in combination with reverse bends in isochronous separate-sector cyclotrons (and/or fixed field alternating gradient accelerators). If one uses reverse bends between the sectors (instead of or in combination with drifts) and places stripper foils at the sector exit edges, the stripped beam has a reduced bending radius and it should be able to leave the cyclotron within the range of the valley—even if the beam is stripped at less than full energy. We are especially interested in stripping of H2+, as it doubles the charge to mass ratio of the ions. However the method could be applied to other ions or ionized molecules as well. For the production of proton beams by stripping extraction of an H2+ beam, we discuss possible designs for three types of machines: First, a low-energy cyclotron for the simultaneous production of several beams at multiple energies—for instance 15, 30, and 70 MeV—thus allowing beam delivery on several isotope production targets. In this case it can be an advantage to have a strong energy dependence of the direction of the extracted beam. Second, we consider a fast variable-energy proton machine for cancer therapy that should allow extraction (of the complete beam) at all energies in the range of about 70 MeV to about 250 MeV into the same beam line. Third, we consider a high-intensity high-energy machine, where the main design goals are extraction with low losses, low activation of components, and high reliability. Especially if such a machine is considered for an accelerator driven system (ADS), this extraction mechanism has advantages: Beam trips by the failure of electrostatic elements could be avoided and the turn separation would be less critical, which allows operation at lower main cavity voltages. This would in turn reduce the number of rf trips. The price that has to be paid for these advantages is an increase in size and/or field strength compared to proton machines

  19. Numerical analysis of the optimized performance of the electron cyclotron wave system in a HL-2M tokamak

    NASA Astrophysics Data System (ADS)

    Jing-Chun, Li; Xue-Yu, Gong; Jia-Qi, Dong; Jun, Wang; Lan, Yin

    2016-04-01

    The capabilities of current drive, neoclassical tearing mode (NTM) stabilization, and sawtooth control are analyzed for the electron-cyclotron wave (ECW) system in a HL-2M tokamak. Better performance of the upper launcher is demonstrated in comparison with that of a dropped upper launcher, in terms of J EC/J bs for NTM stabilization and I ECCD/(Δρ tor)2 for sawtooth control. 1-MW ECW power is enough for the 3/2 NTM stabilization, and 1.8-MW ECW power is required to suppress 2/1 NTM in a single null divertor equilibrium with 1.2-MA toroidal current with the upper launcher. Optimization simulation of electron-cyclotron current drive (ECCD) is carried out for three mirrors in an equatorial port, indicating that the middle mirror has a good performance compared with the top and bottom mirrors. The results for balanced co- and counter-ECCD in an equatorial port are also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 11375085, 11405082, 11505092, 11475083, and 11375053), the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2013GB104004, 2013GB111000, 2014GB107000, and 2014GB108002), and the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ4044).

  20. Numerical analysis of the optimized performance of the electron cyclotron wave system in a HL-2M tokamak

    NASA Astrophysics Data System (ADS)

    Jing-Chun, Li; Xue-Yu, Gong; Jia-Qi, Dong; Jun, Wang; Lan, Yin

    2016-04-01

    The capabilities of current drive, neoclassical tearing mode (NTM) stabilization, and sawtooth control are analyzed for the electron–cyclotron wave (ECW) system in a HL-2M tokamak. Better performance of the upper launcher is demonstrated in comparison with that of a dropped upper launcher, in terms of J EC/J bs for NTM stabilization and I ECCD/(Δρ tor)2 for sawtooth control. 1-MW ECW power is enough for the 3/2 NTM stabilization, and 1.8-MW ECW power is required to suppress 2/1 NTM in a single null divertor equilibrium with 1.2-MA toroidal current with the upper launcher. Optimization simulation of electron–cyclotron current drive (ECCD) is carried out for three mirrors in an equatorial port, indicating that the middle mirror has a good performance compared with the top and bottom mirrors. The results for balanced co- and counter-ECCD in an equatorial port are also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 11375085, 11405082, 11505092, 11475083, and 11375053), the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2013GB104004, 2013GB111000, 2014GB107000, and 2014GB108002), and the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ4044).

  1. Technical Note: Building a combined cyclotron and MRI facility: Implications for interference

    SciTech Connect

    Hofman, Mark B. M.; Kuijer, Joost P. A.; Ridder, Jan Willem de; Perk, Lars R.; Verdaasdonk, Rudolf M.

    2013-01-15

    Purpose: With the introduction of hybrid PET/MRI systems, it has become more likely that the cyclotron and MRI systems will be located close to each other. This study considered the interference between a cyclotron and a superconducting MRI system. Methods: Interactions between cyclotrons and MRIs are theoretically considered. The main interference is expected to be the perturbation of the magnetic field in the MRI due to switching on or off the magnetic field of the cyclotron. MR imaging is distorted by a dynamic spatial gradient of an external inplane magnetic field larger than 0.5-0.04 {mu}T/m, depending on the specific MR application. From the design of a cyclotron, it is expected that the magnetic fringe field at large distances behaves as a magnetic dipolar field. This allows estimation of the full dipolar field and its spatial gradients from a single measurement. Around an 18 MeV cyclotron (Cyclone, IBA), magnetic field measurements were performed on 5 locations and compared with calculations based upon a dipolar field model. Results: At the measurement locations the estimated and measured values of the magnetic field component and its spatial gradients of the inplane component were compared, and found to agree within a factor 1.1 for the magnetic field and within a factor of 1.5 for the spatial gradients of the field. In the specific case of the 18 MeV cyclotron with a vertical magnetic field and a 3T superconducting whole body MR system, a minimum distance of 20 m has to be considered to prevent interference. Conclusions: This study showed that a dipole model is sufficiently accurate to predict the interference of a cyclotron on a MRI scanner, for site planning purposes. The cyclotron and a whole body MRI system considered in this study need to be placed more than 20 m apart, or magnetic shielding should be utilized.

  2. Intelligent low-level RF system by non-destructive beam monitoring device for cyclotrons

    NASA Astrophysics Data System (ADS)

    Sharifi Asadi Malafeh, M. S.; Ghergherehchi, M.; Afarideh, H.; Chai, J. S.; Yoon, Sang Kim

    2016-04-01

    The project of a 10 MeV PET cyclotron accelerator for medical diagnosis and treatment was started at Amirkabir University of Technology in 2012. The low-level RF system of the cyclotron accelerator is designed to stabilize acceleration voltage and control the resonance frequency of the cavity. In this work an Intelligent Low Level Radio Frequency Circuit or ILLRF, suitable for most AVF cyclotron accelerators, is designed using a beam monitoring device and narrow band tunable band-pass filter. In this design, the RF phase detection does not need signal processing by a microcontroller.

  3. Comparative electron temperature measurements of Thomson scattering and electron cyclotron emission diagnostics in TCABR plasmas

    SciTech Connect

    Alonso, M. P.; Figueiredo, A. C. A.; Berni, L. A.; Machida, M.

    2010-10-15

    We present the first simultaneous measurements of the Thomson scattering and electron cyclotron emission radiometer diagnostics performed at TCABR tokamak with Alfven wave heating. The Thomson scattering diagnostic is an upgraded version of the one previously installed at the ISTTOK tokamak, while the electron cyclotron emission radiometer employs a heterodyne sweeping radiometer. For purely Ohmic discharges, the electron temperature measurements from both diagnostics are in good agreement. Additional Alfven wave heating does not affect the capability of the Thomson scattering diagnostic to measure the instantaneous electron temperature, whereas measurements from the electron cyclotron emission radiometer become underestimates of the actual temperature values.

  4. Design Features Of K = 100 Cyclotron Magnet For ISOL RIB Production

    SciTech Connect

    Park, Jin Ah; Gad, Kh. M. M.; Chai, Jong-Seo

    2011-06-01

    K = 100 Separated Sector Cyclotron was designed in conceptual for the ISOL driver. It has 4 separated sector magnets. Two SF cyclotrons will be used as the injectors for separated sector cyclotron. RF frequency is 70 MHz, 4th harmonics. We have designed sector magnet without trim and harmonic coils. Minimum radius of the magnet is 55 cm and maximum radius is 1.8 m. Designed magnets were calculated and simulated by OPERA 3D (TOSCA) code. Ion beam dynamics calculations have been done using particle studio code to prove the focusing properties of the designed magnets.

  5. The rare isotope beams production at the Texas A and M university Cyclotron Institute

    SciTech Connect

    Tabacaru, G.; May, D. P.; Chubarian, G.; Clark, H.; Kim, G. J.; Tribble, R. E.; Arje, J.

    2013-04-19

    The Cyclotron Institute at Texas A and M initiated an upgrade project for the production of radioactive-ion beams that incorporates a light-ion guide (LIG) and a heavy-ion guide coupled (HIG) with an Electron Cyclotron Resonance Ion Source (ECRIS) constructed for charge-boosting (CB-ECRIS). This scheme is intended to produce radioactive beams suitable for injection into the K500 superconducting cyclotron. The current status of the project and details on the ion sources and devices used in the project is presented.

  6. Experiments on ion cyclotron damping at the deuterium fourth harmonic in DIII-D

    SciTech Connect

    Pinsker, R.I.; Petty, C.C.; Baity, F.W.; Bernabei, S.; Greenough, N.; Heidbrink, W.W.; Mau, T.K.; Porkolab, M.

    1999-05-01

    Absorption of fast Alfven waves by the energetic ions of an injected beam is evaluated in the DIII-D tokamak. Ion cyclotron resonance absorption at the fourth harmonic of the deuteron cyclotron frequency is observed with deuterium neutral beam injection (f = 60 MHz, B{sub T} = 1.9 T). Enhanced D-D neutron rates are evidence of absorption at the Doppler-shifted cyclotron resonance. Characteristics of global energy confinement provide further proof of substantial beam acceleration by the rf. In many cases, the accelerated deuterons cause temporary stabilization of the sawtooth (monster sawteeth), at relatively low rf power levels of {approximately}1 MW.

  7. Production of rare isotope beams at the Texas A and M University Cyclotron Institute

    SciTech Connect

    Tabacaru, G.; May, D. P.; Chubarian, G.; Clark, H.; Kim, G. J.; Tribble, R. E.; Arje, J.

    2012-02-15

    The Cyclotron Institute at Texas A and M is currently configuring a scheme for the production of radioactive-ion beams that incorporates a light-ion guide and a heavy-ion guide coupled with an electron-cyclotron-resonance ion source constructed for charge-breeding. This scheme is part of an upgrade to the facility and is intended to produce radioactive beams suitable for injection into the K500 superconducting cyclotron. The current status of the project and details on the ion sources used in the project is presented.

  8. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    DOE PAGES

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less

  9. Parametric instabilities during electron cyclotron heating of tandem mirrors

    NASA Technical Reports Server (NTRS)

    Nicholson, D. R.

    1984-01-01

    Electron cyclotron resonance heating is one of the most commonly used methods of heating electrons in the plugs and in the thermal barriers of tandem mirrors. The intense coherent electromagnetic waves used for such heating are susceptible to parametric decay into other modes. Significant growth rates are found for the decay of either ordinary or extraordinary waves into two magnetized electron plasma waves. This and related effects may result in electron heating mechanisms rather different than those assumed in linear ray-tracing calculations. These results may help explain the unusual effects observed during heating of the Phaedrus tandem mirror device. In the general case, these instabilities may be strongly inhibited by density gradients.

  10. Peculiarities of charged particle dynamics under cyclotron resonance conditions

    NASA Astrophysics Data System (ADS)

    Moiseev, S. S.; Buts, V. A.; Erokhin, N. S.

    2016-08-01

    Peculiarities of the dynamics of charged particles interacting with electromagnetic radiation under nearly autoresonance conditions are analyzed. In particular, analysis of nonlinear cyclotron resonances shows that their widths increase when the autoresonance conditions are approached. In this case, however, the distance between nonlinear resonances increases even faster, due to which nonlinear resonances do not overlap and, accordingly, regimes with dynamic chaos do not occur. According to calculations, the dynamics of charged particles under the autoresonance conditions is very sensitive to fluctuations, the effect of which can be anomalously large and lead to superdiffusion. It is shown that, under the autoresonance conditions, particle dynamics on small time intervals can differ significantly from that on large time intervals. This effect is most pronounced in the presence of fluctuations in the system.

  11. Electron Cyclotron Emission Imaging on ITER with Rowland Circle Optics

    NASA Astrophysics Data System (ADS)

    Liu, Jason; Lee, Woochang; Leem, June-Eok; Bitter, Manfred; Park, Hyeon; Yun, Gunsu

    2015-11-01

    The implementation of advanced electron cyclotron emission imaging (ECEI) systems on the major tokamaks TEXTOR1, DIII-D2,3, KSTAR4, EAST5, and ASDEX Upgrade6 has revolutionized the diagnosis of MHD activities and improved our understanding of various instabilities. However, the conventional ECEI systems cannot be applied to ITER because of the space constraints and excessive radiation that would be encountered in the diagnostic port plugs. This paper describes an alternative optical concept that employs the Rowland circle imaging geometry to implement an advanced ECEI system on ITER that is suitable for the tight space and harsh environments of the diagnostic port plugs. Such a system would match the capabilities of conventional ECEI diagnostics and would be capable of simultaneous core and edge measurements.

  12. Nonresonant interaction of heavy ions with electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Gendrin, R.

    1985-01-01

    The motion of a heavy ion in the presence of an intense ultralow-frequency electromagnetic wave propagating along the dc magnetic field is analyzed. Starting from the basic equations of motion and from their associated two invariants, the heavy ion velocity-space trajectories are drawn. It is shown that after a certain time, particles whose initial phase angles are randomly distributed tend to bunch together, provided that the wave intensity b-sub-1 is sufficiently large. The importance of these results for the interpretation of the recently observed acceleration of singly charged He ions in conjunction with the occurrence of large-amplitude ion cyclotron waves in the equatorial magnetosphere is discussed.

  13. Radiation beam steering by cyclotron-resonance maser array

    NASA Astrophysics Data System (ADS)

    Kesar, Amit; Jerby, Eli

    1999-02-01

    A concept of power beaming by a cyclotron-resonance maser (CRM) array is presented theoretically. In this scheme, the CRM-array operates as an active phased-array antenna, and radiates directly from its output aperture. The gain and phase of each CRM element in the array are controlled by the voltage and current of its electron gun. The consequent phase difference between the CRM-element outputs enables the steering of the radiation beam in the far field. A simplified linear model is presented for a CRM-array antenna with uncoupled elements. It provides radiation patterns which demonstrate the main feature of power-beam steering. A wide angular steering range (+/-35°) is obtained by an analog electronic control of the CRM array. The feasibility of practical CRM-array antennas is discussed.

  14. Determination of the Electron Cyclotron Current Drive Profile

    SciTech Connect

    Luce, T.C.; Petty, C.C.; Schuster, D.I.; Makowski, M.A.

    1999-11-01

    Evaluation of the profile of non-inductive current density driven by absorption of electron cyclotron waves (ECCD) using time evolution of the poloidal flux indicated a broader profile than predicted by theory. To determine the nature of this broadening, a 1-1/2 D transport calculation of current density evolution was used to generate the signals which the DIII-D motional Stark effect (MSE) diagnostic would measure in the event that the current density evolution followed the neoclassical Ohm's law with the theoretical ECCD profile. Comparison with the measured MSE data indicates the experimental data is consistent with the ECCD profile predicted by theory. The simulations yield a lower limit on the magnitude of the ECCD which is at or above the value found in Fokker-Planck calculations of the ECCD including quasilinear and parallel electric field effects.

  15. High-intensity cyclotron for the IsoDAR experiment

    NASA Astrophysics Data System (ADS)

    Campo, D.; IsoDAR Collaboration

    2015-03-01

    The IsoDAR experiment is the MIT proposal to investigate about several neutrino properties, in order to explain some anomalies experimentally observed. It requires 10mA of proton beam at the energy of 60MeV to produce a high-intensity electron antineutrino flux from the production and the decay of 8Li: it is an ambitious goal for the accelerator design, due also to the fact that the machine has to be placed near a neutrino detector, like KAMLAND or WATCHMAN, located in underground sites. A compact cyclotron able to accelerate H2+ molecule beam up to energy of 60MeV/amu is under study. The critical issues of this machine concern the beam injection due to the effects of space charge, the efficiency of the beam extraction and the technical solutions needed to the machine assembly. Here, the innovative solutions and the preliminary results achieved by the IsoDAR team are discussed.

  16. Characteristics of microinstabilities in electron cyclotron and ohmic heated discharges

    SciTech Connect

    Pusztai, I.; Moradi, S.; Fueloep, T.; Timchenko, N.

    2011-08-15

    Characteristics of microinstabilities in electron cyclotron (EC) and ohmic heated (OH) discharges in the T10 tokamak have been analyzed by linear electrostatic gyrokinetic simulations with gyro[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] aiming to find insights into the effect of auxiliary heating on the transport. Trapped electron modes are found to be unstable in both OH and the EC heated scenarios. In the OH case the main drive is from the density gradient and in the EC case from the electron temperature gradient. The growth rates and particle fluxes exhibit qualitatively different scaling with the electron-to-ion temperature ratios in the two cases. This is mainly due to the fact that the dominant drives and the collisionalities are different. The inward flow velocity of impurities and the impurity diffusion coefficient decreases when applying EC heating, which leads to lower impurity peaking, consistently with experimental observations.

  17. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    SciTech Connect

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.

  18. Electromagnetic ion cyclotron waves observed in the plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.; Murr, D.

    1991-01-01

    Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.

  19. Normal and anomalous Doppler effects in periodic waveguide cyclotron maser

    SciTech Connect

    Korol, M.; Jerby, E.

    1995-12-31

    A linear analysis of the periodic-waveguide cyclotron (PWC) maser shows that the PWC interaction with fast-waves possesses properties of the known anomalous Doppler resonance interaction if the wave impedance of the resonant spatial harmonic, Z{sub n}, is much smaller than the free space impedance, i.e. if Z{sub n} {much_lt} Z{sub 0}. The feasibility of a fast-wave PWC interaction in a low impedance waveguide is examined theoretically in this paper. A practical scheme of a slotted-waveguide PWC operating in the fundamental harmonic near cutoff is proposed for a future experiment. The possible advantages of the quasi-anomalous Doppler effect in the fast-wave-PWC operating regime are the alleviation of the initial electron rotation and a high-efficiency operation.

  20. Observation of the backward electrostatic ion cyclotron wave

    SciTech Connect

    Goree, J.; Ono, M.; Wong, K.L.

    1984-12-01

    The backward branch of the electrostatic ion cyclotron wave has been observed, we believe, for the first time. The wave, which was driven by a phased antenna structure inserted in a neon plasma, exists in the parameter ranges 2T/sub i//m/sub i/ << (..omega../k/sub parallel/)/sup 2/ << 2T/sub e//m/sub e/, n..cap omega../sub i/ < ..omega.. < (n+1)..cap omega../sub i/, T/sub e/ greater than or equal to T/sub i/, and ..omega../sub pi/ > ..cap omega../sub i/. Double-tip probe interferomety data agree with the theoretical dispersion relation.

  1. Finite banana width effect on magnetoacoustic cyclotron instability

    SciTech Connect

    Chen, Y.P.; Tsai, S.T.

    1995-08-01

    The finite banana width (FBW) effect on the coupling between magnetoacoustic waves and the near harmonic gyro-oscillations of the energetic ions/{alpha} particles in tokamaks are studied. The gyrokinetic equation with FBW effect is rederived for the energetic trapped ions. The dispersion relation and growth rate of the magnetoacoustic cyclotron instability (MACI) are obtained. It is found that the coherence interaction between the energetic ion trajectory and mode field has a significant effect when the Larmor radius of energetic ions is larger than the wavelength of MACI. Near the low field side the FBW effect destabilizes the mode, while away from it the FBW gives a stabilizing effect. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  2. Electromagnetic ion/ion cyclotron instability - Theory and simulations

    NASA Technical Reports Server (NTRS)

    Winske, D.; Omidi, N.

    1992-01-01

    Linear theory and 1D and 2D hybrid simulations are employed to study electromagnetic ion/ion cyclotron (EMIIC) instability driven by the relative streaming of two field-aligned ion beams. The characteristics of the instability are studied as a function of beam density, propagation angle, electron-ion temperature ratios, and ion beta. When the propagation angle is near 90 deg the EMIIC instability has the characteristics of an electrostatic instability, while at smaller angles electromagnetic effects play a significant role as does strong beam coupling. The 2D simulations point to a narrowing of the wave spectrum and accompanying coherent effects during the linear growth stage of development. The EMIIC instability is an important effect where ion beta is low such as in the plasma-sheet boundary layer and upstream of slow shocks in the magnetotail.

  3. Electron cyclotron beam measurement system in the Large Helical Device

    SciTech Connect

    Kamio, S. Takahashi, H.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Osakabe, M.; Mutoh, T.

    2014-11-15

    In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10{sup 19} m{sup −3}). This system successfully evaluated the transmitted EC beam profile and the refraction.

  4. Characteristics of surface sterilization using electron cyclotron resonance plasma

    NASA Astrophysics Data System (ADS)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2016-07-01

    The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.

  5. Pulsed magnetic field-electron cyclotron resonance ion source operation

    SciTech Connect

    Muehle, C.; Ratzinger, U.; Joest, G.; Leible, K.; Schennach, S.; Wolf, B.H.

    1996-03-01

    The pulsed magnetic field (PuMa)-electron cyclotron resonance (ECR) ion source uses a pulsed coil to improve the peak current by opening the magnetic bottle along the beam axis. After demonstration of the principle of the pulsed magnetic extraction, the ion source was tested with different gases. We received promising results from helium to krypton. The influence of the current in the pulsed coil on the analyzed ion current was measured. With increased current levels within the pulsed coil not only the pulse height of the PuMa pulse, but the pulse length can also be controlled. By using the pulsed coil the maximum of the charge state distribution can be shifted to higher charge states. {copyright} {ital 1996 American Institute of Physics.}

  6. Data processing in Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Qi, Yulin; O'Connor, Peter B

    2014-01-01

    The Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer intricately couples advanced physics, instrumentation, and electronics with chemical and particularly biochemical research. However, general understanding of the data processing methodologies used lags instrumentation, and most data processing algorithms we are familiar with in FT-ICR are not well studied; thus, professional skill and training in FT-ICR operation and data analysis is still the key to achieve high performance in FT-ICR. This review article is focused on FT-ICR data processing, and explains the procedures step-by-step for users with the goal of maximizing spectral features, such as mass accuracy, resolving power, dynamic range, and detection limits.

  7. Cyclotron resonance effects in a fluorescent lamp plasma

    NASA Astrophysics Data System (ADS)

    Orr, Julie; Wolfson, Richard

    1990-10-01

    A plasma physics experiment is described, which is suitable for undergraduate courses in electromagnetism as well as for independent projects. Using the plasma of a fluorescent lamp inside a conducting cavity that is immersed in a magnetic field, the experiment shows the effect of electron cyclotron motion of plasma electrons on the resonant modes of the cavity. An added benefit of the magnetic field is the ability to measure the plasma density through a frequency shift technique, but without having to know the mode frequencies in the absence of plasma. Density measurements made using this technique are consistent with those described in an earlier article on the unmagnetized fluorescent lamp plasma, and with the literature on fluorescent lamps and gas discharges. Understanding the experiment described here will give the advanced undergraduate experience in the theory of electromagnetic wave propagation in magnetized plasma, in the theory of resonant cavities, and in microwave and instrumentation techniques.

  8. Cyclotron resonant scattering and absorption. [in gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Daugherty, Joseph K.

    1991-01-01

    The relativistic cross-sections for first-order absorption and second-order scattering are compared to determine the conditions under which the absorption cross-section is a good approximation to the much more complex scattering cross-section for purposes of modeling cyclotron lines in gamma-ray bursts. Differences in both the cross-sections and the line profiles are presented for a range of field strengths, angles, and electron temperatures. The relative difference of the cross-sections at one line width from resonance was found to increase with field strength and harmonic number. The difference is also strongly dependent on the photon angle to the magnetic field. For the field strength, 1.7 x 10 to the 12th G, and the angle inferred from the Ginga burst features, absorption is an excellent approximation for the profiles at the first and second harmonics.

  9. Upgrades to the TEXTOR electron cyclotron emission imaging diagnostic

    NASA Astrophysics Data System (ADS)

    Domier, C. W.; Xia, Z. G.; Zhang, P.; Luhmann, N. C.; Park, H. K.; Mazzucato, E.; van de Pol, M. J.; Classen, I. G. J.; Donné, A. J. H.; Jaspers, R.

    2006-10-01

    A 128 channel electron cyclotron emission imaging instrument has been routinely used to study magnetohydrodynamics physics such as m =1 and m =2 modes on the TEXTOR tokamak. As currently configured, each of the 16 mixer array elements measures plasma emission at 8 simultaneous frequencies to form a 16×8 image of electron temperature profiles and fluctuations over an area of 16cm (vertical) by 6cm (horizontal). A redesigned mixer array, coupled with new wideband electronics to be installed later this year, will increase the plasma coverage to 17cm(v)×9cm(h). The new arrangement offers increased temperature resolution together with new gain and video bandwidth controls in a highly modular configuration for ease of maintenance and facilitation of future upgrades both in frequency coverage as well as number of channels.

  10. Grating monochromator for electron cyclotron resonance ion source operation

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shouichi; Watanabe, Shin-ichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Oyaizu, Michihiro; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2013-07-15

    Recently, we started to observe optical line spectra from an ECR plasma using a grating monochromator with a photomultiplier. The light intensity of line spectrum from the ECR plasma had a strong correlation with ion beam intensity measured by a magnetic mass analyzer. This correlation is a significant information for beam tuning because it allows the extraction of the desired ion species from the ECR plasma. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process, but this research gives new insights into its simplification. In this paper, the grating monochromator method for beam tuning of a Hyper-ECR ion source as an injector for RIKEN azimuthal varying field (AVF) cyclotron is described.

  11. Theory of electron-cyclotron-resonance laser accelerators

    SciTech Connect

    Chen, C. )

    1992-11-15

    The cyclotron-resonance laser (CRL) accelerator is a novel concept of accelerating continuous charged-particle beams to moderately or highly relativistic energies. This paper discusses prospects and limitations of this concept. In particular, the nonlinear coupling of an intense traveling electromagnetic wave with an electron beam in a guide magnetic field is studied, and the effects of wave dispersion on particle acceleration are analyzed. For a tenuous beam, it is shown in a single-particle theory that the maximum energy gain and the maximum acceleration distance for the beam electrons in CRL accelerators with optimal magnetic taper exhibit power-law scaling on the degree of wave dispersion (measured by the parameter [omega]/[ital ck][sub [parallel

  12. Pulsed magnetic field-electron cyclotron resonance ion source operation

    NASA Astrophysics Data System (ADS)

    Mühle, C.; Ratzinger, U.; Jöst, G.; Leible, K.; Schennach, S.; Wolf, B. H.

    1996-03-01

    The pulsed magnetic field (PuMa)-electron cyclotron resonance (ECR) ion source uses a pulsed coil to improve the peak current by opening the magnetic bottle along the beam axis. After demonstration of the principle of the pulsed magnetic extraction, the ion source was tested with different gases. We received promising results from helium to krypton. The influence of the current in the pulsed coil on the analyzed ion current was measured. With increased current levels within the pulsed coil not only the pulse height of the PuMa pulse, but the pulse length can also be controlled. By using the pulsed coil the maximum of the charge state distribution can be shifted to higher charge states.

  13. Self-consistent simulation of cyclotron autoresonance maser amplifiers

    SciTech Connect

    Pendergast, K.D.; Danly, B.G.; Temkin, R.J.; Wurtele, J.S.

    1988-04-01

    A self-consistent, one-dimensional model of the cyclotron autoresonance maser (CARM) amplifier is developed, and numerical simulations based on this model are described. Detailed studies of the CARM gain and efficiency for a wide range of initial energy and velocity spreads are presented. The interaction efficiency is found to be substantially increased when the axial magnetic field is tapered. For example, efficiencies of greater than 41 percent are obtained for a 140-GHz CARM amplifier with a tapered axial magnetic field and a 700-kV 4.5-A electron beam with parallel velocity spreads of less than 1 percent. A discussion of the nonlinear bandwidth and interaction sensitivity to axial field inhomogeneities is presented.

  14. Characteristics of microinstabilities in electron cyclotron and ohmic heated discharges

    NASA Astrophysics Data System (ADS)

    Pusztai, I.; Moradi, S.; Fülöp, T.; Timchenko, N.

    2011-08-01

    Characteristics of microinstabilities in electron cyclotron (EC) and ohmic heated (OH) discharges in the T10 tokamak have been analyzed by linear electrostatic gyrokinetic simulations with gyro [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] aiming to find insights into the effect of auxiliary heating on the transport. Trapped electron modes are found to be unstable in both OH and the EC heated scenarios. In the OH case the main drive is from the density gradient and in the EC case from the electron temperature gradient. The growth rates and particle fluxes exhibit qualitatively different scaling with the electron-to-ion temperature ratios in the two cases. This is mainly due to the fact that the dominant drives and the collisionalities are different. The inward flow velocity of impurities and the impurity diffusion coefficient decreases when applying EC heating, which leads to lower impurity peaking, consistently with experimental observations.

  15. Modeling multiple-frequency electron cyclotron resonance heating

    NASA Astrophysics Data System (ADS)

    Spencer, J. Andrew; Kim, Charlson; Kim, Jin-Soo; Evstatiev, Evstati G.; Svidzinski, Vladimir; Cluggish, Brian

    2014-02-01

    Electron cyclotron resonance (ECR) heating influences two of the main parameters (electron temperature and, indirectly, density) that determine the charge state of the ions produced in an ECR ion source (ECRIS). Therefore, various schemes to optimize ECR heating in the ECRIS have been pursued such as multiple-frequency heating, the radio-frequency tuning effect, volume heating, or wide-band heating. We investigate two-frequency ECR heating of electrons in a simple magnetic mirror field by right handed circularly polarized waves with infinite phase velocity. The study shows a heating barrier different from the well-know adiabatic barrier. Study also revealed a mechanism whereby multiple frequencies give improved heating. A preliminary interpretation of the study is presented.

  16. Flash ionization signature in coherent cyclotron emission from brown dwarfs

    NASA Astrophysics Data System (ADS)

    Vorgul, I.; Helling, Ch.

    2016-05-01

    Brown dwarfs (BDs) form mineral clouds in their atmospheres, where charged particles can produce large-scale discharges in the form of lightning resulting in substantial sudden increase of local ionization. BDs are observed to emit cyclotron radio emission. We show that signatures of strong transient atmospheric ionization events (flash ionization) can be imprinted on a pre-existing radiation. Detection of such flash ionization events will open investigations into the ionization state and atmospheric dynamics. Such events can also result from explosion shock waves, material outbursts or (volcanic) eruptions. We present an analytical model that describes the modulation of a pre-existing electromagnetic radiation by a time-dependent (flash) conductivity that is characteristic for flash ionization events like lightning. Our conductivity model reproduces the conductivity function derived from observations of terrestrial gamma-ray flashes, and is applicable to astrophysical objects with strong temporal variations in the local ionization, as in planetary atmospheres and protoplanetary discs. We show that the field responds with a characteristic flash-shaped pulse to a conductivity flash of intermediate intensity. More powerful ionization events result in smaller variations of the initial radiation, or in its damping. We show that the characteristic damping of the response field for high-power initial radiation carries information about the ionization flash magnitude and duration. The duration of the pulse amplification or the damping is consistently shorter for larger conductivity variations and can be used to evaluate the intensity of the flash ionization. Our work suggests that cyclotron emission could be probe signals for electrification processes inside BD atmosphere.

  17. Electrostatic electron cyclotron instabilities near the upper hybrid layer due to electron ring distributions

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Speirs, D. C.; Daldorff, L. K. S.

    2016-09-01

    A theoretical study is presented of the electrostatic electron cyclotron instability involving Bernstein modes in a magnetized plasma. The presence of a tenuous thermal ring distribution in a Maxwellian plasma decreases the frequency of the upper hybrid branch of the electron Bernstein mode until it merges with the nearest lower branch with a resulting instability. The instability occurs when the upper hybrid frequency is somewhat above the third, fourth, and higher electron cyclotron harmonics, and gives rise to a narrow spectrum of waves around the electron cyclotron harmonic nearest to the upper hybrid frequency. For a tenuous cold ring distribution together with a Maxwellian distribution an instability can take place also near the second electron cyclotron harmonic. Noise-free Vlasov simulations are used to assess the theoretical linear growth-rates and frequency spectra, and to study the nonlinear evolution of the instability. The relevance of the results to laboratory and ionospheric heating experiments is discussed.

  18. Radioactive Beams Using the AECR-U and the 88-Inch Cyclotron

    NASA Astrophysics Data System (ADS)

    McMahan, M. A.; Leitner, D.; Powell, J.; Silver, C.

    2005-03-01

    The high ionization efficiency of an Electron Cyclotron Resonance (ECR) ion source combined with the mass resolution of a cyclotron is ideal for the generation of some ISOL-type radioactive ion beams (RIBs). In two separate projects at the 88-Inch Cyclotron at LBNL — BEARS and the Recyclotron — we have developed techniques to efficiently ionize and accelerate beams of gaseous species of 11C (t1/2 = 20 min), 14,15O (t1/2 = 70 sec, 2 min) and 76,79Kr (t1/2 = 14,35 hours). Measurements of the ionization efficiency and hold-up times are discussed, along with issues of source contamination and poisoning encountered in running both RIBs and high-intensity stable beam experiments using the same ion source, the LBNL AECR-U. Methods used to tune clean RIBs through the Cyclotron with high efficiency are also discussed, including the use and limitations of analog beams.

  19. Research and development of ion surfing RF carpets for the cyclotron gas stopper at the NSCL

    NASA Astrophysics Data System (ADS)

    Gehring, A. E.; Brodeur, M.; Bollen, G.; Morrissey, D. J.; Schwarz, S.

    2016-06-01

    A model device to transport thermal ions in the cyclotron gas stopper, a next-generation beam thermalization device under construction at the National Superconducting Cyclotron Laboratory, is presented. Radioactive ions produced by projectile fragmentation will come to rest at distances as large as 45 cm from the extraction orifice of the cyclotron gas stopper. The thermalized ions will be transported to the exit by RF carpets employing the recently developed "ion surfing" method. A quarter-circle prototype RF carpet was tested with potassium ions, and ion transport velocities as high as 60 m/s were observed over distances greater than 10 cm at a helium buffer gas pressure of 80 mbar. The transport of rubidium ions from an RF carpet to an electrode below was also demonstrated. The results of this study formed the basis of the design of the RF carpets for use in the cyclotron gas stopper.

  20. Cyclotron-based nuclear science. Progress report, April 1, 1979-March 31, 1980

    SciTech Connect

    Not Available

    1980-06-01

    Research at the cyclotron institute is summarized. These major areas are covered: nuclear structure; nuclear reactions and scattering; polarization studies; interdisciplinary nuclear science; instrumentation and systems development; and publications. (GHT)

  1. Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields

    NASA Astrophysics Data System (ADS)

    Booshehri, L. G.; Mielke, C. H.; Rickel, D. G.; Crooker, S. A.; Zhang, Q.; Ren, L.; Hároz, E. H.; Rustagi, A.; Stanton, C. J.; Jin, Z.; Sun, Z.; Yan, Z.; Tour, J. M.; Kono, J.

    2012-05-01

    Using ultrahigh magnetic fields up to 170 T and polarized midinfrared radiation with tunable wavelengths from 9.22 to 10.67 μm, we studied cyclotron resonance in large-area graphene grown by chemical vapor deposition. Circular polarization dependent studies reveal strong p-type doping for as-grown graphene, and the dependence of the cyclotron resonance on radiation wavelength allows for a determination of the Fermi energy. Thermal annealing shifts the Fermi energy to near the Dirac point, resulting in the simultaneous appearance of hole and electron cyclotron resonance in the magnetic quantum limit, even though the sample is still p-type, due to graphene's linear dispersion and unique Landau level structure. These high-field studies therefore allow for a clear identification of cyclotron resonance features in large-area, low-mobility graphene samples.

  2. Measurement and control of the air contamination generated in a medical cyclotron facility for PET radiopharmaceuticals.

    PubMed

    Calandrino, R; del Vecchio, A; Todde, S; Fazio, F

    2007-05-01

    The aim of this paper is to report the data concerning the contamination of the exhausted air from the hot cells dedicated to the large-scale synthesis of positron emission tomography (PET) radiopharmaceuticals. Two cyclotrons are currently operating in Ospedale San Raffaele for the routine production of C and F. They are linked with four radiochemistry laboratories by means of shielded radioisotope delivery lines. The above labs are dedicated both to the large scale preparation and to the research and development of PET radiopharmaceuticals. The department hosts four CT-PET scanners, which operate with a mean patient workload of 40 per day. Radiosyntheses are performed using automated modules located in 10 hot cells. The air outlets are monitored online by a 2-inch NaI(Tl) counter in a Marinelli geometry counting volume. Contamination values up to 10(5) Bq L(-1) have been measured at the hot cell exit point during the synthesis. The corresponding concentrations at the point of release in atmosphere are largely above the threshold of 1.29 Bq L(-1), defined by national regulations as the limit for free environmental release. A shielded gas storage system controlled by a dedicated, customized software program has thus been installed to prevent the potentially hazardous release of gaseous radioactive contaminants. The system has allowed us to maintain the effective dose to neighboring population groups below the limit of 10 muSv y(-1).

  3. Calculation of plasma dielectric response in inhomogeneous magnetic field near electron cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Evstatiev, Evstati; Svidzinski, Vladimir; Spencer, Andy; Galkin, Sergei

    2014-10-01

    Full wave 3-D modeling of RF fields in hot magnetized nonuniform plasma requires calculation of nonlocal conductivity kernel describing the dielectric response of such plasma to the RF field. In many cases, the conductivity kernel is a localized function near the test point which significantly simplifies numerical solution of the full wave 3-D problem. Preliminary results of feasibility analysis of numerical calculation of the conductivity kernel in a 3-D hot nonuniform magnetized plasma in the electron cyclotron frequency range will be reported. This case is relevant to modeling of ECRH in ITER. The kernel is calculated by integrating the linearized Vlasov equation along the unperturbed particle's orbits. Particle's orbits in the nonuniform equilibrium magnetic field are calculated numerically by one of the Runge-Kutta methods. RF electric field is interpolated on a specified grid on which the conductivity kernel is discretized. The resulting integrals in the particle's initial velocity and time are then calculated numerically. Different optimization approaches of the integration are tested in this feasibility analysis. Work is supported by the U.S. DOE SBIR program.

  4. Millimeter-wave, megawatt gyrotron development for ECR (electron cyclotron resonance) heating applications

    SciTech Connect

    Jory, H.; Felch, K.; Hess, C.; Huey, H.; Jongewaard, E.; Neilson, J.; Pendleton, R.; Tsirulnikov, M. )

    1990-09-17

    To address the electron cyclotron heating requirements of planned fusion experiments such as the International Thermonuclear Experimental Reactor (ITER) and the Compact Ignition Tokamak (CIT), Varian is developing gyrotrons at frequencies ranging from 100--300 GHz with output power capabilities up to 1 MW CW. Experimental gyrotrons have been built at frequencies between 100--140 GHz, and a study program has addressed the critical elements of designing 280--300 GHz gyrotrons capable of generating CW power levels up to 1 MW. Initial test vehicles at 140 GHz have utilized TE{sub 15,2,1} interaction cavities, and have been designed to generate short-pulse (up to 20 ms) power levels of 1 MW and up to 400 kW CW. Recently, short-pulse power levels of 1040 kW at 38% efficiency have been obtained and average powers of 200 kW have been achieved. Long-pulse operation has been extended to pulse durations of 0.5 seconds at power levels of 400 kW. Gyrotron oscillators capable of generating output powers of 500 kW CW at a frequency of 110 GHz have recently been designed and a prototype is currently being tested. Design work for a 1 MW CW gyrotron at 110 GHz, is in progress. The 1 MW CW tube will employ an output coupling approach where the microwave output is separated from the microwave output. 15 refs., 10 figs., 3 tabs.

  5. Simulation, design, and testing of a high power collimator for the RDS-112 cyclotron.

    PubMed

    Peeples, Johanna L; Stokely, Matthew H; Poorman, Michael C; Bida, Gerald T; Wieland, Bruce W

    2015-03-01

    A high power [F-18] fluoride target package for the RDS-112 cyclotron has been designed, tested, and commercially deployed. The upgrade includes the CF-1000 target, a 1.3kW water target with an established commercial history on RDS-111/Eclipse cyclotrons, and a redesigned collimator with improved heat rejection capabilities. Conjugate heat transfer analyses were employed to both evaluate the existing collimator capabilities and design a suitable high current replacement.

  6. Saturation of cyclotron maser instability driven by an electron loss-cone distribution

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Lee, M. C.

    1986-01-01

    The resonance diffusion of electrons in velocity space caused by the excited EM wave fields is considered to be the dominant saturation process of cyclotron maser instability that is driven by an electron loss-cone distribution. An upper bound of the saturation level is derived analytically. Since the resulting saturation level is low, the resonance diffusion is indeed responsible for the saturation of the cyclotron maser instability.

  7. Environmental Assessment: UCLA biomedical research CS-22 cyclotron replacement, University of California at Los Angeles

    SciTech Connect

    Not Available

    1992-01-01

    DOE proposes to participate in the joint funding, along with the National Institutes of Health (NIH) and private donors, of a new biomedical cyclotron research instrument for UCLA. DOE proposes to provide funding in the amount of $500,000 to UCLA for removal and disposal of the existing 19 year old CS-22 cyclotron and refitting of the existing room, plus $900,000 (of the $1.5 million total cost) for installation of a new generation Cyclone 18/9 biomedical isotope compact cyclotron. The remaining $600,000 for the new instrument would be provided by NIH and private donors. The total cost for the entire project is $2,0000,000. Operation and use of the instrument would be entirely by UCLA. The Biomedical Cyclotron Facility is a line item included on UCLA's Broad Scope A License. The CS-22 cyclotron was turned over to UCLA's jurisdiction by DOE in 1989 when the Laboratory of Biomedical and Environmental Sciences General Contract with DOE was changed to a Cooperative Agreement, and Clause B'' involving safety responsibility was terminated. In support of this, a large closeout survey was performed, licensing actions were completed, and it was agreed that environmental, health and safety compliance would be UCLA's responsibility. Since the CS022 cyclotron was DOE property prior to the above changes, DOE proposes to provide this entire funding for its removal and disposal, and to provide partial funding for its replacement. This report describes the removal of the existing cyclotron, and the operation and installation of a new cyclotron as well as any associated environmental impacts.

  8. Environmental Assessment: UCLA biomedical research CS-22 cyclotron replacement, University of California at Los Angeles

    SciTech Connect

    Not Available

    1992-05-01

    DOE proposes to participate in the joint funding, along with the National Institutes of Health (NIH) and private donors, of a new biomedical cyclotron research instrument for UCLA. DOE proposes to provide funding in the amount of $500,000 to UCLA for removal and disposal of the existing 19 year old CS-22 cyclotron and refitting of the existing room, plus $900,000 (of the $1.5 million total cost) for installation of a new generation Cyclone 18/9 biomedical isotope compact cyclotron. The remaining $600,000 for the new instrument would be provided by NIH and private donors. The total cost for the entire project is $2,0000,000. Operation and use of the instrument would be entirely by UCLA. The Biomedical Cyclotron Facility is a line item included on UCLA`s Broad Scope A License. The CS-22 cyclotron was turned over to UCLA`s jurisdiction by DOE in 1989 when the Laboratory of Biomedical and Environmental Sciences General Contract with DOE was changed to a Cooperative Agreement, and ``Clause B`` involving safety responsibility was terminated. In support of this, a large closeout survey was performed, licensing actions were completed, and it was agreed that environmental, health and safety compliance would be UCLA`s responsibility. Since the CS022 cyclotron was DOE property prior to the above changes, DOE proposes to provide this entire funding for its removal and disposal, and to provide partial funding for its replacement. This report describes the removal of the existing cyclotron, and the operation and installation of a new cyclotron as well as any associated environmental impacts.

  9. Interaction between whistler waves and ion-cyclotron waves in magnetospheric plasma

    SciTech Connect

    Taranenko, Y.N.; Chmyrev, V.M.

    1986-11-01

    The authors have analyzed accurate solutions of a system of abbreviated equations which describe the decay interaction of whistler waves with ion-cyclotron waves in magnetospheric plasma. The equations allow for longitudinal and transverse drift of wave packets. As a result of this analysis, they show that the modulation period of a whistle which is received near the earth's surface is determined by the velocity of the ion-cyclotron waves and by the magnitude of the initial signal amplitude.

  10. High-intensity cyclotrons for radioisotope production and accelerator driven systems

    NASA Astrophysics Data System (ADS)

    Jongen, Y.; Vandeplassche, D.; Kleeven, W.; Beeckman, W.; Zaremba, S.; Lannoye, G.; Stichelbaut, F.

    2002-04-01

    IBA recently proposed a new method to extract high-intensity positive ion beams from a cyclotron based on the concept of auto-extraction. We review the design of a 14 MeV, multi-milliampere cyclotron using this new technology. IBA is also involved in the design of the accelerator system foreseen to drive the MYRRHA facility, a multipurpose neutron source developed jointly by SCK-CEN and IBA.

  11. Simulation, Design, and Testing of a High Power Collimator for the RDS-112 Cyclotron

    PubMed Central

    Peeples, Johanna L.; Stokely, Matthew H.; Poorman, Michael C.; Bida, Gerald T.; Wieland, Bruce W.

    2015-01-01

    A high power [F-18]fluoride target package for the RDS-112 cyclotron has been designed, tested, and commercially deployed. The upgrade includes the CF-1000 target, a 1.3 kW water target with an established commercial history on RDS-111/Eclipse cyclotrons, and a redesigned collimator with improved heat rejection capabilities. Conjugate heat transfer analyses were employed to both evaluate the existing collimator capabilities and design a suitable high current replacement. PMID:25562677

  12. Excitation of the half-cyclotron waves by the counterstreaming electron-positron beams

    SciTech Connect

    Shokri, B.; Khorashadizadeh, S.M.

    2005-08-15

    The dispersion relation of the half-cyclotron waves excited by the interaction of the two counterstreaming electron-positron-plasma beams is obtained. Furthermore, obtaining the growth rate and the threshold for the instability development, the excitation of the half-cyclotron waves in a system of two rotating monoenergetic electron-positron counterstreaming beams flowing parallel to the external magnetic field is investigated.

  13. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low-frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  14. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low- frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  15. Coupling of electrostatic ion cyclotron and ion acoustic waves in the solar wind

    NASA Astrophysics Data System (ADS)

    Sreeraj, T.; Singh, S. V.; Lakhina, G. S.

    2016-08-01

    The coupling of electrostatic ion cyclotron and ion acoustic waves is examined in three component magnetized plasma consisting of electrons, protons, and alpha particles. In the theoretical model relevant to solar wind plasma, electrons are assumed to be superthermal with kappa distribution and protons as well as alpha particles follow the fluid dynamical equations. A general linear dispersion relation is derived for such a plasma system which is analyzed both analytically and numerically. For parallel propagation, electrostatic ion cyclotron (proton and helium cyclotron) and ion acoustic (slow and fast) modes are decoupled. For oblique propagation, coupling between the cyclotron and acoustic modes occurs. Furthermore, when the angle of propagation is increased, the separation between acoustic and cyclotron modes increases which is an indication of weaker coupling at large angle of propagation. For perpendicular propagation, only cyclotron modes are observed. The effect of various parameters such as number density and temperature of alpha particles and superthermality on dispersion characteristics is examined in details. The coupling between various modes occurs for small values of wavenumber.

  16. Influence of injection beam emittance on beam transmission efficiency in a cyclotron

    SciTech Connect

    Kurashima, Satoshi Kashiwagi, Hirotsugu; Miyawaki, Nobumasa; Yoshida, Ken-Ichi; Okumura, Susumu

    2014-02-15

    The JAEA AVF cyclotron accelerates various kinds of high-energy ion beams for research in biotechnology and materials science. Beam intensities of an ion species of the order of 10{sup −9}–10{sup −6} ampere are often required for various experiments performed sequentially over a day. To provide ion beams with sufficient intensity and stability, an operator has to retune an ion source in a short time. However, the beam intensity downstream of the cyclotron rarely increases in proportion to the intensity at the ion source. To understand the cause of this beam behavior, transmission efficiencies of a {sup 12}C{sup 5+} beam from an electron cyclotron resonance ion source to the cyclotron were measured for various conditions of the ion source. Moreover, a feasible region for acceleration in the emittance of the injection beam was clarified using a transverse-acceptance measuring system. We confirmed that the beam emittance and profile were changed depending on the condition of the ion source and that matching between the beam emittance and the acceptance of the cyclotron was degraded. However, after fine-tuning to improve the matching, beam intensity downstream of the cyclotron increased.

  17. First operation of the charge-breeder electron-cyclotron-resonance ion source at the Texas A and M Cyclotron Institute

    SciTech Connect

    May, D. P.; Tabacaru, G.; Abegglen, F. P.; Cornelius, W. D.

    2010-02-15

    The 14.5 GHz electron-cyclotron-resonance ion source (ECRIS) designed and fabricated specifically for charge breeding has been installed at the Texas A and M University Cyclotron Institute for use in the institute's ongoing radioactive-ion-beam upgrade. The initial testing of the source has just begun with magnetic analysis of the ECRIS beam. The source has only been conditioning for a brief time at low microwave power, and it is continuing to improve. After the source has been conditioned and characterized, charge-breeding trials with stable beams from a singly ionizing source will begin.

  18. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    NASA Astrophysics Data System (ADS)

    Toivanen, V.; Küchler, D.

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  19. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  20. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work. PMID:26932095

  1. PINTEX Data: Numeric results from the Polarized Internal Target Experiments (PINTEX) at the Indiana University Cyclotron Facility

    DOE Data Explorer

    Meyer, H. O.

    The PINTEX group studied proton-proton and proton-deuteron scattering and reactions between 100 and 500 MeV at the Indiana University Cyclotron Facility (IUCF). More than a dozen experiments made use of electron-cooled polarized proton or deuteron beams, orbiting in the 'Indiana Cooler' storage ring, and of a polarized atomic-beam target of hydrogen or deuterium in the path of the stored beam. The collaboration involved researchers from several midwestern universities, as well as a number of European institutions. The PINTEX program ended when the Indiana Cooler was shut down in August 2002. The website contains links to some of the numerical results, descriptions of experiments, and a complete list of publications resulting from PINTEX.

  2. Ion cyclotron resonance as a tool in regenerative medicine.

    PubMed

    Lisi, Antonella; Ledda, Mario; de Carlo, Flavia; Pozzi, Deleana; Messina, Elisa; Gaetani, Roberto; Chimenti, Isotta; Barile, Lucio; Giacomello, Alessandro; D'Emilia, Enrico; Giuliani, Livio; Foletti, Alberto; Patti, Annamaria; Vulcano, Antonella; Grimaldi, Settimio

    2008-01-01

    The identification of suitable stem cell cultures and differentiating conditions that are free of xenogenic growth supplements is an important step in finding the clinical applicability of cell therapy in two important fields of human medicine: heart failure and bone remodeling, growth and repair. We recently demonstrated the possibility of obtaining cardiac stem cells (CSCs) from human endomyocardial biopsy specimens. CSCs self-assemble into multi-cellular clusters known as cardiospheres (CSps) that engraft and partially regenerate infarcted myocardium. CSps and cardiosphere-derived-cells (CDCs) were exposed for five days in an incubator regulated for temperature, humidity, and CO(2) inside a solenoid system. This system was placed in a magnetically shielded room. The cells were exposed simultaneously to a static magnetic field (MF) and a parallel low-alternating frequency MF, close to the cyclotron frequency corresponding to the charge/mass ratio of the Ca(++) ion. In this exposure condition, CSps and CDCs modulate their differentiation turning on cardiogenesis and turning off vasculogenesis. Cardiac markers such as troponin I (TnI) and myosin heavy chain (MHC) were up-regulated. Conversely, angiogenic markers such as vascular endothelial growth factor (VEGF) and kinase domain receptor (KDR) were down-regulated as evidenced by immunocytochemistry. Exposure to the 7 Hz calcium ion cyclotron resonance (ICR) frequency can modulate the cardiogenic vs. angiogenic differentiation process of ex vivo expanded CSCs. This may pave the way for novel approaches in tissue engineering and cell therapy. With regard to bone remodeling, it has been suggested that bone marrow-derived mesenchymal stem cells (MSC) may be considered as a potential therapeutic tool. Using the Ca(++)-dependent specific differentiation potential of the ELF-MF 7 Hz ICR, we show here that exposure of human MSC to these same MF conditions enhanced the expression of osteoblast differentiation markers such

  3. Lower hybrid current drive favoured by electron cyclotron radiofrequency heating

    SciTech Connect

    Cesario, R.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Tuccillo, A. A.; Giruzzi, G.; Napoli, F.; Schettini, G.

    2014-02-12

    The important goal of adding to the bootstrap a fraction of non-inductive plasma current, which would be controlled for obtaining and optimizing steady-state profiles, can be reached by using the Current Drive produced by Lower Hybrid waves (LHCD). FTU (Frascati Tokamak Upgrade) experiments demonstrated, indeed, that LHCD is effective at reactor-graded high plasma density, and the LH spectral broadening is reduced, operating with higher electron temperature in the outer region of plasma column (T{sub e-periphery}). This method was obtained following the guidelines of theoretical predictions indicating that the broadening of launched spectrum produced by parametric instability (PI) should be reduced, and the LHCD effect at high density consequently enabled, under higher (T{sub e-periphery}). In FTU, the temperature increase in the outer plasma region was obtained by operating with reduced particle recycling, lithized walls and deep gas fuelling by means of fast pellet. Heating plasma periphery with electron cyclotron resonant waves (ECRH) will provide a further tool for achieving steady-state operations. New FTU experimental results are presented here, demonstrating that temperature effect at the plasma periphery, affecting LH penetration, occurs in a range of plasma parameters broader than in previous work. New information is also shown on the modelling assessing frequencies and growth rates of the PI coupled modes responsible of spectral broadening. Finally, we present the design of an experiment scheduled on FTU next campaign, where ECRH power is used to slightly increase the electron temperature in the outer plasma region of a high-density discharge aiming at restoring LHCD. Consequent to model results, by operating with a toroidal magnetic field of 6.3 T, useful for locating the electron cyclotron resonant layer at the periphery of the plasma column (r/a∼0.8, f{sub 0}=144 GHz), an increase of T{sub e} in the outer plasma (from 40 eV to 80 eV at r/a∼0.8) is

  4. Fourier transform ion cyclotron resonance mass spectrometry: a primer.

    PubMed

    Marshall, A G; Hendrickson, C L; Jackson, G S

    1998-01-01

    This review offers an introduction to the principles and generic applications of FT-ICR mass spectrometry, directed to readers with no prior experience with the technique. We are able to explain the fundamental FT-ICR phenomena from a simplified theoretical treatment of ion behavior in idealized magnetic and electric fields. The effects of trapping voltage, trap size and shape, and other nonidealities are manifested mainly as perturbations that preserve the idealized ion behavior modified by appropriate numerical correction factors. Topics include: effect of ion mass, charge, magnetic field, and trapping voltage on ion cyclotron frequency; excitation and detection of ICR signals; mass calibration; mass resolving power and mass accuracy; upper mass limit(s); dynamic range; detection limit, strategies for mass and energy selection for MSn; ion axialization, cooling, and remeasurement; and means for guiding externally formed ions into the ion trap. The relation of FT-ICR MS to other types of Fourier transform spectroscopy and to the Paul (quadrupole) ion trap is described. The article concludes with selected applications, an appendix listing accurate fundamental constants needed for ultrahigh-precision analysis, and an annotated list of selected reviews and primary source publications that describe in further detail various FT-ICR MS techniques and applications.

  5. Electron Cyclotron Maser Emissions from Evolving Fast Electron Beams

    NASA Astrophysics Data System (ADS)

    Tang, J. F.; Wu, D. J.; Chen, L.; Zhao, G. Q.; Tan, C. M.

    2016-05-01

    Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool for understanding FEBs and the solar plasma environment in which they propagate along solar magnetic fields. In particular, the evolution of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field during propagation can significantly influence the efficiency and properties of their emissions. In this paper, we discuss the possible evolution of the energy spectrum and velocity distribution of FEBs due to energy loss processes and the pitch-angle effect caused by magnetic field inhomogeneity, and we analyze the effects of the evolution on electron-cyclotron maser (ECM) emission, which is one of the most important mechanisms for producing solar radio bursts by FEBs. Our results show that the growth rates all decrease with the energy loss factor Q, but increase with the magnetic mirror ratio σ as well as with the steepness index δ. Moreover, the evolution of FEBs can also significantly influence the fastest growing mode and the fastest growing phase angle. This leads to the change of the polarization sense of the ECM emission. In particular, our results also reveal that an FEB that undergoes different evolution processes will generate different types of ECM emission. We believe the present results to be very helpful for a more comprehensive understanding of the dynamic spectra of solar radio bursts.

  6. Cyclotron resonance maser experiments in a bifilar helical waveguide

    NASA Astrophysics Data System (ADS)

    Aharony, Alon; Drori, Rami; Jerby, Eli

    2000-11-01

    Oscillator and amplifier cyclotron-resonance-maser (CRM) experiments in a spiral bifilar waveguide are presented in this paper. The slow-wave CRM device employs a low-energy low-current electron beam (2-12 keV, ~0.5 A). The pitch angle of the helical waveguide is relatively small; hence, the phase velocity in this waveguide, Vph≅0.8c (where c is the speed of light), is much faster than the axial velocity of the electrons, Vez<=0.2c. Thus traveling-wave-tube-type interactions are eliminated in this device. According to the CRM theory, the dominant effect in this operating regime, Vez2%). The wide tunable range of this CRM device due to the nondispersive bifilar helix is discussed.

  7. Parallel Spectral Acquisition with an Ion Cyclotron Resonance Cell Array.

    PubMed

    Park, Sung-Gun; Anderson, Gordon A; Navare, Arti T; Bruce, James E

    2016-01-19

    Mass measurement accuracy is a critical analytical figure-of-merit in most areas of mass spectrometry application. However, the time required for acquisition of high-resolution, high mass accuracy data limits many applications and is an aspect under continual pressure for development. Current efforts target implementation of higher electrostatic and magnetic fields because ion oscillatory frequencies increase linearly with field strength. As such, the time required for spectral acquisition of a given resolving power and mass accuracy decreases linearly with increasing fields. Mass spectrometer developments to include multiple high-resolution detectors that can be operated in parallel could further decrease the acquisition time by a factor of n, the number of detectors. Efforts described here resulted in development of an instrument with a set of Fourier transform ion cyclotron resonance (ICR) cells as detectors that constitute the first MS array capable of parallel high-resolution spectral acquisition. ICR cell array systems consisting of three or five cells were constructed with printed circuit boards and installed within a single superconducting magnet and vacuum system. Independent ion populations were injected and trapped within each cell in the array. Upon filling the array, all ions in all cells were simultaneously excited and ICR signals from each cell were independently amplified and recorded in parallel. Presented here are the initial results of successful parallel spectral acquisition, parallel mass spectrometry (MS) and MS/MS measurements, and parallel high-resolution acquisition with the MS array system.

  8. Parallel Spectral Acquisition with an Ion Cyclotron Resonance Cell Array.

    PubMed

    Park, Sung-Gun; Anderson, Gordon A; Navare, Arti T; Bruce, James E

    2016-01-19

    Mass measurement accuracy is a critical analytical figure-of-merit in most areas of mass spectrometry application. However, the time required for acquisition of high-resolution, high mass accuracy data limits many applications and is an aspect under continual pressure for development. Current efforts target implementation of higher electrostatic and magnetic fields because ion oscillatory frequencies increase linearly with field strength. As such, the time required for spectral acquisition of a given resolving power and mass accuracy decreases linearly with increasing fields. Mass spectrometer developments to include multiple high-resolution detectors that can be operated in parallel could further decrease the acquisition time by a factor of n, the number of detectors. Efforts described here resulted in development of an instrument with a set of Fourier transform ion cyclotron resonance (ICR) cells as detectors that constitute the first MS array capable of parallel high-resolution spectral acquisition. ICR cell array systems consisting of three or five cells were constructed with printed circuit boards and installed within a single superconducting magnet and vacuum system. Independent ion populations were injected and trapped within each cell in the array. Upon filling the array, all ions in all cells were simultaneously excited and ICR signals from each cell were independently amplified and recorded in parallel. Presented here are the initial results of successful parallel spectral acquisition, parallel mass spectrometry (MS) and MS/MS measurements, and parallel high-resolution acquisition with the MS array system. PMID:26669509

  9. Electron cyclotron resonance deposition of diamond-like films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.

    1990-01-01

    Electron cyclotron resonance (ECR) microwave plasma CVD has been developed at low pressures (0.0001 - 0.01 torr) and at ambient and high substrate temperatures (up to 750 C), to achieve large-area (greater than 4 in. diameter) depositions of diamondlike amorphous carbon (a - C:H) films. The application of a RF bias to the substrate stage, which induces a negative self-bias voltage, is found to play a critical role in determining carbon bonding configurations and in modifying the film morphology. There are two distinct types of ECR-deposited diamondlike films. One type of diamondlike film exhibits a Raman spectrum consisting of broad and overlapping, graphitic D (1360/cm, line width = 280/cm) and G (1590/cm, line width 140/cm) lines, and the other type has a broad Raman peak centered at appoximately 1500/cm. Examination of plasma species by optical emission spectroscopy shows no correlation between the CH-asterisk emission intensity and the deposition rate of diamondklike films.

  10. Currents induced in tokamaks by electron cyclotron heating

    SciTech Connect

    Eldridge, O. C.

    1980-10-01

    Generation of a plasma current is predicted in association with strong electron cyclotron heating in tokamaks or in any plasma with transverse magnetic field gradients. The current predicted in present-day tokamaks is of the order of one-quarter ampere per watt, which is large enough to be detected in heating experiments in progress. The current scales linearly with electron temperature and heating power and inversely with density and major radius. The mechanism depends on the Doppler shift for electrons streaming along magnetic field lines. Electrons streaming toward the source of radiation are resonant at a larger magnetic field. When the interaction is strong, radiation incident from the high field side is absorbed before reaching the cold electron resonant surface, and, so, a unidirectional population of electrons is heated. The anisotropic electron distribution gains momentum by collisions with ions. For small tokamaks the extraordinary wave should be launched for current drive, but for reactors the ordinary wave produces a sufficiently strong interaction.

  11. Electron-cyclotron maser and solar microwave millisecond spike emission

    NASA Technical Reports Server (NTRS)

    Li, Hong-Wei; Li, Chun-Sheng; Fu, Qi-Jun

    1986-01-01

    An intense solar microwave millisecond spike emission (SMMSE) event was observed on May 16, 1981 by Zhao and Jin at Beijing Observatory. The peak flux density of the spikes is high to 5 x 100,000 s.f.u. and the corresponding brightness temperature (BT) reaches approx. 10 to the 15th K. In order to explain the observed properties of SMMSE, it is proposed that a beam of electrons with energy of tens KeV injected from the acceleration region downwards into an emerging magnetic arch forms so-called hollow beam distribution and causes electron-cyclotron maser (ECM) instability. The growth rate of second harmonic X-mode is calculated and its change with time is deduced. It is shown that the saturation time of ECM is t sub s approx. equals 0.42 ms and only at last short stage (delta t less than 0.2 t sub s) the growth rate decreases to zero rather rapidly. So a SMMSE with very high BT will be produced if the ratio of number density of nonthermal electrons to that of background electrons, n sub s/n sub e, is larger than 4 x .00001.

  12. Cyclotron resonance maser experiments in a bifilar helical waveguide

    PubMed

    Aharony; Drori; Jerby

    2000-11-01

    Oscillator and amplifier cyclotron-resonance-maser (CRM) experiments in a spiral bifilar waveguide are presented in this paper. The slow-wave CRM device employs a low-energy low-current electron beam (2-12 keV, approximately 0.5 A). The pitch angle of the helical waveguide is relatively small; hence, the phase velocity in this waveguide, V(ph) congruent with0.8c (where c is the speed of light), is much faster than the axial velocity of the electrons, V(ez)2%). The wide tunable range of this CRM device due to the nondispersive bifilar helix is discussed.

  13. High current DC negative ion source for cyclotron.

    PubMed

    Etoh, H; Onai, M; Aoki, Y; Mitsubori, H; Arakawa, Y; Sakuraba, J; Kato, T; Mitsumoto, T; Hiasa, T; Yajima, S; Shibata, T; Hatayama, A; Okumura, Y

    2016-02-01

    A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H(-) beam of 10 mA and D(-) beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H(-) beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H(-) current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H(-) production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H(-) current dependence on the arc power. PMID:26932017

  14. Support vector machine based fault detection approach for RFT-30 cyclotron

    NASA Astrophysics Data System (ADS)

    Kong, Young Bae; Lee, Eun Je; Hur, Min Goo; Park, Jeong Hoon; Park, Yong Dae; Yang, Seung Dae

    2016-10-01

    An RFT-30 is a 30 MeV cyclotron used for radioisotope applications and radiopharmaceutical researches. The RFT-30 cyclotron is highly complex and includes many signals for control and monitoring of the system. It is quite difficult to detect and monitor the system failure in real time. Moreover, continuous monitoring of the system is hard and time-consuming work for human operators. In this paper, we propose a support vector machine (SVM) based fault detection approach for the RFT-30 cyclotron. The proposed approach performs SVM learning with training samples to construct the classification model. To compensate the system complexity due to the large-scale accelerator, we utilize the principal component analysis (PCA) for transformation of the original data. After training procedure, the proposed approach detects the system faults in real time. We analyzed the performance of the proposed approach utilizing the experimental data of the RFT-30 cyclotron. The performance results show that the proposed SVM approach can provide an efficient way to control the cyclotron system.

  15. The beam commissioning of BRIF and future cyclotron development at CIAE

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjue; Yang, Jianjun

    2016-06-01

    As an upgrade project of the existing HI-13 tandem accelerator facility, the Beijing Radioactive Ion-beam Facility (BRIF) is being constructed in China Institute of Atomic Energy (CIAE). This project consists of an 100 MeV proton compact cyclotron, a two-stage ISOL system, a superconducting linac booster and various experimental terminals. The beam commissioning of the cyclotron was launched by the end of 2013 and on July 4, 2014 the first 100 MeV proton beam was received on a temporary target which was positioned at the outlet of the cyclotron. The beam current was stably maintained at above 25 μA for about 9 h on July 25, 2014 and the cyclotron is now ready for providing CW proton beam on target-source for RIB production. The beam current is expected to be increased to 200-500 μA in the coming years. The installation of the ISOL system is finished and the stable ion beam test shows it can reach a mass resolution better than 10,000. It is expected to generate dozens of RIB by 100 MeV proton beam. In addition, this paper also introduces the recent progress of the pre-study of an 800 MeV, 3-4 MW separate-sector proton cyclotron, which is aimed to provide high power proton beam for various applications, such as neutron and neutrino physics, proton radiography and nuclear data measurement and ADS system.

  16. Ion beam driven resonant ion-cyclotron instability in a magnetized dusty plasma

    SciTech Connect

    Prakash, Ved; Vijayshri; Sharma, Suresh C.; Gupta, Ruby

    2014-03-15

    Electrostatic ion cyclotron waves are excited by axial ion beam in a dusty plasma via Cerenkov and slow cyclotron interaction. The dispersion relation of the instability is derived in the presence of positively/negatively charged dust grains. The minimum beam velocity needed for the excitation is estimated for different values of relative density of negatively charged dust grains. It is shown that the minimum beam velocity needed for excitation increases as the charge density carried by dust increases. Temperature of electrons and ions, charge and mass of dust grains, external static magnetic field and finite boundary of dusty plasma significantly modify the dispersion properties of these waves and play a crucial role in the growth of resonant ion cyclotron instability. The ion cyclotron modes with phase velocity comparable to the beam velocity possess a large growth rate. The maximum value of growth rate increases with the beam density and scales as the one-third power of the beam density in Cerenkov interaction and is proportional to the square root of beam density in slow cyclotron interaction.

  17. Predictive ion source control using artificial neural network for RFT-30 cyclotron

    NASA Astrophysics Data System (ADS)

    Kong, Young Bae; Hur, Min Goo; Lee, Eun Je; Park, Jeong Hoon; Park, Yong Dae; Yang, Seung Dae

    2016-01-01

    An RFT-30 cyclotron is a 30 MeV proton accelerator for radioisotope production and fundamental research. The ion source of the RFT-30 cyclotron creates plasma from hydrogen gas and transports an ion beam into the center region of the cyclotron. Ion source control is used to search source parameters for best quality of the ion beam. Ion source control in a real system is a difficult and time consuming task, and the operator should search the source parameters by manipulating the cyclotron directly. In this paper, we propose an artificial neural network based predictive control approach for the RFT-30 ion source. The proposed approach constructs the ion source model by using an artificial neural network and finds the optimized parameters with the simulated annealing algorithm. To analyze the performance of the proposed approach, we evaluated the simulations with the experimental data of the ion source. The performance results show that the proposed approach can provide an efficient way to analyze and control the ion source of the RFT-30 cyclotron.

  18. Proton Heating by Cyclotron Waves in the Presence of a Finite Source and a Sink

    NASA Astrophysics Data System (ADS)

    Kim, S.; Yoon, P. H.; Choe, G.

    2012-12-01

    One of the outstanding problems in the study of solar wind is the acceleration of protons and heavy ions. The preferential heating of these ions in the direction perpendicular to the ambient magnetic field is interpreted as the resonant heating by cyclotron waves. The present paper investigates the resonant cyclotron heating of the solar wind ions by quasilinear theoretical formalism. The major focus is on the role of source and sink terms associated with the Alfven-cyclotron waves. If one considers low-frequency Alfvenic waves as the wave source, then the resulting cyclotron heating is extremely small [Yoon & Fang 2009, Rha et al., 2011, Moya et al., 2011]. However, with a finite source term an appreciable heating can result [Yoon & Fang 2009]. The purpose of the present paper is to investigate the problem of Alfvenic turbulent heating by cyclotron resonance with a continuous source of Alfvenic turbulence as well as a sink term. We also discuss the role of nonlinear mode coupling as well as the effects of spatial inhomogeneity.

  19. An energy spread minimization system for microbeam generation in the JAERI AVF cyclotron

    NASA Astrophysics Data System (ADS)

    Fukuda, Mitsuhiro; Kurashima, Satoshi; Miyawaki, Nobumasa; Okumura, Susumu; Kamiya, Tomihiro; Oikawa, Masakazu; Nakamura, Yoshiteru; Nara, Takayuki; Agematsu, Takashi; Ishibori, Ikuo; Yoshida, Kenichi; Yokota, Watalu; Arakawa, Kazuo; Kumata, Yukio; Fukumoto, Yasushi; Saito, Katsuhiko

    2003-09-01

    A heavy-ion microbeam with energy of hundreds of MeV is a significantly useful probe for research in biology and biotechnology. A single-ion hit technique using the heavy-ion microbeam is being developed at the JAERI AVF cyclotron facility for elucidation of biofunctions. For production of a microbeam with a spot size of one micro-meter in diameter, the energy spread in the beam is required to be reduced to 0.02% to minimize the effect of chromatic aberrations in the focusing lenses. The energy spread in the cyclotron beam depends on a waveform of the acceleration voltage and beam phase acceptance of the cyclotron. The typical energy spread of the cyclotron beam is around 0.1% in the ordinary acceleration mode using a sinusoidal voltage waveform. The energy spread can be reduced by superimposing a fifth-harmonic voltage waveform on the fundamental one to generate a flat-top waveform for uniform energy gain. The flat-top acceleration system has been designed for the variable-energy multi-particle AVF cyclotron with acceleration harmonic mode of 1, 2 and 3. An additional coaxial cavity has been installed to generate the fifth-harmonic voltage, coupled to the main resonator. The frequency range of the fifth harmonics, 55-110 MHz, was fully covered by the flat-top acceleration system.

  20. Simulation of electron behavior in PIG ion source for 9 MeV cyclotron

    NASA Astrophysics Data System (ADS)

    J. Mu, X.; Ghergherehchi, M.; H. Yeon, Y.; W. Kim, J.; S. Chai, J.

    2014-12-01

    In this paper, we focus on a PIG source for producing intense H-ions inside a 9 MeV cyclotron. The properties of the PIG ion source were simulated for a variety of electric field distributions and magnetic field strengths using a CST particle studio. After analyzing the secondary electron emission (SEE) as a function of both magnetic and electric field strengths, we found that for the modeled PIG geometry, a magnetic field strength of 0.2 T provided the best results in terms of the number of secondary electrons. Furthermore, at 0.2 T, the number of secondary electrons proved to be greatest regardless of the cathode potential. Also, the modified PIG ion source with quartz insulation tubes was tested in a KIRAMS-13 cyclotron by varying the gas flow rate and arc current, respectively. The capacity of the designed ion source was also demonstrated by producing plasma inside the constructed 9 MeV cyclotron. As a result, the ion source is verified as being capable of producing an intense H- beam and high ion beam current for the desired 9 MeV cyclotron. The simulation results provide experimental constraints for optimizing the strength of the plasma and final ion beam current at a target inside a cyclotron.

  1. Quasi-steady, marginally unstable electron cyclotron harmonic wave amplitudes

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojia; Angelopoulos, Vassilis; Ni, Binbin; Thorne, Richard M.; Horne, Richard B.

    2013-06-01

    Electron cyclotron harmonic (ECH) waves have long been considered a potential driver of diffuse aurora in Earth's magnetotail. However, the scarcity of intense ECH emissions in the outer magnetotail suggests that our understanding of the amplification and the relative importance of these waves for electron scattering is lacking. We conduct a comprehensive study of wave growth and quasi-linear diffusion to estimate the amplitude of loss-cone-driven ECH waves once diffusion and growth balance but before convection or losses alter the background hot plasma sheet population. We expect this to be the most common state of the plasma sheet between episodes of fast convection. For any given wave amplitude, we model electron diffusion caused by interaction with ECH waves using a 2-D bounce-averaged Fokker-Planck equation. After fitting the resultant electron distributions as a superposition of multicomponent subtracted bi-Maxwellians, we estimate the maximum path-integrated gain using the HOTRAY ray-tracing code. We argue that the wave amplitude during quasi-steady state is the inflection point on a gain-amplitude curve. During quasi-steady state, ECH wave amplitudes can be significant (~1 mV/m) at L ~ 8 but drop to very low values (<~0.1 mV/m) in the outer magnetotail (L ~ 16) and likely fall below the sensitivity of typical instrumentation relatively close to Earth mainly because of the smallness of the loss cone. Our result reinforces the potentially important role of ECH waves in driving diffuse aurora and suggests that careful comparison of theoretical wave amplitude estimates and observations is required for resolving the equatorial scattering mechanism of diffuse auroral precipitation.

  2. Ring Current-Electromagnetic Ion Cyclotron Waves Coupling

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.

    2005-01-01

    The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.

  3. Electron-cyclotron heating in the Constance 2 mirror experiment

    SciTech Connect

    Mauel, Michael E.

    1982-09-01

    Electron cyclotron heating of a highly-ionized plasma in mirror geometry is investigated. The experimental diagnosis of the electron energy distribution and the comparison of the results of this diagnosis with a two dimensional, time-dependent Fokker-Planck simulation are accomplished in four steps. (1) First, the power balance of the heated and unheated Constance 2 plasma is analyzed experimentally. It is concluded that the heated electrons escape the mirror at a rate dominated by a combination of the influx of cool electrons from outside the mirror and the increased loss rate of the ions. (2) The microwave parameters at the resonance zones are then calculated by cold-plasma ray tracing. High N/sub parallel/ waves are launched and for these waves, strong first-pass absorption is predicted. The absorption strength is qualitatively checked in the experiment by surrounding the plasma with non-reflecting liners. (3) A simplified quasilinear theory including the effect of N/sub parallel/ is developed to model the electrons. An analytic expression is derived for the RF-induced pump-out of the magnetically-confined warm electrons. Results of the Fokker-Planck simulations show the development of the electron energy distribution for several plasma conditions and verify the scaling of the analytic expression for RF-induced diffusion into the loss cone. (4) Sample x-ray and endloss data are presented, and the overall comparison between the simulation and experiment is discussed. The x-ray signals indicate that, for greater RF power, the hot electrondensity increases more rapidly than its temperature. The time history of the endloss data, illustrating RF-enhancement, suggests the predicted scaling for warm-electron pump-out. Finally, a comparison between the measured and predicted energy distribution shows that the bulk, warm and hot components of the heated Constance 2 electrons are indeed reproduced by the simulation.

  4. Pulse-Heated Vertical Electron Cyclotron Emission Diagnostic

    NASA Astrophysics Data System (ADS)

    Voss, Keith Edward

    1995-01-01

    Determination of plasma parameters in tokamak experiments is of primary importance for learning to control and optimize fusion plasmas. Electron cyclotron emission (ECE) diagnostics play an important role in these experiments and are planned for future test reactors, since they require only simple collecting optics in the harsh reactor environment. A novel diagnostic system, which extracts information about plasma parameters by examining the ECE resulting from a perturbation of the plasma, was examined and applied on the PBX-M tokamak. This diagnostic uses a brief pulse of power from the lower hybrid current drive system to create a population of superthermal electrons. These electrons evolve according to the Fokker-Planck equation, which involves dependences on the magnetic field pitch, ion charge state, background density, and electric field. Coincident with the evolution of the electrons is the evolution of their ECE radiation. The diagnostic exploits the fact that the temporal changes in the radiation are dependent upon those parameters which affect the electrons. The analysis method, which compares measured experimental signal with simulated radiation (as functions of frequency and time) and determines most probable plasma parameter values, was computationally tested for effectiveness and robustness. The method was extended to include determination of parameters of the lower hybrid current drive power deposition. A measurement system, based on a grating polychromator, was assembled, tested, and calibrated, and pulse-heated vertical ECE data were collected from the PBX-M tokamak. A proof-of-principle test of the diagnostic yielded positive results, resulting in information about the lower hybrid current drive deposition location.

  5. Solar cycle dependence of ion cyclotron wave frequencies

    NASA Astrophysics Data System (ADS)

    Lessard, Marc R.; Lindgren, Erik A.; Engebretson, Mark J.; Weaver, Carol

    2015-06-01

    Electromagnetic ion cyclotron (EMIC) waves have been studied for decades, though remain a fundamentally important topic in heliospheric physics. The connection of EMIC waves to the scattering of energetic particles from Earth's radiation belts is one of many topics that motivate the need for a deeper understanding of characteristics and occurrence distributions of the waves. In this study, we show that EMIC wave frequencies, as observed at Halley Station in Antarctica from 2008 through 2012, increase by approximately 60% from a minimum in 2009 to the end of 2012. Assuming that these waves are excited in the vicinity of the plasmapause, the change in Kp in going from solar minimum to near solar maximum would drive increased plasmapause erosion, potentially shifting the generation region of the EMIC to lower L and resulting in the higher frequencies. A numerical estimate of the change in plasmapause location, however, implies that it is not enough to account for the shift in EMIC frequencies that are observed at Halley Station. Another possible explanation for the frequency shift, however, is that the relative density of heavier ions in the magnetosphere (that would be associated with increased solar activity) could account for the change in frequencies. In terms of effects on radiation belt dynamics, the shift to higher frequencies tends to mean that these waves will interact with less energetic electrons, although the details involved in this process are complex and depend on the specific plasma and gyrofrequencies of all populations, including electrons. In addition, the change in location of the generation region to lower L shells means that the waves will have access to higher number fluxes of resonant electrons. Finally, we show that a sunlit ionosphere can inhibit ground observations of EMIC waves with frequencies higher than ˜0.5 Hz and note that the effect likely has resulted in an underestimate of the solar-cycle-driven frequency changes described here.

  6. High power Ion Cyclotron Resonance Heating (ICRH) in JET

    SciTech Connect

    Jacquinot, J.

    1988-01-01

    Ion Cyclotron Resonance Heating (ICRH) powers of up to 17 MW have been coupled to JET limiter plasmas. The plasma stored energy has reached 7 MJ with 13 MW of RF in 5 MA discharges with Z/sub eff/ = 2. When I/sub p//B/sub /phi// = 1 MA/T the stored energy can be 50% greater than the Goldston L mode scaling. This is due to transient stabilisation of sawteeth (up to 3 s) and to a significant energy content in the minority particles accelerated by RF (up to 30% of the total stored energy). Central temperatures of T/sub e/ - 11 keV and T/sub i/ = 8 keV have been reached with RF alone. (He/sup 3/)D fusion experiments have given a 60 kW fusion yield (fusion rate of 2 /times/ 10/sup 16/ s/sup /minus/1/ in the form of energetic fast particles (14.7 MeV(H), 3.6 MeV(He/sup 4/)) in agreement with modelling. When transposing the same calculation to a (D)T scenario, Q is predicted to be between 0.l2 and 0.8 using plasma parameters already achieved. For the first time, a peaked density profile generated by pellet injection could be reheated and sustained by ICRF for 1.2 s. Electron heat transport in the central region is reduced by a factor 2 to 3. The fusion product n/sub io//tau//sub E/T/sub io/ reaches 2.2 /times/ 10/sup 20/ m/sup /minus/3//center dot/s/center dot/kev in 3 MA discharges which is a factor of 2.3 times larger than with normal density profile. 18 refs., 13 figs., 3 tabs.

  7. Design study of an ultra-compact superconducting cyclotron for isotope production

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.; Vincent, J.

    2014-11-01

    A 12.5 MeV, 25 μA, proton compact superconducting cyclotron for medical isotope production has been designed and is currently in fabrication. The machine is initially aimed at producing 13N ammonia for Positron Emission Tomography (PET) cardiology applications. With an ultra-compact size and cost-effective price point, this system will offer clinicians unprecedented access to the preferred radiopharmaceutical isotope for cardiac PET imaging. A systems approach that carefully balanced the subsystem requirements coupled to precise beam dynamics calculations was followed. The system is designed to irradiate a liquid target internal to the cyclotron and to minimize the need for radiation shielding. The main parameters of the cyclotron, its design, and principal steps of the development work are presented here.

  8. Neutron measurements in the vicinity of a self-shielded PET cyclotron.

    PubMed

    Hertel, N E; Shannon, M P; Wang, Z-L; Valenzano, M P; Mengesha, W; Crowe, Ronald J

    2004-01-01

    The radionuclides used in positron emission tomography (PET) are short-lived and generally must be produced on site using a cyclotron. A common end product of the nuclear reactions used to produce the PET radionuclides is neutron radiation. These neutrons could potentially contribute to the annual effective dose received by hospital personnel. A Bonner sphere spectrometer was used to measure neutron energy spectra at three locations near a self-shielded PET cyclotron. This cyclotron accelerates protons to 11 MeV. The neutron measurements reported were made during the production of 18F via the 18O(p,n)18F reaction (Q = -2.4 MeV). Neutron spectra were obtained with the BUMS unfolding code and converted to dose equivalent rates.

  9. Note: Control of liquid helium supply to cryopanels of Kolkata superconducting cyclotron

    SciTech Connect

    Bhattacharyya, T. K. Pal, G.

    2015-02-15

    The Kolkata superconducting cyclotron utilises liquid helium to cool the main magnet niobium-titanium (NbTi) coil and the cryopanels. Three liquid helium cooled cryopanels, placed inside the dees of the radio-frequency system, maintain the high vacuum in the acceleration region of the superconducting cyclotron. The small cryostat placed inside the cryogenic distribution manifold located at the basement of the superconducting cyclotron building supplies liquid helium in parallel branches to three cold heads, used for cooling their associated cryopanels. The level in the cryostat has to be maintained at an optimum value to ensure uninterrupted flow of liquid helium to these three cold heads. This paper describes the transfer function of the overall system, its tuning parameters, and discusses the actual control of cryostat level by using these parameters.

  10. Multi-ion, multi-event test of ion cyclotron resonance heating

    NASA Technical Reports Server (NTRS)

    Persoon, Ann M.

    1993-01-01

    The multi-ion, multi-event study of ion cyclotron resonance heating has been funded to study ion energization through ion cyclotron resonance with low frequency broadband electromagnetic turbulence. The modeling algorithm for the ion cyclotron resonance heating (ICRH) of oxygen ions was presented in Crew et al. (1990). Crew and his co-authors developed a two-parameter representation of selected oxygen conic distributions and modelled the conic formation in terms of resonance heating. The first year of this study seeks to extend the work of Crew and his co-authors by testing the applicability of the ICRH mechanism to helium ion conic distributions, using data obtained from the Energetic Ion Composition Spectrometer and the Plasma Wave Instrument on Dynamics Explorer 1.

  11. The multi-ion, multi-event test of ion cyclotron resonance heating

    NASA Technical Reports Server (NTRS)

    Persoon, Ann M.

    1993-01-01

    The multi-ion, multi-event study of ion cyclotron resonance heating was funded to study ion energization through ion cyclotron resonance with low frequency broadband electromagnetic turbulence. The initial work on the ion cyclotron resonance heating (ICRH) of oxygen ions was presented in Crew et al. Crew and his co-authors developed a two-parameter representation of selected oxygen conic distributions and modeled the conic formation in terms of resonance heating. The first year seeks to extend the work of Crew and his co-authors by testing the applicability of the ICRH mechanism to helium ion conic distributions, using data obtained from the Energetic Ion Composition Spectrometer and the Plasma Wave Instrument on Dynamics Explorer 1.

  12. Analysis of Cyclotron Resonance Spectroscopy in a Landau-quantized 2DEG using Characteristic Matrix Methods

    NASA Astrophysics Data System (ADS)

    Hilton, David

    2013-03-01

    We develop a new characteristic matrix-based method to analyze cyclotron resonance experiments in high mobility (μe = 3 . 7 ×106cm2V-1s-1) two-dimensional electron gas samples where direct interference between primary and satellite reflections has previously limited the frequency resolution. We use terahertz time-domain spectroscopy to measure the cyclotron resonance and extract the dephasing lifetime where multiple pulses from the substrate with a separation of ~ 15 ps directly interfere in the time-domain. We find a cyclotron dephasing lifetime of 15 . 1 +/- 0 . 5 ps at 1.5 K and 5 . 0 +/- 0 . 5 ps at 75 K. This work is supported by the National Science Foundation under Grant No. DMR-1056827. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by NSF Cooperative Agreement No. DMR-0654118

  13. Method and apparatus for preventing cyclotron breakdown in partially evacuated waveguide

    DOEpatents

    Moeller, Charles P.

    1987-01-01

    Cyclotron breakdown is prevented in a partially evacuated waveguide by providing a section of waveguide having an axial cut therein in order to apply a potential across the two halves of the waveguide. This section is positioned in the waveguide crossing the area of electron cyclotron resonance. The potential applied across the waveguide halves is used to deflect seed electrons into the wall of the waveguide in order to prevent ionization of gas molecules and creation of more electron ion pairs which would result in cyclotron breakdown. Support means is also disclosed for electrically isolating the waveguide halves and transition means is provided between the section of the waveguide with the axial cut and the solid waveguide at either end thereof.

  14. Experimental investigation on electron cyclotron absorption at down-shifted frequency in the PLT tokamak

    SciTech Connect

    Mazzucato, E.; Fidone, I.; Cavallo, A.; von Goeler, S.; Hsuan, H.

    1986-05-01

    The absorption of 60 GHz electron cyclotron waves, with the extraordinary mode and an oblique angle of propagation, has been investigated in the PLT tokamak in the regime of down-shifted frequencies. The production of energetic electrons, with energies of up to 300 to 400 keV, peaks at values of toroidal field (approx. =29 kG) for which the wave frequency is significantly smaller than the electron cyclotron frequency in the whole plasma region. The observations are consistent with the predictions of the relativistic theory of electron cyclotron damping at down-shifted frequency. Existing rf sources make this process a viable method for assisting the current ramp-up, and for heating the plasma of present large tokamaks.

  15. Fabrication of the Superferric Cyclotron Gas-stopper Magnet at NSCL at Michigan State University

    NASA Astrophysics Data System (ADS)

    Chouhan, S. S.; Bollen, G.; DeKamp, J.; Green, M. A.; Lawton, D.; Magsig, C.; Morrissey, D. J.; Ottarson, J.; Schwarz, S.; Zeller, A. F.

    2014-05-01

    The magnet for the cyclotron gas stopper is a newly designed, large warm-iron superconducting cyclotron sector gradient dipole. The maximum field in the centre (gap = 0.18 m) is 2.7 T. The outer diameter of magnet yoke is 4.0 m, with a pole radius of 1.1 m and B*ρ = 1.8 T m. The fabrication and assembly of the iron return yoke and twelve pole pieces is complete. Separate coils are mounted on the return yokes that have a total mass of about 167 metric tons of iron. This paper illustrates the design and the fabrication process for the cyclotron gas-stopper magnet that is being fabricated at MSU.

  16. Note: control of liquid helium supply to cryopanels of Kolkata superconducting cyclotron.

    PubMed

    Bhattacharyya, T K; Pal, G

    2015-02-01

    The Kolkata superconducting cyclotron utilises liquid helium to cool the main magnet niobium-titanium (NbTi) coil and the cryopanels. Three liquid helium cooled cryopanels, placed inside the dees of the radio-frequency system, maintain the high vacuum in the acceleration region of the superconducting cyclotron. The small cryostat placed inside the cryogenic distribution manifold located at the basement of the superconducting cyclotron building supplies liquid helium in parallel branches to three cold heads, used for cooling their associated cryopanels. The level in the cryostat has to be maintained at an optimum value to ensure uninterrupted flow of liquid helium to these three cold heads. This paper describes the transfer function of the overall system, its tuning parameters, and discusses the actual control of cryostat level by using these parameters. PMID:25725894

  17. On the electrically detected cyclotron resonance of holes in silicon nanostructures

    SciTech Connect

    Bagraev, N. T. Gets, D. S.; Danilovsky, E. Yu.; Klyachkin, L. E.; Malyarenko, A. M.

    2013-04-15

    The cyclotron resonance in semiconductor nanostructures is electrically detected for the first time without an external cavity, a source, and a detector of microwave radiation. An ultranarrow p-Si quantum well on an n-Si (100) surface confined by superconducting heavily boron-doped {delta}-shaped barriers is used as the object of investigation and provides microwave generation within the framework of the nonstationary Josephson effect. The cyclotron resonance is detected upon the presence of a microcavity, which is incorporated into the quantum-well plane, by measuring the longitudinal magnetoresistance under conditions of stabilization of the source-drain current. The cyclotron-resonance spectra and their angular dependences measured in a low magnetic field identify small values of the effective mass of light and heavy holes in various 2D subbands due to the presence of edge channels with a high mobility of carriers.

  18. Coherent anomalous resistivity in the region of electrostatic shocks. [satellite observation of ion cyclotron wave

    NASA Technical Reports Server (NTRS)

    Lysak, R. L.; Hudson, M. K.

    1979-01-01

    Anomalous resistivity in a phase-coherent electrostatic ion cyclotron wave in the region of the auroral electrostatic shocks observed by the S3-3 satellite is considered. It is shown that current-driven shocks and anomalous resistivity will be most important above 5,000 km, where the electron drift velocity is maximized and parallel electric fields are possible. A model for the parallel field based on the dissipation of an Alfven wave pulse by current-driven electrostatic ion cyclotron turbulence is presented. In the model, coherent electrostatic ion cyclotron waves lead to anomalous resistivity by electron trapping, producing parallel electric fields greater than 1 mV/m, and may set up the parallel populations necessary to support oblique electrostatic shocks.

  19. Electrostatic ion cyclotron, beam-plasma, and lower hybrid waves excited by an electron beam

    NASA Technical Reports Server (NTRS)

    Singh, N.; Conrad, J. R.; Schunk, R. W.

    1985-01-01

    It is pointed out that electrostatic ion cyclotron (EIC) waves have been extensively investigated in connection with both space and laboratory plasmas. The present investigation has the objective to study the excitation of low-frequency waves in a multiion plasma by electron beams. The frequencies considered range from below the lowest gyrofrequency of the heaviest ion to about the lower hybrid frequency. It is shown that electron-beam instabilities can produce peaks in the growth rate below the cyclotron frequency of each ion species if nonzero perpendicular wave number effects are included in the ion dynamics. The dispersion relations for neutralized ion Bernstein (NIB) and pure ion Bernstein (PIB) waves are considered along with an instability analysis for a cold plasma and warm electron beam, the electron beam-plasma mode, banded ion cyclotron (EIC) waves with small perpendicular wavelengths, and the growth lengths of the waves.

  20. Electromagnetic fluctuation spectrum associated with the drift Alfven-cyclotron instability

    SciTech Connect

    Rha, Kicheol; Ryu, Chang-Mo; Yoon, Peter H.

    2012-07-15

    The present paper investigates the electromagnetic fluctuation spectrum associated with the drift Alfven-cyclotron instability by means of a two-dimensional particle-in-cell simulation, which may be plausibly associated with a current disruption event. The current disruption event shows localized high-amplitude electromagnetic fluctuations. In recent theories, these fluctuation characteristics are shown to correspond to the drift Alfven-cyclotron instability. A simulation is carried out to clarify this instability. The simulation shows that the drift Alfven-cyclotron instabilities are excited in two frequency regimes, a relatively low frequency mode propagating in a quasi-perpendicular direction while the second high-frequency branch propagating in a predominantly parallel propagation direction, consistent with observations as well as with a recent theory.

  1. Note: control of liquid helium supply to cryopanels of Kolkata superconducting cyclotron.

    PubMed

    Bhattacharyya, T K; Pal, G

    2015-02-01

    The Kolkata superconducting cyclotron utilises liquid helium to cool the main magnet niobium-titanium (NbTi) coil and the cryopanels. Three liquid helium cooled cryopanels, placed inside the dees of the radio-frequency system, maintain the high vacuum in the acceleration region of the superconducting cyclotron. The small cryostat placed inside the cryogenic distribution manifold located at the basement of the superconducting cyclotron building supplies liquid helium in parallel branches to three cold heads, used for cooling their associated cryopanels. The level in the cryostat has to be maintained at an optimum value to ensure uninterrupted flow of liquid helium to these three cold heads. This paper describes the transfer function of the overall system, its tuning parameters, and discusses the actual control of cryostat level by using these parameters.

  2. Absorption and emission of extraordinary-mode electromagnetic waves near cyclotron frequency in nonequilibrium plasmas

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Lin, C. S.; Wong, H. K.; Tsai, S. T.; Zhou, R. L.

    1981-01-01

    An investigation is presented of two cases: (1) weakly relativistic electrons with a loss-cone type distribution, and (2) electrons with a drift velocity parallel to the ambient magnetic field. Numerical computations are given for physical parameters close to those in the polar region of the earth magnetosphere and laboratory experiments, with attention to the fast extraordinary-mode radiation whose frequency is near that of the electron cyclotron frequency. The fast extraordinary mode can escape from a strong field region to the weaker field region and may therefore be measured outside the plasma. It is found that the X mode radiation can be amplified by means of a cyclotron maser effect when the electrons have a loss-cone distribution, and it is concluded that, when the electron energy is sufficiently high, the X mode cutoff frequency may be lower than the cyclotron frequency.

  3. The next generation of electron cyclotron emission imaging diagnostics (invited)a)

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Domier, C. W.; Liang, T.; Kong, X.; Tobias, B.; Shen, Z.; Luhmann, N. C.; Park, H.; Classen, I. G. J.; van de Pol, M. J.; Donné, A. J. H.; Jaspers, R.

    2008-10-01

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16×8 images of Te profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities far beyond what has been achieved to date. These include the development of a minilens array configuration with increased sensitivity antennas, a new local oscillator pumping scheme, enhanced electron cyclotron resonance heating shielding, and a highly flexible optical design with vertical zoom capability. Horizontal zoom and spot size (rf bandwidth) capabilities are also being developed with new ECEI electronics. An interface module is under development to remotely control all key features of the new ECEI instrument, many of which can be changed during a plasma discharge for maximum flexibility.

  4. Experiments on ion cyclotron damping at the deuterium fourth harmonic in DIII-D

    SciTech Connect

    Pinsker, R. I.; Baity, F. W.; Bernabei, S.; Greenough, N.; Heidbrink, W. W.; Mau, T. K.; Petty, C. C.; Porkolab, M.

    1999-09-20

    Absorption of fast Alfven waves by the energetic ions of an injected beam is evaluated in the DIII-D tokamak. Ion cyclotron resonance absorption at the fourth harmonic of the deuteron cyclotron frequency is observed with deuterium neutral beam injection (f=60 MHz, B{sub T}=1.9 T). Enhanced D-D neutron rates are evidence of absorption at the Doppler-shifted cyclotron resonance. Characteristics of global energy confinement provide further proof of substantial beam acceleration by the rf. In many cases, the accelerated deuterons cause temporary stabilization of the sawtooth (''monster sawteeth''), at relatively low rf power levels of {approx}1 MW. (c) 1999 American Institute of Physics.

  5. The cyclotron resonance in Heterostructures with the InSb/AlInSb quantum wells

    SciTech Connect

    Vasilyev, Yu. B.; Gouider, F.; Nachtwei, G.; Buckle, P. D.

    2010-11-15

    The absorption of two-dimensional electrons in InSb-based quantum wells in the quantized magnetic fields in the terahertz spectral region are studied. A p-Ge-based cyclotron laser was used as the radiation source. The effective mass of carriers at the Fermi level equal to 0.0219m{sub 0} (m{sub 0} is the mass of a free electron) is determined from the cyclotron resonance spectra. It is shown that the electron spectrum is described by the Kane model in a wide range of magnetic fields. An anomalously pronounced splitting of the cyclotron resonance line not associated with the nonparabolicity of the conduction band of InAs is observed in low magnetic fields, which can be attributed to the effect of the spin-orbit interaction.

  6. Narrow heavy-hole cyclotron resonances split by the cubic Rashba spin-orbit interaction in strained germanium quantum wells

    NASA Astrophysics Data System (ADS)

    Failla, M.; Myronov, M.; Morrison, C.; Leadley, D. R.; Lloyd-Hughes, J.

    2015-07-01

    The spin-orbit interaction was found to split the cyclotron resonance of heavy holes confined in high-mobility, compressively strained germanium quantum wells. The interference between coherent spin-split cyclotron resonances was tracked on picosecond time scales using terahertz time-domain spectroscopy. Analysis in the time domain, or using a time-frequency decomposition based on the Gabor-Morlet wavelet, was necessary when the difference between cyclotron frequencies was comparable to the linewidth. The cubic Rashba spin-orbit coefficient β was determined via two methods: (i) the magnetic-field dependence of the cyclotron frequencies, and (ii) the spin-resolved subband densities. An enhanced β and spin polarization was created by tailoring the strain to enhance the spin-orbit interaction. The amplitude modulation of the narrow, interfering cyclotron resonances is a signature of spin coherences persisting for more than 10 ps.

  7. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    PubMed

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.

  8. Kinetic instabilities in pulsed operation mode of a 14 GHz electron cyclotron resonance ion source.

    PubMed

    Tarvainen, O; Kalvas, T; Koivisto, H; Komppula, J; Kronholm, R; Laulainen, J; Izotov, I; Mansfeld, D; Skalyga, V

    2016-02-01

    The occurrence of kinetic plasma instabilities is studied in pulsed operation mode of a 14 GHz A-electron cyclotron resonance type electron cyclotron resonance ion source. It is shown that the temporal delay between the plasma breakdown and the appearance of the instabilities is on the order of 10-100 ms. The most important parameters affecting the delay are magnetic field strength and neutral gas pressure. It is demonstrated that kinetic instabilities limit the high charge state ion beam production in the unstable operating regime. PMID:26931919

  9. Cyclotron resonance spectroscopy in a high mobility two dimensional electron gas using characteristic matrix methods.

    PubMed

    Hilton, David J

    2012-12-31

    We develop a new characteristic matrix-based method to analyze cyclotron resonance experiments in high mobility two-dimensional electron gas samples where direct interference between primary and satellite reflections has previously limited the frequency resolution. This model is used to simulate experimental data taken using terahertz time-domain spectroscopy that show multiple pulses from the substrate with a separation of 15 ps that directly interfere in the time-domain. We determine a cyclotron dephasing lifetime of 15.1 ± 0.5 ps at 1.5 K and 5.0 ± 0.5 ps at 75 K.

  10. Calculation of the spontaneous cyclotron emissivity using the complete relativistic resonance condition

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Wu, C. S.; Gaffey, J. D., Jr.

    1984-01-01

    An expression for the spectral emissivity of spontaneous synchrotron radiation for a plasma which consists of both thermal and suprathermal electron components is derived using the complete relativistic cyclotron resonance condition. The expression is valid over all angles of propagation. The result is applied to the study of the emission of radiation from an energetic population of electrons with a loss-cone distribution in a relatively low-density plasma (i.e., the electron plasma frequency is less than the cyclotron frequency).

  11. New Cyclotron Targetry to Enhance F-18 clinical Position Emission Tomography

    SciTech Connect

    J. Michael Doster

    2008-12-19

    This project proposes to develop cyclotron targets that produce F-18 for clinical Positron Emission Tomography (PET) at significantly higher rates than that available from current targetry. This production rate of 18F is directly proportional to the beam current. Higher beam currents would result in increased 18F production but would be accompanied by higher heat loads to the target. The beam power available in most commercial cyclotrons exceeds the heat removal capacity of current target technology by a factor of two to four, significantly limiting the production rate of Fluorine-18.

  12. Temperature gradient scale length measurement: A high accuracy application of electron cyclotron emission without calibration

    NASA Astrophysics Data System (ADS)

    Houshmandyar, S.; Yang, Z. J.; Phillips, P. E.; Rowan, W. L.; Hubbard, A. E.; Rice, J. E.; Hughes, J. W.; Wolfe, S. M.

    2016-11-01

    Calibration is a crucial procedure in electron temperature (Te) inference from a typical electron cyclotron emission (ECE) diagnostic on tokamaks. Although the calibration provides an important multiplying factor for an individual ECE channel, the parameter ΔTe/Te is independent of any calibration. Since an ECE channel measures the cyclotron emission for a particular flux surface, a non-perturbing change in toroidal magnetic field changes the view of that channel. Hence the calibration-free parameter is a measure of Te gradient. BT-jog technique is presented here which employs the parameter and the raw ECE signals for direct measurement of electron temperature gradient scale length.

  13. Efficiency of combined cyclotron--[hacek C]erenkov interaction between electrons and electromagnetic fields

    SciTech Connect

    Nusinovich, G.S.; Vlasov, A.N. )

    1993-02-01

    A theory is presented describing the electron cyclotron interaction at frequencies near cutoff, followed by a [hacek C]erenkov interaction region. In such a case, the cyclotron interaction withdraws only the orbital component of electron momentum, while in the [hacek C]erenkov interaction the electrons lose their axial momentum. It is shown that the addition of the [hacek C]erenkov interaction significantly enhances the total electronic efficiency. Since both kinds of operation are relatively insensitive to electron velocity spread, the efficiency of the combined interaction is also rather tolerant to velocity spread. Thus, rather efficient sources of electromagnetic radiation based on poor quality electron beams may be developed.

  14. Comments on finite Larmor radius models for ion cyclotron range of frequencies heating in tokamaks

    SciTech Connect

    Phillips, C.K.; Wilson, J.R.; Hosea, J.C.; Majeski, R.; Smithe, D.N.

    1994-06-01

    The accuracy of standard finite Larmor radius (FLR) models for wave propagation in the ion cyclotron range of frequencies (ICRF) is compared against full hot plasma models. For multiple ion species plasmas, the FLR model is shown to predict the presence of a spurious second harmonic ion-ion type resonance between the second harmonic cyclotron layers of two ion species. It is shown explicitly here that the spurious resonance is an artifact of the FLR models and that no absorption occurs in the plasma as a result of this ``resonance.``

  15. Simultaneous excitation of broadband electrostatic noise and electron cyclotron waves in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Berchem, Jean P.; Schriver, David; Ashour-Abdalla, Maha

    1991-01-01

    Electron cyclotron harmonics and broadband electrostatic noise (BEN) are often observed in the earth's outer plasma sheet. While it is well known that ion beams in the plasma sheet boundary layer can generate BEN, new two-dimensional electrostatic simulations show that field-aligned ion beams with a small perpendicular ring distribution can drive not only BEN, but also electron cyclotron harmonic (ECH) waves simultaneously. Simulation results are presented here using detailed diagnostics of wave properties, including dispersion relations of all wave modes.

  16. Cyclotron resonance in HgTe/CdTe-based heterostructures in high magnetic fields

    PubMed Central

    2012-01-01

    Cyclotron resonance study of HgTe/CdTe-based quantum wells with both inverted and normal band structures in quantizing magnetic fields was performed. In semimetallic HgTe quantum wells with inverted band structure, a hole cyclotron resonance line was observed for the first time. In the samples with normal band structure, interband transitions were observed with wide line width due to quantum well width fluctuations. In all samples, impurity-related magnetoabsorption lines were revealed. The obtained results were interpreted within the Kane 8·8 model, the valence band offset of CdTe and HgTe, and the Kane parameter EP being adjusted. PMID:23013642

  17. Simulation of parameter scaling in electron cyclotron resonance ion source plasmas using the GEM code

    SciTech Connect

    Cluggish, B.; Zhao, L.; Kim, J. S.

    2010-02-15

    Although heating power and gas pressure are two of the two of primary experimental ''knobs'' available to users of electron cyclotron resonance ion sources, there is still no clear understanding of how they interact in order to provide optimal plasma conditions. FAR-TECH, Inc. has performed a series of simulations with its generalized electron cyclotron resonance ion source model in which the power and pressure were varied over a wide range. Analysis of the numerical data produces scaling laws that predict the plasma parameters as a function of the power and pressure. These scaling laws are in general agreement with experimental data.

  18. A study of the cyclotron gas-stopping concept for the production of rare isotope beams.

    SciTech Connect

    Sternberg, M.; Savard, G.; Physics; Univ. of Chicago

    2008-11-11

    The proposed cyclotron gas-stopping scheme for the efficient thermalization of intense rare isotope beams is examined. Simulations expand on previous studies and expose many complications of such an apparatus arising from physical effects not accounted for properly in previous work. The previously proposed cyclotron gas-stopper geometry is found to have a near null efficiency, but extended simulations suggest that a device with a much larger pole gap could achieve a stopping efficiency approaching roughly 90% and at least a 10 times larger acceptance. However, some of the advantages that were incorrectly predicted in previous simulations for high intensity operation of this device are compromised.

  19. About the linewidth of cyclotron resonance in band-gap graphene

    NASA Astrophysics Data System (ADS)

    Kryuchkov, S. V.; Kukhar', E. I.

    2015-01-01

    The critical amplitude of circularly polarized electromagnetic wave when the hysteresis of cyclotron absorption takes place, was found for band-gap graphene. The dependence of critical amplitude on the gap value and on the relaxation time was investigated. The conditions of applicability of linear theory describing the electromagnetic response of band-gap graphene in a non-zero magnetic field were found. The power of the circularly polarized electromagnetic radiation absorbed by band-gap graphene in the presence of a magnetic field was calculated. The linewidth of cyclotron absorption was shown to be not zero even for pure band-gap graphene.

  20. Cyclotron resonance of figure-of-eight orbits in a type-II Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Koshino, Mikito

    2016-07-01

    We study the cyclotron resonance in the electron-hole joint Fermi surface of a type-II Weyl semimetal. In magnetic field, the electron and hole pockets touching at the Weyl node are hybridized to form quantized Landau levels corresponding to semiclassical 8-shaped orbits. We calculate the dynamical conductivities for the electric fields oscillating in x and y directions and find that the resonant frequencies in x and y differ by a factor of two, reflecting the figure-of-eight electron motion in real space. The peculiar anisotropy in the cyclotron resonance serves as a unique characteristic of the dumbbell-like Fermi surface.

  1. Field structure and electron life times in the MEFISTO electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Bodendorfer, M.; Altwegg, K.; Shea, H.; Wurz, P.

    2008-03-01

    The complex magnetic field of the permanent magnet electron cyclotron resonance (ECR) ion source MEFISTO located at the University of Berne has been numerically simulated. For the first time the magnetized volume qualified for electron cyclotron resonance at 2.45 GHz and 87.5 mT has been analyzed in highly detailed 3D simulations with unprecedented resolution. New results were obtained from the numerical simulation of 25,211 electron trajectories. The evident characteristic ion sputtering trident of hexapole confined ECR ion sources has been identified with the field and electron trajectory distribution. Furthermore, unexpected long electron trajectory lifetimes were found.

  2. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    DOE PAGES

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; Gary, S. Peter

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω ≃ 0.5Ωe, where Ωe is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe and 0.6Ωe. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  3. Quasilinear theory and particle-in-cell simulation of proton cyclotron instability

    SciTech Connect

    Seough, Jungjoon E-mail: yoonp@umd.edu; Yoon, Peter H. E-mail: yoonp@umd.edu; Hwang, Junga E-mail: yoonp@umd.edu

    2014-06-15

    The electromagnetic ion (proton) cyclotron instability is important for regulating the excessive development of perpendicular temperature anisotropy in the solar wind, for instance, when it is compressed in the vicinity of the Earth's magnetosheath environment. A recent letter [Seough et al., Phys. Rev. Lett. 110, 071103 (2013)] successfully employed the quasilinear kinetic theory to explain the observed temperature anisotropy upper bound. The present paper rigorously examines the reliability of the quasilinear theory by making a direct comparison against results from the particle-in-cell simulation method. It is found that the quasilinear approach is indeed a valid first-cut theoretical tool in the study of proton cyclotron instability.

  4. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)a)

    NASA Astrophysics Data System (ADS)

    Classen, I. G. J.; Boom, J. E.; Suttrop, W.; Schmid, E.; Tobias, B.; Domier, C. W.; Luhmann, N. C.; Donné, A. J. H.; Jaspers, R. J. E.; de Vries, P. C.; Park, H. K.; Munsat, T.; García-Muñoz, M.; Schneider, P. A.

    2010-10-01

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfvén eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  5. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    PubMed

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well. PMID:18315101

  6. Cyclotron resonance spectroscopy in a high mobility two dimensional electron gas using characteristic matrix methods.

    PubMed

    Hilton, David J

    2012-12-31

    We develop a new characteristic matrix-based method to analyze cyclotron resonance experiments in high mobility two-dimensional electron gas samples where direct interference between primary and satellite reflections has previously limited the frequency resolution. This model is used to simulate experimental data taken using terahertz time-domain spectroscopy that show multiple pulses from the substrate with a separation of 15 ps that directly interfere in the time-domain. We determine a cyclotron dephasing lifetime of 15.1 ± 0.5 ps at 1.5 K and 5.0 ± 0.5 ps at 75 K. PMID:23388799

  7. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  8. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented. PMID:26932084

  9. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    NASA Astrophysics Data System (ADS)

    Toivanen, V.; Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  10. Five Years of Cyclotron Radioisotope Production Experiences at the First PET-CT in Venezuela

    SciTech Connect

    Colmenter, L.; Coelho, D.; Esteves, L. M.; Ruiz, N.; Morales, L.; Lugo, I.; Sajo-Bohus, L.; Liendo, J. A.; Greaves, E. D.; Barros, H.; Castillo, J.

    2007-10-26

    Five years operation of a compact cyclotron installed at PET-CT facility in Caracas, Venezuela is given. Production rate of {sup 18}F labeled FDG, operation and radiation monitoring experience are included. We conclude that {sup 18}FDG CT-PET is the most effective technique for patient diagnosis.

  11. Low current performance of the Bern medical cyclotron down to the pA range

    NASA Astrophysics Data System (ADS)

    Auger, M.; Braccini, S.; Ereditato, A.; Nesteruk, K. P.; Scampoli, P.

    2015-09-01

    A medical cyclotron accelerating H- ions to 18 MeV is in operation at the Bern University Hospital (Inselspital). It is the commercial IBA 18/18 cyclotron equipped with a specifically conceived 6 m long external beam line ending in a separate bunker. This feature is unique for a hospital-based facility and makes it possible to conduct routine radioisotope production for PET diagnostics in parallel with multidisciplinary research activities, among which are novel particle detectors, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. Several of these activities, such as radiobiology experiments for example, require low current beams down to the pA range, while medical cyclotrons are designed for high current operation above 10 μA. In this paper, we present the first results on the low current performance of a PET medical cyclotron obtained by ion source, radio-frequency and main coil tuning. With this method, stable beam currents down to (1.5+/- 0.5 ) pA were obtained and measured with a high-sensitivity Faraday cup located at the end of the beam transport line.

  12. Neutron Beams from Deuteron Breakup at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory

    SciTech Connect

    McMahan, M.A.; Ahle, L.; Bleuel, D.L.; Bernstein, L.; Braquest, B.R.; Cerny, J.; Heilbronn, L.H.; Jewett, C.C.; Thompson, I.; Wilson, B.

    2007-07-31

    Accelerator-based neutron sources offer many advantages, in particular tunability of the neutron beam in energy and width to match the needs of the application. Using a recently constructed neutron beam line at the 88-Inch Cyclotron at LBNL, tunable high-intensity sources of quasi-monoenergetic and broad spectrum neutrons from deuteron breakup are under development for a variety of applications.

  13. Electron cyclotron harmonic resonances in high-frequency heating of the ionosphere

    SciTech Connect

    Kuo, Spencer P.

    2013-09-15

    Electron acceleration by upper hybrid waves under cyclotron harmonic resonance interaction is studied. Theory is formulated; the analytical solutions in the second and fourth harmonic cyclotron resonance cases are obtained, and in the third harmonic case, a first order differential equation governing the evolution of the electron energy is derived. The theory is applied for explaining the generation of artificial ionization layers observed in high-frequency (HF) ionospheric heating experiments. The upper hybrid waves are assumed to be excited parametrically by the O-mode HF heating wave. As the decay mode is the lower hybrid wave, the excited upper hybrid waves have wavelengths ranging from 0.25 to 0.5 m, which are short enough to effectively incorporate the finite Larmour radius effect for the harmonic cyclotron resonance interactions as well as have a frequency bandwidth of about 20 kHz, which provides an altitude region of about 10 km for continuous harmonic cyclotron resonance interaction between electrons and descending waves in the slightly inhomogeneous geomagnetic field. The numerical results on electron acceleration show that electron fluxes with energies larger than 14 eV are generated in the three harmonic cases. These energetic electrons cause impact ionizations, which are descending to form artificial ionization layers at the bottom of the ionospheric F region.

  14. A conceptual design for a primary cyclotron for the ISL radioactive beam project

    SciTech Connect

    Clark, D.J.

    1992-07-01

    A design for a 600 MeV proton cyclotron is described. Features include a single stage with external ion source, a normal conducting magnet coil with 2 T peak field in the hills, and dees in valleys. The design can be extended to 800 and 1000 MeV.

  15. Status of the PHOENIX electron cyclotron resonance charge breeder at ISOLDE, CERN.

    PubMed

    Barton, Charles; Cederkall, Joakim; Delahaye, Pierre; Kester, Oliver; Lamy, Thierry; Marie-Jeanne, Mélanie

    2008-02-01

    We report here on the last progresses made with the PHOENIX electron cyclotron resonance charge breeder test bench at ISOLDE. Recently, an experiment was performed to test the trapping of (61)Fe daughter nuclides from the decay of (61)Mn nuclides. Preliminary results are given.

  16. Beam phase measurement system for the K130 cyclotron in Jyväskylä

    NASA Astrophysics Data System (ADS)

    Gustafsson, J.; Kotilainen, P.; Nieminen, V.; Liukkonen, E.; Kaski, K.

    1993-11-01

    A phase measurement system for Jyväskylä new K = 130 heavy ion cyclotron has been designed and realized. The phase measurement is done using a set of capacitive probes to detect phase information from the internal ion beam. This data is vital for tuning purposes to obtain an isochronous magnetic field and to maximize the ion beam intensity.

  17. Simulations of heavy ion heating by electromagnetic ion cyclotron waves driven by proton temperature anisotropies

    NASA Technical Reports Server (NTRS)

    Tanaka, M.

    1985-01-01

    Heating of heavy ions by the electromagnetic ion cyclotron (EMIC) waves, which are driven by proton temperature anisotropies, is studied by means of hybrid particle simulations. Initially, relaxation of the temperature anisotropies in the proton distribution and isotropic heating of the heavy ions are observed (phase I), followed by substantial perpendicular heating of the heavy ions (phase II). The heavy ions are distinctly gyrophase modulated by the EMIC waves. The isotropic heating in phase I is due to magnetic trapping by the excited proton cyclotron waves. The perpendicular heating in phase II is attributed to cyclotron resonance with the EMIC waves, which becomes possible by means of the preceding heating in phase I. Saturation of the EMIC instability is instead attributed to magnetic trapping of the majority ions: protons. When the proton anisotropy is very large, frequency shift (decrease) of the proton cyclotron waves to less than 1/2 Ohm(p) is observed. The present mechanism is not only relevant to He(+) heating in the dayside equator of the magnetosphere, but it also predicts hot He2(+) ions behind the earth's bow shock.

  18. Five Years of Cyclotron Radioisotope Production Experiences at the First PET-CT in Venezuela

    NASA Astrophysics Data System (ADS)

    Colmenter, L.; Sajo-Bohus, L.; Liendo, J. A.; Greaves, E. D.; Coelho, D.; Barros, H.; Castillo, J.; Esteves, L. M.; Ruiz, N.; Morales, L.; Lugo, I.

    2007-10-01

    Five years operation of a compact cyclotron installed at PET-CT facility in Caracas, Venezuela is given. Production rate of 18F labeled FDG, operation and radiation monitoring experience are included. We conclude that 18FDG CT-PET is the most effective technique for patient diagnosis.

  19. Graphical user interface for yield and dose estimations for cyclotron-produced technetium.

    PubMed

    Hou, X; Vuckovic, M; Buckley, K; Bénard, F; Schaffer, P; Ruth, T; Celler, A

    2014-07-01

    The cyclotron-based (100)Mo(p,2n)(99m)Tc reaction has been proposed as an alternative method for solving the shortage of (99m)Tc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with (99m)Tc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced (99m)Tc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  20. On the cyclotron resonance mechanism for magnetic field effects on transmembrane ion conductivity.

    PubMed

    Halle, B

    1988-01-01

    The cyclotron resonance model, recently proposed to account for physiological response to weak environmental magnetic fields, is shown to violate the laws of classical mechanics. Further, it is argued that the ubiquitous presence of dynamic friction in fluid media precludes significant magnetic effects on membrane ion transport. PMID:2461205

  1. Dynamic cyclotron resonance in relativistic microwave devices with linear electron beams

    SciTech Connect

    Vlasov, A.N.; Kornienko, V.N.; Cherepenin, V.A. |

    1995-12-31

    In the present work the authors analyze theoretically and by numerical simulation dependencies of output radiation versus magnitude of focusing magnetic field when magnetic field magnitude is sufficiently smaller than value corresponding to cyclotron absorption. The high frequency electromagnetic field amplitude is high for optimum regimes with high efficiency level. In this case some electrons are accelerated and different electrons are decelerated during interaction inside device. As a result, cyclotron resonance conditions are different for different electron groups. The authors have found theoretically condition of dynamic cyclotron resonance when it is possible to improve efficiency of interaction in devices with distributed interaction such as TWT, BWO, generator of diffractional radiation by combination of Cherenkov and cyclotron interactions in strong nonlinear regimes with optimum efficiency levels. The numerical simulation of the interaction between initially linear electron beam and electromagnetic field show that there are regions of efficiency improvement up to 50 and amplitude of high-frequency electromagnetic field. One of the important features of such combined interaction is dependence on relativistic factor. They have found optimum region of relativistic factors by numerical simulation. The results of numerical simulation were compared with experimental data refer to relativistic diffractional generators and multiwave Cherenkov generators. Good agreement in value of optimum magnitude of guiding magnetic field was obtained.

  2. Tomsk Polytechnic University cyclotron as a source for neutron based cancer treatment

    SciTech Connect

    Lisin, V. A.; Bogdanov, A. V.; Golovkov, V. M.; Sukhikh, L. G.; Verigin, D. A.; Musabaeva, L. I.

    2014-02-15

    In this paper we present our cyclotron based neutron source with average energy 6.3 MeV generated during the 13.6 MeV deuterons interactions with beryllium target, neutron field dosimetry, and dosimetry of attendant gamma fields. We also present application of our neutron source for cancer treatment.

  3. Numerical study of ion-cyclotron resonant interaction via hybrid-Vlasov simulations

    SciTech Connect

    Valentini, Francesco; Iazzolino, Antonio; Veltri, Pierluigi

    2010-05-15

    Hybrid Vlasov-Maxwell numerical simulations are used to investigate the collisionless resonant interaction of ions with ion-cyclotron waves in parallel propagation with respect to a background magnetic field. In linear regime, analytical results on wave damping, obtained by integrating the linearized Vlasov equation through the well-known characteristics method, are compared with the numerical results. Then, the ion heating process and the consequent generation of temperature anisotropy in the direction perpendicular to the background magnetic field are investigated numerically in detail. In nonlinear regime, the numerical results show that the distribution of particle velocities is strongly distorted due to the resonant ion-cyclotron interaction with the formation of diffusive plateaus in the longitudinal direction (with respect to the ambient field) and significantly departs from the Maxwellian equilibrium. These results are relevant in many plasma physics environments, such as the solar wind, where the process of ion-cyclotron heating and the generation of temperature anisotropy and non-Maxwellian velocity distributions are routinely recovered in many in situ measurements, or the laboratory plasmas, where the resonant interaction of ions with ion-cyclotron waves is the primary source of auxiliary heating in the confining apparatus.

  4. Effect of a RF Wave on Ion Cyclotron Instability in Size Distributed Impurities Containing Plasmas

    SciTech Connect

    Sharma, A. K.; Tripathi, V. K.; Annou, R.

    2008-09-07

    The effect of a large amplitude lower hybrid wave on current driven ion cyclotron waves in a dusty plasma where dust grains are size distributed is examined. The influence of the lower hybrid wave on the stabilization of the instability is studied. The efficacy of rf is dust density dependent.

  5. Cyclotron resonant scattering in gamma-ray bursts - Line strengths and signature of neutron star rotation

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.; Wang, J. C. L.; Wasserman, I.

    1992-01-01

    We explain the relative line strengths in gamma-ray bursts in terms of cyclotron resonant scattering. We describe the line signature of neutron star rotation and discuss the possibility that variations seen in the strengths and widths of the lines in GB780325 and GB870303 are due to rotation.

  6. Cyclotron laboratory of the Institute for Nuclear Research and Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Tonev, D.; Goutev, N.; Georgiev, L. S.

    2016-06-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that could be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99m Tc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, solid state physics, applied research, new materials and for education in all these fields including nuclear energy. The building of the laboratory will be constructed nearby the Institute for Nuclear Research and Nuclear Energy and the cyclotron together with all the equipment needed will be installed there.

  7. Graphical user interface for yield and dose estimations for cyclotron-produced technetium

    NASA Astrophysics Data System (ADS)

    Hou, X.; Vuckovic, M.; Buckley, K.; Bénard, F.; Schaffer, P.; Ruth, T.; Celler, A.

    2014-07-01

    The cyclotron-based 100Mo(p,2n)99mTc reaction has been proposed as an alternative method for solving the shortage of 99mTc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with 99mTc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced 99mTc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  8. On cyclotron wave heating and acceleration of solar wind ions in the outer corona

    NASA Astrophysics Data System (ADS)

    Tu, C.-Y.; Marsch, E.

    2001-05-01

    The preferential heating and acceleration of O+5 ions, as observed by Ultraviolet Coronagraph Spectrometer (UVCS) on Solar and Heliospheric Observatory (SOHO) [Kohl et al., 1998] in the solar coronal holes have been interpreted and modeled by invoking wave-particle cyclotron resonance [Cranmer et al., 1999a, 1999b]. However, in the model of Cranmer et al. [1999a, 1999b] and in other subsequent models the assumption of a rigid slope of the wave spectrum was made in calculating the wave energy absortion by the different ion species. In the present paper it is shown that a self-consistent treatment of the wave damping and absorption is necessary and leads to substantially different results. On the basis of quasi-linear theory, the interaction between the ions and the ion-cyclotron waves [Marsch et al., 1982a; Marsch, 1998] is studied. The total energy conservation equation, including the kinetic energy of the resonant particles and the wave energy, is derived and discussed in detail. The spectral evolution equation for cyclotron waves, when being controlled by the wave growth/damping rate and WKB effects, is solved self-consistently together with the full set of anisotropic multifluid equations for the ions including the cyclotron-resonance wave heating and acceleration rates. From the numerical results we reach the following conclusions: (1) It is physically questionable to use a spectrum with a fixed spectral slope near the cyclotron resonance when one calculates the partition of wave energy among the different ionic species and the kinetic degrees of freedom parallel and perpendicular to the magnetic field. This assumption neglects the important effects of wave absorption and the concurrent reshaping of the wave spectrum, and thus leads in the dissipation domain to extremely low amplitudes of the waves and to difficulties in supplying enough energy to balance the wave absorption at the cyclotron resonances. (2) If the spectrum is allowed to evolve self

  9. Acceleration of suprathermal ions by lightning-generated ion cyclotron waves.

    NASA Astrophysics Data System (ADS)

    Kuzichev, Ilya; Shklyar, David

    Lightning-induced emissions play important role in ion dynamics in the low-altitude magnetosphere. In particular, resonant interaction of ions with lower hybrid waves excited by lightning discharges leads to efficient ion heating; and the interaction with ion cyclotron waves is considered as a preheating mechanism. Such resonant wave-particle interaction is usually considered in two limiting cases: in the framework of quasi-linear theory, when the interaction with small amplitude wide spectrum waves is assumed, and in the case of monochromatic waves. In this report, we discuss resonant interaction of ions with special ion cyclotron wave packets which do not correspond to any of these cases. Some of wave packets formed of ion cyclotron waves generated by lightning strokes have a peculiar type of trajectories: they get stuck in the region where wave frequency becomes close to the local ion cyclotron frequency. These wave packets are characterized by wave frequency and wave vector which vary in space and time and, thus, along particle trajectory. What is more, the wave vector increases linearly with time. We derive the equations describing resonant interaction of ions with such ion cyclotron wave packets and obtain the resonance conditions. For suprathermal ions under consideration, the first cyclotron resonance gives the main contribution to resonant interaction. We show that the resonance condition for this resonance is defined by the detuning of the wave frequency from the local ion cyclotron frequency. The equations of motion have been solved numerically for test particles. Numerical results and analytical estimates demonstrate the essential difference between the interaction under consideration and the case of wide spectrum waves described by quasi-linear theory. Whereas the latter leads to particle diffusion in the phase space, the interaction we study leads to preferential ion acceleration. Hence, the ion energization has a non-diffusive character. The results

  10. Discovery of Cyclotron Resonance Features in the Soft Gamma Repeater SGR 1806-20

    NASA Technical Reports Server (NTRS)

    Ibrahim, Alaa I.; Safi-Harb, Samar; Swank, Jean H.; Parke, William; Zane, Silvia; Turolla, Roberto

    2002-01-01

    We report evidence of cyclotron resonance features from the Soft Gamma Repeater SGR 1806-20 in outburst, detected with the Rossi X-ray Timing Explorer in the spectrum of a long, complex precursor that preceded a strong burst. The features consist of a narrow 5.0 keV absorption line with modulation near its second and third harmonics (at 11.2 keV and 17.5 keV respectively). The line features are transient and are detected in the harder part of the precursor. The 5.0 keV feature is strong, with an equivalent width of approx. 500 eV and a narrow width of less than 0.4 keV. Interpreting the features as electron cyclotron lines in the context of accretion models leads to a large mass-radius ratio (M/R greater than 0.3 solar mass/km) that is inconsistent with neutron stars or that requires a low (5-7) x 10(exp 11) G magnetic field that is unlikely for SGRs. The line widths are also narrow compared with those of electron cyclotron resonances observed so far in X-ray pulsars. In the magnetar picture, the features are plausibly explained as ion cyclotron resonances in an ultra-strong magnetic field that have recently been predicted from magnetar candidates. In this view, the 5.0 keV feature is consistent with a proton cyclotron fundamental whose energy and width are close to model predictions. The line energy would correspond to a surface magnetic field of 1.0 x 10(exp 15) G for SGR 1806-20, in good agreement with that inferred from the spin-down measure in the source.

  11. Experimental measurement and Monte Carlo assessment of Argon-41 production in a PET cyclotron facility.

    PubMed

    Infantino, Angelo; Valtieri, Lorenzo; Cicoria, Gianfranco; Pancaldi, Davide; Mostacci, Domiziano; Marengo, Mario

    2015-12-01

    In a medical cyclotron facility, (41)Ar (t1/2 = 109.34 m) is produced by the activation of air due to the neutron flux during irradiation, according to the (40)Ar(n,γ)(41)Ar reaction; this is particularly relevant in widely diffused high beam current cyclotrons for the production of PET radionuclides. While theoretical estimations of the (41)Ar production have been published, no data are available on direct experimental measurements for a biomedical cyclotron. In this work, we describe a sampling methodology and report the results of an extensive measurement campaign. Furthermore, the experimental results are compared with Monte Carlo simulations performed with the FLUKA code. To measure (41)Ar activity, air samples were taken inside the cyclotron bunker in sealed Marinelli beakers, during the routine production of (18)F with a 16.5 MeV GE-PETtrace cyclotron; this sampling thus reproduces a situation of absence of air changes. Samples analysis was performed in a gamma-ray spectrometry system equipped with HPGe detector. Monte Carlo assessment of the (41)Ar saturation yield was performed directly using the standard FLUKA score RESNUCLE, and off-line by the convolution of neutron fluence with cross section data. The average (41)Ar saturation yield per one liter of air of (41)Ar, measured in gamma-ray spectrometry, resulted to be 3.0 ± 0.6 Bq/µA*dm(3) while simulations gave a result of 6.9 ± 0.3 Bq/µA*dm(3) in the direct assessment and 6.92 ± 0.22 Bq/µA*dm(3) by the convolution neutron fluence-to-cross section.

  12. Laboratory Modeling of Spike-like Operation of Magnetospheric Cyclotron Masers

    NASA Astrophysics Data System (ADS)

    Golubev, S. V.; Razin, S. V.; Zorin, V. G.; Vodopyanov, A. V.; Mansfeld, D. A.; Demekhov, A. G.; Trakhtengerts, V. Y.

    We present a study of pulsating regimes of whistler cyclotron instability in a labora- tory magnetic mirror trap. This study is aimed at searching common and specific fea- tures of spike-like regimes of magnetospheric and laboratory cyclotron masers. The plasma with hot-electron population is produced in the trap by the ECR discharge. The energetic electrons with anisotropic velocity distribution have energies of about 5 to 100 keV. Quasi-periodic spikes of precipitated energetic electrons are detected by the current pulses produced by these electrons hitting semiconductor detectors (pin-diodes) at the ends of the trap. Associated with these spikes is the electromagnetic emission propagating quasi-parallel to the magnetic field. The emission spectrum is bounded from above by the frequency which is below the electron gyrofrequency in the central cross-section of the trap. Precipitation of energetic electrons is found to be quasi- uniform across the trap. These and other features allow us to identify the electron precipitation mechanism as the turbulent diffusion at whistler-mode waves generated by the cyclotron instability of the energetic electrons. We study the dynamics of pulsating regime as dependent on the ambient gas pres- sure, power of the heating pulse, mirror ratio, and the position of the gyroresonance level for the heating radiation with respect to the trap center. Several mechanisms of spike formation are considered. In particular, we discuss the role of wave reflection at the ends of the plasma column, the heating of the background plasma by the excited radiation, and nonlinear modification of the hot-electron distribution function. We found that the spike-like regimes of precipitation observed in the laboratory trap are generally consistent with the theory of cyclotron masers and can have much in common with similar regimes in space cyclotron masers, in particular, in magneto- spheric radiation belts and solar flare loops.

  13. Experimental measurement and Monte Carlo assessment of Argon-41 production in a PET cyclotron facility.

    PubMed

    Infantino, Angelo; Valtieri, Lorenzo; Cicoria, Gianfranco; Pancaldi, Davide; Mostacci, Domiziano; Marengo, Mario

    2015-12-01

    In a medical cyclotron facility, (41)Ar (t1/2 = 109.34 m) is produced by the activation of air due to the neutron flux during irradiation, according to the (40)Ar(n,γ)(41)Ar reaction; this is particularly relevant in widely diffused high beam current cyclotrons for the production of PET radionuclides. While theoretical estimations of the (41)Ar production have been published, no data are available on direct experimental measurements for a biomedical cyclotron. In this work, we describe a sampling methodology and report the results of an extensive measurement campaign. Furthermore, the experimental results are compared with Monte Carlo simulations performed with the FLUKA code. To measure (41)Ar activity, air samples were taken inside the cyclotron bunker in sealed Marinelli beakers, during the routine production of (18)F with a 16.5 MeV GE-PETtrace cyclotron; this sampling thus reproduces a situation of absence of air changes. Samples analysis was performed in a gamma-ray spectrometry system equipped with HPGe detector. Monte Carlo assessment of the (41)Ar saturation yield was performed directly using the standard FLUKA score RESNUCLE, and off-line by the convolution of neutron fluence with cross section data. The average (41)Ar saturation yield per one liter of air of (41)Ar, measured in gamma-ray spectrometry, resulted to be 3.0 ± 0.6 Bq/µA*dm(3) while simulations gave a result of 6.9 ± 0.3 Bq/µA*dm(3) in the direct assessment and 6.92 ± 0.22 Bq/µA*dm(3) by the convolution neutron fluence-to-cross section. PMID:26420444

  14. Production of high intensity {sup 48}Ca for the 88-Inch Cyclotron and other updates

    SciTech Connect

    Benitez, J. Y.; Hodgkinson, A.; Lyneis, C. M. Strohmeier, M.; Thullier, T.; Todd, D.; Xie, D.; Franzen, K. Y.

    2014-02-15

    Recently the Versatile ECR for NUclear Science (VENUS) ion source was engaged in a 60-day long campaign to deliver high intensity {sup 48}Ca{sup 11+} beam to the 88-Inch Cyclotron. As the first long term use of VENUS for multi-week heavy-element research, new methods were developed to maximize oven to target efficiency. First, the tuning parameters of VENUS for injection into the cyclotron proved to be very different than those used to tune VENUS for maximum beam output of the desired charge state immediately following its bending magnet. Second, helium with no oxygen support gas was used to maximize the efficiency. The performance of VENUS and its low temperature oven used to produce the stable requested 75 eμA of {sup 48}Ca{sup 11+} beam current was impressive. The consumption of {sup 48}Ca in VENUS using the low temperature oven was checked roughly weekly, and was found to be on average 0.27 mg/h with an ionization efficiency into the 11+ charge state of 5.0%. No degradation in performance was noted over time. In addition, with the successful operation of VENUS the 88-Inch cyclotron was able to extract a record 2 pμA of {sup 48}Ca{sup 11+}, with a VENUS output beam current of 219 eμA. The paper describes the characteristics of the VENUS tune used for maximum transport efficiency into the cyclotron as well as ongoing efforts to improve the transport efficiency from VENUS into the cyclotron. In addition, we briefly present details regarding the recent successful repair of the cryostat vacuum system.

  15. A comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Meeks, Zachary; Simon, Sven; Kabanovic, Slawa

    2016-09-01

    We present a comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn, considering all magnetic field data collected during the Cassini era (totaling to over 4 years of data from the equatorial plane). This dataset includes eight targeted flybys of Enceladus, three targeted flybys of Dione, and three targeted flybys of Rhea. Because all remaining orbits of Cassini are high-inclination, our study provides the complete map of ion cyclotron waves in Saturn's equatorial magnetosphere during the Cassini era. We provide catalogs of the radial and longitudinal dependencies of the occurrence rate and amplitude of the ion cyclotron fundamental and first harmonic wave modes. The fundamental wave mode is omnipresent between the orbits of Enceladus and Dione and evenly distributed across all Local Times. The occurrence rate of the fundamental mode displays a Fermi-Dirac-like profile with respect to radial distance from Saturn. Detection of the first harmonic mode is a rare event occurring in only 0.49% of measurements taken and always in conjunction with the fundamental mode. We also search for a dependency of the ion cyclotron wave field on the orbital positions of the icy moons Enceladus, Dione, and Rhea. On magnetospheric length scales, the wave field is independent of the moons' orbital positions. For Enceladus, we analyze wave amplitude profiles of seven close flybys (E9, E12, E13, E14, E17, E18, and E19), which occurred during the studied trajectory segments, to look for any local effects of Enceladan plume variability on the wave field. We find that even in the close vicinity of Enceladus, the wave amplitudes display no discernible dependency on Enceladus' angular distance to its orbital apocenter. Thus, the correlation between plume activity and angular distance to apocenter proposed by Hedman et al. (2013) does not leave a clearly distinguishable imprint in the ion cyclotron wave field.

  16. Discovery of Cyclotron Resonance Features in the Soft Gamma Repeater SGR 1806-20

    NASA Technical Reports Server (NTRS)

    Ibrahim, A. I.; Safi-Harb, Samar; Swank, Jean H.; Parke, William; Zane, Silvia; Turolla, Roberto; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report evidence for cyclotron resonance features from the Soft Gamma Repeater SCR 1806-20 in outburst, detected with the Rossi X-ray Timing Explorer in the spectrum of a long, complex precursor that preceded a strong burst. The features consist of a narrow 5.0 keV absorption line with modulation near its second and third harmonics (at 11.2 keV and 17.5 keV respectively). The line features are transient and are detected in the harder part of the precursor. The 5.0 keV feature is strong, with an equivalent width of approx. 500 eV, and a narrow width of < 0.4 keV. Interpreting the features as electron cyclotron lines in the context of accretion models leads to a large mass-radius ratio (M/R > 0.3 Solar Mass/km) that is inconsistent with neutron stars, or requires a low (5 - 7) x 10(exp 11) G magnetic field that is unlikely for SGRs. The line widths are also narrow compared to those of electron cyclotron resonances observed so far in X-ray pulsars. In the magnetar picture, the features are plausibly explained as ion cyclotron resonances in an ultra-strong magnetic field, which have recently been predicted from magnetar candidates. In this view, the 5.0 keV feature is consistent with a proton cyclotron fundamental whose energy and width are close to model predictions. The line energy would correspond to a surface magnetic field of 1.0 x 10(exp 15) G for SGR 1806-20, in good agreement with that inferred from the spin-down measure in the source.

  17. ENSEMBLE SIMULATIONS OF PROTON HEATING IN THE SOLAR WIND VIA TURBULENCE AND ION CYCLOTRON RESONANCE

    SciTech Connect

    Cranmer, Steven R.

    2014-07-01

    Protons in the solar corona and heliosphere exhibit anisotropic velocity distributions, violation of magnetic moment conservation, and a general lack of thermal equilibrium with the other particle species. There is no agreement about the identity of the physical processes that energize non-Maxwellian protons in the solar wind, but a traditional favorite has been the dissipation of ion cyclotron resonant Alfvén waves. This paper presents kinetic models of how ion cyclotron waves heat protons on their journey from the corona to interplanetary space. It also derives a wide range of new solutions for the relevant dispersion relations, marginal stability boundaries, and nonresonant velocity-space diffusion rates. A phenomenological model containing both cyclotron damping and turbulent cascade is constructed to explain the suppression of proton heating at low alpha-proton differential flow speeds. These effects are implemented in a large-scale model of proton thermal evolution from the corona to 1 AU. A Monte Carlo ensemble of realistic wind speeds, densities, magnetic field strengths, and heating rates produces a filled region of parameter space (in a plane described by the parallel plasma beta and the proton temperature anisotropy ratio) similar to what is measured. The high-beta edges of this filled region are governed by plasma instabilities and strong heating rates. The low-beta edges correspond to weaker proton heating and a range of relative contributions from cyclotron resonance. On balance, the models are consistent with other studies that find only a small fraction of the turbulent power spectrum needs to consist of ion cyclotron waves.

  18. Analysis and suppression of RF radiation from the PSI 590 MeV cyclotron Flat Top Cavity

    NASA Astrophysics Data System (ADS)

    Pogue, N. J.; Stingelin, L.; Adelmann, A.

    2016-08-01

    The Flat Top Cavity, located in the PSI HIPA Ring Cyclotron leaks RF power of several kilo Watts into the cyclotron's vacuum space causing several complications. A detailed electromagnetic model was created and simulations performed to analyze the mechanisms by which power is leaking out of the Flat Top Cavity. The tolerances needed to limit the leaked power in future iterations of the Flat Top cavity are reported. Comparison of the model to measurements are described as well as two potential methods to limit power leakage. These studies will have direct impact on future RF cavity designs for cyclotrons as power levels increase and higher RF fields are required.

  19. Design study of a 17.3 GHz electron cyclotron resonance (ECR) ion source at Louvain-la-Neuve

    SciTech Connect

    Standaert, L. Davin, F.; Loiselet, M.

    2014-02-15

    The Cyclotron Resources Center of the Louvain-la-Neuve University is developing a new electron cyclotron resonance ion source to increase the energy of the accelerated beam by injection of higher charge state ions into the cyclotron. The design of the source is based on a 17.3 GHz frequency and classical coils to produce the axial field. The field reaches 2 T at the injection side and 1.2 T at extraction. The total power consumption for the coils is limited to 80 kW. The design features of the source are presented.

  20. Influence of the ion/neutral atom mass ratio on the damping of electrostatic ion-cyclotron waves

    NASA Technical Reports Server (NTRS)

    Suszcynsky, D. M.; Cartier, S. L.; D'Angelo, N.; Merlino, R. L.

    1987-01-01

    The damping of electrostatic ion-cyclotron waves by ion-neutral collisions was studied in a single-ended Q machine. The amplitudes of K(+) and Cs(+) electrostatic ion-cyclotron waves were measured as a function of neutral pressure in helium, neon, argon, krypton, and xenon. For each ion/neutral atom combination, the electrostatic ion-cyclotron wave amplitude maximizes at a neutral pressure that scales monotonically with the m(+)/m(n) mass ratio. This result is interpreted by considering the dynamics of elastic collisions between the ions and the neutral atoms.

  1. Cyclotron resonance in InAs/AlSb quantum wells in magnetic fields up to 45 T

    SciTech Connect

    Spirin, K. E. Krishtopenko, S. S.; Sadofyev, Yu. G.; Drachenko, O.; Helm, M.; Teppe, F.; Knap, W.; Gavrilenko, V. I.

    2015-12-15

    Electron cyclotron resonance in InAs/AlSb heterostructures with quantum wells of various widths in pulsed magnetic fields up to 45 T are investigated. Our experimental cyclotron energies are in satisfactory agreement with the results of theoretical calculations performed using the eight-band kp Hamiltonian. The shift of the cyclotron resonance (CR) line, which corresponds to the transition from the lowest Landau level to the low magnetic-field region, is found upon varying the electron concentration due to the negative persistent photoconductivity effect. It is shown that the observed shift of the CR lines is associated with the finite width of the density of states at the Landau levels.

  2. 60 GHz gyrotron development program. Quarterly report No. 3, January-March 1980

    SciTech Connect

    Shively, J.F.; Stone, D.S.; Wendell, G.E.

    1980-01-01

    The current objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW output power at 60 GHz. The use of cyclotron resonance interaction is being pursued. The early design phases of this program are discussed.

  3. 60 GHz gyrotron development program. Quarterly report No. 4, April-June 1980

    SciTech Connect

    Shively, J.F.; Grant, T.J.; Stone, D.S.; Symons, R.S.; Wendell, G.E.

    1980-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW output power at 60 GHz. The use of cyclotron resonance interaction is being pursued. The design and early procurement and construction phases of this program are discussed.

  4. 60 GHz gyrotron development program. Quarterly report No. 6, October-December 1980

    SciTech Connect

    Shively, J.F.; Cheng, M.K.; Evans, S.E.; Grant, T.J.; Stone, D.S.

    1981-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW output power at 60 GHz. The use of cyclotron resonance interaction is being pursued. The design, procurement and construction phases of this program are discussed. Progress on gyrotron behavior studies being performed at 28 GHz are also discussed.

  5. 60 GHz gyrotron development program. Quarterly report No. 5, July-September 1980

    SciTech Connect

    Shively, J.F.; Grant, T.J.; Nordquist, A.L.; Stone, D.S.; Wendell, G.E.

    1980-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW output power at 60 GHz. The use of cyclotron resonance interaction is being pursued. The design, procurement and early construction phases of this program are discussed.

  6. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources.

    PubMed

    Ferracin, P; Caspi, S; Felice, H; Leitner, D; Lyneis, C M; Prestemon, S; Sabbi, G L; Todd, D S

    2010-02-01

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb(3)Sn superconducting technology for several years. At the moment, Nb(3)Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb(3)Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb(3)Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb(3)Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell pretensioned with water

  7. Nb{sub 3}Sn superconducting magnets for electron cyclotron resonance ion sources

    SciTech Connect

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S.; Sabbi, G. L.; Todd, D. S.

    2010-02-15

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb{sub 3}Sn superconducting technology for several years. At the moment, Nb{sub 3}Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb{sub 3}Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb{sub 3}Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb{sub 3}Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell

  8. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources

    SciTech Connect

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S.; Sabbi, G. L.; Todd, D. S.

    2009-05-04

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb{sub 3}Sn superconducting technology for several years. At the moment, Nb{sub 3}Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb{sub 3}Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb{sub 3}Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb{sub 3}Sn- , particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell

  9. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources.

    PubMed

    Ferracin, P; Caspi, S; Felice, H; Leitner, D; Lyneis, C M; Prestemon, S; Sabbi, G L; Todd, D S

    2010-02-01

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb(3)Sn superconducting technology for several years. At the moment, Nb(3)Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb(3)Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb(3)Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb(3)Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell pretensioned with water

  10. SU-E-T-534: Level of Residual Radioactivity of Activated Parts of a Decommissioned Cyclotron

    SciTech Connect

    Choi, HHF; Leung, TM; Chiu, TL; Yang, B; Wu, PM; Cheung, KY; Yu, SK

    2015-06-15

    Purpose: CTI cyclotron RDS-111 was used at the Hong Kong Sanatorium and Hospital (HKSH) to produce radiopharmaceuticals and radioactive tracers for diagnostic scans between 1999 and 2007. During the operation, some machine components became radioactive by activation. For the safety of staff, decommissioning took place in 2009, two years after the cyclotron had stopped operation. This study investigates the residual radioactivity and radionuclides found in different cyclotron components in 2014 in compliance with the local regulations in Hong Kong for transfer of radioactive waste. Methods: A representative sample of each part was counted using a high-purity germanium detector (manufacturer: ORTECT) for at least four hours. GammaVision, a multichannel analyzer software, was used to identify the radionuclides found in the cyclotron components, as well as the associated activities. A standard library and a Mariscotti peak search algorithm were used to identify the present radionuclides. Only radionuclides with half-life greater than 180 days were considered. Results: Among the components, the Havar target foil has the highest specific activity ((4.6±0.6)×10{sup 2} Bq/g), with Co-60 being the most prominent ((3.8±0.5)×10{sup 2} Bq/g). The total activity of the target foil, however, is still low due to its small mass of 0.04 g. Radioisotopes Mn-54 (46±6 Bq/g), Na-22 (6.8±0.8 Bq/g), Co-57 (7.3±0.9 Bq/g), and Fe-59 (6.0±0.9 Bq/g) have also been detected in the target foil. The target window holder and the vacuum window register a specific activity of 88.3±0.6 Bq/g and 48.6±0.1 Bq/g, respectively. Other components, such as the collimator, the target tube, the valve body and the beamline, are also found with trace amounts of radionuclides. Conclusion: Even seven years after the cyclotron had stopped operation, some components still exhibited residual radioactivity from activation exceeding the IAEA clearance levels. Special consideration for radiological

  11. Comparative study of ion cyclotron waves at Mars, Venus and Earth

    NASA Astrophysics Data System (ADS)

    Wei, H. Y.; Russell, C. T.; Zhang, T. L.; Blanco-Cano, X.

    2011-08-01

    Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion's gyrofrequency. At Mars and Venus and in the Earth's polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth's polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which

  12. Observation of increased ion cyclotron resonance signal duration through electric field perturbations.

    PubMed

    Kaiser, Nathan K; Bruce, James E

    2005-09-15

    Ion motion in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is complex and the subject of ongoing theoretical and experimental studies. Two predominant pathways for the loss of ICR signals are thought to include damping of cyclotron motion, in which ions lose kinetic energy and radially damp toward the center of the ICR cell, and dephasing of ion coherence, in which ions of like cyclotron frequency become distributed out of phase at similar cyclotron radii. Both mechanisms result in the loss of induced ion image current in FTICR-MS measurements and are normally inseparable during time-domain signal analysis. For conventional ICR measurements which take advantage of ion ensembles, maximization of the ion population size and density can produce the desired effect of increasing phase coherence of ions during cyclotron motion. However, this approach also presents the risk of coalescence of ion packets of similar frequencies. In general, ICR researchers in the past have lacked the tools necessary to distinguish or independently control dephasing and damping mechanisms for ICR signal loss. Nonetheless, the ability to impart greater phase coherence of ions in ICR measurements will allow significant advances in FTICR-MS research by improving the current understanding of ICR signal loss contributions of dephasing and damping of ion ensembles, increasing overall time-domain signal length, and possibly, resulting in more routine ultrahigh resolution measurements. The results presented here demonstrate the ability to employ a high density electron beam to perturb electric fields within the ICR cell during detection of cyclotron motion, in an approach we call electron-promoted ion coherence (EPIC). As such, EPIC reduces ICR signal degradation through loss of phase coherence, and much longer time-domain signals can be obtained. Our results demonstrate that time-domain signals can be extended by more than a factor of 4 with the implementation of EPIC, as

  13. Oscillating two stream instability of electromagnetic pump in the ion cyclotron range of frequency in a plasma

    SciTech Connect

    Ahmad, Nafis; Tripathi, V. K.; Rafat, M.; Husain, Mudassir M.

    2009-06-15

    An analytical formalism of oscillating two stream instability of a large amplitude electromagnetic wave in the ion cyclotron range of frequency in a plasma is developed. The instability produces electrostatic ion cyclotron sidebands and a driven low frequency mode. The nonlinear coupling arises primarily due to the motion of ions and is strong when the pump frequency is close to ion cyclotron frequency and the oscillatory ion velocity is a significant fraction of acoustic speed. For propagation perpendicular to the ambient magnetic field, the X-mode pump wave produces flute type perturbation with maximum growth rate at some specific wavelengths, which are three to four times larger than the ion Larmor radius. For propagation at oblique angles to ambient magnetic field, the ion cyclotron O-mode, the growth rate increases with the wave number of the low frequency mode.

  14. Time evolution of endpoint energy of Bremsstrahlung spectra and ion production from an electron cyclotron resonance ion source

    SciTech Connect

    Tarvainen, Ollie; Ropponen, Tommi; Jones, Peter; Kalvas, Taneli

    2008-01-01

    Electron cyclotron resonance ion sources (ECRIS) are used to produce high charge state heavy ion beams for the use of nuclear and materials science, for instance. The most powerful ECR ion sources today are superconducting. One of the problems with superconducting ECR ion sources is the use of high radio frequency (RF) power which results in bremsstrahlung radiation adding an extra heat load to the cryostat. In order to understand the electron heating process and timescales in the ECR plasma, time evolution measurement of ECR bremsstrahlung was carried out. In the measurements JYFL 14 GHz ECRIS was operated in a pulsed mode and bremsstrahlung data from several hundred RF pulses was recorded. Time evolution of ion production was also studied and compared to one of the electron heating theories. To analyze the measurement data at C++ program was developed. Endpoint energies of the bremsstrahlung spectra as a function of axial magnetic field strength, pressure and RF power are presented and ion production timescales obtained from the measurements are compared to bremsstrahlung emission timescales and one of the stochastic heating theories.

  15. Spectral analysis of ICRF (Ion Cyclotron Range of Frequencies) wave field measurements in the Tara Central Cell

    SciTech Connect

    Wang, L.; Golovato, S.N.; Horne, S.F.

    1987-12-01

    A simple spectral analysis technique has been developed to analyse the digital signals from an array of magnetic probes for ICRF field measurements in the Tara Tandem Mirror central cell. The wave dispersion relations of both the applied ICRF and the Alfven Ion Cyclotron Instability have been studied and the waves have been identified as slow in cyclotron waves. The radial profiles of field amplitude and wave vectors were also generated. 9 refs., 10 figs.

  16. Use of a krypton isotope for rapid ion changeover at the Lawrence Berkeley Laboratory 88-inch cyclotron

    NASA Technical Reports Server (NTRS)

    Soli, George A.; Nichols, Donald K.

    1989-01-01

    An isotope of krypton, Kr86, has been combined with a mix of Ar, Ne, and N ions at the electron cyclotron resonance (ECR) source, at the Lawrence Berkeley Laboratory cyclotron, to provide rapid ion changeover in Single Event Phenomena (SEP) testing. The new technique has been proved out successfully by a recent Jet Propulsion Laboratory (JPL) test in which it was found that there was no measurable contamination from other isotopes.

  17. The cyclotron energization through auroral wave experiments (CENTAUR 2B)

    NASA Technical Reports Server (NTRS)

    Winningham, J. D.

    1992-01-01

    The CENTAUR 2B mission, a dual payload program, is in many aspects the same as the previous missions from Cape Perry and Norway in 1985. It was planned that these payloads would be launched from Andoya, Norway, Nov. 1989 from the Universal II launcher. The payloads are identical, but would have been launched at different azimuths as far north and as far west as possible. Particle experiments include the angular resolving energy analyzer (AREA), the fast ion mass spectrometer (FIMS), the spectrographic particle images (SPI), and finally, the differential ion flux probe (DIFP). SwRI was responsible for the scientific payload, which includes the power supplies, the power supply interfacing, the manipulating of the data from the instruments to format it for the telemetry system, all mechanical structure and restraint mechanisms, and the payload subskin. The status of the various components of this program is given.

  18. Cyclotron instability in the afterglow mode of minimum-B ECRIS.

    PubMed

    Izotov, I; Kalvas, T; Koivisto, H; Komppula, J; Kronholm, R; Laulainen, J; Mansfeld, D; Skalyga, V; Tarvainen, O

    2016-02-01

    It was shown recently that cyclotron instability in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source (ECRIS) causes perturbation of the extracted ion current and generation of strong bursts of bremsstrahlung emission, which limit the performance of the ion source. The present work is devoted to the dynamic regimes of plasma instability in ECRIS operated in pulsed mode. Instability develops in decaying plasma shortly after heating microwaves are switched off and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high energy electrons. Time-resolved measurements of microwave emission bursts are presented. It was found that even in various gases (helium and oxygen were studied) and at different values of magnetic field and heating power, the dynamic spectra demonstrate common features: decreasing frequency within a single burst as well as from one burst to another. PMID:26931947

  19. Understanding the bursty electron cyclotron emission during a sawtooth crash in the HT-7 tokamak

    SciTech Connect

    Li, Erzhong Hu, Liqun; Chen, Kaiyun

    2014-01-15

    Bursts in electron cyclotron emission (ECE) were observed during sawtooth crashes in HT-7 in discharges with ion cyclotron resonance heating injected near the q = 1 rational surface (q is the safety factor). The local ECE measurement indicated that the bursty radiation is only observed on channels near but a little away outward from the q = 1 magnetic surface. In conjunction with the soft x-ray tomography analysis, it was determined that, for the first time, only a compression process survives in the later stage of fast magnetic reconnection but before prompt heat transport. The compression enhanced the electron radiation temperature, the increased amplitude of which agreed well with the estimation according to a kinetic compression theory model [R. J. Hastie and T. C. Hender, Nucl. Fusion 28, 585 (1988)]. This paper presents the experimental evidence that there indeed exists a transient compression phase which results in the bursty ECE radiation during a sawtooth crash.

  20. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.

    PubMed

    Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  1. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    PubMed

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  2. Van Allen Probes observations of oxygen cyclotron harmonic waves in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Usanova, M. E.; Malaspina, D. M.; Jaynes, A. N.; Bruder, R. J.; Mann, I. R.; Wygant, J. R.; Ergun, R. E.

    2016-09-01

    Waves with frequencies in the vicinity of the oxygen cyclotron frequency and its harmonics have been regularly observed on the Van Allen Probes satellites during geomagnetic storms. We focus on properties of these waves and present events from the main phase of two storms on 1 November 2012 and 17 March 2013 and associated dropouts of a few MeV electron fluxes. They are electromagnetic, in the frequency range ~0.5 to several Hz, and amplitude ~0.1 to a few nT in magnetic and ~0.1 to a few mV/m in electric field, with both the wave velocity and the Poynting vector directed almost parallel to the background magnetic field. These properties are very similar to those of electromagnetic ion cyclotron waves, which are believed to contribute to loss of ring current ions and radiation belt electrons and therefore can be also important for inner magnetosphere dynamics.

  3. Advancements in electron cyclotron emission imaging demonstrated by the TEXTOR ECEI diagnostic upgrade.

    PubMed

    Tobias, B; Kong, X; Liang, T; Spear, A; Domier, C W; Luhmann, N C; Classen, I G J; Boom, J E; van de Pol, M J; Jaspers, R; Donné, A J H; Park, H K; Munsat, T

    2009-09-01

    A new TEXTOR electron cyclotron emission imaging system has been developed and employed, providing a diagnostic with new features and enhanced capabilities when compared to the legacy system it replaces. Optical coupling to the plasma has been completely redesigned, making use of new minilens arrays for reduced optical aberration and providing the new feature of vertical zoom, whereby the vertical coverage is now remotely adjustable on a shot-by-shot basis from 20-35 cm. Other innovations, such as the implementation of stacked quasioptical planar notch filters, allow for the diagnostic to be operated without interruption or degradation in performance during electron cyclotron resonance heating. Successful commissioning of the new diagnostic and a demonstration of the improved capabilities are presented in this paper, along with a discussion of the new technologies employed.

  4. Advancements in electron cyclotron emission imaging demonstrated by the TEXTOR ECEI diagnostic upgrade

    SciTech Connect

    Tobias, B.; Kong, X.; Liang, T.; Spear, A.; Domier, C. W.; Luhmann, N. C. Jr.; Classen, I. G. J.; Boom, J. E.; Pol, M. J. van de; Jaspers, R.; Donne, A. J. H.; Park, H. K.; Munsat, T.

    2009-09-15

    A new TEXTOR electron cyclotron emission imaging system has been developed and employed, providing a diagnostic with new features and enhanced capabilities when compared to the legacy system it replaces. Optical coupling to the plasma has been completely redesigned, making use of new minilens arrays for reduced optical aberration and providing the new feature of vertical zoom, whereby the vertical coverage is now remotely adjustable on a shot-by-shot basis from 20-35 cm. Other innovations, such as the implementation of stacked quasioptical planar notch filters, allow for the diagnostic to be operated without interruption or degradation in performance during electron cyclotron resonance heating. Successful commissioning of the new diagnostic and a demonstration of the improved capabilities are presented in this paper, along with a discussion of the new technologies employed.

  5. Optically detected cyclotron resonance in heavily boron-doped silicon nanostructures on n-Si (100)

    SciTech Connect

    Bagraev, N. T. Kuzmin, R. V.; Gurin, A. S.; Klyachkin, L. E.; Malyarenko, A. M.; Mashkov, V. A.

    2014-12-15

    Electron and hole cyclotron resonance at a frequency of 94 GHz is detected by a change in the intensity of photoluminescence lines whose positions are identical to those of dislocation luminescence lines D1 and D2 in single-crystal silicon and in heavily boron-doped silicon nanostructures on the Si (100) surface. The angular dependence of the spectrum of the optically detected cyclotron resonance corresponds to the tensor of the electron and hole effective mass in single-crystal silicon, and the resonance-line width indicates long carrier free-path times close to 100 ps. The results obtained are discussed within the framework of the interrelation of the electron-vibration coupling to charge and spin correlations in quasi-one-dimensional chains of dangling bonds in silicon.

  6. Gas Feeding System Supplying the U-400M Cyclotron Ion Source with Hydrogen Isotopes

    SciTech Connect

    Yukhimchuk, A.A.; Angilopov, V.V.; Apasov, V.A.

    2005-07-15

    Automated system feeding into ion source hydrogen isotopes as molecules with preset ratio of the fluxes is described. The control system automatically maintained the working parameters and provided graphic and digital representation of the controlled processes. The radiofrequency (RF) ion source installed at the axial injection line of the cyclotron produced ion beams of HD{sup +}, HT{sup +}, DT{sup +}, D{sub 2}H{sup +}, etc. At a several months DT{sup +} beam acceleration the tritium consumption was less than 108 Bq/hr. The intensity of a 58.2 MeV triton beam (T{sup +} ions) extracted from the cyclotron chamber was about 10 nA.

  7. Development of steady-state operation using ion cyclotron heating in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Kasahara, H.; Seki, T.; Saito, K.; Seki, R.; Kumazawa, R.; Yoshimura, Y.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Nagasaki, K.; Ueda, Y.; Tokitani, M.; Ashikawa, N.; Shoji, M.; Wakatsuki, T.; Kamio, S.; Tsuchiya, H.; Yoshimura, S.; Tamura, N.; Suzuki, C.; Yamada, H.; Mutoh, T.

    2014-06-01

    Using a handshake shape (HAS) antenna phasing dipole for ion cyclotron heating (ICH), the heating efficiency was higher than that using a previous poloidal array antenna in the Large Helical Device. In order to sustain the dipole operation, real-time feedback for impedance matching and maintaining the same phase and power was adopted during long-pulse discharge. The HAS antenna was designed to reduce parasitic losses associated with energetic particle and radio-frequency (RF) sheath effects by field-aligned current concentration on the midplane. Local hot spots and the inhomogeneity of the diverter heat profile in the toroidal direction were reduced. The long-pulse discharge with an electron density (ne0) of 1 × 1019 m-3, center electron temperature (Te0) of 2.5 keV, a plasma duration time (td) of 19 min, and RF heating power (PRF) of 1 MW was achieved by ICH and electron cyclotron heating.

  8. On the excitation of cyclotron harmonic waves by newborn heavy ions

    NASA Technical Reports Server (NTRS)

    Brinca, Armando L.; Tsurutani, Bruce T.

    1989-01-01

    Wave measurements in planetary foreshocks and cometary environments show the sporadic occurrence of magnetic spectra with harmonic structure related to ion-cyclotron frequencies. Dilute populations of anisotropic and/or drifting charged particles can excite obliquely propagating modes with spacecraft frequencies close to the observed harmonics. Previous analyses of this generation mechanism are extended to drifting and nondrifting loss-cone-type distributions of heavy ions in a dense hydrogen magnetoplasma, characterizing the complex (real frequency and growth rate) dispersion, polarization, and compressibility of the unstable cyclotron harmonic waves. Solution of the full kinetic dispersion equation shows that it is possible to attain harmonic excitation, both in the drifting and nondrifting regimes. However, the bandwidth inherent to frequency Doppler shifts of obliquely propagating waves might preclude the observation of spectral structure in the spacecraft frame. The Giotto observations in the upstream region of comet Halley provide a reference to discuss the results.

  9. Scanning the Magnetized Accretion Column of X-ray Pulsars with Cyclotron Lines

    NASA Astrophysics Data System (ADS)

    Schönherr, Gabriele; Wilms, J.; Kretschmar, P.; Pottschmidt, K.; Rothschild, R.; Kreykenbohm, I.; MAGNET Collaboration

    2010-03-01

    The strongly magnetized accretion column of X-ray pulsars is still not understood in many aspects like, e.g., its basic geometry and physical parameters. Cyclotron Resonance Scattering Features (short: cyclotron lines) are now becoming a possible tool to tap this mystery. As they form due to scattering processes of X-ray photons with magnetically quantized electrons in the accreted plasma, a better physical understanding of their formation and shape along with direct comparisons to observational data allows to backtrack the physical parameters and magnetic field structure in the line-forming region. High-resolution spectra with todays’ and future instruments now allow for an in-depth analysis of their shapes, promising exciting progress. We discuss results based on our new modelling attempts, which link theoretical Monte Carlo simulations directly to observational findings.

  10. Assessment of personnel absorbed dose at production of medical radioisotopes by a cyclotron.

    PubMed

    Sadat-Eshkevar, S M; Karimian, A; Mirzaee, M

    2011-09-01

    The medical radioisotope (201)Tl is produced by a cyclotron through the (203)Tl(p, 3n)(201)Pb reaction in the nuclear medicine research group of Agricultural, Medical and Industrial Research Schools in Iran. The produced (201)Pb decays to (201)Tl by electron capture. One of the most important problems that may occur is malfunction of a part of target or beam line, so that it needs the bombardment to be stopped and the problem fixed. In this work, induced radioactivity of the target, aluminium case of target, beam line and concrete walls of the thallium target room were calculated by Monte Carlo method. Then by using the results of the Monte Carlo simulation, the whole body absorbed dose to cyclotron personnel during repair and after stopping the bombardment, were assessed at different places of target room.

  11. Dispersion relation of electrostatic ion cyclotron waves in multi-component magneto-plasma

    SciTech Connect

    Khaira, Vibhooti Ahirwar, G.

    2015-07-31

    Electrostatic ion cyclotron waves in multi component plasma composed of electrons (denoted by e{sup −}), hydrogen ions (denoted by H{sup +}), helium ions (denoted by He{sup +}) and positively charged oxygen ions (denoted by O{sup +})in magnetized cold plasma. The wave is assumed to propagate perpendicular to the static magnetic field. It is found that the addition of heavy ions in the plasma dispersion modified the lower hybrid mode and also allowed an ion-ion mode. The frequencies of the lower hybrid and ion- ion hybrid modes are derived using cold plasma theory. It is observed that the effect of multi-ionfor different plasma densities on electrostatic ion cyclotron waves is to enhance the wave frequencies. The results are interpreted for the magnetosphere has been applied parameters by auroral acceleration region.

  12. The design of a correlation electron cyclotron emission system on J-TEXT

    SciTech Connect

    Yang, Z. J.; Xiao, Y.; Ma, X. D.; Pan, X. M.; Xiao, J. S.

    2015-04-15

    To study the anomalous transport, a correlation electron cyclotron emission (CECE) was planned to be developed on J-TEXT for electron temperature fluctuation measurement. The spectral decorrelation method was employed for the CECE system. It was developed based on the previous 16-channel electron cyclotron emission system. They shared the optical transmission line and mixer. The CECE part consists of 4 channels. Two fixed frequency narrow band filters were used for two channels and two yttrium iron garnet (YIG) filters for the other two channels. To meet the measuring requirement, some tests have been taken for the YIG filters. The results show good performance of the filters. Gaussian optics is used to produce a good poloidal resolution. Wavenumbers resolved by the CECE diagnostic are k{sub θ} ≤ 1.5 rad/cm and k{sub r} ≤ 12 rad/cm. Some preliminary experiment results are also presented in this paper.

  13. Investigation of the second harmonic electron cyclotron current drive efficiency on the T-10 tokamak

    SciTech Connect

    Razumova, K.A.; Alikaev, V.V.; Dremin, M.M.; Esipchuk, Y.V.; Kislov, A.Y.; Notkin, G.E.; Pavlov, Y.D. ); Forest, C.B.; Lohr, J.; Luce, T.C.; Harvey, R.W. )

    1994-05-01

    Experiments on second harmonic electron cyclotron current drive were done on the T-10 tokamak using four gyrotrons. Total powers up to 1.2 MW at a frequency of 140 GHz were injected. Current generation by electron cyclotron (EC) waves was demonstrated in the experiments. The efficiency [eta] of current generation and its dependence on plasma parameters were measured and it was shown that the efficiency is a nonlinear function of input power, more closely predicted by Fokker--Planck calculations than by linear theory. The interaction of EC waves with the tail of the electron distribution was shown to be important. It was also found that current density profile redistribution played an important role in the plasma behavior.

  14. Vortex Dynamics and Shear-Layer Instability in High-Intensity Cyclotrons

    NASA Astrophysics Data System (ADS)

    Cerfon, Antoine J.

    2016-04-01

    We show that the space-charge dynamics of high-intensity beams in the plane perpendicular to the magnetic field in cyclotrons is described by the two-dimensional Euler equations for an incompressible fluid. This analogy with fluid dynamics gives a unified and intuitive framework to explain the beam spiraling and beam breakup behavior observed in experiments and in simulations. Specifically, we demonstrate that beam breakup is the result of a classical instability occurring in fluids subject to a sheared flow. We give scaling laws for the instability and predict the nonlinear evolution of beams subject to it. Our work suggests that cyclotrons may be uniquely suited for the experimental study of shear layers and vortex distributions that are not achievable in Penning-Malmberg traps.

  15. Electron Cyclotron Current Drive at High Electron Temperature on DIII-D

    NASA Astrophysics Data System (ADS)

    Petty, C. C.; Austin, M. E.; Harvey, R. W.; Lohr, J.; Luce, T. C.; Makowski, M. A.; Prater, R.

    2007-09-01

    Experiments on DIII-D have measured the electron cyclotron current drive (ECCD) efficiency for co- and counter-injection in low density plasmas with radiation temperatures from electron cyclotron emission (ECE) above 20 keV. The radiation temperature is generally higher than the Thomson scattering temperature, indicating that there is a significant population of non-thermal electrons. The experimental ECCD profile measured with motional Stark effect (MSE) polarimetry is found to agree with quasi-linear theory except for the highest power density cases (QEC/ne2≫1). Radial transport of the energetic electrons with diffusion coefficients of ˜0.4 m2/s is needed to model the broadened ECCD profile at high power density.

  16. Formation of a conical distribution and intense ion heating in the presence of hydrogen cyclotron waves

    NASA Astrophysics Data System (ADS)

    Okuda, H.; Ashour-Abdalla, M.

    1981-07-01

    In the considered investigation, it is assumed that the field aligned currents are responsible for producing electrostatic harmonic cyclotron waves (EHC). Using a one-dimensional simulation model in which the electron velocity distribution is maintained by a constant injection of the initial distribution, it is shown that, in contrast to earlier initial value simulations, EHC waves grow to a large amplitude, resulting in the formation of an anisotropic ion velocity distribution. Both the heating rate and the anisotropy are in reasonable agreement with the quasi-linear theory, taking into account the cyclotron resonance. The results show that the saturation is due to the combined effects of wave induced diffusion in an electron velocity space and the heating of ions perpendicularly. Both these effects reduce the growth rate.

  17. Collisional electrostatic ion cyclotron waves as a possible source of energetic heavy ions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Providakes, Jason; Seyler, Charles E.

    1990-01-01

    A new mechanism is proposed for the source of energetic heavy ions (NO/+/, O2/+/, and O/+/) found in the magnetosphere. Simulations using a multispecies particle simulation code for resistive current-driven electrostatic ion cyclotron waves show transverse and parallel bulk heating of bottomside ionospheric heavy ion populations. The dominant mechanism for the transverse bulk heating is resonant ion heating by wave-particle ion trapping. Using a linear kinetic dispersion relation for a magnetized, collisional, homogenous, and multiion plasma, it is found that collisional electrostatic ion cyclotron waves near the NO(+), O2(+), and O(+) gyrofrequencies are unstable to field-aligned currents of 50 microA/sq m for a typical bottomside ionosphere.

  18. Electrostatic Electron Cyclotron Waves Observed by the Plasma Wave Instrument on Board Polar

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Pickett, J. S.; Gurnett, D. A.; Scudder, J. D.

    2001-01-01

    We report the results of an investigation of waves observed by the Polar spacecraft at high altitudes and latitudes and at frequencies just above the cyclotron frequency. These observations are made frequently when the spacecraft is over the polar cap as well as near the dayside cusp and near the nightside auroral region, and observations are made for ratios of plasma frequency to cyclotron frequency, f(sub p)/f(sub c) = 1. Using the six-channel high-frequency waveform receiver (HFWR) on board the spacecraft, which can provide three-axis electric and three-axis magnetic field measurements, we attempt to identify the wavemode of these emissions and investigate possible source mechanisms including low-energy electron beams. We further observe electromagnetic emission associated with upper hybrid waves near and within the plasmasphere. This emission is consistent with both Z and O modes.

  19. Nonlinear electron acceleration by oblique whistler waves: Landau resonance vs. cyclotron resonance

    SciTech Connect

    Artemyev, A. V.; Agapitov, O. V.; Krasnoselskikh, V. V.; Mourenas, D.

    2013-12-15

    This paper is devoted to the study of the nonlinear interaction of relativistic electrons and high amplitude strongly oblique whistler waves in the Earth's radiation belts. We consider electron trapping into Landau and fundamental cyclotron resonances in a simplified model of dipolar magnetic field. Trapping into the Landau resonance corresponds to a decrease of electron equatorial pitch-angles, while trapping into the first cyclotron resonance increases electron equatorial pitch-angles. For 100 keV electrons, the energy gained due to trapping is similar for both resonances. For electrons with smaller energy, acceleration is more effective when considering the Landau resonance. Moreover, trapping into the Landau resonance is accessible for a wider range of initial pitch-angles and initial energies in comparison with the fundamental resonance. Thus, we can conclude that for intense and strongly oblique waves propagating in the quasi-electrostatic mode, the Landau resonance is generally more important than the fundamental one.

  20. Stability of drift-cyclotron loss-cone waves in H-mode plasmas

    DOE PAGES

    Farmer, W. A.; Morales, G. J.

    2016-05-24

    The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability ismore » exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×107 s-1.« less

  1. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source

    SciTech Connect

    Yang, Y.; Sun, L. T.; Feng, Y. C.; Fang, X.; Lu, W.; Zhang, W. H.; Cao, Y.; Zhang, X. Z.; Zhao, H. W.

    2014-08-15

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  2. Cerenkov and cyclotron Cerenkov instabilities in a dielectric loaded parallel plate waveguide sheet electron beam system

    SciTech Connect

    Zhao Ding; Ding Yaogen

    2011-09-15

    A dielectric loaded parallel plate waveguide sheet electron beam system can be taken as a reliable model for the practical dielectric loaded rectangular waveguide sheet beam system that has a transverse cross section with a large width to height ratio. By using kinetic theory, the dispersion equations for Cerenkov and cyclotron Cerenkov instabilities in the parallel plate waveguide sheet beam system have been obtained rigorously. The dependences of the growth rate of both instabilities on the electric and structural parameters have also been investigated in detail through numerical calculations. It is worthwhile to point out that adopting an electron beam with transverse velocity can evidently improve the growth rate of Cerenkov instability, which seems like the case of cyclotron Cerenkov instability.

  3. Design of an ion cyclotron resonance heating system for the Compact Ignition Tokamak

    SciTech Connect

    Yugo, J.J.; Goranson, P.L.; Swain, D.W.; Baity, F.W.; Vesey, R.

    1987-01-01

    The Compact Ignition Tokamak (CIT) requires 10-20 MW of ion cyclotron resonance heating (ICRH) power to raise the plasma temperature to ignition. The initial ICRH system will provide 10 MW of power to the plasma, utilizing a total of six rf power units feeding six current straps in three ports. The systems may be expanded to 20 MW with additional rf power units, antennas, and ports. Plasma heating will be achieved through coupling to the fundamental ion cyclotron resonance of a /sup 3/He minority species (also the second harmonic of tritium). The proposed antenna is a resonant double loop (RDL) structure with vacuum, shorted stubs at each end for tuning and impedance matching. The antennas are of modular, compact construction for installation and removal through the midplane port. Remote maintainability and the reactorlike operating environment have a major impact on the design of the launcher for this machine. 6 refs., 7 figs., 5 tabs.

  4. Electron Cyclotron Heating and Current Drive for Maintaining Minimum q in Negative Central Shear Discharges

    SciTech Connect

    Casper, T A; Kaiser, T B; Jong, R A; LoDestro, L L; Moller, J; Pearlstein, L D; Dodge, T

    2003-04-24

    Toroidal plasmas created with negative magnetic shear in the core region offer advantages in terms of MHD stability properties. These plasmas, transiently created in several tokamaks, have exhibited high performance as measured by normalized stored energy and neutron production rates. A critical issue with extending the duration of these plasmas is the need to maintain the off-axis-peaked current distribution required to support the minimum in the safety factor q at large radii. We present equilibrium and transport simulations that explore the use of electron cyclotron heating and current drive to maintain this negative shear configuration. Using parameters consistent with DIII-D tokamak operation, we find that with sufficiently high injected power, it is possible to achieve steady-state conditions employing well aligned electron cyclotron and bootstrap current drive in fully non-inductively current-driven configurations.

  5. MM-wave cyclotron auto-resonance maser for plasma heating

    NASA Astrophysics Data System (ADS)

    Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.

    2014-02-01

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.

  6. Origin of ion-cyclotron turbulence in the downward Birkeland current region

    SciTech Connect

    Basu, B.; Jasperse, J. R.; Lund, E. J.; Grossbard, N.

    2011-02-15

    Linear stability analysis of the electron velocity distributions, which are observed in the FAST satellite measurements in the downward Birkeland current region of the magnetosphere, is presented. The satellite-measured particle (electrons and protons) velocity distributions are fitted with analytic functions and the dispersion relation is derived in terms of the plasma dispersion functions associated with those distribution functions. Numerical solutions of the dispersion relation show that the bump-on-tail structure of the electron velocity distribution can excite electrostatic ion-cyclotron instabilities by the Landau resonance mechanism. Nonlinear evolution of these instabilities may explain the observed electrostatic ion-cyclotron turbulence in the Birkeland current region. Excitation of other types of instabilities by the fitted electron velocity distributions and their relevance are also discussed.

  7. Vacuum Ultraviolet Photodissociation and Fourier Transform-Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry: Revisited.

    PubMed

    Shaw, Jared B; Robinson, Errol W; Paša-Tolić, Ljiljana

    2016-03-15

    We revisited the implementation of 193 nm ultraviolet photodissociation (UVPD) within the ion cyclotron resonance (ICR) cell of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. UVPD performance characteristics were examined in the context of recent developments in the understanding of UVPD and in-cell tandem mass spectrometry. Efficient UVPD and photo-ECD of a model peptide and proteins within the ICR cell of a FT-ICR mass spectrometer are accomplished through appropriate modulation of laser pulse timing, relative to ion magnetron motion and the potential applied to an ion optical element upon which photons impinge. It is shown that UVPD yields efficient and extensive fragmentation, resulting in excellent sequence coverage for model peptide and protein cations.

  8. Stability of drift-cyclotron loss-cone waves in H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Farmer, W. A.; Morales, G. J.

    2016-06-01

    The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability is exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3  ×  107 s‑1.

  9. Nonlinear Optical Phenomena in Cyclotron Resonance of Positive Holes and Electrons in Cu2O

    NASA Astrophysics Data System (ADS)

    Masumi, Taizo; Shimada, Hiroshi

    1991-11-01

    Nonlinear optical phenomena have been observed for the first time in a new cyclotron resonance experiment on the photoexcited positive holes and/or electrons in Cu2O at f{=}35 GHz, T{=}4.2 K and at high density excitation Pex{≥q}100 kW/cm2 of λex{=}460--750 nm. Unexpectedly, we have observed a nonlinear optical growth of the cyclotron resonance absorption of both holes and electrons at the mid-gap high-density excitation of λex{≥q}690 nm. New experimental results reveal so far unknown specific characters of the conduction and valence electrons in detail and of deep levels as well. Here, we tentatively ascribe these phenomena to a possible condensation of polarons and excitons into a new state in Cu2O such as into a bipolaron state via a specific type of double acceptor states.

  10. Advancements in electron cyclotron emission imaging demonstrated by the TEXTOR ECEI diagnostic upgrade

    NASA Astrophysics Data System (ADS)

    Tobias, B.; Kong, X.; Liang, T.; Spear, A.; Domier, C. W.; Luhmann, N. C.; Classen, I. G. J.; Boom, J. E.; van de Pol, M. J.; Jaspers, R.; Donné, A. J. H.; Park, H. K.; Munsat, T.

    2009-09-01

    A new TEXTOR electron cyclotron emission imaging system has been developed and employed, providing a diagnostic with new features and enhanced capabilities when compared to the legacy system it replaces. Optical coupling to the plasma has been completely redesigned, making use of new minilens arrays for reduced optical aberration and providing the new feature of vertical zoom, whereby the vertical coverage is now remotely adjustable on a shot-by-shot basis from 20-35 cm. Other innovations, such as the implementation of stacked quasioptical planar notch filters, allow for the diagnostic to be operated without interruption or degradation in performance during electron cyclotron resonance heating. Successful commissioning of the new diagnostic and a demonstration of the improved capabilities are presented in this paper, along with a discussion of the new technologies employed.

  11. Stimulated electromagnetic emissions during pump frequency sweep through fourth electron cyclotron harmonic

    NASA Astrophysics Data System (ADS)

    Carozzi, T. D.; Thidé, B.; Grach, S. M.; Leyser, T. B.; Holz, M.; Komrakov, G. P.; Frolov, V. L.; Sergeev, E. N.

    2002-09-01

    The frequency of a high-power HF radio wave incident on the ionosphere was swept, using a computer-controlled transmitter signal, in <10 s within a 60-kHz-wide frequency band approximately centered on the fourth harmonic of the electron cyclotron frequency. Measurements of the spectral behavior of stimulated electromagnetic emissions (SEE) across this harmonic after preconditioning could thereby be made with unprecedented resolution, speed, and ionospheric stability. Comparison of local electron cyclotron frequency estimations based on the experimental data reveals discrepancies between certain downshifted maximum models and the empirical broad upshifted maximum (BUM) feature formula ΔfBUM = f0 - nfce. Weak emissions related to the BUM were discovered below the nominal BUM cutoff frequency. Finally, we observed that the intensity of certain SEE components differed depending on the whether the pump frequency sweep was ascending or descending.

  12. Vortex Dynamics and Shear-Layer Instability in High-Intensity Cyclotrons.

    PubMed

    Cerfon, Antoine J

    2016-04-29

    We show that the space-charge dynamics of high-intensity beams in the plane perpendicular to the magnetic field in cyclotrons is described by the two-dimensional Euler equations for an incompressible fluid. This analogy with fluid dynamics gives a unified and intuitive framework to explain the beam spiraling and beam breakup behavior observed in experiments and in simulations. Specifically, we demonstrate that beam breakup is the result of a classical instability occurring in fluids subject to a sheared flow. We give scaling laws for the instability and predict the nonlinear evolution of beams subject to it. Our work suggests that cyclotrons may be uniquely suited for the experimental study of shear layers and vortex distributions that are not achievable in Penning-Malmberg traps. PMID:27176525

  13. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.

    PubMed

    Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented. PMID:25173256

  14. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    PubMed

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power. PMID:22380155

  15. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    SciTech Connect

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; Gary, S. Peter

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω ≃ 0.5Ωe, where Ωe is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe and 0.6Ωe. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  16. Study of the neutron field in the vicinity of an unshielded PET cyclotron.

    PubMed

    Méndez, R; Iñiguez, M P; Martí-Climent, J M; Peñuelas, I; Vega-Carrillo, H R; Barquero, R

    2005-11-01

    The neutron field in the proximity of an unshielded PET cyclotron was investigated during 18F radioisotope production with an 18 MeV proton beam. Thermoluminescent detector (TLD) models TLD600 and TLD700 as well as Bonner moderating spheres were irradiated at different positions inside the vault room where the cyclotron is located to determine the thermal neutron flux, neutron spectrum and dose equivalent. Furthermore, from a combination of measurements and Monte Carlo simulations the neutron source intensity at the target was estimated. The resulting intensity is in good agreement with the IAEA recommendations. Neutron doses derived from the measured spectra were found to vary between 7 and 320 mSv per 1 microA h of proton-integrated current. Finally, gamma doses were determined from TLD700 readings and amounted to around 10% of the neutron doses.

  17. The design of a correlation electron cyclotron emission system on J-TEXT

    NASA Astrophysics Data System (ADS)

    Yang, Z. J.; Xiao, Y.; Ma, X. D.; Pan, X. M.; Xiao, J. S.

    2015-04-01

    To study the anomalous transport, a correlation electron cyclotron emission (CECE) was planned to be developed on J-TEXT for electron temperature fluctuation measurement. The spectral decorrelation method was employed for the CECE system. It was developed based on the previous 16-channel electron cyclotron emission system. They shared the optical transmission line and mixer. The CECE part consists of 4 channels. Two fixed frequency narrow band filters were used for two channels and two yttrium iron garnet (YIG) filters for the other two channels. To meet the measuring requirement, some tests have been taken for the YIG filters. The results show good performance of the filters. Gaussian optics is used to produce a good poloidal resolution. Wavenumbers resolved by the CECE diagnostic are kθ ≤ 1.5 rad/cm and kr ≤ 12 rad/cm. Some preliminary experiment results are also presented in this paper.

  18. The design of a correlation electron cyclotron emission system on J-TEXT.

    PubMed

    Yang, Z J; Xiao, Y; Ma, X D; Pan, X M; Xiao, J S

    2015-04-01

    To study the anomalous transport, a correlation electron cyclotron emission (CECE) was planned to be developed on J-TEXT for electron temperature fluctuation measurement. The spectral decorrelation method was employed for the CECE system. It was developed based on the previous 16-channel electron cyclotron emission system. They shared the optical transmission line and mixer. The CECE part consists of 4 channels. Two fixed frequency narrow band filters were used for two channels and two yttrium iron garnet (YIG) filters for the other two channels. To meet the measuring requirement, some tests have been taken for the YIG filters. The results show good performance of the filters. Gaussian optics is used to produce a good poloidal resolution. Wavenumbers resolved by the CECE diagnostic are k(θ) ≤ 1.5 rad/cm and k(r) ≤ 12 rad/cm. Some preliminary experiment results are also presented in this paper. PMID:25933856

  19. Electron-cyclotron wave scattering by edge density fluctuations in ITER

    SciTech Connect

    Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Chatziantonaki, Ioanna; Vlahos, Loukas; Strintzi, Dafni

    2009-11-15

    The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.

  20. MM-wave cyclotron auto-resonance maser for plasma heating

    SciTech Connect

    Ceccuzzi, S.; Ravera, G. L.; Tuccillo, A. A.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Spassovsky, I.; Surrenti, V.; Mirizzi, F.

    2014-02-12

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R and D development.