Science.gov

Sample records for 60-kda glycoprotein gp60

  1. First description of Cryptosporidium hominis GP60 genotype IkA20G1 and Cryptosporidium parvum GP60 genotypes IIaA18G3R1 and IIaA15G2R1 in foals in Brazil.

    PubMed

    Inácio, Sandra Valéria; Widmer, Giovanni; de Brito, Roberta Lomonte Lemos; Zucatto, Anaiza Simão; de Aquino, Monally Conceição Costa; Oliveira, Bruno César Miranda; Nakamura, Alex Akira; Neto, Luiz da Silveira; Carvalho, João Gabriel Balizardo; Gomes, Jancarlo Ferreira; Meireles, Marcelo Vasconcelos; Bresciani, Katia Denise Saraiva

    2017-01-15

    The present study focuses on Cryptosporidium infections of foals in Brazil. A total of 92 animals of different breeds from 11 farms in the vicinity of Araçatuba in the state of São Paulo, were examined. According to PCR targeting the 18S rRNA gene, Cryptosporidium sp. DNA was detected in 21.7% (20/92) of foals. Good quality 18S rRNA, actin, HSP70 and gp60 genes nPCR amplicons were obtained from five fecal samples. PCR amplification and sequencing of a fragment of the GP60 sporozoite surface glycoprotein gene revealed C. parvum genotypes IIaA18G3R1, IIaA15G2R1. Interestingly, we also detected in two foals a GP60 genotype related to the human parasite C. hominis.

  2. Multilocus patterns of genetic variation across Cryptosporidium species suggest balancing selection at the gp60 locus.

    PubMed

    Abal-Fabeiro, J L; Maside, X; Bello, X; Llovo, J; Bartolomé, C

    2013-09-01

    Cryptosporidium is an apicomplexan protozoan that lives in most vertebrates, including humans. Its gp60 gene is functionally involved in its attachment to host cells, and its high level of genetic variation has made it the reference marker for sample typing in epidemiological studies. To understand the origin of such high diversity and to determine the extent to which this classification applies to the rest of the genome, we analysed the patterns of variation at gp60 and nine other nuclear loci in isolates of three Cryptosporidium species. Most loci showed low genetic polymorphism (πS <1%) and similar levels of between-species divergence. Contrastingly, gp60 exhibited very different characteristics: (i) it was nearly ten times more variable than the other loci; (ii) it displayed a significant excess of polymorphisms relative to between-species differences in a maximum-likelihood Hudson-Kreitman-Aguadé test; (iii) gp60 subtypes turned out to be much older than the species they were found in; and (iv) showed a significant excess of polymorphic variants shared across species from random expectations. These observations suggest that this locus evolves under balancing selection and specifically under negative frequency-dependent selection (FDS). Interestingly, genetic variation at the other loci clusters very well within the groups of isolates defined by gp60 subtypes, which may provide new tools to understand the genome-wide patterns of genetic variation of the parasite in the wild. These results suggest that gp60 plays an active and essential role in the life cycle of the parasite and that genetic variation at this locus might be essential for the parasite's long-term success.

  3. Cryptosporidium parvum GP60 subtypes in dairy cattle from Buenos Aires, Argentina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cryptosporidium parvum from 73 dairy calves less than two months old from Buenos Aires province (Argentina) were molecularly characterized using sequence analysis of the GP60 gene. Seventy five sequences were obtained, and seven different subtypes were identified, all belonging to the IIa subtype f...

  4. Endothelial Cell-Surface Gp60 Activates Vesicle Formation and Trafficking via Gi-Coupled Src Kinase Signaling Pathway

    PubMed Central

    Minshall, Richard D.; Tiruppathi, Chinnaswamy; Vogel, Stephen M.; Niles, Walter D.; Gilchrist, Annette; Hamm, Heidi E.; Malik, Asrar B.

    2000-01-01

    We tested the hypothesis that the albumin-docking protein gp60, which is localized in caveolae, couples to the heterotrimeric GTP binding protein Gi, and thereby activates plasmalemmal vesicle formation and the directed migration of vesicles in endothelial cells (ECs). We used the water-soluble styryl pyridinium dye N-(3-triethylaminopropyl)-4-(p-dibutylaminostyryl) pyridinium dibromide (FM 1-43) to quantify vesicle trafficking by confocal and digital fluorescence microscopy. FM 1-43 and fluorescently labeled anti-gp60 antibody (Ab) were colocalized in endocytic vesicles within 5 min of gp60 activation. Vesicles migrated to the basolateral surface where they released FM 1-43, the fluid phase styryl probe. FM 1-43 fluorescence disappeared from the basolateral EC surface without the loss of anti-gp60 Ab fluorescence. Activation of cell-surface gp60 by cross-linking (using anti-gp60 Ab and secondary Ab) in EC grown on microporous filters increased transendothelial 125I-albumin permeability without altering liquid permeability (hydraulic conductivity), thus, indicating the dissociation of hydraulic conductivity from the albumin permeability pathway. The findings that the sterol-binding agent, filipin, prevented gp60-activated vesicle formation and that caveolin-1 and gp60 were colocalized in vesicles suggest the caveolar origin of endocytic vesicles. Pertussis toxin pretreatment and expression of the dominant negative construct encoding an 11–amino acid Gαi carboxyl-terminal peptide inhibited endothelial 125I-albumin endocytosis and vesicle formation induced by gp60 activation. Expression of dominant negative Src (dn-Src) and overexpression of wild-type caveolin-1 also prevented gp60-activated endocytosis. Caveolin-1 overexpression resulted in the sequestration of Gαi with the caveolin-1, whereas dn-Src inhibited Gαi binding to caveolin-1. Thus, vesicle formation induced by gp60 and migration of vesicles to the basolateral membrane requires the interaction of gp60

  5. Cases of cryptosporidiosis co-infections in AIDS patients: a correlation between clinical presentation and GP60 subgenotype lineages from aged formalin-fixed stool samples

    PubMed Central

    DEL CHIERICO, F; ONORI, M; DI BELLA, S; BORDI, E; PETROSILLO, N; MENICHELLA, D; CACCIÒ, S M; CALLEA, F; PUTIGNANI, L

    2011-01-01

    Nine cases of cryptosporidiosis co-infections in AIDS patients were clinically categorised into severe (patients 1, 3, 8 and 9), moderate (patients 4 and 5) and mild (patients 2, 6 and 7). Formalin-fixed faecal specimens from these patients were treated to obtain high quality DNA competent for amplification and sequencing of the 60-kDa glycoprotein (GP60) gene. Sequence analysis revealed that one patient was infected with Cryptosporidium hominis whereas the remaining eight patients were infected with C. parvum. Interestingly, the patients showing severe cryptosporidiosis harboured two subtypes within the C. parvum allelic family IIc (IIcA5G3 and IIcA5G3R2), whereas patients with moderate or mild infections showed various subtypes of the C. parvum allelic family IIa (IIaA14G2R1, IIaA15G2R1, IIaA17G3R1 and IIaA18G3R1). DNA extraction and genotyping of Cryptosporidium spp. is a challenging task on formalin-fixed stool samples, whose diagnostic outcome is age-dependent. The method herein reported represents a step forward routine diagnosis and improves epidemiology of HIV-related clinical cases. Due to the need to elucidate genetic richness of Cryptosporidium human isolates, this approach represents a useful tool to correlate individual differences in symptoms to subgenotyping lineages. PMID:21929875

  6. Immune Response Induced by an Immunodominant 60 kDa Glycoprotein of the Cell Wall of Sporothrix schenckii in Two Mice Strains with Experimental Sporotrichosis.

    PubMed

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; Toriello, Conchita; Pulido-Camarillo, Evelyn; López-Romero, Everardo; Romo-Lozano, Yolanda; Gutiérrez-Sánchez, Gerardo; Ruiz-Baca, Estela

    2016-01-01

    Cell wall (CW) components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60) has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response.

  7. Immune Response Induced by an Immunodominant 60 kDa Glycoprotein of the Cell Wall of Sporothrix schenckii in Two Mice Strains with Experimental Sporotrichosis

    PubMed Central

    Alba-Fierro, Carlos A.; Pérez-Torres, Armando; Toriello, Conchita; Pulido-Camarillo, Evelyn; Romo-Lozano, Yolanda; Gutiérrez-Sánchez, Gerardo

    2016-01-01

    Cell wall (CW) components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60) has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response. PMID:27051673

  8. Glycoprotein synthesis

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Zhang, Zhiwen

    2005-08-09

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  9. Glycoprotein synthesis

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Zhang, Zhiwen

    2007-02-27

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  10. Glycoprotein synthesis

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Zhang, Zhiwen

    2006-10-31

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  11. Glycoprotein synthesis

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Zhang, Zhiwen

    2010-11-16

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  12. Glycoprotein synthesis

    DOEpatents

    Shultz, Peter G.; Wang, Lei; Zhang, Zhiwen

    2007-04-03

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  13. Glycoprotein synthesis

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Zhang, Zhiwen

    2010-11-02

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  14. Glycoprotein synthesis

    SciTech Connect

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

    2009-07-14

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  15. Glycoprotein synthesis

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Zhang, Zhiwen

    2007-08-28

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  16. Glycoprotein synthesis

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Zhang, Zhiwen

    2007-05-15

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  17. Glycoprotein synthesis

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Zhang, Zhiwen

    2007-07-03

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  18. Photothermal treatment of liver cancer with albumin-conjugated gold nanoparticles initiates Golgi Apparatus-ER dysfunction and caspase-3 apoptotic pathway activation by selective targeting of Gp60 receptor.

    PubMed

    Mocan, Lucian; Matea, Cristian; Tabaran, Flaviu A; Mosteanu, Ofelia; Pop, Teodora; Mocan, Teodora; Iancu, Cornel

    2015-01-01

    We present a method of enhanced laser thermal ablation of HepG2 cells based on a simple gold nanoparticle (GNP) carrier system such as serum albumin (Alb), and demonstrate its selective therapeutic efficacy compared with normal hepatocyte cells. HepG2 or hepatocytes were treated with Alb-GNPs at various concentrations and various incubation times, and further irradiated using a 2 W, 808 nm laser. Darkfield microscopy and immunochemical staining was used to demonstrate the selective internalization of Alb-GNPs inside the HepG2 cells via Gp60 receptors targeting. The postirradiation apoptotic rate of HepG2 cells treated with Alb-GNPs ranged from 25.8% (for 5 μg/mL) to 48.2% (for 50 μg/mL) at 60 seconds, while at 30 minutes the necrotic rate increased from 35.7% (5 μg/mL) to 52.3% (50 μg/mL), P-value <0.001. Significantly lower necrotic rates were obtained when human hepatocytes were treated with Alb-GNPs in a similar manner. We also showed by means of immunocytochemistry that photothermal treatment of Alb-conjugated GNPs in liver cancer initiates Golgi apparatus-endoplasmic reticulum dysfunction with consequent caspase-3 apoptotic pathway activation and cellular apoptosis. The presented results may become a new method of treating cancer cells by selective therapeutic vectors using nanolocalized thermal ablation by laser heating.

  19. Glycoproteins: Occurrence and Significance

    NASA Astrophysics Data System (ADS)

    Wittmann, Valentin

    Protein glycosylation is regarded as the most complex form of post-translational modification leading to a heterogeneous expression of glycoproteins as mixtures of glycoforms. This chapter describes the structure and occurrence of glycoproteins with respect to their glycan chains. Discussed are different carbohydrate-peptide linkages including GPI anchors, common structures of N- and O-glycans, and the structure of glycosaminoglycans contained in proteoglycans. Also covered are the bacterial cell wall polymer peptidoglycan and the glycopeptide antibiotics of the vancomycin group. Properties and functions of the glycans contained in glycoproteins are dealt with in the next chapter of this book.

  20. Glycoprotein biosynthesis in calf kidney. Glycoprotein sialyltransferase activities towards serum glycoproteins and calf Tamm-Horsfall glycoprotein.

    PubMed

    van Dijk, W; Lasthuis, A M; van den Eijnden, D H

    1979-04-18

    CMP-AcNeu:glycoprotein sialyltransltransltransltransltransferase of calf kidney cortex was characterized using serum glycoproteins and Tamm-Horsfall glycoprotein, obtained from calf urine, as acceptors. Native calf Tamm-Horsfall glycoprotein showed the best acceptor properties, followed by desialylated calf fetuin and desialylated human alpha 1-acid glycoprotein exhibiting V values of, respectively, 114, 63 and 41 nmol/h per g wet wt. of kidney cortex and Km values of 0.12, 0.16 and 0.26 mM glycoprotein acceptor. Desialylated ovine submaxillary mucine appeared to be a very poor acceptor. Tamm-Horsfall glycoprotein sialyltransferase could be distinguished from serum glycoprotein sialyltransferase by competition studies. In addition the two glycoprotein sialyltransferase activities showed different distributions over the three regions of the calf kidney: the ratios of the Tamm-Horsfall to serum glycoprotein sialyltransferase activities decreased from 3.3 in the cortex to 0.8 and 0.4 in the medulla and the papilla, respectively. It was concluded that in calf kidney at least two different sialyltransferases exist. The high cortical Tamm-Horsfall glycoprotein sialyltransferases activity corresponds markedly to the origin of the urinary Tamm-Horsfall glycoprotein, namely the distal part of the kidney tubule. Inactivation of glycoprotein sialyltransferase activity by preincubation at various temperatures and during storage at 0 degree C, could be reduced by the addition of CMP-AcNeu. The possible relevance towards the in vivo sialylation of this finding is discussed.

  1. Envelope glycoprotein of arenaviruses.

    PubMed

    Burri, Dominique J; da Palma, Joel Ramos; Kunz, Stefan; Pasquato, Antonella

    2012-10-17

    Arenaviruses include lethal human pathogens which pose serious public health threats. So far, no FDA approved vaccines are available against arenavirus infections, and therapeutic options are limited, making the identification of novel drug targets for the development of efficacious therapeutics an urgent need. Arenaviruses are comprised of two RNA genome segments and four proteins, the polymerase L, the envelope glycoprotein GP, the matrix protein Z, and the nucleoprotein NP. A crucial step in the arenavirus life-cycle is the biosynthesis and maturation of the GP precursor (GPC) by cellular signal peptidases and the cellular enzyme Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P) yielding a tripartite mature GP complex formed by GP1/GP2 and a stable signal peptide (SSP). GPC cleavage by SKI-1/S1P is crucial for fusion competence and incorporation of mature GP into nascent budding virion particles. In a first part of our review, we cover basic aspects and newer developments in the biosynthesis of arenavirus GP and its molecular interaction with SKI-1/S1P. A second part will then highlight the potential of SKI-1/S1P-mediated processing of arenavirus GPC as a novel target for therapeutic intervention to combat human pathogenic arenaviruses.

  2. Folding of synthetic homogeneous glycoproteins in the presence of a glycoprotein folding sensor enzyme.

    PubMed

    Dedola, Simone; Izumi, Masayuki; Makimura, Yutaka; Seko, Akira; Kanamori, Akiko; Sakono, Masafumi; Ito, Yukishige; Kajihara, Yasuhiro

    2014-03-10

    UDP-glucose:glycoprotein glucosyltransferase (UGGT) plays a key role in recognizing folded and misfolded glycoproteins in the glycoprotein quality control system of the endoplasmic reticulum. UGGT detects misfolded glycoproteins and re-glucosylates them as a tag for misfolded glycoproteins. A flexible model to reproduce in vitro folding of a glycoprotein in the presence of UGGT in a mixture containing correctly folded, folding intermediates, and misfolded glycoproteins is described. The data demonstrates that UGGT can re-glucosylate all intermediates in the in vitro folding experiments, thus indicating that UGGT inspects not only final folded products, but also the glycoprotein folding intermediates.

  3. Salivary Mucin 19 Glycoproteins

    PubMed Central

    Culp, David J.; Robinson, Bently; Cash, Melanie N.; Bhattacharyya, Indraneel; Stewart, Carol; Cuadra-Saenz, Giancarlo

    2015-01-01

    Saliva functions in innate immunity of the oral cavity, protecting against demineralization of teeth (i.e. dental caries), a highly prevalent infectious disease associated with Streptococcus mutans, a pathogen also linked to endocarditis and atheromatous plaques. Gel-forming mucins are a major constituent of saliva. Because Muc19 is the dominant salivary gel-forming mucin in mice, we studied Muc19−/− mice for changes in innate immune functions of saliva in interactions with S. mutans. When challenged with S. mutans and a cariogenic diet, total smooth and sulcal surface lesions are more than 2- and 1.6-fold higher in Muc19−/− mice compared with wild type, whereas the severity of lesions are up to 6- and 10-fold higher, respectively. Furthermore, the oral microbiota of Muc19−/− mice display higher levels of indigenous streptococci. Results emphasize the importance of a single salivary constituent in the innate immune functions of saliva. In vitro studies of S. mutans and Muc19 interactions (i.e. adherence, aggregation, and biofilm formation) demonstrate Muc19 poorly aggregates S. mutans. Nonetheless, aggregation is enhanced upon adding Muc19 to saliva from Muc19−/− mice, indicating Muc19 assists in bacterial clearance through formation of heterotypic complexes with salivary constituents that bind S. mutans, thus representing a novel innate immune function for salivary gel-forming mucins. In humans, expression of salivary MUC19 is unclear. We find MUC19 transcripts in salivary glands of seven subjects and demonstrate MUC19 glycoproteins in glandular mucous cells and saliva. Similarities and differences between mice and humans in the expression and functions of salivary gel-forming mucins are discussed. PMID:25512380

  4. Glycan analysis of therapeutic glycoproteins

    PubMed Central

    Zhang, Lei; Luo, Shen; Zhang, Baolin

    2016-01-01

    ABSTRACT Therapeutic monoclonal antibodies (mAbs) are glycoproteins produced by living cell systems. The glycan moieties attached to the proteins can directly affect protein stability, bioactivity, and immunogenicity. Therefore, glycan variants of a glycoprotein product must be adequately analyzed and controlled to ensure product quality. However, the inherent complexity of protein glycosylation poses a daunting analytical challenge. This review provides an update of recent advances in glycan analysis, including the potential utility of lectin-based microarray for high throughput glycan profiling. Emphasis is placed on comparison of the major types of analytics for use in determining unique glycan features such as glycosylation site, glycan structure, and content. PMID:26599345

  5. Recent Progress in Electrochemical Biosensors for Glycoproteins

    PubMed Central

    Akiba, Uichi; Anzai, Jun-ichi

    2016-01-01

    This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements. PMID:27916961

  6. Effect of glycoprotein-processing inhibitors on fucosylation of glycoproteins

    SciTech Connect

    Schwarz, P.M.; Elbein, A.D.

    1985-11-25

    Influenza viral hemagglutinin contains L-fucose linked alpha 1,6 to some of the innermost GlcNAc residues of the complex oligosaccharides. To determine what structural features of the oligosaccharide were required for fucosylation influenza virus-infected MDCK cells were incubated in the presence of various inhibitors of glycoprotein processing to stop trimming at different points. After several hours of incubation with the inhibitors, (5,6-TH)fucose and (1- UC)mannose were added to label the glycoproteins, and cells were incubated in inhibitor and isotope for about 40 h to produce mature virus. Glycopeptides were prepared from the viral and the cellular glycoproteins, and these glycopeptides were isolated by gel filtration on Bio-Gel P-4. The glycopeptides were then digested with endo-beta-N-acetylglucosaminidase H and rechromatographed on the Bio-Gel column. In the presence of castanospermine or 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine, both inhibitors of glucosidase I, most of the radioactive mannose was found in Glc3Man7-9GlcNAc structures, and these did not contain radioactive fucose. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, most of the ( UC)mannose was in a Man9GlcNAc structure which was also not fucosylated. However, in the presence of swainsonine, an inhibitor of mannosidase II, the ( UC)mannose was mostly in hybrid types of oligosaccharides, and these structures also contained radioactive fucose. Treatment of the hybrid structures with endoglucosaminidase H released the (TH)fucose as a small peptide (Fuc-GlcNAc-peptide), whereas the ( UC)mannose remained with the oligosaccharide. The data support the conclusion that the addition of fucose linked alpha 1,6 to the asparagine-linked GlcNAc is dependent upon the presence of a beta 1,2-GlcNAc residue on the alpha 1,3-mannose branch of the core structure.

  7. A sweet code for glycoprotein folding.

    PubMed

    Caramelo, Julio J; Parodi, Armando J

    2015-11-14

    Glycoprotein synthesis is initiated in the endoplasmic reticulum (ER) lumen upon transfer of a glycan (Glc3Man9GlcNAc2) from a lipid derivative to Asn residues (N-glycosylation). N-Glycan-dependent quality control of glycoprotein folding in the ER prevents exit to Golgi of folding intermediates, irreparably misfolded glycoproteins and incompletely assembled multimeric complexes. It also enhances folding efficiency by preventing aggregation and facilitating formation of proper disulfide bonds. The control mechanism essentially involves four components, resident lectin-chaperones (calnexin and calreticulin) that recognize monoglucosylated polymannose protein-linked glycans, lectin-associated oxidoreductase acting on monoglucosylated glycoproteins (ERp57), a glucosyltransferase that creates monoglucosylated epitopes in protein-linked glycans (UGGT) and a glucosidase (GII) that removes the glucose units added by UGGT. This last enzyme is the only mechanism component sensing glycoprotein conformations as it creates monoglucosylated glycans exclusively in not properly folded glycoproteins or in not completely assembled multimeric glycoprotein complexes. Glycoproteins that fail to properly fold are eventually driven to proteasomal degradation in the cytosol following the ER-associated degradation pathway, in which the extent of N-glycan demannosylation by ER mannosidases play a relevant role in the identification of irreparably misfolded glycoproteins.

  8. Circular dichroism of erythrocyte membrane glycoproteins.

    PubMed

    Decker, R V; Carraway, K L

    1975-03-28

    The circular dichroism spectra were obtained for purified equine, human and bovine membrane glycoproteins, which have 40, 55 and 70% carbohydrate, respectively. The spectra in aqueous buffer show similar shapes, maxima and minima but somewhat different peak amplitudes. Analysis of the spectra indicated that the glycoproteins can be pictured as existing primarily in an unordered form in dilute aqueous buffer with small amounts of alpha-helix (13-23%) present. In 2-chloroethanol, a helix-promoting solvent, the amount of alpha-helix is increased to 60-70%. The glycoproteins underwent denaturation in guanidine hydrochloride, although evidence of some residual structure did remain. The spectra of the glycoproteins change relatively little on going from aqueous buffer to dodecylsulfate solutions. Removal of 60% of the sialic acid does not induce significant conformational alterations. The anomalous behavior of the glycoproteins during molecular weight determinations does not appear to be related primarily to conformational restrictions on the polypeptide chain.

  9. Calnexin, calreticulin and the folding of glycoproteins.

    PubMed

    1997-05-01

    Calnexin and calreticulin are molecular chaperones in the endoplasmic reticulum (ERJ. They are lectins that interact with newly synthesized glycoproteins that have undergone partial trimming of their core N-linked oligosaccharides. Together with the enzymes responsible for glucose removal and a glucosyltransferase that re-glucosylates already-trimmed glycoproteins, they provide a novel mechanism for promoting folding, oligomeric assembly and quality control in the ER.

  10. [Biological role of heterogeneous glycoprotein structures].

    PubMed

    Jakab, Lajos

    2016-07-01

    Carbohydrate molecules connected mostly with covalent junctions to protein chains are called glycoproteins. These carbohydrate molecules are attached to the protein core in different qualities and order. When the protein core is connected with acidic components such as uronic acid or SO4 radicals, they are called proteoglycans. The currently used name "glycosaminoglycan" in this case is not entirely correct. In the living world polymannane structures occur, too. Glycoproteins do not only exceptionally hold acidic groups but they have neuraminic acid derivatives. Tissue, cellular and matrix structures, and mostly all serum "proteins" are mainly glycoproteins. In the everyday clinical practice glycoproteins are mentioned as proteins. Nevertheless, the inadequate use of the concept may cause errors in the attitudes, too. This paper aims to correct this notion, because the term of "glycobiology" has already been expanded to be an independent scientific field. The practical clinical consequences of recent knowledge in this field are also summarized including novel findings on glycoprotein structures and functions. The importance of the quantity of carbohydrates, and their structural arrangements are also presented. In short, significance of glycoprotein-carbohydrate structures, as well as their physiological and pathological roles are reviewed in order to introduce the field of "glycobiology". Orosomucoid and immunoglobulins are discussed separately. Orv. Hetil., 2016, 157(30), 1185-1192.

  11. Forcible destruction of severely misfolded mammalian glycoproteins by the non-glycoprotein ERAD pathway.

    PubMed

    Ninagawa, Satoshi; Okada, Tetsuya; Sumitomo, Yoshiki; Horimoto, Satoshi; Sugimoto, Takehiro; Ishikawa, Tokiro; Takeda, Shunichi; Yamamoto, Takashi; Suzuki, Tadashi; Kamiya, Yukiko; Kato, Koichi; Mori, Kazutoshi

    2015-11-23

    Glycoproteins and non-glycoproteins possessing unfolded/misfolded parts in their luminal regions are cleared from the endoplasmic reticulum (ER) by ER-associated degradation (ERAD)-L with distinct mechanisms. Two-step mannose trimming from Man9GlcNAc2 is crucial in the ERAD-L of glycoproteins. We recently showed that this process is initiated by EDEM2 and completed by EDEM3/EDEM1. Here, we constructed chicken and human cells simultaneously deficient in EDEM1/2/3 and analyzed the fates of four ERAD-L substrates containing three potential N-glycosylation sites. We found that native but unstable or somewhat unfolded glycoproteins, such as ATF6α, ATF6α(C), CD3-δ-ΔTM, and EMC1, were stabilized in EDEM1/2/3 triple knockout cells. In marked contrast, degradation of severely misfolded glycoproteins, such as null Hong Kong (NHK) and deletion or insertion mutants of ATF6α(C), CD3-δ-ΔTM, and EMC1, was delayed only at early chase periods, but they were eventually degraded as in wild-type cells. Thus, higher eukaryotes are able to extract severely misfolded glycoproteins from glycoprotein ERAD and target them to the non-glycoprotein ERAD pathway to maintain the homeostasis of the ER.

  12. Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment.

    PubMed

    Song, Ehwang; Mechref, Yehia

    2015-01-01

    Protein glycosylation is an important and common post-translational modification. More than 50% of human proteins are believed to be glycosylated to modulate the functionality of proteins. Aberrant glycosylation has been correlated to several diseases, such as inflammatory skin diseases, diabetes mellitus, cardiovascular disorders, rheumatoid arthritis, Alzheimer's and prion diseases, and cancer. Many approved cancer biomarkers are glycoproteins which are not highly abundant proteins. Therefore, effective qualitative and quantitative assessment of glycoproteins entails enrichment methods. This chapter summarizes glycoprotein enrichment methods, including lectin affinity, immunoaffinity, hydrazide chemistry, hydrophilic interaction liquid chromatography, and click chemistry. The use of these enrichment approaches in assessing the qualitative and quantitative changes of glycoproteins in different types of cancers are presented and discussed. This chapter highlights the importance of glycoprotein enrichment techniques for the identification and characterization of new reliable cancer biomarkers.

  13. Traceless labeling of glycoproteins and its application to the study of glycoprotein-protein interactions.

    PubMed

    Yang, Yung-Lin; Lee, Yen-Pin; Yang, Yen-Ling; Lin, Po-Chiao

    2014-02-21

    A new chemical method for the traceless labeling of glycoproteins with synthetic boronic acid (BA)-tosyl probes was successfully developed. The BA moiety acts as an affinity head to direct the formation of a cyclic boronate diester with the diol groups of glycans. Following this step, the electrophilic tosyl group is displaced by an SN2 reaction with a nucleophilic residue of the boronated glycoprotein, and finally, a reporter group is tagged onto the glycoprotein via an ether linkage. In the presence of polyols, a competition reaction recovers the native glycan of the tagged glycoprotein, conserving its biological significance. The BA-tosyl probes were used successfully for the specific labeling of glycosylated fetuins in a mixed protein pool and from crude Escherichia coli (E. coli) lysate. Further, a BA-tosyl-functionalized glass slide was used to fabricate glycoprotein microarrays with highly conserved glycans. By interacting with various lectins (carbohydrate-binding proteins), such as Concanavalin A (Con A) and wheat germ agglutinin (WGA), the types of carbohydrates and specific linkages of glycoproteins (α or β) could be systematically monitored. It is believed that the newly developed method will greatly accelerate the understanding of glycoproteins.

  14. Characterization of disease-associated N-linked glycoproteins.

    PubMed

    Tian, Yuan; Zhang, Hui

    2013-02-01

    N-linked glycoproteins play important roles in biological processes, including cell-to-cell recognition, growth, differentiation, and programmed cell death. Specific N-linked glycoprotein changes are associated with disease progression and identification of these N-linked glycoproteins has potential for use in disease diagnosis, prognosis, and prediction of treatments. In this review, we summarize common strategies for N-linked glycoprotein characterization and applications of these strategies to identification of glycoprotein changes associated with disease states. We also review the N-linked glycoproteins altered in diseases such as breast cancer, lung cancer, and prostate cancer. Although assays for these glycoproteins have potential clinical utility, research is needed to translate these glycoproteins to clinical biomarkers.

  15. Using proximity biotinylation to detect herpesvirus entry glycoprotein interactions: Limitations for integral membrane glycoproteins.

    PubMed

    Lajko, Michelle; Haddad, Alexander F; Robinson, Carolyn A; Connolly, Sarah A

    2015-09-01

    Herpesvirus entry into cells requires coordinated interactions among several viral transmembrane glycoproteins. Viral glycoproteins bind to receptors and interact with other glycoproteins to trigger virus-cell membrane fusion. Details of these glycoprotein interactions are not well understood because they are likely transient and/or low affinity. Proximity biotinylation is a promising protein-protein interaction assay that can capture transient interactions in live cells. One protein is linked to a biotin ligase and a second protein is linked to a short specific acceptor peptide (AP). If the two proteins interact, the ligase will biotinylate the AP, without requiring a sustained interaction. To examine herpesvirus glycoprotein interactions, the ligase and AP were linked to herpes simplex virus 1 (HSV1) gD and Epstein Barr virus (EBV) gB. Interactions between monomers of these oligomeric proteins (homotypic interactions) served as positive controls to demonstrate assay sensitivity. Heterotypic combinations served as negative controls to determine assay specificity, since HSV1 gD and EBV gB do not interact functionally. Positive controls showed strong biotinylation, indicating that viral glycoprotein proximity can be detected. Unexpectedly, the negative controls also showed biotinylation. These results demonstrate the special circumstances that must be considered when examining interactions among glycosylated proteins that are constrained within a membrane.

  16. Glycoprotein patterns in normal and malignant cervical tissue.

    PubMed

    O'Brien, M E; Souberbielle, B E; Cowan, M E; Allen, C A; Luesley, D M; Mould, J J; Blackledge, G R; Skinner, G R

    1991-07-04

    Glycoproteins from normal and malignant human cervix were studied using an organ culture system and compared by gel electrophoresis and autoradiography. Five glycoproteins of 178 kDa, 95 kDa, 93 kDa, 82 kDa and 38 kDa and 1 glycolipid (46 kDa) were detected more frequently in squamous carcinomas. Certain glycoproteins were shown to be oncofoetal and some had affinity for Concanavalin A (Con A). The 82 kDa glycoprotein was present in 16/17 squamous carcinomas but in only 1/13 normal cervices. This band represented a glycoprotein containing glucosamine, mannose, small quantities of methionine and no fucose. These preliminary results suggest that these glycoproteins and in particular the 82-kDa glycoprotein are worthy of further investigation and characterisation.

  17. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function.

    PubMed

    Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Gotté, Maxime; Plancot, Barbara; Lerouge, Patrice; Bardor, Muriel; Driouich, Azeddine

    2014-01-01

    Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER) and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensins (EXTs), the O-glycan chains of arabinogalactan proteins (AGPs) are highly heterogeneous consisting mostly of (i) a short oligo-arabinoside chain of three to four residues, and (ii) a larger β-1,3-linked galactan backbone with β-1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose, or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core β,2-xylose, core α1,3-fucose residues, and Lewis(a) substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins, only EXTs and AGPs are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review.

  18. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function

    PubMed Central

    Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Gotté, Maxime; Plancot, Barbara; Lerouge, Patrice; Bardor, Muriel; Driouich, Azeddine

    2014-01-01

    Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER) and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensins (EXTs), the O-glycan chains of arabinogalactan proteins (AGPs) are highly heterogeneous consisting mostly of (i) a short oligo-arabinoside chain of three to four residues, and (ii) a larger β-1,3-linked galactan backbone with β-1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose, or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core β,2-xylose, core α1,3-fucose residues, and Lewisa substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins, only EXTs and AGPs are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review. PMID:25324850

  19. Chemical and Chemoenzymatic Synthesis of Glycoproteins for Deciphering Functions

    PubMed Central

    Wang, Lai-Xi; Amin, Mohammed N.

    2014-01-01

    Summary Glycoproteins are an important class of biomolecules involved in a number of biological recognition processes. However, natural and recombinant glycoproteins are usually produced as mixtures of glycoforms that differ in the structures of the pendent glycans, which are difficult to separate in pure glycoforms. As a result, synthetic homogeneous glycopeptides and glycoproteins have become indispensable probes for detailed structural and functional studies. A number of elegant chemical and biological strategies have been developed for synthetic construction of tailor-made, full-size glycoproteins to address specific biological problems. In this review, we highlight recent advances in chemical and chemoenzymatic synthesis of homogeneous glycoproteins. Selected examples are given to demonstrate the applications of tailor-made, glycan-defined glycoproteins for deciphering glycosylation functions. PMID:24439206

  20. Markers of Ovarian Cancer Using a Glycoprotein/Antibody Array

    DTIC Science & Technology

    2014-05-01

    204. 4. Zhao J, Patwa TH, Qiu W, Shedden K, Hinderer R, Misek DE, Anderson MA, Simeone DM, and Lubman DM. Glycoprotein microarrays with multi -lectin...quantitative strategy, clusterin (CLUS), leucine-rich alpha-2-glycoprotein (LRG1), hemopexin (HEMO), vitamin D-binding protein (VDB), and complement...Part of complement system P02750 LRG1 Leucine-rich alpha-2- glycoprotein 0.019 It is expressed during granulocyte differentiation P02774 VDB Vitamin

  1. Glycoprotein Degradation in the Blind Loop Syndrome

    PubMed Central

    Prizont, Roberto

    1981-01-01

    Contents obtained from jejunum of normal controls, self-emptying and self-filling blind loop rats were analyzed for the presence of glycoprotein-degrading glycosidases. The blind loop syndrome was documented by the increased fat excretion and slower growth rate of self-filling blind loop rats 6 wk after surgery. With p-nitrophenylglycosides as substrate, the specific activity of α-N-acetylgalactosaminidase, a potential blood group A destroying glycosidase, was 0.90±0.40 mU/mg of protein. This level was 23-fold higher than the specific activity of normal controls. In partially purified self-filling blind loop contents, the activity of α-N-acetylgalactosaminidase was 9- to 70-fold higher than activities of self-emptying and normal controls. Antibiotic treatment with chloromycetin and polymyxin decreased 24-fold the glycosidase levels in self-filling blind loops. In experiments with natural substrate, the blood group A titer of a20,000g supernate from normal jejunal homogenates decreased 128-fold after 24-h incubation with blind loop contents. Normal contents failed to diminish the blood group reactivity of the natural substrate. Furthermore, blind loop contents markedly decreased the blood group A titer of isolated brush borders. Incubation between blind loop bacteria and mucosal homogenates or isolated brush borders labeled with d-[U-14C]glucosamine revealed increased production of labeled ether extractable organic acids. Likewise, intraperitoneal injection of d-[U-14C]glucosamine into self-filling blind loop rats resulted in incorporation of the label into luminal short chain fatty acids. These results suggest that glycosidases may provide a mechanism by which blind loop bacteria obtain sugars from intestinal glycoproteins. The released sugars are used and converted by bacteria into energy and organic acids. This use of the host's glycoproteins would allow blind loop bacteria to grow and survive within the lumen independent of exogenous sources. PMID:6257760

  2. [Lactoferrin - a glycoprotein of great therapeutic potentials].

    PubMed

    Lauterbach, Ryszard; Kamińska, Ewa; Michalski, Piotr; Lauterbach, Jan Paweł

    2016-01-01

    Lactoferrin is an iron-binding glycoprotein, which is present in most biological fluids with particularly high levels in colostrum and in mammalian milk. Bovine lactoferrin is more than 70% homologous with human lactoferrin. Most of the clinical trials have used bovine lactoferrin for supplementation. This review summarizes the recent advances in explaining the mechanisms, which are responsible for the multifunctional roles of lactoferrin, and presents its potential prophylactic and therapeutic applications. On the ground of the results of preliminary clinical observations, authors suggest beneficial effect of lactoferrin supplementation on the prevalence of necrotizing enterocolitis in infants with birth weight below 1250 grams.

  3. Characterization of Murine Gammaherpesvirus 68 Glycoprotein B

    PubMed Central

    Lopes, Filipa B.; Colaco, Susanna; May, Janet S.; Stevenson, Philip G.

    2004-01-01

    Murine gammaherpesvirus 68 (MHV-68) glycoprotein B (gB) was identified in purified virions by immunoblotting, immunoprecipitation, and immunoelectron microscopy. It was synthesized as a 120-kDa precursor in infected cells and cleaved into 65-kDa and 55-kDa disulfide-linked subunits close to the time of virion release. The N-linked glycans on the cleaved, virion gB remained partially endoglycosidase H sensitive. The processing of MHV-68 gB therefore appears similar to that of Kaposi's sarcoma-associated herpesvirus gB and human cytomegalovirus gB. PMID:15542690

  4. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    ERIC Educational Resources Information Center

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  5. Tamm-Horsfall glycoprotein and calcium nephrolithiasis.

    PubMed

    Hess, B

    1994-01-01

    Available data on the effects of Tamm-Horsfall glycoprotein (THP) on calcium oxalate crystallization processes are apparently conflicting. With the main emphasis on calcium oxalate crystal aggregation, this review demonstrates that THP has a dual role as a modifier of crystal aggregation: in solutions with high pH, low ionic strength (IS) and low concentrations of calcium and THP itself, the glycoprotein acts as a powerful inhibitor of calcium oxalate crystal aggregation. Conversely, low pH, high IS and high concentrations of calcium and THP all favor self-aggregation of THP molecules which lowers their inhibitory activity against calcium oxalate crystal aggregation. Some patients with severely recurrent Ca stone disease excrete abnormal THPs which self-aggregate at levels of pH, IS and concentrations of Ca and THP at which normal THPs remain in monomeric form. With high Ca concentrations, such abnormal THPs become strong promoters of crystal aggregation, since conformational changes in crystal-bound THP molecules induce strong viscous binding forces which overcome repulsive electrostatic surface charges. By chelating free Ca ions, citrate reduces self-aggregation of THP molecules and turns promoting THPs into inhibitors of calcium oxalate crystal aggregation.

  6. Enhanced detection of glycoproteins in polyacrylamide gels.

    PubMed

    Muñoz, G; Marshall, S; Cabrera, M; Horvat, A

    1988-05-01

    A highly sensitive and simple method to enhance detection of glycoproteins resolved by either one- or two-dimensional polyacrylamide gel electrophoresis is described. The method is a modification of the procedure described by D. Fargeaud et al. (D. Fargeaud, J. C. Benoit, F. Kato, and G. Chappuis (1984) Arch. Virol. 80, 69-82) that uses concanavalin A conjugated with fluorescein isothyocyanate to detect the carbohydrate moiety of glycoproteins. Briefly, the electrophoresed gel is exposed to the fluorescent lectin, thoroughly washed, and sequentially transferred to 50% methanol in deionized water and to absolute methanol. The result is an abrupt dehydration of the gel which turns evenly white and stiff. At least a twofold enhancement of fluorescence is obtained as detected by exposing the treated gel to an appropriate uv source. The sensitivity of the procedure allows us to detect purified immunoglobulin molecules by their carbohydrate content in the range of 0.2 microgram of total protein. The specificity of the detection is demonstrated by a comparison with the corresponding polypeptide profile obtained by silver nitrate staining of the gel.

  7. Glycosylation modulates arenavirus glycoprotein expression and function

    SciTech Connect

    Bonhomme, Cyrille J. Capul, Althea A. Lauron, Elvin J. Bederka, Lydia H. Knopp, Kristeene A. Buchmeier, Michael J.

    2011-01-20

    The glycoprotein of lymphocytic choriomeningitis virus (LCMV) contains nine potential N-linked glycosylation sites. We investigated the function of these N-glycosylations by using alanine-scanning mutagenesis. All the available sites were occupied on GP1 and two of three on GP2. N-linked glycan mutations at positions 87 and 97 on GP1 resulted in reduction of expression and absence of cleavage and were necessary for downstream functions, as confirmed by the loss of GP-mediated fusion activity with T87A and S97A mutants. In contrast, T234A and E379N/A381T mutants impaired GP-mediated cell fusion without altered expression or processing. Infectivity via virus-like particles required glycans and a cleaved glycoprotein. Glycosylation at the first site within GP2, not normally utilized by LCMV, exhibited increased VLP infectivity. We also confirmed the role of the N-linked glycan at position 173 in the masking of the neutralizing epitope GP-1D. Taken together, our results indicated a strong relationship between fusion and infectivity.

  8. Human immune responses to major human cytomegalovirus glycoprotein complexes.

    PubMed Central

    Liu, Y N; Kari, B; Gehrz, R C

    1988-01-01

    Sera from both human cytomegalovirus (HCMV)-seropositive adults and infants with congenital HCMV infection recognized two major HCMV glycoprotein complexes. However, proliferative responses of peripheral blood mononuclear cells to these complexes varied among seropositive adults and were not detected in any of the infants. Thus, these glycoproteins alone may not be sufficient to develop a subviral HCMV vaccine. Images PMID:2828655

  9. Ammonia transport in the kidney by Rhesus glycoproteins.

    PubMed

    Weiner, I David; Verlander, Jill W

    2014-05-15

    Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4(+) with a new model in which specific and regulated transport of both NH3 and NH4(+) across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport.

  10. Decoration of proteins with sugar chains: recent advances in glycoprotein synthesis.

    PubMed

    Okamoto, Ryo; Izumi, Masayuki; Kajihara, Yasuhiro

    2014-10-01

    Chemical or chemoenzymatic synthesis is an emerging approach to produce homogeneous glycoproteins, which are hard to obtain by conventional biotechnology methods. Recent advances in the synthetic methodologies for the decoration of protein molecules with oligosaccharides provide several remarkable syntheses of homogeneous glycoproteins. This short review highlights several of the latest syntheses of glycoproteins including therapeutically important glycoproteins, a highly glycosylated protein, and unnatural glycoproteins in order to illustrate the power of the modern glycoprotein synthesis. Structurally defined glycoproteins are a novel material for understanding the molecular basis of glycoprotein functions and for the development of the next generation of biopharmaceuticals.

  11. Array-based analysis of secreted glycoproteins for rapid selection of a single cell producing a glycoprotein with desired glycosylation.

    PubMed

    Park, Sunyoung; Kim, Wanjung; Kim, Yongtae; Son, Young Dok; Lee, Sang-Chul; Kim, Eunkyung; Kim, Sung Ho; Kim, Jung Hoe; Kim, Hak-Sung

    2010-07-01

    The therapeutic efficacy and in vivo biological function of a glycoprotein is significantly affected by its glycosylation profile. For the development of glycoproteins with therapeutic applications, selection of cell lines producing a glycoprotein with adequate glycoform is crucial. Here, we demonstrate an array-based analysis of secreted glycoproteins for rapid and efficient selection of a single cell producing a glycoprotein with desirable glycosylation. Our approach relies on microengraving and interrogation of glycoproteins produced by individual cells in a microwell array in terms of glycosylation profile as well as the produced amount. On the basis of statistical analysis of the interrogation, single cells which are predicted to produce a desired glycoprotein are selected, retrieved, and expanded. We applied the approach to human recombinant erythropoietin (rhEPO)-producing CHO cells and verified the selection of a single CHO cell that produces rhEPO with a high sialylation degree. Human erythropoietin (hEPO) bearing highly sialylated oligosaccharide was shown to display a much longer plasma half-life, resulting in high therapeutic efficacy. This method may find widespread use in the clonal selection for the production of other glycoproteins with specific glycosylation as well as analysis of the heterogeneity in cell populations in a high-throughput manner.

  12. The primary structure of a procaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria.

    PubMed

    Lechner, J; Sumper, M

    1987-07-15

    The hexagonally patterned surface layer of halobacteria consists of a true glycoprotein. This procaryotic glycoprotein has recently been shown to exhibit novel features with respect to saccharide structure and saccharide biosynthesis. The primary structure and the location of glycosylation sites were determined by cloning and sequencing of the glycoprotein gene of Halobacterium halobium. According to the predicted amino acid sequence, the glycoprotein is synthesized with a N-terminal leader sequence of 34 amino acid residues reminiscent of eucaryotic and procaryotic signal peptides. A hydrophobic stretch of 21 amino acid residues at the C terminus probably serves as a transmembrane domain. 14 threonine residues are clustered adjacent to this membrane anchor and linked to these threonines are all the disaccharides of the cell surface glycoprotein. 12 N-glycosylation sites are distributed over the polypeptide chain.

  13. Spatial orientation of glycoproteins in membranes of rat liver rough microsomes. II. Transmembrane disposition and characterization of glycoproteins

    PubMed Central

    1978-01-01

    Rat liver microsomal glycoproteins were purified by affinity chromatography on concanavalin A Sepharose columns from membrane and content fractions, separated from rough microsomes (RM) treated with low concentrations of deoxycholate (DOC). All periodic acid-Schiff (PAS)-positive glycoproteins of RM showed affinity for concanavalin A Sepharose; even after sodium dodecyl sulfate (SDS) acrylamide gel electrophoresis, most of the microsomal glycoproteins bound [125I]concanavalin A added to the gels, as detected by autoradiography. Two distinct sets of glycoproteins are present in the membrane and content fractions derived from RM. SDS acrylamide gel electrophoresis showed that RM membranes contain 15--20 glycoproteins (15--22% of the total microsomal protein) which range in apparent mol wt from 23,000 to 240,000 daltons. A smaller set of glycoproteins (five to seven polypeptides), with apparent mol wt between 60,000 and 200,000 daltons, was present in the microsomal content fraction. The disposition of the membrane glycoproteins with respect to the membrane plane was determined by selective iodination with the lactoperoxidase (LPO) technique. Intact RM were labeled on their outer face with 131I and, after opening of the vesicles with 0.05% DOC, in both faces with 125I. An analysis of iodination ratios for individual proteins separated electrophoretically showed that in most membrane glycoproteins, tyrosine residues are predominantly exposed on the luminal face of the vesicles, which is the same face on which the carbohydrate moieties are exposed. Several membrane glycoproteins are also exposed on the cytoplasmic surface and therefore have a transmembrane disposition. In this study, ribophorins I and II, two integral membrane proteins (mol wt 65,000 and 63,000) characteristic of RM, were found to be transmembrane glycoproteins. It is suggested that the transmembrane disposition of the ribophorins may be related to their possible role in ribosome binding and in the

  14. Glycoproteins and glycoproteomics in pancreatic cancer

    PubMed Central

    Pan, Sheng; Brentnall, Teresa A; Chen, Ru

    2016-01-01

    Aberrations in protein glycosylation and polysaccharides play a pivotal role in pancreatic tumorigenesis, influencing cancer progression, metastasis, immuno-response and chemoresistance. Abnormal expression in sugar moieties can impact the function of various glycoproteins, including mucins, surface receptors, adhesive proteins, proteoglycans, as well as their effectors and binding ligands, resulting in an increase in pancreatic cancer invasiveness and a cancer-favored microenvironment. Recent advance in glycoproteomics, glycomics and other chemical biology techniques have been employed to better understand the complex mechanism of glycosylation events and how they orchestrate molecular activities in genomics, proteomics and metabolomics implicated in pancreatic adenocarcinoma. A variety of strategies have been demonstrated targeting protein glycosylation and polysaccharides for diagnostic and therapeutic development. PMID:27895417

  15. Conformational Changes of the Flavivirus E Glycoprotein

    PubMed Central

    Zhang, Ying; Zhang, Wei; Ogata, Steven; Clements, David; Strauss, James H.; Baker, Timothy S.; Kuhn, Richard J.; Rossmann, Michael G.

    2014-01-01

    Summary Dengue virus, a member of the Flaviviridae family, has a surface composed of 180 copies each of the envelope (E) glycoprotein and the membrane (M) protein. The crystal structure of an N-terminal fragment of E has been determined and compared with a previously described structure. The primary difference between these structures is a 10° rotation about a hinge relating the fusion domain DII to domains DI and DIII. These two rigid body components were used for independent fitting of E into the cryo-electron microscopy maps of both immature and mature dengue viruses. The fitted E structures in these two particles showed a difference of 27° between the two components. Comparison of the E structure in its postfusion state with that in the immature and mature virions shows a rotation approximately around the same hinge. Flexibility of E is apparently a functional requirement for assembly and infection of flaviviruses. PMID:15341726

  16. Glycoprotein expression in human milk during lactation.

    PubMed

    Froehlich, John W; Dodds, Eric D; Barboza, Mariana; McJimpsey, Erica L; Seipert, Richard R; Francis, Jimi; An, Hyun Joo; Freeman, Samara; German, J Bruce; Lebrilla, Carlito B

    2010-05-26

    While milk proteins have been studied for decades, strikingly little effort has been applied to determining how the post-translational modifications (PTMs) of these proteins may change during the course of lactation. PTMs, particularly glycosylation, can greatly influence protein structure, function, and stability and can particularly influence the gut where their degradation products are potentially bioactive. In this work, previously undiscovered temporal variations in both expression and glycosylation of the glycoproteome of human milk are observed. Lactoferrin, one of the most abundant glycoproteins in human milk, is shown to be dynamically glycosylated during the first 10 days of lactation. Variations in expression or glycosylation levels are also demonstrated for several other abundant whey proteins, including tenascin, bile salt-stimulated lipase, xanthine dehydrogenase, and mannose receptor.

  17. Immunological aspects of pregnancy-associated glycoproteins.

    PubMed

    Dosogne, H; Massart-Leën, A M; Burvenich, C

    2000-01-01

    The incidence of severe cases of acute E. coli mastitis in dairy cows is highest during early lactation. This phenomenon has been associated with a decreased function and decreased numbers of circulating polymorphonuclear neutrophil leukocytes (PMN). The cause of this impaired function and decreased number is poorly understood. Stress, hormonal and metabolic alterations around parturition and the onset of lactation may play a role in this phenomenon. Several molecules, such as cortisol and beta-hydroxybutyrate have been found to alter the oxidative burst activity of circulating PMN around parturition. Pregnancy-Associated Glycoprotein (bPAG) could also be involved. The theory of immunosuppression by bPAG was investigated because analogous glycoproteins produced by the placenta of other species exert local immunosuppression in order to maintain the histoincompatible feto-maternal unit. The production and subsequent release into the maternal circulation of bPAG is ensured by the binucleate cells from the trophoblast and starts already at implantation. However, peak levels are only reached 1 week before parturition. Due to the long half-life time of this molecule, high levels are found in plasma until 2 weeks after calving. The co-occurrence of the impairment of PMN oxidative burst activity in the early postpartum period and a peak in plasma bPAG concentrations might support the hypothesis of an immunosuppressive effect of PAG. Moreover, an inhibitory effect of bPAG on the proliferation of bovine bone marrow progenitor cells has been found recently in our laboratory. bPAG occurs in colostrum, but its effect on milk cells has not been clarified. It is concluded that interaction between the physiology of reproduction and lactation on the one side and immune function on the other side in dairy cattle requires further research.

  18. P-glycoprotein in autoimmune rheumatic diseases.

    PubMed

    García-Carrasco, M; Mendoza-Pinto, C; Macias Díaz, S; Vera-Recabarren, M; Vázquez de Lara, L; Méndez Martínez, S; Soto-Santillán, P; González-Ramírez, R; Ruiz-Arguelles, A

    2015-07-01

    P-glycoprotein (Pgp) is a transmembrane protein of 170 kD encoded by the multidrug resistance 1 (MDR-1) gene, localized on chromosome 7. More than 50 polymorphisms of the MDR-1 gene have been described; a subset of these has been shown to play a pathophysiological role in the development of inflammatory bowel disease, femoral head osteonecrosis induced by steroids, lung cancer and renal epithelial tumors. Polymorphisms that have a protective effect on the development of conditions such as Parkinson disease have also been identified. P-glycoprotein belongs to the adenosine triphosphate binding cassette transporter superfamily and its structure comprises a chain of approximately 1280 aminoacid residues with an N-C terminal structure, arranged as 2 homologous halves, each of which has 6 transmembrane segments, with a total of 12 segments with 2 cytoplasmic nucleotide binding domains. Many cytokines like interleukin 2 and tumor necrosis factor alpha increase Pgp expression and activity. Pgp functions as an efflux pump for a variety of toxins in order to protect particular organs and tissues as the central nervous system. Pgp transports a variety of substrates including glucocorticoids while other drugs such as tacrolimus and cyclosporine A act as modulators of this protein. The most widely used method to measure Pgp activity is flow cytometry using naturally fluorescent substrates such as anthracyclines or rhodamine 123. The study of drug resistance and its association to Pgp began with the study of resistance to chemotherapy in the treatment of cancer and antiretroviral therapy for human immunodeficiency virus; however, the role of Pgp in the treatment of systemic lupus erythematosus, rheumatoid arthritis and psoriatic arthritis has been a focus of study lately and has emerged as an important mechanism by which treatment failure occurs. The present review analyzes the role of Pgp in these autoimmune diseases.

  19. Immunomodulatory Effects of Nontoxic Glycoprotein Fraction Isolated from Rice Bran.

    PubMed

    Park, Ho-Young; Yu, A-Reum; Hong, Hee-Do; Kim, Ha Hyung; Lee, Kwang-Won; Choi, Hee-Don

    2016-05-01

    Rice bran, a by-product of brown rice milling, is a rich source of dietary fiber and protein, and its usage as a functional food is expected to increase. In this study, immunomodulatory effects of glycoprotein obtained from rice bran were studied in normal mice and mouse models of cyclophosphamide-induced immunosuppression. We prepared glycoprotein from rice bran by using ammonium precipitation and anion chromatography techniques. Different doses of glycoprotein from rice bran (10, 25, and 50 mg/kg) were administered orally for 28 days. On day 21, cyclophosphamide at a dose of 100 mg/kg was administered intraperitoneally. Glycoprotein from rice bran showed a significant dose-dependent restoration of the spleen index and white blood cell count in the immunocompromised mice. Glycoprotein from rice bran affected the immunomodulatory function by inducing the proliferation of splenic lymphocytes, which produce potential T and B cells. Moreover, it prevented cyclophosphamide-induced damage of Th1-type immunomodulatory function through enhanced secretion of Th1-type cytokines (interferon-γ and interleukin-12). These results indicate that glycoprotein from rice bran significantly recovered cyclophosphamide-induced immunosuppression. Based on these data, it was concluded that glycoprotein from rice bran is a potent immunomodulator and can be developed to recover the immunity of immunocompromised individuals.

  20. Use of boronic acid nanoparticles in glycoprotein enrichment.

    PubMed

    Xu, Yawei; Zhang, Lijuan; Lu, Haojie

    2013-01-01

    Glyco-specific enrichment methods for mass spectrometry pretreatment are invaluable for the detection of low abundant glycoproteins or glycopeptides. For example, boronic acid can specifically interact with glycans in nonaqueous or basic aqueous solutions. Here, we describe a glyco-specific enrichment method which uses a boronic acid-functionalized "core-satellite" composite nanoparticle to isolate glycoproteins or glycopeptides from complex biological samples. Furthermore, we also demonstrate detection limit improvements and show how to evaluate the percent recovery from the glycoprotein or glycopeptide enrichment process via SDS-PAGE and (16)O/(18)O labeling strategies.

  1. [Glycoprotein hexoses in feces of infants with lactose intolerance].

    PubMed

    Filippvskiĭ, G K; Klimov, L Ia

    1995-01-01

    A modified method for estimation of total glycoprotein hexoses in feces, based on their measurements in the blood serum, is presented. Sixty-six nursing children with lactose intolerance, breastfed or formula fed, were examined; formula fed babies were kept on mixtures with high and low lactose content. Glycoprotein hexose parameters were as follows (X +/- m): 13.51 +/- 1.93, 12.05 +/- 2.20, and 3.69 +/- 0.47 g/l feces. In control children without lactose intolerance (n = 33) this value was 3.6 +/- 0.79 g/l. Increased glycoprotein excretion is connected with glycocalix and small intestinal enterocyte alteration.

  2. Extracellular glycoprotein from virulent and avirulent Cryptococcus species.

    PubMed Central

    Ross, A; Taylor, I E

    1981-01-01

    Two virulent strains of Cryptococcus neoformans and two nonvirulent forms (C. albidus and C. laurentii) were grown in liquid culture to produce maximal capsule formation. A glycoprotein was isolated from the culture medium and was homogeneous as determined by cellulose acetate electrophoresis and anion-exchange chromatography. The amino acid, neutral sugar, amino sugar, uronic acid, and O-acetyl compositions and the infrared spectra of the glycoprotein were determined. The product of the C. neoformans strains contained more mannose and uronic acid than did that from the nonpathogenic strains. O-acetyl groups were absent from glycoprotein of the two nonpathogens. PMID:7228406

  3. 21 CFR 866.5440 - Beta-2-glycoprotein III immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Beta-2-glycoprotein III immunological test system....5440 Beta-2-glycoprotein III immunological test system. (a) Identification. A beta-2-glycoprotein III... the beta-2-glycoprotein III (a serum protein) in serum and other body fluids. Measurement of...

  4. 21 CFR 866.5430 - Beta-2-glycoprotein I immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Beta-2-glycoprotein I immunological test system....5430 Beta-2-glycoprotein I immunological test system. (a) Identification. A beta-2-glycoprotein I... the beta-2-glycoprotein I (a serum protein) in serum and other body fluids. Measurement of...

  5. 21 CFR 866.5420 - Alpha-1-glycoproteins immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alpha-1-glycoproteins immunological test system....5420 Alpha-1-glycoproteins immunological test system. (a) Identification. An alpha-1-glycoproteins... alpha-1-glycoproteins (a group of plasma proteins found in the alpha-1 group when subjected...

  6. 21 CFR 866.5420 - Alpha-1-glycoproteins immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alpha-1-glycoproteins immunological test system....5420 Alpha-1-glycoproteins immunological test system. (a) Identification. An alpha-1-glycoproteins... alpha-1-glycoproteins (a group of plasma proteins found in the alpha-1 group when subjected...

  7. 21 CFR 866.5430 - Beta-2-glycoprotein I immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Beta-2-glycoprotein I immunological test system....5430 Beta-2-glycoprotein I immunological test system. (a) Identification. A beta-2-glycoprotein I... the beta-2-glycoprotein I (a serum protein) in serum and other body fluids. Measurement of...

  8. 21 CFR 866.5440 - Beta-2-glycoprotein III immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Beta-2-glycoprotein III immunological test system....5440 Beta-2-glycoprotein III immunological test system. (a) Identification. A beta-2-glycoprotein III... the beta-2-glycoprotein III (a serum protein) in serum and other body fluids. Measurement of...

  9. 21 CFR 866.5430 - Beta-2-glycoprotein I immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Beta-2-glycoprotein I immunological test system....5430 Beta-2-glycoprotein I immunological test system. (a) Identification. A beta-2-glycoprotein I... the beta-2-glycoprotein I (a serum protein) in serum and other body fluids. Measurement of...

  10. Detection of glycoproteins in the Acanthamoeba plasma membrane

    SciTech Connect

    Paatero, G.I.L. ); Gahmberg, C.G. )

    1988-11-01

    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by {sup 125}I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB{sup 3}H{sub 4} and galactose oxidase/NaB{sup 3}H{sub 4} labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M{sub r} of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presence of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with ({sup 35}S)methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis.

  11. Herpesvirus Glycoproteins Undergo Multiple Antigenic Changes before Membrane Fusion

    PubMed Central

    Glauser, Daniel L.; Kratz, Anne-Sophie; Stevenson, Philip G.

    2012-01-01

    Herpesvirus entry is a complicated process involving multiple virion glycoproteins and culminating in membrane fusion. Glycoprotein conformation changes are likely to play key roles. Studies of recombinant glycoproteins have revealed some structural features of the virion fusion machinery. However, how the virion glycoproteins change during infection remains unclear. Here using conformation-specific monoclonal antibodies we show in situ that each component of the Murid Herpesvirus-4 (MuHV-4) entry machinery—gB, gH/gL and gp150—changes in antigenicity before tegument protein release begins. Further changes then occurred upon actual membrane fusion. Thus virions revealed their final fusogenic form only in late endosomes. The substantial antigenic differences between this form and that of extracellular virions suggested that antibodies have only a limited opportunity to block virion membrane fusion. PMID:22253913

  12. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods.

    PubMed

    Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin

    2015-01-01

    Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies.

  13. Using Single Lectins to Enrich Glycoproteins in Conditioned Media.

    PubMed

    Sethi, Manveen K; Fanayan, Susan

    2015-08-03

    Lectins are sugar-binding proteins that can recognize and bind to carbohydrates conjugated to proteins and lipids. Coupled with mass spectrometry technologies, lectin affinity chromatography is becoming a popular approach for identification and quantification of glycoproteins in complex samples such as blood, tumor tissues, and cell lines. Given the commercial availability of a large number of lectins that recognize diverse sugar structures, it is now possible to isolate and study glycoproteins for biological and medical research. This unit provides a general guide to single-lectin-based enrichment of glycoproteins from serum-free conditioned media. Due to the unique carbohydrate specificity of most lectins and the complexity of the samples, optimization steps may be required to evaluate different elution buffers and methods as well as binding conditions, for each lectin, for optimal recovery of bound glycoproteins.

  14. Regenerated bacterial cellulose microfluidic column for glycoproteins separation.

    PubMed

    Chen, Chuntao; Zhu, Chunlin; Huang, Yang; Nie, Ying; Yang, Jiazhi; Shen, Ruiqi; Sun, Dongping

    2016-02-10

    To analysis and separate glycoproteins, a simple strategy to prepare regenerated bacterial cellulose (RBC) column with concanavalin A (Con A) lectin immobilized in microfluidic system was applied. RBC was filled into microchannel to fabricate RBC microcolumn after bacterial cellulose dissolved in NaOH-sulfourea water solution. Lectin Con A was covalently connected onto RBC matrix surface via Schiff-base formation. Lysozyme (non-glycoprotein) and transferrin (glycoprotein) were successfully separated based on their different affinities toward the immobilized Con A. Overall, the RBC microfluidic system presents great potential application in affinity chromatography of glycoproteins analysis, and this research represents a significant step to prepare bacterial cellulose (BC) as column packing material in microfluidic system. What is more, troublesome operations for lectin affinity chromatography were simplified by integrating the microfluidic chip onto a HPLC (High Performance Liquid Chromatography) system.

  15. KDN-containing glycoprotein from loach skin mucus.

    PubMed

    Nakagawa, H; Hama, Y; Sumi, T; Li, S C; Li, Y T

    2001-01-01

    It has been widely recognized that the mucus coat of fish plays a variety of important physical, chemical, and physiological functions. One of the major constituents of the mucus coat is mucus glycoprotein. We found that sialic acids in the skin mucus of the loach, Misgurnus anguillicaudatus, consisted predominantly of KDN. Subsequently, we isolated KDN-containing glycoprotein from loach skin mucus and characterized its chemical nature and structure. Loach mucus glycoprotein was purified from the Tris-HCl buffer extract of loach skin mucus by DEAE-cellulose chromatography, Nuclease P1 treatment, and Sepharose CL-6B gel filtration. The purified mucus glycoprotein was found to contain 38.5 KDN, 0.5% NeuAc, 25.0% GalNAc, 3.5% Gal, 0.5% GlcNAc and 28% amino acids. Exhaustive Actinase digestion of the glycoprotein yielded a glycopeptide with a higher sugar content and higher Thr and Ser contents. The molecular size of this glycopeptide was approximately 1/12 of the intact glycoprotein. These results suggest that approximately 11 highly glycosylated polypeptide units are linked in tandem through nonglycosylated peptides to form the glycoporotein molecule. The oligosaccharide alditols liberated from the loach mucus glycoprotein by alkaline borohydride treatment were separated by Sephadex G-25 gel filtration and HPLC. The purified sugar chains were analyzed b --> 6GalNAc-ol, KDNalpha2 --> 3(GalNAcbeta1 --> 14)GalNAc-ol, KDNalpha2 --> 6(GalNAcalpha1 --> 3)GalNAc-ol, KDNalpha2 --> 6(Gal3alpha1--> 3)GalNAc-ol, and NeuAcalpha2 --> 6Gal NAc-ol. It is estimated that one loach mucus glycoprotein molecule contains more than 500 KDN-containing sugar chains that are linked to Thr and Ser residues of the protein core through GalNAc.

  16. Association of dystrophin and an integral membrane glycoprotein.

    PubMed

    Campbell, K P; Kahl, S D

    1989-03-16

    Duchenne muscular dystrophy (DMD) is caused by a defective gene found on the X-chromosome. Dystrophin is encoded by the DMD gene and represents about 0.002% of total muscle protein. Immunochemical studies have shown that dystrophin is localized to the sarcolemma in normal muscle but is absent in muscle from DMD patients. Many features of the predicted primary structure of dystrophin are shared with membrane cytoskeletal proteins, but the precise function of dystrophin in muscle is unknown. Here we report the first isolation of dystrophin from digitonin-solubilized skeletal muscle membranes using wheat germ agglutinin (WGA)-Sepharose. We find that dystrophin is not a glycoprotein but binds to WGA-Sepharose because of its tight association with a WGA-binding glycoprotein. The association of dystrophin with this glycoprotein is disrupted by agents that dissociate cytoskeletal proteins from membranes. We conclude that dystrophin is linked to an integral membrane glycoprotein in the sarcolemma. Our results indicate that the function of dystrophin could be to link this glycoprotein to the underlying cytoskeleton and thus help either to preserve membrane stability or to keep the glycoprotein non-uniformly distributed in the sarcolemma.

  17. Activation of factor XII by tobacco glycoprotein.

    PubMed

    Becker, C G; Dubin, T

    1977-08-01

    A glycoprotein of mol wt ca. 18,000 daltons isolated from cured tobacco leaves (TGP-L) and from cigarette smoke condensate (TGP-CSC) activated factor XII in normal human plasma in vitro as measured by (a) shortening of the partial thromboplastin time, (b) shortening of the lysis time of euglobulin clots, and (c) generation of kinin activity. These effects were not demonstrable in plasma deficient in factor XII. The capacity of TGP-L and TGP-CSC to activate factor XII was shown to depend on the presence of rutin, a substance chemically similar to quercetin and ellagic acid, which are known activators of factor XII. Rutin and rutin coupled to bovine serum albumin, but not bovine serum albumin alone, were also demonstrated to activate factor XII. The presence in cigarette smoke of material that is both allergenic and capable of activating factor XII of the intrinsic pathway of coagulatin may be important to the pathogenesis of cardiovascular and pulmonary disease associated with cigarette smoking.

  18. Activation of factor XII by tobacco glycoprotein

    PubMed Central

    1977-01-01

    A glycoprotein of mol wt ca. 18,000 daltons isolated from cured tobacco leaves (TGP-L) and from cigarette smoke condensate (TGP-CSC) activated factor XII in normal human plasma in vitro as measured by (a) shortening of the partial thromboplastin time, (b) shortening of the lysis time of euglobulin clots, and (c) generation of kinin activity. These effects were not demonstrable in plasma deficient in factor XII. The capacity of TGP-L and TGP-CSC to activate factor XII was shown to depend on the presence of rutin, a substance chemically similar to quercetin and ellagic acid, which are known activators of factor XII. Rutin and rutin coupled to bovine serum albumin, but not bovine serum albumin alone, were also demonstrated to activate factor XII. The presence in cigarette smoke of material that is both allergenic and capable of activating factor XII of the intrinsic pathway of coagulatin may be important to the pathogenesis of cardiovascular and pulmonary disease associated with cigarette smoking. PMID:874423

  19. Glucosylation of glycoproteins in Crithidia fasciculata.

    PubMed

    Gotz, G; Gañán, S; Parodi, A J

    1991-04-01

    High mannose-type, N-linked oligosaccharides devoid of glucose units may be glucosylated directly from UDP-Glc in mammalian, plant, fungal and protozoan cells. The glucosylated compounds thus formed (protein-linked Glc1Man5-9GlcNAc2, depending on the organisms) are immediately deglucosylated by glucosidase II, an enzyme located, the same as the glucosylating activity, in the endoplasmic reticulum. In order to evaluate the molar proportion of N-linked oligosaccharides that are glucosylated in the trypanosomatid Crithidia fasciculata (a microorganism transferring Man7GlcNAc2 in protein N-glycosylation) cells of the parasite were grown in the presence of [14C]glucose and concentrations of the glucosidase II inhibitors deoxynojirimycin and/or castanospermine that were several hundred-fold higher than those required to inhibit 50% of the activity of the protozoan enzyme. The inhibitors did not affect the cell growth rate and, although glucose analogs, did not interfere with the entry of glucose into the cells. About 40-43% of total N-linked oligosaccharides appeared to be glucosylated. As on the average there are several N-linked oligosaccharides per glycoprotein, more than 40-43% (but probably not all of them) are transiently glucosylated in the endoplasmic reticulum.

  20. N-glycoprotein analysis discovers new up-regulated glycoproteins in colorectal cancer tissue.

    PubMed

    Nicastri, Annalisa; Gaspari, Marco; Sacco, Rosario; Elia, Laura; Gabriele, Caterina; Romano, Roberto; Rizzuto, Antonia; Cuda, Giovanni

    2014-11-07

    Colorectal cancer is one of the leading causes of death due to cancer worldwide. Therefore, the identification of high-specificity and -sensitivity biomarkers for the early detection of colorectal cancer is urgently needed. Post-translational modifications, such as glycosylation, are known to play an important role in cancer progression. In the present work, we used a quantitative proteomic technique based on (18)O stable isotope labeling to identify differentially expressed N-linked glycoproteins in colorectal cancer tissue samples compared with healthy colorectal tissue from 19 patients undergoing colorectal cancer surgery. We identified 54 up-regulated glycoproteins in colorectal cancer samples, therefore potentially involved in the biological processes of tumorigenesis. In particular, nine of these (PLOD2, DPEP1, SE1L1, CD82, PAR1, PLOD3, S12A2, LAMP3, OLFM4) were found to be up-regulated in the great majority of the cohort, and, interestingly, the association with colorectal cancer of four (PLOD2, S12A2, PLOD3, CD82) has not been hitherto described.

  1. Biogenesis of plasma membrane glycoproteins. Purification and properties of two rat liver plasma membrane glycoproteins.

    PubMed

    Elovson, J

    1980-06-25

    As a preliminary to a study of the biogenesis of individual plasma membrane glycoproteins, the marker enzyme nucleotide pyrophosphatase (NPPase) and a major rat liver plasma membrane sialoprotein, subsequently found to be identical with the enzyme dipeptidyl peptidase IV (DPP IV), were purified 10,000- and 2,000-fold, respectively, from rat liver. Both were amphipathic proteins which formed defined micellar complexes with detergents and aggregated in their absence. Gel filtration, sucrose density gradient centrifugation, and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed the Triton X-100 complex of NPPase to contain a single 150,000-dalton peptide, while that of DPP IV was composed of two 120,000-dalton subunits; each complex also contained about 150,000-dalton Triton X-100. Trypsin cleaved the detergent complexes with release of major hydrophilic fragments which no longer bound detergent micelles; the accompanying change in peptide size was small for NPPase and undetectable for DPP IV, which also retained the dimer structure of its native form. DPP IV was the only major glycoprotein in rat liver plasma membrane which bound strongly to wheat germ agglutinin. Monospecific rabbit antibodies against NPPase and DPP IV precipitated the antigens without affecting their enzymatic activities.

  2. Genetic variability of platelet glycoprotein Ibalpha gene.

    PubMed

    Ozelo, Margareth C; Costa, Devanira S P; Siqueira, Lucia H; Machado, Tania M F; Castro, Vagner; Gonçalves, Marilda S; Menezes, Raimundo C; Soares, Manoel; Annichino-Bizzacchi, Joyce M; Costa, Fernando F; Arruda, Valder R

    2004-10-01

    Platelet membrane glycoprotein (GP) Ibalpha is a critical component of platelet adhesion complex to subendothelium structures following tissue injury or pathological surfaces, such as atherosclerotic plaques. Polymorphisms of the GPIbalpha gene have been associated with a high risk for occlusive vascular disease, and its distribution varies considerably among distinct populations. These polymorphisms comprise the human platelet antigen (HPA)-2 system, the -5C/T dimorphism of the Kozak sequence, and the variable number of tandem 39-bp repeats (VNTR). Here we report the prevalence of the GPIbalpha gene polymorphisms among Brazilians, a highly ethnically diverse population. We analyzed 492 subjects of European, African, or Indigenous origin. It was possible to determine ten distinct haplotypes. The most common ( reverse similar 40%) haplotype was the Kozak-TT/HPA-2aa/VNTR-CC for both Caucasian and African descent. However, among Indigenous, Kozak-TT/HPA-2aa/VNTR-CC and Kozak-TC/HPA-2aa/VNTR-CC were equally present. Although a strong linkage disequilibrium between VNTR and HPA-2 polymorphism had also been observed, here we determined incomplete linkage disequilibrium in 10% of subjects from all ethnic groups. VNTR-E, a rare variant lacking the 39-bp repeat, was identified in two unrelated subjects, and functional platelet studies revealed no abnormalities. The VNTR-A allele, the largest variant containing four copies of the repeats, was not identified in this population. However, homozygosity for the VNTR-A allele (Kozak-TT/HPA-2aa/VNTR-AA) was determined in two distinct species of nonhuman primates. These results suggest a greater complex evolutionary mechanism in the macroglycoprotein region of the GPIbalpha gene and may be useful in the design of gene-disease association studies for vascular disease.

  3. Refined structures of mouse P-glycoprotein

    PubMed Central

    Li, Jingzhi; Jaimes, Kimberly F; Aller, Stephen G

    2014-01-01

    The recently determined C. elegans P-glycoprotein (Pgp) structure revealed significant deviations compared to the original mouse Pgp structure, which suggested possible misinterpretations in the latter model. To address this concern, we generated an experimental electron density map from single-wavelength anomalous dispersion phasing of an original mouse Pgp dataset to 3.8 Å resolution. The map exhibited significantly more detail compared to the original MAD map and revealed several regions of the structure that required de novo model building. The improved drug-free structure was refined to 3.8 Å resolution with a 9.4 and 8.1% decrease in Rwork and Rfree, respectively, (Rwork = 21.2%, Rfree = 26.6%) and a significant improvement in protein geometry. The improved mouse Pgp model contains ∼95% of residues in the favorable Ramachandran region compared to only 57% for the original model. The registry of six transmembrane helices was corrected, revealing amino acid residues involved in drug binding that were previously unrecognized. Registry shifts (rotations and translations) for three transmembrane (TM)4 and TM5 and the addition of three N-terminal residues were necessary, and were validated with new mercury labeling and anomalous Fourier density. The corrected position of TM4, which forms the frame of a portal for drug entry, had backbone atoms shifted >6 Å from their original positions. The drug translocation pathway of mouse Pgp is 96% identical to human Pgp and is enriched in aromatic residues that likely play a collective role in allowing a high degree of polyspecific substrate recognition. PMID:24155053

  4. Physical Properties of the Glycoprotein Mucin

    NASA Astrophysics Data System (ADS)

    Matthews, Garrett; Davis, William; Superfine, Richard; Boucher, Richard

    2003-03-01

    Epithelial cell surfaces are covered by a protective gel known as mucus. The physiological function of this gel depends on its rheological properties, and these properties are largely derived from the secreted glycoprotein mucin. The genetic disease Cystic Fibrosis (CF) is characterized by the adhesion of thick, viscous mucus on these tissues. In the lungs, this results in the interruption of mucus transport thus compromising the first line of defense against pathogens in these tissues. In order to restore the flow of tracheobronchial mucus out of the body, knowledge of the molecular and physical properties of mucin and mucin solutions would be greatly beneficial. The present model for these molecules is that of a long linear strand consisting of highly glycosylated regions linked by cystein-rich globular regions. It is thought that the globular regions may interact either through intermolecular disulfide bonds or through hydrophobic interactions. It has also been speculated that the glycosylated regions may have lectin-like interactions. In the present work, single mucin molecules were imaged at high resolution using atomic force microscopy (AFM). Phase mode imaging was used to map the interactions between functionalized AFM tips and the molecular topography. Additionally, using force-distance curves with the AFM, the adhesion between mucin bound tips and cell surface glycocalyx and glycocalyx-like model surfaces, was measured. And, finally, the viscoelastic properties of mucin solutions were measured using the recently developed technique, single particle tracking microrheology. A model is being developed that will incorporate the properties of mucins beginning at the single molecule and ending with the bulk viscoelastic properties.

  5. Cross-reactivity between herpes simplex virus glycoprotein B and a 63,000-dalton varicella-zoster virus envelope glycoprotein.

    PubMed Central

    Edson, C M; Hosler, B A; Respess, R A; Waters, D J; Thorley-Lawson, D A

    1985-01-01

    Cross-reactive monoclonal antibodies recognizing both herpes simplex virus (HSV) glycoprotein B and a major 63,000-dalton varicella-zoster virus (VZV) envelope glycoprotein were isolated and found to neutralize VZV infection in vitro. None of the other VZV glycoproteins was recognized by any polyclonal anti-HSV serum tested. These results demonstrate that HSV glycoprotein B and the 63,000-dalton VZV glycoprotein share antigenic epitopes and raise the possibility that these two proteins have a similar function in infection. Images PMID:2993665

  6. Linkage of a membrane skeleton to integral membrane glycoproteins in human platelets. Identification of one of the glycoproteins as glycoprotein Ib.

    PubMed Central

    Fox, J E

    1985-01-01

    Experiments were performed to determine whether platelets contain a membrane skeleton. Platelets were labeled by a sodium periodate/sodium [3H]borohydride method and lysed with Triton X-100. Much of the filamentous actin could be sedimented at low g forces (15,600 g, 4 min), but some of the actin filaments required high-speed centrifugation for their sedimentation (100,000 g, 3 h). The latter filaments differed from those in the low-speed pellet in that they could not be depolymerized by Ca2+ and could not be sedimented at low g forces even from Triton X-100 lysates of platelets that had been activated with thrombin. Actin-binding protein sedimented with both types of filaments, but 3H-labeled membrane glycoproteins were recovered mainly with the high-speed filaments. The primary 3H-labeled glycoprotein recovered with this "membrane skeleton" was glycoprotein (GP) Ib. Approximately 70% of the platelet GP Ib was present in this skeleton. Several other minor glycoproteins, including greater than 50% of the GP Ia and small amounts of three unidentified glycoproteins of Mr greater than 200,000, were also recovered with the membrane skeleton. The Triton X-100 insolubility of GP Ib, GP Ia, a minor membrane glycoprotein of 250,000 Mr, and actin-binding protein resulted from their association with actin filaments as they were rendered Triton X-100-soluble when actin filaments were depolymerized with deoxyribonuclease I and co-isolated with actin filaments on sucrose gradients. When isolated platelet plasma membranes were extracted with Triton X-100, actin, actin-binding protein, and GP Ib were recovered as the Triton X-100 residue. These studies show that unstimulated platelets contain a membrane skeleton composed of actin filaments and actin-binding protein that is distinct from the rest of the cytoskeleton and is attached to GP Ib, GP Ia, and a minor glycoprotein of 250,000 Mr on the plasma membrane. Images PMID:2932470

  7. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters

    PubMed Central

    Wang, Fun-In; Deng, Ming-Chung; Huang, Yu-Liang; Chang, Chia-Yi

    2015-01-01

    Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase) activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field. PMID:26131960

  8. Glycoprotein labeling with click chemistry (GLCC) and carbohydrate detection.

    PubMed

    Wu, Zhengliang L; Huang, Xinyi; Burton, Andrew J; Swift, Karl A D

    2015-08-14

    Molecular labeling and detection techniques are essential to research in life science. Here, a method for glycoprotein labeling/carbohydrate detection through glycan replacement, termed glycoprotein labeling with click chemistry (GLCC), is described. In this method, a glycoprotein is first treated with specific glycosidases to remove certain sugar residues, a procedure that creates acceptor sites for a specific glycosyltransferase. A 'clickable' monosaccharide is then installed onto these sites by the glycosyltransferase. This modified glycoprotein is then conjugated to a reporter molecule using a click chemistry reaction. For glycoproteins that already contain vacant glycosylation sites, deglycosylation is not needed before the labeling step. As a demonstration, labeling on fetal bovine fetuin, mouse immunoglobulin IgG and bacterial expressed human TNFα and TNFβ are shown. Compared to traditional ways of protein labeling, labeling at glycosylation sites with GLCC is considerably more specific and less likely to have adverse effects, and, when utilized as a method for carbohydrate detection, this method is also highly specific and sensitive.

  9. Intracellular processing of the Newcastle disease virus fusion glycoprotein

    SciTech Connect

    Morrison, T.; Ward, L.J.; Semerjian, A.

    1985-03-01

    The fusion glycoprotein (Fo) of Newcastle disease virus is cleaved at an intracellular site into F1 and F2. This result was confirmed by comparing the transit time of the fusion protein to the cell surface with the time course of cleavage of Fo. The time required for cleavage of half of the pulse-labeled Fo protein is ca. 40 min faster than the half time of the transit of the fusion protein to the cell surface. To determine the cell compartment in which cleavage occurs, use was made of inhibitors which block glycoprotein migration at specific points and posttranslational modifications known to occur in specific cell membranes. Cleavage of Fo is inhibited by carbonyl cyanide m-chlorophenylhydrazone; thus, cleavage does not occur in the rough endoplasmic reticulum. Monensin blocks the incorporation of Newcastle disease virus glycoproteins into virions and blocks the cleavage of the fusion glycoprotein. However, Fo cannot be radioactively labeled with (/sup 3/H) fucose, whereas F1 is readily labeled. These results argue that cleavage occurs in the trans Golgi membranes or in a cell compartment occupied by glycoproteins quite soon after their transit through the trans Golgi membranes. The implications of the results presented for the transit times of the fusion protein between subcellular organelles are discussed.

  10. P-Glycoprotein Transport of Neurotoxic Pesticides.

    PubMed

    Lacher, Sarah E; Skagen, Kasse; Veit, Joachim; Dalton, Rachel; Woodahl, Erica L

    2015-10-01

    P-glycoprotein (P-gp) has been associated with a number of neurodegenerative diseases, including Parkinson's disease, although the mechanisms remain unclear. Altered transport of neurotoxic pesticides has been proposed in Parkinson's disease, but it is unknown whether these pesticides are P-gp substrates. We used three in vitro transport models, stimulation of ATPase activity, xenobiotic-induced cytotoxicity, and inhibition of rhodamine-123 efflux, to evaluate P-gp transport of diazinon, dieldrin, endosulfan, ivermectin, maneb, 1-methyl-4-phenyl-4-phenylpyridinium ion (MPP(+)), and rotenone. Diazinon and rotenone stimulated ATPase activity in P-gp-expressing membranes, with Vmax values of 22.4 ± 2.1 and 16.8 ± 1.0 nmol inorganic phosphate/min per mg protein, respectively, and Km values of 9.72 ± 3.91 and 1.62 ± 0.51 µM, respectively, compared with the P-gp substrate verapamil, with a Vmax of 20.8 ± 0.7 nmol inorganic phosphate/min per mg protein and Km of 0.871 ± 0.172 μM. None of the other pesticides stimulated ATPase activity. We observed an increased resistance to MPP(+) and rotenone in LLC-MDR1-WT cells compared with LLC-vector cells, with 15.4- and 2.2-fold increases in EC50 values, respectively. The resistance was reversed in the presence of the P-gp inhibitor verapamil. None of the other pesticides displayed differential cytotoxicity. Ivermectin was the only pesticide to inhibit P-gp transport of rhodamine-123, with an IC50 of 0.249 ± 0.048 μM. Our data demonstrate that dieldrin, endosulfan, and maneb are not P-gp substrates or inhibitors. We identified diazinon, MPP(+), and rotenone as P-gp substrates, although further investigation is needed to understand the role of P-gp transport in their disposition in vivo and associations with Parkinson's disease.

  11. Emerging Technologies for Making Glycan-Defined Glycoproteins

    PubMed Central

    Wang, Lai-Xi; Lomino, Joseph V.

    2011-01-01

    Protein glycosylation is a common and complex posttranslational modification of proteins, which expands functional diversity while boosting structural heterogeneity. Glycoproteins, the end products of such a modification, are typically produced as mixtures of glycoforms possessing the same polypeptide backbone but differ in the site of glycosylation and/or in the structures of pendant glycans, from which single glycoforms are difficult to isolate. The urgent need for glycan-defined glycoproteins in both detailed structure-function relationship studies and therapeutic applications has stimulated an extensive interest in developing various methods for manipulating protein glycosylation. This review highlights emerging technologies that hold great promise in making a variety of glycan-defined glycoproteins, with a particular emphasis in the following three areas: specific glycoengineering of host biosynthetic pathways, in vitro chemoenzymatic glycosylation remodeling, and chemo-selective and site-specific glycosylation of proteins. PMID:22141574

  12. Inhibition of neutrophil activation by alpha1-acid glycoprotein.

    PubMed Central

    Costello, M J; Gewurz, H; Siegel, J N

    1984-01-01

    We report that alpha1-acid glycoprotein (AAG), a naturally occurring human plasma protein and acute phase reactant of uncertain biological function, inhibits human neutrophil aggregation and superoxide anion generation induced by a variety of stimuli including zymosan treated serum, formyl-methionyl-leucyl-phenylalanine and phorbol myristate acetate. Inhibition was transient, directly proportional to the glycoprotein concentration and inversely proportional to the concentration of the stimulus added. Desialyzation, resulting in the removal of a substantial portion of the molecule's negative charge, did not alter the effectiveness of AAG. Removal of the penultimate galactose residues from desialyzed AAG resulted in a slight but significant reversal of inhibition, suggesting that the heteropolysaccharide units of AAG may be important for inhibition of cellular function. We therefore suggest that the acute phase glycoprotein AAG may be a significant modulator of neutrophil as well as platelet and lymphocyte function during inflammation. PMID:6321072

  13. Retroviral env glycoprotein trafficking and incorporation into virions.

    PubMed

    Murakami, Tsutomu

    2012-01-01

    Together with the Gag protein, the Env glycoprotein is a major retroviral structural protein and is essential for forming infectious virus particles. Env is synthesized, processed, and transported to certain microdomains at the plasma membrane and takes advantage of the same host machinery for its trafficking as that used by cellular glycoproteins. Incorporation of Env into progeny virions is probably mediated by the interaction between Env and Gag, in some cases with the additional involvement of certain host factors. Although several general models have been proposed to explain the incorporation of retroviral Env glycoproteins into virions, the actual mechanism for this process is still unclear, partly because structural data on the Env protein cytoplasmic tail is lacking. This paper presents the current understanding of the synthesis, trafficking, and virion incorporation of retroviral Env proteins.

  14. "Clickable" affinity ligands for effective separation of glycoproteins.

    PubMed

    Suksrichavalit, Thummaruk; Yoshimatsu, Keiichi; Prachayasittikul, Virapong; Bülow, Leif; Ye, Lei

    2010-06-04

    In this paper, we present a new modular approach to immobilize boronic acid ligands that can offer effective separation of glycoproteins. A new "clickable" boronic acid ligand was synthesized by introducing a terminal acetylene group into commercially available 3-aminophenyl boronic acid. The clickable ligand, 3-(prop-2-ynyloxycarbonylamino)phenylboronic acid (2) could be easily coupled to azide-functionalized hydrophilic Sepharose using Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction under mild condition. Compared to other boronic acid affinity gels, the new affinity gel displayed superior effectiveness in separating model glycoproteins (ovalbumin and RNase B) from closely related bovine serum albumin and RNase A in the presence of crude Escherichia coli proteins. Because of the simplicity of the immobilization through "click chemistry", the new ligand 2 is expected to not only offer improved glycoprotein separation in other formats, but also act as a useful building block to develop new chemical sensors for analysis of other glycan compounds.

  15. A model of the rabies virus glycoprotein active site.

    PubMed

    Rustici, M; Bracci, L; Lozzi, L; Neri, P; Santucci, A; Soldani, P; Spreafico, A; Niccolai, N

    1993-06-01

    The glycoprotein from the neurotropic rabies virus shows a significant homology with the alpha neurotoxin that binds to the nicotinic acetylcholine receptor. The crystal structure of the alpha neurotoxins suggests that the Arg 37 guanidinium group and the Asp 31 side-chain carboxylate of the erabutoxin have stereochemical features resembling those of acetylcholine. Conformational studies on the Asn194-Ser195-Arg196-Gly197 tetrapeptide, an essential part of the binding site of the rabies virus glycoprotein, indicate that the side chains of Asn and Arg could also mimic the acetylcholine structure. This observation is consistent with the recently proposed mechanism of the viral infection.

  16. Reversers of the multidrug resistance transporter P-glycoprotein.

    PubMed

    Stein, Wilfred D

    2002-05-01

    Multidrug resistance can arise from the presence of the membrane-bound pump, P-glycoprotein, in a tumor. Major efforts have been made to develop inhibitors of this pump, and a number of promising blockers have reached late stages of clinical trials. The kinetics of the inhibition of P-glycoprotein is complex, with binding sites that can interact synergistically. Reversers of increased affinity and specificity could, in principle, be developed on the basis of these synergies, and offer some promise in cancer therapeutics.

  17. 21 CFR 866.5440 - Beta-2-glycoprotein III immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the beta-2-glycoprotein III (a serum protein) in serum and other body fluids. Measurement of beta-2-glycoprotein III aids in the diagnosis of an inherited deficiency of this serum protein and a variety of...

  18. The chaotrope-soluble glycoprotein GP1 is a constituent of the insoluble glycoprotein framework of the Chlamydomonas cell wall.

    PubMed

    Voigt, Jürgen; Frank, Ronald; Wöstemeyer, Johannes

    2009-02-01

    Chlamydomonas reinhardtii wild-type cells are surrounded by the insoluble cell wall component, a sac-like framework of cross-linked glycoproteins containing 22% hydroxyproline. The chaotrope-soluble cell wall glycoprotein GP1 is the only polypeptide with an even higher proportion of hydroxyproline (35%) occurring in vegetative C. reinhardtii cells. Mass spectrometric analyses of peptides released from the purified insoluble cell wall fraction by trypsin treatment and epitope analyses of polyclonal antibodies raised against different deglycosylation products of this particular wall fraction using 181 chemically synthesized GP1-derived pentadecapeptides revealed evidence that GP1 is indeed a constituent of the insoluble wall component.

  19. Foreign Glycoproteins Can Be Actively Recruited to Virus Assembly Sites during Pseudotyping▿

    PubMed Central

    Jorgenson, Rebecca L.; Vogt, Volker M.; Johnson, Marc C.

    2009-01-01

    Retroviruses like human immunodeficiency virus type 1 (HIV-1), as well as many other enveloped viruses, can efficiently produce infectious virus in the absence of their own surface glycoprotein if a suitable glycoprotein from a foreign virus is expressed in the same cell. This process of complementation, known as pseudotyping, often can occur even when the glycoprotein is from an unrelated virus. Although pseudotyping is widely used for engineering chimeric viruses, it has remained unknown whether a virus can actively recruit foreign glycoproteins to budding sites or, alternatively, if a virus obtains the glycoproteins through a passive mechanism. We have studied the specificity of glycoprotein recruitment by immunogold labeling viral glycoproteins and imaging their distribution on the host plasma membrane using scanning electron microscopy. Expressed alone, all tested viral glycoproteins were relatively randomly distributed on the plasma membrane. However, in the presence of budding HIV-1 or Rous sarcoma virus (RSV) particles, some glycoproteins, such as those encoded by murine leukemia virus and vesicular stomatitis virus, were dramatically redistributed to viral budding sites. In contrast, the RSV Env glycoprotein was robustly recruited only to the homologous RSV budding sites. These data demonstrate that viral glycoproteins are not in preformed membrane patches prior to viral assembly but rather that glycoproteins are actively recruited to certain viral assembly sites. PMID:19224995

  20. The peanut lectin-binding glycoproteins of human epidermal keratinocytes

    SciTech Connect

    Morrison, A.I. ); Keeble, S.; Watt, F.M. )

    1988-08-01

    The peanut lectin (PNA) is known to bind more strongly to keratinocytes that are undergoing terminal differentiation than to proliferating keratinocytes. In order to investigate the significance of this change in cell-surface carbohydrate authors have identified the PNA-binding glycoproteins of cultured human keratinocytes and antibodies against them. Two heavily glycosylated bands of 110 and 250 kDa were resolved by PAGE of ({sup 14}C)galactose- or ({sup 14}C)mannose- and ({sup 14}C)glucosamine-labeled cell extracts eluted with galactose from PNA affinity columns. The higher molecular weight band was also detected on PNA blots of unlabeled cell extracts transferred to nitrocellulose. Both bands were sensitive to pronase digestion, but only the 250-kDa band was digested with trypsin. A rabbit antiserum that we prepared (anti-PNA-gp) immunoprecipitated both bands from cell extracts. In contrast to PNA, anti-PNA-gp bound equally to proliferating and terminally differentiating cells, indicating that some epitope(s) of the PNA-binding glycoproteins is present on the cell surface prior to terminal differentiation. When keratinocytes grown as a monolayer in low-calcium medium were switched to medium containing 2 mM calcium ions in order to induce desmosome formation and stratification, there was a dramatic redistribution of the PNA-binding glycoproteins, which became concentrated at the boundaries between cells. This may suggest a role for the glycoproteins in cell-cell interactions during stratification.

  1. Reversible conformational changes and fusion activity of rabies virus glycoprotein.

    PubMed Central

    Gaudin, Y; Tuffereau, C; Segretain, D; Knossow, M; Flamand, A

    1991-01-01

    In an attempt to understand the implication of the rabies virus glycoprotein (G) in the first steps of the viral cycle, we studied the pH dependence of virus-induced fusion and hemagglutination, as well as modifications of the structure and properties of the viral glycoprotein following pH acidification. Our results suggest that the G protein adopts at least three distinct configurations, each associated with different properties. At neutral pH, G did not fuse membranes or hemagglutinate erythrocytes. It was insensitive to digestion with bromelain and trypsin. At pH 6.4, the glycoprotein became sensitive to proteases. Hemagglutination was at its maximum and then sharply decreased with the pH. No fusion was detected. Aggregation of virus was also observed. The third configuration, at below pH 6.1, was associated with the appearance of fusion. Some neutralizing monoclonal antibodies were able to differentiate these three configurations. Preincubation of the virus at below pH 6 inhibited fusion, but this inhibition, like the structural modifications of the glycoprotein, was reversible when G was reincubated at neutral pH. Images PMID:1870204

  2. Interaction of forskolin with the P-glycoprotein multidrug transporter

    SciTech Connect

    Ming s, D.I.; Seamon, K.B. ); Speicher, L.A.; Tew, K.D. ); Ruoho, A.E. )

    1991-08-27

    Forskolin and 1,9-dideoxyforskolin, an analogue that does not activate adenylyl cyclase, were tested for their ability to enhance the cytotoxic effects of adriamycin in human ovarian carcinoma cells, SKOV3, which are sensitive to adriamycin and express low levels of P-glycoprotein, and a variant cell line, SKVLB, which overexpresses the P-glycoprotein and has the multidrug reing ance (MDR) phenotype. Forskolin and 1,9-dideoxyforskolin both increased the cytotoxic effects of adriamycin in SKVLB cells, yet had no effect on SKOV3 cells. Two photoactive derivatives of forskolin have been synthesized, 7-O-((2-(3-(4-azido-3-({sup 125}I)iodophenyl)propionamido)ethyl)carbamyl)forskolin, {sup 125}I-6-AIPP-Fsk, and 6-O-((2-(3-(4-azido-3-({sup 125}I)iodophenyl)propionamido)ethyl)carbamyl)forskolin, {sup 125}I-6-AIPP-Fsk, which exhibit specificity for labeling the glucose transporter and aing lyl cyclase, respectively. Both photolabels identified a 140-kDa protein in membranes from SKVLB cells whose labeling was inhibited by forskolin and 1,9-dideoxyforskolin. The data are consistent with forskolin binding to the P-glycoprotein analogous to that of other chemosensitizing drugs that have been shown to partially reverse MDR. The ability of forskolin photolabels to specifically label the transporter, the adenylyl cyclase, and the P-glycoprotein suggests that these proteins may share a common biing g domain for forskolin analogues.

  3. Glycoprotein expression by adenomatous polyps of the colon

    NASA Astrophysics Data System (ADS)

    Roney, Celeste A.; Xie, Jianwu; Xu, Biying; Jabour, Paul; Griffiths, Gary; Summers, Ronald M.

    2008-03-01

    Colon cancer is the second leading cause of cancer related deaths in the United States. Specificity in diagnostic imaging for detecting colorectal adenomas, which have a propensity towards malignancy, is desired. Adenomatous polyp specimens of the colon were obtained from the mouse model of colorectal cancer called adenomatous polyposis coli-multiple intestinal neoplasia (APC Min). Histological evaluation, by the legume protein Ulex europaeus agglutinin I (UEA-1), determined expression of the glycoprotein α-L-fucose. FITC-labelled UEA-1 confirmed overexpression of the glycoprotein by the polyps on fluorescence microscopy in 17/17 cases, of which 13/17 included paraffin-fixed mouse polyp specimens. In addition, FITC-UEA-1 ex vivo multispectral optical imaging of 4/17 colonic specimens displayed over-expression of the glycoprotein by the polyps, as compared to non-neoplastic mucosa. Here, we report the surface expression of α-L-fucosyl terminal residues by neoplastic mucosal cells of APC specimens of the mouse. Glycoprotein expression was validated by the carbohydrate binding protein UEA-1. Future applications of this method are the development of agents used to diagnose cancers by biomedical imaging modalities, including computed tomographic colonography (CTC). UEA-1 targeting to colonic adenomas may provide a new avenue for the diagnosis of colorectal carcinoma by CT imaging.

  4. Glycoprotein secretion in a tracheal organ culture system

    SciTech Connect

    Warunek, D.J.

    1985-01-01

    Glycoprotein secretion in the rat trachea was studied in vitro, utilizing a modified, matrix embed/perfusion chamber. Baseline parameters of the culture environment were determined by enzymatic and biochemical procedures. The effect of pilocarpine on the release of labelled glycoproteins from the tracheal epithelium was assessed. After a single stimulation with the drug, there was a significant increase in the release of /sup 14/C-glucosamine and /sup 3/H-fucose-labelled glycoprotein. The response was dose-dependent. Similar results were obtained after a second exposure to pilocarpine. However, no dose response was observed. Morphological analyses of the tracheal epithelial secretory cells by Alcian Blue/Periodic Acid Schiff staining showed a significant decrease in the total number of Alcian Blue staining cells and an increase in the mixed cell population after a single exposure to pilocarpine. Second stimulation with the drug showed that the trachea was able to respond again, this time with a further decrease in the number of Alcian Blue staining cells and a decrease in the PAS staining cells as well. Carbohydrate analyses after the first simulation with pilocarpine showed increased levels of N-acetyl neuraminic acid and the neutral carbohydrates, fucose and galactose, in the precipitated glycoproteins.

  5. NEW CLINICALLY SIGNIFICANT METHOD OF DETERMINING GLYCOPROTEINS IN BLOOD SERUM

    DTIC Science & Technology

    The reaction with ammonium molybdate is a simple and at the same time a very sensitive method for determining the level of glycoproteins in the blood ... serum , which has a number of advantages over the diphehylamine reaction. The reaction with ammonium molybdate is a valuable supplementary test for

  6. QUANTITATIVE MASS SPECTROMETRIC ANALYSIS OF GLYCOPROTEINS COMBINED WITH ENRICHMENT METHODS

    PubMed Central

    Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin

    2015-01-01

    Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc. Rapid Commun. Mass Spec Rev 34:148–165, 2015. PMID:24889823

  7. Glycoproteins identified from heart failure and treatment models.

    PubMed

    Yang, Shuang; Chen, Lijun; Sun, Shisheng; Shah, Punit; Yang, Weiming; Zhang, Bai; Zhang, Zhen; Chan, Daniel W; Kass, David A; van Eyk, Jennifer E; Zhang, Hui

    2015-01-01

    Conduction abnormalities can lead to dyssynchronous contraction, which significantly worsens morbidity and mortality of heart failure. Cardiac resynchronization therapy (CRT) can reverse ventricular remodeling and improve cardiac function. Although the underlying molecular changes are unknown, the use of a canine model of dyssynchronous heart failure (DHF) and CRT has shown that there are global changes across the cardiac proteome. This study determines changes in serum glycoprotein concentration from DHF and CRT compared to normal. We hypothesize that CRT invokes protective or advantageous pathways that can be reflected in the circulating proteome. Two prong discovery approaches were carried out on pooled normal, DHF, and CRT samples composed of individual canine serum to determine the overall protein concentration and the N-linked glycosites of circulating glycoproteins. The level of the glycoproteins was altered in DHF and CRT compared to control sera, with 63 glycopeptides substantially increased in DHF and/or CRT. Among the 32 elevated glycosite-containing peptides in DHF, 13 glycopeptides were reverted to normal level after CRT therapy. We further verify the changes of glycopeptides using label-free LC-MS from individual canine serum. Circulating glycoproteins such as alpha-fetoprotein, alpha-2-macroglobulin, galectin-3-binding protein, and collectin-10 show association to failing heart and CRT treatment model.

  8. Inflammatory glycoproteins in cardiometabolic disorders, autoimmune diseases and cancer.

    PubMed

    Connelly, Margery A; Gruppen, Eke G; Otvos, James D; Dullaart, Robin P F

    2016-08-01

    The physiological function initially attributed to the oligosaccharide moieties or glycans on inflammatory glycoproteins was to improve protein stability. However, it is now clear that glycans play a prominent role in glycoprotein structure and function and in some cases contribute to disease states. In fact, glycan processing contributes to pathogenicity not only in autoimmune disorders but also in atherosclerotic cardiovascular disease, diabetes and malignancy. While most clinical laboratory tests measure circulating levels of inflammatory proteins, newly developed diagnostic and prognostic tests are harvesting the information that can be gleaned by measuring the amount or structure of the attached glycans, which may be unique to individuals as well as various diseases. As such, these newer glycan-based tests may provide future means for more personalized approaches to patient stratification and improved patient care. Here we will discuss recent progress in high-throughput laboratory methods for glycomics (i.e. the study of glycan structures) and glycoprotein quantification by methods such as mass spectrometry and nuclear magnetic resonance spectroscopy. We will also review the clinical utility of glycoprotein and glycan measurements in the prediction of common low-grade inflammatory disorders including cardiovascular disease, diabetes and cancer, as well as for monitoring autoimmune disease activity.

  9. Synthesis of cell envelope glycoproteins of Cryptococcus laurentii

    PubMed Central

    Schutzbach, John; Ankel, Helmut; Brockhausen, Inka

    2007-01-01

    Fungi of the genus Cryptococcus are encapsulated basidiomycetes that are ubiquitously found in the environment. These organisms infect both lower and higher animals. Human infections that are common in immune-compromised individuals have proven difficult to cure or even control with currently available antimycotics that are quite often toxic to the host. The virulence of Cryptococcus has been linked primarily to its polysaccharide capsule, but also to cell-bound glycoproteins. In this review we show that C. laurentii is an excellent model for studies of polysaccharide and glycoprotein synthesis in the pathogenic relative C. neoformans. In particular we will discuss the structure and biosynthesis of O-linked carbohydrates on cell envelope glycoproteins of C. laurentii. These O-linked structures are synthesized by at least four mannosyltransferases, two galactosyltransferases and at least one xylosyltransferase that have been characterized. These glycosyltransferases have no known homologues in human tissues. Therefore enzymes involved in the synthesis of cryptococcal glycoproteins, as well as related enzymes involved in capsule synthesis, are potential targets for the development of specific inhibitors for treatment of cryptococcal disease. PMID:17316583

  10. Characterization and mapping of a nonessential pseudorabies virus glycoprotein

    SciTech Connect

    Wathen, M.W.; Wathen, L.M.K.

    1986-04-01

    Antigenic variants of pseudorabies virus (PRV) containing mutations in a viral glycoprotein with a molecular weight of 82,000 (gIII) were isolated by selecting for resistance to a complement-dependent neutralizing monoclonal antibody (MCA82-2) directed against gIII. These mutants were completely resistant to neutralization with MCA82-2 in the presence of complement. Two mutants selected for further studies either did not express gIII or expressed an improperly processed form of the glycoproteins. The mutations were also associated with an altered plaque morphology (syncytium formation). The gIII gene was mapped by the marker rescue of a gIII/sup -/ mutant with cloned restriction enzyme fragments to the long unique region of the PRV genome between 0.376 and 0.383 map units. This corresponds to the map location of a glycoprotein described by Robbins et al. Since gIII is nonessential for viral replication in cell culture and has several other characteristics in common with the herpes simplex virus glycoprotein gC, gIII may represent the PRV equivalent to herpes simplex virus gC.

  11. A new Ebola virus nonstructural glycoprotein expressed through RNA editing.

    PubMed

    Mehedi, Masfique; Falzarano, Darryl; Seebach, Jochen; Hu, Xiaojie; Carpenter, Michael S; Schnittler, Hans-Joachim; Feldmann, Heinz

    2011-06-01

    Ebola virus (EBOV), an enveloped, single-stranded, negative-sense RNA virus, causes severe hemorrhagic fever in humans and nonhuman primates. The EBOV glycoprotein (GP) gene encodes the nonstructural soluble glycoprotein (sGP) but also produces the transmembrane glycoprotein (GP₁,₂) through transcriptional editing. A third GP gene product, a small soluble glycoprotein (ssGP), has long been postulated to be produced also as a result of transcriptional editing. To identify and characterize the expression of this new EBOV protein, we first analyzed the relative ratio of GP gene-derived transcripts produced during infection in vitro (in Vero E6 cells or Huh7 cells) and in vivo (in mice). The average percentages of transcripts encoding sGP, GP₁,₂, and ssGP were approximately 70, 25, and 5%, respectively, indicating that ssGP transcripts are indeed produced via transcriptional editing. N-terminal sequence similarity with sGP, the absence of distinguishing antibodies, and the abundance of sGP made it difficult to identify ssGP through conventional methodology. Optimized 2-dimensional (2D) gel electrophoresis analyses finally verified the expression and secretion of ssGP in tissue culture during EBOV infection. Biochemical analysis of recombinant ssGP characterized this protein as a disulfide-linked homodimer that was exclusively N glycosylated. In conclusion, we have identified and characterized a new EBOV nonstructural glycoprotein, which is expressed as a result of transcriptional editing of the GP gene. While ssGP appears to share similar structural properties with sGP, it does not appear to have the same anti-inflammatory function on endothelial cells as sGP.

  12. Development of glycoprotein capture-based label-free method for the high-throughput screening of differential glycoproteins in hepatocellular carcinoma.

    PubMed

    Chen, Rui; Tan, Yexiong; Wang, Min; Wang, Fangjun; Yao, Zhenzhen; Dong, Liwei; Ye, Mingliang; Wang, Hongyang; Zou, Hanfa

    2011-07-01

    A robust, reproducible, and high throughput method was developed for the relative quantitative analysis of glycoprotein abundances in human serum. Instead of quantifying glycoproteins by glycopeptides in conventional quantitative glycoproteomics, glycoproteins were quantified by nonglycosylated peptides derived from the glycoprotein digest, which consists of the capture of glycoproteins in serum samples and the release of nonglycopeptides by trypsin digestion of captured glycoproteins followed by two-dimensional liquid chromatography-tandem MS analysis of released peptides. Protein quantification was achieved by comparing the spectrum counts of identified nonglycosylated peptides of glycoproteins between different samples. This method was demonstrated to have almost the same specificity and sensitivity in glycoproteins quantification as capture at glycopeptides level. The differential abundance of proteins present at as low as nanogram per milliliter levels was quantified with high confidence. The established method was applied to the analysis of human serum samples from healthy people and patients with hepatocellular carcinoma (HCC) to screen differential glycoproteins in HCC. Thirty eight glycoproteins were found with substantial concentration changes between normal and HCC serum samples, including α-fetoprotein, the only clinically used marker for HCC diagnosis. The abundance changes of three glycoproteins, i.e. galectin-3 binding protein, insulin-like growth factor binding protein 3, and thrombospondin 1, which were associated with the development of HCC, were further confirmed by enzyme-linked immunosorbent assay. In conclusion, the developed method was an effective approach to quantitatively analyze glycoproteins in human serum and could be further applied in the biomarker discovery for HCC and other cancers.

  13. Prestaining of glycoproteins in sodium dodecyl sulfate polyacrylamide gels by dansylhydrazine.

    PubMed

    Wang, Yang; Zhou, Xuan; Yu, Qing; Duan, Yuanmeng; Huang, Binbin; Hong, Guoying; Zhou, Ayi; Jin, Litai

    2014-06-01

    A new fluorescent prestaining method for gel-separated glycoproteins in 1D and 2D SDS-PAGE was developed by using dansylhydrazine in this study. The prestained gels could be easily imaged after electrophoresis without any time-consuming steps needed for poststains. As low as 4-8 ng glycoproteins (transferrin, α1-acid glycoprotein) could be selectively detected, which is comparable to that of Pro-Q Emerald 488, one of the most commonly used glycoprotein stain. In addition, a subsequent study of deglycosylation, glycoprotein affinity isolation, and LC-MS/MS analysis was performed to confirm the specificity of the newly developed method.

  14. [Prokaryotic expression and immunogenicity analysis of glycoprotein from infectious hematopoietic necrosis virus].

    PubMed

    Xu, Li-ming; Liu, Hong-bai; Yin, Jia-sheng; Lu, Tong-yan

    2013-09-01

    In order to detect Infectious hematopoietic necrosis virus with immunological methods, the surface glycoprotein of a recent IHNV-Sn isolated from farmed rainbow trout ( Oncorhynchus mykiss ) in China was amplified and cloned into pET27b(+) vector (designated as pET27b-G ). The expression of recombinant plasmid pET27b-G in E. coli BL21(DE3) was induced and determined by SDS-PAGE analysis. The predicted molecular weight of glycoprotein protein was approximately 55 kD and was confirmed in this study. The inclusion body of glycoprotein was treated with urea at different urea concentrations, and dialyzed into PBS buffer. Purified glycoprotein with high concentration was obtained after dialyzed in the PBS buffer. Antisera against glycoprotein were produced from immunized rabbits. The prepared antisera could react specifically with both the recombinant glycoprotein and natural glycoprotein of the IHNV-Sn isolated in the test of indirect ELISA, and the titer against the recombinant glycoprotein was 1:20,000. IFA showed that the antisera can recognize the glycoprotein located on the surface of IHNV-Sn and IHNV reference strain. These results indicated that the expressed glycoprotein was immunogenical and antigenical and could be functional as the natural IHNV glycoprotein. These results established a foundation for further study on vaccine and rapid diagnosis of IHNV.

  15. Synthesis of Glc1Man9-Glycoprotein Probes by a Misfolding/Enzymatic Glucosylation/Misfolding Sequence.

    PubMed

    Izumi, Masayuki; Oka, Yukiho; Okamoto, Ryo; Seko, Akira; Takeda, Yoichi; Ito, Yukishige; Kajihara, Yasuhiro

    2016-03-14

    Glycoproteins in non-native conformations are often toxic to cells and may cause diseases, thus the quality control (QC) system eliminates these unwanted species. Lectin chaperone calreticulin and glucosidase II, both of which recognize the Glc1 Man9 oligosaccharide on glycoproteins, are important components of the glycoprotein QC system. Reported herein is the preparation of Glc1 Man9 -glycoproteins in both native and non-native conformations by using the following sequence: misfolding of chemically synthesized Man9 -glycoprotein, enzymatic glucosylation, and another misfolding step. By using synthetic glycoprotein probes, calreticulin was found to bind preferentially to a hydrophobic non-native glycoprotein whereas glucosidase II activity was not affected by glycoprotein conformation. The results demonstrate the ability of chemical synthesis to deliver homogeneous glycoproteins in several non-native conformations for probing the glycoprotein QC system.

  16. Incorporation of Spike and Membrane Glycoproteins into Coronavirus Virions

    PubMed Central

    Ujike, Makoto; Taguchi, Fumihiro

    2015-01-01

    The envelopes of coronaviruses (CoVs) contain primarily three proteins; the two major glycoproteins spike (S) and membrane (M), and envelope (E), a non-glycosylated protein. Unlike other enveloped viruses, CoVs bud and assemble at the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). For efficient virion assembly, these proteins must be targeted to the budding site and to interact with each other or the ribonucleoprotein. Thus, the efficient incorporation of viral envelope proteins into CoV virions depends on protein trafficking and protein–protein interactions near the ERGIC. The goal of this review is to summarize recent findings on the mechanism of incorporation of the M and S glycoproteins into the CoV virion, focusing on protein trafficking and protein–protein interactions. PMID:25855243

  17. Frostbite Protection in Mice Expressing an Antifreeze Glycoprotein

    PubMed Central

    Heisig, Martin; Mattessich, Sarah; Rembisz, Alison; Acar, Ali; Shapiro, Martin; Booth, Carmen J.; Neelakanta, Girish; Fikrig, Erol

    2015-01-01

    Ectotherms in northern latitudes are seasonally exposed to cold temperatures. To improve survival under cold stress, they use diverse mechanisms to increase temperature resistance and prevent tissue damage. The accumulation of anti-freeze proteins that improve cold hardiness occurs in diverse species including plants, arthropods, fish, and amphibians. We previously identified an Ixodes scapularis anti-freeze glycoprotein, named IAFGP, and demonstrated its cold protective function in the natural tick host and in a transgenic Drosophila model. Here we show, in a transgenic mouse model expressing an anti-freeze glycoprotein, that IAFGP protects mammalian cells and mice from cold shock and frostbite respectively. Transgenic skin samples showed reduced cell death upon cold storage ex vivo and transgenic mice demonstrated increased resistance to frostbite injury in vivo. IAFGP actively protects mammalian tissue from freezing, suggesting its application for the prevention of frostbite, and other diseases associated with cold exposure. PMID:25714402

  18. Facing extremes: archaeal surface-layer (glyco)proteins.

    PubMed

    Eichler, Jerry

    2003-12-01

    Archaea are best known in their capacities as extremophiles, i.e. micro-organisms able to thrive in some of the most drastic environments on Earth. The protein-based surface layer that envelopes many archaeal strains must thus correctly assemble and maintain its structural integrity in the face of the physical challenges associated with, for instance, life in high salinity, at elevated temperatures or in acidic surroundings. Study of archaeal surface-layer (glyco)proteins has thus offered insight into the strategies employed by these proteins to survive direct contact with extreme environments, yet has also served to elucidate other aspects of archaeal protein biosynthesis, including glycosylation, lipid modification and protein export. In this mini-review, recent advances in the study of archaeal surface-layer (glyco)proteins are discussed.

  19. Ice growth in supercooled solutions of antifreeze glycoproteins

    NASA Technical Reports Server (NTRS)

    Harrison, K.; Hallett, J.; Burcham, T. S.; Feeney, R. E.; Kerr, W. L.

    1987-01-01

    The effects of different degrees of supercooling on the habit and rates of growth of ice crystals from solutions of antifreeze glycoproteins are reported. To isolate the influence of different solutions and supercooling alone, a system was devised that nucleated crystals in the middle of a uniformly supercooled sample. Alternatively, single crystals of selected orientation were inserted into free liquid surface. A crystallization rate up to five times greater than that in pure water was found. A mechanism explaining these results is suggested.

  20. Structural insights into the human metapneumovirus glycoprotein ectodomain.

    PubMed

    Leyrat, Cedric; Paesen, Guido C; Charleston, James; Renner, Max; Grimes, Jonathan M

    2014-10-01

    Human metapneumovirus is a major cause of respiratory tract infections worldwide. Previous reports have shown that the viral attachment glycoprotein (G) modulates innate and adaptive immune responses, leading to incomplete immunity and promoting reinfection. Using bioinformatics analyses, static light scattering, and small-angle X-ray scattering, we show that the extracellular region of G behaves as a heavily glycosylated, intrinsically disordered polymer. We discuss potential implications of these findings for the modulation of immune responses by G.

  1. Insulin receptor: Interaction with nonreceptor glycoprotein from liver cell membranes

    PubMed Central

    Maturo, Joseph M.; Hollenberg, Morley D.

    1978-01-01

    In crude receptor preparations (either particulate or soluble) of rat liver membranes, the insulin receptor exhibits complicated binding kinetics (two binding plateaus, half-saturated at approximately 60 pM and 700 pM insulin) and an apparent chromatographic heterogeneity, suggested by the presence of two detectable, soluble insulin-binding components with apparent Stokes radii of 72 Å and 38 Å. In contrast, the insulin receptor isolated by affinity chromatography exhibits a simple binding isotherm (half-maximal saturation of binding at 700 pM insulin) without evidence for negative cooperativity and behaves as a single component (apparent Stokes radius of 38 Å) upon chromatography on Sepharose 6B. The apparent discrepancies between the properties of the unpurified insulin receptor and the affinity-purified receptor can be attributed to the presence in crude preparations of a nonreceptor constituent(s) having properties consistent with those of a membrane glycoprotein. A glycoprotein fraction from such crude soluble membrane preparations, freed from insulin receptor and subsequently partially purified using concanavalin-A-agarose, when combined with affinity-purified insulin receptor, causes both a reappearance of the complicated binding kinetics and an increase in the receptor's apparent Stokes radius from 38 Å to 72 Å. Similar results are observed for a glycoprotein fraction obtained from rat adipocyte membranes but are not observed for an identical fraction isolated from human erythrocyte membranes. We conclude that the insulin receptor in rat liver membranes can interact with another nonreceptor membrane glycoprotein that may represent either a nonrecognition moiety of the receptor oligomer or an effector molecule to the biological action of insulin. PMID:277909

  2. Structural Insights into the Human Metapneumovirus Glycoprotein Ectodomain

    PubMed Central

    Leyrat, Cedric; Paesen, Guido C.; Charleston, James; Renner, Max

    2014-01-01

    Human metapneumovirus is a major cause of respiratory tract infections worldwide. Previous reports have shown that the viral attachment glycoprotein (G) modulates innate and adaptive immune responses, leading to incomplete immunity and promoting reinfection. Using bioinformatics analyses, static light scattering, and small-angle X-ray scattering, we show that the extracellular region of G behaves as a heavily glycosylated, intrinsically disordered polymer. We discuss potential implications of these findings for the modulation of immune responses by G. PMID:25031352

  3. Mucus glycoprotein secretion by tracheal explants: effects of pollutants

    SciTech Connect

    Last, J.A.; Kaizu, T.

    1980-04-01

    Tracheal slices incubated with radioactive precursors in tissue culture medium secrete labeled mucus glycoproteins into the culture medium. We have used an in vivtro approach, a combined method utilizing exposure to pneumotoxins in vivo coupled with quantitation of mucus secretion rates in vitro, to study the effects of inhaled pollutants on mucus biosynthesis by rat airways. In addition, we have purified the mucus glycoproteins secreted by rat tracheal explants in order to determine putative structural changes that might by the basis for the observed augmented secretion rates after exposure of rats to H2SO4 aerosols in combination with high ambient levels of ozone. After digestion with papain, mucus glycoproteins secreted by tracheal explants may be separated into five fractions by ion-exchange chromatography, with recovery in high yield, on columns of DEAE-cellulose. Each of these five fractions, one neutral and four acidic, migrates as a single unique spot upon cellulose acetate electrophoresis at pH values of 8.6 and 1.2. The neutral fraction, which is labeled with (3H) glucosamine, does not contain radioactivity when Na2 35SO4 is used as the precursor. Acidic fractions I to IV are all labeled with either 3H-glucosamine or Na2 35SO4 as precursor. Acidic fraction II contains sialic acid as the terminal sugar on its oligosaccharide side chains, based upon its chromatographic behavior on columns of wheat-germ agglutinin-Agarose. Treatment of this fraction with neuraminidase shifts its elution position in the gradient to a lower salt concentration, coincident with acidic fraction I. After removal of terminal sialic acid residues with either neuraminidase or low pH treatment, the resultant terminal sugar on the oligosaccharide side chains is fucose. These results are identical with those observed with mucus glycoproteins secreted by cultured human tracheal explants and purified by these same techniques.

  4. Requirements within the Ebola Viral Glycoprotein for Tetherin Antagonism

    PubMed Central

    Vande Burgt, Nathan H.; Kaletsky, Rachel L.; Bates, Paul

    2015-01-01

    Tetherin is an interferon-induced, intrinsic cellular response factor that blocks release of numerous viruses, including Ebola virus, from infected cells. As with many viruses targeted by host factors, Ebola virus employs a tetherin antagonist, the viral glycoprotein (EboGP), to counteract restriction and promote virus release. Unlike other tetherin antagonists such as HIV-1 Vpu or KSHV K5, the features within EboGP needed to overcome tetherin are not well characterized. Here, we describe sequences within the EboGP ectodomain and membrane spanning domain (msd) as necessary to relieve tetherin restriction of viral particle budding. Fusing the EboGP msd to a normally secreted form of the glycoprotein effectively promotes Ebola virus particle release. Cellular protein or lipid anchors could not substitute for the EboGP msd. The requirement for the EboGP msd was not specific for filovirus budding, as similar results were seen with HIV particles. Furthermore trafficking of chimeric proteins to budding sites did not correlate with an ability to counter tetherin. Additionally, we find that a glycoprotein construct, which mimics the cathepsin-activated species by proteolytic removal of the EboGP glycan cap and mucin domains, is unable to counteract tetherin. Combining these results suggests an important role for the EboGP glycan cap and msd in tetherin antagonism. PMID:26516900

  5. The immunomodulating roles of glycoproteins in epithelial ovarian cancer

    PubMed Central

    Patankar, Manish S.; Gubbels, Jennifer A.A.; Felder, Mildred; Connor, Joseph P.

    2015-01-01

    The complexity of the immune system demands an intricate defense mechanism by tumors. Ovarian and other tumors employ specific glycoproteins and the associated glycan sequences to modulate immune responses. Glycoproteins enable tumor cells that express or secrete these molecules to evade immune cell attack and induce the immune system to promote tumor growth. This review focuses first on the immune environment in ovarian cancer, and the mechanisms of activation and inhibition that immune cells undergo in order to either attack or ignore a target cell. Next we illustrate the immunomodulatory roles of ovarian cancer-associated glycans and glycoproteins in 1. preventing immune synapse formation, 2. serving as ligands of immune cell receptors, 3. scavenging cytokines and chemokines, and 4. participating in the formation of autoantibodies against the tumor. The importance of these immunomodulating strategies from the view points of understanding the tumor immunology of ovarian tumors, potential origin of such mechanisms, and specific strategies to circumvent the glycoconjugate-mediated suppression of immune responses is discussed in this review. PMID:22201900

  6. Role of sialidase in glycoprotein utilization by Tannerella forsythia.

    PubMed

    Roy, Sumita; Honma, Kiyonobu; Douglas, C W Ian; Sharma, Ashu; Stafford, Graham P

    2011-11-01

    The major bacterial pathogens associated with periodontitis include Tannerella forsythia. We previously discovered that sialic acid stimulates biofilm growth of T. forsythia, and that sialidase activity is key to utilization of sialoconjugate sugars and is involved in host-pathogen interactions in vitro. The aim of this work was to assess the influence of the NanH sialidase on initial biofilm adhesion and growth in experiments where the only source of sialic acid was sialoglycoproteins or human oral secretions. After showing that T. forsythia can utilize sialoglycoproteins for biofilm growth, we showed that growth and initial adhesion with sialylated mucin and fetuin were inhibited two- to threefold by the sialidase inhibitor oseltamivir. A similar reduction (three- to fourfold) was observed with a nanH mutant compared with the wild-type. Importantly, these data were replicated using clinically relevant serum and saliva samples as substrates. In addition, the ability of the nanH mutant to form biofilms on glycoprotein-coated surfaces could be restored by the addition of purified NanH, which we show is able to cleave sialic acid from the model glycoprotein fetuin and, much less efficiently, 9-O-acetylated bovine submaxillary mucin. These data show for the first time that glycoprotein-associated sialic acid is likely to be a key in vivo nutrient source for T. forsythia when growing in a biofilm, and suggest that sialidase inhibitors might be useful adjuncts in periodontal therapy.

  7. A double responsive smart upconversion fluorescence sensing material for glycoprotein.

    PubMed

    Guo, Ting; Deng, Qiliang; Fang, Guozhen; Yun, Yaguang; Hu, Yongjin; Wang, Shuo

    2016-11-15

    A novel strategy was developed to prepare double responsive smart upconversion fluorescence material for highly specific enrichment and sensing of glycoprotein. The novel double responsive smart sensing material was synthesized by choosing Horse radish peroxidase (HRP) as modal protein, the grapheme oxide (GO) as support material, upconversion nanoparticles (UCNPs) as fluorescence signal reporter, N-isopropyl acrylamide (NIPAAM) and 4-vinylphenylboronic acid (VPBA) as functional monomers. The structure and component of smart sensing material was investigated by transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared (FTIR), respectively. These results illustrated the smart sensing material was prepared successfully. The recognition characterizations of smart sensing material were evaluated, and results showed that the fluorescence intensity of smart sensing material was reduced gradually, as the concentration of protein increased, and the smart sensing material showed selective recognition for HRP among other proteins. Furthermore, the recognition ability of the smart sensing material for glycoprotein was regulated by controlling the pH value and temperature. Therefore, this strategy opens up new way to construct smart material for detection of glycoprotein.

  8. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing

    SciTech Connect

    Tropea, J.E.; Molyneux, R.J.; Kaushal, G.P.; Pan, Y.T.; Mitchell, M.; Elbein, A.D. )

    1989-03-07

    Australine is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, the authors tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the {alpha}-glucosidase amyloglucosidase (50% inhibition at 5.8 {mu}M), but it did not inhibit {beta}-glucosidase, {alpha}- or {beta}-mannosidase, or {alpha}- or {beta}-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc{sub 3}Man{sub 7-9}(GlcNAc){sub 2}-oligosaccharides.

  9. Platelet membrane glycoproteins and their function: an overview.

    PubMed

    Kunicki, T J

    1989-07-01

    The membrane glycoproteins (GP) of human platelets act as receptors that mediate two important functions, adhesion to the subendothelial matrix and platelet-platelet cohesion, or aggregation. Many of these glycoprotein receptors exist as noncovalently linked heterodimers, including those that belong to the supergene family of adhesion receptors called the integrins. Human platelets contain at least five members of this integrin family, including a collagen receptor (GP Ia-IIa; alpha 2, beta 1), a fibronectin receptor (GP Ic-IIa; alpha 5, beta 1), a laminin receptor (GP Ic'-IIa; alpha 6, beta 1), a vitronectin receptor (VnR; alpha v, beta 3), and a promiscuous, activation-dependent receptor that is thought to be the receptor most responsible for fibrinogen-dependent, platelet-platelet cohesion (GP IIb-IIIa; alpha IIb, beta 3). Some, but not all, of the integrins bind to a tripeptide sequence, arginine-glycine-aspartic acid (RGD), on the adhesive proteins. In addition to the integrins, platelets contain other membrane glyco-proteins: GP Ib-IX, a receptor for von Willebrand factor, which is thought to be the receptor most responsible for platelet adhesion to the subendothelial matrix in a flowing system; GP V, which may be associated with GP Ib-IX and whose function remains unknown; and GP IV (GP IIIb), which functions as a receptor for thrombospondin and collagen.

  10. Inhibition of in Vitro Pollen Tube Growth by Isolated S-Glycoproteins of Nicotiana alata.

    PubMed Central

    Jahnen, W.; Lush, W. M.; Clarke, A. E.

    1989-01-01

    Pollen from three S-genotypes of Nicotiana alata was grown in vitro in the presence of S-glycoproteins isolated from styles of the same three genotypes. Pollen germination was not affected by the presence of the S-glycoproteins, but pollen tube growth of all genotypes was inhibited. S2 pollen was preferentially inhibited by the S2-glycoprotein and S3 pollen by the S3-glycoprotein. The S6-glycoprotein preferentially inhibited growth of both S2 and S6 pollen over S3 pollen. Heat treatment dramatically increased the inhibitory activity of the S-glycoproteins as inhibitors both of pollen germination and tube growth; after heat treatment, S-allele specificity of pollen tube inhibition was not detected. PMID:12359898

  11. Characterization of the O- and N-linked oligosaccharides in glycoproteins synthesized by Schistosoma mansoni

    SciTech Connect

    Nyame, A.K.

    1987-01-01

    The structures of the O- and N-linked oligosaccharides in glycoproteins synthesized by larval and adult schistosomes of Schistosoma mansoni have been investigated. Mechanically transformed schistosomula or adult schistosomes were incubated in media containing either (/sup 3/H)mannose, (/sup 3/H)glucosamine or (/sup 3/H)galactose for 48 and 24 hr, respectively, to radiolabel metabolically the oligosaccharide moieties of newly synthesized glycoproteins. Analyses of the radiolabeled glycoproteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS/PAGE) and fluorography demonstrated that numerous glycoproteins from 48-hr old schistosomula and adult schistosomes were labeled by both the (/sup 3/H)mannose and (/sup 3/H)glucosamine precursors. The (/sup 3/H)galactose precursor was incorporated into numerous glycoproteins in adult schistosomes; however, few, if any, glycoproteins in schistosomula were labeled by this radioactive sugar precursor.

  12. The trail of my studies on glycoproteins from enterokinase to tumor markers.

    PubMed

    Yamashina, Ikuo

    2010-01-01

    This review describes the results of the author's studies on glycoproteins which have been carried out for more than 50 years. Starting from the elucidation of basic structures of glycoproteins, i.e. the structure of the linkage between an amino acid and a sugar and the occurrence of the beta-mannosidic linkage as the common structure of glycoproteins, the author became interested in the cell membrane glycoproteins focused on the comparison of cancer cells versus normal cells. These studies were then extended to the establishment of sugar-directed and cancer-associated monoclonal antibodies. Some of the monoclonal antibodies are useful for cancer diagnosis.

  13. Isolation and characterization of calcium binding glycoproteins of cardiac sarcolemmal vesicles

    SciTech Connect

    Michalak, M.; Fliegel, L.; Wlasichuk, K. )

    1990-04-05

    Two major Ca2(+)-binding glycoproteins Mr 120,000 and 100,000 were isolated from 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonic acid -solubilized bovine heart sarcolemma membrane. Peroxidase-conjugated concanavalin A and wheat germ agglutinin lectins bind strongly to the isolated 120- and 100-kDa glycoproteins. Treatment with endoglycosidase F resulted in conversion of the 120-kDa glycoprotein to a form migrating at about 97 kDa. Treatment of the 100-kDa band with endoglycosidase F produced form of about 80 kDa. Endoglycosidase H digestion removes only 5% of the mass of both glycoproteins. the carbohydrate structure of both glycoproteins, is therefore, predicted to be at least 75% complex structure and 25% high mannose or hybrid structure. The 120- and 100-kDa glycoproteins are the major Ca2(+)-binding proteins in the sarcolemma membranes. Intact and endoglycosidase-treated glycoproteins bind 45Ca2+ as analyzed by a 45Ca2+ overlay technique. Using polyclonal antibodies, the 120- and 100-kDa glycoproteins were identified in muscle plasma membranes (ventricles, atria, and uterus smooth muscle). They were, however, not present in non-muscle tissues such as pancreas, liver, and kidney. The 120- and 100-kDa glycoproteins appear to be homologous molecules as judged by their similar V8 protease peptide maps, cross-reactivity with polyclonal antibody, and other physicochemical properties.

  14. 21 CFR 866.5420 - Alpha-1-glycoproteins immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... alpha-1-glycoproteins (a group of plasma proteins found in the alpha-1 group when subjected to... diagnosis of collagen (connective tissue) disorders, tuberculosis, infections, extensive malignancy,...

  15. The trail of my studies on glycoproteins from enterokinase to tumor markers

    PubMed Central

    YAMASHINA, Ikuo

    2010-01-01

    This review describes the results of the author’s studies on glycoproteins which have been carried out for more than 50 years. Starting from the elucidation of basic structures of glycoproteins, i.e. the structure of the linkage between an amino acid and a sugar and the occurrence of the β-mannosidic linkage as the common structure of glycoproteins, the author became interested in the cell membrane glycoproteins focused on the comparison of cancer cells versus normal cells. These studies were then extended to the establishment of sugar-directed and cancer-associated monoclonal antibodies. Some of the monoclonal antibodies are useful for cancer diagnosis. PMID:20551595

  16. Mannostatin A, a new glycoprotein-processing inhibitor.

    PubMed

    Tropea, J E; Kaushal, G P; Pastuszak, I; Mitchell, M; Aoyagi, T; Molyneux, R J; Elbein, A D

    1990-10-30

    Mannostatin A is a metabolite produced by the microorganism Streptoverticillium verticillus and reported to be a potent competitive inhibitor of rat epididymal alpha-mannosidase. When tested against a number of other arylglycosidases, mannostatin A was inactive toward alpha- and beta-glucosidase and galactosidase as well as beta-mannosidase, but it was a potent inhibitor of jack bean, mung bean, and rat liver lysosomal alpha-mannosidases, with estimated IC50's of 70 nM, 450 nM, and 160 nM, respectively. The type of inhibition was competitive in nature. This compound also proved to be an effective competitive inhibitor of the glycoprotein-processing enzyme mannosidase II (IC50 of about 10-15 nM with p-nitrophenyl alpha-D-mannopyranoside as substrate, and about 90 nM with [3H]mannose-labeled GlcNAc-Man5GlcNAc as substrate). However, it was virtually inactive toward mannosidase I. The N-acetylated derivative of mannostatin A had no inhibitory activity. In cell culture studies, mannostatin A also proved to be a potent inhibitor of glycoprotein processing. Thus, in influenza virus infected Madin Darby canine kidney (MDCK) cells, mannostatin A blocked the normal formation of complex types of oligosaccharides on the viral glycoproteins and caused the accumulation of hybrid types of oligosaccharides. This observation is in keeping with other data which indicate that the site of action of mannostatin A is mannosidase II. Thus, mannostatin A represents the first nonalkaloidal processing inhibitor and adds to the growing list of chemical structures that can have important biological activity.

  17. Mannostatin A, a new glycoprotein-processing inhibitor

    SciTech Connect

    Tropea, J.E.; Kaushal, G.P.; Pastuszak, I.; Mitchell, M.; Elbein, A.D. ); Aoyagi, Takaaki ); Molyneux, R.J. )

    1990-10-01

    Mannostatin A is a metabolite produced by the microorganism Streptoverticillium verticillus and reported to be a potent competitive inhibitor of rat epididymal {alpha}-mannosidase. When tested against a number of other arylglycosidases, mannostatin A was inactive toward {alpha}- and {beta}-glucosidase and galactosidase as well as {beta}-mannosidase, but it was a potent inhibitor of jack bean, mung bean, and rat liver lysosomal {alpha}-mannosidases, with estimated IC{sub 50}'s of 70 nM, 450 nM, and 160 nM, respectively. The type of inhibition was competitive in nature. This compound also proved to be an effective competitive inhibitor of the glycoprotein-processing enzyme mannosidase II (IC{sub 50} of about 10-15 nM with p-nitrophenyl {alpha}-D-mannopyranoside as substrate, and about 90 nM with ({sup 3}H)mannose-labeled GlcNAc-Man{sub 5}GlcNAc as substrate). However, it was virtually inactive toward mannosidase I. The N-acetylated derivative of mannostatin A had no inhibitory activity. In cell culture studies, mannostatin A also proved to be a potent inhibitor of glycoprotein processing. Thus, in influenza virus infected Madin Darby canine kidney (MDCK) cells, mannostatin A blocked the normal formation of complex types of oligosaccharides on the viral glycoproteins and caused the accumulation of hybrid types of oligosaccharides. This observation is in keeping with other data which indicate that the site of action of mannostatin A is mannosidase II. Thus, mannostatin A represents the first nonalkaloidal processing inhibitor and adds to the growing list of chemical structures that can have important biological activity.

  18. Immunoglobulin-E reactivity to wine glycoproteins in heavy drinkers.

    PubMed

    Gonzalez-Quintela, Arturo; Gomez-Rial, Jose; Valcarcel, Catalina; Campos, Joaquin; Sanz, Maria-Luisa; Linneberg, Allan; Gude, Francisco; Vidal, Carmen

    2011-03-01

    N-glycans from plant and invertebrate allergens can induce extensive immunoglobulin-E (IgE) cross-reactivity in vitro. IgE antibodies against these N-glycans, also termed cross-reactive carbohydrate determinants or CCDs, are prevalent in alcohol drinkers. This study investigated the prevalence and biological significance of IgE antibodies to N-glycans from wine glycoproteins in heavy drinkers. A structured questionnaire, skin prick tests, serum IgE levels, IgE-immunoblotting to wine extracts, and basophil activation tests were used to characterize 20 heavy drinkers and 10 control subjects. Eleven heavy drinkers (55%) showed IgE binding to proteins in wine extracts. The proteins were identified by mass spectrometry as grape-derived vacuolar invertase and thaumatin-like protein. Immunoblot reactivity was closely associated with the presence of IgE to CCDs and was inhibited by preincubation with a glycoconjugate containing bromelain-type N-glycans. The same conjugate, CCD-bearing allergens, and wine extracts activated basophils in patients with high-titer CCD-specific IgE but not in healthy controls. There was no relationship between immunoblot reactivity and consumption of any specific type of wine. No patient reported symptoms of hypersensitivity to Hymenoptera venom, food, or wine. In conclusion, heavy drinkers frequently show IgE reactivity to the N-glycans of wine glycoproteins. Glycans and wine glycoprotein extracts can induce basophil activation in sensitized alcoholics. The clinical significance of these findings remains to be elucidated.

  19. Developmental changes in microheterogeneity of foetal plasma glycoproteins of mice

    PubMed Central

    Gustine, David L.; Zimmerman, Ernest F.

    1973-01-01

    Changes in microheterogeneity of foetal plasma glycoproteins during development of mouse embryos were investigated. Analysis of foetal plasma by polyacrylamide-gel electrophoresis indicated three major zones of proteins: (1) transferrins, (2) α-foetoproteins and (3) albumin. Three transferrins (Tr1, Tr2, Tr3) and five α-foetoproteins (Fp1, Fp2, Fp3, Fp4, Fp5) were resolved. Evidence for the presence of transferrins was the binding of 59Fe to the three electrophoretic variants. By day 15.5 of gestation, there was a marked increase in the more-acidic components (Tr3, Fp4, Fp5) and a decrease in the less-acidic ones (Tr1, Tr2, Fp1, Fp2, Fp3). Treatment of foetal plasma with neuraminidase at this time of development converted the more acidic components into Tr1 and Tr2 and Fp1, Fp2 and Fp3. Furthermore, it was shown that early in development (day 12.5) only the less-acidic components of transferrin and α-foetoprotein were synthesized; at the later time in development (day 14.5) new synthesis of the acidic components of both groups occurred. That these more-acidic components of α-foetoprotein (Fp4, Fp5) were in fact electrophoretic variants of the less-acidic α-foetoproteins was shown by the immunoprecipitation of labelled Fp4 and Fp5 with anti-Fp1, anti-Fp2 and anti-Fp3. From these results it is postulated that the plasma glycoproteins that are synthesized later in development contain increased amounts of sialic acid and that the observed changes in microheterogeneity of these proteins represent regulation of glycoprotein biosynthesis at the level of carbohydrate attachment. PMID:4353382

  20. HIV Entry and Envelope Glycoprotein-mediated Fusion*

    PubMed Central

    Blumenthal, Robert; Durell, Stewart; Viard, Mathias

    2012-01-01

    HIV entry involves binding of the trimeric viral envelope glycoprotein (Env) gp120/gp41 to cell surface receptors, which triggers conformational changes in Env that drive the membrane fusion reaction. The conformational landscape that the lipids and Env navigate en route to fusion has been examined by biophysical measurements on the microscale, whereas electron tomography, x-rays, and NMR have provided insights into the process on the nanoscale and atomic scale. However, the coupling between the lipid and protein pathways that give rise to fusion has not been resolved. Here, we discuss the known and unknown about the overall HIV Env-mediated fusion process. PMID:23043104

  1. Monensin and FCCP inhibit the intracellular transport of alphavirus membrane glycoproteins.

    PubMed

    Kääriäinen, L; Hashimoto, K; Saraste, J; Virtanen, I; Penttinen, K

    1980-12-01

    Temperature-sensitive mutants of semliki forest virus (SFV) and sindbis virus (SIN) were used to study the intracellular transport of virus membrane glycoproteins in infected chicken embryo fibroblasts. When antisera against purified glycoproteins and (125)I- labeled protein A from staphylococcus aureus were used only small amounts of virus glycoproteins were detected at the surface of SFV ts-1 and SIN Ts-10 infected cells incubated at the restrictive temperature (39 degrees C). When the mutant-infected cells were shifted to the permissive temperature (28 degrees C), in the presence of cycloheximide, increasing amounts of virus glycoproteins appeared at the cell surface from 20 to 80 min after the shift. Both monensin (10muM) and carbonylcyanide-p- trifluoromethoxyphenylhydrazone (FCCP; 10-20 muM) inhibited the appearance of virus membrane glycoproteins at the cell surface. Vinblastine sulfate (10 mug/ml) inhibited the transport by approximately 50 percent, whereas cytochalasin B (1 mug/ml) had only a marginal effect. Intracellular distribution of virus glycoproteins in the mutant-infected cells was visualized in double-fluorescence studies using lectins as markers for endoplasmic reticulum and Golgi apparatus. At 39 degrees C, the virus membrane glycoproteins were located at the endoplasmic reticulum, whereas after shift to 28 degrees C, a bright juxtanuclear reticular fluorescence was seen in the location of the Golgi apparatus. In the presence of monensin, the virus glycoproteins could migrate to the Golgi apparatus, although transport to the cell surface did not take place. When the shift was carried out in the presence of FCCP, negligible fluorescence was seen in the Golgi apparatus and the glycoproteins apparently remained in the rough endoplasmic reticulum. A rapid inhibition in the accumulation of virus glycoproteins at the cell surface was obtained when FCCP was added during the active transport period, whereas with monensin there was a delay of

  2. Arenavirus Stable Signal Peptide Is the Keystone Subunit for Glycoprotein Complex Organization

    PubMed Central

    Bederka, Lydia H.; Bonhomme, Cyrille J.; Ling, Emily L.

    2014-01-01

    ABSTRACT The rodent arenavirus glycoprotein complex encodes a stable signal peptide (SSP) that is an essential structural component of mature virions. The SSP, GP1, and GP2 subunits of the trimeric glycoprotein complex noncovalently interact to stud the surface of virions and initiate arenavirus infectivity. Nascent glycoprotein production undergoes two proteolytic cleavage events: first within the endoplasmic reticulum (ER) to cleave SSP from the remaining precursor GP1/2 (glycoprotein complex [GPC]) glycoprotein and second within the Golgi stacks by the cellular SKI-1/S1P for GP1/2 processing to yield GP1 and GP2 subunits. Cleaved SSP is not degraded but retained as an essential glycoprotein subunit. Here, we defined functions of the 58-amino-acid lymphocytic choriomeningitis virus (LCMV) SSP in regard to glycoprotein complex processing and maturation. Using molecular biology techniques, confocal microscopy, and flow cytometry, we detected SSP at the plasma membrane of transfected cells. Further, we identified a sorting signal (FLLL) near the carboxyl terminus of SSP that is required for glycoprotein maturation and trafficking. In the absence of SSP, the glycoprotein accumulated within the ER and was unable to undergo processing by SKI-1/S1P. Mutation of this highly conserved FLLL motif showed impaired glycoprotein processing and secretory pathway trafficking, as well as defective surface expression and pH-dependent membrane fusion. Immunoprecipitation of SSP confirmed an interaction between the signal peptide and the GP2 subunit; however, mutations within this FLLL motif disrupted the association of the GP1 subunit with the remaining glycoprotein complex. PMID:25352624

  3. Pseudorabies virus glycoprotein L is necessary for virus infectivity but dispensable for virion localization of glycoprotein H.

    PubMed Central

    Klupp, B G; Fuchs, W; Weiland, E; Mettenleiter, T C

    1997-01-01

    Herpesviruses contain a number of envelope glycoproteins which play important roles in the interaction between virions and target cells. Although several glycoproteins are not present in all herpesviruses, others, including glycoproteins H and L (gH and gL), are conserved throughout the Herpesviridae. To elucidate common properties and differences in herpesvirus glycoprotein function, corresponding virus mutants must be constructed and analyzed in different herpesvirus backgrounds. Analysis of gH- mutants of herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PrV) showed that in both viruses gH is essential for penetration and cell-to-cell spread and that its presence is required for virion localization of gL. Since gH homologs are found complexed with gL, it was of interest to assess the phenotype of gL- mutant viruses. By using this approach, HSV-1 gL has been shown to be required for entry and for virion localization of gH (C. Roop, L. Hutchinson, and D. Johnson, J. Virol. 67:2285-2297, 1993). To examine whether a similar phenotype is associated with lack of gL in another alphaherpesvirus, PrV, we constructed two independent gL- PrV mutants by insertion and deletion-insertion mutagenesis. The salient findings are as follows: (i) PrV gL is required for penetration of virions and cell-to-cell spread; (ii) unlike HSV-1, PrV gH is incorporated into the virion in the absence of gL; (iii) virion localization of gH in the absence of gL is not sufficient for infectivity; (iv) in the absence of gL, N-glycans on PrV gH are processed to a greater extent than in the presence of gL, indicating masking of N-glycans by association with gL; and (v) an anti-gL polyclonal antiserum is able to neutralize virion infectivity but did not inhibit cell-to-cell spread. Thus, whereas PrV gL is essential for virus replication, as is HSV-1 gL, gL- PrV mutants exhibit properties strikingly different from those of HSV-1. In conclusion, our data show an important functional role for

  4. The relationship between glycan structures and expression levels of an endoplasmic reticulum-resident glycoprotein, UDP-glucose: Glycoprotein glucosyltransferase 1.

    PubMed

    Daikoku, Shusaku; Seko, Akira; Son, Sang-Hyun; Suzuki, Katsuhiko; Ito, Yukishige; Kanie, Osamu

    2015-06-19

    In this article, we report a relationship between glycan structures and expression levels of a recombinant ER-resident glycoprotein, uridine 5'-diphosphate-glucose: glycoprotein glucosyltransferase (UGGT1). The function of glycan structures attached to a glycoprotein is actively studied; however, the glycan structures of recombinant, and not endogenous, glycoproteins have not been examined. In this study, we indicate a relationship between the glycan structure and the level of protein expression. Expression levels were controlled utilizing a series of vectors (pFN21K, pFN22K, pFN23K, and pFN24K HaloTag CMV Flexi Vectors). Qualitative and semi-quantitative confirmation of glycan structures was achieved with tandem mass spectrometry. The results of this study indicate that glycan structures are similar to endogenous glycans at low expression levels.

  5. Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins.

    PubMed

    Parody-Morreale, A; Murphy, K P; Di Cera, E; Fall, R; DeVries, A L; Gill, S J

    1988-06-23

    Certain bacteria promote the formation of ice in super-cooled water by means of ice nucleators which contain a unique protein associated with the cell membrane. Ice nucleators in general are believed to act by mimicking the structure of an ice crystal surface, thus imposing an ice-like arrangement on the water molecules in contact with the nucleating surface and lowering the energy necessary for the initiation of ice formation. Quantitative investigation of the bacterial ice-nucleating process has recently been made possible by the discovery of certain bacteria that shed stable membrane vesicles with ice nucleating activity. The opposite effect, inhibition of ice formation, has been described for a group of glycoproteins found in different fish and insect species. This group of substances, termed antifreeze glycoproteins (AFGPs), promotes the supercooling of water with no appreciable effect on the equilibrium freezing point or melting temperature. Substantial evidence now indicates that AFGPs act by binding to a growing ice crystal and slowing crystal growth. As the ice-nucleating protein surface is believed to have a structure similar to an embryonic ice crystal, AFGPs might be predicted to interact directly with a bacterial ice-nucleating site. We report here that AFGPs from the antarctic fish Dissostichus mawsoni inhibit the ice-nucleating activity of membrane vesicles from the bacterium Erwinia herbicola. The inhibition effect shows saturation at high concentration of AFGP and conforms to a simple binding reaction between the AFGP and the nucleation centre.

  6. Immunomodulatory roles of the carcinoembryonic antigen family of glycoproteins.

    PubMed

    Shao, Ling; Allez, Matthieu; Park, Mee-Sook; Mayer, Lloyd

    2006-08-01

    One of the most remarkable aspects of the immune system is its ability to fashion an immune response most appropriate to the activating stimulus. Although the immune system possesses a number of adaptations to accomplish this, an important theme is local immune regulation by site-specific expression of receptors and ligands. One family of molecules that is gaining attention as modulators of the immune system is the carcinoembryonic antigen cell-adhesion molecule family (CEACAM). Functionally, the carcinoembryonic antigen family can mediate cell-cell contact, host-pathogen interactions, and immune regulation. For example, biliary glycoprotein (CEACAM1) can have direct activity on T cells, leading to the inhibition of helper or cytotoxic T cell function. The expression of carcinoembryonic antigen (CEACAM5) on intestinal epithelial cells is involved in the activation of populations of regulatory CD8(+) T cells, while a distinct subset of regulatory CD8+ T cells is activated by nonspecific cross-reacting antigen (CEACAM6) on placental trophoblasts. Interestingly, the function and phenotype of these cells depend upon the specific member of the carcinoembryonic antigen family expressed, as well as the antigen-presenting molecule with which it associates. Thus, these glycoproteins comprise a family of molecules whose functions can depend on their nature and context.

  7. Determinants of oligomeric structure in the chicken liver glycoprotein receptor.

    PubMed Central

    Verrey, F; Drickamer, K

    1993-01-01

    The oligomeric state of the chicken liver receptor (chicken hepatic lectin), which mediates endocytosis of glycoproteins terminating with N-acetylglucosamine, has been investigated using physical methods as well as chemical cross-linking. Receptor isolated from liver and from transfected rat fibroblasts expressing the full-length polypeptide is a homotrimer immediately following solubilization in non-ionic detergent, but forms the previously observed hexamer during purification. These results are most consistent with the presence of a trimer of receptor polypeptides in liver membranes and in transfected cells. Analysis of truncated receptors reveals that the C-terminal extracellular portion of this type-II transmembrane protein does not form stable oligomers when isolated from the membrane anchor and cytoplasmic tail. The behaviour of chimeric receptors, in which the cytoplasmic tail of the glycoprotein receptor is replaced with the corresponding segments of rat liver asialoglycoprotein receptor or the beta-subunit of Na+,K(+)-ATPase, or with unrelated sequences from globin, indicates that the cytoplasmic tail influences oligomer stability. Replacement of N-terminal portions of the receptor with corresponding segments of influenza virus neuraminidase results in formation of tetramers, suggesting that the membrane anchor and flanking sequences are important determinants of oligomer formation. Images Figure 1 Figure 3 PMID:8503842

  8. Myelin-associated glycoprotein (MAG): past, present and beyond.

    PubMed

    Quarles, Richard H

    2007-03-01

    The myelin-associated glycoprotein (MAG) is a type I transmembrane glycoprotein localized in periaxonal Schwann cell and oligodendroglial membranes of myelin sheaths where it functions in glia-axon interactions. It contains five immunoglobulin (Ig)-like domains and is in the sialic acid-binding subgroup of the Ig superfamily. It appears to function both as a ligand for an axonal receptor that is needed for the maintenance of myelinated axons and as a receptor for an axonal signal that promotes the differentiation, maintenance and survival of oligodendrocytes. Its function in the maintenance of myelinated axons may be related to its role as one of the white matter inhibitors of neurite outgrowth acting through a receptor complex involving the Nogo receptor and/or gangliosides containing 2,3-linked sialic acid. MAG is expressed as two developmentally regulated isoforms with different cytoplasmic domains that may activate different signal transduction pathways in myelin-forming cells. MAG contains a carbohydrate epitope shared with other glycoconjugates that is a target antigen in autoimmune peripheral neuropathy associated with IgM gammopathy and has been implicated in a dying back oligodendrogliopathy in multiple sclerosis.

  9. A facile and general approach for preparation of glycoprotein-imprinted magnetic nanoparticles with synergistic selectivity.

    PubMed

    Hao, Yi; Gao, Ruixia; Liu, Dechun; He, Gaiyan; Tang, Yuhai; Guo, Zengjun

    2016-06-01

    In light of the significance of glycoprotein biomarkers for early clinical diagnostics and treatments of diseases, it is essential to develop efficient and selective enrichment platforms for glycoproteins. In this study, we present a facile and general strategy to prepare the boronate affinity-based magnetic imprinted nanoparticles. Boronic acid ligands were first grafted on the directly aldehyde-functionalized magnetic nanoparticles through amidation reaction. Then, template glycoproteins were immobilized on the boronic acid-modified magnetic nanoparticles via boronate affinity binding. Subsequently, a thin layer of dopamine was formed to coat the surface of magnetic nanoparticles through self-polymerization. After the template glycoproteins were removed, the cavities that can specific bind the template glycoproteins were fabricated. Adopting horseradish peroxidase as model template, the effects of imprinting conditions as well as the properties and performance of the obtained products were investigated. The resultant imprinted materials exhibit highly favorable features, including uniform surface morphology with thin imprinted shell of about 8nm, super-paramagnetic property, fast kinetics of 40min, high adsorption capacity of 60.3mgg(-1), and satisfactory reusability for at least five cycles of adsorption-desorption without obvious deterioration. Meanwhile, the obtained magnetic imprinted nanoparticles could capture target glycoprotein from nonglycoproteins, but also from other glycoproteins because the synergistic selectivity of boronate affinity and imprinting effect. In addition, the facile preparation method shows feasibility in the imprinting of different glycoproteins.

  10. Rapid and efficient glycoprotein identification through microwave-assisted enzymatic digestion.

    PubMed

    Segu, Zaneer M; Hammad, Loubna A; Mechref, Yehia

    2010-12-15

    Identification of protein glycosylation sites is analytically challenging due to the diverse glycan structures associated with a glycoprotein. Mass spectrometry (MS)-based identification and characterization of glycoproteins has been achieved predominantly with the bottom-up approach, which typically involves the enzymatic cleavage of proteins to peptides prior to LC/MS or LC/MS/MS analysis. However, the process can be challenging due to the structural variations and steric hindrance imposed by the attached glycans. Alternatives to conventional heating protocols, that increase the rate of enzymatic cleavage of glycoproteins, may aid in addressing these challenges. An enzymatic digestion of a glycoprotein can be accelerated and made more efficient through microwave-assisted digestion. In this paper, a systematic study was conducted to explore the efficiency of microwave-assisted enzymatic (trypsin) digestion (MAED) of glycoproteins as compared with the conventional method. In addition, the optimum experimental parameters for the digestion such as temperature, reaction time, and microwave radiation power were investigated. It was determined that efficient tryptic digestion of glycoproteins was attained in 15 min, allowing comparable if not better sequence coverage through LC/MS/MS analysis. Optimum tryptic cleavage was achieved at 45°C irrespective of the size and complexity of the glycoprotein. Moreover, MAED allowed the detection and identification of more peptides and subsequently higher sequence coverage for all model glycoprotein. MAED also did not appear to prompt a loss or partial cleavage of the glycan moieties attached to the peptide backbones.

  11. Characterization of Lassa virus glycoprotein oligomerization and influence of cholesterol on virus replication.

    PubMed

    Schlie, Katrin; Maisa, Anna; Lennartz, Frank; Ströher, Ute; Garten, Wolfgang; Strecker, Thomas

    2010-01-01

    Mature glycoprotein spikes are inserted in the Lassa virus envelope and consist of the distal subunit GP-1, the transmembrane-spanning subunit GP-2, and the signal peptide, which originate from the precursor glycoprotein pre-GP-C by proteolytic processing. In this study, we analyzed the oligomeric structure of the viral surface glycoprotein. Chemical cross-linking studies of mature glycoprotein spikes from purified virus revealed the formation of trimers. Interestingly, sucrose density gradient analysis of cellularly expressed glycoprotein showed that in contrast to trimeric mature glycoprotein complexes, the noncleaved glycoprotein forms monomers and oligomers spanning a wide size range, indicating that maturation cleavage of GP by the cellular subtilase SKI-1/S1P is critical for formation of the correct oligomeric state. To shed light on a potential relation between cholesterol and GP trimer stability, we performed cholesterol depletion experiments. Although depletion of cholesterol had no effect on trimerization of the glycoprotein spike complex, our studies revealed that the cholesterol content of the viral envelope is important for the infectivity of Lassa virus. Analyses of the distribution of viral proteins in cholesterol-rich detergent-resistant membrane areas showed that Lassa virus buds from membrane areas other than those responsible for impaired infectivity due to cholesterol depletion of lipid rafts. Thus, derivation of the viral envelope from cholesterol-rich membrane areas is not a prerequisite for the impact of cholesterol on virus infectivity.

  12. Glycoproteins from sugarcane plants regulate cell polarity of Ustilago scitaminea teliospores.

    PubMed

    Millanes, Ana-María; Fontaniella, Blanca; Legaz, María-Estrella; Vicente, Carlos

    2005-03-01

    Saccharum officinarum, cv. Mayarí, is a variety of sugarcane resistant to smut disease caused by Ustilago scitaminea. Sugarcane naturally produces glycoproteins that accumulate in the parenchymatous cells of stalks. These glycoproteins contain a heterofructan as polysaccharide moiety. The concentration of these glycoproteins clearly increases after inoculation of sugarcane plants with smut teliospores, although major symptoms of disease are not observed. These glycoproteins induce homotypic adhesion and inhibit teliospore germination. When glycoproteins from healthy, non-inoculated plants are fractionated, they inhibit actin capping, which occurs before teliospore germination. However, inoculation of smut teliospores induce glycoprotein fractions that promote teliospore polarity and are different from those obtained from healthy plants. These fractions exhibit arginase activity, which is strongly enhanced in inoculated plants. Arginase from healthy plants binds to cell wall teliospores and it is completely desorpted by sucrose, but only 50% of arginase activity from inoculated plants is desorpted by the disaccharide. The data presented herein are consistent with a model of excess arginase entry into teliospores. Arginase synthesized by sugarcane plants as a response to the experimental infection would increase the synthesis of putrescine, which impedes polarization at concentration values higher than 0.05 mM. However, smut teliospores seem to be able to change the pattern of glycoprotein production by sugarcane, thereby promoting the synthesis of different glycoproteins that activate polarization after binding to their cell wall ligand.

  13. Surface Glycoproteins of Exosomes Shed by Myeloid-Derived Suppressor Cells Contribute to Function.

    PubMed

    Chauhan, Sitara; Danielson, Steven; Clements, Virginia; Edwards, Nathan; Ostrand-Rosenberg, Suzanne; Fenselau, Catherine

    2017-01-06

    In this report, we use a proteomic strategy to identify glycoproteins on the surface of exosomes derived from myeloid-derived suppressor cells (MDSCs), and then test if selected glycoproteins contribute to exosome-mediated chemotaxis and migration of MDSCs. We report successful modification of a surface chemistry method for use with exosomes and identify 21 surface N-glycoproteins on exosomes released by mouse mammary carcinoma-induced MDSCs. These glycoprotein identities and functionalities are compared with 93 N-linked glycoproteins identified on the surface of the parental cells. As with the lysate proteomes examined previously, the exosome surface N-glycoproteins are primarily a subset of the glycoproteins on the surface of the suppressor cells that released them, with related functions and related potential as therapeutic targets. The "don't eat me" molecule CD47 and its binding partners thrombospondin-1 (TSP1) and signal regulatory protein α (SIRPα) were among the surface N-glycoproteins detected. Functional bioassays using antibodies to these three molecules demonstrated that CD47, TSP1, and to a lesser extent SIRPα facilitate exosome-mediated MDSC chemotaxis and migration.

  14. Histochemical and structural analysis of mucous glycoprotein secreted by the gill of Mytilus edulis

    SciTech Connect

    Ahn, Hae-Young.

    1988-01-01

    Studies were carried out to characterized various mucous cells in the gill filament, to ascertain structural characteristics of the secreted mucous glycoproteins, and to determine the ability of the gill epithelium to incorporate ({sup 14}C)glucosamine as a precursor in the biosynthesis and secretion of mucous glycoproteins. Using histochemical staining techniques, mucous cells containing neutral and acidic mucins were found in the lateral region, whereas mucous cells containing primarily neutral or sulfated mucins were found in the postlateral region. Serotonin, but not dopamine, stimulated the mucous secretion. In tissues pretreated with ({sup 14}C)glucosamine, the secreted glycoproteins contain incorporated radiolabel. Analysis by column chromatography using Bio-Gel P-2 and P-6 shows that the secretion contains two glycoprotein populations. Glycoprotein II has a molecular weight of 2.3 {times} 10{sup 4} daltons. Upon alkaline reductive borohydride cleavage of the O-glycosidic linkages of glycoprotein I, about 70% of the radiolabel was removed from the protein. Gas chromatographic analysis of the carbohydrate composition shows that the glycoproteins contains N-acetylglucosamine (GluNAc), N-acetylgalactosamine (GalNAc), and galactose, fucose and mannose. Amino acid analysis shows that the glycoproteins are rich in serine, threonine and proline.

  15. Glycoprotein Biochemistry--Some Clinical Aspects of Interest to Biochemistry Students.

    ERIC Educational Resources Information Center

    Smith, Christopher A.; And Others

    1991-01-01

    Authors describe some clinical features of glycoprotein biochemistry, including recognition, selected blood glycoproteins, glycated proteins, histochemistry, and cancer. The material presented has largely been taught to medical laboratory students; however, it can be used to teach premedical students and pure biochemistry students. Includes two…

  16. Weak anion exchange chromatographic profiling of glycoprotein isoforms on a polymer monolithic capillary.

    PubMed

    Liu, Jing; Ren, Lianbing; Liu, Yunchun; Li, Hengye; Liu, Zhen

    2012-03-09

    High resolution separation of intact glycoproteins, which is essential for many aspects such as finger-print profiling, represents a great challenge because one glycoprotein can exhibit many isoforms with close physicochemical properties. Monolithic columns are important separation media for the separation of intact proteins due to its significant advantages such as easy preparation, high column efficiency and high permeability. However, there are few reports on high resolution profiling of intact glycoproteins. Herein, we presented a polymeric weak anion exchange (WAX) monolithic capillary for high resolution separation of glycoprotein isoforms. A base monolith was first prepared through ring-opening polymerization between tris(2,3-epoxypropyl)isocyanurate and tri(2-aminoethyl), and then modified through reacting with ammonia aqueous solution to convert the unreacted epoxide moieties into primary amino groups. The prepared monolithic capillary was characterized in terms of morphology, pore size, hydrophilicity and reproducibility. The obtained WAX monolithic capillary exhibited desired through-pores and mesopore size, stable skeleton and hydrophilic nature. The performance of the capillary was evaluated using several typical glycoproteins such as α(1)-acid glycoprotein (AGP) as mode analytes. Effects of the experimental parameters on the glycoform resolution were investigated. Under the optimized separation conditions, the tested glycoproteins were all resolved into distinct glycoforms. A comparative investigation with capillary zone electrophoresis (CZE) revealed that this WAX column provided better selectivity as more isoforms were observed, although the resolution of some glycoprotein isoforms decreased.

  17. Systemic alteration of cell-surface and secreted glycoprotein expression in malignant breast cancer cell lines.

    PubMed

    Timpe, Leslie C; Yen, Roger; Haste, Nicole V; Litsakos-Cheung, Christina; Yen, Ten-Yang; Macher, Bruce A

    2013-11-01

    Breast cancer cell lines express fewer transmembrane and secreted glycoproteins than nonmalignant ones. The objective of these experiments was to characterize the changes in the expression of several hundred glycoproteins quantitatively. Secreted and cell-surface glycoproteins were isolated using a glycoprotein capture protocol and then identified by tandem mass spectrometry. Glycoproteins expressed by a group of cell lines originating from malignant tumors of the breast were compared with those expressed by a nonmalignant set. The average number of spectral counts (proportional to relative protein abundance) and the total number of glycopeptides in the malignant samples were reduced to about two-thirds of the level in the nonmalignant samples. Most glycoproteins were expressed at a different level in the malignant samples, with nearly as many increasing as decreasing. The glycoproteins with reduced expression accounted for a larger change in spectral counts, and hence for the net loss of spectral counts in the malignant lines. Similar results were found when the glycoproteins were studied via identified glycosylation sites only, or through identified sites together with non-glycopeptides. The overall reduction is largely due to the loss of integrins, laminins and other proteins that form or interact with the basement membrane.

  18. Targeted entry via somatostatin receptors using a novel modified retrovirus glycoprotein that delivers genes at levels comparable to those of wild-type viral glycoproteins.

    PubMed

    Li, Fang; Ryu, Byoung Y; Krueger, Robin L; Heldt, Scott A; Albritton, Lorraine M

    2012-01-01

    Here we report a novel viral glycoprotein created by replacing a natural receptor-binding sequence of the ecotropic Moloney murine leukemia virus envelope glycoprotein with the peptide ligand somatostatin. This new chimeric glycoprotein, which has been named the Sst receptor binding site (Sst-RBS), gives targeted transduction based on three criteria: (i) a gain of the use of a new entry receptor not used by any known virus; (ii) targeted entry at levels comparable to gene delivery by wild-type ecotropic Moloney murine leukemia virus and vesicular stomatitis virus (VSV) G glycoproteins; and (iii) a loss of the use of the natural ecotropic virus receptor. Retroviral vectors coated with Sst-RBS gained the ability to bind and transduce human 293 cells expressing somatostatin receptors. Their infection was specific to target somatostatin receptors, since a synthetic somatostatin peptide inhibited infection in a dose-dependent manner and the ability to transduce mouse cells bearing the natural ecotropic receptor was effectively lost. Importantly, vectors coated with the Sst-RBS glycoprotein gave targeted entry of up to 1 × 10(6) transducing U/ml, a level comparable to that seen with infection of vectors coated with the parental wild-type ecotropic Moloney murine leukemia virus glycoprotein through the ecotropic receptor and approaching that of infection of VSV G-coated vectors through the VSV receptor. To our knowledge, this is the first example of a glycoprotein that gives targeted entry of retroviral vectors at levels comparable to the natural capacity of viral envelope glycoproteins.

  19. Subunit structure of deglycosylated human and swine trachea and Cowper's gland mucin glycoproteins.

    PubMed

    Sangadala, S; Kim, D; Brewer, J M; Mendicino, J

    1991-03-27

    The oligosaccharide chains in human and swine trachea and Cowper's gland mucin glycoproteins were completely removed in order to examine the subunit structure and properties of the polypeptide chains of these glycoproteins. The carbohydrate, which constitutes more than 70% of these glycoproteins, was removed by two treatments with trifluoromethanesulfonic acid for 3 h at 3 degrees and periodate oxidation by a modified Smith degradation. All of the sialic acid, fucose, galactose, N-acetylglucosamine and N-acetylgalactosamine present in these glycoproteins was removed by these procedures. The deglycosylated polypeptide chains were purified and characterized. The size of the monomeric forms of all three polypeptide chains were very similar. Data obtained by gel filtration, release of amino acids during hydrolysis with carboxypeptidase B and gel electrophoresis in the presence of 0.1% dodecyl sulfate showed that a major fraction from each of the three mucin glycoproteins had a molecular size of about 67 kDa. All of the deglycosylated chains had a tendency to aggregate. Digestion with carboxypeptidases showed that human and swine trachea mucin glycoproteins had identical carboxyl terminal sequences, -Val-Ala-Phe-Tyr-Leu-Lys-Arg-COOH. Cowper's gland mucin glycoprotein had a similar carboxyl terminal sequence, -Val-Ala-Tyr-Leu-Phe-Arg-Arg-COOH. The yield of amino acids after long periods of hydrolysis with carboxypeptidases showed that at least 85% of the polypeptide chains in each of the deglycosylated preparations have these sequences. These results suggested that the polypeptide chains in these deglycosylated mucin glycoprotein preparations were relatively homogeneous. The deglycosylated polypeptide chains as well as the intact mucin glycoproteins had blocked amino terminii. The purified polypeptide chains were digested with trypsin-TCPK, and S. aureus V8 protease and the resulting peptides were isolated by gel electrophoresis in the presence of 0.1% dodecyl sulfate

  20. Amino acid sequence similarity between rabies virus glycoprotein and snake venom curaremimetic neurotoxins.

    PubMed

    Lentz, T L; Wilson, P T; Hawrot, E; Speicher, D W

    1984-11-16

    Evidence was presented earlier that a host-cell receptor for the highly neurotropic rabies virus might be the acetylcholine receptor. The amino acid sequence of the glycoprotein of rabies virus was compared by computer analysis with that of snake venom curaremimetic neurotoxins, potent ligands of the acetylcholine receptor. A statistically significant sequence relation was found between a segment of the rabies glycoprotein and the entire sequence of long neurotoxins. The greatest identity occurs with residues considered most important in neurotoxicity, including those interacting with the acetylcholine binding site of the acetylcholine receptor. Because of the similarity between the glycoprotein and the receptor-binding region of the neurotoxins, this region of the viral glycoprotein may function as a recognition site for the acetylcholine receptor. Direct binding of the rabies virus glycoprotein to the acetylcholine receptor could contribute to the neurotropism of this virus.

  1. Binding of soluble glycoproteins from sugarcane juice to cells of Acetobacter diazotrophicus.

    PubMed

    Legaz, M E; de Armas, R; Barriguete, E; Vicente, C

    2000-09-01

    Sugarcane produces two different pools of glycoproteins containing a heterofructan as glycidic moiety, tentatively defined as high-molecular mass (HMMG) and mid-molecular mass (MMMG) glycoproteins. Both kinds of glycoproteins can be recovered in sugarcane juice. Fluorescein-labelled glycoproteins are able to bind to Acetobacter diazotrophicus cells, a natural endophyte of sugarcane. This property implies the aggregation of bacterial cells in liquid culture after addition of HMMG or MMMG. Anionic glycoproteins seem to be responsible for the binding activity whereas cationic fraction is not retained on the surface ofA. diazotrophicus. Bound HMMG is competitively desorbed by sucrose whereas MMMG is desorbed by glucosamine or fructose. On this basis, a hypothesis about the discriminatory ability of sugarcane to choose the compatible endophyte from several possible ones is proposed.

  2. Developmental and mutational changes of glycoproteins in the mouse neuronal retina: studies with bovine galactosyltransferase.

    PubMed

    Wallenfels, B

    1979-07-01

    Bovine galactosyltransferase (lactose synthase; EC 2.4.1.22) which catalyzes the transfer of galactose from UDPgalactose to glycoproteins with N-acetylglucosamine as the terminal residue of their oligosaccharide side chains was used to label glycoproteins of mouse retina with [14C]galactose. The glycoproteins were separated by isoelectric focusing in the first dimension and by sodium dodecyl sulfate gel electrophoresis in the second dimension. Their position on the gel was determined by autofluorography. With this method, quantitative as well as qualitative changes in the glycoprotein composition of the neuronal mouse retina during postnatal development were observed. Furthermore, it was found that the photoreceptor loss in mice with retinal degeneration was paralleled by the disappearance of certain glycoprotein bands.

  3. Developmental and mutational changes of glycoproteins in the mouse neuronal retina: studies with bovine galactosyltransferase.

    PubMed Central

    Wallenfels, B

    1979-01-01

    Bovine galactosyltransferase (lactose synthase; EC 2.4.1.22) which catalyzes the transfer of galactose from UDPgalactose to glycoproteins with N-acetylglucosamine as the terminal residue of their oligosaccharide side chains was used to label glycoproteins of mouse retina with [14C]galactose. The glycoproteins were separated by isoelectric focusing in the first dimension and by sodium dodecyl sulfate gel electrophoresis in the second dimension. Their position on the gel was determined by autofluorography. With this method, quantitative as well as qualitative changes in the glycoprotein composition of the neuronal mouse retina during postnatal development were observed. Furthermore, it was found that the photoreceptor loss in mice with retinal degeneration was paralleled by the disappearance of certain glycoprotein bands. Images PMID:290997

  4. Novel thermo-responsive fucose binding ligands for glycoprotein purification by affinity precipitation.

    PubMed

    Arnold, Lindsay; Chen, Rachel

    2014-02-01

    Novel thermo-responsive affinity sugar binders were developed by fusing a bacterial fucose lectin with a thermo-responsive polypeptide. These designer affinity ligand fusions were produced using an Escherichia coli system capable of extracellular secretion of recombinant proteins and were isolated with a high recovery yield (95%) directly from growth medium by Inverse Temperature Cycling (ITC). With horse radish peroxidase (HRP) as a model protein, we demonstrate here that the designer thermo-responsive ligands are capable of interacting with glycans on a glycoprotein, a property that was used to develop a novel affinity precipitation method for glycoprotein purification. The method, requiring only simple process steps, affords full recovery of a target glycoprotein, and is effective at a target glycoprotein concentration as low as 1.4 pM in the presence of large amounts of contaminants. By developing other sugar binders in the similar fashion, the method should be highly useful for glycoprotein purification and detection.

  5. Purification and characterization of a soluble glycoprotein from garlic (Allium sativum) and its in vitro bioactivity.

    PubMed

    Wang, Yan; Zou, Tingting; Xiang, Minghui; Jin, Chenzhong; Zhang, Xuejiao; Chen, Yong; Jiang, Qiuqing; Hu, Yihong

    2016-10-02

    A soluble glycoprotein was purified to homogeneity from ripe garlic (Allium sativum) bulbs using ammonium sulfate precipitation, Sephadex G-100 gel filtration, and diethylaminoethyl-52 cellulose anion-exchange chromatography. A native mass of 55.7 kDa estimated on gel permeation chromatography and a molecular weight of 13.2 kDa observed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis supported that the glycoprotein is a homotetramer. β-Elimination reaction result suggested that the glycoprotein is an N-linked type. Fourier-transform infrared spectroscopy proved that it contains sugar. Gas chromatography-mass spectrometer analysis showed that its sugar component was galactose. The glycoprotein has 1,1-diphenyl-2-picrylhydrazil free radical scavenging activity and the peroxidation inhibition ability to polyunsaturated fatty acid. These results indicated that the glycoprotein has potential for food additives, functional foods, and even biotechnological and medical applications.

  6. Uncoupling GP1 and GP2 Expression in the Lassa Virus Glycoprotein Complex: Implications for GP1 Ectodomain Shedding

    DTIC Science & Technology

    2008-12-23

    BioMed CentralVirology Journal ssOpen AcceResearch Uncoupling GP1 and GP2 expression in the Lassa virus glycoprotein complex: implications for GP1...contributors Abstract Background: Sera from convalescent Lassa fever patients often contains antibodies to Lassa virus (LASV) glycoprotein 1 (GP1...uncoupled Lassa virus (LASV) glycoprotein 1 (GP1) and glycoprotein 2 (GP2) were established. Soluble GP1 was generated using either the native

  7. Uncoupling GP1 and GP2 Expression in the Lassa Virus Glycoprotein Complex: Implications for GPI Ectodomain Shedding

    DTIC Science & Technology

    2008-12-23

    BioMed CentralVirology Journal ssOpen AcceResearch Uncoupling GP1 and GP2 expression in the Lassa virus glycoprotein complex: implications for GP1...contributors Abstract Background: Sera from convalescent Lassa fever patients often contains antibodies to Lassa virus (LASV) glycoprotein 1 (GP1...uncoupled Lassa virus (LASV) glycoprotein 1 (GP1) and glycoprotein 2 (GP2) were established. Soluble GP1 was generated using either the native

  8. Identification of peanut agglutinin binding glycoproteins restricted to Hodgkin's disease-derived cell lines.

    PubMed

    Flavell, D J; Jones, D B; Wright, D H

    1989-01-01

    Peanut agglutinin (PNA) binding glycoproteins from four Hodgkin's disease (HD)-derived cell lines and a variety of cell lines/peripheral blood cells representative of the lymphoid and myeloid lineages were identified by probing nitrocellulose membranes of SDS-PAGE separated NP40 solubilized cellular glycoproteins with [125I]-labelled PNA. The two Hodgkin's cell lines Ho and L428 demonstrated the most heterogeneous glycoprotein profiles each expressing 15 PNA binding glycoproteins, respectively. The two remaining Hodgkin's lines Co and L591 expressed only four glycoproteins each and these were all also commonly expressed by Ho and L428. Comparative analysis with all other cell types studied revealed the expression of five glycoproteins restricted to Ho (gp42, gp40, gp38, gp24 and gp22) and six restricted to L428 (gp180, gp75, gp40, gp38, gp24 and gp22). Four of these, gp40, gp38, gp24 and gp22 were commonly expressed by both Ho and L428. Of cell lines of myeloid lineage studied only the erythroleukemia cell line K562 expressed detectable glycoproteins also expressed by some of the Hodgkin's cell lines (gp110, gp96, gp50 and gp45). Only one glycoprotein, gp20 expressed by Ho was also commonly expressed by normal peripheral blood granulocytes. This limited study has thus succeeded in demonstrating for the range of cell types studied, that some glycoproteins with terminal D-galactose beta (1----3) N-acetyl galactosamine oligosaccharide sequences are apparently restricted to two of the HD cell lines. Moreover, the heterogeneous glycoprotein profiles obtained for the HD cell lines Ho and L428 suggests that galactosylation processes in these two cell lines is aberrant.

  9. Lectin-based analysis of fucosylated glycoproteins of human skim milk during 47 days of lactation.

    PubMed

    Lis-Kuberka, Jolanta; Kątnik-Prastowska, Iwona; Berghausen-Mazur, Marta; Orczyk-Pawiłowicz, Magdalena

    2015-12-01

    Glycoproteins of human milk are multifunctional molecules, and their fucosylated variants are potentially active molecules in immunological events ensuring breastfed infants optimal development and protection against infection diseases. The expression of fucosylated glycotopes may correspond to milk maturation stages. The relative amounts of fucosylated glycotopes of human skim milk glycoproteins over the course of lactation from the 2(nd) day to the 47(th) day were analyzed in colostrums, transitional and mature milk samples of 43 healthy mothers by lectin-blotting using α1-2-, α1-6-, and α1-3-fucose specific biotinylated Ulex europaeus (UEA), Lens culinaris (LCA), and Lotus tetragonolobus (LTA) lectins, respectively. The reactivities of UEA and LCA with the milk glycoproteins showed the highest expression of α1-2- and α1-6-fucosylated glycotopes on colostrum glycoproteins. The level of UEA-reactive glycoproteins from the beginning of lactation to the 14(th) day was high and relatively stable in contrast to LCA-reactive glycoproteins, the level of which significantly decreased from 2-3 to 7-8 days then remained almost unchanged until the 12(th)-14(th) days. Next, during the progression of lactation the reactivities with both lectins declined significantly. Eighty percent of α1-2- and/or α1-6-fucosylated glycoproteins showed a high negative correlation with milk maturation. In contrast, most of the analyzed milk glycoproteins were not recognized or weakly recognized by LTA and remained at a low unchanged level over lactation. Only a 30-kDa milk glycoprotein was evidently LTA-reactive, showing a negative correlation with milk maturation. The gradual decline of high expression of α1-2- and α1-6-, but not α1-3-, fucoses on human milk glycoproteins of healthy mothers over lactation was associated with milk maturation.

  10. Effect of reduced renal mass on renal ammonia transporter family, Rh C glycoprotein and Rh B glycoprotein, expression.

    PubMed

    Kim, Hye-Young; Baylis, Chris; Verlander, Jill W; Han, Ki-Hwan; Reungjui, Sirirat; Handlogten, Mary E; Weiner, I David

    2007-10-01

    Kidneys can maintain acid-base homeostasis, despite reduced renal mass, through adaptive changes in net acid excretion, of which ammonia excretion is the predominant component. The present study examines whether these adaptations are associated with changes in the ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg). We used normal Sprague-Dawley rats and a 5/6 ablation-infarction model of reduced renal mass; control rats underwent sham operation. After 1 wk, glomerular filtration rate, assessed as creatinine clearance, was decreased, serum bicarbonate was slightly increased, and Na(+) and K(+) were unchanged. Total urinary ammonia excretion was unchanged, but urinary ammonia adjusted for creatinine clearance, an index of per nephron ammonia metabolism, increased significantly. Although reduced renal mass did not alter total Rhcg protein expression, both light microscopy and immunohistochemistry with quantitative morphometric analysis demonstrated hypertrophy of both intercalated cells and principal cells in the cortical and outer medullary collecting duct that was associated with increased apical and basolateral Rhcg polarization. Rhbg expression, analyzed using immunoblot analysis, immunohistochemistry, and measurement of cell-specific expression, was unchanged. We conclude that altered subcellular localization of Rhcg contributes to adaptive changes in single-nephron ammonia metabolism and maintenance of acid-base homeostasis in response to reduced renal mass.

  11. Macaque Monoclonal Antibodies Targeting Novel Conserved Epitopes within Filovirus Glycoprotein

    PubMed Central

    Keck, Zhen-Yong; Enterlein, Sven G.; Howell, Katie A.; Vu, Hong; Shulenin, Sergey; Warfield, Kelly L.; Froude, Jeffrey W.; Araghi, Nazli; Douglas, Robin; Biggins, Julia; Lear-Rooney, Calli M.; Wirchnianski, Ariel S.; Lau, Patrick; Wang, Yong; Herbert, Andrew S.; Dye, John M.; Glass, Pamela J.; Holtsberg, Frederick W.; Foung, Steven K. H.

    2015-01-01

    ABSTRACT Filoviruses cause highly lethal viral hemorrhagic fever in humans and nonhuman primates. Current immunotherapeutic options for filoviruses are mostly specific to Ebola virus (EBOV), although other members of Filoviridae such as Sudan virus (SUDV), Bundibugyo virus (BDBV), and Marburg virus (MARV) have also caused sizeable human outbreaks. Here we report a set of pan-ebolavirus and pan-filovirus monoclonal antibodies (MAbs) derived from cynomolgus macaques immunized repeatedly with a mixture of engineered glycoproteins (GPs) and virus-like particles (VLPs) for three different filovirus species. The antibodies recognize novel neutralizing and nonneutralizing epitopes on the filovirus glycoprotein, including conserved conformational epitopes within the core regions of the GP1 subunit and a novel linear epitope within the glycan cap. We further report the first filovirus antibody binding to a highly conserved epitope within the fusion loop of ebolavirus and marburgvirus species. One of the antibodies binding to the core GP1 region of all ebolavirus species and with lower affinity to MARV GP cross neutralized both SUDV and EBOV, the most divergent ebolavirus species. In a mouse model of EBOV infection, this antibody provided 100% protection when administered in two doses and partial, but significant, protection when given once at the peak of viremia 3 days postinfection. Furthermore, we describe novel cocktails of antibodies with enhanced protective efficacy compared to individual MAbs. In summary, the present work describes multiple novel, cross-reactive filovirus epitopes and innovative combination concepts that challenge the current therapeutic models. IMPORTANCE Filoviruses are among the most deadly human pathogens. The 2014-2015 outbreak of Ebola virus disease (EVD) led to more than 27,000 cases and 11,000 fatalities. While there are five species of Ebolavirus and several strains of marburgvirus, the current immunotherapeutics primarily target Ebola virus

  12. Human serum histidine-rich glycoprotein. I. Interactions with heme, metal ions and organic ligands.

    PubMed

    Morgan, W T

    1978-08-21

    The 3.8 S alpha2-histidine-rich glycoprotein of human serum is composed of two non-identical subunits, each of which contains carbohydrate. The far ultraviolet circular dichroism spectrum of alpha2-histidine glycoprotein indicates that the protein has little alpha-helix but apparently appreciable amounts of beta-sheet and non-regular structures. alpha2-Histidine-rich glycoprotein binds heme with concomitant changes in the electrophoretic mobility of the protein, in the fluorescence of tryptophan residues, and in the absorption and optical activity of the heme chromophore. By fluorescence quenching, the stoichiometry of binding is 1 heme per alpha2-histidine-rich glycoprotein molecule with an apparent Kd near 1.5 muM; however, by changes in absorbance, the interaction of 9 to 10 additional heme molecules with the alpha protein can be detected. The absorption spectra of heme . alpha2-histidine-rich glycoprotein complexes resemble those of low-spin hemoproteins. The ellipticity induced in the heme chromophore on binding by alpha2-histidine-rich glycoprotein increases linearly up to about 10 hemes bound per mol protein. No change in the conformation of alpha2-histidine-rich glycoprotein was indicated by circular dichroism when one or two heme molecules are bound by the protein. alpha2-Histidine-rich glycoprotein does not effectively compete with human serum albumin for heme, suggesting that alpha2-histidine-rich glycoprotein has no major function in serum heme transport. Nonetheless, the binding of heme by alpha2-histidine-rich glycoprotein provides a means of studying the structure of this protein using the heme chromophore as a probe. alpha2-Histidine-rich glycoprotein also binds other organic molecules including bilirubin, diaquocobinamide, Cibacron blue F3GA and rose bengal, and certain divalent metals. It is of interest that copper, zinc, nickel, cadmium and cobalt effectively inhibit the binding of heme by alpha2-histidine-rich glycoprotein, whereas other

  13. Hepatitis C Virus E2 Envelope Glycoprotein Core Structure

    SciTech Connect

    Kong, Leopold; Giang, Erick; Nieusma, Travis; Kadam, Rameshwar U.; Cogburn, Kristin E.; Hua, Yuanzi; Dai, Xiaoping; Stanfield, Robyn L.; Burton, Dennis R.; Ward, Andrew B.; Wilson, Ian A.; Law, Mansun

    2014-08-26

    Hepatitis C virus (HCV), a Hepacivirus, is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV envelope glycoproteins E1 and E2 mediate fusion and entry into host cells and are the primary targets of the humoral immune response. The crystal structure of the E2 core bound to broadly neutralizing antibody AR3C at 2.65 angstroms reveals a compact architecture composed of a central immunoglobulin-fold β sandwich flanked by two additional protein layers. The CD81 receptor binding site was identified by electron microscopy and site-directed mutagenesis and overlaps with the AR3C epitope. The x-ray and electron microscopy E2 structures differ markedly from predictions of an extended, three-domain, class II fusion protein fold and therefore provide valuable information for HCV drug and vaccine design.

  14. P-glycoprotein Inhibition for Optimal Drug Delivery

    PubMed Central

    Amin, Md. Lutful

    2013-01-01

    P-glycoprotein (P-gp), an efflux membrane transporter, is widely distributed throughout the body and is responsible for limiting cellular uptake and the distribution of xenobiotics and toxic substances. Hundreds of structurally diverse therapeutic agents are substrates to it and it impedes the absorption, permeability, and retention of the drugs, extruding them out of the cells. It is overexpressed in cancer cells and accountable for obstructing cell internalization of chemotherapeutic agents and for developing transporter mediated resistance by cancer cells during anti-tumor treatments. As it jeopardizes the success of drug delivery and cancer targeting, strategies are being developed to overcome P-gp mediated drug transport. This concise review represents a brief discussion on P-gp mediated drug transport and how it hinders the success of various therapies. Its main focus is on various strategies used to tackle this curb in the field of drug delivery and targeting. PMID:24023511

  15. Glycoproteins histochemistry of the gills of Odontesthes bonariensis (Teleostei, Atherinopsidae).

    PubMed

    Díaz, A O; García, A M; Escalante, A H; Goldemberg, A L

    2010-11-01

    The histochemistry of glycoproteins (GP) in the mucous cells of the gills of the silverside Odontesthes bonariensis was identified with: (1) oxidizable vicinal diols; (2) sialic acid and some of their chain variants, carbon 7 ((7) C), carbon 8 ((8) C) or carbon 9 ((9) C); (3) sialic acid residues without O-acyl substitution and with O-acyl substitution at (7) C, (8) C or (9) C; (4) carboxyl groups and (5) sulphate groups. A battery of seven biotinylated lectins allowed GPs sugar residues to be distinguished. Mucous cells showed the presence of neutral, sulphated and sialylated GPs. Dolichos biflorus agglutinin (DBA) and Glycine max agglutinin (SBA) showed strong positive staining; Arachis hypogaea agglutinin (PNA), Ricinus communis agglutinin-I (RCA-I) and Triticum vulgaris agglutinin (WGA) showed moderate staining, while Ulex europaeus agglutinin-I (UEA-I) was completely negative.

  16. An analysis of amino acid sequences surrounding archaeal glycoprotein sequons.

    PubMed

    Abu-Qarn, Mehtap; Eichler, Jerry

    2007-05-01

    Despite having provided the first example of a prokaryal glycoprotein, little is known of the rules governing the N-glycosylation process in Archaea. As in Eukarya and Bacteria, archaeal N-glycosylation takes place at the Asn residues of Asn-X-Ser/Thr sequons. Since not all sequons are utilized, it is clear that other factors, including the context in which a sequon exists, affect glycosylation efficiency. As yet, the contribution to N-glycosylation made by sequon-bordering residues and other related factors in Archaea remains unaddressed. In the following, the surroundings of Asn residues confirmed by experiment as modified were analyzed in an attempt to define sequence rules and requirements for archaeal N-glycosylation.

  17. Bioskin as an affinity matrix for the separation of glycoproteins.

    PubMed

    Vicente, C; Sebastián, B; Fontaniella, B; Márquez, A; Xavier Filho, L; Legaz, M E

    2001-05-11

    Bioskin is a natural product produced by a mixed culture of Acetobacter xylinum, Saccharomyces cerevisiae and S. pombe cultured on media containing sucrose. It is of fibrillar nature able to retain some proteins, such as cytochrome c, by adsorption, and mainly composed of glucosamine and N-acetyl-D-glucosamine. This makes it possible that, at an adequate pH value, proteins charged as polyanionic molecules, such as catalase, can be retained by ionic adsorption using the positively charged amino groups of the matrix. In addition, bioskin can also be used as an affinity matrix to retain glycoproteins able to perform specific affinity reactions with the amino sugars of the matrix, such as invertase, fetuin or ovalbumin. Its possible use as a chromatographic support is discussed.

  18. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    NASA Astrophysics Data System (ADS)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  19. P-glycoprotein Inhibition for Optimal Drug Delivery.

    PubMed

    Amin, Md Lutful

    2013-08-19

    P-glycoprotein (P-gp), an efflux membrane transporter, is widely distributed throughout the body and is responsible for limiting cellular uptake and the distribution of xenobiotics and toxic substances. Hundreds of structurally diverse therapeutic agents are substrates to it and it impedes the absorption, permeability, and retention of the drugs, extruding them out of the cells. It is overexpressed in cancer cells and accountable for obstructing cell internalization of chemotherapeutic agents and for developing transporter mediated resistance by cancer cells during anti-tumor treatments. As it jeopardizes the success of drug delivery and cancer targeting, strategies are being developed to overcome P-gp mediated drug transport. This concise review represents a brief discussion on P-gp mediated drug transport and how it hinders the success of various therapies. Its main focus is on various strategies used to tackle this curb in the field of drug delivery and targeting.

  20. Human milk glycoproteins protect infants against human pathogens.

    PubMed

    Liu, Bo; Newburg, David S

    2013-08-01

    Breastfeeding protects the neonate against pathogen infection. Major mechanisms of protection include human milk glycoconjugates functioning as soluble receptor mimetics that inhibit pathogen binding to the mucosal cell surface, prebiotic stimulation of gut colonization by favorable microbiota, immunomodulation, and as a substrate for bacterial fermentation products in the gut. Human milk proteins are predominantly glycosylated, and some biological functions of these human milk glycoproteins (HMGPs) have been reported. HMGPs range in size from 14 kDa to 2,000 kDa and include mucins, secretory immunoglobulin A, bile salt-stimulated lipase, lactoferrin, butyrophilin, lactadherin, leptin, and adiponectin. This review summarizes known biological roles of HMGPs that may contribute to the ability of human milk to protect neonates from disease.

  1. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    SciTech Connect

    Schmidt, A. E. Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-15

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  2. Human Milk Glycoproteins Protect Infants Against Human Pathogens

    PubMed Central

    Liu, Bo

    2013-01-01

    Abstract Breastfeeding protects the neonate against pathogen infection. Major mechanisms of protection include human milk glycoconjugates functioning as soluble receptor mimetics that inhibit pathogen binding to the mucosal cell surface, prebiotic stimulation of gut colonization by favorable microbiota, immunomodulation, and as a substrate for bacterial fermentation products in the gut. Human milk proteins are predominantly glycosylated, and some biological functions of these human milk glycoproteins (HMGPs) have been reported. HMGPs range in size from 14 kDa to 2,000 kDa and include mucins, secretory immunoglobulin A, bile salt-stimulated lipase, lactoferrin, butyrophilin, lactadherin, leptin, and adiponectin. This review summarizes known biological roles of HMGPs that may contribute to the ability of human milk to protect neonates from disease. PMID:23697737

  3. MALDI linear TOF mass spectrometry of PEGylated (glyco)proteins.

    PubMed

    Seyfried, Birgit K; Siekmann, Jürgen; Belgacem, Omar; Wenzel, Ryan J; Turecek, Peter L; Allmaier, Günter

    2010-06-01

    PEGylation of proteins is a fast growing field in biotechnology and pharmaceutical sciences owing to its ability to prolong the serum half-life time of recombinant proteins. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) has been shown to be a powerful tool in the analysis of several PEGylated small proteins. Here we present data obtained with a standard secondary electron multiplier (SEM) and a high mass (HM) detector combined with a MALDI linear TOF MS system for the detection of PEGylated (glyco)proteins in the range of 60-600 kDa. Examples of MALDI TOF MS of small (interferon alpha2a), middle (human serum albumin (HSA)) and high molecular mass proteins (coagulation factor VIII and von Willebrand factor (vWF), both heavily glycosylated proteins) are presented. The particular challenge for the analysis was the heterogeneity of the (glyco)proteins in the high molecular weight range in combination with additional PEGylation, which even introduced more heterogeneity and was more challenging for interpretation. Nevertheless, the performance of MALDI linear TOF MS with both detector systems in terms molecular weight and heterogeneity determination depending on the m/z range was superior to the other methods. Although the SEM was able to obtain information about protein PEGylation in the mass range up to 100 kDa (e.g. PEGylated HSA), the HM system was crucial for detection of HM ions (e.g. PEGylated recombinant vWF), which was impossible with the standard SEM.

  4. Preparation of Concanavalin A-Chelating Magnetic Nanoparticles for Selective Enrichment of Glycoproteins.

    PubMed

    Dong, Liping; Feng, Shun; Li, Shanshan; Song, Peipei; Wang, Jide

    2015-07-07

    In this work, a soft and nondestructive approach was developed to prepare concanavalin A-chelating magnetic nanoparticles (Con A-MNPs) for selective enrichment of glycoproteins. Ethylenediamine tetraacetic acid-modified-MNPs (EDTA-MNPs) were prepared by a one-pot chemical coprecipitation method first, and then, Cu(II) cations were used as bridge groups to immobilize Con A on EDTA-MNPs. The as-prepared absorbents with a mean diameter of 15 nm showed a strong magnetic response to an externally applied magnetic field. The results of thermogravimetric analysis showed the content of immobilized Con A was up to 28 wt %. For glycoprotein ovalbumin, the maximum capacity and equilibrium constant were 72.41 mg/g and 0.6035 L/mg, respectively. The as-prepared nanocomposites exhibited a remarkable selectivity for glycoproteins and can enrich glycoproteins specifically from a mixture of glycoprotein and nonglycoprotein even at a molar ratio of 1:600. It was also successfully applied for the enrichment of glycoproteins from real egg white samples. We expect that our finding will serve as a helpful template for others to design new adsorbents for enriching glycoproteins.

  5. Enrichment and identification of glycoproteins in human saliva using lectin magnetic bead arrays.

    PubMed

    Caragata, Michael; Shah, Alok K; Schulz, Benjamin L; Hill, Michelle M; Punyadeera, Chamindie

    2016-03-15

    Aberrant glycosylation of proteins is a hallmark of tumorigenesis and could provide diagnostic value in cancer detection. Human saliva is an ideal source of glycoproteins due to the relatively high proportion of glycosylated proteins in the salivary proteome. Moreover, saliva collection is noninvasive and technically straightforward, and the sample collection and storage is relatively easy. Although differential glycosylation of proteins can be indicative of disease states, identification of differential glycosylation from clinical samples is not trivial. To facilitate salivary glycoprotein biomarker discovery, we optimized a method for differential glycoprotein enrichment from human saliva based on lectin magnetic bead arrays (saLeMBA). Selected lectins from distinct reactivity groups were used in the saLeMBA platform to enrich salivary glycoproteins from healthy volunteer saliva. The technical reproducibility of saLeMBA was analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the glycosylated proteins enriched by each lectin. Our saLeMBA platform enabled robust glycoprotein enrichment in a glycoprotein- and lectin-specific manner consistent with known protein-specific glycan profiles. We demonstrated that saLeMBA is a reliable method to enrich and detect glycoproteins present in human saliva.

  6. Binding properties of monoclonal antibodies recognizing external epitopes of the human MDR1 P-glycoprotein.

    PubMed

    Schinkel, A H; Arceci, R J; Smit, J J; Wagenaar, E; Baas, F; Dollé, M; Tsuruo, T; Mechetner, E B; Roninson, I B; Borst, P

    1993-09-30

    Monoclonal antibodies (MAbs) recognizing external epitopes of the human MDR1 P-glycoprotein have been used both for the detection of multidrug-resistant cells and as specific inhibitors of P-glycoprotein-mediated multidrug resistance. Using a panel of recently developed transfected or transgenic cell lines containing variants of the human MDR1 and MDR3 P-glycoproteins, we have compared the specificity and binding properties of the previously isolated MAbs MRK16, HYB-241, UIC2 and 4E3, and of the newly isolated MAb 7G4. The removal of 1, 2 or all 3 of the N-glycosylation sites present in the first extracellular loop of MDR1 P-glycoprotein did not significantly affect the binding of these MAbs. In contrast, 20 amino acid deletion in the first extracellular loop of MDR1 P-glycoprotein completely abolished binding of UIC2, whereas the binding of all other MAbs was hardly affected. None of the MAbs tested bound detectably to cell lines containing a high level of the human MDR3 P-glycoprotein. The differences in the binding specificity between UIC2 and the other tested antibodies parallel the reported functional differences in the ability of these antibodies to inhibit P-glycoprotein-mediated drug efflux.

  7. Factors affecting recombinant Western equine encephalitis virus glycoprotein production in the baculovirus system.

    PubMed

    Toth, Ann M; Geisler, Christoph; Aumiller, Jared J; Jarvis, Donald L

    2011-12-01

    In an effort to produce processed, soluble Western equine encephalitis virus (WEEV) glycoproteins for subunit therapeutic vaccine studies, we isolated twelve recombinant baculoviruses designed to express four different WEEV glycoprotein constructs under the transcriptional control of three temporally distinct baculovirus promoters. The WEEV glycoprotein constructs encoded full-length E1, the E1 ectodomain, an E26KE1 polyprotein precursor, and an artificial, secretable E2E1 chimera. The three different promoters induced gene expression during the immediate early (ie1), late (p6.9), and very late (polh) phases of baculovirus infection. Protein expression studies showed that the nature of the WEEV construct and the timing of expression both influenced the quantity and quality of recombinant glycoprotein produced. The full-length E1 product was insoluble, irrespective of the timing of expression. Each of the other three constructs yielded soluble products and, in these cases, the timing of expression was important, as higher protein processing efficiencies were generally obtained at earlier times of infection. However, immediate early expression did not yield detectable levels of every WEEV product, and expression during the late (p6.9) or very late (polh) phases of infection provided equal or higher amounts of processed, soluble product. Thus, while earlier foreign gene expression can provide higher recombinant glycoprotein processing efficiencies in the baculovirus system, in the case of the WEEV glycoproteins, earlier expression did not provide larger amounts of high quality, soluble recombinant glycoprotein product.

  8. Integrated glycoprotein immobilization method for glycopeptide and glycan analysis of cardiac hypertrophy.

    PubMed

    Yang, Shuang; Mishra, Sumita; Chen, Lijun; Zhou, Jian-Ying; Chan, Daniel W; Chatterjee, Subroto; Zhang, Hui

    2015-10-06

    Post-translational modifications of proteins can have a major role in disease initiation and progression. Incredible efforts have recently been made to study the regulation of glycoproteins for disease prognosis and diagnosis. It is essential to elucidate glycans and intact glycoproteins to understand the role of glycosylation in diseases. Sialylated N-glycans play crucial roles in physiological and pathological processes; however, it is laborious to study sialylated glycoproteins due to the labile nature of sialic acid residues. In this study, an integrated platform is developed for the analysis of intact glycoproteins and glycans using a chemoenzymatic approach for immobilization and derivatization of sialic acids. N-Glycans, deglycosylated proteins, and intact glycoproteins from heart tissues of wild type (WT) and transverse aortic constriction (TAC) mouse models were analyzed. We identified 291 unique glycopeptides from 195 glycoproteins; the comparative studies between WT and TAC mice indicate the overexpression of extracellular proteins for heart matrix remodeling and the down-regulation of proteins associated with energy metabolism in cardiac hypertrophy. The integrated platform is a powerful tool for the analysis of glycans and glycoproteins in the discovery of potential cardiac hypertrophy biomarkers.

  9. Preparation of biointeractive glycoprotein-conjugated hydrogels through metabolic oligosacchalide engineering.

    PubMed

    Iwasaki, Yasuhiko; Matsunaga, Aki; Fujii, Shuetsu

    2014-09-17

    In the current study, synthetic hydrogels containing metabolically engineered glycoproteins of mammalian cells were prepared for the first time and selectin-mediated cell adhesion on the hydrogel was demonstrated. A culture of HL-60 cells was supplemented with an appropriate volume of aqueous solution of N-methacryloyl mannosamine (ManMA) to give a final concentration of 5 mM. The cells were then incubated for 3 days to deliver methacryloyl groups to the glycoproteins of the cells. A transparent hydrogel was formed via redox radical polymerization of methacryloyl functionalized glycoproteins with 2-methacryloyloxyethyl phosphorylcholine and a cross-linker. Conjugation of the glycoproteins into the hydrogel was determined using Coomassie brilliant blue (CBB) and periodic acid-Schiff (PAS) staining. The surface density of P-selectin glycoprotein ligand-1 (PSGL-1) on the hydrogels was also detected using gold-colloid-labeled immunoassay. Finally, selectin-mediated cell adhesion on hydrogels containing glycoproteins was demonstrated. Selectin-mediated cell adhesion is considered an essential step in the progression of various diseases; therefore, hydrogels having glycoproteins could be useful in therapeutic and diagnostic applications.

  10. Bioactivity of proteins isolated from Lactobacillus plantarum L67 treated with Zanthoxylum piperitum DC glycoprotein.

    PubMed

    Song, S; Oh, S; Lim, K-T

    2015-06-01

    Lactobacilli in the human gastrointestinal tract have beneficial effects on the health of their host. To enhance these effects, the bioactivity of lactobacilli can be fortified through exogenous dietary or pharmacological agents, such as glycoproteins. To elucidate the inductive effect of Zanthoxylum piperitum DC (ZPDC) glycoprotein on Lactobacillus plantarum L67, we evaluated the radical-scavenging activity, anti-oxidative enzymes (SOD, GPx and CAT), growth rate, ATPase activity and β-galactosidase activity of this strain. When Lact. plantarum L67 was treated with ZPDC glycoprotein at different concentrations, the intensities of a few SDS-PAGE bands were slightly changed. The amount of a 23 kDa protein was increased upon treatment with increasing concentrations of ZPDC glycoprotein. The results of this study indicate that the radical-scavenging activity for O2(-) and OH¯, but not for the DPPH radical, increased in a concentration-dependent manner after treatment with ZPDC glycoprotein. The activation of anti-oxidative enzymes (SOD, GPx and CAT), growth rate and β-galactosidase activity also increased in a concentration-dependent manner in response to ZPDC glycoprotein treatment, whereas ATPase activity was decreased. In summary, ZPDC glycoprotein stimulated an increase in the bioactivity of Lact. plantarum L67. Significance and impact of the study: This study demonstrated that Lactobacillus plantarum L67 possesses anti-oxidative activity. This strain of lactic bacteria has been known to have various probiotic uses, such as yogurt starters and dietary additional supplements. We found, through this experiment, that the protein has a strong anti-oxidative character, and the activity can be enhanced by treatment with Zanthoxylum piperitum DC (ZPDC) glycoprotein. This study may be application of Lact. plantarum L67 treated by ZPDC glycoprotein in yogurt fermentation. It could be one of the avenues of minimizing yogurt postacidification during storage. In addition

  11. Immunogenicity in mice of human metapneumovirus with a truncated SH glycoprotein.

    PubMed

    Tedcastle, A B; Fenwick, F; Robinson, M J; Toms, G L

    2014-04-01

    The SH glycoprotein of human metapneumovirus (HMPV) is twice the size of that of human respiratory syncytial virus and possesses a large, hydrophilic luminal domain. The glycoprotein is located on the surface of the virion and of virus infected cells and, if immunogenic, might be expected to play a role in anti-viral immunity. Initial attempts to study anti-SH antibody immunogenicity were thwarted by the instability of the SH gene on passage both in human bronchial epithelial cells and in mice. Repeated passage of virus isolates in human bronchial epithelial cells in culture resulted in the appearance and eventual predominance of HMPV mutants lacking all or most of the luminal domain of SH coincidental with the loss of productive infection in mouse lungs. Where infection was established in mice with an early cell culture passage, the virus recovered from mouse lung differed markedly from the inoculum, carrying 19 coding mutations in the SH luminal domain. Immunization of mice with a mutant virus variant expressing only 14 amino acids of the luminal domain of SH induced a cross-reactive antibody response to both the F glycoprotein and the SH glycoprotein but a largely sub-group specific response to the G glycoprotein. Similar patterns of response were achieved by immunization with individual HMPV glycoproteins expressed from recombinant vaccinia viruses. Recombinant truncated SH glycoprotein induced sub-group cross-reactive antibodies capable of neutralizing wild-type virus. Recombinant F glycoprotein also induced cross-reactive neutralizing antibodies whilst recombinant G glycoprotein induced largely strain-specific, non-neutralizing antibodies.

  12. Insolubilization of hydroxyproline-rich cell wall glycoprotein in aerated carrot root slices.

    PubMed

    Cooper, J B; Varner, J E

    1983-04-15

    The hydroxyproline-rich glycoprotein of plant cell walls is secreted from the cytoplasm as a soluble monomer which slowly becomes insolubilized. A tyrosine derivative, isodityrosine, is formed in the cell wall during this insolubilization and could serve as a protein-protein crosslink. Glycoprotein insolubilization is inhibited by peroxidase inhibitors and free radical scavengers, the most effective of which is L-ascorbate. These data support a hypothesis that the hydroxyproline-rich cell wall glycoprotein forms a covalently crosslinked wall network under the control of an extracellular peroxidase/ascorbate oxidase system.

  13. Affinity of bronchial secretion glycoproteins and cells of human bronchial mucosa for Ricinus communis lectins.

    PubMed

    Lhermitte, M; Lamblin, G; Degand, P; Roussel, P; Mazzuca, M

    1977-01-01

    The coupling of Ricinus communis lectins to Sephadex G 25 was used in order to study mucins and other glycoproteins from human bronchial secretion. The major part of human bronchial mucins and other glycoproteins such as immunoglobulins A, bronchotransferrin and alpha1-antichymotrypsin were isolated by this procedure. A parallel study of human bronchial mucosa was achieved with peroxidase labeled Ricinus communis lectins; this study characterized goblet cells and mucous cells which contain mucins, and serous cells which are involved in the synthesis or the secretion of the other glycoproteins.

  14. Selective binding of human cumulus cell-secreted glycoproteins to human spermatozoa during capacitation in vitro

    SciTech Connect

    Tesarik, J.; Kopecny, V.; Dvorak, M.

    1984-06-01

    The results of this study demonstrate that glycoproteins manufactured by human cumulus cells can be detected bound to human spermatozoa incubated in capacitational medium containing the labeled cumulus-cell secretions. Cumulus-cell-secreted glycoproteins were labeled with a mixture of /sup 3/H-methionine and /sup 3/H-tryptophan or with 3H-fucose, and the binding of the labeled compounds to spermatozoa was evaluated by autoradiography. The binding was highly selective, involving only approximately 1% of the samples of spermatozoa used. The results suggest that the binding of cumulus-cell-secreted glycoproteins to spermatozoa may represent a final and highly selective step in human sperm capacitation.

  15. Proposed pathway for biosynthesis of the S-layer glycoprotein of Bacillus alvei.

    PubMed Central

    Hartmann, E; Messner, P; Allmeier, G; König, H

    1993-01-01

    The outer surface of the murein sacculus of the eubacterium Bacillus alvei is covered by a surface layer (S-layer) glycoprotein. The glycan chain of this S-layer glycoprotein consists of trisaccharide repeating units with ManNAc, Gal, and Glc as constituents. From cell extracts of B. alvei, nucleotide-activated derivatives of ManNAc, Gal, Glc, and GlcNAc were isolated. Furthermore, GDP- and dolichyl-activated oligosaccharides were obtained. On the basis of the isolated putative glycoprotein precursors, a pathway for the biosynthesis of the oligosaccharide chain is proposed. PMID:8331079

  16. Ovine Herpesvirus 2 Glycoproteins B, H, and L Are Sufficient for, and Viral Glycoprotein Ov8 Can Enhance, Cell-Cell Membrane Fusion.

    PubMed

    AlHajri, Salim M; Cunha, Cristina W; Nicola, Anthony V; Aguilar, Hector C; Li, Hong; Taus, Naomi S

    2017-03-15

    Ovine herpesvirus 2 (OvHV-2) is a gammaherpesvirus in the genus Macavirus that is carried asymptomatically by sheep. Infection of poorly adapted animals with OvHV-2 results in sheep-associated malignant catarrhal fever, a fatal disease characterized by lymphoproliferation and vasculitis. There is no treatment or vaccine for the disease and no cell culture system to propagate the virus. The lack of cell culture has hindered studies of OvHV-2 biology, including its entry mechanism. As an alternative method to study OvHV-2 glycoproteins responsible for membrane fusion as a part of the entry mechanism, we developed a virus-free cell-to-cell membrane fusion assay to identify the minimum required OvHV-2 glycoproteins to induce membrane fusion. OvHV-2 glycoproteins B, H, and L (gB, gH, and gL) were able to induce membrane fusion together but not when expressed individually. Additionally, open reading frame Ov8, unique to OvHV-2, was found to encode a transmembrane glycoprotein that can significantly enhance membrane fusion. Thus, OvHV-2 gB, gH, and gL are sufficient to induce membrane fusion, while glycoprotein Ov8 plays an enhancing role by an unknown mechanism.IMPORTANCE Herpesviruses enter cells via attachment of the virion to the cellular surface and fusion of the viral envelope with cellular membranes. Virus-cell membrane fusion is an important step for a successful viral infection. Elucidating the roles of viral glycoproteins responsible for membrane fusion is critical toward understanding viral entry. Entry of ovine herpesvirus 2 (OvHV-2), the causative agent of sheep associated-malignant catarrhal fever, which is one of the leading causes of death in bison and other ungulates, has not been well studied due to the lack of a cell culture system to propagate the virus. The identification of OvHV-2 glycoproteins that mediate membrane fusion may help identify viral and/or cellular factors involved in OvHV-2 cell tropism and will advance investigation of cellular

  17. Boronic Acid-Based Approach for Separation and Immobilization of Glycoproteins and Its Application in Sensing

    PubMed Central

    Wang, Xiaojin; Xia, Ning; Liu, Lin

    2013-01-01

    Glycoproteins influence a broad spectrum of biological processes including cell-cell interaction, host-pathogen interaction, or protection of proteins against proteolytic degradation. The analysis of their glyco-structures and concentration levels are increasingly important in diagnosis and proteomics. Boronic acids can covalently react with cis-diols in the oligosaccharide chains of glycoproteins to form five- or six-membered cyclic esters. Based on this interaction, boronic acid-based ligands and materials have attracted much attention in both chemistry and biology as the recognition motif for enrichment and chemo/biosensing of glycoproteins in recent years. In this work, we reviewed the progress in the separation, immobilization and detection of glycoproteins with boronic acid-functionalized materials and addressed its application in sensing. PMID:24141187

  18. Baculovirus expression of the glycoprotein gene of Lassa virus and characterization of the recombinant protein.

    PubMed

    Hummel, K B; Martin, M L; Auperin, D D

    1992-09-01

    A recombinant baculovirus was constructed that expresses the glycoprotein gene of Lassa virus (Josiah strain) under the transcriptional control of the polyhedrin promoter. The expressed protein (B-LSGPC) comigrated with the authentic viral glycoprotein as observed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), was reactive with monoclonal antibodies (MAbs) in Western blots, and was glycosylated. Although the recombinant protein was not processed into the mature glycoproteins, G1 and G2, it demonstrated reactivity with all known epitopes as measured by indirect immunofluorescence (IFA), and it was immunogenic, eliciting antisera in rabbits that recognized whole virus in IFAs. Regarding future applications to diagnostic assays, the recombinant glycoprotein proved to be an effective substitute for Lassa virus-infected mammalian cells in IFAs and it was able to distinguish sera from several human cases of Lassa fever, against a panel of known negative sera of African origin, in an enzyme immunoassay (EIA).

  19. 21 CFR 866.5425 - Alpha-2-glycoproteins immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the alpha-2-glycoproteins (a group of plasma proteins found in the alpha-2 group when subjected to... some cancers and genetically inherited deficiencies of these plasma proteins. (b) Classification....

  20. 21 CFR 866.5425 - Alpha-2-glycoproteins immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the alpha-2-glycoproteins (a group of plasma proteins found in the alpha-2 group when subjected to... some cancers and genetically inherited deficiencies of these plasma proteins. (b) Classification....

  1. 21 CFR 866.5425 - Alpha-2-glycoproteins immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the alpha-2-glycoproteins (a group of plasma proteins found in the alpha-2 group when subjected to... some cancers and genetically inherited deficiencies of these plasma proteins. (b) Classification....

  2. 21 CFR 866.5425 - Alpha-2-glycoproteins immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the alpha-2-glycoproteins (a group of plasma proteins found in the alpha-2 group when subjected to... some cancers and genetically inherited deficiencies of these plasma proteins. (b) Classification....

  3. 21 CFR 866.5425 - Alpha-2-glycoproteins immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the alpha-2-glycoproteins (a group of plasma proteins found in the alpha-2 group when subjected to... some cancers and genetically inherited deficiencies of these plasma proteins. (b) Classification....

  4. Serum sialic acid and glycoprotein levels in some Libyan cancer patients.

    PubMed

    Balo, N N; Ishaq, M

    1991-01-01

    Sialic acid is a common conjugate of some serum glycoproteins and glycolipids. Elevated levels of serum sialic acid and alterations in serum glycoproteins have been observed in certain types of cancer. In this study sialic acid concentration in the sera of patients with various types of cancer was determined. In addition to this, serum glycoproteins were also analysed by electrophoretic method. Our results indicate that serum sialic acid levels are generally raised in all types of cancer studied. This increase was more pronounced in case of lung, bronchogenic, intestinal and breast cancer. Some alterations in the serum glycoprotein profiles were also observed, particularly in bronchogenic and gall bladder cancer where an additional band in the low molecular weight region was present and in lung, breast and lymphoma where a band in the middle molecular weight region was found missing when compared with normals.

  5. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review.

    PubMed

    Tabasum, Shazia; Noreen, Aqdas; Kanwal, Arooj; Zuber, Mohammad; Anjum, Muhammad Naveed; Zia, Khalid Mahmood

    2017-05-01

    Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement.

  6. [Molecular Mechanism of Glycoprotein-induced Cell-Cell Fusion of Herpesviruses].

    PubMed

    Feng, Daishen; Jia, Renyong

    2016-01-01

    Herpesviridae is a large family comprising linear, double-stranded DNA viruses. Herpesviridae contains three subfamilies: α-, β- and γ-herpesviruses. The glycoproteins gB, gH and gL of each subfamily form the "core fusion function" in cell-cell fusion. Other herpesviruses also need additional glycoproteins to promote fusion, such as gD of the Herpes simplex virus, gp42 of the Epstein-Barr virus, and gO or UL128-131 of the Human cytomegalovirus. In contrast, glycoproteins gM or gM/gN of herpesvirus inhibit fusion. We describe the molecular mechanisms of glycoprotein-induced fusion and entry of herpesviruses. It will be helpful to further study the pathogenic mechanism of herpesvirus.

  7. Localization of P-glycoprotein at the nuclear envelope of rat brain cells

    SciTech Connect

    Babakhanian, Karlo; Bendayan, Moise; Bendayan, Reina . E-mail: r.bendayan@utoronto.ca

    2007-09-21

    P-Glycoprotein is a plasma membrane drug efflux protein implicated in extrusion of cytotoxic compounds out of a cell. There is now evidence that suggests expression of this transporter at several subcellular sites, including the nucleus, mitochondria, and Golgi apparatus. This study investigated the localization and expression of P-glycoprotein at the nuclear membrane of rat brain microvessel endothelial (RBE4) and microglial (MLS-9) cell lines. Immunocytochemistry at the light and electron microscope levels using P-glycoprotein monoclonals antibodies demonstrated the localization of the protein at the nuclear envelope of RBE4 and MLS-9 cells. Western blot analysis revealed a single band of 170-kDa in purified nuclear membranes prepared from isolated nuclei of RBE4 and MLS-9 cells. These findings indicate that P-glycoprotein is expressed at the nuclear envelope of rat brain cells and suggest a role in multidrug resistance at this subcellular site.

  8. Importance of the short cytoplasmic domain of the feline immunodeficiency virus transmembrane glycoprotein for fusion activity and envelope glycoprotein incorporation into virions

    SciTech Connect

    Celma, Cristina C.P.; Paladino, Monica G.; Gonzalez, Silvia A.; Affranchino, Jose L.

    2007-09-30

    The mature form of the envelope (Env) glycoprotein of lentiviruses is a heterodimer composed of the surface (SU) and transmembrane (TM) subunits. Feline immunodeficiency virus (FIV) possesses a TM glycoprotein with a cytoplasmic tail of approximately 53 amino acids which is unusually short compared with that of the other lentiviral glycoproteins (more than 100 residues). To investigate the relevance of the FIV TM cytoplasmic domain to Env-mediated viral functions, we characterized the biological properties of a series of Env glycoproteins progressively shortened from the carboxyl terminus. All the mutant Env proteins were efficiently expressed in feline cells and processed into the SU and TM subunits. Deletion of 5 or 11 amino acids from the TM C-terminus did not significantly affect Env surface expression, fusogenic activity or Env incorporation into virions, whereas removal of 17 or 23 residues impaired Env-mediated cell-to-cell fusion. Further truncation of the FIV TM by 29 residues resulted in an Env glycoprotein that was poorly expressed at the cell surface, exhibited only 20% of the wild-type Env fusogenic capacity and was inefficiently incorporated into virions. Remarkably, deletion of the TM C-terminal 35 or 41 amino acids restored or even enhanced Env biological functions. Indeed, these mutant Env glycoproteins bearing cytoplasmic domains of 18 or 12 amino acids were found to be significantly more fusogenic than the wild-type Env and were efficiently incorporated into virions. Interestingly, truncation of the TM cytoplasmic domain to only 6 amino acids did not affect Env incorporation into virions but abrogated Env fusogenicity. Finally, removal of the entire TM cytoplasmic tail or deletion of as many as 6 amino acids into the membrane-spanning domain led to a complete loss of Env functions. Our results demonstrate that despite its relatively short length, the FIV TM cytoplasmic domain plays an important role in modulating Env-mediated viral functions.

  9. Monensin and FCCP inhibit the intracellular transport of alphavirus membrane glycoproteins

    PubMed Central

    Kaariainen, L; Hashimoto, K; Saraste, J; Virtanen, I; Penttinen, K

    1980-01-01

    Temperature-sensitive mutants of semliki forest virus (SFV) and sindbis virus (SIN) were used to study the intracellular transport of virus membrane glycoproteins in infected chicken embryo fibroblasts. When antisera against purified glycoproteins and (125)I- labeled protein A from staphylococcus aureus were used only small amounts of virus glycoproteins were detected at the surface of SFV ts-1 and SIN Ts-10 infected cells incubated at the restrictive temperature (39 degrees C). When the mutant-infected cells were shifted to the permissive temperature (28 degrees C), in the presence of cycloheximide, increasing amounts of virus glycoproteins appeared at the cell surface from 20 to 80 min after the shift. Both monensin (10muM) and carbonylcyanide-p- trifluoromethoxyphenylhydrazone (FCCP; 10-20 muM) inhibited the appearance of virus membrane glycoproteins at the cell surface. Vinblastine sulfate (10 μg/ml) inhibited the transport by approximately 50 percent, whereas cytochalasin B (1 μg/ml) had only a marginal effect. Intracellular distribution of virus glycoproteins in the mutant-infected cells was visualized in double-fluorescence studies using lectins as markers for endoplasmic reticulum and Golgi apparatus. At 39 degrees C, the virus membrane glycoproteins were located at the endoplasmic reticulum, whereas after shift to 28 degrees C, a bright juxtanuclear reticular fluorescence was seen in the location of the Golgi apparatus. In the presence of monensin, the virus glycoproteins could migrate to the Golgi apparatus, although transport to the cell surface did not take place. When the shift was carried out in the presence of FCCP, negligible fluorescence was seen in the Golgi apparatus and the glycoproteins apparently remained in the rough endoplasmic reticulum. A rapid inhibition in the accumulation of virus glycoproteins at the cell surface was obtained when FCCP was added during the active transport period, whereas with monensin there was a delay of

  10. Optimization of irinotecan chronotherapy with P-glycoprotein inhibition

    SciTech Connect

    Filipski, Elisabeth; Berland, Elodie; Ozturk, Narin; Guettier, Catherine; Horst, Gijsbertus T.J. van der; Lévi, Francis; and others

    2014-02-01

    The relevance of P-glycoprotein (P-gp) for irinotecan chronopharmacology was investigated in female B6D2F{sub 1} mice. A three-fold 24 h change in the mRNA expression of Abcb1b was demonstrated in ileum mucosa, with a maximum at Zeitgeber Time (ZT) 15 (p < 0.001). No rhythm was found for abcb1a in ileum mucosa, or for Abcb1a/b in Glasgow osteosarcoma (GOS), a mouse tumor cell line moderately sensitive to irinotecan. Non-tumor-bearing mice received irinotecan (50 mg/kg/day i.v. × 4 days) as a single agent or combined with P-gp inhibitor PSC833 (6.25 mg/kg/day i.p. × 4 days) at ZT3 or ZT15, respectively corresponding to the worst or the best irinotecan tolerability. Endpoints involved survival, body weight change and hematologic toxicity. Antitumor efficacy was studied in GOS-bearing mice receiving irinotecan (25, 30 or 40 mg/kg/day × 4 days) and +/− PSC833 at ZT3 or ZT15, with survival, body weight change, and tumor growth inhibition as endpoints. Non-tumor bearing mice lost an average of 17% or 9% of their body weight according to irinotecan administration at ZT3 or ZT15 respectively (p < 0.001). Dosing at ZT15 rather than ZT3 reduced mean leucopenia (9% vs 53%; p < 0.001). PSC833 aggravated irinotecan lethal toxicity from 4 to ∼ 60%. In tumor-bearing mice, body weight loss was ∼ halved in the mice on irinotecan or irinotecan–PSC833 combination at ZT15 as compared to ZT3 (p < 0.001). PSC833–irinotecan at ZT15 increased tumor inhibition by ∼ 40% as compared to irinotecan only at ZT15. In conclusion, P-gp was an important determinant of the circadian balance between toxicity and efficacy of irinotecan. - Highlights: • Irinotecan chronotolerance and chronoefficacy change as drug was applied with PSC833. • P-glycoprotein is an important player of the toxicity and efficacy of irinotecan. • Timing should be considered if chemotherapy is performed with a MDR1 inhibitor.

  11. Is Ciprofloxacin a Substrate of P-glycoprotein?

    PubMed Central

    Park, Miki Susanto; Okochi, Hideaki; Benet, Leslie Z

    2011-01-01

    Introduction Studies using MDCKII and LLC-PK1 cells transfected with MDR1 cDNA indicate that ciprofloxacin is not a substrate of P-glycoprotein. However, our data has shown that transport studies done using different P-gp overexpressing cell lines (MDCKI-MDR1, MDCKII-MDR1 and L-MDR1), could lead to contradictory conclusion on whether a compound is a substrate of P-gp. The aim of our study was to determine if ciprofloxacin is indeed not a P-glycoprotein substrate using MDCKI cells transfected with human MDR1 cDNA. Methods Semi-quantitative RT-PCR was used to determine the mRNA level of MDR1 while Western blot was performed to determine the protein expression level of P-gp, MRP1 and MRP2 in various cells. Ciprofloxacin bidirectional transport studies were performed in MDCKI, MDCKI-MDR1, MDCKII, MDCKII-MDR1, MDCKII-MRP2, LLC-PK1, L-MRP1 and L-MDR1 cells. Results Ciprofloxacin showed net secretion in MDCKI-MDR1 but net absorption in MDCKI cells. Various P-gp inhibitors decreased the B to A and increased the A to B transport of ciprofloxacin in MDCKI-MDR1 cells while having no effect in MDCKI cells. The B to A transport of ciprofloxacin in MDCKI-MDR1 cells was not affected by non-P-gp inhibitors. In the presence of indomethacin, ciprofloxacin showed net secretion instead of net absorption in MDCKI cells while in the presence of probenecid and sulfinpyrazone, there was no net secretion and absorption. There was no difference in ciprofloxacin transport between MDCKII and MDCKII-MDR1, LLC-PK1 and L-MDR1, LLC-PK1 and L-MRP1 and MDCKII and MDCKII-MRP2. Conclusions Transport data in MDCKI and MDCKI-MDR1 cells indicate that ciprofloxacin is a substrate of P-gp but data from MDCKII, MDCKII-MDR1, LLC-PK1 and L-MDR1 cells indicate that ciprofloxacin is not a substrate of P-gp. Vinblastine, a well-known P-gp substrate, also did not show differences between LLC-PK1 and L-MDR1 cells. Further studies need to be performed to characterize these P-gp overexpressing cell lines and the

  12. A combined method for producing homogeneous glycoproteins with eukaryotic N-glycosylation

    PubMed Central

    Schwarz, Flavio; Huang, Wei; Li, Cishan; Schulz, Benjamin L.; Lizak, Christian; Palumbo, Alessandro; Numao, Shin; Neri, Dario; Aebi, Markus; Wang, Lai-Xi

    2010-01-01

    We describe a novel method for producing homogeneous eukaryotic N-glycoproteins. The method involves the engineering and functional transfer of the C. jejuni glycosylation machinery in E. coli to express glycosylated proteins with the key GlcNAc-Asn linkage. The bacterial glycans were then trimmed and remodeled in vitro by enzymatic transglycosylation to fulfill a eukaryotic N-glycosylation. It provides a potentially general platform for producing eukaryotic N-glycoproteins. PMID:20190762

  13. Glycoproteins as substrates for production of hydrogen and methane by colonic bacterial flora.

    PubMed

    Perman, J A; Modler, S

    1982-08-01

    Hydrogen and methane in human breath derive entirely from bacterial fermentation in the intestinal lumen. The sources of substrates utilized for these reactions have not been completely determined. Basal excretion of both gases occurs in the fasted state, while malabsorbed carbohydrate commonly results in increased hydrogen but not methane production. Using an in vitro fecal incubation system, we have studied hydrogen and methane production from glycoproteins of endogenous as well as dietary origin. All glycoproteins tested yielded hydrogen when incubated with fecal homogenates. Mean hydrogen production from substrates containing less than 3% sugar (human serum albumin, bovine serum albumin, and alpha-casein) averaged 2.2 +/- 0.9% of hydrogen production from equivalent amounts of glucose, while carbohydrate-rich mucin yielded 46.0 +/- 6.7% of hydrogen production from glucose. Glycoproteins of intermediate carbohydrate content, including transferrin and egg white, yielded intermediate values. Methane production from glycoproteins was optimal from carbohydrate-poor protein substrates in fecal homogenates which accumulated hydrogen and became rapidly acidic when incubated with pure carbohydrate. In contrast, methane production was comparable for essentially sugar-free proteins, glycoproteins, and glucose when hydrogen did not accumulate and neutral pH was maintained. We conclude that glycoproteins are substrates for hydrogen and methane production by colonic bacteria from healthy adults. In individuals with bacterial overgrowth syndromes and in protein-losing enteropathy, bacterial catabolism of endogenous glycoproteins may cause increased basal hydrogen and methane excretion. These findings also raise the possibility that measurement of hydrogen or methane after oral administration of dietary glycoproteins may be useful in detection of protein malabsorption.

  14. The Mechanism of Henipavirus Fusion: Examining the Relationships between the Attachment and Fusion Glycoproteins

    DTIC Science & Technology

    2009-04-01

    class ephrin protein receptor triggering conformational alterations leading to the activation of the viral fusion (F) glycoprotein. The analysis of...membrane proteins with the molecule’s amino (N)-terminus oriented towards the cytoplasm and the protein’s carboxy (C)-terminus facing the...henipavirus G glycoprotein, contain a globular head domain, a stalk region, transmembrane domain, and a short cytoplasmic tail (9, 57) The

  15. High-Mr glycoprotein profiles in human milk serum and fat-globule membrane.

    PubMed

    Shimizu, M; Yamauchi, K; Miyauchi, Y; Sakurai, T; Tokugawa, K; McIlhinney, R A

    1986-02-01

    Gradient-polyacrylamide-gel electrophoresis of human milk serum separated three high-Mr glycoprotein bands. The properties of the components corresponding to the three bands (tentatively termed 'Components C, B and A' in their order of migration) were compared by staining with four monoclonal antibodies and lectins. Components B and C both reacted with the four antibodies, but Component A did not. Components B and C were stained with peanut (Arachis hypogaea) agglutinin (PNA) and wheat (Triticum)-germ agglutinin (WGA), Component A being stained with soya-bean (Glycine max) agglutinin as well as PNA and WGA. These results suggest that Components B and C were related molecules, whereas Component A was markedly different from them. The reactivities of Components B and C were the same as those of PAS-0, a high-Mr periodate/Schiff (PAS)-positive glycoprotein previously isolated from human milk fat-globule membrane (MFGM). Component C, whose electrophoretic mobility was the same as PAS-0, could have been a soluble form of PAS-0. A high-Mr glycoprotein having the same properties as Component A was also observed in MFGM. The amino acid composition of the isolated Component A was significantly different from that of Component C and PAS-0, high threonine and serine contents being characteristic of Component A. The carbohydrate content of Component A was 65-80%, and was much higher than that of Component C and PAS-0. Fucose, galactose, N-acetylglucosamine, N-acetylgalactosamine and sialic acid were each detected as constituent sugars of Component A. Component A represents, therefore, a new high-Mr glycoprotein species in human milk serum and MFGM. Since these glycoproteins were high-Mr mucin-like glycoproteins, the names 'HM glycoprotein-A' and 'HM glycoprotein-C' were proposed for Component A and Component C (PAS-O) respectively.

  16. Identification of a human immunodeficiency virus type 1 envelope glycoprotein variant resistant to cold inactivation.

    PubMed

    Kassa, Aemro; Finzi, Andrés; Pancera, Marie; Courter, Joel R; Smith, Amos B; Sodroski, Joseph

    2009-05-01

    The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein trimer consists of gp120 and gp41 subunits and undergoes a series of conformational changes upon binding to the receptors, CD4 and CCR5/CXCR4, that promote virus entry. Surprisingly, we found that the envelope glycoproteins of some HIV-1 strains are functionally inactivated by prolonged incubation on ice. Serial exposure of HIV-1 to extremes of temperature, followed by expansion of replication-competent viruses, allowed selection of a temperature-resistant virus. The envelope glycoproteins of this virus resisted cold inactivation due to a single passage-associated change, H66N, in the gp120 exterior envelope glycoprotein. Histidine 66 is located within the gp41-interactive inner domain of gp120 and, in other studies, has been shown to decrease the sampling of the CD4-bound conformation by unliganded gp120. Substituting asparagine or other amino acid residues for histidine 66 in cold-sensitive HIV-1 envelope glycoproteins resulted in cold-stable phenotypes. Cold inactivation of the HIV-1 envelope glycoproteins occurred even at high pH, indicating that protonation of histidine 66 is not necessary for this process. Increased exposure of epitopes in the ectodomain of the gp41 transmembrane envelope glycoprotein accompanied cold inactivation, but shedding of gp120 did not. An amino acid change in gp120 (S375W) that promotes the CD4-bound state or treatment with soluble CD4 or a small-molecule CD4 mimic resulted in increased cold sensitivity. These results indicate that the CD4-bound intermediate of the HIV-1 envelope glycoproteins is cold labile; avoiding the CD4-bound state increases temperature stability.

  17. Expression and antigenicity of recombinant human respiratory syncytial virus glycoproteins having different affinity tags.

    PubMed

    Lee, Han Saem; Kim, A-Reum; Kim, Kisoon; Lee, Wan-Ji; Kim, Sung Soon; Kim, You-Jin

    2016-12-29

    Human respiratory syncytial virus (HRSV) is a main cause of lower respiratory tract infections in infants and the elderly. Glycoprotein (G) is major antigen on the viral surface, and plays a key role for virus entry. Therefore, purification of the glycoprotein of HRSV is critical for the development of HRSV vaccine and serological diagnosis. In this study, we report the design and characterization of glycoprotein engineered rationally to enhance the protein solubility and to facilitate efficient purification. We permuted HRSV glycoproteins with two tags: (i) an immunoglobulin (Ig) M signal peptide and a protein A B domain tag to render HRSV glycoprotein secret into the culture media and (ii) a foldon and 6 × histidine tag with or without transmembrane domain. Three recombinant baculoviruses were constructed: (i) transmembrane-truncated HRSV glycoprotein (amino acid positions 66-298) inserted with the N-terminal IgM signal peptide and protein A B domain (MG-GΔTM), (ii) truncated HRSV glycoprotein (amino acid positions 66-298) fused with a C-terminal foldon and 6 × histidine tag (GΔTM-FH), and (iii) full-length HRSV glycoprotein (amino acid positions 1-298) fused with a C-terminal foldon and 6 × histidine tag (G-FH). Highly soluble recombinant MG-GΔTM protein was clearly purified using one-step affinity chromatography with IgG-sepharose resin, whereas the recombinant G-FH protein and truncated GΔTM-FH were purified partially using nickel-resin. Although, the antigenicity of GΔTM-FH was stronger than highly mannose-rich MG-GΔTM protein, MG-GΔTM induced neutralizing antibodies efficiently in the mice to protect from infectious HRSV.

  18. P-Glycoprotein Is a Major Determinant of Norbuprenorphine Brain Exposure and Antinociception

    PubMed Central

    Brown, Sarah M.; Campbell, Scott D.; Crafford, Amanda; Regina, Karen J.; Holtzman, Michael J.

    2012-01-01

    Norbuprenorphine is a major metabolite of buprenorphine and potent agonist of μ, δ, and κ opioid receptors. Compared with buprenorphine, norbuprenorphine causes minimal antinociception but greater respiratory depression. It is unknown whether the limited antinociception is caused by low efficacy or limited brain exposure. Norbuprenorphine is an in vitro substrate of the efflux transporter P-glycoprotein (Mdr1), but the role of P-glycoprotein in norbuprenorphine transport in vivo is unknown. This investigation tested the hypothesis that limited norbuprenorphine antinociception results from P-glycoprotein-mediated efflux and limited brain access. Human P-glycoprotein-mediated transport in vitro of buprenorphine, norbuprenorphine, and their respective glucuronide conjugates was assessed by using transfected cells. P-glycoprotein-mediated norbuprenorphine transport and consequences in vivo were assessed by using mdr1a(+/+) and mdr1a(−/−) mice. Antinociception was determined by hot-water tail-flick assay, and respiratory effects were determined by unrestrained whole-body plethysmography. Brain and plasma norbuprenorphine and norbuprenorphine-3-glucuronide were quantified by mass spectrometry. In vitro, the net P-glycoprotein-mediated efflux ratio for norbuprenorphine was nine, indicating significant efflux. In contrast, the efflux ratio for buprenorphine and the two glucuronide conjugates was unity, indicating absent transport. The norbuprenorphine brain/plasma concentration ratio was significantly greater in mdr1a(−/−) than mdr1a(+/+) mice. The magnitude and duration of norbuprenorphine antinociception were significantly increased in mdr1a(−/−) compared with mdr1a(+/+) mice, whereas the reduction in respiratory rate was similar. Results show that norbuprenorphine is an in vitro and in vivo substrate of P-glycoprotein. P-glycoprotein-mediated efflux influences brain access and antinociceptive, but not the respiratory, effects of norbuprenorphine. PMID

  19. Co-treatment by docetaxel and vinblastine breaks down P-glycoprotein mediated chemo-resistance

    PubMed Central

    Mohseni, Mahsa; Samadi, Nasser; Ghanbari, Parisa; Yousefi, Bahman; Tabasinezhad, Maryam; Sharifi, Simin; Nazemiyeh, Hossein

    2016-01-01

    Objective(s): Chemoresistance remains the main causes of treatment failure and mortality in cancer patients. There is an urgent need to investigate novel approaches to improve current therapeutic modalities and increase cancer patients’ survival. Induction of drug efflux due to overexpression of P-glycoproteins is considered as an important leading cause of multidrug resistance. In this study, we investigated the role of combination treatments of docetaxel and vinblastine in overcoming P-glycoprotein mediated inhibition of apoptosis and induction of cell proliferation in human non-small cell lung carcinoma cells. Materials and Methods: Cell proliferation and apoptosis were assessed using MTT assay and DAPI staining, respectively. P-glycoprotein expression was evaluated in gene and protein levels by Real-time RT-PCR and Western blot analysis, respectively. Results: Combination treatment of the cells with docetaxel and vinblastine decreased the IC50 values for docetaxel from (30±3.1) to (15±2.6) nM and for vinblastine from (30±5.9) to (5±5.6) nM (P≤0.05). P-glycoprotein mRNA expression level showed a significant up-regulation in the cells incubated with each drug alone (P≤0.001). Incubation of the cells with combined concentrations of both agents neutralized P-glycoprotein overexpression (P≤0.05). Adding verapamil, a P-glycoprotein inhibitor caused a further increase in the percentage of apoptotic cells when the cells were treated with both agents. Conclusion: Our results suggest that combination therapy along with P-glycoprotein inhibition can be considered as a novel approach to improve the efficacy of chemotherapeutics in cancer patients with high P-glycoprotein expression. PMID:27114800

  20. Interaction between calcofluor white and carbohydrates of alpha 1-acid glycoprotein.

    PubMed

    Albani, J R; Plancke, Y D

    1999-05-31

    Interactions between the fluorescent probe, calcofluor white, and human serum albumin (HSA) and alpha 1-acid glycoprotein (orosomucoid) are compared. The two proteins have comparable isoelectric points, but alpha 1-acid glycoprotein is highly glycosylated (40% of glycans by weight), while the serum albumin is not. Binding of calcofluor to the proteins induces an increase in both the fluorescence anisotropy and the fluorescence intensity of the fluorophore. Also, we found that the calcofluor exhibits a fluorescence emission with a maximum located at 432, 415 or 445 nm, respectively, in the absence of proteins, in the presence of HSA, and in the presence of alpha 1-acid glycoprotein. The stoichiometries of the calcofluor-serum albumin and calcofluor-alpha 1-acid glycoprotein complexes are 2:1 and 1:1, respectively. The association constants are 0.04 and 0.15 microM-1, respectively. The calcofluor does not interact with Lens culinaris agglutinin (LCA), although the protein has a hydrophobic site. Nevertheless, one cannot exclude that the binding of the fluorophore to the HSA is nonspecific. Our results, when compared with those obtained with calcofluor dissolved in the hydrophobic solvent isobutanol, and with the fluorescent probe, potassium 6-(p-toluidino)-2-naphthalenesulfonate (TNS), bound to alpha 1-acid glycoprotein, indicate that the emission of calcofluor bound to HSA occurs from a hydrophobic state, while that of calcofluor bound to alpha 1-acid glycoprotein occurs from a hydrophilic state. The fluorescence intensity of calcofluor decreases in the presence of carbohydrates isolated from alpha 1-acid glycoprotein, while it increases in the presence of alpha 1-cellulose. Thus, calcofluor interacts mainly with the glycan moiety of alpha 1-acid glycoprotein, and its fluorescence is sensitive to the secondary structure of the glycans.

  1. Due to interleukin-6 type cytokine redundancy only glycoprotein 130 receptor blockade efficiently inhibits myeloma growth

    PubMed Central

    Burger, Renate; Günther, Andreas; Klausz, Katja; Staudinger, Matthias; Peipp, Matthias; Penas, Eva Maria Murga; Rose-John, Stefan; Wijdenes, John; Gramatzki, Martin

    2017-01-01

    Interleukin-6 has an important role in the pathophysiology of multiple myeloma where it supports the growth and survival of the malignant plasma cells in the bone marrow. It belongs to a family of cytokines which use the glycoprotein 130 chain for signal transduction, such as oncostatin M or leukemia inhibitory factor. Targeting interleukin-6 in plasma cell diseases is currently evaluated in clinical trials with monoclonal antibodies. Here, efforts were made to elucidate the contribution of interleukin-6 and glycoprotein 130 signaling in malignant plasma cell growth in vivo. In the xenograft severe combined immune deficiency model employing our interleukin-6-dependent plasma cell line INA-6, the lack of human interleukin-6 induced autocrine interleukin-6 production and a proliferative response to other cytokines of the glycoprotein 130 family. Herein, mice were treated with monoclonal antibodies against human interleukin-6 (elsilimomab/B-E8), the interleukin-6 receptor (B-R6), and with an antibody blocking glycoprotein 130 (B-R3). While treatment of mice with interleukin-6 and interleukin-6 receptor antibodies resulted in a modest delay in tumor growth, the development of plasmacytomas was completely prevented with the anti-glycoprotein 130 antibody. Importantly, complete inhibition was also achieved using F(ab’)2-fragments of monoclonal antibody B-R3. Tumors harbor activated signal transducer and activator of transcription 3, and in vitro, the antibody inhibited leukemia inhibitory factor stimulated signal transducer and activator of transcription 3 phosphorylation and cell growth, while being less effective against interleukin-6. In conclusion, the growth of INA-6 plasmacytomas in vivo under interleukin-6 withdrawal remains strictly dependent on glycoprotein 130, and other glycoprotein 130 cytokines may substitute for interleukin-6. Antibodies against glycoprotein 130 are able to overcome this redundancy and should be explored for a possible therapeutic window

  2. Sweating the small stuff: Glycoproteins in human sweat and their unexplored potential for microbial adhesion.

    PubMed

    Peterson, Robyn A; Gueniche, Audrey; Adam de Beaumais, Ségolène; Breton, Lionel; Dalko-Csiba, Maria; Packer, Nicolle H

    2016-03-01

    There is increasing evidence that secretory fluids such as tears, saliva and milk play an important role in protecting the human body from infection via a washing mechanism involving glycan-mediated adhesion of potential pathogens to secretory glycoproteins. Interaction of sweat with bacteria is well established as the cause of sweat-associated malodor. However, the role of sweat glycoproteins in microbial attachment has received little, if any, research interest in the past. In this review, we demonstrate how recent published studies involving high-throughput proteomic analysis have inadvertently, and fortuitously, exposed an abundance of glycoproteins in sweat, many of which have also been identified in other secretory fluids. We bring together research demonstrating microbial adhesion to these secretory glycoproteins in tears, saliva and milk and suggest a similar role of the sweat glycoproteins in mediating microbial attachment to sweat and/or skin. The contribution of glycan-mediated microbial adhesion to sweat glycoproteins, and the associated impact on sweat derived malodor and pathogenic skin infections are unchartered new research areas that we are beginning to explore.

  3. Production and glyco-engineering of immunomodulatory helminth glycoproteins in plants

    PubMed Central

    Wilbers, Ruud H. P.; Westerhof, Lotte B.; van Noort, Kim; Obieglo, Katja; Driessen, Nicole N.; Everts, Bart; Gringhuis, Sonja I.; Schramm, Gabriele; Goverse, Aska; Smant, Geert; Bakker, Jaap; Smits, Hermelijn H.; Yazdanbakhsh, Maria; Schots, Arjen; Hokke, Cornelis H.

    2017-01-01

    Helminth parasites control host-immune responses by secreting immunomodulatory glycoproteins. Clinical trials and mouse model studies have demonstrated the potential of helminth-derived glycoproteins for the treatment of immune-related diseases, like allergies and autoimmune diseases. Studies are however hampered by the limited availability of native parasite-derived proteins. Moreover, recombinant protein production systems have thus far been unable to reconstitute helminth-like glycosylation essential for the functionality of some helminth glycoproteins. Here we exploited the flexibility of the N-glycosylation machinery of plants to reconstruct the helminth glycoproteins omega-1 and kappa-5, two major constituents of immunomodulatory Schistosoma mansoni soluble egg antigens. Fine-tuning transient co-expression of specific glycosyltransferases in Nicotiana benthamiana enabled the synthesis of Lewis X (LeX) and LDN/LDN-F glycan motifs as found on natural omega-1 and kappa-5, respectively. In vitro and in vivo evaluation of the introduction of native LeX motifs on plant-produced omega-1 confirmed that LeX on omega-1 contributes to the glycoprotein’s Th2-inducing properties. These data indicate that mimicking the complex carbohydrate structures of helminths in plants is a promising strategy to allow targeted evaluation of therapeutic glycoproteins for the treatment of inflammatory disorders. In addition, our results offer perspectives for the development of effective anti-helminthic vaccines by reconstructing native parasite glycoprotein antigens. PMID:28393916

  4. Structural and conformational similarity between synthetic peptides of curaremimetic neurotoxins and rabies virus glycoprotein.

    PubMed

    Donnelly-Roberts, D L; Lentz, T L

    1991-09-01

    Antibodies were raised in rabbits against synthetic peptides corresponding to loop 2, the 'toxic' loop reacting with the acetylcholine-binding site on the nicotinic acetylcholine receptor, of curaremimetic neurotoxins and the structurally similar segment of the rabies virus glycoprotein. Some of the antibodies cross-reacted with the corresponding peptides confirming the structural similarity between the neurotoxin and glycoprotein peptides. A polyclonal antibody raised against a 29 residue glycoprotein peptide (175-203) in the presence of 0.1% sodium dodecyl sulfate reacted with native alpha-bungarotoxin and rabies virus. Circular dichroism spectroscopy of the 29 residue glycoprotein peptide and a 20 residue king cobra loop 2 peptide (25-44) revealed these peptides to be conformationally similar and composed predominantly of beta sheet structure. These results show the rabies glycoprotein segment is structurally and conformationally similar to neurotoxin loop 2. This similarity may confer on the glycoprotein the capability of interacting with the neurotoxin-binding site on the acetylcholine receptor.

  5. Molecular Docking Studies with Rabies Virus Glycoprotein to Design Viral Therapeutics

    PubMed Central

    Tomar, N. R.; Singh, V.; Marla, S. S.; Chandra, R.; Kumar, R.; Kumar, A.

    2010-01-01

    The genome of rabies virus encodes five proteins; the nucleoprotein, the phosphoprotein, the matrix protein, the glycoprotein, and the RNA-dependent RNA polymerase. Among these, the glycoprotein is the most important as it is the major contributor to pathogenicity and virus neutralizing antibody response. Keeping in mind that glycoprotein is the only protein exposed on the surface of virus and is thought to be responsible for the interaction with the cell membrane, it was attempted to target glycoprotein by a ligand polyethylene glycol 4000, which blocks its active site, as seen by molecular operating environment software, so that it may be possible to prevent the spread of virus into the host. The ligand polyethylene glycol 4000 was retrieved from Research Collaboratory for Structural Bioinformatics protein data bank by providing the glycoprotein sequence to the databank. In this study it was observed that the ligand was successfully docked on a major portion of antigenic site II of glycoprotein by mimicking the virus neutralizing antibodies. This knowledge may be important for the development of novel therapies for the treatment of rabies and other viral diseases in the future. PMID:21218060

  6. Binding of DC-SIGN to glycoproteins expressed in glycoengineered Pichia pastoris.

    PubMed

    Cukan, Michael C; Hopkins, Daniel; Burnina, Irina; Button, Michelle; Giaccone, Erin; Houston-Cummings, Nga Rewa; Jiang, Youwei; Li, Fang; Mallem, Muralidhar; Mitchell, Teresa; Moore, Renée; Nylen, Adam; Prinz, Bianka; Rios, Sandra; Sharkey, Nathan; Zha, Dongxing; Hamilton, Stephen; Li, Huijuan; Stadheim, Terrance A

    2012-12-14

    Previous studies have shown that glycoproteins expressed in wild-type Pichia pastoris bind to Dendritic cell-SIGN (DC-Specific Intercellular adhesion molecule-3 Grabbing Nonintegrin), a mannose-binding receptor found on dendritic cells in peripheral tissues which is involved in antigen presentation and the initiation of an immune response. However, the binding of DC-SIGN to glycoproteins purified from P. pastoris strains engineered to express humanized N- and O-linked glycans has not been tested to date. In this study, the binding of glycoproteins with specific high-mannose or human N- and O-linked glycan structures to DC-SIGN was tested. Proteins with humanized N-glycans including Man5 structures and O-glycans (up to as many as 24) with single mannose chain length showed DC-SIGN binding that was comparable to that measured for a CHO-produced IgG1 which lacks O-linked mannose. Glycoproteins with wild-type N-glycans and mannotriose and higher O-glycans bound to DC-SIGN in a manner that was strongly inhibited by either the use of enzymatic N-deglycosylation or sodium meta-periodate oxidation. Mannan purified from humanized P. pastoris also showed lower ability to inhibit DC-SIGN binding to glycoproteins with wild type fungal glycosylation than mannan purified from wild type strains. This study shows that humanized P. pastoris can produce glycoproteins that do not bind to DC-SIGN.

  7. Structure of Respiratory Syncytial Virus Fusion Glycoprotein in the Postfusion Conformation Reveals Preservation of Neutralizing Epitopes

    SciTech Connect

    McLellan, Jason S.; Yang, Yongping; Graham, Barney S.; Kwong, Peter D.

    2011-09-16

    Respiratory syncytial virus (RSV) invades host cells via a type I fusion (F) glycoprotein that undergoes dramatic structural rearrangements during the fusion process. Neutralizing monoclonal antibodies, such as 101F, palivizumab, and motavizumab, target two major antigenic sites on the RSV F glycoprotein. The structures of these sites as peptide complexes with motavizumab and 101F have been previously determined, but a structure for the trimeric RSV F glycoprotein ectodomain has remained elusive. To address this issue, we undertook structural and biophysical studies on stable ectodomain constructs. Here, we present the 2.8-{angstrom} crystal structure of the trimeric RSV F ectodomain in its postfusion conformation. The structure revealed that the 101F and motavizumab epitopes are present in the postfusion state and that their conformations are similar to those observed in the antibody-bound peptide structures. Both antibodies bound the postfusion F glycoprotein with high affinity in surface plasmon resonance experiments. Modeling of the antibodies bound to the F glycoprotein predicts that the 101F epitope is larger than the linear peptide and restricted to a single protomer in the trimer, whereas motavizumab likely contacts residues on two protomers, indicating a quaternary epitope. Mechanistically, these results suggest that 101F and motavizumab can bind to multiple conformations of the fusion glycoprotein and can neutralize late in the entry process. The structural preservation of neutralizing epitopes in the postfusion state suggests that this conformation can elicit neutralizing antibodies and serve as a useful vaccine antigen.

  8. Identification of Schistosoma mansoni glycoproteins recognized by protective antibodies from mice immunized with irradiated cercariae

    SciTech Connect

    Dalton, J.P.; Strand, M.; Mangold, B.L.; Dean, D.A.

    1986-01-01

    The humoral immune responses of mice patently infected with Schistosoma mansoni and of mice vaccinated with radiation-attenuated cercariae were compared by radioimmunoassays and one-and two-dimensional polyacrylamide gel analyses of radioimmunoprecipitates. Sera of vaccinated mice precipitated a restricted number of predominantly high m.w. glycoproteins of both schistosomula and adult worms metabolically labeled with (/sup 35/S) methinonine. Each of the glycoproteins of 36 hr in vitro-cultured schistosomula that was precipitated by the sera of vaccinated mice was also precipitated by sera of infected mice. In contrast, sera of vaccinated mice uniquely precipitated a 38,000 m.w. glycoprotein of schistosomula cultured for 5 days and a 94,000 m.w. glycoprotein of adult male worms. Although radiation-attenuated larvae do not reach the adult stage, mice vaccinated with these still elicit a strong immune response against egg glycoproteins. In particular, an egg glycoprotein of 85,000 to 70,000 and isoelectric point of 4.8 showed an enhanced reactivity with sera of vaccinated mice in comparison with infected mice. These results show that the antibody response in mice vaccinated with radiation-attenuated larvae differs qualitatively and quantitatively from that of infected mice.

  9. Bypassing P-Glycoprotein Drug Efflux Mechanisms: Possible Applications in Pharmacoresistant Schizophrenia Therapy

    PubMed Central

    Hoosain, Famida G.; Choonara, Yahya E.; Tomar, Lomas K.; Kumar, Pradeep; Tyagi, Charu; du Toit, Lisa C.; Pillay, Viness

    2015-01-01

    The efficient noninvasive treatment of neurodegenerative disorders is often constrained by reduced permeation of therapeutic agents into the central nervous system (CNS). A vast majority of bioactive agents do not readily permeate into the brain tissue due to the existence of the blood-brain barrier (BBB) and the associated P-glycoprotein efflux transporter. The overexpression of the MDR1 P-glycoprotein has been related to the occurrence of multidrug resistance in CNS diseases. Various research outputs have focused on overcoming the P-glycoprotein drug efflux transporter, which mainly involve its inhibition or bypassing mechanisms. Studies into neurodegenerative disorders have shown that the P-glycoprotein efflux transporter plays a vital role in the progression of schizophrenia, with a noted increase in P-glycoprotein function among schizophrenic patients, thereby reducing therapeutic outcomes. In this review, we address the hypothesis that methods employed in overcoming P-glycoprotein in cancer and other disease states at the level of the BBB and intestine may be applied to schizophrenia drug delivery system design to improve clinical efficiency of drug therapies. In addition, the current review explores polymers and drug delivery systems capable of P-gp inhibition and modulation. PMID:26491671

  10. Lipid modification gives rise to two distinct Haloferax volcanii S-layer glycoprotein populations.

    PubMed

    Kandiba, Lina; Guan, Ziqiang; Eichler, Jerry

    2013-03-01

    The S-layer glycoprotein is the sole component of the protein shell surrounding Haloferax volcanii cells. The deduced amino acid sequence of the S-layer glycoprotein predicts the presence of a C-terminal membrane-spanning domain. However, several earlier observations, including the ability of EDTA to selectively solubilize the protein, are inconsistent with the presence of a trans-membrane sequence. In the present report, sequential solubilization of the S-layer glycoprotein by EDTA and then with detergent revealed the existence of two distinct populations of the S-layer glycoprotein. Whereas both S-layer glycoprotein populations underwent signal peptide cleavage and N-glycosylation, base hydrolysis followed by mass spectrometry revealed that a lipid, likely archaetidic acid, modified only the EDTA-solubilized version of the protein. These observations are consistent with the S-layer glycoprotein being initially synthesized as an integral membrane protein and subsequently undergoing a processing event in which the extracellular portion of the protein is separated from the membrane-spanning domain and transferred to a waiting lipid moiety.

  11. Immunological characterization of deglycosylated human and swine trachea and Cowper's gland mucin glycoproteins.

    PubMed

    Sangadala, S; Brewer, J M; Mendicino, J

    1991-04-01

    Antibodies were raised in rabbits against purified swine and human trachea and Cowper's gland mucin glycoproteins and their deglycosylated polypeptide chains. Three monospecific antibody fractions that recognize the carbohydrate, the deglycosylated or unglycosylated regions of the polypeptide chains in these glycoproteins, were isolated by immunoaffinity chromatography. The human and swine trachea mucin glycoproteins showed extensive immunological homology in both their carbohydrate and polypeptide chains. The carbohydrate chains and unglycosylated region of the polypeptide chain in Cowper's gland mucin glycoprotein showed little or no cross-reaction with comparable regions in respiratory mucin glycoproteins. However, the polypeptide chains in the deglycosylated regions of all three mucin glycoproteins showed extensive homology. Five bands with molecular masses ranging from 40 to 46 kDa that differed by a constant molecular mass of approximately 1.5 kDa were detected in hydrolysates of all of the polypeptide chains after treatment with S. aureus V8 protease. Monospecific antibodies to the deglycosylated region of these chains reacted with the peptides, whereas those directed against the unglycosylated region did not. The results suggest that these chains contain tandem repeating sequences of amino acids.

  12. The importance of drug-transporting P-glycoproteins in toxicology.

    PubMed

    van Tellingen, O

    2001-03-31

    The importance of specific transport in toxicology is becoming increasingly clear and the work on P-glycoprotein has certainly been a major contribution to these growing insights. P-Glycoproteins were discovered by their ability to confer multidrug resistance in mammalian tumour cells. They are localised in the cell membrane where they actively extrude a wide range of compounds including many anti-cancer drugs from the cell. Besides in tumour cells, drug-transporting P-glycoproteins are also expressed in a polarised fashion in normal tissues that perform an excretory or barrier function, such as the liver, kidneys, intestines, brain endothelial cells. Based on this expression profile, it has been proposed that P-glycoproteins are important in protecting the host by reducing exposure to xenobiotics. Further studies with P-glycoprotein knockout mice have clearly established this protective function. In general, the clearance of substrate drugs is lower in knockout mice due to a diminished hepatobiliary excretion, direct intestinal excretion and/or increased enterohepatic cycling. Moreover, their uptake in sanctuary sites, such as the brain or the foetus, was profoundly higher in P-glycoprotein knockout mice, as was the uptake of drugs from the gastro-intestinal tract into the systemic circulation following oral ingestion. These results clearly highlight the impact that transport proteins can play in toxicology.

  13. Expression and functional activity of P-glycoprotein in cultured cerebral capillary endothelial cells.

    PubMed

    Hegmann, E J; Bauer, H C; Kerbel, R S

    1992-12-15

    Analysis of a panel of endothelial cells passaged between 5 and 25 times and derived from various organs and species demonstrated that murine and porcine cerebral capillary endothelial cells actively excluded the fluorescent dye rhodamine 123, a substrate of P-glycoprotein. In addition, rhodamine 123 accumulation could be enhanced by the multidrug resistance chemosensitizer verapamil, known to reduce P-glycoprotein-mediated drug efflux. Cloned murine and porcine cerebral capillary endothelial cells were immunoreactive with the C219 monoclonal antibody to P-glycoprotein, and a C219 epitope-specific blocking peptide could abolish staining. The antiproliferative and cytotoxic effects of vincristine, but not cis-platinum(II) diamminedichloride, were increased by the addition of either verapamil or cyclosporin A to brain endothelial cell cultures in a 72-h assay, as determined by [3H]thymidine incorporation and total protein measurement. Cyclosporin A was a more effective reversal agent than verapamil. Thus, a P-glycoprotein isoform may be constitutively expressed in brain endothelial cells in vitro and supports the available data on in situ immunohistochemical staining of P-glycoprotein at the blood-brain barrier. In addition, these findings may indicate that one function of P-glycoprotein in vivo at the blood-brain barrier is the exclusion of xenobiotics from central nervous system tissues.

  14. Rabbit Tamm–Horsfall urinary glycoprotein. Chemical composition and subunit structure

    PubMed Central

    Marr, Anne M. S.; Neuberger, A.; Ratcliffe, Wendy A.

    1971-01-01

    1. Tamm–Horsfall glycoprotein from rabbit urine has been isolated and characterized. The homogeneity of the preparation has been established by a variety of procedures including disc gel electrophoresis and ultracentrifugation in aqueous solution, sodium dodecyl sulphate and formic acid. 2. The chemical composition has been determined and a carbohydrate content of approx. 31% was obtained. The relative contents of the amino acids were shown to be very similar to those in human Tamm–Horsfall glycoprotein. A trace of lipid was also detected. 3. Leucine was identified as the only N-terminal amino acid. 4. The subunit structure was investigated in the presence of sodium dodecyl sulphate by gel filtration and disc gel electrophoresis. These studies indicated that the subunit possessed a molecular weight of approx. 84000±6000. A similar value was obtained after reduction and S-alkylation of the glycoprotein indicating that the disulphide bonds were all intrachain. 5. A minimum value for the chemical molecular weight of 85000±6000 was obtained from the number of N-terminal amino acids released by cyanogen bromide cleavage of the glycoprotein. 6. The immunological properties of the glycoprotein were studied. Cross reactivity was demonstrated between human Tamm–Horsfall glycoprotein and a guinea-pig anti-rabbit Tamm–Horsfall antiserum. ImagesFig. 2.Fig. 4.Fig. 5. PMID:5129252

  15. Functional Relevance of the N-Terminal Domain of Pseudorabies Virus Envelope Glycoprotein H and Its Interaction with Glycoprotein L.

    PubMed

    Vallbracht, Melina; Rehwaldt, Sascha; Klupp, Barbara G; Mettenleiter, Thomas C; Fuchs, Walter

    2017-05-01

    Several envelope glycoproteins are involved in herpesvirus entry into cells, direct cell-to-cell spread, and induction of cell fusion. The membrane fusion protein glycoprotein B (gB) and the presumably gB-activating heterodimer gH/gL are essential for these processes and conserved throughout the Herpesviridae However, after extended cell culture passage of gL-negative mutants of the alphaherpesvirus pseudorabies virus (PrV), phenotypic revertants could be isolated which had acquired spontaneous mutations affecting the gL-interacting N-terminal part of the gH ectodomain (gDH and gH(B4.1)) (B. G. Klupp and T. C. Mettenleiter, J Virol 73:3014-3022, 1999; C. Schröter, M. Vallbracht, J. Altenschmidt, S. Kargoll, W. Fuchs, B. G. Klupp, and T. C. Mettenleiter, J Virol 90:2264-2272, 2016). To investigate the functional relevance of this part of gH in more detail, we introduced an in-frame deletion of 66 codons at the 5' end of the plasmid-cloned gH gene (gH(32/98)). The N-terminal signal peptide was retained, and the deletion did not affect expression or processing of gH but abrogated its function in in vitro fusion assays. Insertion of the engineered gH gene into the PrV genome resulted in a defective mutant (pPrV-gH(32/98)K), which was incapable of entry and spread. Interestingly, in vitro activity of mutated gH(32/98) was restored when it was coexpressed with hyperfusogenic gB(B4.1), obtained from a passaged gL deletion mutant of PrV. Moreover, the entry and spread defects of pPrV-gH(32/98)K were compensated by the mutations in gB(B4.1) in cis, as well as in trans, independent of gL. Thus, PrV gL and the gL-interacting domain of gH are not strictly required for function.IMPORTANCE Membrane fusion is crucial for infectious entry and spread of enveloped viruses. While many enveloped viruses require only one or two proteins for receptor binding and membrane fusion, herpesvirus infection depends on several envelope glycoproteins. Besides subfamily-specific receptor binding

  16. Respiratory syncytial virus envelope glycoprotein (G) has a novel structure.

    PubMed Central

    Satake, M; Coligan, J E; Elango, N; Norrby, E; Venkatesan, S

    1985-01-01

    Amino acid sequence of human respiratory syncytial virus envelope glycoprotein (G) was deduced from the DNA sequence of a recombinant plasmid and confirmed by limited amino acid microsequencing of purified 90K G protein. The calculated molecular mass of the protein encoded by the only long open reading frame of 298 amino acids was 32,588 daltons and was somewhat smaller than the 36K polypeptide translated in vitro from mRNA selected by this plasmid. Inspection of the sequence revealed a single hydrophobic domain of 23 amino acids capable of membrane insertion at 41 residues from the N-terminus. There was no N-terminal signal sequence and the hydrophilic N-terminal 20 residues probably represent the cytoplasmic tail of the protein. The N-terminally oriented membrane insertion was somewhat analogous to paramyxovirus hemagglutinin-neuraminidase (HN) and influenza neuraminidase (NA). The protein was moderately hydrophilic and rich in hydroxy-amino acids. It was both N- and O-glycosylated with the latter contributing significantly to the net molecular mass 90K. Images PMID:4069997

  17. Advances in plant-based inhibitors of P-glycoprotein.

    PubMed

    Yu, Jun; Zhou, Peng; Asenso, James; Yang, Xiao-Dan; Wang, Chun; Wei, Wei

    2016-12-01

    Multidrug resistance (MDR) has emerged as the main problem in anti-cancer therapy. Although MDR involves complex factors and processes, the main pivot is the expression of multidrug efflux pumps. P-glycoprotein (P-gp) belongs to the family of adenosine triphosphate (ATP)-binding cassette (ABC) transporters. It functions in cellular detoxification, pumping a wide range of xenobiotic compounds out of the cell. An attractive therapeutic strategy for overcoming MDR is to inhibit the transport function of P-gp and thus, increase intracellular concentration of drugs. Recently, various types of P-gp inhibitors have been found and used in experiments. However, none of them has passed clinical trials due to their high side-effects. Hence, the search for alternatives, such as plant-based P-gp inhibitors have gained attention recently. Therefore, we give an overview of the source, function, structure and mechanism of plant-based P-gp inhibitors and give more attention to cancer-related studies. These products could be the future potential drug candidates for further research as P-gp inhibitors.

  18. Studies on a novel macrophage-specific calmodulin binding glycoprotein

    SciTech Connect

    Orlow, S.J.

    1986-01-01

    The murine macrophage-like cell line J774 and peritoneal exudate cells elicited with thioglycollate or starch contain a major calmodulin-binding protein which is absent in trifluoperazine-resistant variants of J774, resident peritoneal macrophages and these elicited with concanavalin A, lipopolysaccharide, proteose peptone or Bacillus Clamette Guerin. Resident murine peritoneal cells maintained in tissue culture for 3 days begin to accumulate this protein as do human peripheral blood monocytes after 7 days of culture. A specific competitive displacement radioimmunoassay was developed using a rabbit antiserum raised to the partially purified calmodulin binding protein and (/sup 125/I) calmodulin covalently crosslinked to the principal calmodulin binding protein in the preparation. The radioimmunoassay confirmed the unique cellular distribution of this protein suggesting that it may be a marker for certain stages of macrophage differentiation. Monoclonal antibodies were prepared and one of these was used to further purify the protein by immunoaffinity chromatography. A protein of molecular weight 50,000 to 60,000 was isolated. It could be selectively adsorbed to wheat germ agglutinin agarose and subsequently eluted with N-acetyl glucosamine. This property plus its sensitivity to endoglycosidase F led to the conclusion that it is a glycoprotein. The cellular distribution, subcellular localization and evidence of glycosylation suggest that this protein may be a macrophage-specific receptor with a high affinity for calcium-calmodulin.

  19. HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies.

    PubMed

    Sliepen, Kwinten; Sanders, Rogier W

    2016-01-01

    The long pursuit for a vaccine against human immunodeficiency virus 1 (HIV-1) has recently been boosted by a number of exciting developments. An HIV-1 subunit vaccine ideally should elicit potent broadly neutralizing antibodies (bNAbs), but raising bNAbs by vaccination has proved extremely difficult because of the characteristics of the HIV-1 envelope glycoprotein complex (Env). However, the isolation of bNAbs from HIV-1-infected patients demonstrates that the human humoral immune system is capable of making such antibodies. Therefore, a focus of HIV-1 vaccinology is the elicitation of bNAbs by engineered immunogens and by using vaccination strategies aimed at mimicking the bNAb maturation pathways in HIV-infected patients. Important clues can also be taken from the successful subunit vaccines against hepatitis B virus and human papillomavirus. Here, we review the different types of HIV-1 immunogens and vaccination strategies that are being explored in the search for an HIV-1 vaccine that induces bNAbs.

  20. The sweet and sour of serological glycoprotein tumor biomarker quantification

    PubMed Central

    2013-01-01

    Aberrant and dysregulated protein glycosylation is a well-established event in the process of oncogenesis and cancer progression. Years of study on the glycobiology of cancer have been focused on the development of clinically viable diagnostic applications of this knowledge. However, for a number of reasons, there has been only sparse and varied success. The causes of this range from technical to biological issues that arise when studying protein glycosylation and attempting to apply it to practical applications. This review focuses on the pitfalls, advances, and future directions to be taken in the development of clinically applicable quantitative assays using glycan moieties from serum-based proteins as analytes. Topics covered include the development and progress of applications of lectins, mass spectrometry, and other technologies towards this purpose. Slowly but surely, novel applications of established and development of new technologies will eventually provide us with the tools to reach the ultimate goal of quantification of the full scope of heterogeneity associated with the glycosylation of biomarker candidate glycoproteins in a clinically applicable fashion. PMID:23390961

  1. Rabies virus glycoprotein as a carrier for anthrax protective antigen

    SciTech Connect

    Smith, Mary Ellen; Koser, Martin; Xiao Sa; Siler, Catherine; McGettigan, James P.; Calkins, Catherine; Pomerantz, Roger J.; Dietzschold, Bernhard; Schnell, Matthias J. . E-mail: matthias.schnell@jefferson.edu

    2006-09-30

    Live viral vectors expressing foreign antigens have shown great promise as vaccines against viral diseases. However, safety concerns remain a major problem regarding the use of even highly attenuated viral vectors. Using the rabies virus (RV) envelope protein as a carrier molecule, we show here that inactivated RV particles can be utilized to present Bacillus anthracis protective antigen (PA) domain-4 in the viral membrane. In addition to the RV glycoprotein (G) transmembrane and cytoplasmic domains, a portion of the RV G ectodomain was required to express the chimeric RV G anthrax PA on the cell surface. The novel antigen was also efficiently incorporated into RV virions. Mice immunized with the inactivated recombinant RV virions exhibited seroconversion against both RV G and anthrax PA, and a second inoculation greatly increased these responses. These data demonstrate that a viral envelope protein can carry a bacterial protein and that a viral carrier can display whole polypeptides compared to the limited epitope presentation of previous viral systems.

  2. Four glycoproteins are expressed in the cat zona pellucida.

    PubMed

    Stetson, I; Avilés, M; Moros, C; García-Vázquez, F A; Gimeno, L; Torrecillas, A; Aliaga, C; Bernardo-Pisa, M V; Ballesta, J; Izquierdo-Rico, M J

    2015-04-15

    The mammalian oocyte is surrounded by a matrix called the zona pellucida (ZP). This envelope participates in processes such as acrosome reaction induction, sperm binding and may be involved in speciation. In cat (Felis catus), this matrix is composed of at least three glycoproteins called ZP2, ZP3, and ZP4. However, recent studies have pointed to the presence of a fourth protein in several mammals (rat, human, hamster or rabbit), meaning that a reevaluation of cat ZP is needed. For this reason, the objective of this research was to analyze the protein composition of cat ZP by means of proteomic analysis. Using ZP from ovaries and oocytes, several peptides corresponding to four proteins were detected, yielding a coverage of 33.17%, 71.50%, 50.23%, and 49.64% for ZP1, ZP2, ZP3, and ZP4, respectively. Moreover, the expression of four genes was confirmed by molecular analysis. Using total RNA isolated from cat ovaries, the complementary deoxyribonucleic acids encoding cat ZP were partially amplified by reverse-transcribed polymerase chain reaction. Furthermore, ZP1 was totally amplified for the first time in this species. As far as we are aware, this is the first study that confirms the presence of four proteins in cat ZP.

  3. Structural basis of myelin-associated glycoprotein adhesion and signalling

    PubMed Central

    Pronker, Matti F.; Lemstra, Suzanne; Snijder, Joost; Heck, Albert J. R.; Thies-Weesie, Dominique M. E.; Pasterkamp, R. Jeroen; Janssen, Bert J. C.

    2016-01-01

    Myelin-associated glycoprotein (MAG) is a myelin-expressed cell-adhesion and bi-directional signalling molecule. MAG maintains the myelin–axon spacing by interacting with specific neuronal glycolipids (gangliosides), inhibits axon regeneration and controls myelin formation. The mechanisms underlying MAG adhesion and signalling are unresolved. We present crystal structures of the MAG full ectodomain, which reveal an extended conformation of five Ig domains and a homodimeric arrangement involving membrane-proximal domains Ig4 and Ig5. MAG-oligosaccharide complex structures and biophysical assays show how MAG engages axonal gangliosides at domain Ig1. Two post-translational modifications were identified—N-linked glycosylation at the dimerization interface and tryptophan C-mannosylation proximal to the ganglioside binding site—that appear to have regulatory functions. Structure-guided mutations and neurite outgrowth assays demonstrate MAG dimerization and carbohydrate recognition are essential for its regeneration-inhibiting properties. The combination of trans ganglioside binding and cis homodimerization explains how MAG maintains the myelin–axon spacing and provides a mechanism for MAG-mediated bi-directional signalling. PMID:27922006

  4. Platelet glycoprotein Ibα supports experimental lung metastasis

    PubMed Central

    Jain, Shashank; Zuka, Masahiko; Liu, Jungling; Russell, Susan; Dent, Judith; Guerrero, José A.; Forsyth, Jane; Maruszak, Brigid; Gartner, T. Kent; Felding-Habermann, Brunhilde; Ware, Jerry

    2007-01-01

    The platelet paradigm in hemostasis and thrombosis involves an initiation step that depends on platelet membrane receptors binding to ligands on a damaged or inflamed vascular surface. Once bound to the surface, platelets provide a unique microenvironment supporting the accumulation of more platelets and the elaboration of a fibrin-rich network produced by coagulation factors. The platelet-specific receptor glycoprotein (GP) Ib-IX, is critical in this process and initiates the formation of a platelet-rich thrombus by tethering the platelet to a thrombogenic surface. A role for platelets beyond the hemostasis/thrombosis paradigm is emerging with significant platelet contributions in both tumorigenesis and inflammation. We have established congenic (N10) mouse colonies (C57BL/6J) with dysfunctional GP Ib-IX receptors in our laboratory that allow us an opportunity to examine the relevance of platelet GP Ib-IX in syngeneic mouse models of experimental metastasis. Our results demonstrate platelet GP Ib-IX contributes to experimental metastasis because a functional absence of GP Ib-IX correlates with a 15-fold reduction in the number of lung metastatic foci using B16F10.1 melanoma cells. The results demonstrate that the extracellular domain of the α-subunit of GP Ib is the structurally relevant component of the GP Ib-IX complex contributing to metastasis. Our results support the hypothesis that platelet GP Ib-IX functions that support normal hemostasis or pathologic thrombosis also contribute to tumor malignancy. PMID:17494758

  5. A multigene family encoding surface glycoproteins in Trypanosoma congolense

    PubMed Central

    Thonnus, Magali; Guérin, Amandine; Rivière, Loïc

    2017-01-01

    Trypanosoma congolense, the causative agent of the most important livestock disease in Africa, expresses specific surface proteins involved in its parasitic lifestyle. Unfortunately, the complete repertoire of such molecules is far from being deciphered. As these membrane components are exposed to the host environment, they could be used as therapeutic or diagnostic targets. By mining the T. congolense genome database, we identified a novel family of lectin-like glycoproteins (TcoClecs). These molecules are predicted to have a transmembrane domain, a tandem repeat amino acid motif, a signal peptide and a C-type lectin-like domain (CTLD). This paper depicts several experimental arguments in favor of a surface localization in bloodstream forms of T. congolense. A TcoClec gene was heterologously expressed in U-2 OS cells and the product could be partially found at the plasma membrane. TcoClecs were also localized at the surface of T. congolense bloodstream forms. The signal was suppressed when the cells were treated with a detergent to remove the plasma membrane or with trypsin to « shave » the parasites and remove their external proteins. This suggests that TcoClecs could be potential diagnostic or therapeutic antigens of African animal trypanosomiasis. The potential role of these proteins in T. congolense as well as in other trypanosomatids is discussed. PMID:28357394

  6. In silico-based vaccine design against Ebola virus glycoprotein

    PubMed Central

    Dash, Raju; Das, Rasel; Junaid, Md; Akash, Md Forhad Chowdhury; Islam, Ashekul; Hosen, SM Zahid

    2017-01-01

    Ebola virus (EBOV) is one of the lethal viruses, causing more than 24 epidemic outbreaks to date. Despite having available molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet for the management and avoidance of EBOV infections in humans. Disclosing this, the present study described an epitope-based peptide vaccine against EBOV, using a combination of B-cell and T-cell epitope predictions, followed by molecular docking and molecular dynamics simulation approach. Here, protein sequences of all glycoproteins of EBOV were collected and examined via in silico methods to determine the most immunogenic protein. From the identified antigenic protein, the peptide region ranging from 186 to 220 and the sequence HKEGAFFLY from the positions of 154–162 were considered the most potential B-cell and T-cell epitopes, correspondingly. Moreover, this peptide (HKEGAFFLY) interacted with HLA-A*32:15 with the highest binding energy and stability, and also a good conservancy of 83.85% with maximum population coverage. The results imply that the designed epitopes could manifest vigorous enduring defensive immunity against EBOV. PMID:28356762

  7. Interactions of attention-deficit/hyperactivity disorder therapeutic agents with the efflux transporter P-glycoprotein

    PubMed Central

    Zhu, Hao-Jie; Wang, Jun-Sheng; Donovan, Jennifer L.; Jiang, Yan; Gibson, Bryan B.; DeVane, C. Lindsay; Markowitz, John S.

    2009-01-01

    The objective of this study was to assess the potential interactions of the drug transporter P-glycoprotein with attention-deficit/hyperactivity disorder (ADHD) therapeutic agents atomoxetine — and the individual isomers of methylphenidate, amphetamine, and modafinil utilizing established in vitro assay. An initial ATPase assay indicated that both d- and l-methylphenidate have weak affinity for P-glycoprotein. The intracellular accumulation of P-glycoprotein substrates doxorubicin and rhodamine123 in the P-glycoprotein overexpressing cell line LLC-PK1/MDR1 was determined to evaluate potential inhibitory effects on P-glycoprotein. The results demonstrated that all compounds, except both modafinil isomers, significantly increased doxorubicin and rhodamine123 accumulation in LLC-PK1/MDR1 cells at higher concentrations. To investigate the P-glycoprotein substrate properties, the intracellular concentrations of the tested compounds in LLC-PK1/MDR1 and P-glycoprotein negative LLC-PK1 cells were measured in the presence and absence of the P-glycoprotein inhibitor PSC833. The results indicate that the accumulation of d-methylphenidate in LLC-PK1 cells was 32.0% higher than in LLC-PK1/MDR1 cells. Additionally, coadministration of PSC833 leads to 52.9% and 45.6% increases in d-modafinil and l-modafinil accumulation, respectively, in LLC-PK1/MDR1 cells. Further studies demonstrated that l-modafinil transport across LLC-PK1/MDR1 cell monolayers in the basolateral-to-apical (B–A) direction was significantly higher than in the apical-to-basolateral (A–B) direction. PSC833 treatment significantly decreased the transport of l-modafinil in B–A direction. In conclusion, our results suggest that all tested agents with the exception of modafinil isomers are relatively weak P-glycoprotein inhibitors. Furthermore, P-glycoprotein may play a minor role in the transport of d-methylphenidate, d-modafinil, and l-modafinil. PMID:17963743

  8. A fluorescence nanosensor for glycoproteins with activity based on the molecularly imprinted spatial structure of the target and boronate affinity.

    PubMed

    Zhang, Wei; Liu, Wei; Li, Ping; Xiao, Haibin; Wang, Hui; Tang, Bo

    2014-11-10

    Glycoproteins are closely associated with the occurrence of diverse diseases, and they have been used as biomarkers and therapeutic targets in clinical diagnostics. Currently, mass spectrometry has proven to be a powerful tool for glycoprotein analysis, but it is almost impossible to directly identify glycoproteins without the preparation and pretreatment of samples. Furthermore, biological samples, especially proteins, are damaged by this process. Herein, we describe a novel fluorescence nanosensor based on a molecularly imprinted spatial structure and boronate affinity that is well-suited for monitoring glycoproteins selectively. Results showed that the recognition performance of the nanosensor for glycoproteins was regulated by controlling the pH value and temperature. Moreover, the nanosensor was successfully applied to the detection of HRP in biological fluids. This study provides a facile and efficient fluorescence tool for glycoprotein detection in clinical diagnostics.

  9. Pre-staining of glycoprotein in SDS-PAGE by the synthesis of a new hydrazide derivative.

    PubMed

    Zhou, Ayi; Zhou, Tieli; Yu, Dongdong; Shen, Yingjie; Shen, Jiayi; Zhu, Zhongxin; Jin, Litai; Zhang, Huajie; Wang, Yang

    2015-11-01

    In this study, a new hydrazide derivative (UGF202) was synthesized and introduced as a highly sensitive and selective fluorescent probe to pre-stain glycoproteins in 1D and 2D SDS-PAGE. As low as 0.5-1 ng glycoproteins (transferrin, α1-acid glycoprotein, avidin) could be selectively detected, which is comparable to that of Pro-Q Emerald 300 stain, one of the most sensitive and commonly used glycoprotein staining kit. In addition, the specificity of the newly developed method was confirmed by the study of de-glycosylation, glycoproteins affinity enrichment and LC-MS/MS, respectively. According to the results, it is concluded that UGF202 pre-stain can provide an alternative for the visualization of gel-separated glycoproteins.

  10. Method of using alpha-1 acid glycoprotein on T-cells as a marker for alzheimer's disease

    SciTech Connect

    Fudenberg, H.H.

    1989-01-31

    A method is described of diagnosing a dementia of the Alzheimer's type characterized by a change in the percentage of T-cells bearing surface membrane alpha-1 acid glycoprotein which comprises providing T-cells from a subject, determining the percentage of those T cells which bear surface membrane alpha-1 acid glycoprotein, and comparing that percentage of the percentage of T cells which bear the glycoprotein in a control, whereby the dementia is diagnosed.

  11. Fluorescence studies on the nucleotide binding domains of the P-glycoprotein multidrug transporter.

    PubMed

    Liu, R; Sharom, F J

    1997-03-11

    One of the major causes of multidrug resistance in human cancers is expression of the P-glycoprotein multidrug transporter, which acts as an efflux pump for a diverse range of natural products, chemotherapeutic drugs, and hydrophobic peptides. In the present study, fluorescence techniques were used to probe the nucleotide binding domains (NBD) of P-glycoprotein. The transporter was labeled at two conserved cysteine residues, one within each NBD, using the thiol-reactive fluor 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid (MIANS), and collisional quenching was used to assess solvent accessibility of the bound probe. Acrylamide was a poor quencher, which suggests that MIANS is buried in a relatively inaccessible region of the protein. Iodide ion was a highly effective quencher, whereas Cs+ was not, demonstrating the presence of a positive charge in the region close to the ATP binding site. The fluorescent nucleotide derivative 2'(3')-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) was hydrolysed slowly by P-glycoprotein, with a V(max) approximately 20-fold lower than that for unmodified ATP, and a K(M) of 81 microM. TNP-ATP and TNP-ADP inhibited P-glycoprotein ATPase activity, indicating that they interact with the NBD, whereas TNP-AMP was a very poor inhibitor. When TNP-nucleotides bound to P-glycoprotein, their fluorescence intensity was enhanced in a concentration-dependent manner. Both TNP-ATP and TNP-ADP bound to P-glycoprotein with substantially higher affinity than ATP, with K(d) values of 43 and 36 microM, respectively. Addition of ATP led to only partial displacement of TNP-ATP. Resonance energy transfer was observed between cysteine-bound MIANS and TNP-ATP/ADP, which indicated that the two fluorescent groups are located close to each other within the catalytic site of P-glycoprotein.

  12. Characterization of mucin glycoprotein-specific translation products from swine and human trachea, pancreas and colon.

    PubMed

    Sangadala, S; Wallace, P; Mendicino, J

    1991-07-24

    RNA was isolated from cultured swine trachea epithelial cells and mucus-secreting tumor cell lines from human pancreas, lung and colon by extraction with guanidine isothiocyanate. Poly(A)+mRNA rich fractions were purified by repeated chromatography on oligo (dT)-cellulose columns and they were translated in a cell-free rabbit reticulocyte system. Translation products labelled with 35S-methionine were isolated by immunoprecipitation with specific antibodies to the polypeptide chains of mucin glycoproteins and they were analyzed by SDS-PAGE and fluorography. A single principal polypeptide band of 67 kDa was found in all cases when the immunoprecipitates were washed with buffer containing bovine serum albumin and unlabeled deglycosylated mucin glycoprotein. The intensity of the 67 kDa band decreased when unlabeled deglycosylated mucin glycoprotein was added to the translation mixture before immunoprecipitation. Affinity purified monospecific antibodies elicited against chemically deglycosylated polypeptide chains of purified mucin glycoproteins from human and swine trachea and Cowper's gland were all equally effective in immunoprecipitating the 67 kDa translation product. Monospecific antibodies directed against the glycosylated and unglycosylated regions of the polypeptide chain yielded single bands with a molecular size of 67 kDa in each case. Peptide profiles obtained by digestion of the 67 kDa translation product with S. aureus V-8 protease were identical to those obtained with deglycosylated human and swine trachea mucin glycoproteins. These studies clearly demonstrate that the translation product of swine trachea and human lung, colon and pancreatic mucin glycoprotein gene is a single polypeptide chain of 67 kDa. The relative size and properties of the translation products synthesized with poly (A)+RNA isolated from mucus-secreting cells derived from three different tissues are similar to those of mucin glycoproteins purified directly from mucus secretions of

  13. Requirements for cell rounding and surface protein down-regulation by Ebola virus glycoprotein.

    PubMed

    Francica, Joseph R; Matukonis, Meghan K; Bates, Paul

    2009-01-20

    Ebola virus causes an acute hemorrhagic fever that is associated with high morbidity and mortality. The viral glycoprotein is thought to contribute to pathogenesis, though precise mechanisms are unknown. Cellular pathogenesis can be modeled in vitro by expression of the Ebola viral glycoprotein (GP) in cells, which causes dramatic morphological changes, including cell rounding and surface protein down-regulation. These effects are known to be dependent on the presence of a highly glycosylated region of the glycoprotein, the mucin domain. Here we show that the mucin domain from the highly pathogenic Zaire subtype of Ebola virus is sufficient to cause characteristic cytopathology when expressed in the context of a foreign glycoprotein. Similarly to full length Ebola GP, expression of the mucin domain causes rounding, detachment from the extracellular matrix, and the down-regulation of cell surface levels of beta1 integrin and major histocompatibility complex class 1. These effects were not seen when the mucin domain was expressed in the context of a glycophosphatidylinositol-anchored isoform of the foreign glycoprotein. In contrast to earlier analysis of full length Ebola glycoproteins, chimeras carrying the mucin domains from the Zaire and Reston strains appear to cause similar levels of down-modulation and cell detachment. Cytopathology associated with Ebola glycoprotein expression does not occur when GP expression is restricted to the endoplasmic reticulum. In contrast to a previously published report, our results demonstrate that GP-induced surface protein down-regulation is not mediated through a dynamin-dependent pathway. Overall, these results support a model in which the mucin domain of Ebola GP acts at the cell surface to induce protein down modulation and cytopathic effects.

  14. Phosphatidylinositol-anchored glycoproteins of PC12 pheochromocytoma cells and brain

    SciTech Connect

    Margolis, R.K.; Goossen, B.; Margolis, R.U.

    1988-05-03

    PC12 pheochromocytoma cells and cultures of early postnatal rat cerebellium were labeled with (/sup 3/H)glucosamine, (/sup 3/H)fucose, (/sup 3/H)leucine, (/sup 3/H)ethanolamine, or sodium (/sup 35/S)sulfate and treated with a phosphatidylinositol-specific phospholipase C. Enzyme treatment of (/sup 3/H) glucosamine- or (/sup 3/H)fucose-labeled PC12 cells led to a 15-fold increase in released glycoproteins. On sodium dodecyl sulfate-polyacrylamide gel ectrophoresis, most of the released material migrated as a broad band with an apparent molecular size of 32,000 daltons (Da), which was specifically immunoprecipitated by a monoclonal antibody to the Thy-l glycoprotein. A second glycoprotein, with an apparent molecular size of 158,000 Da, was also released. After treatment with endo-..beta..-galactosidase, 40-45% of the (/sup 3/H)glucosamine of (/sup 3/H)fucose radioactivity in the phospholipase-released glycoproteins was converted to products of disaccharide size, and the molecular size of the 158-kDa glycoprotein decreased to 145 kDa, demonstrating that it contains fucosylated poly-(N-acetyllactosaminyl) oligosaccharides. The phospholipase also released labeled Thy-1 and the 158-kDa glycoprotein from PC12 cells cultured in the presence of (/sup 3/H)ethanolamine, which specifically labels this component of the phosphatidylinositol membrane-anchoring sequence,while in the lipid-free protein residue of cells not treated with phospholipase, Thy-1 and a doublet at 46/48 kDa were the only labeled proteins. Sulfated glycoproteins of 155, 132/134, 61, and 21 kDa are the predominant species released by phospholipase, which does not affect a major 44-kDa protein seen in (/sup 3/H)ethanolamine-labeled brain cultures. The 44-48- and 155/158-kDa proteins may be common to both PC12 cells and brain.

  15. Tromantadine inhibits HSV-1 induced syncytia formation and viral glycoprotein processing

    SciTech Connect

    Ickes, D.E.

    1989-01-01

    Tromantadine inhibits a late event in Herpes Simplex Virus Type 1 (HSV-1) replication, visualized by the inhibition of both the size and number of syncytia. Tromantadine can be added at any time between 1 and 9 h post infection with complete inhibition of syncytia formation. Glycan synthesis of the viral glycoproteins, important for syncytia formation, is incomplete due to tromantadine treatment. Tromantadine does not inhibit the initiation of glycosylation, since viral glycoproteins, gX{sub t}, synthesized in the presence of tromantadine still incorporate {sup 3}H-glucosamine. Tromantadine does not inhibit the transport of t e viral glycoproteins to the cell surface, since glycoproteins B, C, and D are expressed, as demonstrated by immunofluorescence. Tromantadine inhibition of HSV-1 glycoprotein processing is demonstrated by an increase in mobility of the radioimmunoprecipitated gX{sub t}, on SDS-PAGE. The gX{sub t} of KOS, a non-syncytial strain of HSV-1, had a similar increase in mobility, suggesting that the block in glycoprotein processing is a general effect of tromantadine treatment. Fucose, which is incorporated into oligosaccharides in the medial Golgi, is incorporated into gX{sub t}, indicating that the tromantadine block in glycoprotein processing occurs after this step. Lectin binding studies and SDS-PAGE analysis of gC processed in the presence of tromantadine, gC{sub t}, indicates that it has terminal galactose residues in both N- and O-linked glycans (binds Peanut and Ricin Agglutinins, respectively). The inhibition of sialylation of N-linked glycans by tromantadine was indicated by the extent of the increase in SDS-PAGE mobility of the G protein from Vesicular Stomatitis Virus. O-glycanase digestion and SDS-PAGE analysis of gC{sub t} indicate that the O-linked disaccharide NAcGal-Galactose is present.

  16. Effects of chronic ethanol administration on hepatic glycoprotein secretion in the rat

    SciTech Connect

    Sorrell, M.F.; Nauss, J.M.; Donohue, T.M. Jr.; Tuma, D.J.

    1983-03-01

    The effects of chronic ethanol feeding on protein and glycoprotein synthesis and secretion were studied in rat liver slices. Liver slices from rats fed ethanol for 4-5 wk showed a decreased ability to incorporate (/sup 14/C)glucosamine into medium trichloracetic acid-precipitable proteins when compared to the pair-fed controls; however, the labeling of hepatocellular glycoproteins was unaffected by chronic ethanol treatment. Immunoprecipitation of radiolabeled secretory (serum) glycoproteins with antiserum against rat serum proteins showed a similar marked inhibition in the appearance of glucosamine-labeled proteins in the medium of slices from ethanol-fed rats. Minimal effects, however, were noted in the labeling of intracellular secretory glycoproteins. Protein synthesis, as determined by measuring (/sup 14/C)leucine incorporation into medium and liver proteins, was decreased in liver slices from ethanol-fed rats as compared to the pair-fed controls. This was the case for both total proteins as well as immunoprecipitable secretory proteins, although the labeling of secretory proteins retained in the liver slices was reduced to a lesser extent than total radiolabeled hepatic proteins. When the terminal sugar, (/sup 14/C)fucose, was employed as a precursor in order to more closely focus on the final steps of hepatic glycoprotein secretion, liver slices obtained from chronic ethanol-fed rats exhibited impaired secretion of fucose-labeled proteins into the medium. When ethanol (5 or 10 mM) was added to the incubation medium containing liver slices from the ethanol-fed rats, the alterations in protein and glycoprotein synthesis and secretion caused by the chronic ethanol treatment were further potentiated. The results of this study indicate that liver slices prepared from chronic ethanol-fed rats exhibit both impaired synthesis and secretion of proteins and glycoproteins, and these defects are further potentiated by acute ethanol administration.

  17. A benzoboroxole-based affinity ligand for glycoprotein purification at physiological pH.

    PubMed

    Rowe, Laura; El Khoury, Graziella; Lowe, Christopher R

    2016-05-01

    Developing ligands capable of carbohydrate recognition has become increasingly important as the essential roles of glycoproteins and glycolipids in a diverse array of cellular signaling, pathophysiology, and immune response mechanisms are elucidated. Effective ligands for the glycan portion of glycoproteins and glycolipids are needed for pre-enrichment proteomics strategies, as well as for the purification of individual glycoproteins from complex biological milieu encountered both in biochemistry research and bio-pharmaceutical development. In this work, we developed a carbohydrate specific affinity ligand for glycoprotein purification using a one-pot, multi-component synthesis reaction (Ugi synthesis) and an amine-functionalized benzoboroxole moiety immobilized on agarose beads. Benzoboroxoles are unique boronic acid derivatives that have recently been found to bind specifically to the cis-diol groups of carbohydrates at physiological pH, with superior affinity to any other Wulff-type boronic acid. The solid-phase affinity ligand developed herein specifically binds the carbohydrate moiety of the glycoprotein glucose oxidase, as well as a fluorescein isothiocyanate-dextran, as shown through deglycosylation binding studies. Additionally, the ligand is able to purify glucose oxidase from crude Escherichia coli lysate, at physiological pH, equitably to commercially available boronic acid-functionalized agarose beads that required alkaline pH conditions. Thus, this affinity ligand is a marked improvement on current, commercially available boronic acid-based glycoprotein enrichment matrices and has the potential to exhibit high individual glycoprotein specificity because of the additional functional groups available for variation on the Ugi scaffold.

  18. Peptide mimotopes of rabies virus glycoprotein with immunogenic activity.

    PubMed

    Houimel, Mehdi; Dellagi, Koussay

    2009-07-23

    A random constrained hexapeptide phage display library (Cys-6aa-Cys) was screened with purified neutralizing human anti-rabies virus IgG antibodies (hRABVIgG) to identify peptides that correspond to or mimic natural epitopes on rabies virus glycoprotein (RABVG) and to investigate their immunogenicities in vivo. After four rounds of biopanning, 20 phage clones randomly selected for their specificity to hRABVIgG, effectively blocked the binding of the inactive rabies virus (RABV) to hRABVIgG. The phage clones were sequenced and the deduced amino acid sequences were derived (C-KRDSTW-C; C-KYLWSK-C; C-KYWLSR-C; C-KYWWSK-C; C-KYAWSR-C; C-KYSMSK-C). Alignments to the amino acid sequence of RABVG showed good match with the antigenic site III (at 330-338 aa), indicating that the hRABVIgG antibodies most likely recognize preferentially this antigenic site. The selected mimotopes were able to inhibit the interactions of the hRABVIgG antibodies with RABV in a dose-dependent manner. Subcutaneous administration of phageKRDSTW expressing the RABVG site III mimotope induced an RABVG-specific IgG response in BALB/c mice. The results indicated that peptide mimotopes when displayed on phages, are accessible to the mice immune system to trigger a humoral response and to induce IgG production. The RABVG site III mimotope (C-KRDSTW-C) would provide a new and promising concept for the development of rabies vaccine.

  19. Toremifene interacts with and destabilizes the Ebola virus glycoprotein

    PubMed Central

    Harlos, Karl; Jones, Daniel M.; Zeltina, Antra; Bowden, Thomas A.; Padilla-Parra, Sergi; Fry, Elizabeth E.; Stuart, David I.

    2016-01-01

    Ebola viruses (EBOVs) are responsible for repeated outbreaks of fatal infections, including the recent deadly epidemic in West Africa. There are currently no approved therapeutic drugs or vaccines for the disease. EBOV has a membrane envelope decorated by trimers of a glycoprotein (GP, cleaved by furin to form GP1 and GP2 subunits) which is solely responsible for host cell attachment, endosomal entry and membrane fusion1–7. GP is thus a primary target for the development of antiviral drugs. Here we report the first unliganded structure of EBOV GP, and complexes with an anticancer drug toremifene and the painkiller ibuprofen. The high-resolution apo structure gives a more complete and accurate picture of the molecule, and allows conformational changes introduced by antibody and receptor binding to be deciphered8–10. Unexpectedly both toremifene and ibuprofen bind in a cavity between the attachment (GP1) and fusion (GP2) subunits at the entrance to a large tunnel that links with equivalent tunnels from the other monomers of the trimer at the 3-fold axis. Protein-drug interactions, with both GP1 and GP2, are predominately hydrophobic. Residues lining the binding site are highly conserved amongst filoviruses except Marburg virus (MARV), suggesting that MARV may not bind these drugs. Thermal shift assays show up to a 14 °C decrease in protein melting temperature upon toremifene binding, while ibuprofen has only a marginal effect and is a less potent inhibitor. The results suggest that inhibitor binding destabilizes GP and triggers premature release of GP2, therefore preventing fusion between the viral and endosome membranes. Thus these complex structures reveal the mechanism of inhibition and may guide the development of more powerful anti-EBOV drugs. PMID:27362232

  20. Concanavalin A is synthesized as a glycoprotein precursor.

    PubMed

    Herman, E M; Shannon, L M; Chrispeels, M J

    1985-07-01

    Concanavalin A (Con A) is a tetrameric lectin which is synthesized in the cotyledons of developing jack-bean (Canavalia ensiformis (L.) D.C.) seeds and accumulates in the protein bodies of storage-parenchyma cells. The polypeptides of Con A have a molecular weight of 27000 and a relative molecular mass (Mr) of 30000 when analyzed by gel electrophoresis on denaturing polyacrylamide gels. In-vitro translation of RNA isolated from immature jack-bean cotyledons shows that Con A is synthesized as a polypeptide with Mr 34000. In-vivo pulse labeling of cotyledons with radioactive amino acids or glucosamine also resulted in the formation of a 34000-Mr polypeptide. In-vivo labeling with radioactive amino acids in the presence of tunicamycin yielded an additional polypeptide of 32000 Mr. Together these results indicate that Con A is cotranslationally processed by the removal of a signal sequence and the addition of an oligosaccharide side chain of corresponding size. Analysis of the structure of the oligogosaccharide side chain was accomplished through glycosidase digestion of glycopeptides isolated from [(3)H]glucosamine-labeled Con A. Incubation of the labeled glycopeptides with endoglycosidase H, α-mannosidase or β-N-acetylglucosaminidase, followed by gel filtration, allowed us to deduce that the oligosaccharide side chain of pro-Con A is a high-mannose oligosaccharide. Pulse-chase experiments with labeled amino acids are consistent with the interpretation that the glycosylated precursor of Con A is processed to mature Con A (Mr=30000). The 4000 decrease in Mr is interpreted to result from the removal of a small glycopeptide. The implications of the conversion of a glycoprotein pro-Con A to mature Con A are discussed in the context of the unique circular permutation of the primary structure of Con A.

  1. Synthesis and P-glycoprotein induction activity of colupulone analogs.

    PubMed

    Bharate, Jaideep B; Batarseh, Yazan S; Wani, Abubakar; Sharma, Sadhana; Vishwakarma, Ram A; Kaddoumi, Amal; Kumar, Ajay; Bharate, Sandip B

    2015-05-21

    Brain amyloid-beta (Aβ) plaques are one of the primary hallmarks associated with Alzheimer's disease (AD) pathology. Efflux pump proteins located at the blood-brain barrier (BBB) have been reported to play an important role in the clearance of brain Aβ, among which the P-glycoprotein (P-gp) efflux transporter pump has been shown to play a crucial role. Thus, P-gp has been considered as a potential therapeutic target for treatment of AD. Colupulone, a prenylated phloroglucinol isolated from Humulus lupulus, is known to activate pregnane-X-receptor (PXR), which is a nuclear receptor controlling P-gp expression. In the present work, we aimed to synthesize and identify analogs of colupulone that are potent P-gp inducer(s) with an ability to enhance Aβ transport across the BBB. A series of colupulone analogs were synthesized by modifications at both prenyl as well as acyl domains. All compounds were screened for P-gp induction activity using a rhodamine 123 based efflux assay in the P-gp overexpressing human adenocarcinoma LS-180 cells, wherein all compounds showed significant P-gp induction activity at 5 μM. In the western blot studies in LS-180 cells, compounds 3k and 5f were able to induce P-gp as well as LRP1 at 1 μM. The effect of compounds on the Aβ uptake and transport was then evaluated. Among all tested compounds, diprenylated acyl phloroglucinol displayed a significant increase (29%) in Aβ transport across bEnd3 cells grown on inserts as a BBB model. The results presented here suggest the potential of this scaffold to enhance clearance of brain Aβ across the BBB and thus its promise for development as a potential anti-Alzheimer agent.

  2. Structural features affecting variant surface glycoprotein expression in Trypanosoma brucei.

    PubMed

    Wang, Jun; Böhme, Ulrike; Cross, George A M

    2003-05-01

    The glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG) of Trypanosoma brucei is the most abundant GPI-anchored protein expressed on any cell, and is an essential virulence factor. To determine what structural features affect efficient expression of VSG, we made a series of mutations in two VSGs. Inserting 18 amino acids, between the amino- and carboxy-terminal domains, reduced the expression of VSG 221 to about 3% of the wild-type level. When this insertion was combined with deletion of the single carboxy-terminal subdomain, expression was reduced a further three-fold. In VSG 117, which contains two carboxy-terminal subdomains, point mutation of the intervening N-glycosylation site reduced expression about 15-fold. Deleting the most carboxy-terminal subdomain and intervening region, including the N-glycosylation site, reduced expression to 15-20% of wild type VSG, and deletion of both subdomains reduced expression to <1%. Despite their low abundance, all VSG mutants were GPI anchored on the cell surface. Our results suggest that, for a protein to be efficiently displayed on the surface of bloodstream-form T. brucei, it is essential that it contains the conserved structural motifs of a T. brucei VSG. Serum resistance-associated protein (SRA), which confers human infectivity on T. brucei, strongly resembles a VSG deletion mutant. Expression of three epitope-tagged versions of SRA in T. brucei conferred total resistance to human serum. SRA possesses a canonical GPI signal sequence, but we were unable to obtain unequivocal evidence for the presence of a GPI anchor. SRA was not released during osmotic lysis, indicating that it is not GPI anchored on the cell surface.

  3. Molecular insight into conformational transmission of human P-glycoprotein

    NASA Astrophysics Data System (ADS)

    Chang, Shan-Yan; Liu, Fu-Feng; Dong, Xiao-Yan; Sun, Yan

    2013-12-01

    P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp.

  4. Molecular insight into conformational transmission of human P-glycoprotein

    SciTech Connect

    Chang, Shan-Yan; Liu, Fu-Feng E-mail: ysun@tju.edu.cn; Dong, Xiao-Yan; Sun, Yan E-mail: ysun@tju.edu.cn

    2013-12-14

    P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp.

  5. Exploring the chemical space of P-glycoprotein interacting compounds.

    PubMed

    Prachayasittikul, Veda; Mandi, Prasit; Prachayasittikul, Supaluk; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2016-01-21

    P-glycoprotein (Pgp) is well known for its clinical importance in the pharmacokinetics of drugs and its role in multidrug resistance. The promiscuity of Pgp that arises from its ability to extrude a wide range of lipophilic and structurally unrelated compounds from cells, render the classification and understanding of its interacting compounds a great challenge. In this study, a data set of Pgp-interacting compounds including 1463 inhibitors, 1085 non-inhibitors, 308 substrates and 126 non-substrates was retrieved and subjected to a combination of analyses, including exploration of chemical space, statistical analysis of descriptor values and molecular fragment analysis, to obtain insight into distinct physicochemical properties and important chemical substructures which may govern the biological activity of investigated compounds toward Pgp. Statistical analysis of descriptor values and molecular fragment analysis indicated that particular size, shape, functional groups and molecular fragments may govern the classification of Pgp-interacting compounds by influencing their physicochemical properties and their interaction with Pgp. Overall, the interacting compounds (i.e., substrates and inhibitors) are larger in size, more flexible, more lipophilic, and less charged than non-interacting compounds (i.e., non-substrates and non-inhibitors). The fragment analysis suggested that methyl and amino groups may be involved in Pgp inhibition and/or transport. The 2-methoxyphenol fragment was noted to be a potential substructure for designing Pgp inhibitors, whereas the 2-sulfanylidene-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-1,2-dihydropyridine-3-carbonitrile substructure was implied for avoiding transport by Pgp. Hence, this study could provide a comprehensive understanding of this drug transporter, which could benefit an early ADMET screening as well as drug design and development.

  6. Purification and structural characterization of herpes simplex virus glycoprotein C

    SciTech Connect

    Kikuchi, G.E.; Baker, S.A.; Merajver, S.D.; Coligan, J.E.; Levine, M.; Glorioso, J.C.; Nairn, R.

    1987-01-27

    Purification of herpes simplex virus glycoprotein C (gC) in microgram amounts yielded sufficient material for an analysis of its secondary structure. Purification was facilitated by using the mutant virus gC-3, which bears a point mutation that interrupts the putative hydrophobic membrane anchor sequence, causing the secretion of gC-3 protein into the cell culture medium. gC-3 protein was purified by size fractionation of concentrated culture medium from infected cells on a gel filtration column of Sephacryl S-200, followed by immunoaffinity chromatography on a column constructed of gC-specific monoclonal antibodies cross-linked to a protein A-Sepharose CL-4B matrix. Purified gC-3 had a molecular weight of 130,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the size expected for gC, was reactive with gC-specific monoclonal antibodies in protein immunoblots, and contained amino acid sequences characteristic of gC as determined by radiochemical amino acid microsequence analyses. Polyclonal antisera obtained from a rabbit immunized with gC-3 reacted with wild-type gC in immunoprecipitation, enzyme immunoassay, and immunoelectroblot (western blot) assays. Deglycosylation by treatment with trifluoromethanesulfonic acid reduced the molecular weight of gC-3 by approximately 35%. Analyses of both native and deglycosylated gC-3 by Raman spectroscopy showed that the native molecule consists of about 17%..cap alpha..-helix, 24% ..beta..-sheet, and 60% disordered secondary structures, whereas deglycosylated gC-3 consists of about 8% ..cap alpha..-helix, 10% ..beta..-sheet, 81% disordered structures. These data were in good agreement with the 11% ..cap alpha..-helix, 18% ..beta..-sheet, 61% ..beta..-turn, and 9% disordered structures calculated from Chou-Fasman analysis of the primary sequence of gC-3.

  7. Isolation from Gluconacetobacter diazotrophicus cell walls of specific receptors for sugarcane glycoproteins, which act as recognition factors.

    PubMed

    Blanco, Y; Arroyo, M; Legaz, M E; Vicente, C

    2005-11-04

    Glycoproteins from sugarcane stalks have been isolated from plants field-grown by size-exclusion chromatography. Some of these glycoproteins, previously labelled with fluorescein isothiocyanate, are able to bind to the cell wall of the sugarcane endophyte, N2-fixing Gluconacetobacter diazotrophicus, and largely removed after washing the bacterial cells with sucrose. This implies that sugarcane glycoproteins use beta-(1-->2)-fructofuranosyl fructose domains in their glycosidic moiety to bind to specific receptors in the bacterial cell walls. These receptors have been isolated by affinity chromatography on a sugarcane glycoprotein-agarose matrix, desorbed with sucrose and characterized by sodium dodecyl sulfate polyacrylamide gel electrophresisand capillary electrophoresis (CE).

  8. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation.

    PubMed Central

    Parodi, A J

    2000-01-01

    The endoplasmic reticulum (ER) is the subcellular site where proteins following the secretory pathway acquire their proper tertiary and, in certain cases, quaternary structures. Species that are not yet properly folded are prevented from exit to the Golgi apparatus and, if permanently misfolded, are transported to the cytosol, where they are degraded in the proteasomes. This review deals with a mechanism, applicable to proteins that are N-glycosylated in the ER, by which the quality control of folding is performed. Protein-linked monoglucosylated glycans, formed by glucosidase I- and glucosidase II-dependent partial deglucosylation of the oligosaccharides transferred from dolichol diphosphate derivatives in N-glycosylation (Glc(3)Man(9)GlcNAc(2)), mediate glycoprotein recognition by two ER-resident lectins, membrane-bound calnexin (CNX) and its soluble homologue, calreticulin (CRT). A still not yet fully confirmed interaction between the lectins and the protein moieties of folding glycoproteins may occur after lectin recognition of monoglucosylated structures. Further deglucosylation of glycans by glucosidase II, and perhaps also by a change in CNX/CRT and/or in the substrate glycoprotein conformation, liberates the glycoproteins from their CNX/CRT anchors. Glycans may be then reglucosylated by the UDP-Glc:glycoprotein glucosyltransferase (GT), and thus be recognized again by CNX/CRT, but only when linked to not yet properly folded protein moieties, as this enzyme behaves as a sensor of glycoprotein conformation. Deglucosylation/reglucosylation cycles catalysed by the opposing activities of glucosidase II and GT only stop when proper folding is achieved. The interaction between CNX/CRT and a monoglucosylated glycan is one of the alternative mechanisms by which cells retain not yet properly folded glycoproteins in the ER; in addition, it enhances folding efficiency by preventing protein aggregation and thus allowing intervention of classical chaperones and other

  9. HSV-1 Glycoproteins Are Delivered to Virus Assembly Sites Through Dynamin-Dependent Endocytosis.

    PubMed

    Albecka, Anna; Laine, Romain F; Janssen, Anne F J; Kaminski, Clemens F; Crump, Colin M

    2016-01-01

    Herpes simplex virus-1 (HSV-1) is a large enveloped DNA virus that belongs to the family of Herpesviridae. It has been recently shown that the cytoplasmic membranes that wrap the newly assembled capsids are endocytic compartments derived from the plasma membrane. Here, we show that dynamin-dependent endocytosis plays a major role in this process. Dominant-negative dynamin and clathrin adaptor AP180 significantly decrease virus production. Moreover, inhibitors targeting dynamin and clathrin lead to a decreased transport of glycoproteins to cytoplasmic capsids, confirming that glycoproteins are delivered to assembly sites via endocytosis. We also show that certain combinations of glycoproteins colocalize with each other and with the components of clathrin-dependent and -independent endocytosis pathways. Importantly, we demonstrate that the uptake of neutralizing antibodies that bind to glycoproteins when they become exposed on the cell surface during virus particle assembly leads to the production of non-infectious HSV-1. Our results demonstrate that transport of viral glycoproteins to the plasma membrane prior to endocytosis is the major route by which these proteins are localized to the cytoplasmic virus assembly compartments. This highlights the importance of endocytosis as a major protein-sorting event during HSV-1 envelopment.

  10. Archaeal S-layer glycoproteins: post-translational modification in the face of extremes

    PubMed Central

    Kandiba, Lina; Eichler, Jerry

    2014-01-01

    Corresponding to the sole or basic component of the surface (S)-layer surrounding the archaeal cell in most known cases, S-layer glycoproteins are in direct contact with the harsh environments that characterize niches where Archaea can thrive. Accordingly, early work examining archaeal S-layer glycoproteins focused on identifying those properties that allow members of this group of proteins to maintain their structural integrity in the face of extremes of temperature, pH, and salinity, as well as other physical challenges. However, with expansion of the list of archaeal strains serving as model systems, as well as growth in the number of molecular tools available for the manipulation of these strains, studies on archaeal S-layer glycoproteins are currently more likely to consider the various post-translational modifications these polypeptides undergo. For instance, archaeal S-layer glycoproteins can undergo proteolytic cleavage, both N- and O-glycosylation, lipid-modification and oligomerization. In this mini-review, recent findings related to the post-translational modification of archaeal S-layer glycoproteins are considered. PMID:25505464

  11. A major proportion of N-glycoproteins are transiently glucosylated in the endoplasmic reticulum

    SciTech Connect

    Ganan, S.; Cazzulo, J.J.; Parodi, A.J. )

    1991-03-26

    N-Linked, high-mannose-type oligosaccharides lacking glucose residues may be transiently glucosylated directly from UDP-Glc in the endoplasmic reticulum of mammalian, plant, fungal, and protozoan cells. The products formed have been identified as N-linked Glc{sub 1}Man{sub 5-9}GlcNAc{sub 2} and glucosidase II is apparently the enzyme responsible for the in vivo deglucosylation of the compounds. As newly glucosylated glycoproteins are immediately deglucosylated, it is unknown whether transient glucosylation involves all or nearly all N-linked glycoproteins or if, on the contrary, it only affects a minor proportion of them. In order to evaluate the molar proportion of N-linked oligosaccharides that are glucosylated, cells of the trypanosomatid protozoan Trypanosoma cruzi (a parasite transferring Man{sub 9}GlcNAc{sub 2} in protein N-glycosylation) were grown in the presence of ({sup 14}C)glucose and concentrations of the glucosidase II inhibitors deoxynojirimycin and castanospermine that were more than 1,000-fold higher than those required to produce a 50% inhibition of the T. cruzi enzyme. No evidence for the presence of an endomannosidase yielding GlcMan from the glucosylated compounds was obtained. As the average number of N-linked oligosaccharides per molecule in glycoproteins is higher than one, these results indicate that more than 52-33% of total glycoproteins are glucosylated and that transient glucosylation is a major event in the normal processing of glycoproteins.

  12. Characterization of multidrug resistance P-glycoprotein transport function with an organotechnetium cation

    SciTech Connect

    Piwnica-Worms, D.; Vallabhaneni, V.R.; Kronauge, J.F.

    1995-09-26

    Multidrug resistance (MDR) in mammalian cells and tumors is associated with overexpression of an {approximately}170 integral membrane efflux transporter, the MDR1 P-glycoprotein. Hexakis(2-methoxyisobutyl isonitrile) technetium(I) (Tc-SESTAMIBI), a {gamma}-emitting lipophilic cationic metallopharmaceutical, has recently been shown to be a P-glycoprotein transport substrate. Exploiting the negligible lipid membrane adsorption properties of this organometallic substrate, we studied the transport kinetics, pharmacology, drug binding, and modulation of P-glycoprotein in cell preparations derived from a variety of species and selection strategies, including SW-1573, V79, Alex, and CHO drug-sensitive cells and in 77A, LZ-8, and Alex/A.5 MDR cells. Rapid cell accumulation (T{sub 1/2} {approx} 6 min) of the agent to a steady state was observed which was inversely proportional to immunodetectable levels of P-glycoprotein. Many MDR cytotoxic agents inhibited P-glycoprotein-mediated Tc-SESTAMIBI efflux, thereby enhancing organometallic cation accumulation. 70 refs., 7 figs., 2 tabs.

  13. Ammonia secretion from fish gill depends on a set of Rh glycoproteins.

    PubMed

    Nakada, Tsutomu; Westhoff, Connie M; Kato, Akira; Hirose, Shigehisa

    2007-04-01

    Ammonia excretion from the gill in teleost fish is essential for nitrogen elimination. Although numerous physiological studies have measured ammonia excretion, the mechanism of ammonia movement through the membranes of gill epithelial cells is still unknown. Mammalian Rh glycoproteins are members of a family of proteins that mediate ammonia transport in bacteria, yeast, and plants. We identified the Rh glycoprotein homologs, fRhag, fRhbg, fRhcg1, and fRhcg2, of the pufferfish, Takifugu rubripes. Northern blot, in situ hybridization, and immunohistochemistry revealed that the pufferfish erythroid Rh glycoprotein homologue fRhag was present in red blood cells and the hematological organs (spleen and kidney) in fish. All four pufferfish Rh glycoproteins are specifically localized in the gill and line the pillar cells, pavement cells, and the mitochondrion-rich cells. Heterologous expression in Xenopus oocytes showed that they mediate methylammonium (an analog of ammonium) transport. These results suggest that pufferfish Rh glycoproteins are involved in ammonia excretion from the gill. These findings challenge the classic view that ammonia excretion in the fish gill occurs by passive diffusion.

  14. Direct assay for endo-α-mannosidase substrate preference on correctly folded and misfolded model glycoproteins.

    PubMed

    Dedola, Simone; Izumi, Masayuki; Makimura, Yutaka; Seko, Akira; Kanamori, Akiko; Takeda, Yoichi; Ito, Yukishige; Kajihara, Yasuhiro

    2016-11-03

    We previously reported a unique assay system for UDP-glucose glycoprotein glucosyltransferase (UGGT) toward glycoprotein folding intermediates during the folding process. The assay involved the in vitro folding of both high-mannose type oligosaccharyl crambin, which yielded only the correctly folded glycoprotein form (M9-glycosyl-native-crambin), and its mutant, which yielded misfolded glycoproteins (M9-glycosyl-misfolded-crambin), in the presence of UGGT. The process successfully yielded both mono-glucosylated M9-glycosyl-native-crambin (G1M9-glycosyl-native-crambin) and M9-glycosyl-misfolded-crambin (G1M9-glycosyl-misfolded-crambin). Here, we report the use of our in vitro folding system to evaluate the substrate preference of Golgi endo-α-mannosidase against G1M9-native and -misfolded glycoprotein forms. In our assay Golgi endo-α-mannosidase removed Glc-α-1-3-Man unit from G1M9-native and -misfolded-crambins clearly proving that Golgi endo-α-mannosidase does not have specific preference for correctly folded or misfolded protein structure.

  15. Cell surface expression of v-fms-coded glycoproteins is required for transformation.

    PubMed Central

    Roussel, M F; Rettenmier, C W; Look, A T; Sherr, C J

    1984-01-01

    The viral oncogene v-fms encodes a transforming glycoprotein with in vitro tyrosine-specific protein kinase activity. Although most v-fms-coded molecules remain internally sequestered in transformed cells, a minor population of molecules is transported to the cell surface. An engineered deletion mutant lacking 348 base pairs of the 3.0-kilobase-pair v-fms gene encoded a polypeptide that was 15 kilodaltons smaller than the wild-type v-fms gene product. The in-frame deletion of 116 amino acids was adjacent to the transmembrane anchor peptide located near the middle of the predicted protein sequence and 432 amino acids from the carboxyl terminus. The mutant polypeptide acquired N-linked oligosaccharide chains, was proteolytically processed in a manner similar to the wild-type glycoprotein, and exhibited an associated tyrosine-specific protein kinase activity in vitro. However, the N-linked oligosaccharides of the mutant glycoprotein were not processed to complex carbohydrate chains, and the glycoprotein was not detected at the cell surface. Cells expressing high levels of the mutant glycoprotein did not undergo morphological transformation and did not form colonies in semisolid medium. The transforming activity of the v-fms gene product therefore appears to be mediated through target molecules on the plasma membrane. Images PMID:6390182

  16. Defence sugarcane glycoproteins disorganize microtubules and prevent nuclear polarization and germination of Sporisorium scitamineum teliospores.

    PubMed

    Sánchez-Elordi, Elena; Baluška, František; Echevarría, Clara; Vicente, Carlos; Legaz, M Estrella

    2016-08-01

    Microtubules (MTs) are involved in the germination of Sporisorium scitamineum teliospores. Resistant varieties of sugar cane plants produce defence glycoproteins that prevent the infection of the plants by the filamentous fungi Sporisorium scitamineum. Here, we show that a fraction of these glycoproteins prevents the correct arrangement of MTs and causes nuclear fragmentation defects. As a result, nuclei cannot correctly migrate through the growing hyphae, causing germinative failure. Arginase activity contained in defence glycoproteins is already described for preventing fungal germination. Now, its enzymatically active form is presented as a link between the defensive capacity of glycoproteins and the MT disorganization in fungal cells. Active arginase is produced in healthy and resistant plants; conversely, it is not detected in the juice from susceptible varieties, which explains why MT depolarization, nuclear disorganization as well as germination of teliospores are not significantly affected by glycoproteins from non-resistant plants. Our results also suggest that susceptible plants try to increase their levels of arginase after detecting the presence of the pathogen. However, this signal comes "too late" and such defensive mechanism fails.

  17. [Incidence of varying factors on the immunochemical behavior of alpha 1-acid glycoprotein].

    PubMed

    Biou, D; Durand, G; Feger, J; Agneray, J

    1980-02-01

    Electroimmunodiffusion methods of Laurell and radial immunodiffusion method of Mancini are compared for the qualitative and quantitative analysis of native and desialylated alpha 1-acid glycoprotein. Samples are incubated under different conditions at decreasing pH (3.5 to 0.5 pH units), with increasing ionic strength and with neuraminidase during different time intervals. Results show a pronounced decrease in electrophoretic mobility of alpha 1-acid glycoprotein treated either with acidic reagents or with neuraminidase (ionic strength has no effect). Such a procedure might involve chemical or enzymatic hydrolysis by which sialyl residues are removed. This hydrolysis implicates lower results in the estimation of the desialylated glycoprotein by electroimmunodiffusion. On the other hand, the amounts of alpha 1-acid glycoprotein evaluated by radial immunodiffusion are not modified after incubation. This is expected since diffusion and antigenic properties are not related to the sialic acid content. The data suggest that radial immunodiffusion, less accurate and sensitive than electroimmunodiffusion, is nevertheless more adequate for estimating native and desialylated alpha 1-acid glycoprotein.

  18. Pharmacokinetic role of P-glycoprotein in oral bioavailability and intestinal secretion of grepafloxacin in vivo.

    PubMed

    Yamaguchi, Hiroaki; Yano, Ikuko; Saito, Hideyuki; Inui, Ken-ichi

    2002-03-01

    The purpose of this study was to clarify the contribution of P-glycoprotein to the bioavailability and intestinal secretion of grepafloxacin and levofloxacin in vivo. Plasma concentrations of grepafloxacin and levofloxacin after intravenous and intraintestinal administration were increased by cyclosporin A, a P-glycoprotein inhibitor, in rats. The total body clearance and volume of distribution at steady state of grepafloxacin were significantly decreased to 60 and 63% of the corresponding control values by cyclosporin A. The apparent oral clearance of grepafloxacin was decreased to 33% of the control, and the bioavailability of grepafloxacin was increased to 95% by cyclosporin A from 53% in the controls. Intestinal clearance of grepafloxacin and levofloxacin were decreased to one-half and one-third of the control, respectively, and biliary clearance of grepafloxacin was also decreased to one-third with cyclosporin A in rats. Intestinal secretion of grepafloxacin in mdr1a/1b (-/-) mice, which lack mdr1-type P-glycoproteins, was significantly decreased compared with wild-type mice, although the biliary secretion was similar. Intestinal secretion of grepafloxacin in wild-type mice treated with cyclosporin A was comparable to those in mdr1a/1b (-/-) mice with or without cyclosporin A, indicating that cyclosporin A completely inhibited P-glycoprotein-mediated intestinal transport of grepafloxacin. In conclusion, our results indicated that P-glycoprotein mediated the intestinal secretion of grepafloxacin and limited the bioavailability of this drug in vivo.

  19. Envelope glycoproteins of human immunodeficiency virus type 1: profound influences on immune functions.

    PubMed Central

    Chirmule, N; Pahwa, S

    1996-01-01

    Infection by human immunodeficiency virus type 1 (HIV-1) leads to progressive destruction of the CD4+ T-cell subset, resulting in immune deficiency and AIDS. The specific binding of the viral external envelope glycoprotein of HIV-1, gp120, to the CD4 molecules initiates viral entry. In the past few years, several studies have indicated that the interaction of HIV-1 envelope glycoprotein with cells and molecules of the immune system leads to pleiotropic biological effects on immune functions, which include effects on differentiation of CD34+ lymphoid progenitor cells and thymocytes, aberrant activation and cytokine secretion patterns of mature T cells, induction of apoptosis, B-cell hyperactivity, inhibition of T-cell dependent B-cell differentiation, modulation of macrophage functions, interactions with components of complement, and effects on neuronal cells. The amino acid sequence homologies of the envelope glycoproteins with several cellular proteins have suggested that molecular mimicry may play a role in the pathogenesis of the disease. This review summarizes work done by several investigators demonstrating the profound biological effects of envelope glycoproteins of HIV-1 on immune system cells. Extensive studies have also been done on interactions of the viral envelope proteins with components of the immune system which may be important for eliciting a "protective immune response." Understanding the influences of HIV-1 envelope glycoproteins on the immune system may provide valuable insights into HIV-1 disease pathogenesis and carries implications for the trials of HIV-1 envelope protein vaccines and immunotherapeutics. PMID:8801439

  20. Producing recombinant therapeutic glycoproteins with enhanced sialylation using CHO-gmt4 glycosylation mutant cells

    PubMed Central

    Goh, John SY; Liu, Yingwei; Chan, Kah Fai; Wan, Corrine; Teo, Gavin; Zhang, Peiqing; Zhang, Yuanxing; Song, Zhiwei

    2014-01-01

    Recombinant glycoprotein drugs require proper glycosylation for optimal therapeutic efficacy. Glycoprotein therapeutics are rapidly removed from circulation and have reduced efficacy if they are poorly sialylated. Ricinus communis agglutinin-I (RCA-I) was found highly toxic to wild-type CHO-K1 cells and all the mutants that survived RCA-I treatment contained a dysfunctional N-acetylglucosaminyltransferase I (GnT I) gene. These mutants are named CHO-gmt4 cells. Interestingly, upon restoration of GnT I, the sialylation of a model glycoprotein, erythropoietin, produced in CHO-gmt4 cells was shown to be superior to that produced in wild-type CHO-K1 cells. This addendum summarizes the applicability of this cell line, from transient to stable expression of the recombinant protein, and from a lab scale to an industrial scale perfusion bioreactor. In addition, CHO-gmt4 cells can be used to produce glycoproteins with mannose-terminated N-glycans. Recombinant glucocerebrosidase produced by CHO-gmt4 cells will not require glycan remodeling and may be directly used to treat patients with Gaucher disease. CHO-gmt4 cells can also be used to produce other glycoprotein therapeutics which target cells expressing mannose receptors. PMID:24911584

  1. Multidrug-resistant phenotype in retinoblastoma correlates with P-glycoprotein expression.

    PubMed

    Chan, H S; Thorner, P S; Haddad, G; Gallie, B L

    1991-09-01

    Chemotherapy plays an important role in therapy for patients with extraocular and metastatic retinoblastoma. The authors used chemotherapy for management of selected patients with uncontrolled intraocular tumors or tumors larger and more posteriorly located than those conventionally treated with local cryotherapy or photocoagulation. Rapid regrowth of some tumors after an initial excellent chemotherapy response led us to investigate the hypothesis that failure of treatment is caused by P-glycoprotein-related multidrug resistance. By using a sensitive immunoperoxidase method, increased P-glycoprotein was detected in five multidrug-resistant and two selectively plant alkaloid-resistant retinoblastoma cell lines and in the intraocular and metastatic tumors from which they were derived. In four chemotherapy-treated cases, increased P-glycoprotein in the tumor samples correlated with clinically relevant drug resistance. None of the four chemosensitive tumor cell lines had increased P-glycoprotein expression. Continuous surveillance of P-glycoprotein levels in metastatic retinoblastoma may be a useful guide to drug therapy.

  2. Producing recombinant therapeutic glycoproteins with enhanced sialylation using CHO-gmt4 glycosylation mutant cells.

    PubMed

    Goh, John S Y; Liu, Yingwei; Chan, Kah Fai; Wan, Corrine; Teo, Gavin; Zhang, Peiqing; Zhang, Yuanxing; Song, Zhiwei

    2014-01-01

    Recombinant glycoprotein drugs require proper glycosylation for optimal therapeutic efficacy. Glycoprotein therapeutics are rapidly removed from circulation and have reduced efficacy if they are poorly sialylated. Ricinus communis agglutinin-I (RCA-I) was found highly toxic to wild-type CHO-K1 cells and all the mutants that survived RCA-I treatment contained a dysfunctional N-acetylglucosaminyltransferase I (GnT I) gene. These mutants are named CHO-gmt4 cells. Interestingly, upon restoration of GnT I, the sialylation of a model glycoprotein, erythropoietin, produced in CHO-gmt4 cells was shown to be superior to that produced in wild-type CHO-K1 cells. This addendum summarizes the applicability of this cell line, from transient to stable expression of the recombinant protein, and from a lab scale to an industrial scale perfusion bioreactor. In addition, CHO-gmt4 cells can be used to produce glycoproteins with mannose-terminated N-glycans. Recombinant glucocerebrosidase produced by CHO-gmt4 cells will not require glycan remodeling and may be directly used to treat patients with Gaucher disease. CHO-gmt4 cells can also be used to produce other glycoprotein therapeutics which target cells expressing mannose receptors.

  3. Human herpesvirus 8 glycoprotein B binds the entry receptor DC-SIGN.

    PubMed

    Hensler, Heather R; Tomaszewski, Monica J; Rappocciolo, Giovanna; Rinaldo, Charles R; Jenkins, Frank J

    2014-09-22

    We have previously shown that human herpesvirus 8 (HHV-8) uses DC-SIGN as an entry receptor for dendritic cells, macrophages and B cells. The viral attachment protein for DC-SIGN is unknown. HHV-8 virions contain five conserved herpesvirus glycoproteins, a single unique glycoprotein, and two predicted glycoproteins. Previous studies have shown that DC-SIGN binds highly mannosylated glycoproteins. The HHV-8 glycoprotein B (gB) has been reported to be highly mannosylated, and therefore we hypothesized that gB will bind to DC-SIGN. In this report we confirm that gB has a high mannose carbohydrate structure and demonstrate for the first time that it binds DC-SIGN in a dose-dependent manner. We also identify key amino acids in the DC-SIGN carbohydrate recognition domain that are required for HHV-8 infection and compare these results with published binding regions for ICAM-2/3 and HIV-1 gp120. These results clarify some of the initial events in HHV-8 entry and can be used for the design of targeted preventive therapies.

  4. Galactose-binding lectins as markers of pregnancy-related glycoproteins.

    PubMed

    Horvat, B

    1993-01-01

    Protein extracts from pregnant mouse endometria were compared with those obtained from non-pregnant and pseudopregnant mice to detect early pregnancy-specific galactose-rich glycoproteins. Gradient gel electrophoresis combined with lectin overlay and lectin histochemistry were used to identify Ricinus communis I (RCA-I), R. communis II (RCA-II) and Cytisus scoparius (CSA) lectin binding glycoproteins. Using this approach, galactose-rich glycoproteins were identified that were maximally expressed in the estrus phase of non-pregnant endometria and also those that had peak expression in pregnancy. Lectin histochemistry revealed pregnancy related changes in three portions of mouse endometrium: endometrial glands, luminal epithelium and its basement membrane. Two major glycoproteins (RCA-I reactive 64 kDa and RCA-II reactive 35 kDa) were specifically expressed in peri-implantation endometrium on days 3 and 4 of pregnancy. The appearance of these glycoproteins during the period of the implantation window in mouse suggests that they could serve as markers of uterine receptivity to the implanting blastocyst.

  5. Confident assignment of site-specific glycosylation in complex glycoproteins in a single step.

    PubMed

    Khatri, Kshitij; Staples, Gregory O; Leymarie, Nancy; Leon, Deborah R; Turiák, Lilla; Huang, Yu; Yip, Shun; Hu, Han; Heckendorf, Christian F; Zaia, Joseph

    2014-10-03

    A glycoprotein may contain several sites of glycosylation, each of which is heterogeneous. As a consequence of glycoform diversity and signal suppression from nonglycosylated peptides that ionize more efficiently, typical reversed-phase LC-MS and bottom-up proteomics database searching workflows do not perform well for identification of site-specific glycosylation for complex glycoproteins. We present an LC-MS system for enrichment, separation, and analysis of glycopeptides from complex glycoproteins (>4 N-glycosylation sequons) in a single step. This system uses an online HILIC enrichment trap prior to reversed-phase C18-MS analysis. We demonstrated the effectiveness of the system using a set of glycoproteins including human transferrin (2 sequons), human alpha-1-acid glycoprotein (5 sequons), and influenza A virus hemagglutinin (9 sequons). The online enrichment renders glycopeptides the most abundant ions detected, thereby facilitating the generation of high-quality data-dependent tandem mass spectra. The tandem mass spectra exhibited product ions from both glycan and peptide backbone dissociation for a majority of the glycopeptides tested using collisionally activated dissociation that served to confidently assign site-specific glycosylation. We demonstrated the value of our system to define site-specific glycosylation using a hemagglutinin containing 9 N-glycosylation sequons from a single HILIC-C18-MS acquisition.

  6. The effect of P-glycoprotein on methadone hydrochloride flux in equine intestinal mucosa.

    PubMed

    Linardi, R L; Stokes, A M; Andrews, F M

    2013-02-01

    Methadone is an effective analgesic opioid that may have a place for the treatment of pain in horses. However, its absorption seems to be impaired by the presence of a transmembrane protein, P-glycoprotein, present in different tissues including the small intestine in other species. This study aims to determine the effect of the P-glycoprotein on methadone flux in the equine intestinal mucosa, as an indicator of in vivo drug absorption. Jejunum tissues from five horses were placed into the Ussing chambers and exposed to methadone solution in the presence or absence of Rhodamine 123 or verapamil. Electrical measurements demonstrated tissue viability for 120 min, and the flux of methadone across the jejunal membrane (mucosal to submucosal direction) was calculated based on the relative drug concentration measured by ELISA. The flux of methadone was significantly higher only in the presence of verapamil. P-glycoprotein was immunolocalized in the apical membrane of the jejunal epithelial cells (enterocytes), mainly located in the tip of the villi compared to cells of the crypts. P-glycoprotein is present in the equine jejunum and may possibly mediate the intestinal transport of methadone. This study suggests that P-glycoprotein may play a role in the poor intestinal absorption of methadone in vivo.

  7. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.

    PubMed

    Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M

    2014-01-01

    Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight

  8. Immunohistochemical detection of P-glycoprotein in endometrial adenocarcinoma.

    PubMed Central

    Axiotis, C. A.; Monteagudo, C.; Merino, M. J.; LaPorte, N.; Neumann, R. D.

    1991-01-01

    P-glycoprotein (Pgp) has emerged as the central mediator in classic multidrug resistance in model systems in vitro. High levels of Pgp also have been detected in many normal human tissues and tumors; and its role in clinical drug resistance is currently under investigation. Recently significant levels of Pgp were localized to gravid and secretory endometrium; and it was demonstrated that the combination of estrogen and progesterone is sufficient to induce high levels of both Pgp mRNA and Pgp in uterine secretory epithelium. These findings suggest that increased Pgp expression also may be present in hormone-responsive malignancies such as endometrial adenocarcinoma. To determine whether Pgp is expressed in endometrial adenocarcinoma, 36 endometrial adenocarcinomas (grade I [n = 17]; grade II [n = 6]; grade III [n = 13]) were investigated retrospectively by the avidin-biotin-complex immunohistochemical procedure using three murine monoclonal antibodies (MAb) MAb C219, MAb C494, and MAb JSB-1, which recognize spatially distinct cytoplasmic epitopes of Pgp. Seventy-two percent of the tumors showed positive immunostaining with at least one MAb; 67% showed immunostaining with MAb C219, 50% with MAb C494, and 62% with MAb JSB-1. Forty-six percent of tumors were immunoreactive to two and 29% to all three antibodies. Membranous and Golgi/paranuclear type staining patterns were observed. Overall the intensity of immunostaining varied from one sample to another for a given tumor type, and considerable heterogeneity of expression was commonly seen within a given tumor. Strong to moderate immunoreactivity was seen in diffusely infiltrating, adenosquamous, and serous papillary carcinomas. In general, immunoreactivity to MAb C494 was weaker than MAb C219 or MAb JSB-1. Adenomatous and non-neoplastic endometrium adjacent to the tumors displayed strong membranous immunostaining with MAb JSB-1. Endometrial capillaries showed weak-to-moderate immunostaining to all three antibodies. It

  9. Interaction of digitalis-like compounds with p-glycoprotein.

    PubMed

    Gozalpour, Elnaz; Wittgen, Hanneke G M; van den Heuvel, Jeroen J M W; Greupink, Rick; Russel, Frans G M; Koenderink, Jan B

    2013-02-01

    Digitalis-like compounds (DLCs), or cardiac glycosides, are produced and sequestered by certain plants and animals as a protective mechanism against herbivores or predators. Currently, the DLCs digoxin and digitoxin are used in the treatment of cardiac congestion and some types of cardiac arrhythmia, despite a very narrow therapeutic index. P-glycoprotein (P-gp; ABCB1) is the only known ATP-dependent efflux transporter that handles digoxin as a substrate. Ten alanine mutants of human P-gp drug-binding amino acids-Leu(65), Ile(306), Phe(336), Ile(340), Phe(343), Phe(728), Phe(942), Thr(945), Leu(975), and Val(982)-were generated and expressed in HEK293 cells with a mammalian baculovirus system. The uptake of [(3)H]-N-methyl-quinidine (NMQ), the P-gp substrate in vesicular transport assays, was determined. The mutations I306A, F343A, F728A, T945A, and L975A abolished NMQ transport activity of P-gp. For the other mutants, the apparent affinities for six DLCs (cymarin, digitoxin, digoxin, peruvoside, proscillaridin A, and strophanthidol) were determined. The affinities of digoxin, proscillaridin A, peruvoside, and cymarin for mutants F336A and I340A were decreased two- to fourfold compared with wild type, whereas that of digitoxin and strophanthidol did not change. In addition, the presence of a hydroxyl group at position 12β seems to reduce the apparent affinity when the side chain of Phe(336) and Phe(942) is absent. Our results showed that a δ-lactone ring and a sugar moiety at 3β of the steroid body are favorable for DLC binding to P-gp. Moreover, DLC inhibition is increased by hydroxyl groups at positions 5β and 19, whereas inhibition is decreased by those at positions 1β, 11α, 12β, and 16β. The understanding of the P-gp-DLC interaction improves our insight into DLCs toxicity and might enhance the replacement of digoxin with other DLCs that have less adverse drug effects.

  10. A role for P-glycoprotein in environmental toxicology.

    PubMed

    Abu-Qare, Aqel W; Elmasry, Eman; Abou-Donia, Mohamed B

    2003-01-01

    P-Glycoprotein (P-gp) is a transmembrane protein, playing significant roles in the process of drug discovery and development and in pest resistance to pesticides. P-gp affects absorption, disposition, and elimination of different compounds and is mainly expressed in intestines, liver, kidneys, heart, colon, and placenta. The expression of P-gp in the blood-brain barrier (BBB) has been associated with the restricted access of many compounds to the central nervous system. Generated knockout mice by disruption of mdr 1a gene, encoding for P-gp, showed that this protein was expressed in the BBB. The absence or the low levels of P-gp elevated drug concentrations in tissues and decreased drug elimination. P-gp is responsible for resistance of cells to agents, particularly the anticancer drugs, by removing these drugs from cells. Increased expression of P-gp is implicated in decreased HIV drug availability at certain intracellular sites. The role of P-gp in affecting efficacy and toxicity of environmental toxicants such as pesticides and heavy metals has not been adequately investigated. Studies showed that P-gp contributes to resistance to pesticides in certain pest species, and to decrease toxicity by removing compounds from cells in mammals. Placental drug-transporting P-gp plays a significant role in limiting the transport of toxicants such as potential teratogens to the fetus. Several in vitro or in vivo assays, including using P-gp knockout or naturally deficient mice, were described for testing P-gp modulators. The role of P-gp following concurrent exposure to more multiple compounds needs further research. P-gp modulators should be carefully used, since some modulators that reverse P-gp efflux action in vitro may lead to alterations of tissue function and increase toxicity of xenobiotics in normal tissues. Recent reports from the pharmaceutical studies on the significance of P-gp as transporters in altering the efficacy and toxicity clearly highlight the need for

  11. An efficient platform for screening expression and crystallization of glycoproteins produced in human cells

    PubMed Central

    Lee, Jeffrey E.; Fusco, Marnie L.; Saphire, Erica Ollmann

    2010-01-01

    Glycoproteins mediate multiple, diverse and critical cellular functions, that are desirable to explore by structural analysis. However, structure determination of these molecules has been hindered by difficulties expressing milligram quantities of stable, homogeneous protein and in determining, which modifications will yield samples amenable to structural studies. We describe a platform proven effective for rapidly screening expression and crystallization of challenging glycoprotein targets produced in mammalian cells. Here, multiple glycoprotein constructs are produced in parallel by transient expression of adherent human embryonic kidney (HEK) 293T cells and subsequently screened in small quantities for crystallization by microfluidic free interface diffusion. As a result, recombinant proteins are produced and processed in a native, mammalian environment and crystallization screening can be accomplished with as little as 65 μg of protein. Moreover, large numbers of constructs can be screened for expression and crystallization and scaled up for structural studies in a matter of five weeks. PMID:19373230

  12. Crystal structure of the prefusion surface glycoprotein of the prototypic arenavirus LCMV

    PubMed Central

    Sullivan, Brian M.; Legrand, Pierre; Zandonatti, Michelle A.; Robinson, James E.; Garry, Robert F.; Rey, Félix A.; Oldstone, Michael B.; Saphire, Erica Ollmann

    2016-01-01

    Arenaviruses exist worldwide and can cause hemorrhagic fever and neurologic disease. A single glycoprotein is expressed on the viral surface that mediates entry into target cells. This glycoprotein, termed GPC, contains a membrane-associated signal peptide, a receptor-binding subunit termed GP1 and a fusion-mediating subunit termed GP2. Although GPC is a critical target of antibodies and vaccines, the structure of the metastable GP1-GP2 prefusion complex has remained elusive for all arenaviruses. Here we describe the crystal structure of the fully glycosylated, prefusion GP1-GP2 complex of the prototypic arenavirus LCMV at 3.5Å. This structure reveals the conformational changes that the arenavirus glycoprotein must undergo to cause fusion, and illustrates the fusion regions and potential oligomeric states. PMID:27111888

  13. Complement inhibition enables tumor delivery of LCMV glycoprotein pseudotyped viruses in the presence of antiviral antibodies

    PubMed Central

    Evgin, Laura; Ilkow, Carolina S; Bourgeois-Daigneault, Marie-Claude; de Souza, Christiano Tanese; Stubbert, Lawton; Huh, Michael S; Jennings, Victoria A; Marguerie, Monique; Acuna, Sergio A; Keller, Brian A; Lefebvre, Charles; Falls, Theresa; Le Boeuf, Fabrice; Auer, Rebecca A; Lambris, John D; McCart, J Andrea; Stojdl, David F; Bell, John C

    2016-01-01

    The systemic delivery of therapeutic viruses, such as oncolytic viruses or vaccines, is limited by the generation of neutralizing antibodies. While pseudotyping of rhabdoviruses with the lymphocytic choriomeningitis virus glycoprotein has previously allowed for multiple rounds of delivery in mice, this strategy has not translated to other animal models. For the first time, we provide experimental evidence that antibodies generated against the lymphocytic choriomeningitis virus glycoprotein mediate robust complement-dependent viral neutralization via activation of the classical pathway. We show that this phenotype can be capitalized upon to deliver maraba virus pseudotyped with the lymphocytic choriomeningitis virus glycoprotein in a Fischer rat model in the face of neutralizing antibody through the use of complement modulators. This finding changes the understanding of the humoral immune response to arenaviruses, and also describes methodology to deliver viral vectors to their therapeutic sites of action without the interference of neutralizing antibody. PMID:27909702

  14. Sinomenine reverses multidrug resistance in bladder cancer cells via P-glycoprotein-dependent and independent manners.

    PubMed

    Chen, Yule; Zhang, Linlin; Lu, Xinlan; Wu, Kaijie; Zeng, Jin; Gao, Yang; Shi, Qi; Wang, Xinyang; Chang, Luke S; He, Dalin

    2014-01-01

    P-Glycoprotein-mediated multidrug resistance is a frequent event during chemotherapy and a key obstacle for bladder cancer therapy. Search for strategies to reverse multidrug resistance is a promising approach to improve the management of bladder cancer. In the present study, we reported a novel P-glycoprotein-mediated multidrug resistant cell model 253J/DOX, which was generated from human bladder cancer 253J cell line. Furthermore, we found that the multidrug resistant phenotype of 253J/DOX cells could be overcome by sinomenine, an alkaloid derived from the stem of Sinomenium acutum. Mechanistically, the chemosensitive effect by sinomenine was mediated by down-regulating P-glycoprotein expression, as well as triggering apoptotic pathways. The chemosensitive effect of sinomenine may make it a prime candidate agent to target bladder cancer.

  15. Differentially-expressed glycoproteins in Locusta migratoria hemolymph infected with Metarhizium anisopliae.

    PubMed

    Wang, Chutao; Cao, Yueqing; Wang, Zhongkang; Yin, Youping; Peng, Guoxiong; Li, Zhenlun; Zhao, Hua; Xia, Yuxian

    2007-11-01

    Glycoproteins play important roles in insect physiology. Infection with pathogen always results in the differential expression of some glycoproteins, which may be involved in host-pathogen interactions. In this report, differentially-expressed glycoproteins from the hemolymph of locusts infected with Metarhizium anisopliae were analyzed by two-dimensional electrophoresis (2-DE) and PDQuest software. The results showed that 13 spots were differentially expressed, of which nine spots were upregulated and four were downregulated. Using MS/MS with de novo sequencing and NCBI database searches, three upregulated proteins were identified as locust transferrin, apolipoprotein precursor, and hexameric storage protein 3. These proteins have been reported to be involved in the insect innate immune response to microbial challenge. Due to the limited available genome information and protein sequences of locusts, the possible functions of the other 10 differentially-expressed spots remain unknown.

  16. Structural, antigenic and immunogenic features of respiratory syncytial virus glycoproteins relevant for vaccine development

    PubMed Central

    Melero, José A.; Mas, Vicente; McLellan, Jason S.

    2016-01-01

    Extraordinary progress in the structure and immunobiology of the human respiratory syncytial virus glycoproteins has been accomplished during the last few years. Determination of the fusion (F) glycoprotein structure folded in either the prefusion or the postfusion conformation was an inspiring breakthrough not only to understand the structural changes associated with the membrane fusion process but additionally to appreciate the antigenic intricacies of the F molecule. Furthermore, these developments have opened new avenues for structure-based designs of promising hRSV vaccine candidates. Finally, recent advances in our knowledge of the attachment (G) glycoprotein and its interaction with cell-surface receptors have revitalized interest in this molecule as a vaccine, as well as its role in hRSV immunobiology. PMID:27692522

  17. Proteomic dataset for altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells.

    PubMed

    Sheta, Razan; Roux-Dalvai, Florence; Woo, Christina M; Fournier, Frédéric; Bourassa, Sylvie; Bertozzi, Carolyn R; Droit, Arnaud; Bachvarov, Dimcho

    2016-09-01

    This article contains raw and processed data related to research published in "Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation" [1]. The data presented here was obtained with the application of a bioorthogonal chemical reporter strategy analyzing differential glycoprotein expression following the knock-down (KD) of the GALNT3 gene in the epithelial ovarian cancer (EOC) cell line A2780s. LC-MS/MS mass spectrometry analysis was then performed and the processed data related to the identified glycoproteins show that several hundred proteins are differentially expressed between control and GALNT3 KD A2780s cells. The obtained data also uncover numerous novel glycoproteins; some of which could represent new potential EOC biomarkers and/or therapeutic targets.

  18. Targeting glycoprotein VI and the immunoreceptor tyrosine-based activation motif signaling pathway.

    PubMed

    Stegner, David; Haining, Elizabeth J; Nieswandt, Bernhard

    2014-08-01

    Coronary artery thrombosis and ischemic stroke are often initiated by the disruption of an atherosclerotic plaque and consequent intravascular platelet activation. Thus, antiplatelet drugs are central in the treatment and prevention of the initial, and subsequent, vascular events. However, novel pharmacological targets for platelet inhibition remain an important goal of cardiovascular research because of the negative effect of existing antiplatelet drugs on primary hemostasis. One promising target is the platelet collagen receptor glycoprotein VI. Blockade or antibody-mediated depletion of this receptor in circulating platelets is beneficial in experimental models of thrombosis and thrombo-inflammatory diseases, such as stroke, without impairing hemostasis. In this review, we summarize the importance of glycoprotein VI and (hem)immunoreceptor tyrosine-based activation motif signaling in hemostasis, thrombosis, and thrombo-inflammatory processes and discuss the targeting strategies currently under development for inhibiting glycoprotein VI and its signaling.

  19. Characterization of intact neo-glycoproteins by hydrophilic interaction liquid chromatography.

    PubMed

    Pedrali, Alice; Tengattini, Sara; Marrubini, Giorgio; Bavaro, Teodora; Hemström, Petrus; Massolini, Gabriella; Terreni, Marco; Temporini, Caterina

    2014-06-30

    In this study, an HPLC HILIC-UV method was developed for the analysis of intact neo-glycoproteins. During method development the experimental conditions evaluated involved different HILIC columns (TSKgel Amide-80 and ZIC-pHILIC), and water-acetonitrile mixtures containing various types of acids and salts. The final selected method was based on a TSKgel Amide-80 column and a mobile phase composed of acetonitrile and water both containing 10 mM HClO4. The influence of temperature and sample preparation on the chromatographic performances of the HILIC method was also investigated. The method was applied to the separation of neo-glycoproteins prepared starting from the model protein RNase A by chemical conjugation of different glycans. Using the method here reported it was possible to monitor by UV detection the glycosylation reaction and assess the distribution of neo-glycoprotein isoforms without laborious sample workup prior to analysis.

  20. Radical scavenging glycoprotein inhibiting cyclooxygenase-2 and thromboxane A2 synthase from aloe vera gel.

    PubMed

    Yagi, A; Kabash, A; Mizuno, K; Moustafa, S M; Khalifa, T I; Tsuji, H

    2003-03-01

    An active glycoprotein fraction containing 58 % protein was isolated from Aloe vera gel by precipitation with 55 % ammonium sulfate followed by gel permeation using DEAE-Sephacel A-25, Sepharose 6B and Sephadex G-50 columns in a yield of 3 x 10 -3 %. The glycoprotein fraction showed a single band corresponding to a subunit of verectin at the same position when stained with both Coomassie brilliant blue and periodic acid-Schiff reagents on 18 % SDS-PAGE. The molecular weight (14 kDa) was confirmed by Sephadex G-50 column chromatography. The glycoprotein fraction showed a radical scavenging activity against superoxide anion generated by the xanthine-xanthine oxidase system as well as inhibition of cyclooxygenase-2 and reduction of thromboxane A 2 synthase level in vitro.

  1. Temporal pattern of incorporation of /sup 3/H precursors into pituitary glycoproteins and their subsequent release

    SciTech Connect

    Grotjan, H.E. Jr.

    1982-04-01

    The temporal pattern of incorporation of various /sup 3/H precursors into glycoproteins by rat anterior pituitaries incubated in vitro and the release of /sup 3/H-glycoproteins was examined. (/sup 3/H)Leucine incorporation was linear with respect to time and (/sup 3/H)leucine-containing macromolecules appeared in the media in about 1 hr. The temporal pattern of (/sup 3/H)mannose incorporation and release was similar. (/sup 3/H)Galactose and (/sup 3/H)fucose were incorporated after apparent time of delays of approximately 15 min and soon thereafter (20-25 min) appeared in the medium in /sup 3/H-glycoproteins. Thus, these precursors appear to be added as terminal residues. (/sup 3/H)Glucosamine exhibited a pattern intermediate between (/sup 3/H)leucine and (/sup 3/H)fucose whereas (/sup 3/H)GlcNAc appeared to be incorporated as a terminal residue.

  2. Regulation of HSV glycoprotein induced cascade of events governing cell-cell fusion.

    PubMed

    Atanasiu, Doina; Saw, Wan Ting; Eisenberg, Roselyn J; Cohen, Gary H

    2016-09-14

    Receptor dependent HSV-induced fusion requires glycoproteins gD, gH/gL, and gB. Our current model posits that during fusion receptor-activated conformational changes in gD activate gH/gL, which subsequently triggers transformation of the pre-fusion form of gB into a fusogenic state. To examine the role of each glycoprotein in receptor dependent cell-cell fusion we took advantage of our discovery that fusion by wild type HSV-2 glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we established that fusion speed was governed by gH/gL, with gH being the main contributor. While the mutant forms of gB fuse at distinct rates that are dictated by their molecular structure, these restrictions can be overcome by gH2/gL2, thereby enhancing their activity. We also found that deregulated forms of gD1 and gH2/gL2 can alter the fusogenic potential of gB, promoting cell fusion in the absence of a cellular receptor and that deregulated forms of gB can drive the fusion machinery to even higher levels. Low pH enhanced fusion by affecting the structure of both gB and gH/gL mutants. Together, our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process and the critical role of gH/gL in regulating HSV induced fusion.

  3. Increase in morphine antinociceptive activity by a P-glycoprotein inhibitor in cisplatin-induced neuropathy.

    PubMed

    Balayssac, David; Cayre, Anne; Ling, Bing; Maublant, Jean; Penault-Llorca, Frédérique; Eschalier, Alain; Coudoré, François; Authier, Nicolas

    2009-11-06

    Pain from anticancer drugs-induced neuropathies is difficult to treat and can significantly alter the patient's quality of life. These neuropathies are considered relatively resistant to conventional analgesic drugs (opioids). Opioids are also P-glycoprotein substrates and it has been demonstrated that the P-glycoprotein is linked to the integrity of blood-brain barrier protecting the nervous system. Previous works presented an increase of P-glycoprotein in vincristine- and cisplatin-induced neuropathy which could potentially decrease opioid efficiency. To test this hypothesis, the efflux inhibition of P-glycoprotein and the antinociceptive effect of morphine were assessed in normal and cisplatin-induced neuropathic rats after the administration of the P-glycoprotein inhibitor (R101933). R101933 (20 mg/kg) inhibited significantly the efflux transporter under the condition of the study and had no analgesic effect. Nociceptive thresholds were measured by the paw pressure test. R101933 (20 mg/kg) enhanced antinociceptive activity of morphine (0.5 mg/kg) to a maximum of +58% and +35%, respectively compared with control animals and animals treated by morphine alone (0.5 mg/kg). R101933 increased morphine (2 mg/kg) antinociceptive activity to a maximum of +105% compared with control animals and to a maximum of +41% compared with morphine alone (2 mg/kg). This study demonstrated that cisplatin-induced neuropathy may present a particular pathophysiology with a multidrug resistance, of the central nervous system, to analgesics. This resistance can be blocked by a P-glycoprotein inhibitor which may enhance analgesia of low doses of morphine.

  4. Sendai virus assembly: M protein binds to viral glycoproteins in transit through the secretory pathway.

    PubMed Central

    Sanderson, C M; McQueen, N L; Nayak, D P

    1993-01-01

    We have examined the relative ability of Sendai virus M (matrix) protein to associate with membranes containing viral glycoproteins at three distinct stages of the exocytic pathway prior to cell surface appearance. By the use of selective low-temperature incubations or the ionophore monensin, the transport of newly synthesized viral glycoproteins was restricted to either the pre-Golgi intermediate compartment (by incubation at 15 degrees C), the medial Golgi (in the presence of monensin), or the trans-Golgi network (by incubation at 20 degrees C). All three of these treatments resulted in a marked accumulation of the M protein on perinuclear Golgi-like membranes which in each case directly reflected the distribution of the viral F protein. Subsequent redistribution of the F protein to the plasma membrane by removal of the low-temperature (20 degrees C) block resulted in a concomitant redistribution of the M protein, thus implying association of the two components during intracellular transit. The extent of M protein-glycoprotein association was further examined by cell fractionation studies performed under each of the three restrictive conditions. Following equilibrium sedimentation of membranes derived from monensin-treated cells, approximately 40% of the recovered M protein was found to cofractionate with membranes containing the viral glycoproteins. Also, by flotation analyses, a comparable subpopulation of M protein was found to be membrane associated whether viral glycoproteins were restricted to the trans-Golgi network, the medial Golgi, or the pre-Golgi intermediate compartment. Additionally, transient expression of M protein alone from cloned cDNA showed that neither membrane association nor Golgi localization occurs in the absence of Sendai virus glycoproteins. Images PMID:8380460

  5. Molecularly Imprinted Plasmonic Substrates for Specific and Ultrasensitive Immunoassay of Trace Glycoproteins in Biological Samples.

    PubMed

    Muhammad, Pir; Tu, Xueying; Liu, Jia; Wang, Yijia; Liu, Zhen

    2017-04-05

    Assays of glycoproteins hold significant biological importance and clinical values, for which immunoassay has been the workhorse tool. As immunoassays are associated with disadvantages such as poor availability of high-specificity antibodies, limited stability of biological reagents, and tedious procedure, innovative alternatives that can overcome these drawbacks are highly desirable. Plasmonic immunosandwich assay (PISA) has emerged as an appealing alternative to immunoassay for fast and sensitive determination of trace glycoproteins in biosamples. Plasmonic substrates play key roles in PISA, not only in determining the specificity but also in greatly influencing the detection sensitivity. Herein, we report a new type of molecularly imprinted plasmonic substrates for rapid and ultrasensitive PISA assay of trace glycoproteins in complex real samples. The substrates were fabricated from glass slides, first coated with self-assembled monolayer (SAM) of gold nanoparticles (AuNPs) and then molecularly imprinted with organo-siloxane polymer in the presence of template glycoproteins. The prepared molecularly imprinted substrates exhibited not only a significant plasmonic effect but also excellent binding properties, ensuring the sensitivity as well as the specificity of the assay. Alkaline phosphatase (ALP) and α-fetoprotein (AFP), glycoproteins that are routinely used as disease markers in clinical diagnosis, were used as representative targets. The limit of detection (LOD) was 3.1 × 10(-12) M for ALP and 1.5 × 10(-14) M for AFP, which is the best among the PISA approaches reported. The sample volume required was only 5 μL, and the total time required was within 30 min for each assay. Specific and ultrasensitive determination of ALP and AFP in human serum was demonstrated. Because many disease biomarkers are glycoproteins, the developed PISA approach holds great promise in disease diagnostics.

  6. Antiviral and anti-proliferative glycoproteins from the rhizome of Smilax glabra Roxb (Liliaceae).

    PubMed

    Ooi, Linda S M; Wong, Elaine Y L; Chiu, Lawrence C M; Sun, Samuel S M; Ooi, Vincent E C

    2008-01-01

    The glycoproteins possessing antiviral and anti-proliferative activities were isolated from the Chinese medicinal herb Smilax glabra (known as tufuling), by extraction with 0.2 M NaCl, ammonium sulfate precipitation, fetuin-agarose affinity chromatography and gel filtration. The molecular mass of the fetuin-binding glycoprotein (designated SGPF2) was estimated to be about 58 kDa, with a major protein subunit of 26 kDa. The non-fetuin binding glycoproteins (in the unadsorbed fraction) were further separated into 5 different subfractions (SGPF1a-SGPF1e) with anion-exchange chromatography, all of which also contained the major band at 26 kDa. All the isolated proteins of 26 kDa had similar N-terminal amino acid sequences, implying that they were probably the isoforms originated putatively from a multigene family with different binding affinity and ionic strength. The glycoprotein SGPF2 exhibited antiviral activity against respiratory syncytial virus (RSV) with a median inhibitory concentration (IC(50)) of 62.5 microg/ml and Herpes simplex virus type 1 (HSV-1) had an IC(50) of 31.3 microg/ml. The glycoprotein potencies for antiviral activity appeared to depend on the molecules' binding affinity for fetuin, that is, the fetuin-binding protein was more potent than the non-fetuin binding proteins. Further examination revealed that these glycoproteins also had the ability to suppress the proliferation of MCF-7 cells. The possible mechanism of anti-proliferative action as analyzed by DNA flow cytometry indicated that they could induce apoptosis mediated via sub-G(1) phase of the MCF-7 cell cycle. For example, there was an increase by 75.8% of the control level of apoptosis after incubation with SGPF1a.

  7. Site-specific Chemical Modification of a Glycoprotein Fragment Expressed in Yeast

    PubMed Central

    Xiao, Junpeng; Tolbert, Thomas J.

    2011-01-01

    Site-specific modification of glycoproteins has wide application in both biochemical and biophysical studies. This method describes the conjugation of synthetic molecules to the N-terminus of a glycoprotein fragment: immunoglobulin G subclass 1 fragment crystallizable (IgG1 Fc) by native chemical ligation. The glycosylated IgG1 Fc is expressed in a glycosylation deficient yeast strain. The N-terminal cysteine is generated by the endogenous yeast protease Kex2 in the yeast secretory pathway. The N-terminal cysteine is then conjugated with a biotin thioester to produce a biotinylated, glycosylated IgG1 Fc using native chemical ligation. PMID:21674341

  8. Early Activation of Primary Brain Microvascular Endothelial Cells by Nipah Virus Glycoprotein-Containing Particles

    PubMed Central

    Freitag, Tanja C.

    2015-01-01

    Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes pronounced infection of brain endothelia and central nervous system (CNS) inflammation. Using primary porcine brain microvascular endothelial cells, we showed that upregulation of E-selectin precedes cytokine induction and is induced not only by infectious NiV but also by NiV-glycoprotein-containing virus-like particles. This demonstrates that very early events in NiV brain endothelial infection do not depend on NiV replication but can be triggered by the NiV glycoproteins alone. PMID:26676791

  9. Nephrotoxic potency of antisera to three rat glomerular basement membrane glycoproteins.

    PubMed Central

    Devulder, B; Bardos, P; Plouvier, B; Martin, J C; Muh, J P; Tacquet, A

    1978-01-01

    In a previous article, we cited studies which have allowed us to isolate diverse glycoproteins of the rat glomerular basement membrane (GMB) and to study their biochemical structures and antigenicity. This present study attempts to examine, using the heterologous nephrotoxic nephritis model (Masugi's nephritis) the nephrotoxicity of immune sera prepared from three of these glycoproteins: one fairly rich in collagen-like structures (A3), another lacking collagen-like structures (A1), and a third of intermediate composition (A2). The results obtained are discussed in relation to those already published concerning the nature of the GBM antigen(s) responsible for the nephrotoxicity of the sera. PMID:357054

  10. Glycoprotein-Based Enzyme-Linked Immunosorbent Assays for Serodiagnosis of Infectious Laryngotracheitis

    PubMed Central

    Kanabagatte Basavarajappa, Mallikarjuna; Song, Haichen; Lamichhane, Chinta

    2015-01-01

    For detection of infectious laryngotracheitis virus (ILTV) antibody, glycoprotein B-, C-, and D-based enzyme-linked immunosorbent assays (B-, C-, and D-ELISAs, respectively) were developed. The B- and D-ELISAs showed enhanced detection of anti-ILTV antibodies in infected chickens compared to that of the commercial ELISA. Furthermore, the D-ELISA was efficient in detecting seroconversion with vectored vaccine, using recombinant Newcastle disease virus (rNDV) expressing glycoprotein D (gD) as the vaccine vector. PMID:25694519

  11. Determination of N-linked Glycosylation in Viral Glycoproteins by Negative Ion Mass Spectrometry and Ion Mobility.

    PubMed

    Bitto, David; Harvey, David J; Halldorsson, Steinar; Doores, Katie J; Pritchard, Laura K; Huiskonen, Juha T; Bowden, Thomas A; Crispin, Max

    2015-01-01

    Glycan analysis of virion-derived glycoproteins is challenging due to the difficulties in glycoprotein isolation and low sample abundance. Here, we describe how ion mobility mass spectrometry can be used to obtain spectra from virion samples. We also describe how negative ion fragmentation of glycans can be used to probe structural features of virion glycans.

  12. Determination of N-linked glycosylation in viral glycoproteins by negative ion mass spectrometry and ion mobility

    PubMed Central

    Bitto, David; Harvey, David J.; Halldorsson, Steinar; Doores, Katie J.; Pritchard, Laura K.; Huiskonen, Juha T.; Bowden, Thomas A.; Crispin, Max

    2016-01-01

    Summary Glycan analysis of virion-derived glycoproteins is challenging due to the difficulties in glycoprotein isolation and low sample abundance. Here, we describe how ion mobility mass spectrometry can be used to obtain spectra from virion samples. We also describe how negative ion fragmentation of glycans can be used to probe structural features of virion glycans. PMID:26169737

  13. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry

    SciTech Connect

    Follis, Kathryn E.; York, Joanne; Nunberg, Jack H. . E-mail: jack.nunberg@umontana.edu

    2006-07-05

    The fusogenic potential of Class I viral envelope glycoproteins is activated by proteloytic cleavage of the precursor glycoprotein to generate the mature receptor-binding and transmembrane fusion subunits. Although the coronavirus (CoV) S glycoproteins share membership in this class of envelope glycoproteins, cleavage to generate the respective S1 and S2 subunits appears absent in a subset of CoV species, including that responsible for the severe acute respiratory syndrome (SARS). To determine whether proteolytic cleavage of the S glycoprotein might be important for the newly emerged SARS-CoV, we introduced a furin recognition site at single basic residues within the putative S1-S2 junctional region. We show that furin cleavage at the modified R667 position generates discrete S1 and S2 subunits and potentiates membrane fusion activity. This effect on the cell-cell fusion activity by the S glycoprotein is not, however, reflected in the infectivity of pseudotyped lentiviruses bearing the cleaved glycoprotein. The lack of effect of furin cleavage on virion infectivity mirrors that observed in the normally cleaved S glycoprotein of the murine coronavirus and highlights an additional level of complexity in coronavirus entry.

  14. The B-cell lymphoma 2 (BCL2)-inhibitors, ABT-737 and ABT-263, are substrates for P-glycoprotein

    SciTech Connect

    Vogler, Meike; Dickens, David; Dyer, Martin J.S.; Owen, Andrew; Pirmohamed, Munir; Cohen, Gerald M.

    2011-05-06

    Highlights: {yields} The BCL2-inhibitor ABT-263 is a substrate for P-glycoprotein. {yields} Apoptosis is inhibited by P-glycoprotein expression. {yields} Overexpression of P-glycoprotein may contribute to resistance to ABT-263 or ABT-737. -- Abstract: Inhibition of BCL2 proteins is one of the most promising new approaches to targeted cancer therapy resulting in the induction of apoptosis. Amongst the most specific BCL2-inhibitors identified are ABT-737 and ABT-263. However, targeted therapy is often only effective for a limited amount of time because of the occurrence of drug resistance. In this study, the interaction of BCL2-inhibitors with the drug efflux transporter P-glycoprotein was investigated. Using {sup 3}H labelled ABT-263, we found that cells with high P-glycoprotein activity accumulated less drug. In addition, cells with increased P-glycoprotein expression were more resistant to apoptosis induced by either ABT-737 or ABT-263. Addition of tariquidar or verapamil sensitized the cells to BCL2-inhibitor treatment, resulting in higher apoptosis. Our data suggest that the BCL2-inhibitors ABT-737 and ABT-263 are substrates for P-glycoprotein. Over-expression of P-glycoprotein may be, at least partly, responsible for resistance to these BCL2-inhibitors.

  15. The DNA sequence of the equine herpesvirus 4 gene encoding glycoprotein gp17/18, the homologue of herpes simplex virus glycoprotein gD.

    PubMed

    Cullinane, A A; Neilan, J; Wilson, L; Davison, A J; Allen, G

    1993-09-01

    The nucleotide sequence of the gene to the left of the gI gene of equine herpesvirus 4 (EHV-4) was determined. The gene encodes a peptide of 402 amino acids with an unprocessed M(r) of 45,323. The predicted polypeptide has several features of a glycoprotein including a hydrophobic signal sequence, a membrane spanning domain and four potential N-linked glycosylation sites within the proposed external domain. The predicted amino acid sequence of EHV-4 gD shows 83% identity with that of equine herpesvirus 1 gD. Conservation of the tertiary structure is suggested by the alignment of six cysteine residues with those of the gD of six other alphaherpesviruses. Screening a lambda gt11/EHV-4 expression library with monoclonal antibodies against several of the most abundant EHV-4 glycoproteins unequivocally identified the protein encoded by the EHV-4 gD gene as gp17/18.

  16. Chemical synthesis of glycoproteins with the specific installation of gradient enriched 15N-labeled amino acids for getting insight into glycoprotein behavior.

    PubMed

    Kajihara, Yasuhiro; Nguyen, Minh Hien; Izumi, Masayuki; Sato, Hajime; Okamoto, Ryo

    2017-03-09

    We propose a novel partially 15N-labelling method for the amide backbone of a synthetic glycoprotein. By use of a chemical approach utilizing SPPS and NCL, we inserted thirteen 15N-labeled amino acids at specific positions of the protein backbone, while intentionally varying the enrichment of 15N atoms. This idea enables us to discriminate even the same type of amino acid based on the intensities of 1H-15N HSQC signals, thus allowing us to understand the dynamics of the local conformation of a synthetic homogeneous glycoprotein. Results suggested that the attachment of an oligosaccharide of either a bi-antennary complex-type or a high-mannose-type did not disturb protein conformation. However, T1 values suggested that the oligosaccharide influenced dynamics at the local conformation. Temperature-varied CD spectra and T1 values clearly indicated that oligosaccharides appeared to inhibit protein fluctuation or, in other words, stabilize protein structure.

  17. A lectin-binding glycoprotein of Mr 135,000 associated with basal keratinocytes in pig epidermis.

    PubMed

    King, I A; Tabiowo, A; Pope, F M

    1986-07-15

    Pig epidermis separated by 1 M-CaCl2 treatment was homogenized and separated into three fractions by filtration through nylon mesh and high-speed centrifugation. Lectin-binding glycoproteins were isolated from urea/deoxycholate/mercaptoethanol extracts of the residue fraction that resisted filtration, from deoxycholate extracts of the particulate material in the filtrate and from the soluble fraction. Concanavalin A, Ricinus communis (castor bean) agglutinin 1, peanut (Arachis hypogaea) agglutinin and Ulex europaeus (gorse) agglutinin-binding glycoproteins in the three epidermal fractions were analysed by SDS/polyacrylamide-gel electrophoresis. A major neuraminidase-sensitive glycoprotein component of the particulate fraction of Mr 135,000 was strongly bound by concanavalin A and Ricinus communis agglutinin 1, but only weakly by peanut and Ulex europaeus agglutinins. This glycoprotein was not detected in the residue or soluble fractions of the epidermis, indicating that it had only a limited distribution within the tissue. The 135,000-Mr glycoprotein was one of two major glycoprotein antigens in the particulate fraction. Rabbits immunized with total particulate glycoproteins produced antibodies directed mainly against 135,000- and 110,000-Mr components. Monospecific antibodies were obtained from guinea pigs immunized with the 135,000-Mr glycoprotein band excised from polyacrylamide gels. Indirect immunofluorescence with the use of affinity-purified antibodies showed that the 135,000-Mr glycoprotein was present at the surface of cells in the basal layer of the epidermis as well as at that of other stratified epithelia. It was not present on differentiating cells in the suprabasal layers of the epithelium, suggesting an important role in the attachment or proliferative functions of basal cells in stratified epithelia. Metabolic labelling studies with skin explants cultured in the presence of D-[3H]glucosamine showed that this basal-cell glycoprotein was synthesized

  18. Pachytene spermatocyte protein(s) stimulate Sertoli cells grown in bicameral chambers: dose-dependent secretion of ceruloplasmin, sulfated glycoprotein-1, sulfated glycoprotein-2, and transferrin.

    PubMed

    Onoda, M; Djakiew, D

    1991-03-01

    Interactions between pachytene spermatocytes and Sertoli cells were investigated using the bicameral culture chamber system. Pachytene spermatocytes were isolated from adult rats with a purity in excess of 90% by centrifugal elutriation. The pachytene spermatocytes were cultured in a defined media and pachytene spermatocyte protein prepared from the conditioned media by dialysis and lyophilization. This pachytene spermatocyte protein was reconstituted at various concentrations and incubated with confluent epithelial sheets of immature Sertoli cells cultured in bicameral chambers. Pachytene spermatocyte protein stimulated secretion of total [35S]methionine-labeled protein from Sertoli cells in a dose-dependent manner predominantly in an apical direction. This stimulatory effect of pachytene spermatocyte protein was domain specific from the apical surface of Sertoli cells, and seemed specific for secretion because total intracellular protein did not increase under the influence of pachytene spermatocyte protein. Pachytene spermatocyte protein and follicle-stimulating hormone additively stimulated Sertoli cell secretion. The physicochemical characteristics of the stimulatory pachytene spermatocyte protein are indicative of heat stability, whereas the stimulatory pachytene spermatocyte protein exhibit acid, dithiothreitol and trypsin sensitivity, and partial urea sensitivity. Furthermore, Sertoli cell secretion of ceruloplasmin, sulfated glycoprotein-1, sulfated glycoprotein-2, and transferrin in response to various concentrations of pachytene spermatocyte protein were determined by immunoprecipitate of these [35S]methionine-labeled proteins with polyclonal antibodies. Maximal stimulation of ceruloplasmin and sulfated glycoprotein-1 secretion from Sertoli cells was observed at a dose of 50 micrograms/ml pachytene spermatocyte protein, whereas maximal stimulation of sulfated glycoprotein-2 and transferrin secretion from Sertoli cells was observed at a dose of 100

  19. Use of lambdagt11 to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins

    SciTech Connect

    Petrovskis, E.A.; Timmins, J.G.; Post, L.E.

    1986-10-01

    A library of pseudorabies virus (PRV) DNA fragments was constructed in the expression cloning vector lambdagt11. The library was screened with antisera which reacted with mixtures of PRV proteins to isolate recombinant bacteriophages expressing PRV proteins. By the nature of the lambdagt11 vector, the cloned proteins were expressed in Escherichia coli as ..beta..-galactosidase fusion proteins. The fusion proteins from 35 of these phages were purified and injected into mice to raise antisera. The antisera were screened by several different assays, including immunoprecipitation of (/sup 14/C)glucosamine-labeled PRV proteins. This method identified phages expressing three different PRV glycoproteins: the secreted glycoprotein, gX; gI; and a glycoprotein that had not been previously identified, which we designate gp63. The gp63 and gI genes map adjacent to each other in the small unique region of the PRV genome. The DNA sequence was determined for the region of the genome encoding gp63 and gI. It was found that gp63 has a region of homology with a herpes simplex virus type 1 (HSV-1) protein, encoded by US7, and also with varicella-zoster virus (VZV) gpIV. The gI protein sequence has a region of homology with HSV-1 gE and VZV gpI. It is concluded that PRV, HSV, and VZV all have a cluster of homologous glycoprotein genes in the small unique components of their genomes and that the organization of these genes is conserved.

  20. Chemoenzymatic Site-Specific Labeling of Influenza Glycoproteins as a Tool to Observe Virus Budding in Real Time

    PubMed Central

    Ploegh, Hidde L.

    2012-01-01

    The influenza virus uses the hemagglutinin (HA) and neuraminidase (NA) glycoproteins to interact with and infect host cells. While biochemical and microscopic methods allow examination of the early steps in flu infection, the genesis of progeny virions has been more difficult to follow, mainly because of difficulties inherent in fluorescent labeling of flu proteins in a manner compatible with live cell imaging. We here apply sortagging as a chemoenzymatic approach to label genetically modified but infectious flu and track the flu glycoproteins during the course of infection. This method cleanly distinguishes influenza glycoproteins from host glycoproteins and so can be used to assess the behavior of HA or NA biochemically and to observe the flu glycoproteins directly by live cell imaging. PMID:22457626

  1. Progesterone regulates the expression and activity of two mouse isoforms of the glycoprotein folding sensor UDP-Glc: glycoprotein glucosyltransferase (UGGT).

    PubMed

    Prados, María B; Caramelo, Julio J; Miranda, Silvia E

    2013-12-01

    UDP-Glucose:glycoprotein glucosyltransferase (UGGT) is a central component of the endoplasmic reticulum (ER) glycoprotein-folding quality control system, which prevents the exit of partially folded species. UGGT activity can be regulated by the accumulation of misfolded proteins in the ER, a stimulus that triggers a complex signaling pathway known as unfolded protein response (UPR) which is closely associated with inflammation and disease. In this work, we investigated the effect of progesterone (P4) on the expression and activity of UGGT in a mouse hybridoma. We detected the expression of two UGGT isoforms, UGGT1 and UGGT2, and demonstrated that both isoforms are active in these cells. Interestingly, the expression of each isoform is regulated by high physiological P4 concentrations. This work provides the first evidence of a hormonal regulation of UGGT isoform expression and activity, which might influence the glycoprotein quality control mechanism. These findings could contribute to the study of pathologies triggered by the accumulation of misfolded proteins.

  2. Increased Expression of P-Glycoprotein Is Associated With Chlorpyrifos Resistance in the German Cockroach (Blattodea: Blattellidae).

    PubMed

    Hou, Weiyuan; Jiang, Chu; Zhou, Xiaojie; Qian, Kun; Wang, Lei; Shen, Yanhui; Zhao, Yan

    2016-09-15

    A principal method for control of the German cockroach, Blattella germanica (L.), is the broad-spectrum organophosphorus insecticide, chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate); however, extensive and repeated application has resulted in the development of resistance to chlorpyrifos in this insect. Evidence suggests that ATP-binding cassette protein transporters, including P-glycoprotein, are involved in insecticide resistance. However, little is known of the role of P-glycoprotein in insecticide resistance in the German cockroach. Here, we developed a chlorpyrifos-resistant strain of German cockroach and investigated the relationship between P-glycoprotein and chlorpyrifos resistance using toxicity assays; inhibition studies with two P-glycoprotein inhibitors, verapamil and quinine; P-glycoprotein-ATPase activity assays; and western blotting analysis. After 23 generations of selection from susceptible strain cockroaches, we obtained animals with high resistance to chlorpyrifos. When P-glycoprotein-ATPase activity was inhibited by verapamil and quinine, we observed enhanced susceptibility to chlorpyrifos in both control and chlorpyrifos-resistant cockroaches. No significant alterations of P-glycoprotein expression or ATPase activity were observed in cockroaches acutely exposed to LD50 doses of chlorpyrifos for 24 h, while P-glycoprotein expression and ATPase activity were clearly elevated in the chlorpyrifos-resistant cockroach strain. Thus, we conclude that P-glycoprotein is associated with chlorpyrifos resistance in the German cockroach and that elevated levels of P-glycoprotein expression and ATPase activity may be an important mechanism of chlorpyrifos resistance in the German cockroach.

  3. Characterization of an equine herpesvirus type 1 gene encoding a glycoprotein (gp13) with homology to herpes simplex virus glycoprotein C.

    PubMed

    Allen, G P; Coogle, L D

    1988-08-01

    The molecular structure of the equine herpesvirus type 1 (EHV-1) gene encoding glycoprotein 13 (gp13) was analyzed. The gene is contained within a 1.8-kilobase AccI-EcoRI restriction fragment mapping at map coordinates 0.136 to 0.148 in the UL region of the EHV-1 genome and is transcribed from right to left. Determination of the nucleotide sequence of the DNA fragment revealed a complete transcriptional unit composed of typical regulatory promoter elements upstream to a long open reading frame (1,404 base pairs) that encoded a 468-amino-acid primary translation product of 51 kilodaltons. The predicted protein has the characteristic features of a membrane-spanning protein: an N-terminal signal sequence, a hydrophobic membrane anchor region, a charged C-terminal cytoplasmic tail, and an exterior domain with nine potential N-glycosylation sites. The EHV-1 DNA sequences expressed in lambda gt11 as gp13 epitopes were present in the open reading frame. Amino acid sequences composing a major antigenic site, recognized by 35% of a panel of 42 anti-gp13 monoclonal antibodies, were identified in the N-terminal surface domain of the deduced gp13 molecule. Comparison of the EHV-1 gp13 DNA sequence with that encoding glycoproteins of other alphaherpesviruses revealed no detectable homology. However, a search for homology at the amino acid level showed regions of significant sequence similarity between the amino acids of the carboxy half of EHV-1 gp13 and those of the same region of gC-like glycoproteins of herpes simplex virus (gC-1 and gC-2), pseudorabies herpesvirus (gIII), and varicella-zoster virus (gp66). The sequences of the N-terminal portion of gp13, by contrast, were much less conserved. The results of these studies indicate that EHV-1 gp13 is the structural homolog of herpes simplex virus glycoprotein C and further suggest that the epitope-containing N-terminal amino acid sequences of the herpesvirus gC-like glycoproteins have undergone more extensive evolutionary

  4. Expeditious Chemoenzymatic Synthesis of Homogeneous N-Glycoproteins Carrying Defined Oligosaccharide Ligands

    PubMed Central

    Ochiai, Hirofumi; Huang, Wei; Wang, Lai-Xi

    2009-01-01

    An efficient chemoenzymatic method for the construction of homogeneous N-glycoproteins was described that explores the transglycosylation activity of the endo-β-N-acetylglucosaminidase from Arthrobacter protophormiae (Endo-A) with synthetic sugar oxazolines as the donor substrates. First, an array of large oligosaccharide oxazolines were synthesized and evaluated as substrates for the Endo-A catalyzed transglycosylation using ribonuclease B as a model system. The experimental results showed that Endo-A could tolerate modifications at the outer mannose residues of the Man3GlcNAc-oxazoline core, thus allowing introduction of large oligosaccharide ligands into a protein and meanwhile preserves the natural, core N-pentasaccharide (Man3GlcNAc2) structure in the resulting glycoprotein upon transglycosylation. In addition to ligands for galectins and mannose-binding lectins, azido functionality could be readily introduced at the N-pentasaccharide (Man3GlcNAc2) core using azido-containing Man3GlcNAc oxazoline as the donor substrate. The introduction of azido functionality permits further site-specific modifications of the resulting glycoproteins, as demonstrated by the successful attachment of two copies of αGal epitopes to ribonuclease B. This study reveals a broad substrate specificity of Endo-A for transglycosylation, and the chemoenzymatic method described here points to a new avenue for a quick access to various homogeneous N-glycoproteins for structure-activity relationship studies and for biomedical applications. PMID:18803385

  5. Bile acid transport in sister of P-glycoprotein (ABCB11) knockout mice.

    PubMed

    Lam, Ping; Wang, Renxue; Ling, Victor

    2005-09-20

    In vertebrates, bile flow is essential for movement of water and solutes across liver canalicular membranes. In recent years, the molecular motor of canalicular bile acid secretion has been identified as a member of the ATP binding cassette transporter (ABC) superfamily, known as sister of P-glycoprotein (Spgp) or bile salt export pump (Bsep, ABCB11). In humans, mutations in the BSEP gene are associated with a very low level of bile acid secretion and severe cholestasis. However, as reported previously, because the spgp(-)(/)(-) knockout mice do not express severe cholestasis and have substantial bile acid secretion, we investigated the "alternative transport system" that allows these mice to be physiologically relatively normal. We examined the expression levels of several ABC transporters in spgp(-)(/)(-) mice and found that the level of multidrug resistance Mdr1 (P-glycoprotein) was strikingly increased while those of Mdr2, Mrp2, and Mrp3 were increased to only a moderate extent. We hypothesize that an elevated level of Mdr1 in the spgp(-)(/)(-) knockout mice functions as an alternative pathway to transport bile acids and protects hepatocytes from bile acid-induced cholestasis. In support of this hypothesis, we showed that plasma membrane vesicles isolated from a drug resistant cell line expressing high levels of P-glycoprotein were capable of transporting bile acids, albeit with a 5-fold lower affinity compared to Spgp. This finding is the first direct evidence that P-glycoprotein (Mdr1) is capable of transporting bile acids.

  6. HPLC immunoaffinity purification of rabies virus glycoprotein using immobilized antipeptide antibodies.

    PubMed

    Santucci, A; Rustici, M; Bracci, L; Lozzi, L; Soldani, P; Neri, P

    1990-02-20

    It has been reported that the acetylcholine receptor may be used by the rabies virus to concentrate at sites in proximal to peripheral nerves. It has also been reported that the binding site for the receptor is located within the 190-203 region of the virus glycoprotein on the basis of its structural homology with the toxic center of snake neurotoxins, which are well known cholinergic ligands. We prepared monoclonal antibodies against the synthetic tetradecapeptide having the same sequence as the putative binding site of the rabies virus. One of three antibodies (clone 2PV 36-74) was able to recognize both the whole virus and its peplomeric glycoprotein and could bind acetylcholine. It was also able to inhibit the binding both of alpha-bungarotoxin and rabies virus glycoprotein to the acetylcholine receptor. We have covalently bound 2PV 36-74 to an HPLC affinity column and utilized it for specific purification of rabies virus glycoprotein. The immunoaffinity chromatographic method we describe is very sensitive and highly specific. Moreover this procedure does not denature the sample and is vary rapid and efficient.

  7. Ion Mobility-Mass Correlation Trend Line Separation of Glycoprotein Digests without Deglycosylation

    PubMed Central

    Li, Hongli; Bendiak, Brad; Siems, William F.; Gang, David R.; Hill, Herbert H.

    2013-01-01

    A high-throughput ion mobility mass spectrometer (IMMS) was used to rapidly separate and analyze peptides and glycopeptides derived from glycoproteins. Two glycoproteins, human α-1-acid glycoprotein and antithrombin III were digested with trypsin and subjected to electrospray traveling wave IMMS analysis. No deglycosylation steps were performed; samples were complex mixtures of peptides and glycopeptides. Peptides and glycosylated peptides with different charge states (up to 4 charges) were observed and fell on distinguishable trend lines in 2-D IMMS spectra in both positive and negative modes. The trend line separation patterns matched between both modes. Peptide sequence was identified based on the corresponding extracted mass spectra and collision induced dissociated (CID) experiments were performed for selected compounds to prove class identification. The signal-to-noise ratio of the glycopeptides was increased dramatically with ion mobility trend line separation compared to non-trend line separation, primarily due to selection of precursor ion subsets within specific mobility windows. In addition, isomeric mobility peaks were detected for specific glycopeptides. IMMS demonstrated unique capabilities and advantages for investigating and separating glycoprotein digests in this study and suggests a novel strategy for rapid glycoproteomics studies in the future. PMID:23914139

  8. Towards crystallization of hydrophobic myelin glycoproteins: P0 and PASII/PMP22.

    PubMed

    Sedzik, Jan; Uyemura, Keiichi; Tsukihara, Tomitake

    2002-12-01

    The preparation of a pure and homogeneous protein sample at proper concentration is a prerequisite for success when attempting their crystallization for structural determination. The detergents suitable for solubilization particularly of membrane proteins are not always the best for crystallization. Myelin of the peripheral nervous system of vertebrates is the example of a membrane for which neutral or "gentle" detergents are not even strong enough to solubilize its proteins. In contrast, sodium- or lithium-dodecyl sulfate is very effective. We solubilized myelin membrane in 2%(w/v) sodium dodecyl sulfate, followed by chromatographic purification of the hydrophobic myelin glycoproteins P0 and PASII/PMP22, and finally, we have exchanged the sodium dodecyl sulfate bound to protein for other neutral detergents using ceramic hydroxyapatite column. Theoretically, we should easily exchange sodium dodecyl sulfate for any neutral detergent, but for some of them, the solubility of myelin glycoproteins is low. To monitor the potential variability in the secondary structure of glycoproteins, we have used circular dichroism. Sodium dodecyl sulfate seems to be the appropriate detergent for the purpose of purification of very hydrophobic glycoproteins, since it can be easily exchanged for another neutral detergent.

  9. Structure–Function Relationships of Glycoprotein Hormones and Their Subunits’ Ancestors

    PubMed Central

    Cahoreau, Claire; Klett, Danièle; Combarnous, Yves

    2015-01-01

    Glycoprotein hormones (GPHs) are the most complex molecules with hormonal activity. They exist only in vertebrates but the genes encoding their subunits’ ancestors are found in most vertebrate and invertebrate species although their roles are still unknown. In the present report, we review the available structural and functional data concerning GPHs and their subunits’ ancestors. PMID:25767463

  10. Paramyxovirus Glycoprotein Incorporation, Assembly and Budding: A Three Way Dance for Infectious Particle Production

    PubMed Central

    El Najjar, Farah; Schmitt, Anthony P.; Dutch, Rebecca Ellis

    2014-01-01

    Paramyxoviruses are a family of negative sense RNA viruses whose members cause serious diseases in humans, such as measles virus, mumps virus and respiratory syncytial virus; and in animals, such as Newcastle disease virus and rinderpest virus. Paramyxovirus particles form by assembly of the viral matrix protein, the ribonucleoprotein complex and the surface glycoproteins at the plasma membrane of infected cells and subsequent viral budding. Two major glycoproteins expressed on the viral envelope, the attachment protein and the fusion protein, promote attachment of the virus to host cells and subsequent virus-cell membrane fusion. Incorporation of the surface glycoproteins into infectious progeny particles requires coordinated interplay between the three viral structural components, driven primarily by the matrix protein. In this review, we discuss recent progress in understanding the contributions of the matrix protein and glycoproteins in driving paramyxovirus assembly and budding while focusing on the viral protein interactions underlying this process and the intracellular trafficking pathways for targeting viral components to assembly sites. Differences in the mechanisms of particle production among the different family members will be highlighted throughout. PMID:25105277

  11. Platelets enhance neutrophil transendothelial migration via P-selectin glycoprotein ligand-1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Platelets are increasingly recognized as important for inflammation in addition to thrombosis. Platelets promote the adhesion of neutrophils [polymorphonuclear neutrophils (PMNs)] to the endothelium; P-selectin and P-selectin glycoprotein ligand (PSGL)-1 have been suggested to participate in these i...

  12. Characterization of the 92,000-dalton glycoprotein induced by herpes simplex virus type 2.

    PubMed

    Marsden, H S; Buckmaster, A; Palfreyman, J W; Hope, R G; Minson, A C

    1984-05-01

    Evidence is presented showing that the 92,000-dalton glycoprotein (g92K) induced by herpes simplex virus (HSV) type 2 has properties distinct from those assigned to any other HSV glycoprotein. First, the carbohydrate composition and extent of sulfation differ from those of glycoproteins D and E. Second, two clonally unrelated monoclonal antibodies, AP1 and LP5, shown in this paper to specifically immunoprecipitate g92K, do not react with any of the known processed forms of glycoproteins B, C, D, and E. Third, by using HSV type 1/HSV type 2 intertypic recombinants and a simple radioimmunoassay, the target antigen of the two monoclonal antibodies was shown to map in the same region as g92K (0.846 to 0.924). Fourth, the intertypic recombinant R12-3 was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of infected cells to induce the HSV type 2 g92K and HSV type 1 gD and GE, whereas R12-1, which did not induce g92K, induced HSV-2 gE and an altered gD, providing genetic evidence that g92K is encoded, at least in part, by a different region of the genome from that encoding gD and gE.

  13. Glycoprotein gene truncation in avian metapneumovirus subtype C isolates from the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The published glycoprotein (G) gene sequences of Avian metapneumovirus subtype-C (aMPV-C) isolated from domestic turkeys and wild bids in the United States (1996-2003) remain controversial in length. To explore the relationship between G gene size variation and the year of isolation and cell cultur...

  14. Development of Recombinant Newcastle Disease Viruses Expressing the Glycoprotein (G) of Avian Metapneumovirus as Bivalent Vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, B or C, as bivalent vaccines. These recombinant viruses were slightly attenuated in vivo, yet maintaine...

  15. Function and 3D Structure of the N-Glycans on Glycoproteins

    PubMed Central

    Nagae, Masamichi; Yamaguchi, Yoshiki

    2012-01-01

    Glycosylation is one of the most common post-translational modifications in eukaryotic cells and plays important roles in many biological processes, such as the immune response and protein quality control systems. It has been notoriously difficult to study glycoproteins by X-ray crystallography since the glycan moieties usually have a heterogeneous chemical structure and conformation, and are often mobile. Nonetheless, recent technical advances in glycoprotein crystallography have accelerated the accumulation of 3D structural information. Statistical analysis of “snapshots” of glycoproteins can provide clues to understanding their structural and dynamic aspects. In this review, we provide an overview of crystallographic analyses of glycoproteins, in which electron density of the glycan moiety is clearly observed. These well-defined N-glycan structures are in most cases attributed to carbohydrate-protein and/or carbohydrate-carbohydrate interactions and may function as “molecular glue” to help stabilize inter- and intra-molecular interactions. However, the more mobile N-glycans on cell surface receptors, the electron density of which is usually missing on X-ray crystallography, seem to guide the partner ligand to its binding site and prevent irregular protein aggregation by covering oligomerization sites away from the ligand-binding site. PMID:22942711

  16. Glycoprotein Biochemistry (Biosynthesis)--A Vehicle for Teaching Many Aspects of Biochemistry and Molecular Biology.

    ERIC Educational Resources Information Center

    Cole, Clair R.; Smith, Christopher A.

    1990-01-01

    Information about the biosynthesis of the carbohydrate portions or glycans of glycoproteins is presented. The teaching of glycosylation can be used to develop and emphasize many general aspects of biosynthesis, in addition to explaining specific biochemical and molecular biological features associated with producing the oligosaccharide portions of…

  17. A vesicular stomatitis pseudovirus expressing the surface glycoproteins of influenza A virus.

    PubMed

    Cheresiz, S V; Kononova, A A; Razumova, Yu V; Dubich, T S; Chepurnov, A A; Kushch, A A; Davey, R; Pokrovsky, A G

    2014-10-01

    Pseudotyped viruses bearing the glycoprotein(s) of a donor virus over the nucleocapsid core of a surrogate virus are widely used as safe substitutes for infectious virus in virology studies. Retroviral particles pseudotyped with influenza A virus glycoproteins have been used recently for the study of influenza hemagglutinin and neuraminidase-dependent processes. Here, we report the development of vesicular-stomatitis-virus-based pseudotypes bearing the glycoproteins of influenza A virus. We show that pseudotypes bearing the hemagglutinin and neuraminidase of H5N1 influenza A virus mimic the wild-type virus in neutralization assays and sensitivity to entry inhibitors. We demonstrate the requirement of NA for the infectivity of pseudotypes and show that viruses obtained with different NA proteins are significantly different in their transduction activities. Inhibition studies with oseltamivir carboxylate show that neuraminidase activity is required for pseudovirus production, but not for the infection of target cells with H5N1-VSV pseudovirus. The HA-NA-VSV pseudoviruses have high transduction titers and better stability than the previously reported retroviral pseudotypes and can replace live influenza virus in the development of neutralization assays, screening of potential antivirals, and the study of different HA/NA reassortants.

  18. Variations in Spike Glycoprotein Gene of MERS-CoV, South Korea, 2015.

    PubMed

    Kim, Dae-Won; Kim, You-Jin; Park, Sung Han; Yun, Mi-Ran; Yang, Jeong-Sun; Kang, Hae Ji; Han, Young Woo; Lee, Han Saem; Kim, Heui Man; Kim, Hak; Kim, A-Reum; Heo, Deok Rim; Kim, Su Jin; Jeon, Jun Ho; Park, Deokbum; Kim, Joo Ae; Cheong, Hyang-Min; Nam, Jeong-Gu; Kim, Kisoon; Kim, Sung Soon

    2016-01-01

    An outbreak of nosocomial infections with Middle East respiratory syndrome coronavirus occurred in South Korea in May 2015. Spike glycoprotein genes of virus strains from South Korea were closely related to those of strains from Riyadh, Saudi Arabia. However, virus strains from South Korea showed strain-specific variations.

  19. A primer on the mechanics of P-glycoprotein the multidrug transporter.

    PubMed

    Hennessy, M; Spiers, J P

    2007-01-01

    P-glycoprotein (P-gp) the multidrug transporter is a well-characterised member of the super-family of ATP-binding cassette (ABC) transporters, and mediates the clearance of xenotoxins against steep concentration gradients at the expense of ATP hydrolysis. The primary function of this protein is to prevent the uptake of toxic compounds from the gut into the body, and to protect vital structures such as the brain, cerebrospinal fluid, testis, foetus and bone marrow against toxins. Although P-gp transports a wide range of compounds, which is advantageous, it can also be a disadvantage and may interfere with the delivery of drugs to target tissues resulting in multidrug resistance. In the present review: (i) we consider our current understanding of the structure of P-glycoprotein, (ii) discuss substrate binding and its coupling to ATPase activity, (iii) provide insight into key features which define P-glycoprotein substrates/inhibitors and the ability to predict potential substrates in silico, (iv) provide an overview of existing models of pump function and (v) present emerging concepts into the regulation of P-glycoprotein expression, with particular reference to multidrug resistance.

  20. Possible involvement of P-glycoprotein in the biliary excretion of grepafloxacin.

    PubMed

    Zhao, Ying Lan; Cai, Shao Hui; Wang, Li; Kitaichi, Kiyoyuki; Tatsumi, Yasuaki; Nadai, Masayuki; Yoshizumi, Hideo; Takagi, Kenji; Takagi, Kenzo; Hasegawa, Takaaki

    2002-03-01

    1. In the present study, we have examined the effects of the quinolones norfloxacin (NFLX), enoxacin (ENX), ofloxacin (OFLX), tosufloxacin (TFLX), lomefloxacin (LFLX), sparfloxacin (SPFX) and grepafloxacin (GPFX) on the efflux of doxorubicin from mouse leukaemia P388/ADR cells expressing P-glycoprotein. The relationship between their partition coefficients (hydrophobicity) and effluxing potencies was also elucidated. 2. Both TFLX and SPFX strongly increased the intracellular accumulation of doxorubicin (5 micromol/L) in P388/ADR cells, but had no effect on P388/S cells not expressing P-glycoprotein. The rank of order of the potency of the quinolones (TFLX > SPFX > GPFX > NFLX) was not related directly to their hydrophobicity. These results suggest that some quinolones can reverse anticancer drug resistance. 3. Because GPFX is more highly excreted into the bile than other known quinolones, the effects of doxorubicin (10 mg/kg) or the well-known inhibitors of P-glycoprotein, namely cyclosporine A (10 mg/kg) and erythromycin (100 mg/kg), on the biliary excretion of GPFX at steady state was studied in rats. 4. Doxorubicin, cyclosporine A and erythromycin significantly decreased the biliary clearance of GPFX. Cyclosporine A and erythromycin had a much stronger inhibitory effect on the biliary excretion of GPFX than doxorubicin. These results suggest the possibility that GPFX is, at least in part, excreted into the bile by a P-glycoprotein-mediated transport mechanism.

  1. Rapid N-glycan release from glycoproteins using immobilized PNGase F microcolumns.

    PubMed

    Szigeti, Marton; Bondar, Judit; Gjerde, Douglas; Keresztessy, Zsolt; Szekrenyes, Akos; Guttman, Andras

    2016-10-01

    N-glycosylation profiling of glycoprotein biotherapeutics is an essential step in each phase of product development in the biopharmaceutical industry. For example, during clone selection, hundreds of clones should be analyzed quickly from limited amounts of samples. On the other hand, identification of disease related glycosylation alterations can serve as early indicators (glycobiomarkers) for various pathological conditions in the biomedical field. Therefore, there is a growing demand for rapid and easy to automate sample preparation methods for N-glycosylation analysis. In this paper, we report on the design and implementation of immobilized recombinant glutathione-S-transferase (GST) tagged PNGase F enzyme microcolumns for rapid and efficient removal of N-linked carbohydrates from glycoproteins. Digestion speed and efficiency were compared to conventional in-solution based protocols. The use of PNGase F functionalized microcolumns resulted in efficient N-glycan removal in 10min from all major N-linked glycoprotein types of: (i) neutral (IgG), (ii) highly sialylated (fetuin), and (iii) high mannose (ribonuclease B) carbohydrate containing glycoprotein standards. The approach can be readily applied to automated sample preparation systems, such as liquid handling robots.

  2. Serum glycoprotein-derived N- and O-linked glycans as cancer biomarkers

    PubMed Central

    Lan, Ying; Hao, Cui; Zeng, Xuan; He, Yanli; Zeng, Pengjiao; Guo, Zhihua; Zhang, Lijuan

    2016-01-01

    Early detection of cancer is the key to improving survival. Since most clinically used serum cancer biomarkers are either glycoproteins or glycan structures that can be recognized by specific monoclonal antibodies, developing glycan structure-based biomarkers from human serum/plasma glycoproteins through mass spectrometry (MS) analysis are active research field during the past decades. Numerous studies have shown that changes in serum/plasma glycan structures occur during cancer initiation, progression, and treatment. This review describes N- and O-linked glycan structures identified from serum/plasma glycoprotein (s) by MS analysis with focus on alterations associated with different types of human cancers. The global changes in serum N- and O-linked glycan structures, especially the glycans that are not made by cancer cells such as B lymphocyte-derived IgG and liver-synthesized haptoglobin and α1 acid glycoprotein, suggest that glycans might be the long sought diagnostic biomarkers associated with system malfunction in the blood circulation of cancer patients. Therefore, N- and O-linked glycan structures have great potential to serve as cancer diagnosis, prognosis, and treatment monitoring biomarkers to facilitate personalized medicine. PMID:27904760

  3. Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B

    SciTech Connect

    Backovic, Marija; Longnecker, Richard; Jardetzky, Theodore S

    2009-03-16

    Epstein-Barr virus (EBV) is a herpesvirus that is associated with development of malignancies of lymphoid tissue. EBV infections are life-long and occur in >90% of the population. Herpesviruses enter host cells in a process that involves fusion of viral and cellular membranes. The fusion apparatus is comprised of envelope glycoprotein B (gB) and a heterodimeric complex made of glycoproteins H and L. Glycoprotein B is the most conserved envelope glycoprotein in human herpesviruses, and the structure of gB from Herpes simplex virus 1 (HSV-1) is available. Here, we report the crystal structure of the secreted EBV gB ectodomain, which forms 16-nm long spike-like trimers, structurally homologous to the postfusion trimers of the fusion protein G of vesicular stomatitis virus (VSV). Comparative structural analyses of EBV gB and VSV G, which has been solved in its pre and postfusion states, shed light on gB residues that may be involved in conformational changes and membrane fusion. Also, the EBV gB structure reveals that, despite the high sequence conservation of gB in herpesviruses, the relative orientations of individual domains, the surface charge distributions, and the structural details of EBV gB differ from the HSV-1 protein, indicating regions and residues that may have important roles in virus-specific entry.

  4. Tunicamycins: translocase-I inhibitors that target bacterial cell wall and mammalian N-glycoproteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tunicamycins, streptovirudins, and corynetoxins are natural products that target the biosynthesis of bacterial peptidoglycan and eukaryotic N-glycoproteins. The mechanism of action is known, with the tunicamycin-Mg**2+ complex established as a transition state analog for hexosamine-1-phosphate:pren...

  5. Release of oligomannoside-type glycans as a marker of the degradation of newly synthesized glycoproteins.

    PubMed Central

    Villers, C; Cacan, R; Mir, A M; Labiau, O; Verbert, A

    1994-01-01

    The N-glycosylation of proteins is accompanied by the release of soluble oligosaccharide material. Besides oligosaccharide phosphates originating from the cleavage of lipid intermediates, neutral free oligosaccharides represent the major part of this material and are heterogeneous depending on whether the reducing end has one or two N-acetylglucosamine residues. The present study focuses on the intracellular origin of neutral free oligosaccharides in a CHO cell line. Kinetic and pulse-chase experiments clearly indicate that oligosaccharides possessing a chitobiosyl unit are derived from oligosaccharide pyrophosphodolichol, whereas oligosaccharides possessing one N-acetyl-glucosamine residue are derived from newly synthesized glycoprotein. This relationship is confirmed by comparing the glycosylation pattern of lipid donors and glycoproteins with those of neutral free oligosaccharides under various incubation conditions (inhibition of protein synthesis, presence of processing inhibitors, presence or absence of glucose). Degradation of newly synthesized glycoprotein and formation of neutral oligosaccharides with one N-acetylglucosamine residue are inhibited at 16 degrees C but not affected by lysosomotropic agents such as leupeptin or NH4Cl. Together with the fact that the degradation of newly synthesized glycoproteins and the subsequent release of the glycan are recovered in permeabilized cells, these results suggest that this phenomenon occurs in the rough endoplasmic reticulum or in a closely related compartment. PMID:8129711

  6. Quantitative assessment of p-glycoprotein expression and function using confocal image analysis.

    PubMed

    Hamrang, Zahra; Arthanari, Yamini; Clarke, David; Pluen, Alain

    2014-10-01

    P-glycoprotein is implicated in clinical drug resistance; thus, rapid quantitative analysis of its expression and activity is of paramout importance to the design and success of novel therapeutics. The scope for the application of quantitative imaging and image analysis tools in this field is reported here at "proof of concept" level. P-glycoprotein expression was utilized as a model for quantitative immunofluorescence and subsequent spatial intensity distribution analysis (SpIDA). Following expression studies, p-glycoprotein inhibition as a function of verapamil concentration was assessed in two cell lines using live cell imaging of intracellular Calcein retention and a routine monolayer fluorescence assay. Intercellular and sub-cellular distributions in the expression of the p-glycoprotein transporter between parent and MDR1-transfected Madin-Derby Canine Kidney cell lines were examined. We have demonstrated that quantitative imaging can provide dose-response parameters while permitting direct microscopic analysis of intracellular fluorophore distributions in live and fixed samples. Analysis with SpIDA offers the ability to detect heterogeniety in the distribution of labeled species, and in conjunction with live cell imaging and immunofluorescence staining may be applied to the determination of pharmacological parameters or analysis of biopsies providing a rapid prognostic tool.

  7. a1-acid glycoprotein inhibits lipogenesis in neonatal swine adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serum a1-acid glycoprotein (AGP) is elevated during late gestation and at birth in the pig and rapidly declines postnatally. In contrast, the pig is born with minimal lipid stores in the adipose tissue, but rapidly accumulates lipid during the first week. The present study examined if AGP can affe...

  8. Alpha 1-acid glycoprotein has immunomodulatory effects in neonatal swine adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alpha 1-acid glycoprotein (AGP) is the most abundant protein in serum of neonatal swine. This protein functions as an immunomodulator in the pig. Recent work has demonstrated that adipose tissue can express AGP mRNA, as well as numerous cytokine mRNA. The present study was designed to determine i...

  9. Regulation of alpha-1 acid glycoprotein synthesis by porcine hepatocytes in monolayer culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alpha 1-acid glycoprotein (AGP, ORM-1) is a highly glycosylated mammalian acute phase protein, which is synthesized primarily in the liver and represents the major serum protein in newborn pigs. Recent data have suggested that the pig is unique in that AGP is a negative acute phase protein in this ...

  10. Dynamic Viral Glycoprotein Machines: Approaches for Probing Transient States That Drive Membrane Fusion

    PubMed Central

    Garcia, Natalie K.; Lee, Kelly K.

    2016-01-01

    The fusion glycoproteins that decorate the surface of enveloped viruses undergo dramatic conformational changes in the course of engaging with target cells through receptor interactions and during cell entry. These refolding events ultimately drive the fusion of viral and cellular membranes leading to delivery of the genetic cargo. While well-established methods for structure determination such as X-ray crystallography have provided detailed structures of fusion proteins in the pre- and post-fusion fusion states, to understand mechanistically how these fusion glycoproteins perform their structural calisthenics and drive membrane fusion requires new analytical approaches that enable dynamic intermediate states to be probed. Methods including structural mass spectrometry, small-angle X-ray scattering, and electron microscopy have begun to provide new insight into pathways of conformational change and fusion protein function. In combination, the approaches provide a significantly richer portrait of viral fusion glycoprotein structural variation and fusion activation as well as inhibition by neutralizing agents. Here recent studies that highlight the utility of these complementary approaches will be reviewed with a focus on the well-characterized influenza virus hemagglutinin fusion glycoprotein system. PMID:26761026

  11. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits.

    PubMed

    Robinson, James E; Hastie, Kathryn M; Cross, Robert W; Yenni, Rachael E; Elliott, Deborah H; Rouelle, Julie A; Kannadka, Chandrika B; Smira, Ashley A; Garry, Courtney E; Bradley, Benjamin T; Yu, Haini; Shaffer, Jeffrey G; Boisen, Matt L; Hartnett, Jessica N; Zandonatti, Michelle A; Rowland, Megan M; Heinrich, Megan L; Martínez-Sobrido, Luis; Cheng, Benson; de la Torre, Juan C; Andersen, Kristian G; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Gbakie, Michael; Kanneh, Lansana; Koroma, Veronica J; Fonnie, Richard; Jalloh, Simbirie C; Kargbo, Brima; Vandi, Mohamed A; Gbetuwa, Momoh; Ikponmwosa, Odia; Asogun, Danny A; Okokhere, Peter O; Follarin, Onikepe A; Schieffelin, John S; Pitts, Kelly R; Geisbert, Joan B; Kulakoski, Peter C; Wilson, Russell B; Happi, Christian T; Sabeti, Pardis C; Gevao, Sahr M; Khan, S Humarr; Grant, Donald S; Geisbert, Thomas W; Saphire, Erica Ollmann; Branco, Luis M; Garry, Robert F

    2016-05-10

    Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design.

  12. Progesterone binding to the tryptophan residues of human alpha1-acid glycoprotein.

    PubMed

    Albani, J R

    2006-11-06

    Binding studies between progesterone and alpha1-acid glycoprotein allowed us to demonstrate that the binding site of progesterone contains one hydrophobic tryptophan residue and that the structure of the protein is not altered upon binding. The data obtained at saturated concentrations of progesterone clearly reveal the type of interaction at physiological levels.

  13. 21 CFR 866.5440 - Beta-2-glycoprotein III immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Beta-2-glycoprotein III immunological test system. 866.5440 Section 866.5440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  14. 21 CFR 866.5430 - Beta-2-glycoprotein I immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Beta-2-glycoprotein I immunological test system. 866.5430 Section 866.5430 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  15. 21 CFR 866.5430 - Beta-2-glycoprotein I immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Beta-2-glycoprotein I immunological test system. 866.5430 Section 866.5430 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  16. 21 CFR 866.5420 - Alpha-1-glycoproteins immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alpha-1-glycoproteins immunological test system. 866.5420 Section 866.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  17. 21 CFR 866.5420 - Alpha-1-glycoproteins immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alpha-1-glycoproteins immunological test system. 866.5420 Section 866.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  18. 21 CFR 866.5440 - Beta-2-glycoprotein III immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Beta-2-glycoprotein III immunological test system. 866.5440 Section 866.5440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  19. Monoclonal Antibodies for Dengue Virus prM Glycoprotein Protect Mice against Lethal Dengue Infection

    DTIC Science & Technology

    1989-09-15

    Nile virus and a prelysozomal endosome prM glycoprotein of dengue virus can also be required for viral replication . PrM Mabs 2H2 protective against...tech- bodies can prevent lethal alphavirus encepha- niques to preserve immunogenicity, to deter- litis. Nature 297: 70-72. UI:82173237 mine whether

  20. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits

    PubMed Central

    Robinson, James E.; Hastie, Kathryn M.; Cross, Robert W.; Yenni, Rachael E.; Elliott, Deborah H.; Rouelle, Julie A.; Kannadka, Chandrika B.; Smira, Ashley A.; Garry, Courtney E.; Bradley, Benjamin T.; Yu, Haini; Shaffer, Jeffrey G.; Boisen, Matt L.; Hartnett, Jessica N.; Zandonatti, Michelle A.; Rowland, Megan M.; Heinrich, Megan L.; Martínez-Sobrido, Luis; Cheng, Benson; de la Torre, Juan C.; Andersen, Kristian G.; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Gbakie, Michael; Kanneh, Lansana; Koroma, Veronica J.; Fonnie, Richard; Jalloh, Simbirie C.; Kargbo, Brima; Vandi, Mohamed A.; Gbetuwa, Momoh; Ikponmwosa, Odia; Asogun, Danny A.; Okokhere, Peter O.; Follarin, Onikepe A.; Schieffelin, John S.; Pitts, Kelly R.; Geisbert, Joan B.; Kulakoski, Peter C.; Wilson, Russell B.; Happi, Christian T.; Sabeti, Pardis C.; Gevao, Sahr M.; Khan, S. Humarr; Grant, Donald S.; Geisbert, Thomas W.; Saphire, Erica Ollmann; Branco, Luis M.; Garry, Robert F.

    2016-01-01

    Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design. PMID:27161536

  1. Glycoprotein enrichment method using a selective magnetic nano-probe platform (MNP) functionalized with lectins.

    PubMed

    Cova, Marta; Oliveira-Silva, Rui; Ferreira, José Alexandre; Ferreira, Rita; Amado, Francisco; Daniel-da-Silva, Ana Luísa; Vitorino, Rui

    2015-01-01

    Protein post-translational modifications (PTMs) have increasingly become a research field of incredible importance to fully understand the regulation of biological processes in health and disease. Among PTMs, glycosylation is one of the most studied for which contributed the development and improvement of enrichment techniques. Nowadays, glycoprotein enrichment methods are based on lectin affinity, covalent interactions, and hydrophilic interaction liquid chromatography (HILIC). Nonetheless, the nanotechnology era has fetched new methods to enrich glycoproteins from complex samples as human biological fluids. For instance, magnetic nanoparticles (MNPs) are being used as an interesting enrichment approach allowing a better characterization of glycoproteins and glycopeptides.In this chapter, we describe an enrichment method based on MNPs functionalized with lectins (Concavalin A, wheat germ agglutinin, and Maackia amurensis lectin) to enrich specific sets of glycoproteins from biological fluids. Moreover, it is proposed a bioinformatic strategy to deal with data retrieved from mass spectrometry analysis of enriched samples aiming the identification of relevant biological processes modulated by a given stimuli and, ultimately, of new biomarkers for disease screening/management.

  2. A high boronate avidity monolithic capillary for the selective enrichment of trace glycoproteins.

    PubMed

    Li, Daojin; Li, Yang; Li, Xinglin; Bie, Zijun; Pan, Xianghua; Zhang, Qian; Liu, Zhen

    2015-03-06

    Boronate affinity materials, as effective sample enrichment sorbents for glycoproteomic analysis, have attracted increasing attention in recent years. However, most of boronate affinity materials suffer from an apparent limitation, limited binding strength. As a result, extraction of glycoproteins of trace concentration is rather difficult or impossible. In this study, we present a high boronate avidity monolithic capillary. Branched polyethyleneimine (PEI) was used as a scaffold to amplify the number of boronic acid moieties. While 2,4-difluoro-3-formyl-phenylboronic acid (DFFPBA), which exhibited ultrahigh affinity toward cis-diol-containing compounds, was employed as an affinity ligand. Due to the PEI-assisted synergistic multivalent binding, the monolithic column exhibited high boronate avidity toward glycoproteins, with binding constants of 10(-6)-10(-7)M. Such binding strength was the highest among already reported boronic acid-functionalized materials that can be used for glycoproteomic analysis. Besides, the boronate avidity monolithic column exhibited one additional beneficial feature, lowered binding pH (≥6.5). These features greatly favored the selective enrichment of trace glycoproteins from real samples. The feasibility for practical applications was demonstrated with the selective enrichment of trace glycoproteins in human saliva. As compared with other boronate avidity/affinity materials, the boronate avidity monolithic capillary exhibited the best performance.

  3. Reverse lectin ELISA for detecting fucosylated forms of α1-acid glycoprotein associated with hepatocellular carcinoma

    PubMed Central

    Stål, Per; Zenlander, Robin; Edenvik, Pia; Alexandersson, Catharina; Haglund, Mats; Rydén, Ingvar; Påhlsson, Peter

    2017-01-01

    Altered fucosylation of glycoproteins is associated with development of hepatocellular carcinoma (HCC). Lectins have been commonly used to assay changes in fucosylation of plasma glycoproteins. In the present study a recombinantly engineered form of the fucose binding lectin Aleuria aurantia (AAL) consisting of a single binding site for fucose (S2), was used to construct a reverse lectin ELISA method. Microtiter plates coated with the S2 lectin were used to capture glycoproteins from plasma samples followed by antibody detection of S2-bound fucosylated α1-acid glycoprotein (S2-bound AGP). The method was used to compare the level of S2-bound AGP in serum samples from a small cohort of patients with hepatitis, cirrhosis or HCC. Using the reverse S2 lectin ELISA it was shown that the levels of S2-bound AGP was significantly higher in HCC patients compared to non-cancer patients and that there was also a significant elevation of S2-bound AGP in HCC patients compared to cirrhosis patients. There was no correlation between the level of S2-bound AGP and total AGP concentration. The performance of S2-bound AGP in differentiating HCC from cirrhosis samples or hepatitis samples were compared to other markers. A combination of S2-bound AGP, α-fetoprotein and AGP concentration showed performances giving area under receiver operating curves of 0.87 and 0.95 respectively. PMID:28296934

  4. Viral Glycoprotein Complex Formation, Essential Function and Immunogenicity in the Guinea Pig Model for Cytomegalovirus

    PubMed Central

    Maddux, Sarah; Choi, K. Yeon; McGregor, Alistair

    2015-01-01

    Development of a cytomegalovirus (CMV) vaccine is a major public health priority due to the risk of congenital infection. A key component of a vaccine is thought to be an effective neutralizing antibody response against the viral glycoproteins necessary for cell entry. Species specificity of human CMV (HCMV) precludes direct studies in an animal model. The guinea pig is the only small animal model for congenital cytomegalovirus infection. Analysis of the guinea pig CMV (GPCMV) genome indicates that it potentially encodes homologs to the HCMV glycoproteins (including gB, gH, gL, gM, gN and gO) that form various cell entry complexes on the outside of the virus: gCI (gB); gCII (gH/gL/gO); gCIII (gM/gN). The gB homolog (GP55) has been investigated as a candidate subunit vaccine but little is known about the other homolog proteins. GPCMV glycoproteins were investigated by transient expression studies which indicated that homolog glycoproteins to gN and gM, or gH, gL and gO were able to co-localize in cells and generate respective homolog complexes which could be verified by immunoprecipitation assays. ELISA studies demonstrated that the individual complexes were highly immunogenic in guinea pigs. The gO (GP74) homolog protein has 13 conserved N-glycosylation sites found in HCMV gO. In transient expression studies, only the glycosylated protein is detected but in virus infected cells both N-glycosylated and non-glycosylated gO protein were detected. In protein interaction studies, a mutant gO that lacked N-glycosylation sites had no impact on the ability of the protein to interact with gH/gL which indicated a potential alternative function associated with these sites. Knockout GPCMV BAC mutagenesis of the respective glycoprotein genes (GP55 for gB, GP75 for gH, GP115 for gL, GP100 for gM, GP73 for gN and GP74 for gO) in separate reactions was lethal for virus regeneration on fibroblast cells which demonstrated the essential nature of the GPCMV glycoproteins. The gene

  5. Blood-brain barrier P-glycoprotein function in Alzheimer's disease.

    PubMed

    van Assema, Daniëlle M E; Lubberink, Mark; Bauer, Martin; van der Flier, Wiesje M; Schuit, Robert C; Windhorst, Albert D; Comans, Emile F I; Hoetjes, Nikie J; Tolboom, Nelleke; Langer, Oliver; Müller, Markus; Scheltens, Philip; Lammertsma, Adriaan A; van Berckel, Bart N M

    2012-01-01

    A major pathological hallmark of Alzheimer's disease is accumulation of amyloid-β in senile plaques in the brain. Evidence is accumulating that decreased clearance of amyloid-β from the brain may lead to these elevated amyloid-β levels. One of the clearance pathways of amyloid-β is transport across the blood-brain barrier via efflux transporters. P-glycoprotein, an efflux pump highly expressed at the endothelial cells of the blood-brain barrier, has been shown to transport amyloid-β. P-glycoprotein function can be assessed in vivo using (R)-[(11)C]verapamil and positron emission tomography. The aim of this study was to assess blood-brain barrier P-glycoprotein function in patients with Alzheimer's disease compared with age-matched healthy controls using (R)-[(11)C]verapamil and positron emission tomography. In 13 patients with Alzheimer's disease (age 65 ± 7 years, Mini-Mental State Examination 23 ± 3), global (R)-[(11)C]verapamil binding potential values were increased significantly (P = 0.001) compared with 14 healthy controls (aged 62 ± 4 years, Mini-Mental State Examination 30 ± 1). Global (R)-[(11)C]verapamil binding potential values were 2.18 ± 0.25 for patients with Alzheimer's disease and 1.77 ± 0.41 for healthy controls. In patients with Alzheimer's disease, higher (R)-[(11)C]verapamil binding potential values were found for frontal, parietal, temporal and occipital cortices, and posterior and anterior cingulate. No significant differences between groups were found for medial temporal lobe and cerebellum. These data show altered kinetics of (R)-[(11)C]verapamil in Alzheimer's disease, similar to alterations seen in studies where P-glycoprotein is blocked by a pharmacological agent. As such, these data indicate that P-glycoprotein function is decreased in patients with Alzheimer's disease. This is the first direct evidence that the P-glycoprotein transporter at the blood-brain barrier is compromised in sporadic

  6. Viral Glycoprotein Complex Formation, Essential Function and Immunogenicity in the Guinea Pig Model for Cytomegalovirus.

    PubMed

    Coleman, Stewart; Hornig, Julia; Maddux, Sarah; Choi, K Yeon; McGregor, Alistair

    2015-01-01

    Development of a cytomegalovirus (CMV) vaccine is a major public health priority due to the risk of congenital infection. A key component of a vaccine is thought to be an effective neutralizing antibody response against the viral glycoproteins necessary for cell entry. Species specificity of human CMV (HCMV) precludes direct studies in an animal model. The guinea pig is the only small animal model for congenital cytomegalovirus infection. Analysis of the guinea pig CMV (GPCMV) genome indicates that it potentially encodes homologs to the HCMV glycoproteins (including gB, gH, gL, gM, gN and gO) that form various cell entry complexes on the outside of the virus: gCI (gB); gCII (gH/gL/gO); gCIII (gM/gN). The gB homolog (GP55) has been investigated as a candidate subunit vaccine but little is known about the other homolog proteins. GPCMV glycoproteins were investigated by transient expression studies which indicated that homolog glycoproteins to gN and gM, or gH, gL and gO were able to co-localize in cells and generate respective homolog complexes which could be verified by immunoprecipitation assays. ELISA studies demonstrated that the individual complexes were highly immunogenic in guinea pigs. The gO (GP74) homolog protein has 13 conserved N-glycosylation sites found in HCMV gO. In transient expression studies, only the glycosylated protein is detected but in virus infected cells both N-glycosylated and non-glycosylated gO protein were detected. In protein interaction studies, a mutant gO that lacked N-glycosylation sites had no impact on the ability of the protein to interact with gH/gL which indicated a potential alternative function associated with these sites. Knockout GPCMV BAC mutagenesis of the respective glycoprotein genes (GP55 for gB, GP75 for gH, GP115 for gL, GP100 for gM, GP73 for gN and GP74 for gO) in separate reactions was lethal for virus regeneration on fibroblast cells which demonstrated the essential nature of the GPCMV glycoproteins. The gene

  7. Modularity of the oncoprotein-like properties of platelet glycoprotein Ibalpha.

    PubMed

    Li, Youjun; Lu, Jie; Prochownik, Edward V

    2009-01-16

    Glycoprotein Ib alpha (GpIbalpha), a trans-membrane glycoprotein, is expressed on the surface of megakaryocytes and platelets, where, in association with glycoprotein Ib beta, glycoprotein V, and glycoprotein IX, it normally forms the von Willebrand factor receptor (vWFR). A fully functional vWFR is necessary for platelet attachment, aggregation, and activation and has also been shown to regulate megakaryocyte ploidy. We have recently shown that the gene encoding GpIbalpha is a transcriptional target for the c-Myc oncoprotein and is more widely expressed than previously thought, with particularly high levels occurring in transformed cells. Indeed, GpIbalpha can substitute for c-Myc in promoting growth, transformation, and genomic instability. In the current work, we have demonstrated that, despite the promiscuous expression of GpIbalpha, other vWFR subunits remain largely restricted to megakaryocytes. We have characterized a panel of GpIbalpha mutants and shown that some regions of the protein essential for vWFR activity are not necessary for c-Myc-like functions. Specifically, the six C-terminal amino acids of the cytoplasmic domain, which mediate vWFR signaling, are entirely dispensible for the c-Myc-like functions of GpIbalpha. Instead, these require a more membrane-proximal filamin-binding domain. Also important is the GpIbalpha signal peptide, which, in the absence of other vWFR subunits, directs GpIbalpha to the endoplasmic reticulum rather than the membrane. Together, these results provide strong evidence that the domains of GpIbalpha mediating c-Myc-like functions are modular, genetically distinct, and independent of those involved in vWFR signaling.

  8. Computational analysis reveals abundance of potential glycoproteins in Archaea, Bacteria and Eukarya.

    PubMed

    Zafar, Sadia; Nasir, Arshan; Bokhari, Habib

    2011-01-01

    Glycosylation is the most common type of post-translational modification (PTM) and is known to affect protein stability, folding and activity. Inactivity of enzymes mediating glycosylation can result in serious disorders including colon cancer and brain disorders. Out of five main types of glycosylation, N-linked glycosylation is most abundant and characterized by the addition of a sugar group to an Asparagine residue at the N-X-S/T motif. Enzyme mediating such transfer is known as oligosaccharyl transferase (OST). It has been hypothesized before that a significant number of proteins serve as glycoproteins. In this study, we used programming implementations of Python to statistically quantify the representation of glycoproteins by scanning all the available proteome sequence data at ExPASy server for the presence of glycoproteins and also the enzyme which plays critical role in glycosylation i.e. OST. Our results suggest that more than 50% of the proteins carry N-X-S/T motif i.e. they could be potential glycoproteins. Furthermore, approximately 28-36% (1/3) of proteins possesses signature motifs which are characteristic features of enzyme OST. Quantifying this bias individually reveals that both the number of proteins tagged with N-X-S/T motif and the average number of motifs per protein is significantly higher in case of eukaryotes when compared to prokaryotes. In the light of these results we conclude that there is a significant bias in the representation of glycoproteins in the proteomes of all species and is manifested substantially in eukaryotes and claim for glycosylation to be the most common and ubiquitous PTM in cells, especially in eukaryotes.

  9. Immunochemical analysis of the H and M glycoproteins from Histoplasma capsulatum.

    PubMed Central

    Zancopé-Oliveira, R M; Bragg, S L; Reiss, E; Peralta, J M

    1994-01-01

    The H and M antigens of Histoplasma capsulatum are glycoproteins, and both possess epitopes found on the C antigen, a cross-reactive galactomannan shared by the major genera of systemic dimorphic fungi. We modified the H and M glycoproteins by chemical and enzymatic digestion to determine the relative contributions of the carbohydrate and protein moieties to the immunological reactivities and the apparent molecular weights of these antigens. Endoglycosidases with known action patterns were used to determine the nature of the glycopeptide bonds in the H and M antigens. The effects of these treatments were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, lectin binding, and enzyme-linked immunoelectrotransfer blots probed with polyclonal and monoclonal antibodies (MAbs). Oxidation with 100 mM periodate destroyed the common fungal epitope recognized by MAb CA1-CB4 and nearly all of the concanavalin A-binding sites on both the H and M antigens; it also caused the molecular mass of the M antigen to shift from 94 to 88 kDa. Treatment of samples with O-glycanase had little, if any, effect on the H and M glycoproteins. On the other hand, treatments with endo-beta-N-acetylglucosaminidase H, and particularly peptide N-glycoproteins F (PNGase F), produced pronounced shifts in the M(r) but did not completely eliminate concanavalin A- or MAb CA1-CB4-binding sites. PNGase F treatment caused the molecular mass of the H antigen to shift from 116 to 94 kDa and that of the M antigen to shift from 94 to 74 kDa. The susceptibilities of the H and M glycoproteins to endo-N-acetyl-beta-D-glucosaminidases suggest that their glycosidic moieties are N linked.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8556502

  10. Emergence of an Ancestral Glycoprotein Hormone in the Pituitary of the Sea Lamprey, a Basal Vertebrate.

    PubMed

    Sower, Stacia A; Decatur, Wayne A; Hausken, Krist N; Marquis, Timothy J; Barton, Shannon L; Gargan, James; Freamat, Mihael; Wilmot, Michael; Hollander, Lian; Hall, Jeffrey A; Nozaki, Masumi; Shpilman, Michal; Levavi-Sivan, Berta

    2015-08-01

    The gnathostome (jawed vertebrates) classical pituitary glycoprotein hormones, FSH, LH, and TSH, consist of a common α-subunit (GpA1) and unique β-subunits (Gpβ1, -2, and -3), whereas a recently identified pituitary glycoprotein hormone, thyrostimulin, consists of GpA2 and GpB5. This paper reports the identification, expression, and function of an ancestral, nonclassical, pituitary heterodimeric glycoprotein hormone (GpH) consisting of the thyrostimulin A2 subunit with the classical β-subunit in the sea lamprey, Petromyzon marinus, a jawless basal vertebrate. Lamprey (l) GpA2, and lGpHβ were shown to form a heterodimer by coimmunoprecipitation of lGpA2 with FLAG-tagged lGpHβ after the overexpression in transiently transfected COS7 cells using a bipromoter vector. Dual-label fluorescent in situ hybridization and immunohistochemistry showed the coexpression of individual subunits in the proximal pars distalis of the pituitary. GnRH-III (1μΜ) significantly increased the expression of lGpHβ and lGpA2 in in vitro pituitary culture. Recombinant lamprey GpH was constructed by tethering the N terminal of lGpA2 to the C terminal of lGpHβ with a linker region composed of six histidine residues followed by three glycine-serine repeats. This recombinant lamprey GpH activated the lamprey glycoprotein hormone receptor I as measured by increased cAMP/luciferase activity. These data are the first to demonstrate a functional, unique glycoprotein heterodimer that is not found in any other vertebrate. These data suggest an intermediate stage of the structure-function of the gonadotropin/thyroid-stimulating hormone in a basal vertebrate, leading to the emergence of the highly specialized gonadotropin hormones and thyroid stimulating hormones in gnathostomes.

  11. Cell-wall polysaccharides and glycoproteins of parenchymatous tissues of runner bean (Phaseolus coccineus).

    PubMed

    Ryden, P; Selvendran, R R

    1990-07-15

    1. Polymers were solubilized from the cell walls of parenchyma from mature runner-bean pods with minimum degradation by successive extractions with cyclohexane-trans-1,2-diamine-NNN'N'-tetra-acetate (CDTA), Na2CO3 and KOH to leave the alpha-cellulose residue, which contained cross-linked pectic polysaccharides and Hyp-rich glycoproteins. These were solubilized with chlorite/acetic acid and cellulase. The polymers were fractionated by anion-exchange chromatography, and fractions were subjected to methylation analysis. 2. The pectic polysaccharides differed in their ease of extraction, and a small proportion were highly cross-linked. The bulk of the pectic polysaccharides solubilized by CDTA and Na2CO3 were less branched than those solubilized by KOH. There was good evidence that most of the pectic polysaccharides were not degraded during extraction. 3. The protein-containing fractions included Hyp-rich and Hyp-poor glycoproteins associated with easily extractable pectic polysaccharides, Hyp-rich glycoproteins solubilized with 4M-KOH+borate, the bulk of which were not associated with pectic polysaccharides, and highly cross-linked Hyp-rich glycoproteins. 4. Isodityrosine was not detected, suggesting that it does not have a (major) cross-linking role in these walls. Instead, it is suggested that phenolics, presumably linked to C-5 of 3,5-linked Araf residues of Hyp-rich glycoproteins, serve to cross-link some of the polymers. 5. There were two main types of xyloglucan, with different degrees of branching. The bulk of the less branched xyloglucans were solubilized by more-concentrated alkali. The anomeric configurations of the sugars in one of the highly branched xyloglucans were determined by 13C-n.m.r. spectroscopy. 6. The structural features of the cell-wall polymers and complexes are discussed in relation to the structure of the cell walls of parenchyma tissues.

  12. Cytoplasmic tail length influences fatty acid selection for acylation of viral glycoproteins.

    PubMed Central

    Veit, M; Reverey, H; Schmidt, M F

    1996-01-01

    We report remarkable differences in the fatty acid content of thioester-type acylated glycoproteins of enveloped viruses from mammalian cells. The E2 glycoprotein of Semliki Forest virus contains mainly palmitic acid like most other palmitoylated proteins analysed so far. However, the other glycoprotein (E1) of the same virus, as well as the HEF (haemagglutinin esterase fusion) glycoprotein of influenza C virus, are unique in this respect because they are acylated primarily with stearic acid. Comparative radiolabelling of uninfected cells with different fatty acids suggests that stearate may also be the prevailing fatty acid in some cellular acylproteins. To look for further differences between palmitoylated and stearoylated glycoproteins we characterized stearoylation in more detail. We identified the acylation site of HEF as a cysteine residue located at the boundary between the transmembrane region and the cytoplasmic tail. The attachment of stearate to HEF and E1 occurs post-translationally in a pre-Golgi compartment. Thus, stearoylated and palmitoylated proteins cannot be discriminated on the basis of the fatty acid linkage site or the intracellular compartment, where acylation occurs. However, stearoylated acylproteins contain a very short, positively charged cytoplasmic tail, whereas in palmitoylated proteins this molecular region is longer. Replacing the short cytoplasmic tail of stearoylated HEF with the long influenza A virus haemagglutinin (HA) tail in an HEF-HA chimera, and subsequent vaccinia T7 expression in CV-1 cells, yielded proteins with largely palmitic acid bound. The reverse chimera, HA-HEF with a short cytoplasmic tail was not fatty acylated at all during expression, indicating that conformational or topological constraints control fatty acid transfer. PMID:8761467

  13. HNK-1 Carrier Glycoproteins Are Decreased in the Alzheimer's Disease Brain.

    PubMed

    García-Ayllón, María-Salud; Botella-López, Arancha; Cuchillo-Ibañez, Inmaculada; Rábano, Alberto; Andreasen, Niels; Blennow, Kaj; Ávila, Jesús; Sáez-Valero, Javier

    2017-01-01

    The human natural killer-1 (HNK-1), 3-sulfonated glucuronic acid, is a glycoepitope marker of cell adhesion that participates in cell-cell and cell-extracellular matrix interactions and in neurite growth. Very little is known about the regulation of the HNK-1 glycan in neurodegenerative disease, particularly in Alzheimer's disease (AD). In this study, we investigate changes in the levels of HNK-1 carrier glycoproteins in AD. We demonstrate an overall decrease in HNK-1 immunoreactivity in glycoproteins extracted from the frontal cortex of AD subjects, compared with levels from non-demented controls (NDC). Immunoblotting of ventricular post-mortem and lumbar ante-mortem cerebrospinal fluid with HNK-1 antibodies indicate similar levels of carrier glycoproteins in AD and NDC samples. Decrease in HNK-1 carrier glycoproteins were not paralleled by changes in messenger RNA (mRNA) levels of the enzymes involved in the synthesis of the glycoepitope, β-1,4-galactosyltransferase (β4GalT), glucuronyltransferases GlcAT-P and GlcAT-S, or sulfotransferase HNK-1ST. Over-expression of amyloid precursor protein in Tg2576 transgenic mice and in vitro treatment of SH-SY5Y neuroblastoma cells with the amyloidogenic Aβ42 peptide resulted in a decrease in HNK-1 immunoreactivity levels in brain and cellular extracts, whereas the levels of soluble HNK-1 glycoproteins detected in culture media were not affected by Aβ treatment. HNK-1 levels remain unaffected in the brain extracts of Tg-VLW mice, a model of mutant hyperphosphorylated tau, and in SH-SY5Y cells over-expressing hyperphosphorylated wild-type tau. These results provide evidence that cellular levels of HNK-1 carrier glycoforms are decreased in the brain of AD subjects, probably influenced by the β-amyloid protein.

  14. Putative glycoprotein and glycolipid polymorphonuclear leukocyte receptors for the Actinomyces naeslundii WVU45 fimbrial lectin.

    PubMed Central

    Sandberg, A L; Ruhl, S; Joralmon, R A; Brennan, M J; Sutphin, M J; Cisar, J O

    1995-01-01

    Recognition of receptors on sialidase-treated polymorphonuclear leukocytes (PMNs) by the Gal/GalNAc lectin associated with the type 2 fimbriae of certain strains of actinomyces results in activation of the PMNs, phagocytosis, and destruction of the bacteria. In the present study, plant lectins were utilized as probes to identify putative PMN receptors for the actinomyces lectin. The Gal-reactive lectin from Ricinus communis (RCAI), the Gal/GalNAc-reactive lectins from R. communis (RCAII) and Bauhinia purpurea (BPA), as well as the Gal beta 1-3GalNAc-specific lectins from Arachis hypogaea (PNA) and Agaricus bisporus (ABA) inhibited killing of Actinomyces naeslundii WVU45 by sialidase-treated PMNs. These five lectins detected a 130-kDa surface-labeled glycoprotein on nitrocellulose transfers of PMN extracts separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This glycoprotein was revealed only after treatment of the transfers with sialidase, a condition analogous to the sialidase dependence of the lectin-mediated biological responses of the PMNs to the actinomyces. The mannose-reactive lectin concanavalin A did not inhibit killing of the actinomyces and failed to detect the 130-kDa glycoprotein but did block PMN-dependent killing of Escherichia coli B, a bacterium that possesses mannose-sensitive fimbriae. Therefore, the PMN glycoprotein receptor for A. naeslundii is clearly distinct from those recognized by E. coli. Two major putative glycolipid receptors were also identified by actinomyces and RCAI overlays on sialidase-treated thin-layer chromatograms of PMN gangliosides. Thus, both a 130-kDa glycoprotein and certain gangliosides are implicated in the attachment of the actinomyces to PMNs. PMID:7790078

  15. Analysis of the apparent biphasic axonal transport kinetics of fucosylated glycoproteins

    SciTech Connect

    Goodrum, J.F.; Morell, P.

    1984-07-01

    Following intraocular injection of (/sup 3/H)fucose, the accumulation of transported radioactivity arriving at the superior colliculus peaks within a few hours and decays with a time course of hours. Then, over a period of several days, radioactivity again accumulates at the superior colliculus and then decays with a half-life of days. Such data have been interpreted as evidence for both a group of rapidly released, rapidly transported glycoproteins (first peak) and a group of slowly released but rapidly transported glycoproteins (second peak). This supposition was investigated by studying in more detail the metabolism of some individual fucosylated proteins in both the retina and superior colliculus. It was noted that much of the radioactivity incorporated in fucosylated glycoproteins at the retina was rapidly metabolized, while the remainder of the fucosylated moieties had a metabolic half-life on the order of days. In other experiments (/sup 35/S)methionine was injected intraocularly, the metabolism in the retina was examined and a study was made of the kinetics of transport to the superior colliculus of the peptide backbone of these same individual proteins. In contrast to the two waves of accumulation of radioactivity from (/sup 3/H)fucose, accumulation of radioactivity of the peptide backbone of the same glycoproteins was monophasic. The author's explanation of these data involves the presence of two types of fucose moieties on the peptides. One group of fucose moieties is labile and is lost from the peptide backbone over a period of hours. Other fucose moieties are approximately as metabolically stable as the peptide backbones to which they are attached. The actual peptide backbones of the glycoproteins are committed to rapid transport over a period of several days.

  16. A scalable method to concentrate lentiviral vectors pseudotyped with measles virus glycoproteins.

    PubMed

    Marino, M P; Panigaj, M; Ou, W; Manirarora, J; Wei, C-H; Reiser, J

    2015-03-01

    Lentiviral (LV) vectors have emerged as powerful tools for basic research and clinical applications because of their ability to stably transduce both dividing and nondividing cells. A wide range of viral envelope (Env) glycoproteins have the ability to associate with the membrane of LV vectors, a process that is referred to as pseudotyping. Pseudotyped vectors have the capacity to transduce specific cell types for specific applications. For example, LV vectors pseudotyped with the measles virus (MV)-derived hemagglutinin (H) and fusion (F) proteins have the ability to transduce quiescent lymphocytes. In addition, the MV H glycoprotein can be engineered allowing cell-specific targeting of LV vectors. One problem with MV glycoprotein-pseudotyped LV vectors is low titer during vector production. This results in the need to manufacture large volumes of the vectors and to concentrate them to appropriate titers. The commonly used centrifugation-based concentration techniques for LV vectors are not practical for large-scale vector manufacturing. Thus, there is a need for improved methods to concentrate LV vectors. In this study, we adapted an anion-exchange membrane chromatography method that we previously used in the context of LV vectors pseudotyped with the vesicular stomatitis virus glycoprotein to concentate MV glycoprotein-pseudotyped LV vectors. Up to 60% of the input vectors with an up to 5300-fold reduction in volume was achieved using this anion-exchange chromatography method in conjunction with a desalting/concentration step involving centrifugal filter units. This technique provides a rapid and scalable approach for concentrating MV-pseudotyped LV vectors that does not require an elaborate setup.

  17. Techniques and tactics used in determining the structure of the trimeric ebolavirus glycoprotein

    SciTech Connect

    Lee, Jeffrey E.; Fusco, Marnie L.; Abelson, Dafna M.; Hessell, Ann J.; Burton, Dennis R.; Saphire, Erica Ollmann

    2009-11-01

    Here, the techniques, tactics and strategies used to overcome a series of technical roadblocks in crystallization and phasing of the trimeric ebolavirus glycoprotein are described. The trimeric membrane-anchored ebolavirus envelope glycoprotein (GP) is responsible for viral attachment, fusion and entry. Knowledge of its structure is important both for understanding ebolavirus entry and for the development of medical interventions. Crystal structures of viral glycoproteins, especially those in their metastable prefusion oligomeric states, can be difficult to achieve given the challenges in production, purification, crystallization and diffraction that are inherent in the heavily glycosylated flexible nature of these types of proteins. The crystal structure of ebolavirus GP in its trimeric prefusion conformation in complex with a human antibody derived from a survivor of the 1995 Kikwit outbreak has now been determined [Lee et al. (2008 ▶), Nature (London), 454, 177–182]. Here, the techniques, tactics and strategies used to overcome a series of technical roadblocks in crystallization and phasing are described. Glycoproteins were produced in human embryonic kidney 293T cells, which allowed rapid screening of constructs and expression of protein in milligram quantities. Complexes of GP with an antibody fragment (Fab) promoted crystallization and a series of deglycosylation strategies, including sugar mutants, enzymatic deglycosylation, insect-cell expression and glycan anabolic pathway inhibitors, were attempted to improve the weakly diffracting glycoprotein crystals. The signal-to-noise ratio of the search model for molecular replacement was improved by determining the structure of the uncomplexed Fab. Phase combination with Fab model phases and a selenium anomalous signal, followed by NCS-averaged density modification, resulted in a clear interpretable electron-density map. Model building was assisted by the use of B-value-sharpened electron-density maps and the

  18. Simple boric acid-based fluorescent focusing for sensing of glucose and glycoprotein via multipath moving supramolecular boundary electrophoresis chip.

    PubMed

    Dong, Jingyu; Li, Si; Wang, Houyu; Meng, Qinghua; Fan, Liuyin; Xie, Haiyang; Cao, Chengxi; Zhang, Weibing

    2013-06-18

    Boric acid-based fluorescent complex probe of BBV-HPTS (boronic acid-based benzyl viologen (BBV) and hydroxypyrene trisulfonic acid trisodium salt (HPTS)) was rarely used for sensitive sensing of saccharide (especially glycoprotein) via electrophoresis. We proposed a novel model of moving supramolecular boundary (MSB) formed with monosaccharide or glycoprotein in microcolumn and the complex probe of BBV-HPTS in the cathodic injection tube, developed a method of MSB fluorescent focusing for sensitive recognition of monosaccharide and glycoprotein, and designed a special multipath capillary electrophoresis (CE) chip for relative experiments. As a proof of concept, glucose and hemoglobin A1c (HbA1c) were respectively used as the mode saccharide and glycoprotein for the relevant demonstration. The experiments revealed that (i) the complex of BBV-HPTS could interact with free glucose or bound one in glycoprotein; (ii) the fluorescent signal was a function of glucose or glycoprotein content approximately; and (iii) interestingly the fluorescent band motion was dependent on glucose content. The developed method had the following merits: (i) low cost; (ii) low limit of detection (down to 1.39 pg/mL for glucose and 2.0 pg per capillary HbA1c); and (iii) high throughput (up to 12 runs or more per patch) and speed (less than 5 min). The developed method has potential use for sensitive monitoring of monosaccharide and glycoprotein in biomedical samples.

  19. Schistosoma mansoni egg glycoproteins and C-type lectins of host immune cells: molecular partners that shape immune responses.

    PubMed

    Meevissen, Moniek H J; Yazdanbakhsh, Maria; Hokke, Cornelis H

    2012-09-01

    Schistosome eggs and egg-derived molecules are potent immunomodulatory agents. There is increasing evidence that the interplay between egg glycoproteins and host C-type lectins plays an important role in shaping immune responses during schistosomiasis. As most experiments in this field so far have been performed using complex protein/glycoprotein mixtures or synthetic model glycoconjugates, it is still largely unclear which individual moieties of schistosome eggs are immunologically active. In this review we will discuss molecular aspects of Schistosoma mansoni egg glycoproteins, their interactions with C-type lectins, and the relevance to schistosome egg immunobiology.

  20. Label-free relative quantification method for low-abundance glycoproteins in human serum by micrOTOF-Q.

    PubMed

    Hao, Piliang; Ren, Yan; Xie, Yongming

    2009-06-01

    In this study, a label-free relative quantification strategy was developed for quantifying low-abundance glycoproteins in human serum. It included three steps: (1) immunodepletion of 12 high-abundance proteins, (2) enrichment of low-abundance glycoproteins by multi-lectin column, (3) relative quantification of them between different samples by micrOTOF-Q. We also evaluated the specificity and efficiency of immunodepletion, the accuracy of protein quantification and the possible influence of immunodepletion, glycoprotein enrichment, trypsin digestion and peptide ionization on quantification. In conclusion, the relative quantification method can be effectively applied to the screening of low-abundance biomarkers.

  1. Fluorescent staining of glycoproteins in sodium dodecyl sulfate polyacrylamide gels by 4H-[1]-benzopyrano[4,3-b]thiophene-2-carboxylic acid hydrazide.

    PubMed

    Zhu, Zhongxin; Zhou, Xuan; Wang, Yang; Chi, Lisha; Ruan, Dandan; Xuan, Yuanhu; Cong, Weitao; Jin, Litai

    2014-06-07

    A fluorescent detection method for glycoproteins in SDS-PAGE by using 4H-[1]-benzopyrano[4,3-b]thiophene-2-carboxylic acid hydrazide (BH) was developed in this study. As low as 4-8 ng glycoproteins (transferrin, α1-acid glycoprotein) could be specifically detected by the BH staining method, which is twofold more sensitive than that of the most commonly used Pro-Q Emerald 488 glycoprotein stain. Furthermore, the specificity of the newly developed stain for glycoproteins was demonstrated by 1-D and 2-D SDS-PAGE, deglycosylation, glycoprotein affinity enrichment and LC-MS/MS, respectively. According to the results, it is concluded that BH stain may provide new choices for convenient, sensitive, specific and economic visualization of gel-separated glycoproteins.

  2. Oligosaccharides Released from Milk Glycoproteins Are Selective Growth Substrates for Infant-Associated Bifidobacteria

    PubMed Central

    Karav, Sercan; Le Parc, Annabelle; Leite Nobrega de Moura Bell, Juliana Maria; Frese, Steven A.; Kirmiz, Nina; Block, David E.; Barile, Daniela

    2016-01-01

    ABSTRACT Milk, in addition to nourishing the neonate, provides a range of complex glycans whose construction ensures a specific enrichment of key members of the gut microbiota in the nursing infant, a consortium known as the milk-oriented microbiome. Milk glycoproteins are thought to function similarly, as specific growth substrates for bifidobacteria common to the breast-fed infant gut. Recently, a cell wall-associated endo-β-N-acetylglucosaminidase (EndoBI-1) found in various infant-borne bifidobacteria was shown to remove a range of intact N-linked glycans. We hypothesized that these released oligosaccharide structures can serve as a sole source for the selective growth of bifidobacteria. We demonstrated that EndoBI-1 released N-glycans from concentrated bovine colostrum at the pilot scale. EndoBI-1-released N-glycans supported the rapid growth of Bifidobacterium longum subsp. infantis (B. infantis), a species that grows well on human milk oligosaccharides, but did not support growth of Bifidobacterium animalis subsp. lactis (B. lactis), a species which does not. Conversely, B. infantis ATCC 15697 did not grow on the deglycosylated milk protein fraction, clearly demonstrating that the glycan portion of milk glycoproteins provided the key substrate for growth. Mass spectrometry-based profiling revealed that B. infantis consumed 73% of neutral and 92% of sialylated N-glycans, while B. lactis degraded only 11% of neutral and virtually no (<1%) sialylated N-glycans. These results provide mechanistic support that N-linked glycoproteins from milk serve as selective substrates for the enrichment of infant-associated bifidobacteria capable of carrying out the initial deglycosylation. Moreover, released N-glycans were better growth substrates than the intact milk glycoproteins, suggesting that EndoBI-1 cleavage is a key initial step in consumption of glycoproteins. Finally, the variety of N-glycans released from bovine milk glycoproteins suggests that they may serve as

  3. Avian serum. cap alpha. /sub 1/-glycoprotein, hemopexin, differing significantly in both amino acid and carbohydrate composition from mammalian (. beta. -glycoprotein) counter parts

    SciTech Connect

    Goldfarb, V.; Trimble, R.B.; Falco, M.D.; Liem, H.H.; Metcalfe, S.A.; Wellner, D.; Muller-Eberhard, U.

    1986-10-21

    The physicochemical characteristics of chicken hemopexin, which can be isolated by heme-agarose affinity chromatography, is compared with representative mammalian hemopexins of rat, rabbit, and human. The avian polypeptide chain appears to be slightly longer (52 kDa) than the human, rat, or rabbit forms (49 kDa), and also the glycoprotein differs from the mammalian hemopexins in being an ..cap alpha../sub 1/-glycoprotein instead of a ..beta../sub 1/-glycoprotein. The distinct electrophoretic mobility probably arises from significant differences in the amino acid composition of the chicken form, which, although lower in serine and particularly in lysine, has a much higher glutamine/glutamate and agrinine content, and also a higher proline, glycine, and histidine content, than the mammalian hemopexins. Compositional analyses and /sup 125/I concanavalin A and /sup 125/I wheat germ agglutinin binding suggest that chicken hemopexin has a mixture of three fucose-free N-linked bi- and triantennary oligosaccharides. In contrast, human hemopexin has give N-linked oligosaccharides and an additional O-linked glycan blocking the N-terminal threonine residue, while the rabbit form has four N-linked oligosaccharides. In keeping with the finding of a simpler carbohydrate structure, the avian hemopexin shows only a single band on polyacrylamide gel electrophoresis under both nondenaturing and denaturing conditions, whereas the hemopexins of the three mammalian species tested show several bands. In contrast, the isoelectric focusing pattern of chicken hemopexin is very complex, revealing at least nine bands between pH 4.0 and pH band 5.0, while the other hemopexins show a broad smear of multiple ill-defined bands in the same region.Results indicate the hemopexin of avians differs substantially from the hemopexins of mammals, which show a notable similarity with regard to carbohydrate structure and amino acid composition.

  4. Glycan structure and site of glycosylation in the ER-resident glycoprotein, uridine 5'-diphosphate-glucose: glycoprotein glucosyltransferases 1 from rat, porcine, bovine, and human.

    PubMed

    Daikoku, Shusaku; Seko, Akira; Ito, Yukishige; Kanie, Osamu

    2014-08-29

    Here we report glycan structures and their position of attachment to a carrier protein, uridine 5'-diphosphate-glucose: glycoprotein glucosyltransferase (UGGT1), as detected using tandem mass spectrometry. UGGT1 acts as a folding sensor of newly synthesized glycosylated polypeptides in the endoplasmic reticulum, and the transferase itself is known to be glycosylated. The structure of glycan attached to UGGT1, however, has not been investigated. In this study, we reveal the site of glycosylation (N269) and the glycan structures (Hex5-8HexNAc2) in UGGT1 obtained from rat (Rattus norvegicus), pig (Sus scrofa), cow (Bos taurus), and human (Homo sapiens).

  5. Effect of ammonium chloride and tunicamycin on the glycoprotein content and infectivity of herpes simplex virus type 1

    SciTech Connect

    Kousoulas, K.G.; Bzik, D.J.; DeLuca, N.; Person, S.

    1983-01-01

    Infectious virions of MP, a syncytial strain of herpes simplex virus type 1, are formed in the presence of 50 mM NH/sub 4/Cl. Underglycosylated virion glycoproteins are synthesized in infected cells and are incorporated into virions in the presence of the same concentration of NH/sub 4/Cl. We conclude that fully glycosylated glycoproteins are not required for viral infectivity. Virus particles, deficient in glycosylated glycoproteins, are assembled in the presence of tunicamycin but they are not infectious. The decrease in infectivity could be due to the decreased amount of the gB or possibly other peptides and/or to the lack of the high-mannose saccharides of precursor glycoproteins. 32 references, 4 figures.

  6. Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles.

    PubMed

    Mengele, R; Sumper, M

    1992-04-25

    The outer surface of the moderate halophilic archaebacterium Haloferax volcanii (formerly named Halobacterium volcanii) is covered with a hexagonally packed surface (S) layer glycoprotein. The polypeptide (794 amino acid residues) contains 7 N-glycosylation sites. Four of these sites were isolated as glycopeptides and the structure of one of the corresponding saccharides was determined. Oligosaccharides consisting of beta-1,4-linked glucose residues are attached to the protein via the linkage unit asparaginyl-glucose. In the related glycoprotein from the extreme halophile Halobacterium halobium, the glucose residues are replaced by sulfated glucuronic acid residues, causing a drastic increase in surface charge density. This is discussed in terms of a recent model explaining the stability of halophilic proteins.

  7. Defining the antibody cross-reactome directed against the influenza virus surface glycoproteins.

    PubMed

    Nachbagauer, Raffael; Choi, Angela; Hirsh, Ariana; Margine, Irina; Iida, Sayaka; Barrera, Aldo; Ferres, Marcela; Albrecht, Randy A; García-Sastre, Adolfo; Bouvier, Nicole M; Ito, Kimihito; Medina, Rafael A; Palese, Peter; Krammer, Florian

    2017-04-01

    Infection with influenza virus induces antibodies to the viral surface glycoproteins hemagglutinin and neuraminidase, and these responses can be broadly protective. To assess the breadth and magnitude of antibody responses, we sequentially infected mice, guinea pigs and ferrets with divergent H1N1 or H3N2 subtypes of influenza virus. We measured antibody responses by ELISA of an extensive panel of recombinant glycoproteins representing the viral diversity in nature. Guinea pigs developed high titers of broadly cross-reactive antibodies; mice and ferrets exhibited narrower humoral responses. Then, we compared antibody responses after infection of humans with influenza virus H1N1 or H3N2 and found markedly broad responses and cogent evidence for 'original antigenic sin'. This work will inform the design of universal vaccines against influenza virus and can guide pandemic-preparedness efforts directed against emerging influenza viruses.

  8. Differential requirements for clathrin endocytic pathway components in cellular entry by Ebola and Marburg glycoprotein pseudovirions.

    PubMed

    Bhattacharyya, Suchita; Hope, Thomas J; Young, John A T

    2011-10-10

    Clathrin-mediated endocytosis was previously implicated as one of the cellular pathways involved in filoviral glycoprotein mediated viral entry into target cells. Here we have further dissected the requirements for different components of this pathway in Ebola versus Marburg virus glycoprotein (GP) mediated viral infection. Although a number of these components were involved in both cases; Ebola GP-dependent viral entry specifically required the cargo recognition proteins Eps15 and DAB2 as well as the clathrin adaptor protein AP-2. In contrast, Marburg GP-mediated infection was independent of these three proteins and instead required beta-arrestin 1 (ARRB1). These findings have revealed an unexpected difference between the clathrin pathway requirements for Ebola GP versus Marburg GP pseudovirion infection. Anthrax toxin also uses a clathrin-, and ARRB1-dependent pathway for cellular entry, indicating that the mechanism used by Marburg GP pseudovirions may be more generally important for pathogen entry.

  9. Pseudotyping of vesicular stomatitis virus with the envelope glycoproteins of highly pathogenic avian influenza viruses.

    PubMed

    Zimmer, Gert; Locher, Samira; Berger Rentsch, Marianne; Halbherr, Stefan J

    2014-08-01

    Pseudotype viruses are useful for studying the envelope proteins of harmful viruses. This work describes the pseudotyping of vesicular stomatitis virus (VSV) with the envelope glycoproteins of highly pathogenic avian influenza viruses. VSV lacking the homotypic glycoprotein (G) gene (VSVΔG) was used to express haemagglutinin (HA), neuraminidase (NA) or the combination of both. Propagation-competent pseudotype viruses were only obtained when HA and NA were expressed from the same vector genome. Pseudotype viruses containing HA from different H5 clades were neutralized specifically by immune sera directed against the corresponding clade. Fast and sensitive reading of test results was achieved by vector-mediated expression of GFP. Pseudotype viruses expressing a mutant VSV matrix protein showed restricted spread in IFN-competent cells. This pseudotype system will facilitate the detection of neutralizing antibodies against virulent influenza viruses, circumventing the need for high-level biosafety containment.

  10. Evaluation of the single radial-immunodiffusion assay for measuring the glycoprotein content of rabies vaccines.

    PubMed

    Mayner, R E; Needy, C F

    1987-01-01

    The glycoprotein content of rabies vaccines containing the Pitman-Moore strain of rabies virus was measured by the single radial immunodiffusion assay and correlated with vaccine potency. The variability of this assay was 6.3% for a single vaccine lot tested over a one-year period. Using sera prepared against rabies virus glycoprotein from different strains of virus, the assay gave different values. These differences could be eliminated by using a homologous vaccine strain as an internal reference. Single radial-immunodiffusion values for Pitman-Moore vaccines correlated with the manufacturers' NIH potency assay, but required a mathematical transformation to convert values from one assay to the other. Single radial-immunodiffusion values for Street Alabama Dufferin and Flury-LEP vaccines did not correlate with NIH values. Modification of the single radial immunodiffusion technique and the feasibility of using this assay for the determination of rabies vaccine potency are discussed.

  11. Expression and Purification of E2 Glycoprotein from Insect Cells (Sf9) for Use in Serology.

    PubMed

    Chua, Chong Long; Sam, I-Ching; Chan, Yoke Fun

    2016-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne arbovirus which poses a major threat to global public health. Definitive CHIKV diagnosis is crucial, especially in distinguishing the disease from dengue virus, which co-circulates in endemic areas and shares the same mosquito vectors. Laboratory diagnosis is mainly based on serological or molecular approaches. The E2 glycoprotein is a good candidate for serological diagnosis since it is the immunodominant antigen during the course of infection, and reacts with seropositive CHIKV sera. In this chapter, we describe the generation of stable clone Sf9 (Spodoptera frugiperda) cells expressing secreted, soluble, and native recombinant CHIKV E2 glycoprotein. We use direct plasmid expression in insect cells, rather than the traditional technique of generating recombinant baculovirus. This recombinant protein is useful for serological diagnosis of CHIKV infection.

  12. A structural glycoprotein, containing hydroxyproline, isolated from the cell wall of Chlamydomonas reinhardii.

    PubMed

    Catt, J W; Hills, G J; Roberts, K

    1976-01-01

    A soluble extract from purified cell walls of C. reinhardii has been separated by gel filtration into three fractions which together account for 94% of the cell wall. The major fraction (accounting for 70% of the extract) is a glycoprotein, with a molecular wt. in sodium perchlorate of 298,000, which can be split into 4 electrophoretically distinct species. It contains 35% protein with high levels of hydroxyproline, arabinose and galactose, and is capable of self assembly into crystalline structures identical to those found within the cell wall. The second fraction (25% of the extract) is a similar glycoprotein, but contains 24% protein, a higher proportion of mannose, and is incapable of self assembly. The third fraction (3-6% of the extract) is shown to be an adsorbed impurity from the growth medium used.

  13. Characterization of the rabbit homolog of human MUC1 glycoprotein isolated from bladder by affinity chromatography on immobilized jacalin.

    PubMed

    Higuchi, T; Xin, P; Buckley, M S; Erickson, D R; Bhavanandan, V P

    2000-07-01

    The urinary bladder is lined by transitional epithelium, the glycocalyx on the luminal surface has interesting properties and is implicated in protective functions. Glycoconjugates are major components of the glycocalyx, but their biochemical nature is not well understood. Previous studies on rabbit bladder indicated the presence of significant levels of sialoglycoproteins compared to glycosaminoglycans in the epithelium. In this study, rabbit explant cultures were radiolabeled by precursor sugars or amino acids and a major lectin-reactive glycoprotein of rabbit bladder mucosa was isolated by affinity chromatography on jacalin-agarose. The radiolabeled glycoprotein was purified to homogeneity by a second cycle on the lectin column, followed by gel filtration and density gradient centrifugation. The average molecular mass of the glycoprotein was estimated to be 245 kDa and 210 kDa by gel filtration and SDS-PAGE, respectively. Its buoyant density was 1.40 g/ml, suggesting a carbohydrate content of approximately 50%. The percent distribution of glucosamine-derived tritium label in sialic acid, galactosamine, and glucosamine was 30, 52, and 18, respectively. The glycoprotein consisted entirely of small sialylated and neutral oligosaccharides O-glycosidically linked to serine and threonine residues. The same glycoprotein could be immunoprecipitated with an antibody against the carboxy terminal 17 amino acid peptide of human MUC1 mucin glycoprotein. This suggests that this mucin glycoprotein is the rabbit homolog of MUC1 glycoprotein, which has been previously established to be a component of human bladder urothelium and has been purified from human urine and biochemically characterized.

  14. [Influence of low-intensity laser radiation on the formation of liquid crystalline structures in a solution of glycoproteins].

    PubMed

    Skopinov, S A; Iakovleva, S V; Denisova, E A; Vazina, A A; Zheleznaia, L A

    1989-01-01

    Liquid-crystalline structure formation in glycoprotein solutions irradiated by helium-neon laser in the presence of hydrogen peroxide was observed by both polarizing microscopy and spectrophotometry. High molecular weight (2.10(6) Da) and heavily glycosylated (about 80%) glycoprotein was isolated from the mucus layer of pig small intestine. Remarkable changes of both optic parameters of the solutions and the morphology of liquid-crystalline structures were detected in irradiated samples compared to the non-irradiated ones.

  15. Fast and efficient online release of N-glycans from glycoproteins facilitating liquid chromatography-tandem mass spectrometry glycomic profiling.

    PubMed

    Jmeian, Yazen; Hammad, Loubna A; Mechref, Yehia

    2012-10-16

    A novel online enzyme reactor incorporating peptide-N-glycosidase F (PNGase F) on a monolithic polymer support has been developed to allow the rapid simultaneous release of both neutral and acidic N-linked glycans from glycoproteins. The PNGase F monolithic reactor was fabricated in a fused silica using glycidyl methacrylate-co-ethylene dimethacrylate polymer. The reactor was coupled to a C8 trap and a porous graphitic carbon (PGC) HPLC-chip. This arrangement was interfaced to an ion trap mass spectrometer for liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses. The performance of the PNGase F reactor was optimized using the MS signal for the disialylated biantennary N-glycan derived from fetuin. Optimum conditions for glycan release were attained at room temperature using a loading flow rate of 2 μL/min and a reaction time of 6 min. The loading capacity of the reactor was determined to be around 2 pmol of glycoprotein. The online digestion and MS characterization experiments resulted in sensitivities as high as 100 fmol of glycoprotein and 0.1 μL of human blood serum. The enzyme reactor activity was also shown to remain stable after 1 month of continuous use. Both small and large glycoproteins as well as glycoproteins containing high-mannose glycans, fucolsylated glycans, sialylated glycans, and hybrid structures were studied. The model glycoproteins included ribonuclease B, fetuin, α(1)-acid glycoprotein, immunoglobulin, and thyroglobulin. All N-glycans associated with these model glycoproteins were detected using the online PNGase F reactor setup.

  16. Calpain-controlled detachment of major glycoproteins from the cytoskeleton regulates adhesive properties of activated phosphatidylserine-positive platelets.

    PubMed

    Artemenko, Elena O; Yakimenko, Alena O; Pichugin, Alexey V; Ataullakhanov, Fazly I; Panteleev, Mikhail A

    2016-02-15

    In resting platelets, adhesive membrane glycoproteins are attached to the cytoskeleton. On strong activation, phosphatidylserine(PS)-positive and -negative platelet subpopulations are formed. Platelet activation is accompanied by cytoskeletal rearrangement, although the glycoprotein attachment status in these two subpopulations is not clear. We developed a new, flow cytometry-based, single-cell approach to investigate attachment of membrane glycoproteins to the cytoskeleton in cell subpopulations. In PS-negative platelets, adhesive glycoproteins integrin αIIbβ3, glycoprotein Ib and, as shown for the first time, P-selectin were associated with the cytoskeleton. In contrast, this attachment was disrupted in PS-positive platelets; it was retained to some extent only in the small convex regions or 'caps'. It correlated with the degradation of talin and filamin observed only in PS-positive platelets. Calpain inhibitors essentially prevented the disruption of membrane glycoprotein attachment in PS-positive platelets, as well as talin and filamin degradation. With the suggestion that detachment of glycoproteins from the cytoskeleton may affect platelet adhesive properties, we investigated the ability of PS-positive platelets to resist shear-induced breakaway from the immobilized fibrinogen. Shear rates of 500/s caused PS-positive platelet breakaway, but their adhesion stability increased more than 10-fold after pretreatment of the platelets with calpain inhibitor. In contrast, the ability of PS-positive platelets to adhere to immobilized von Willebrand's factor at 100/s was low, but this was not affected by the preincubation of platelets with a calpain inhibitor. Our data suggest that calpain-controlled detachment of membrane glycoproteins is a new mechanism that is responsible for the loss of ability of the procoagulant platelets to resist detachment from thrombi by high shear stress.

  17. Identification of structural and secretory lectin-binding glycoproteins of normal and cancerous human prostate.

    PubMed

    Lad, P M; Cooper, J F; Learn, D B; Olson, C V

    1984-12-07

    We have utilized the technique of lectin-loading of SDS gels with iodinated concanavalin A and wheat germ agglutinin to identify glycoproteins in prostatic and seminal fluids as well as in prostate tissue fractions. The following subunits which bound both lectins were detected: (a) 50, 43 and 38 kDa subunits common to prostatic and seminal fluids, and an additional 55 kDa subunit which predominates only in prostatic fluid; (b) 78, 55, 50 and 43 kDa subunits in prostatic tissue cytosol and (c) 195, 170, 135, 116 and 95 kDa subunits present in the particulate fractions of prostatic tissue. Immunoblotting using specific rabbit antibodies revealed the 50 kDa band to be prostatic acid phosphatase and the 38 kDa band to be prostate-specific antigen. Interestingly, antibodies directed toward prostatic acid phosphatase were found to cross-react with the 43 kDa band. Fractionation on sucrose gradients showed that several of these particulate glycoproteins were associated with a vesicle fraction enriched in adenylate cyclase activity, implying that they are plasma membrane glycoproteins. Comparison of soluble and particulate fractions of normal and cancerous tissue homogenates was made by densitometric scanning of autoradiograms of lectin-loaded gels. Similar relative intensities of lectin-binding were obtained for corresponding proteins in normal and cancerous tissue fractions. Also, immunoblotting showed no differences in prostatic acid phosphatase or prostate-specific antigen between normal and cancerous soluble homogenate fractions. Our results suggest that major lectin-binding proteins are conserved in the transition from normal to cancerous tissue. These results may be useful in developing a multiple-marker profile of metastatic prostate cancer and for the design of imaging agents, such as monoclonal antibodies, to prominent soluble and particulate prostate glycoproteins.

  18. Machupo Virus Glycoprotein Determinants for Human Transferrin Receptor 1 Binding and Cell Entry

    DTIC Science & Technology

    2011-07-01

    and SABV [17,18], and a major determinant of host adaptation. However, studies on receptor use and cellular tropism suggest that the non-pathogenic...938–948. 19. Oldenburg J, Reignier T, Flanagan ML, Hamilton GA, Cannon PM (2007) Differences in tropism and pH dependence for glycoproteins from the...2010) Investigation of clade B New World arenavirus tropism by using chimeric GP1 proteins. J Virol 84: 1176–1182. 24. Bowden TA, Crispin M, Graham SC

  19. Ubiquitination of the Prototype Foamy Virus Envelope Glycoprotein Leader Peptide Regulates Subviral Particle Release

    PubMed Central

    Stanke, Nicole; Stange, Annett; Lüftenegger, Daniel; Zentgraf, Hanswalter; Lindemann, Dirk

    2005-01-01

    Foamy virus (FV) particle egress is unique among retroviruses because of its essential requirement for Gag and Env coexpression for budding and particle release. The FV glycoprotein undergoes a highly unusual biosynthesis resulting in the generation of three particle-associated, mature subunits, leader peptide (LP), surface (SU), and transmembrane (TM), derived from a precursor protein by posttranslational proteolysis mediated by furin or furinlike proteases. Previously at least three LP products of different molecular weights were detected in purified FV particles. Here we demonstrate that the higher-molecular-weight forms gp28LP and gp38LP are ubiquitinated variants of the major gp18LP cleavage product, which has a type II membrane topology. Furthermore, we show that all five lysine residues located within the N-terminal 60-amino-acid cytoplasmic domain of gp18LP can potentially be ubiquitinated, however, there seems to be a preference for using the first three. Inactivation of ubiquitination sites individually resulted in no obvious phenotype. However, simultaneous inactivation of the first three or all five ubiquitination sites in gp18LP led to a massive increase in subviral particles released by these mutant glycoproteins that were readily detectable by electron microscopy analysis upon expression of the ubiquitination-deficient glycoprotein by itself or in a proviral context. Surprisingly, only the quintuple ubiquitination mutant showed a two- to threefold increase in single-cycle infectivity assays, whereas all other mutants displayed infectivities similar to that of the wild type. Taken together, these data suggest that the balance between viral and subviral particle release of FVs is regulated by ubiquitination of the glycoprotein LP. PMID:16306578

  20. Reversal of P-glycoprotein-mediated multidrug resistance by XR9051, a novel diketopiperazine derivative.

    PubMed Central

    Dale, I. L.; Tuffley, W.; Callaghan, R.; Holmes, J. A.; Martin, K.; Luscombe, M.; Mistry, P.; Ryder, H.; Stewart, A. J.; Charlton, P.; Twentyman, P. R.; Bevan, P.

    1998-01-01

    XR9051 (N-(4-(2-(6,7-Dimethoxy-1,2,3,4-tetrahydro-2-isoquinolyl)ethyl)phe nyl)-3-((3Z,6Z)-6-benzylidene-1-methyl-2,5-dioxo-3-pipera zinylidene) methylbenzamide) was identified as a potent modulator of P-glycoprotein-mediated multidrug resistance (MDR) following a synthetic chemistry programme based on a natural product lead compound. The activity of XR9051 was determined using a panel of human and murine drug-resistant cell lines (H69/LX4, 2780AD, EMT6/AR 1.0, MC26 and P388/DX Johnson). XR9051 was able to reverse resistance to a variety of cytotoxic drugs, including doxorubicin, etoposide and vincristine, which are associated with classical MDR. At a concentration of 0.3-0.5 microM, XR9051 was able to fully sensitize resistant cells to cytotoxics, whereas little or no effect was observed on the corresponding parental cell lines. No effect of XR9051 was observed on the response of cells to non-MDR cytotoxics such as methotrexate and 5-fluorouracil. XR9051 was consistently more potent than cyclosporin A (CsA) and verapamil (Vpm) in all assays used. XR9051 inhibited the efflux of [3H]daunorubicin from preloaded cells and, unlike CsA and Vpm, remained active for several hours after removal of resistance-modifying agent. In photoaffinity labelling experiments employing [3H]azidopine, XR9051 was able to displace binding to P-glycoprotein. In binding studies using [3H]vinblastine, XR9051 was shown to be a potent inhibitor of the binding of the cytotoxic to P-glycoprotein (EC50 = 1.4 +/- 0.5 nM). Taken together, the results indicate that XR9051 reverses the MDR phenotype through direct interaction with P-glycoprotein. Images Figure 5 PMID:9764579

  1. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens.

    PubMed

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J; von Messling, Veronika

    2017-04-15

    The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains.IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that received

  2. Detection, isolation and partial characterization of an immunostimulating glycoprotein from Rhodococcus fascians.

    PubMed

    Butschak, Günter; Karsten, Uwe; Schelhaas, Ute; Ott, Holger; Emmendörffer, Andreas; Niemeyer, Bernd; Helmholz, Heike; Goletz, Steffen

    2006-09-01

    In a search for novel immunostimulating substances we detected that culture supernatants of the gram-positive phytopathogenic bacterium, Rhodococcus fascians, were able to induce cytokine release (TNF(alpha)) from mouse peritoneal macrophages. Monoclonal antibodies were generated against the active principle, and were employed for its isolation and partial characterization as a high molecular (MW>100 kDa) glycoprotein. In addition, methods practicable for its biotechnological preparation and several ELISA variants for its determination were developed.

  3. Targeting Extracellular Matrix Glycoproteins in Metastases for Tumor-Initiating Cell Therapy

    DTIC Science & Technology

    2016-04-01

    study that focuses on testing a new cancer targeting strategy that aims at enhancing nanodelivery of drugs to osteopontin (OPN) that are often...testing a new cancer targeting strategy that aims at enhancing nanodelivery of drugs to the glycoproteins (e.g. osteopontin, OPN) that are often...nanocarrier will be loaded with an anticancer drug and the in vitro therapeutic activities against prostate cancer cells with TIC behaviors will be studied

  4. Molecular Study of Interactions Between P-Glycoprotein and Anticancer Drugs.

    DTIC Science & Technology

    1996-09-01

    multidrug resistance (MDR) in cancer cell lines . Recently, the topological structure of Pgp has been investigated. However, the results are in dispute...Advance ACS Abstracts, July 15, 1996. Cell Lines . CHO cell line Aux B1, colchicine-selected Abbreviations: Pgp, P-glycoprotein; MDR, multidrug resistance...transmembrane; GST, glutathione S-transferase; selected multidrug-resistant human ovarian cancer cell line A/M, acetone/methanol; PF, paraformaldehyde; Ag

  5. Hantavirus Gn and Gc glycoproteins self-assemble into virus-like particles.

    PubMed

    Acuña, Rodrigo; Cifuentes-Muñoz, Nicolás; Márquez, Chantal L; Bulling, Manuela; Klingström, Jonas; Mancini, Roberta; Lozach, Pierre-Yves; Tischler, Nicole D

    2014-02-01

    How hantaviruses assemble and exit infected cells remains largely unknown. Here, we show that the expression of Andes (ANDV) and Puumala (PUUV) hantavirus Gn and Gc envelope glycoproteins lead to their self-assembly into virus-like particles (VLPs) which were released to cell supernatants. The viral nucleoprotein was not required for particle formation. Further, a Gc endodomain deletion mutant did not abrogate VLP formation. The VLPs were pleomorphic, exposed protrusions and reacted with patient sera.

  6. Hantavirus Gn and Gc Glycoproteins Self-Assemble into Virus-Like Particles

    PubMed Central

    Acuña, Rodrigo; Cifuentes-Muñoz, Nicolás; Márquez, Chantal L.; Bulling, Manuela; Klingström, Jonas; Mancini, Roberta; Lozach, Pierre-Yves

    2014-01-01

    How hantaviruses assemble and exit infected cells remains largely unknown. Here, we show that the expression of Andes (ANDV) and Puumala (PUUV) hantavirus Gn and Gc envelope glycoproteins lead to their self-assembly into virus-like particles (VLPs) which were released to cell supernatants. The viral nucleoprotein was not required for particle formation. Further, a Gc endodomain deletion mutant did not abrogate VLP formation. The VLPs were pleomorphic, exposed protrusions and reacted with patient sera. PMID:24335294

  7. Immunogenic glycoproteins of laboratory and vaccine strains of Varicella-Zoster virus.

    PubMed Central

    Grose, C; Edmond, B J; Friedrichs, W E

    1981-01-01

    High-titered antisera were prepared in guinea pigs and rabbits against two strains of varicella-zoster virus (VZV): VZV-32, a low-passage laboratory strain, and VZV-Oka, a vaccine strain attenuated by passage in both human and guinea pig embryo cells. When the animal VZV-immune sera, as well as a human zoster serum, were used to precipitate radiolabeled glycoproteins from VZV-infected cells and the immune precipitates were analyzed by polyacrylamide gel electrophoresis and fluorography, it was observed that cell cultures infected with either strain had similar electrophoretic profiles containing major glycoproteins of approximate molecular weights 62,000, 98,000, and 118,000. A prominent high-molecular-weight (approximately 150,000) nonglycosylated polypeptide was identified in both strains also. These determinants were demonstrable by both indirect (staphylococcal protein A-antibody adsorbent) and direct immunoprecipitation, as long as VZV-immune sera with an antibody titer greater than or equal to 1:128 were used. Further analysis of individual caviid VZV antisera demonstrated some heterogeneity which appeared to be related to the method of immunization rather than the level of virus-specific antibody. VZV extracts emulsified with complete Freund adjuvant elicited an antibody response to all major immunogenic viral glycoproteins, whereas guinea pigs inoculated with virus alone during the primary immunization initially produced VZV antibody which failed to precipitate the highest-molecular-weight glycoprotein (gp118). Thus, Freund-type adjuvants promoted the maturation of the humoral immune response after VZV immunization in outbred guinea pigs. Images PMID:6262245

  8. Glycoprotein synthesis in the Golgi apparatus of spermatids during spermiogenesis of the rat

    SciTech Connect

    Clermont, Y.; Tang, X.M.

    1985-09-01

    During steps 1-7 of spermiogenesis the Golgi apparatus contributes to the formation of the acrosomic system which develops at the surface of the nucleus. Later, in step 8, the Golgi apparatus detaches from the acrosome and remains suspended in the elongated cytoplasm until it degenerates during step 16. Using /sup 3/H-fucose as a tracer and the radioautographic technique, we observed that the Golgi apparatus incorporates the tracer and delivers the labeled glycoproteins to the developing acrosomic system during steps 1-7 of spermiogenesis, to multivesicular bodies during steps 1-9, and to the remaining cytoplasm and plasma membrane during steps 1-15. Throughout these steps of spermiogenesis the Golgi apparatus does not show major changes in structure; it is composed of a cortex made up of connected stacks of saccules and a medulla showing a loose aggregate of vesicular profiles. Glycoprotein synthesis in this Golgi apparatus, before and after it contributes lysosomal glycoproteins to the growing acrosomic system, was quantitatively assessed in electron microscope EM radioautographs of tissue sections from animals sacrificed at 1, 4, 8, and 24 h of 3H-fucose injection. The incorporation of the labeled sugar was found to remain quantitatively similar during steps 1-15 of spermiogenesis, and therefore, no shift in glycoprotein synthesis took place following separation of the Golgi apparatus from the acrosomic system. Throughout these steps, fucose molecules are first incorporated in the cortex of the organelle and subsequently transported to the medulla, where they temporarily accumulate before being delivered, depending on the step of spermiogenesis, to the acrosomic system, to the multivesicular bodies, and also, presumably, to the plasma membrane.

  9. Mapping the neutralizing epitopes on the glycoprotein of infectious haematopoietic necrosis virus, a fish rhabdovirus

    USGS Publications Warehouse

    Huang, C.; Chien, M.S.; Landolt, M.L.; Batts, W.; Winton, J.

    1996-01-01

    Twelve neutralizing monoclonal antibodies (MAbs) against the fish rhabdovirus, infectious haematopoietic necrosis virus (IHNV), were used to select 20 MAb escape mutants. The nucleotide sequence of the entire glycoprotein (G) gene was determined for six mutants representing differing cross-neutralization patterns and each had a single nucleotide change leading to a single amino acid substitution within one of three regions of the protein. These data were used to design nested PCR primers to amplify portions of the G gene of the 14 remaining mutants. When the PCR products from these mutants were sequenced, they also had single nucleotide substitutions coding for amino acid substitutions at the same, or nearby, locations. Of the 20 mutants for which all or part of the glycoprotein gene was sequenced, two MAbs selected mutants with substitutions at amino acids 230-231 (antigenic site I) and the remaining MAbs selected mutants with substitutions at amino acids 272-276 (antigenic site II). Two MAbs that selected mutants mapping to amino acids 272-276, selected other mutants that mapped to amino acids 78-81, raising the possibility that this portion of the N terminus of the protein was part of a discontinuous epitope defining antigenic site II. CLUSTAL alignment of the glycoproteins of rabies virus, vesicular stomatitis virus and IHNV revealed similarities in the location of the neutralizing epitopes and a high degree of conservation among cysteine residues, indicating that the glycoproteins of three different genera of animal rhabdoviruses may share a similar three-dimensional structure in spite of extensive sequence divergence.

  10. Topology and Function of Human p-Glycoprotein in Multidrug Resistant Breast Cancer Cells.

    DTIC Science & Technology

    1998-08-01

    analysis and both drug transport and regulation of swelling-activated chloride currents were examined. To date our results are incomplete to draw any...glycoprotein, topology, 15. NUMBEROF PAGES Breast Cancer 32 swelling-activated chloride currents 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY... CFTR ) (1;2). This superfamily is generally characterized by a structural motif, which contains two homologous halves, each consisting of six

  11. Mass spectrometry signal amplification for ultrasensitive glycoprotein detection using gold nanoparticle as mass tag combined with boronic acid based isolation strategy.

    PubMed

    Liu, Minbo; Zhang, Lijuan; Xu, Yawei; Yang, Pengyuan; Lu, Haojie

    2013-07-25

    We describe a novel method for rapid and ultrasensitive detection of intact glycoproteins without enzymatic pretreatment which was commonly used in proteomic research. This method is based on using gold nanoparticle (AuNP) as signal tag in laser desorption/ionization mass spectrometry (LDI-MS) analysis combined with boronic acid assisted isolation strategy. Briefly speaking, target glycoproteins were firstly isolated from sample solution with boronic acid functionalized magnetic microparticles, and then the surface modified gold nanoparticles were added to covalently bind to the glycoproteins. After that, these AuNP tagged glycoproteins were eluted from magnetic microparticles and applied to LDI-MS analysis. The mass signal of AuNP rather than that of glycoprotein was detected and recorded in this strategy. Through data processing of different standard glycoproteins, we have demonstrated that the signal of AuNP could be used to quantitatively represent glycoprotein. This method allows femtomolar detection of intact glycoproteins. We believe that the successful validation of this method on three different kinds of glycoproteins suggests the potential use for tracking trace amount of target glycoproteins in real biological samples in the near future.

  12. Carcinoma-specific Ulex europaeus agglutinin-I binding glycoproteins of human colorectal carcinoma and its relation to carcinoembryonic antigen.

    PubMed

    Matsushita, Y; Yonezawa, S; Nakamura, T; Shimizu, S; Ozawa, M; Muramatsu, T; Sato, E

    1985-08-01

    Glycoproteins binding to Ulex europaeus agglutinin-I (UEA-I) lectin, which recognizes the terminal alpha-L-fucose residue, were analyzed in 18 cases of human colorectal carcinoma by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by the Western blotting method. In the distal large bowel (descending and sigmoid colon and rectum), high-molecular-weight glycoproteins binding to UEA-I existed in carcinoma tissue but not in normal mucosa. In the proximal large bowel (ascending and transverse colon), high-molecular-weight glycoproteins binding to UEA-I were found both in normal mucosa and in carcinoma tissue, whereas those from the carcinoma tissue had an apparently lower molecular weight as compared to the weight of those from the normal mucosa. Thus there is a biochemical difference in UEA-I binding glycoproteins between the normal mucosa and the carcinoma tissue, although in our previous histochemical study no difference was observed in UEA-I binding glycoproteins of the proximal large bowel between the carcinoma tissue and the normal mucosa. Furthermore, carcinoembryonic antigen from the carcinoma tissue was found to have the same electrophoretical mobility as the UEA-I binding glycoproteins.

  13. Structure of a Major Antigenic Site on the Respiratory Syncytial Virus Fusion Glycoprotein in Complex with Neutralizing Antibody 101F

    SciTech Connect

    McLellan, Jason S.; Chen, Man; Chang, Jung-San; Yang, Yongping; Kim, Albert; Graham, Barney S.; Kwong, Peter D.

    2010-11-19

    Respiratory syncytial virus (RSV) is a major cause of pneumonia and bronchiolitis in infants and elderly people. Currently there is no effective vaccine against RSV, but passive prophylaxis with neutralizing antibodies reduces hospitalizations. To investigate the mechanism of antibody-mediated RSV neutralization, we undertook structure-function studies of monoclonal antibody 101F, which binds a linear epitope in the RSV fusion glycoprotein. Crystal structures of the 101F antigen-binding fragment in complex with peptides from the fusion glycoprotein defined both the extent of the linear epitope and the interactions of residues that are mutated in antibody escape variants. The structure allowed for modeling of 101F in complex with trimers of the fusion glycoprotein, and the resulting models suggested that 101F may contact additional surfaces located outside the linear epitope. This hypothesis was supported by surface plasmon resonance experiments that demonstrated 101F bound the peptide epitope {approx}16,000-fold more weakly than the fusion glycoprotein. The modeling also showed no substantial clashes between 101F and the fusion glycoprotein in either the pre- or postfusion state, and cell-based assays indicated that 101F neutralization was not associated with blocking virus attachment. Collectively, these results provide a structural basis for RSV neutralization by antibodies that target a major antigenic site on the fusion glycoprotein.

  14. The expression of P-glycoprotein is causally related to a less aggressive phenotype in human osteosarcoma cells.

    PubMed

    Scotlandi, K; Manara, M C; Serra, M; Benini, S; Maurici, D; Caputo, A; De Giovanni, C; Lollini, P L; Nanni, P; Picci, P; Campanacci, M; Baldini, N

    1999-01-21

    The relationship between P-glycoprotein expression and malignancy is controversial. We have recently found that, in osteosarcoma, multidrug resistance (MDR) is associated with a less aggressive behavior, both in vitro and in clinical settings. In this study, we evaluated whether P-glycoprotein overexpression has a cause-effect relationship with the reduced metastatic potential of MDR cells, or rather reflects a more complex phenotype. MDR1 gene-transfected osteosarcoma cell clones, showing different levels of P-glycoprotein expression, were analysed for their in vitro characteristics and their tumorigenic and metastatic ability in athymic mice. Apart from the different levels of P-glycoprotein, no significant change in the expression of surface antigens or in the differentiative features were observed in the MDR1 gene transfectants compared to the parental cell lines or control clones, obtained by transfection with neo gene alone. In contrast to controls, however, MDR1 transfectants showed a significantly lower ability to grow in semi-solid medium and were completely unable to grow and give lung metastases in athymic mice. These findings indicate that P-glycoprotein overexpression is causally associated with a low malignant potential of osteosarcoma cells, and open new insights on the role and functions of P-glycoprotein activity.

  15. Tertiary structure of human alpha1-acid glycoprotein (orosomucoid). Straightforward fluorescence experiments revealing the presence of a binding pocket.

    PubMed

    Albani, Jihad R

    2004-02-25

    Binding of hemin to alpha1-acid glycoprotein has been investigated. Hemin binds to the hydrophobic pocket of hemoproteins. The fluorescent probe 2-(p-toluidino)-6-naphthalenesulfonate (TNS) binds to a hydrophobic domain in alpha1-acid glycoprotein with a dissociation constant equal to 60 microM. Addition of hemin to an alpha1-acid glycoprotein-TNS complex induces the displacement of TNS from its binding site. At saturation (1 hemin for 1 protein) all the TNS has been displaced from its binding site. The dissociation constant of hemin-alpha1-acid glycoprotein was found equal to 2 microM. Thus, TNS and hemin bind to the same hydrophobic site: the pocket of alpha1-acid glycoprotein. Energy-transfer studies performed between the Trp residues of alpha1-acid glycoprotein and hemin indicated that efficiency (E) of Trp fluorescence quenching was equal to 80% and the Förster distance, R0 at which the efficiency of energy transfer is 50% was calculated to be 26 A, revealing a very high energy transfer.

  16. LC-MS/MS quantitation of esophagus disease blood serum glycoproteins by enrichment with hydrazide chemistry and lectin affinity chromatography.

    PubMed

    Song, Ehwang; Zhu, Rui; Hammoud, Zane T; Mechref, Yehia

    2014-11-07

    Changes in glycosylation have been shown to have a profound correlation with development/malignancy in many cancer types. Currently, two major enrichment techniques have been widely applied in glycoproteomics, namely, lectin affinity chromatography (LAC)-based and hydrazide chemistry (HC)-based enrichments. Here we report the LC-MS/MS quantitative analyses of human blood serum glycoproteins and glycopeptides associated with esophageal diseases by LAC- and HC-based enrichment. The separate and complementary qualitative and quantitative data analyses of protein glycosylation were performed using both enrichment techniques. Chemometric and statistical evaluations, PCA plots, or ANOVA test, respectively, were employed to determine and confirm candidate cancer-associated glycoprotein/glycopeptide biomarkers. Out of 139, 59 common glycoproteins (42% overlap) were observed in both enrichment techniques. This overlap is very similar to previously published studies. The quantitation and evaluation of significantly changed glycoproteins/glycopeptides are complementary between LAC and HC enrichments. LC-ESI-MS/MS analyses indicated that 7 glycoproteins enriched by LAC and 11 glycoproteins enriched by HC showed significantly different abundances between disease-free and disease cohorts. Multiple reaction monitoring quantitation resulted in 13 glycopeptides by LAC enrichment and 10 glycosylation sites by HC enrichment to be statistically different among disease cohorts.

  17. Use of influenza C virus glycoprotein HEF for generation of vesicular stomatitis virus pseudotypes.

    PubMed

    Hanika, Andrea; Larisch, Birthe; Steinmann, Eike; Schwegmann-Wessels, Christel; Herrler, Georg; Zimmer, Gert

    2005-05-01

    Influenza C virus contains two envelope glycoproteins: CM2, a putative ion channel protein; and HEF, a unique multifunctional protein that performs receptor-binding, receptor-destroying and fusion activities. Here, it is demonstrated that expression of HEF is sufficient to pseudotype replication-incompetent vesicular stomatitis virus (VSV) that lacks the VSV glycoprotein (G) gene. The pseudotyped virus showed characteristic features of influenza C virus with respect to proteolytic activation, receptor usage and cell tropism. Chimeric glycoproteins composed of HEF ectodomain and VSV-G C-terminal domains were efficiently incorporated into VSV particles and showed receptor-binding and receptor-destroying activities but, unlike authentic HEF, did not mediate efficient infection, probably because of impaired fusion activity. HEF-pseudotyped VSV efficiently infected polarized Madin-Darby canine kidney cells via the apical plasma membrane, whereas entry of VSV-G-complemented virus was restricted to the basolateral membrane. These findings suggest that pseudotyping of viral vectors with HEF might be useful for efficient apical gene transfer into polarized epithelial cells and for targeting cells that express 9-O-acetylated sialic acids.

  18. Crystal Structure of Glycoprotein C from a Hantavirus in the Post-fusion Conformation

    PubMed Central

    Willensky, Shmuel; Bignon, Eduardo A.; Tischler, Nicole D.; Dessau, Moshe

    2016-01-01

    Hantaviruses are important emerging human pathogens and are the causative agents of serious diseases in humans with high mortality rates. Like other members in the Bunyaviridae family their M segment encodes two glycoproteins, GN and GC, which are responsible for the early events of infection. Hantaviruses deliver their tripartite genome into the cytoplasm by fusion of the viral and endosomal membranes in response to the reduced pH of the endosome. Unlike phleboviruses (e.g. Rift valley fever virus), that have an icosahedral glycoprotein envelope, hantaviruses display a pleomorphic virion morphology as GN and GC assemble into spikes with apparent four-fold symmetry organized in a grid-like pattern on the viral membrane. Here we present the crystal structure of glycoprotein C (GC) from Puumala virus (PUUV), a representative member of the Hantavirus genus. The crystal structure shows GC as the membrane fusion effector of PUUV and it presents a class II membrane fusion protein fold. Furthermore, GC was crystallized in its post-fusion trimeric conformation that until now had been observed only in Flavi- and Togaviridae family members. The PUUV GC structure together with our functional data provides intriguing evolutionary and mechanistic insights into class II membrane fusion proteins and reveals new targets for membrane fusion inhibitors against these important pathogens. PMID:27783673

  19. Synthesis by guinea pig megakaryocytes of platelet glycoprotein receptors for fibrinogen and von Willebrand factor.

    PubMed

    Kupinski, J M; Miller, J L

    1986-08-01

    In the preceding paper, we described two monoclonal antibodies, PG-1 and PG-2, that selectively blocked the binding of von Willebrand factor (PG-1) or of fibrinogen (PG-2) to guinea pig platelets. In this study we examine the structures and site of synthesis of these receptors. NP-40 lysates of radiolabeled guinea pig platelets were immunoprecipitated with monoclonal antibodies PG-1 or PG-2, and the precipitates analyzed by SDS-PAGE. PG-1 recognized a single polypeptide with reduced Mr of 143,000 daltons, while PG-2 precipitated two chains with reduced Mr of 121,000 and 93,000 daltons. Periodate-[3H]borohydride labeling of platelets, in conjunction with two-dimensional SDS-PAGE, showed that all three of the polypeptides are glycoproteins and that the 143,000 and 121,000 dalton chains are linked by disulfide bond(s) to smaller, approximately 25,000 dalton polypeptides. Guinea pig megakaryocytes synthesized polypeptides immunoprecipitable by PG-1 and PG-2, with molecular weights similar to polypeptides found associated with platelet membranes. These studies demonstrate that guinea pig platelets have functional receptors for fibrinogen and von Willebrand factor that are structurally homologous to human platelet glycoproteins Ib, IIb and IIIa, and that these glycoproteins are synthesized by megakaryocytes.

  20. Lactobacillus plantarum L67 glycoprotein protects against cadmium chloride toxicity in RAW 264.7 cells.

    PubMed

    Song, Sooyeon; Oh, Sejong; Lim, Kye-Taek

    2016-03-01

    The food and water we consume may be contaminated with a range of chemicals and heavy metals, such as lead, cadmium, arsenic, chromium, and mercury by accumulation through the food chain. Cadmium is known to be one of the major components in cigarette smoke and can cause lesions in many organs. Some lactobacilli can bind and remove heavy metals such as cadmium, lead, and copper. However, the mechanisms of cadmium toxicity and inhibition by probiotics are not clear. In this study, we demonstrated that glycoprotein (18 kDa) isolated from Lactobacillus plantarum L67 protected RAW 264.7 cells from expression of inflammation-related factors stimulated by cadmium chloride (100 µM). Furthermore, we evaluated the cytotoxicity of cadmium using the MTT assay and intracellular Ca(2+) using fluorescence, and assessed activities of activator protein kinase C (PKC-α), inducible nitric oxide synthase, activator protein (AP)-1, and mitogen-activated protein kinases using immunoblot. Our results indicated that glycoprotein isolated from L. plantarum L67 inhibited intracellular Ca(2+) mobilization. It also significantly suppressed inflammatory factors such as AP-1 (c-Jun and c-Fos), mitogen-activated protein kinases (ERK, JNK, and p38), and inducible nitric oxide synthase. Our findings suggest that the 24-kDa glycoprotein isolated from L. plantarum L67 might be used as a food component for protection of inflammation caused by cadmium ion.

  1. Expression of small regions of equine herpesvirus 1 glycoprotein C in Escherichia coli.

    PubMed

    Crabb, B S; Studdert, M J

    1995-09-01

    A series of truncated equine herpesvirus 1 (EHV1) glycoprotein C (gC) molecules was examined for use as serodiagnostic antigens for EHV1 and EHV4. Small regions of EHV1 glycoprotein C, an immunodominant EHV1 glycoprotein, were expressed in Escherichia coli as glutathione S-transferase (GST) fusion proteins using the bacterial expression vector pGEX-2T. Sera obtained from horses, including sera from specific-pathogen-free (SPF) foals, following exposure to either EHV1, EHV4 or both viruses were used. Several of the fusion proteins were shown to encompass EHV1 specific epitopes while others encompassed strong, cross-reactive epitopes. One clone, termed pEC-3, produced a soluble and stable fusion protein which encompassed amino acids 107-275 of EHV1 gC. Strong cross-reactive epitopes on pEC-3 were localised to a region encompassed by amino acids 137 to approximately 152 while EHV1 specific epitope(s) were identified downstream of this region, i.e., approximately amino acids 152 to 275. E. coli expressed EHV1 gC polypeptides showed clear potential for use as diagnostic reagents for the detection of cross-reactive and type-specific EHV1 and EHV4 antibodies present in convalescent equine sera.

  2. P‑glycoprotein inhibition increases the transport of dauricine across the blood‑brain barrier.

    PubMed

    Dong, Pei-Liang; Han, Hua; Zhang, Tian-Yu; Yang, Bingyou; Wang, Qiu-Hong; Eerdun, Gao-Wa

    2014-03-01

    Dauricine is the major bioactive component isolated from the roots of Menispermum dauricum D.C. The aim of the present study was to investigate the role of P‑glycoprotein in the transport of dauricine across the blood‑brain barrier by pre‑treatment with the P‑glycoprotein inhibitor verapamil. Sprague Dawley rats were divided into a verapamil group (pretreated with verapamil at a dose of 20 mg/kg) and a control group (pretreated with the same volume of normal saline). After 90 min, the animals were injected intravenously with dauricine (10 mg/kg). At 15, 30 and 60 min after dauricine administration, the levels of dauricine in the blood and brain were detected by high‑performance liquid chromatography. Compared with the control group, the dauricine concentration in the brains of the rats in the verapamil group was significantly increased. Furthermore, the brain‑plasma ratio of dauricine in the rats pretreated with verapamil was significantly higher than that of the animals in the control group. However, there was no difference identified between dauricine levels in the plasma of the verapamil and the control groups. The results indicated that dauricine is able to pass the blood‑brain barrier, and that P‑glycoprotein has an important role in the transportation of dauricine across the blood‑brain barrier.

  3. Preparation of Recombinant Viral Glycoproteins for Novel and Therapeutic Antibody Discovery

    PubMed Central

    Chan, Yee-Peng; Yan, Lianying; Feng, Yan-Ru; Broder, Christopher C.

    2010-01-01

    Neutralizing antibodies are a critical component in the protection or recovery from viral infections. In the absence of available vaccines or antiviral drugs for many important human viral pathogens, the identification and characterization of new human monoclonal antibodies (hmAbs) able to neutralize viruses offers the possibility for effective pre- and/or post-exposure therapeutic modalities. Such hmAbs may also help in our understanding of the virus entry process, the mechanisms of virus neutralization and in the eventual development of specific entry inhibitors, vaccines and research tools. The majority of the more recently developed antiviral hmAbs have come from the use of antibody phage-display technologies using both naïve and immune libraries. Many of these agents are also enveloped viruses possessing important neutralizing determinants within their membrane-anchored envelope glycoproteins and the use of recombinant, soluble versions of these viral glycoproteins is often critical in the isolation and development of antiviral hmAbs. This chapter will detail several methods that have been successfully employed to produce, purify and characterize soluble and secreted versions of several viral envelope glycoproteins which have been successfully used as antigens to capture and isolate human phage-displayed monoclonal antibodies. PMID:19252850

  4. Crystal Structure of Glycoprotein C from a Hantavirus in the Post-fusion Conformation.

    PubMed

    Willensky, Shmuel; Bar-Rogovsky, Hagit; Bignon, Eduardo A; Tischler, Nicole D; Modis, Yorgo; Dessau, Moshe

    2016-10-01

    Hantaviruses are important emerging human pathogens and are the causative agents of serious diseases in humans with high mortality rates. Like other members in the Bunyaviridae family their M segment encodes two glycoproteins, GN and GC, which are responsible for the early events of infection. Hantaviruses deliver their tripartite genome into the cytoplasm by fusion of the viral and endosomal membranes in response to the reduced pH of the endosome. Unlike phleboviruses (e.g. Rift valley fever virus), that have an icosahedral glycoprotein envelope, hantaviruses display a pleomorphic virion morphology as GN and GC assemble into spikes with apparent four-fold symmetry organized in a grid-like pattern on the viral membrane. Here we present the crystal structure of glycoprotein C (GC) from Puumala virus (PUUV), a representative member of the Hantavirus genus. The crystal structure shows GC as the membrane fusion effector of PUUV and it presents a class II membrane fusion protein fold. Furthermore, GC was crystallized in its post-fusion trimeric conformation that until now had been observed only in Flavi- and Togaviridae family members. The PUUV GC structure together with our functional data provides intriguing evolutionary and mechanistic insights into class II membrane fusion proteins and reveals new targets for membrane fusion inhibitors against these important pathogens.

  5. Posttranslational modifications of Sindbis virus glycoproteins: electrophoretic analysis of pulse-chase-labeled infected cells.

    PubMed Central

    Bonatti, S; Cancedda, F D

    1982-01-01

    Cytoplasmic extracts prepared from Sindbis virus-infected chicken embryo fibroblasts pulse-chase-labeled with [35S]methionine 6 h postinfection were analyzed on a highly resolving sodium dodecyl sulfate-gel either directly or after various treatments. The results we obtained suggest that (i) the proteolytic cleavage which converts PE2 to E2 glycoprotein takes place intracellularly, before or at least during the formation of complex-type oligosaccharide side chains; and (ii) E1 glycoprotein undergoes a complex maturation pattern. Newly synthesized E1 has a molecular weight of 53,000: shortly thereafter, this 53,000 (53K) form was converted to a 50K form. Subsequently, the 50K form decreased its apparent molecular weight progressively and eventually comigrated with E1 glycoprotein present in the extracellular virus, which displays a molecular weight of 51,000 to 52,000. The conversion of the 53K to the 50K form was not the result of a proteolytic processing and did not depend on glycosylation or disulfide bridge formation and exchange. The possible mechanisms of this conversion are discussed. The second conversion step (from the 50K to the 51-52K form) was due to the formation of complex-type oligosaccharide and was reversed by incubating the cellular extracts with neuraminidase before electrophoretic analysis. Images PMID:7045394

  6. Bunyamwera orthobunyavirus glycoprotein precursor is processed by cellular signal peptidase and signal peptide peptidase

    PubMed Central

    Shi, Xiaohong; Botting, Catherine H.; Li, Ping; Niglas, Mark; Brennan, Benjamin; Shirran, Sally L.; Szemiel, Agnieszka M.; Elliott, Richard M.

    2016-01-01

    The M genome segment of Bunyamwera virus (BUNV)—the prototype of both the Bunyaviridae family and the Orthobunyavirus genus—encodes the glycoprotein precursor (GPC) that is proteolytically cleaved to yield two viral structural glycoproteins, Gn and Gc, and a nonstructural protein, NSm. The cleavage mechanism of orthobunyavirus GPCs and the host proteases involved have not been clarified. In this study, we investigated the processing of BUNV GPC and found that both NSm and Gc proteins were cleaved at their own internal signal peptides (SPs), in which NSm domain I functions as SPNSm and NSm domain V as SPGc. Moreover, the domain I was further processed by a host intramembrane-cleaving protease, signal peptide peptidase, and is required for cell fusion activities. Meanwhile, the NSm domain V (SPGc) remains integral to NSm, rendering the NSm topology as a two-membrane-spanning integral membrane protein. We defined the cleavage sites and boundaries between the processed proteins as follows: Gn, from residue 17–312 or nearby residues; NSm, 332–477; and Gc, 478–1433. Our data clarified the mechanism of the precursor cleavage process, which is important for our understanding of viral glycoprotein biogenesis in the genus Orthobunyavirus and thus presents a useful target for intervention strategies. PMID:27439867

  7. Identification of Schistosoma mansoni glycoproteins recognized by protective antibodies from mice immunized with irradiated cercariae

    SciTech Connect

    Dalton, J.P.; Strand, M.; Mangold, B.L.; Dean, D.A.

    1986-06-15

    The humoral immune response of mice patently infected with Schistosoma mansoni and of mice vaccinated with radiation-attenuated cercariae were compared by radioimmunoassays and one-and two-dimensional polyacrylamide gel analyses of radioimmunoprecipitates. The binding observed with antibodies of mice vaccinated twice with radiation-attenuated cercariae over a period of 7 to 11 wk was less than 50% of the binding observed with antibodies of mice patently infected for 20 wk, but three to four times greater than that obtained with antibodies of mice infected for 6 wk, irrespective of whether the test extracts were derived from schistosomula or adult worms. Sera of vaccinated mice precipitated a restricted number of predominantly high m.w. glycoproteins of both schistosomula and adult worms metabolically labeled with sulfur-35 methionine. Each of the glycoproteins of 36 hr in vitro-cultured schistosomula that was precipitated by the sera of vaccinated mice was also precipitated by the sera of infected mice. Although radiation-attenuated larvae do not reach the adult stage, mice vaccinated with these still elicit a strong immune response against egg glycoproteins. These results show that the antibody response in mice vaccinated with radiation-attenuated larvae differs qualitatively and quantitatively from that of infected mice.

  8. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy.

    PubMed

    Idris, Fakhriedzwan; Muharram, Siti Hanna; Diah, Suwarni

    2016-07-01

    Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.

  9. Exocytosis of Alphaherpesvirus Virions, Light Particles, and Glycoproteins Uses Constitutive Secretory Mechanisms

    PubMed Central

    Hogue, Ian B.; Scherer, Julian

    2016-01-01

    ABSTRACT Many molecular and cell biological details of the alphaherpesvirus assembly and egress pathway remain unclear. Recently we developed a live-cell fluorescence microscopy assay of pseudorabies virus (PRV) exocytosis, based on total internal reflection fluorescence (TIRF) microscopy and a virus-encoded pH-sensitive fluorescent probe. Here, we use this assay to distinguish three classes of viral exocytosis in a nonpolarized cell type: (i) trafficking of viral glycoproteins to the plasma membrane, (ii) exocytosis of viral light particles, and (iii) exocytosis of virions. We find that viral glycoproteins traffic to the cell surface in association with constitutive secretory Rab GTPases and exhibit free diffusion into the plasma membrane after exocytosis. Similarly, both virions and light particles use these same constitutive secretory mechanisms for egress from infected cells. Furthermore, we show that viral light particles are distinct from cellular exosomes. Together, these observations shed light on viral glycoprotein trafficking steps that precede virus particle assembly and reinforce the idea that virions and light particles share a biogenesis and trafficking pathway. PMID:27273828

  10. Improvement of N-glycan site occupancy of therapeutic glycoproteins produced in Pichia pastoris.

    PubMed

    Choi, Byung-Kwon; Warburton, Shannon; Lin, Heping; Patel, Rohan; Boldogh, Istvan; Meehl, Michael; Meehl, Meehl; d'Anjou, Marc; Pon, Liza; Stadheim, Terrance A; Sethuraman, Natarajan

    2012-08-01

    Yeast is capable of performing posttranslational modifications, such as N- or O-glycosylation. It has been demonstrated that N-glycans play critical biological roles in therapeutic glycoproteins by modulating pharmacokinetics and pharmacodynamics. However, N-glycan sites on recombinant glycoproteins produced in yeast can be underglycosylated, and hence, not completely occupied. Genomic homology analysis indicates that the Pichia pastoris oligosaccharyltransferase (OST) complex consists of multiple subunits, including OST1, OST2, OST3, OST4, OST5, OST6, STT3, SWP1, and WBP1. Monoclonal antibodies produced in P. pastoris show that N-glycan site occupancy ranges from 75-85 % and is affected mainly by the OST function, and in part, by process conditions. In this study, we demonstrate that N-glycan site occupancy of antibodies can be improved to greater than 99 %, comparable to that of antibodies produced in mammalian cells (CHO), by overexpressing Leishmania major STT3D (LmSTT3D) under the control of an inducible alcohol oxidase 1 (AOX1) promoter. N-glycan site occupancy of non-antibody glycoproteins such as recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) was also significantly improved, suggesting that LmSTT3D has broad substrate specificity. These results suggest that the glycosylation status of recombinant proteins can be improved by heterologous STT3 expression, which will allow for the customization of therapeutic protein profiles.

  11. Glycosylation and sulphation of colonic mucus glycoproteins in patients with ulcerative colitis and in healthy subjects.

    PubMed Central

    Morita, H; Kettlewell, M G; Jewell, D P; Kent, P W

    1993-01-01

    Studies have been made of mucus glycoprotein biosynthesis in different regions of the lower gastrointestinal tract in normal patients and those with ulcerative colitis (UC), active or inactive, by means of 3H-glucosamine (3H-GlcNH2)--35S-sulphate double labelling of epithelial biopsy specimens under culture conditions. The time based rate of 3H-GlcNH2 labelling of mucus in rectal tissue was similar to that in active or inactive UC whereas the rate of 35SO4(2) labelling was significantly increased in active disease. The 3H specific activities measuring the amount of isotopic incorporation into surface and tissue mucus glycoproteins were increased in patients with active UC compared with normal or inactive subjects. The 35S specific activities did not differ significantly between patients with active UC and those in remission. In the rectum, glycosylation of mucus glycoproteins decreases with the increasing age of the patient. Regional differences in 3H-labelling of mucus components are reported for ascending colon, transverse colon, sigmoid colon, and rectum. Sulphation (35S-labelling) was higher in all parts of the colon in left sided UC. Results point to accelerated glycosylation of core proteins in the active phase of UC. PMID:8344580

  12. Beta-hexosaminidase activity of the oral pathogen Tannerella forsythia influences biofilm formation on glycoprotein substrates.

    PubMed

    Roy, Sumita; Phansopa, Chatchawal; Stafford, Prachi; Honma, Kiyonobu; Douglas, C W Ian; Sharma, Ashu; Stafford, Graham P

    2012-06-01

    Tannerella forsythia is an important pathogen in periodontal disease. Previously, we showed that its sialidase activity is key to utilization of sialic acid from a range of human glycoproteins for biofilm growth and initial adhesion. Removal of terminal sialic acid residues often exposes β-linked glucosamine or galactosamine, which may also be important adhesive molecules. In turn, these residues are often removed by a group of enzymes known as β-hexosaminidases. We show here that T. forsythia has the ability to cleave glucosamine and galactosamine from model substrates and that this activity can be inhibited by the hexosaminidase inhibitor PugNAc (O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino N-phenyl carbamate). We now demonstrate for the first time that β-hexosaminidase activity plays a role in biofilm growth on glycoprotein-coated surfaces because biofilm growth and initial cell adhesion are inhibited by PugNAc. In contrast, adhesion to siallo-glycoprotein-coated surfaces is unaltered by PugNAc in the absence of sialidase activity (using a sialidase-deficient mutant) or surprisingly on the clinically relevant substrates saliva or serum. These data indicate that β-hexosaminidase activity has a significant role in biofilm formation in combination with sialidase activity in the biofilm lifestyle of T. forsythia.

  13. Molecular Docking Studies to Explore Potential Binding Pockets and Inhibitors for Chikungunya Virus Envelope Glycoproteins.

    PubMed

    Nguyen, Phuong T V; Yu, Haibo; Keller, Paul A

    2017-03-11

    The chikungunya virus (CHIKV) envelope glycoproteins are considered important potential targets for anti-CHIKV drug discovery due to their crucial roles in virus attachment and virus entry. In this study, using two available crystal structures of the immature and mature forms of envelope glycoproteins, virtual screenings based on blind dockings and focused dockings were carried out to identify potential binding pockets and hit compounds for the virus. The chemical library database of compounds, NCI Diversity Set II, was used in these docking studies. In addition to reproducing previously reported examples, new binding pockets were identified, e.g., Pocket 2 in the 3N40, and Pocket 2 and Pocket 3 in the 3N42. Convergences in conformational sampling in docking using AutoDock Vina were evaluated. An analysis of docking results was carried out to understand interactions of the envelope glycoproteins complexes. Some key residues for interactions, for example Gly91 and His230, are identified as possessing important roles in the fusion process.

  14. Cytoplasmic tail domain of glycoprotein B is essential for HHV-6 infection

    SciTech Connect

    Mahmoud, Nora F.; Jasirwan, Chyntia; Kanemoto, Satoshi; Wakata, Aika; Wang, Bochao; Hata, Yuuki; Nagamata, Satoshi; Kawabata, Akiko; Tang, Huamin; Mori, Yasuko

    2016-03-15

    Human herpesvirus 6 (HHV-6) glycoprotein B (gB) is an abundantly expressed viral glycoprotein required for viral entry and cell fusion, and is highly conserved among herpesviruses. The present study examined the function of HHV-6 gB cytoplasmic tail domain (CTD). A gB CTD deletion mutant was constructed which, in contrast to its revertant, could not be reconstituted. Moreover, deletion of gB cytoplasmic tail impaired the intracellular transport of gB protein to the trans-Golgi network (TGN). Taken together, these results suggest that gB CTD is critical for HHV-6 propagation and important for intracellular transportation. - Highlights: • Glycoprotein B (gB) is highly conserved among herpesviruses. • HHV-6 gB is also abundantly expressed in virions. • In the present study, we showed the function of HHV-6 gB cytoplasmic tail domain (CTD). • We found that deletion of gB CTD impairs the intracellular transport of gB protein to the trans-Golgi network (TGN), and CTD of gB is critical for HHV-6 propagation.

  15. Preparation of a boronate-functionalized affinity hybrid monolith for specific capture of glycoproteins.

    PubMed

    Yang, F; Mao, J; He, X W; Chen, L X; Zhang, Y K

    2013-06-01

    A novel strategy for preparation of a boronate affinity hybrid monolith was developed using a Cu(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition (CuAAC) reaction of an alkyne-boronate ligand with an azide-functionalized monolithic intermediate. An azide-functionalized hybrid monolith was first synthesized via a single-step procedure to provide reactive sites for click chemistry; then the alkyne-boronate ligands were covalently immobilized on the azide-functionalized hybrid monolith via an in-column CuAAC reaction to form a boronate affinity hybrid monolith under mild conditions. The boronate affinity monolith was characterized and evaluated by means of elemental analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. The boronate affinity hybrid monolith exhibited excellent specificity toward nucleosides and glycoproteins, which were chosen as test cis-diol-containing compounds under neutral conditions. The binding capacity of the monolith for the glycoprotein ovalbumin was 2.36 mg · g(-1) at pH 7.0. The practicability of the boronate affinity hybrid monolithic material was demonstrated by specific capture of the glycoproteins ovalbumin and ovotransferrin from an egg sample.

  16. Potent glycan inhibitors of myelin-associated glycoprotein enhance axon outgrowth in vitro.

    PubMed

    Vyas, Alka A; Blixt, Ola; Paulson, James C; Schnaar, Ronald L

    2005-04-22

    Myelin-associated glycoprotein (MAG, Siglec-4) is one of several endogenous axon regeneration inhibitors that limit recovery from central nervous system injury and disease. Molecules that block such inhibitors may enhance axon regeneration and functional recovery. MAG, a member of the Siglec family of sialic acid-binding lectins, binds to sialoglycoconjugates on axons and particularly to gangliosides GD1a and GT1b, which may mediate some of the inhibitory effects of MAG. In a prior study, we identified potent monovalent sialoside inhibitors of MAG using a novel screening platform. In the current study, the most potent of these were tested for their ability to reverse MAG-mediated inhibition of axon outgrowth from rat cerebellar granule neurons in vitro. Monovalent sialoglycans enhanced axon regeneration in proportion to their MAG binding affinities. The most potent glycoside was disialyl T antigen (NeuAcalpha2-3Galbeta1-3[NeuAcalpha2-6]GalNAc-R), followed by 3-sialyl T antigen (NeuAcalpha2-3Galbeta1-3GalNAc-R), structures expressed on O-linked glycoproteins as well as on gangliosides. Prior studies indicated that blocking gangliosides reversed MAG inhibition. In the current study, blocking O-linked glycoprotein sialylation with benzyl-alpha-GalNAc had no effect. The ability to reverse MAG inhibition with monovalent glycosides encourages further exploration of glycans and glycan mimetics as blockers of MAG-mediated axon outgrowth inhibition.

  17. Infection with Listeria monocytogenes impairs sialic acid addition to host cell glycoproteins

    PubMed Central

    1994-01-01

    Listeria monocytogenes is a facultative intracellular bacterium that causes severe disease in neonates and immunocompromised adults. Although entry, multiplication, and locomotion of Listeria in the cytosol of infected cells are well described, the impact of such infection on the host cell is unknown. In this report, we investigate the effect of L. monocytogenes infection on MHC class I synthesis, processing, and intracellular trafficking. We show that L. monocytogenes infection interferes with normal processing of N-linked oligosaccharides on the major histocompatibility complex (MHC) class I heavy chain molecule, H-2Kd, resulting in a reduced sialic acid content. The glycosylation defect is more pronounced as the infection progresses and results from interference with the addition of sialic acid rather than its removal by a neuraminidase. The effect is found in two different cell lines and is not limited to MHC class I molecules since CD45, a surface glycoprotein, and LGP120, a lysosomal glycoprotein, are similarly affected by L. monocytogenes infection. The glycosylation defect is specific for infection by L. monocytogenes since neither Trypanosoma cruzi nor Yersinia enterocolitica, two other intracellular pathogens, reproduces the effect. The resultant hyposialylation of H-2Kd does not impair its surface expression in infected cells. Diminished sialic acid content of surface glycoproteins may enhance host-defense by increasing susceptibility to lysis and promoting clearance of Listeria-infected cells. PMID:7964488

  18. Automated sample preparation facilitated by PhyNexus MEA purification system for oligosaccharide mapping of glycoproteins.

    PubMed

    Prater, Bradley D; Anumula, Kalyan R; Hutchins, Jeff T

    2007-10-15

    A reproducible high-throughput sample cleanup method for fluorescent oligosaccharide mapping of glycoproteins is described. Oligosaccharides are released from glycoproteins using PNGase F and labeled with 2-aminobenzoic acid (anthranilic acid, AA). A PhyNexus MEA system was adapted for automated isolation of the fluorescently labeled oligosaccharides from the reaction mixture prior to mapping by HPLC. The oligosaccharide purification uses a normal-phase polyamide resin (DPA-6S) in custom-made pipette tips. The resin volume, wash, and elution steps involved were optimized to obtain high recovery of oligosaccharides with the least amount of contaminating free fluorescent dye in the shortest amount of time. The automated protocol for sample cleanup eliminated all manual manipulations with a recycle time of 23 min. We have reduced the amount of excess AA by 150-fold, allowing quantitative oligosaccharide mapping from as little as 500 ng digested recombinant immunoglobulin G (rIgG). This low sample requirement allows early selection of a cell line with desired characteristics (e.g., oligosaccharide profile and high specific productivity) for the production of glycoprotein drugs. In addition, the use of Tecan or another robotic platform in conjunction with this method should allow the cleanup of 96 samples in 23 min, a significant decrease in the amount of time currently required to process such a large number of samples.

  19. Transient translocation of the cytoplasmic (endo) domain of a type I membrane glycoprotein into cellular membranes

    PubMed Central

    1993-01-01

    The E2 glycoprotein of the alphavirus Sindbis is a typical type I membrane protein with a single membrane spanning domain and a cytoplasmic tail (endo domain) containing 33 amino acids. The carboxyl terminal domain of the tail has been implicated as (a) attachment site for nucleocapsid protein, and (b) signal sequence for integration of the other alpha-virus membrane proteins 6K and E1. These two functions require that the carboxyl terminus be exposed in the cell cytoplasm (a) and exposed in the lumen of the endoplasmic reticulum (b). We have investigated the orientation of this glycoprotein domain with respect to cell membranes by substituting a tyrosine for the normally occurring serine, four amino acids upstream of the carboxyl terminus. Using radioiodination of this tyrosine as an indication of the exposure of the glycoprotein tail, we have provided evidence that this domain is initially translocated into a membrane and is returned to the cytoplasm after export from the ER. This is the first demonstration of such a transient translocation of a single domain of an integral membrane protein and this rearrangement explains some important aspects of alphavirus assembly. PMID:8432728

  20. Malonic acid suppresses mucin-type O-glycan degradation during hydrazine treatment of glycoproteins.

    PubMed

    Goso, Yukinobu

    2016-03-01

    Hydrazine treatment is frequently used for releasing mucin-type O-glycans (O-glycans) from glycoproteins because the method provides O-glycans that retain a reducible GalNAc at their reducing end, which is available for fluorescent labeling. However, many O-glycans are degraded by "peeling" during this treatment. In the current study, it was found that malonic acid suppressed O-glycan degradation during hydrazine treatment of bovine fetuin or porcine gastric mucin in both the gas and liquid phases. This is paradoxical because the release of O-glycans from glycoproteins occurs under alkaline conditions. However, malonic acid seems to prevent the degradation through its acidic property given that other weak acids also prevented the degradation. Accordingly, disodium malonate did not suppress O-glycan degradation. Application of this method to rat gastric mucin demonstrated that the majority of the major O-glycans obtained in the presence of malonic acid were intact, whereas those obtained in the absence of malonic acid were degraded. These results suggest that hydrazine treatment in the presence of malonic acid would allow glycomic analysis of native mucin glycoproteins.

  1. Natural cell-mediated cytotoxicity: possible role of N-linked glycoproteins

    SciTech Connect

    Oeltmann, T.N.; Chambers, W.H.

    1986-05-01

    The authors have examined the role of N-linked glycoproteins in natural cell-mediated cytotoxicity (NCMC) by treating effector cells or target cells with swainsonine, a specific inhibitor of golgi mannosidase II which is critical for N-linked glycoprotein processing. They have also examined the effects of alpha-mannosidase, an exoglycosidase specific for alpha-linked mannose residues, on both target and effector cells. Pretreatment of nonadherent mononuclear cells with swainsonine (18 hr) resulted in an inhibition of lysis of K-562 target cells as measured by LDH release. Protein synthesis was not inhibited as measured by incorporation of /sup 14/C-amino acids. However, oligosaccharide processing was altered as measured by incorporation of 2(/sup 3/H)-mannose. Similar treatment did not inhibit target cell-effector cell conjugation. Pretreatment of nonadherent mononuclear cells with alpha-mannosidase (1 hr) did not result in a reduction in NK cell function. However, alpha-mannosidase did cause a release of mannose from treated cells. These results suggest that N-linked glycoproteins may play a role in NCMC, but not at the level of recognition and binding.

  2. Natural cell-mediated cytotoxicity: possible role of N-linked glycoproteins

    SciTech Connect

    Chambers, W.H.; Oeltmann, T.N.

    1986-03-01

    The authors have examined the role of N-linked glycoproteins in natural cell-mediated cytotoxicity (NCMC) by treating effector cells or target cells with swainsonine, a specific inhibitor of golgi mannosidase II which is critical for N-linked glycoprotein processing. They have also examined the effects of alpha-mannosidase, an exoglycosidase specific for alpha-linked mannose residues, on both target and effector cells. Pretreatment of nonadherent mononuclear cells with swainsonine (18 hr) resulted in an inhibition of lysis of K-562 target cells as measured by LDH release. Protein synthesis was not inhibited as measured by incorporation of /sup 14/C-amino acids. However, oligosaccharide processing was altered as measured by incorporation of 2(/sup 3/H)-mannose. Similar treatment did not inhibit target cell-effector cell conjugation. Pretreatment of nonadherent mononuclear cells with alpha-mannosidase (1 hr) did not result in a reduction in NK cell function. However, alpha-mannosidase did cause a release of mannose from treated cells. These results suggest that N-linked glycoproteins may play a role in NCMC, but not at the level of recognition and binding.

  3. Terminal Mannose Residues in Seminal Plasma Glycoproteins of Infertile Men Compared to Fertile Donors

    PubMed Central

    Olejnik, Beata; Jarząb, Anna; Kratz, Ewa M.; Zimmer, Mariusz; Gamian, Andrzej; Ferens-Sieczkowska, Mirosława

    2015-01-01

    The impact of seminal plasma components on the fertilization outcomes in humans is still under question. The increasing number of couples facing problems with conception raises the need for predictive biomarkers. Detailed understanding of the molecular mechanisms accompanying fertilization remains another challenge. Carbohydrate–protein recognition may be of key importance in this complex field. In this study, we analyzed the unique glycosylation pattern of seminal plasma proteins, the display of high-mannose and hybrid-type oligosaccharides, by means of their reactivity with mannose-specific Galanthus nivalis lectin. Normozoospermic infertile subjects presented decreased amounts of lectin-reactive glycoepitopes compared to fertile donors and infertile patients with abnormal semen parameters. Glycoproteins containing unveiled mannose were isolated in affinity chromatography, and 17 glycoproteins were identified in liquid chromatography-tandem mass spectrometry with electrospray ionization. The N-glycome of the isolated glycoproteins was examined in matrix-assisted laser desorption ionization mass spectrometry. Eleven out of 27 identified oligosaccharides expressed terminal mannose residues, responsible for lectin binding. We suggest that lowered content of high-mannose and hybrid type glycans in normozoospermic infertile patients may be associated with impaired sperm protection from preterm capacitation and should be considered in the search for new infertility markers. PMID:26147424

  4. Clearance and binding of radiolabeled glycoproteins by cells of the murine mononuclear phagocyte system

    SciTech Connect

    Imber, M.J.

    1982-01-01

    The clearance and binding of radiolabeled lactoferrin and fast ..cap alpha../sub 2/-macroglobulin were studied. Both glycoproteins cleared rapidly following intravenous injection in mice, and both bound specifically to discrete receptors on murine peritoneal macrophages. The simultaneous presence of excess, unlabeled ligands specific for receptors recognizing terminal fucose, mannose, N-acetylglucosamine or galactose residues did not inhibit the clearance or binding of either lactoferrin or fast-..cap alpha../sub 2/M. The clearance and binding of enzymatically defucosylated lactoferrin was indistinguishable from native lactoferrin, indicating that terminal ..cap alpha..(1-3)-linked fucose on lactoferrin is not necessary for receptor recognition. The clearance and binding of two fast -..cap alpha../sub 2/M forms, ..cap alpha../sub 2/M-trypsin and ..cap alpha../sub 2/M-MeNH/sub 2/ cross compete with each other. Saturation binding studies indicated that the total binding of mannosyl -BSA, fusocyl-BSA, and N-acetylglucosaminyl-BSA to macrophages activated by BCG was approximately 15% of the levels observed with inflammatory macrophages elicited by thioglycollate broth. Cross-competition binding studies demonstrated a common surface receptor mediated binding of all three neoglycoprotein ligands and was identical to the receptor on mononuclear phagocytes that binds mannosyl- and N-acetylglucosaminyl-terminated glycoproteins. These results suggest that difference between discrete states of macrophage function may be correlated with selective changes in levels of the surface receptor for mannose-containing glycoproteins.

  5. Quantitative proteomic analysis for high-throughput screening of differential glycoproteins in hepatocellular carcinoma serum

    PubMed Central

    Gao, Hua-Jun; Chen, Ya-Jing; Zuo, Duo; Xiao, Ming-Ming; Li, Ying; Guo, Hua; Zhang, Ning; Chen, Rui-Bing

    2015-01-01

    Objective Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths. Novel serum biomarkers are required to increase the sensitivity and specificity of serum screening for early HCC diagnosis. This study employed a quantitative proteomic strategy to analyze the differential expression of serum glycoproteins between HCC and normal control serum samples. Methods Lectin affinity chromatography (LAC) was used to enrich glycoproteins from the serum samples. Quantitative mass spectrometric analysis combined with stable isotope dimethyl labeling and 2D liquid chromatography (LC) separations were performed to examine the differential levels of the detected proteins between HCC and control serum samples. Western blot was used to analyze the differential expression levels of the three serum proteins. Results A total of 2,280 protein groups were identified in the serum samples from HCC patients by using the 2D LC-MS/MS method. Up to 36 proteins were up-regulated in the HCC serum, whereas 19 proteins were down-regulated. Three differential glycoproteins, namely, fibrinogen gamma chain (FGG), FOS-like antigen 2 (FOSL2), and α-1,6-mannosylglycoprotein 6-β-N-acetylglucosaminyltransferase B (MGAT5B) were validated by Western blot. All these three proteins were up-regulated in the HCC serum samples. Conclusion A quantitative glycoproteomic method was established and proven useful to determine potential novel biomarkers for HCC. PMID:26487969

  6. In vitro enhancement of human natural cell-mediated cytotoxicity by purified influenza virus glycoproteins.

    PubMed Central

    Arora, D J; Houde, M; Justewicz, D M; Mandeville, R

    1984-01-01

    The role of the glycoproteins of influenza virus, hemagglutinin (HA), and neuraminidase (NA) in the in vitro stimulation of natural cell-mediated cytotoxicity (NCMC) or natural killer activity of human peripheral blood lymphocytes was evaluated with radiolabeled K562 cells as target cells in an overnight chromium release assay. Three different approaches were used. (i) Purified viral proteins were obtained by extraction with Nonidet P-40, separation on a sucrose gradient, and further purification by affinity chromatography. Ficoll-Hypaque-purified peripheral blood lymphocytes exposed to HA or NA individually or to a mixture of both significantly increased NCMC (32 to 50%). (ii) Treatment of HA and NA with their respective homologous antisera or F(ab')2 antibody abrogated the stimulation of NCMC by these glycoproteins. (iii) Virions treated with proteolytic enzymes resulted in viral cores lacking either HA or NA or both activities. Compared to whole virions, viral cores devoid of HA activity only induced a 50% increase in NCMC, whereas viral cores lacking HA activity and with traces of NA activity stimulated only 10% of the NCMC. These results suggest that influenza virus-induced cell-mediated cytotoxicity is largely due to its glycoproteins. PMID:6387178

  7. Unique glycoprotein-proteoglycan complex defined by monoclonal antibody on human melanoma cells.

    PubMed Central

    Bumol, T F; Reisfeld, R A

    1982-01-01

    A monoclonal antibody, 9.2.27, with a high specificity for human melanoma cell surfaces has been utilized for biosynthetic studies in M21 human melanoma cells to define a unique antigenic complex consisting of a 250-kilodalton N-linked glycoprotein and a high molecular weight proteoglycan component larger than 400 kilodaltons. The 250-kilodalton glycoprotein has endoglycosidase H-sensitive precursors and shows a lower apparent molecular weight after treatment with neuraminidase. The biosynthesis of the proteoglycan component is inhibited by exposure of M21 cells to the monovalent ionophore monensin, this component can be labeled biosynthetically with 35SO4, is sensitive to beta-elimination in dilute base, and is degraded by both chondroitinase AC and ABC lyases, suggesting that it is a chondroitin sulfate proteoglycan. These data demonstrate that the antigenic determinant recognized by monoclonal antibody 9.2.27 is located on a glycoprotein-proteoglycan complex which may have unique implications for the interaction of glycoconjugates at the human melanoma tumor cell surface. Images PMID:6175965

  8. Conservation of hydrophobicity within viral envelope glycoproteins reveals a putative hepatitis C virus fusion peptide.

    PubMed

    Taylor, A; O'Leary, J M; Pollock, S; Zitzmann, N

    2009-01-01

    The mechanism(s) by which hepatitis C virus (HCV) enters and infects cells remains unknown. Identifying the HCV fusion peptide(s) and understanding the early stages of infection may provide new opportunities for improved antiviral therapy. The HCV envelope glycoprotein E2 is thought to be a class II fusion protein. Class II fusion proteins are exemplified by the E protein of the tick-borne encephalitis virus (TBEV) and the E1 protein of the Semliki Forest virus (SFV). Analysis of the hydrophobicity profiles of four HCV E2 envelope glycoproteins revealed a region with a conserved three-pronged pattern of hydrophobicity, termed the tridentate (TD) region. The primary sequence of the TD region is highly conserved in all 490 HCV strains currently reported. The known fusion peptide loops of TBEV and SFV share the characteristic TD region hydrophobicity profile and significant sequence conservation in the TD region was identified in the E and E1 glycoproteins of members of the Flaviviridae and Togaviridae families, respectively. The HCV TD region peptides have membranotropic activity; in molecular dynamics (MD) simulations, the HCV TD region peptides insert into in a biomimetic bilayer in a similar manner to the TBEV fusion peptide and the peptides induce effective mixing of lipid membranes in a liposome fusion assay. Together these results indicate that the highly conserved TD region of the HCV E2 protein is a fusion peptide candidate and may be an important factor in the class II fusion mechanism.

  9. A lectin-based gold nanoparticle assay for probing glycosylation of glycoproteins.

    PubMed

    Sánchez-Pomales, Germarie; Morris, Todd A; Falabella, James B; Tarlov, Michael J; Zangmeister, Rebecca A

    2012-09-01

    We report a glycoanalysis method in which lectins are used to probe the glycans of therapeutic glycoproteins that are adsorbed on gold nanoparticles. A model mannose-presenting glycoprotein, ribonuclease B (RNase B), and the therapeutic monoclonal antibody (mAb) rituximab, were found to adsorb spontaneously and non-specifically to bare gold nanoparticles such that glycans were accessible for lectin binding. Addition of a multivalent binding lectin, such as concanavalin A (Con A), to a solution of the modified gold nanoparticles resulted in cross-linking of the nanoparticles. This phenomenon was evidenced within 1 min by a change in the hydrodynamic diameter, D(H), measured by dynamic light scattering (DLS) and a shift and increase in absorbance of the plasmon resonance band of the gold nanoparticles. By combining the sugar-binding specificity and the cross-linking capabilities of lectins, the non-specific adsorption of glycoproteins to gold surfaces, and the unique optical reporting properties of gold nanoparticles, a glycosylation pattern of rituximab could be generated. This assay provides advantages over currently used glycoanalysis methods in terms of short analysis time, simplicity of the conjugation method, convenience of simple spectroscopic detection, and feasibility of providing glycan characterization of the protein drug product by using a variety of binding lectins.

  10. A Complex of Htm1 and the Oxidoreductase Pdi1 Accelerates Degradation of Misfolded Glycoproteins.

    PubMed

    Pfeiffer, Anett; Stephanowitz, Heike; Krause, Eberhard; Volkwein, Corinna; Hirsch, Christian; Jarosch, Ernst; Sommer, Thomas

    2016-06-03

    A quality control system in the endoplasmic reticulum (ER) efficiently discriminates polypeptides that are in the process of productive folding from conformers that are trapped in an aberrant state. Only the latter are transported into the cytoplasm and degraded in a process termed ER-associated protein degradation (ERAD). In the ER, an enzymatic cascade generates a specific N-glycan structure of seven mannosyl and two N-acetylglucosamine residues (Man7GlcNAc2) on misfolded glycoproteins to facilitate their disposal. We show that a complex encompassing the yeast lectin-like protein Htm1 and the oxidoreductase Pdi1 converts Man8GlcNAc2 on glycoproteins into the Man7GlcNAc2 signal. In vitro the Htm1-Pdi1 complex processes both unfolded and native proteins albeit with a preference for the former. In vivo, elevated expression of HTM1 causes glycan trimming on misfolded and folded proteins, but only degradation of the non-native species is accelerated. Thus, modification with a Man7GlcNAc2 structure does not inevitably commit a protein for ER-associated protein degradation. The function of Htm1 in ERAD relies on its association with Pdi1, which appears to regulate the access to substrates. Our data support a model in which the balanced activities of Pdi1 and Htm1 are crucial determinants for the efficient removal of misfolded secretory glycoproteins.

  11. Glycosylation of VSV glycoprotein is similar in cystic fibrosis, heterozygous carrier, and normal human fibroblasts.

    PubMed

    Hunt, L A; Summers, D F

    1977-01-01

    The single envelope glycoprotein of vesicular stomatitis virus was used as a specific probe of glycosyltransferase activities in fibroblasts from two cystic fibrosis patients, an obligate heterozygous carrier and a normal individual. Gel filtration of pronase-digested glycopeptides from both purified virions and infected cell-associated VSV glycoprotein which had been labeled with[3H] glucosamine did not reveal any significant differences in the glycosylation patterns between the different cell cultures. All 4 cell lines were apparently able to synthesize the mannose- and glucosamine- containing core structure and branch chains terminating in sialic acid which are characteristic of asparagine-linked carbohydrate side chains in cellular glycoproteins. Analysis of tryptic glycopeptides by anion-exchange chromotography indicated that the same 2 major sites on the virus polypeptide were recognized and glycosylated in all 4 VSV-infected cell cultures. These studies suggest that the basic biochemical defect(s) in cystic fibrosis is not an absence or deficiency in enzymes responsible for the biosynthesis of complex carbohydrate side chains.

  12. Anti-β2 glycoprotein I antibodies in complex with β2 glycoprotein I induce platelet activation via two receptors: apolipoprotein E receptor 2' and glycoprotein I bα.

    PubMed

    Zhang, Wenjing; Gao, Fei; Lu, Donghe; Sun, Na; Yin, Xiaoxue; Jin, Meili; Liu, Yanhong

    2016-03-01

    Anti-β2 glycoprotein I (anti-β2GPI ) antibodies are important contributors to thrombosis, especially in patients with antiphospholipid syndrome (APS). However, the mechanism by which anti-β2GPI antibodies are involved in the pathogenesis of thrombosis is not fully understood. In this report, we investigated the role of anti- β2GPI antibodies in complexes with β2GPI as mediators of platelet activation, which can serve as a potential source contributing to thrombosis. We examined the involvement of the apolipoprotein E receptor 2' (apoER2') and glycoprotein I ba (GP I ba) in platelet activation induced by the anti-β2GPI /β2GPI complex. The interaction between the anti-β2GPI /β2GPI complex and platelets was examined using in vitro methods, in which the Fc portion of the antibody was immobilized using protein A coated onto a microtiter plate. Platelet activation was assessed by measuring GPII b/III a activation and P-selectin expression and thromboxane B2 production as well as p38 mitogen-activated protein kinase phosphorylation. Our results revealed that the anti-β2GPI /β2GPI complex was able to activate platelets, and this activation was inhibited by either the anti-GP I bα antibody or the apoER2' inhibitor. Results showed that the anti-β2GPI /β2GPI complex induced platelet activation via GPI ba and apoER2', which may then contribute to the prothrombotic tendency in APS patients.

  13. Affinity ligands for glycoprotein purification based on the multi-component Ugi reaction.

    PubMed

    Chen, Chen; Khoury, Graziella El; Lowe, Christopher R

    2014-10-15

    One challenge facing the purification of therapeutic glycoproteins by affinity chromatography is creating ligands specific for the glycan moiety. Affinity chromatography of glycoproteins is currently conducted with immobilized lectins or boronates, although biomimetic ligands could present a more desirable option. This work describes the rational design and combinatorial synthesis of carbohydrate-binding ligands based on the solid phase multi-component Ugi reaction. An aldehyde-functionalized Sepharose™ solid support constitutes one component (aldehyde) in the four-component reaction, while the other three components (a primary/secondary amine, a carboxylic acid and an isocyanide) are varied in a combinatorial fashion to generate a tri-substituted Ugi scaffold which provides a degree of rigidity and is functionally suitable for interacting with the glycan moiety of glycoproteins. An Ugi library containing 48 ligands was initially screened against glucose oxidase (GOx) as the model glycoprotein to identify a candidate ligand, A13C24I8, which showed affinity to GOx through its carbohydrate moiety. Immobilized ligand A13C24I8 demonstrated a static binding capacity of 16.7mg GOx/ml resin and an apparent dissociation constant (Kd) of 1.45×10(-6)M at pH 7.4. The adsorbent can also bind 8.1mg AGP/ml resin and displays an apparent affinity constant Kd=1.44×10(-5)M. The ligand has a sugar specificity in the following sequence: sorbitol>fructose>mannitol>ribose>arabinose>xylose>galactose>mannose>glucose>fructose; however, it did not display any specificity for sialic acid or methyl α-D-glycosides. A control ligand, generated by substitution of C24 (3-carboxyphenylboronic acid) with C7 (4-hydroxyphenyl acetic acid), failed to show affinity to the carbohydrate moiety, supporting the importance of the role that boronic acid group plays in sugar binding. GOx spiked E. coli samples were loaded onto immobilized ligand A13C24I8, 3-aminophenylboronic acid (APBA) and

  14. Developmental localization and the role of hydroxyproline rich glycoproteins during somatic embryogenesis of banana (Musa spp. AAA)

    PubMed Central

    2011-01-01

    Background Hydroxyproline rich glycoproteins (HRGPs) are implicated to have a role in many aspects of plant growth and development but there is limited knowledge about their localization and function during somatic embryogenesis of higher plants. In this study, the localization and function of hydroxyproline rich glycoproteins in embryogenic cells (ECs) and somatic embryos of banana were investigated by using immunobloting and immunocytochemistry with monoclonal JIM11 and JIM20 antibodies as well as by treatment with 3,4-dehydro-L-proline (3,4-DHP, an inhibitor of extensin biosynthesis), and by immunomodulation with the JIM11 antibody. Results Immunofluorescence labelling of JIM11 and JIM20 hydroxyproline rich glycoprotein epitopes was relatively weak in non-embryogenic cells (NECs), mainly on the edge of small cell aggregates. On the other hand, hydroxyproline rich glycoprotein epitopes were found to be enriched in early embryogenic cells as well as in various developmental stages of somatic embryos. Embryogenic cells (ECs), proembryos and globular embryos showed strong labelling of hydroxyproline rich glycoprotein epitopes, especially in their cell walls and outer surface layer, so-called extracellular matrix (ECM). This hydroxyproline rich glycoprotein signal at embryo surfaces decreased and/or fully disappeared during later developmental stages (e.g. pear-shaped and cotyledonary stages) of embryos. In these later developmental embryogenic stages, however, new prominent hydroxyproline rich glycoprotein labelling appeared in tri-cellular junctions among parenchymatic cells inside these embryos. Overall immunofluorescence labelling of late stage embryos with JIM20 antibody was weaker than that of JIM11. Western blot analysis supported the above immunolocalization data. The treatment with 3,4-DHP inhibited the development of embryogenic cells and decreased the rate of embryo germination. Embryo-like structures, which developed after 3,4-DHP treatment showed

  15. Sulphation of proteins secreted by a human hepatoma-derived cell line. Sulphation of N-linked oligosaccharides on alpha 2HS-glycoprotein.

    PubMed Central

    Hortin, G; Green, E D; Baenziger, J U; Strauss, A W

    1986-01-01

    Several human glycoproteins, including alpha 1-antitrypsin, alpha 1-acid glycoprotein, transferrin, caeruloplasmin and alpha 2HS-glycoprotein, synthesized by the hepatoma-derived cell line HepG2 were observed to contain covalently linked sulphate. These proteins were estimated to contain about 0.1 mol of sulphate/mol of protein. The most abundant of the sulphated glycoproteins, alpha 2HS-glycoprotein, was analysed in detail. All of the sulphate on this protein was attached to N-linked oligosaccharides which contained sialic acid and resisted release by endoglycosidase H. Several independent analytical approaches established that approx. 10% of the molecules of alpha 2HS-glycoprotein contained sulphate. Our results suggest that a number of human plasma proteins contain small amounts of sulphate linked to oligosaccharides. Images Fig. 1. Fig. 2. Fig. 3. PMID:3017304

  16. Prestaining of glycoproteins in SDS-PAGE via 4H-[1]-Benzopyrano[4,3-b]thiophene-2-carboxylic acid hydrazide with weak influence on protein mobility.

    PubMed

    Zhu, Zhongxin; Zhou, Xuan; Wang, Yang; Yu, Qing; Zhu, Xinliang; Niu, Chao; Cong, Weitao; Jin, Litai

    2014-12-01

    A new fluorescent prestaining method for gel-separated glycoproteins in 1D and 2D SDS-PAGE was developed by using 4H-[1]-Benzopyrano[4,3-b]thiophene-2-carboxylic acid hydrazide (BH). The prestained gels were readily imaged after electrophoresis without any time-consuming steps needed for poststain. As low as 4-8 ng glycoproteins (transferrin, α1-acid glycoprotein) could be selectively detected, which is comparable to the most commonly used Pro-Q Emerald 488 glycoprotein stain. In addition, subsequent study of deglycosylation, glycoprotein affinity chromatography, and LC-MS/MS analysis were performed to confirm the specificity of the newly developed method. As a result, BH prestain provides a new choice for quick, sensitive, specific, economical, and MS compatible visualization of gel-separated glycoproteins.

  17. A weakly pathogenic Rauscher spleen focus-forming virus mutant that lacks the carboxyl-terminal membrane anchor of its envelope glycoprotein.

    PubMed Central

    Machida, C A; Bestwick, R K; Kabat, D

    1985-01-01

    A mutant Rauscher spleen focus-forming virus (mutant 4-3) that causes mild splenic erythroblastosis in mice has a 44-base-pair deletion in the 3' region of its envelope glycoprotein (env) gene. The encoded glycoprotein terminates prematurely, lacks a hydrophobic membrane anchor, and has a shortened intracellular lifespan. An active site for causing erythroblast proliferation may occur in the undamaged amino-terminal domain of the env glycoprotein. Images PMID:3973973

  18. Surface glycoproteins of an African henipavirus induce syncytium formation in a cell line derived from an African fruit bat, Hypsignathus monstrosus.

    PubMed

    Krüger, Nadine; Hoffmann, Markus; Weis, Michael; Drexler, Jan Felix; Müller, Marcel Alexander; Winter, Christine; Corman, Victor Max; Gützkow, Tim; Drosten, Christian; Maisner, Andrea; Herrler, Georg

    2013-12-01

    Serological screening and detection of genomic RNA indicates that members of the genus Henipavirus are present not only in Southeast Asia but also in African fruit bats. We demonstrate that the surface glycoproteins F and G of an African henipavirus (M74) induce syncytium formation in a kidney cell line derived from an African fruit bat, Hypsignathus monstrosus. Despite a less broad cell tropism, the M74 glycoproteins show functional similarities to glycoproteins of Nipah virus.

  19. Ceramide 1-Phosphate Increases P-Glycoprotein Transport Activity at the Blood-Brain Barrier via Prostaglandin E2 Signaling.

    PubMed

    Mesev, Emily V; Miller, David S; Cannon, Ronald E

    2017-04-01

    P-glycoprotein, an ATP-driven efflux pump, regulates permeability of the blood-brain barrier (BBB). Sphingolipids, endogenous to brain tissue, influence inflammatory responses and cell survival in vitro. Our laboratory has previously shown that sphingolipid signaling by sphingosine 1-phosphate decreases basal P-glycoprotein transport activity. Here, we investigated the potential for another sphingolipid, ceramide 1-phosphate (C1P), to modulate efflux pumps at the BBB. Using confocal microscopy and measuring luminal accumulation of fluorescent substrates, we assessed the transport activity of several efflux pumps in isolated rat brain capillaries. C1P treatment induced P-glycoprotein transport activity in brain capillaries rapidly and reversibly. In contrast, C1P did not affect transport activity of two other major efflux transporters, multidrug resistance protein 2 and breast cancer resistance protein. C1P induced P-glycoprotein transport activity without changing transporter protein expression. Inhibition of the key signaling components in the cyclooxygenase-2 (COX-2)/prostaglandin E2 signaling cascade (phospholipase A2, COX-2, multidrug resistance protein 4, and G-protein-coupled prostaglandin E2 receptors 1 and 2), abolished P-glycoprotein induction by C1P. We show that COX-2 and prostaglandin E2 are required for C1P-mediated increases in P-glycoprotein activity independent of transporter protein expression. This work describes how C1P activates a signaling cascade to dynamically regulate P-glycoprotein transport at the BBB and offers potential clinical targets to modulate neuroprotection and drug delivery to the CNS.

  20. Developmental regulation of neuraminidase-sensitive lectin-binding glycoproteins during myogenesis of rat L6 myoblasts.

    PubMed Central

    Holland, P C; Pena, S D; Guerin, C W

    1984-01-01

    Intact monolayers of L6 myoblasts were treated with neuraminidase, with the aim of selectively removing sialic acid residues of cell-surface glycoproteins. Neuraminidase treatment unmasked binding sites for Ricinus communis agglutinin I and peanut agglutinin, thus allowing the identification of the major binding proteins for these lectins. For Ricinus communis agglutinin I these neuraminidase-sensitive glycoproteins had apparent Mr values of 136000, 115000, 87000, 83000 and 49000. For peanut agglutinin the major neuraminidase-sensitive glycoproteins had apparent Mr values of 200000, 136000, 87000 and 83000. We found highly reproducible, developmentally regulated, changes in the lectin-binding capacity of certain of these glycoproteins as L6 myoblasts differentiated into myotubes. Coincident with myoblast fusion there was a co-ordinate decrease in Ricinus communis agglutinin I binding by glycoproteins of apparent Mr of 136000 and 49000. There was also a co-ordinate shift in mobility of the broad band of glycoprotein, centred at an apparent Mr of 115000 in myoblasts, to a new average apparent Mr of 107000 in mid-fusion cultures and myotube cultures. Peanut agglutinin binding by the major protein of apparent Mr 136000 also decreased at the mid-fusion stage of myogenesis, and was barely detectable in 7-day-old fused cultures. These developmentally regulated changes in neuraminidase-sensitive glycoproteins were all inhibited by growth of myoblasts in 6.4 microM-5-bromo-2'-deoxyuridine, indicating that they are associated with myoblast differentiation. In contrast, an increase in fibronectin was seen in mid-fusion cultures, which was not inhibited by growth of myoblasts in 5-bromo-2'-deoxyuridine. This initial increase in fibronectin is, therefore, unlikely to be directly related to myoblast fusion or differentiation. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:6712625

  1. Ceramide 1-Phosphate Increases P-Glycoprotein Transport Activity at the Blood-Brain Barrier via Prostaglandin E2 Signaling

    PubMed Central

    Mesev, Emily V.; Miller, David S.

    2017-01-01

    P-glycoprotein, an ATP-driven efflux pump, regulates permeability of the blood-brain barrier (BBB). Sphingolipids, endogenous to brain tissue, influence inflammatory responses and cell survival in vitro. Our laboratory has previously shown that sphingolipid signaling by sphingosine 1-phosphate decreases basal P-glycoprotein transport activity. Here, we investigated the potential for another sphingolipid, ceramide 1-phosphate (C1P), to modulate efflux pumps at the BBB. Using confocal microscopy and measuring luminal accumulation of fluorescent substrates, we assessed the transport activity of several efflux pumps in isolated rat brain capillaries. C1P treatment induced P-glycoprotein transport activity in brain capillaries rapidly and reversibly. In contrast, C1P did not affect transport activity of two other major efflux transporters, multidrug resistance protein 2 and breast cancer resistance protein. C1P induced P-glycoprotein transport activity without changing transporter protein expression. Inhibition of the key signaling components in the cyclooxygenase-2 (COX-2)/prostaglandin E2 signaling cascade (phospholipase A2, COX-2, multidrug resistance protein 4, and G-protein–coupled prostaglandin E2 receptors 1 and 2), abolished P-glycoprotein induction by C1P. We show that COX-2 and prostaglandin E2 are required for C1P-mediated increases in P-glycoprotein activity independent of transporter protein expression. This work describes how C1P activates a signaling cascade to dynamically regulate P-glycoprotein transport at the BBB and offers potential clinical targets to modulate neuroprotection and drug delivery to the CNS. PMID:28119480

  2. Effect of collecting duct-specific deletion of both Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg) on renal response to metabolic acidosis.

    PubMed

    Lee, Hyun-Wook; Verlander, Jill W; Handlogten, Mary E; Han, Ki-Hwan; Weiner, I David

    2014-02-15

    The Rhesus (Rh) glycoproteins, Rh B and Rh C Glycoprotein (Rhbg and Rhcg, respectively), are ammonia-specific transporters expressed in renal distal nephron and collecting duct sites that are necessary for normal rates of ammonia excretion. The purpose of the current studies was to determine the effect of their combined deletion from the renal collecting duct (CD-Rhbg/Rhcg-KO) on basal and acidosis-stimulated acid-base homeostasis. Under basal conditions, urine pH and ammonia excretion and serum HCO3(-) were similar in control (C) and CD-Rhbg/Rhcg-KO mice. After acid-loading for 7 days, CD-Rhbg/Rhcg-KO mice developed significantly more severe metabolic acidosis than did C mice. Acid loading increased ammonia excretion, but ammonia excretion increased more slowly in CD-Rhbg/Rhcg-KO and it was significantly less than in C mice on days 1-5. Urine pH was significantly more acidic in CD-Rhbg/Rhcg-KO mice on days 1, 3, and 5 of acid loading. Metabolic acidosis increased phosphenolpyruvate carboxykinase (PEPCK) and Na(+)/H(+) exchanger NHE-3 and decreased glutamine synthetase (GS) expression in both genotypes, and these changes were significantly greater in CD-Rhbg/Rhcg-KO than in C mice. We conclude that 1) Rhbg and Rhcg are critically important in the renal response to metabolic acidosis; 2) the significantly greater changes in PEPCK, NHE-3, and GS expression in acid-loaded CD-Rhbg/Rhcg-KO compared with acid-loaded C mice cause the role of Rhbg and Rhcg to be underestimated quantitatively; and 3) in mice with intact Rhbg and Rhcg expression, metabolic acidosis does not induce maximal changes in PEPCK, NHE-3, and GS expression despite the presence of persistent metabolic acidosis.

  3. Functional Interplay Between Murine Leukemia Virus Glycogag, Serinc5, and Surface Glycoprotein Governs Virus Entry, with Opposite Effects on Gammaretroviral and Ebolavirus Glycoproteins

    PubMed Central

    Ahi, Yadvinder S.; Zhang, Shu; Thappeta, Yashna; Denman, Audrey; Feizpour, Amin; Reinhard, Bjoern; Muriaux, Delphine; Fivash, Matthew J.

    2016-01-01

    ABSTRACT Gammaretroviruses, such as murine leukemia viruses (MLVs), encode, in addition to the canonical Gag, Pol, and Env proteins that will form progeny virus particles, a protein called “glycogag” (glycosylated Gag). MLV glycogag contains the entire Gag sequence plus an 88-residue N-terminal extension. It has recently been reported that glycogag, like the Nef protein of HIV-1, counteracts the antiviral effects of the cellular protein Serinc5. We have found, in agreement with prior work, that glycogag strongly enhances the infectivity of MLVs with some Env proteins but not those with others. In contrast, however, glycogag was detrimental to MLVs carrying Ebolavirus glycoprotein. Glycogag could be replaced, with respect to viral infectivity, by the unrelated S2 protein of equine infectious anemia virus. We devised an assay for viral entry in which virus particles deliver the Cre recombinase into cells, leading to the expression of a reporter. Data from this assay showed that both the positive and the negative effects of glycogag and S2 upon MLV infectivity are exerted at the level of virus entry. Moreover, transfection of the virus-producing cells with a Serinc5 expression plasmid reduced the infectivity and entry capability of MLV carrying xenotropic MLV Env, particularly in the absence of glycogag. Conversely, Serinc5 expression abrogated the negative effects of glycogag upon the infectivity and entry capability of MLV carrying Ebolavirus glycoprotein. As Serinc5 may influence cellular phospholipid metabolism, it seems possible that all of these effects on virus entry derive from changes in the lipid composition of viral membranes. PMID:27879338

  4. Vesicular stomatitis virus glycoprotein- and Venezuelan equine encephalitis virus-derived glycoprotein-pseudotyped lentivirus vectors differentially transduce corneal endothelium, trabecular meshwork, and human photoreceptors.

    PubMed

    Lipinski, Daniel M; Barnard, Alun R; Charbel Issa, Peter; Singh, Mandeep S; De Silva, Samantha R; Trabalza, Antonio; Eleftheriadou, Ioanna; Ellison, Stuart M; Mazarakis, Nicholas D; MacLaren, Robert E

    2014-01-01

    The ability to deliver a large transgene efficiently to photoreceptors using viral vectors remains problematic and yet is critical for the future therapy of inherited retinal diseases such as Stargardt's and Usher's 1B. Herein, we examine the ocular tropism of a HIV-1-based lentivirus vector pseudotyped with Venezuelan equine encephalitis virus-derived glycoprotein (VEEV-G) after intraocular delivery to the posterior and anterior chambers of C57BL/6 wild-type mice. Reporter gene (EGFP) expression was evaluated using in vivo fluorescence imaging followed by postmortem immunohistochemistry and retinal function assessed by electroretinography. Intracameral administration of VEEV-G and vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped vectors resulted in robust transgene expression in the corneal endothelium and trabecular meshwork. After subretinal administration, onset of transgene expression was observed in the retinal pigment epithelium (RPE) 1 day postinjection with both VEEV-G and control VSV-G pseudotypes, but no significant photoreceptor transduction was apparent. Substantial degeneration of the outer nuclear layer was observed with VEEV-G-pseudotyped vector, which corresponded to ablation of retinal function. Subretinal administration of VSV-G was observed to result in significant suppression of electrophysiological function compared with buffer-injected and uninjected control eyes. Suppression of the c-wave amplitude, in addition to reduced RPE65 expression, indicated potential RPE dysfunction. Ex vivo tropism of VSV-G was assessed using organotypic culture of explanted retina harvested from wild-type mice and human patients undergoing retinal detachment surgery to examine the prevention of transduction by physical barriers and species differences in tropism.

  5. Functional Interplay Between Murine Leukemia Virus Glycogag, Serinc5, and Surface Glycoprotein Governs Virus Entry, with Opposite Effects on Gammaretroviral and Ebolavirus Glycoproteins.

    PubMed

    Ahi, Yadvinder S; Zhang, Shu; Thappeta, Yashna; Denman, Audrey; Feizpour, Amin; Gummuluru, Suryaram; Reinhard, Bjoern; Muriaux, Delphine; Fivash, Matthew J; Rein, Alan

    2016-11-22

    Gammaretroviruses, such as murine leukemia viruses (MLVs), encode, in addition to the canonical Gag, Pol, and Env proteins that will form progeny virus particles, a protein called "glycogag" (glycosylated Gag). MLV glycogag contains the entire Gag sequence plus an 88-residue N-terminal extension. It has recently been reported that glycogag, like the Nef protein of HIV-1, counteracts the antiviral effects of the cellular protein Serinc5. We have found, in agreement with prior work, that glycogag strongly enhances the infectivity of MLVs with some Env proteins but not those with others. In contrast, however, glycogag was detrimental to MLVs carrying Ebolavirus glycoprotein. Glycogag could be replaced, with respect to viral infectivity, by the unrelated S2 protein of equine infectious anemia virus. We devised an assay for viral entry in which virus particles deliver the Cre recombinase into cells, leading to the expression of a reporter. Data from this assay showed that both the positive and the negative effects of glycogag and S2 upon MLV infectivity are exerted at the level of virus entry. Moreover, transfection of the virus-producing cells with a Serinc5 expression plasmid reduced the infectivity and entry capability of MLV carrying xenotropic MLV Env, particularly in the absence of glycogag. Conversely, Serinc5 expression abrogated the negative effects of glycogag upon the infectivity and entry capability of MLV carrying Ebolavirus glycoprotein. As Serinc5 may influence cellular phospholipid metabolism, it seems possible that all of these effects on virus entry derive from changes in the lipid composition of viral membranes.

  6. Antipeptide monoclonal antibodies inhibit the binding of rabies virus glycoprotein and alpha-bungarotoxin to the nicotinic acetylcholine receptor.

    PubMed

    Bracci, L; Antoni, G; Cusi, M G; Lozzi, L; Niccolai, N; Petreni, S; Rustici, M; Santucci, A; Soldani, P; Valensin, P E

    1988-09-01

    It has been reported that binding to muscle nicotinic acetylcholine receptor at the post-synaptic membrane is an important event of the rabies virus neurotropism. The binding site can be located within the 190-203 region of the virus glycoprotein sharing a high degree of homology with the "toxic loop" of the curare-mimetic snake neurotoxins. We have synthesized a tetradecapeptide corresponding to this glycoprotein region and used it, following conjugation with an immunogenic carrier to raise MAbs. We found that some MAbs raised against the peptide were able to recognize both the virus glycoprotein and the snake neurotoxin alpha-bungarotoxin; moreover, they can inhibit the binding of rabies virus glycoprotein and alpha-bungarotoxin to the nicotinic acetylcholine receptor extracted from the electric organs of Torpedo marmorata. On the basis of this cross-reactivity, we suggest that rabies virus glycoprotein and curare-mimetic snake neurotoxins share three-dimensionally similar structures in order to bind to the nicotinic cholinergic receptor. The potential use of the immunogenic properties of the peptide for the rational design of a synthetic vaccine against rabies is proposed.

  7. Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog

    SciTech Connect

    Akiyama, S.; Cornwell, M.M.; Kuwano, M.; Pastan, I.; Gottesman, M.M.

    1988-02-01

    Multidrug-resistant human KB carcinoma cells express a 170,000-dalton membrane glycoprotein (P-glycoprotein) that can be photoaffinity labeled with the vinblastine analog N-(p-azido-(3-/sup 125/I)salicyl)-N'-(beta-aminoethyl)vindesine. Several agents that suppress the multidrug-resistant phenotype, including N-solanesyl-N,N'-bis(3,4-dimethylbenzyl)ethylenediamine, cepharanthine, quinidine, and reserpine, were found to inhibit photolabeling of P-glycoprotein at doses comparable to those that reverse multidrug resistance. However, the phenothiazines chlorpromazine and trifluoperazine, which also effectively reverse multidrug resistance, were poor inhibitors of the photoaffinity labeling of P-glycoprotein. Chloroquine, propranolol, or atropine, which only partially reversed the drug resistance, also did not inhibit photolabeling. Naphthalene sulfonamide calmodulin inhibitors, W7 and W5, as well as many other drugs that did not circumvent multidrug resistance, did not inhibit photolabeling. These studies suggest that most, but not all, agents that phenotypically suppress multidrug resistance also inhibit drug binding to a site on P-glycoprotein with which a photoaffinity analog of vinblastine interacts.

  8. Crystal Structure of the Pre-fusion Nipah Virus Fusion Glycoprotein Reveals a Novel Hexamer-of-Trimers Assembly

    PubMed Central

    Dutta, Somnath; Yan, Lianying; Feng, YanRu; Wang, Lin-Fa; Skiniotis, Georgios; Lee, Benhur; Zhou, Z. Hong; Broder, Christopher C.; Aguilar, Hector C.; Nikolov, Dimitar B.

    2015-01-01

    Nipah virus (NiV) is a paramyxovirus that infects host cells through the coordinated efforts of two envelope glycoproteins. The G glycoprotein attaches to cell receptors, triggering the fusion (F) glycoprotein to execute membrane fusion. Here we report the first crystal structure of the pre-fusion form of the NiV-F glycoprotein ectodomain. Interestingly this structure also revealed a hexamer-of-trimers encircling a central axis. Electron tomography of Nipah virus-like particles supported the hexameric pre-fusion model, and biochemical analyses supported the hexamer-of-trimers F assembly in solution. Importantly, structure-assisted site-directed mutagenesis of the interfaces between F trimers highlighted the functional relevance of the hexameric assembly. Shown here, in both cell-cell fusion and virus-cell fusion systems, our results suggested that this hexamer-of-trimers assembly was important during fusion pore formation. We propose that this assembly would stabilize the pre-fusion F conformation prior to cell attachment and facilitate the coordinated transition to a post-fusion conformation of all six F trimers upon triggering of a single trimer. Together, our data reveal a novel and functional pre-fusion architecture of a paramyxoviral fusion glycoprotein. PMID:26646856

  9. Functional role of the heterodimeric glycoprotein hormone, GPA2/GPB5, and its receptor, LGR1: An invertebrate perspective.

    PubMed

    Rocco, David A; Paluzzi, Jean-Paul V

    2016-08-01

    In vertebrates, follicle-stimulating hormone (FSH), luteinizing hormone (LH), chorionic gonadotropin (CG) and thyroid-stimulating hormone (TSH) are glycoprotein hormones that play central roles in metabolism, reproduction and development. Recently, a novel heterodimeric glycoprotein hormone, called GPA2/GPB5, was discovered in humans; however, contrary to its vertebrate glycoprotein hormone relatives, the physiological role of GPA2/GPB5 has not yet been fully elucidated in any vertebrate or invertebrate. Moreover, it is unclear as to whether GPA2/GPB5 functions as a heterodimer or as individual GPA2 and GPB5 monomers in these organisms. GPA2- and GPB5-like subunits have been identified or predicted in a wide array of animal phyla including the nematodes, chordates, hemichordates, arthropods, molluscs, echinoderms and annelids. So far, molecular studies on transcript expression of the GPA2/GPB5 subunits and its putative receptor, the leucine-rich repeat-containing G protein-coupled receptor 1 (LGR1), suggests this glycoprotein hormone system plays a developmental role and may also function in hydromineral balance in invertebrates. This mini-review summarizes the current state of knowledge on the physiological actions and activity of this evolutionarily ancient heterodimeric glycoprotein hormone with a particular focus on its known functions in the invertebrates.

  10. Common glycoproteins expressing polylactosamine-type glycans on matched patient primary and metastatic melanoma cells show different glycan profiles.

    PubMed

    Kinoshita, Mitsuhiro; Mitsui, Yosuke; Kakoi, Naotaka; Yamada, Keita; Hayakawa, Takao; Kakehi, Kazuaki

    2014-02-07

    Recently, we reported comparative analysis of glycoproteins which express cancer-specific N-glycans on various cancer cells and identified 24 glycoproteins having polylactosamine (polyLacNAc)-type N-glycans that are abundantly present in malignant cells [ Mitsui et al., J. Pharm. Biomed. Anal. 2012 , 70 , 718 - 726 ]. In the present study, we applied the technique to comparative studies on common glycoproteins present in the matched patient primary and metastatic melanoma cell lines. Metastatic melanoma cells (WM266-4) contained a large amount of polyLacNAc-type N-glycans in comparison with primary melanoma cells (WM115). To identify the glycoproteins expressing these N-glycans, glycopeptides having polyLacNAc-type N-glycans were captured by a Datura stramonium agglutinin (DSA)-immobilized agarose column. The captured glycopeptides were analyzed by LC/MS after removing N-glycans, and some glycoproteins such as basigin, lysosome-associated membrane protein-1 (LAMP-1), and chondroitin sulfate proteoglycan 4 (CSPG4) were identified in both WM115 and WM266-4 cells. The expression level of polyLacNAc of CSPG4 in WM266-4 cells was significantly higher than that in WM115 cells. In addition, sulfation patterns of chondroitin sulfate (CS) chains in CSPG4 showed dramatic changes between these cell lines. These data show that characteristic glycans attached to common proteins observed in different stages of cancer cells will be useful markers for determining degree of malignancies of tumor cells.

  11. Phosphorylation of varicella-zoster virus glycoprotein gpI by mammalian casein kinase II and casein kinase I

    SciTech Connect

    Grose, C.; Jackson, W. ); Traugh, J.A. )

    1989-09-01

    Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, the authors investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing ({gamma}-{sup 32}P)ATP. The same glycoprotein was phosphorylated when ({sup 32}P)GTP was substituted for ({sup 32}P)ATP in the protein kinase assay. They also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein.

  12. Effects of natural nuclear factor-kappa B inhibitors on anticancer drug efflux transporter human P-glycoprotein.

    PubMed

    Nabekura, Tomohiro; Hiroi, Takashi; Kawasaki, Tatsuya; Uwai, Yuichi

    2015-03-01

    Drug efflux transporter P-glycoprotein plays an important role in cancer chemotherapy. The nuclear factor-κB (NF-κB) transcription factors play critical roles in development and progression of cancer. In this study, the effects of natural compounds that can inhibit NF-κB activation on the function of P-glycoprotein were investigated using human MDR1 gene-transfected KB/MDR1 cells. The accumulation of daunorubicin or rhodamine 123, fluorescent substrates of P-glycoprotein, in KB/MDR1 cells increased in the presence of caffeic acid phenetyl ester (CAPE), licochalcone A, anacardic acid, celastrol, xanthohumol, magnolol, and honokiol in a concentration-dependent manner. In contrast, lupeol, zerumbone, thymoquinone, emodin, and anethol had no effects. The ATPase activities of P-glycoprotein were stimulated by CAPE, licochalcone A, anacardic acid, celastrol, xanthohumol, magnolol, and honokiol. Tumor necrosis factor (TNF)-α stimulated NF-κB activation was inhibited by CAPE, licochalcone A, anacardic acid, and xanthohumol. KB/MDR1 cells were sensitized to vinblastine cytotoxicity by CAPE, licochalcone A, anacardic acid, xanthohumol, magnolol, and honokiol, showing that these natural NF-κB inhibitors reverse multidrug resistance. These results suggest that natural compounds, such as CAPE, licochalcone A, and anacardic acid, have dual inhibitory effects on the anticancer drug efflux transporter P-glycoprotein and NF-κB activation, and may become useful to enhance the efficacy of cancer chemotherapy.

  13. Galectin Binding to Neo-Glycoproteins: LacDiNAc Conjugated BSA as Ligand for Human Galectin-3.

    PubMed

    Böcker, Sophia; Laaf, Dominic; Elling, Lothar

    2015-07-24

    Carbohydrate-lectin interactions are relatively weak. As they play an important role in biological recognition processes, multivalent glycan ligands are designed to enhance binding affinity and inhibitory potency. We here report on novel neo-glycoproteins based on bovine serum albumin as scaffold for multivalent presentation of ligands for galectins. We prepared two kinds of tetrasaccharides (N-acetyllactosamine and N,N-diacetyllactosamine terminated) by multi-step chemo-enzymatic synthesis utilizing recombinant glycosyltransferases. Subsequent conjugation of these glycans to lysine groups of bovine serum albumin via squaric acid diethyl ester yielded a set of 22 different neo-glycoproteins with tuned ligand density. The neo-glycoproteins were analyzed by biochemical and chromatographic methods proving various modification degrees. The neo-glycoproteins were used for binding and inhibition studies with human galectin-3 showing high affinity. Binding strength and inhibition potency are closely related to modification density and show binding enhancement by multivalent ligand presentation. At galectin-3 concentrations comparable to serum levels of cancer patients, we detect the highest avidities. Selectivity of N,N-diacetyllactosamine terminated structures towards galectin-3 in comparison to galectin-1 is demonstrated. Moreover, we also see strong inhibitory potency of our scaffolds towards galectin-3 binding. These novel neo-glycoproteins may therefore serve as selective and strong galectin-3 ligands in cancer related biomedical research.

  14. Selective extraction and enrichment of glycoproteins based on boronate affinity SPME and determination by CIEF-WCID.

    PubMed

    Li, Lixian; Xia, Zhining; Pawliszyn, Janusz

    2015-07-30

    In this study, a new thin-film boronic acid coating was developed for solid-phase microextraction (SPME) followed by capillary isoelectric focusing with whole-column imaging detection (CIEF-WCID). Boronate functionalized particles of phenylboronic acid (PBA) and 3-aminophenylboronic acid (3-aPBA) were utilized as boronate affinity solid phase coating on thin-film stainless steel blades for selective extraction and enrichment of glycoproteins. The process of extraction and elution could be easily controlled by adjusting pH. To test specificity, asialofetuin and lactoferrin were selected as glycoproteins test molecules, while BSA and myoglobin were used as control non-glycoproteins in this study. The boronate affinity coating was characterized. The effect of buffer, pH, extraction profiles and elution profiles were investigated. The developed method was successfully applied to extract glycoproteins from standard buffer, PBS, human plasma and 10-fold diluted human blood using two kinds of boronate affinity blades. Boronate affinity SPME could be a promising tool for selective extraction and enrichment of low-abundance glycoproteins in real biological samples.

  15. Recombinant pestivirus E2 glycoproteins prevent viral attachment to permissive and non permissive cells with different efficiency.

    PubMed

    Asfor, A S; Wakeley, P R; Drew, T W; Paton, D J

    2014-08-30

    Bovine viral diarrhoea virus (BVDV) is an economically important animal pathogen, which like other pestiviruses has similar molecular biological features to hepaciviruses, including human Hepatitis C virus. The pestivirus E2 glycoproteins are the major target for virus-neutralising antibodies, as well as playing a role in receptor binding and host range restriction. In this study, recombinant E2 glycoproteins (rE2) derived from three different pestivirus species were examined for their inhibitory effects on pestivirus infectivity in cell culture. Histidine-tagged rE2 glycoproteins of BVDV type 2 strain 178003, BVDV type 1 strain Oregon C24V and CSFV strain Alfort 187 were produced in Spodoptera frugiperda insect cells and purified under native conditions. The ability of rE2 glycoprotein to inhibit the infection of permissive cells by both homologous and heterologous virus was compared, revealing that the inhibitory effects of rE2 glycoproteins correlated with the predicted similarity of the E2 structures in the recombinant protein and the test virus. This result suggests that the sequence and structure of E2 are likely to be involved in the host specificity of pestiviruses at their point of uptake into cells.

  16. Emerging structural insights into glycoprotein quality control coupled with N-glycan processing in the endoplasmic reticulum.

    PubMed

    Satoh, Tadashi; Yamaguchi, Takumi; Kato, Koichi

    2015-01-30

    In the endoplasmic reticulum (ER), the sugar chain is initially introduced onto newly synthesized proteins as a triantennary tetradecasaccharide (Glc3Man9GlcNAc2). The attached oligosaccharide chain is subjected to stepwise trimming by the actions of specific glucosidases and mannosidases. In these processes, the transiently expressed N-glycans, as processing intermediates, function as signals for the determination of glycoprotein fates, i.e., folding, transport, or degradation through interactions of a series of intracellular lectins. The monoglucosylated glycoforms are hallmarks of incompletely folded states of glycoproteins in this system, whereas the outer mannose trimming leads to ER-associated glycoprotein degradation. This review outlines the recently emerging evidence regarding the molecular and structural basis of this glycoprotein quality control system, which is regulated through dynamic interplay among intracellular lectins, glycosidases, and glycosyltransferase. Structural snapshots of carbohydrate-lectin interactions have been provided at the atomic level using X-ray crystallographic analyses. Conformational ensembles of uncomplexed triantennary high-mannose-type oligosaccharides have been characterized in a quantitative manner using molecular dynamics simulation in conjunction with nuclear magnetic resonance spectroscopy. These complementary views provide new insights into glycoprotein recognition in quality control coupled with N-glycan processing.

  17. Modulation of mannose and asialoglycoprotein receptor expression determines glycoprotein hormone half-life at critical points in the reproductive cycle.

    PubMed

    Mi, Yiling; Lin, Angela; Fiete, Dorothy; Steirer, Lindsay; Baenziger, Jacques U

    2014-04-25

    The rate at which glycoproteins are cleared from the circulation has a critical impact on their biologic activity in vivo. We have shown that clearance rates for glycoproteins such as luteinizing hormone (LH) that undergo regulated release into the circulation determine their potency. Two highly abundant, carbohydrate-specific, endocytic receptors, the asialoglycoprotein receptor (ASGR) and the mannose receptor (ManR) are expressed in the liver by parenchymal and sinusoidal endothelial cells, respectively. We demonstrate that the ManR mediates the clearance of glycoproteins such as LH that bear N-linked glycans terminating with β1,4-linked GalNAc-4-SO4, as well as glycoproteins bearing glycans that terminate with Man. Steady state levels of mRNA encoding the ASGR and the ManR are regulated by progesterone in pregnant mice, reaching maximal levels on day 12.5 of pregnancy. Protein expression and glycan-specific binding activity also increase in the livers of pregnant mice. In contrast, ManR mRNA, but not ASGR mRNA, decreases in male mice at the time of sexual maturation. We show that levels of ManR and ASGR expression control the clearance rate for glycoproteins bearing recognized glycans. Thus, reduced expression of the ManR at the time of sexual maturation will increase the potency of LH in vivo, whereas increased expression during pregnancy will reduce LH potency until progesterone and receptor levels fall prior to parturition.

  18. On-plate glycoproteins/glycopeptides selective enrichment and purification based on surface pattern for direct MALDI MS analysis.

    PubMed

    Zeng, Zhoufang; Wang, Yandong; Guo, Xinhua; Wang, Ling; Lu, Nan

    2013-05-21

    In this paper, a novel method has been proposed to achieve selective enrichment and purification of glycoproteins/glycopeptides on a surface patterned sample support, which consists of a hydrophobic outer layer (F-SAM) and an internal boronic acid-modified gold microspot (900 μm). Upon deposition, the sample solution is firstly concentrated in a small area by repulsion of the hydrophobic outer layer, and then the glycoproteins/glycopeptides are selectively captured through boronic acid covalently binding in the inner layer. However, the non-glycosylated proteins/peptides or high concentration salts are removed after rinsing with alkaline solution. As a result, the detection sensitivity is improved by an order of magnitude greater than when using a stainless steel MALDI plate. With surface patterned sample support, the glycoproteins/glycopeptides can be detected even under interference from the excessive existing non-glycosylated proteins/peptides (10 times more than glycoproteins/glycopeptides). Simultaneously, high-quality mass spectra can be obtained even in the presence of urea (1 M), NaCl (1 M), or NH4HCO3 (200 mM). Therefore, this novel technique may be applied to high-throughput analysis of low-abundance glycoproteins/glycopeptides in complicated proteome research.

  19. GlycoFish: A Database of Zebrafish N-linked Glycoproteins Identified Using SPEG Method Coupled with LC/MS

    PubMed Central

    Baycin-Hizal, Deniz; Tian, Yuan; Akan, Ilhan; Jacobson, Elena; Clark, Dean; Wu, Alexander; Jampol, Russell; Palter, Karen; Betenbaugh, Michael; Zhang, Hui

    2011-01-01

    Zebrafish (Danio rerio) is a model organism to study the mechanisms and pathways of human disorders. Many dysfunctions in neurological, development and neuromuscular systems are due to glycosylation deficiencies, but the glycoproteins involved in zebrafish embryonic development have not been established. In this study, a mass spectrometry-based glycoproteomic characterization of zebrafish embryos was performed to identify the N-linked glycoproteins and N-linked glycosylation sites. To increase the number of glycopeptides, proteins from zebrafish were digested with two different proteases, chymotrypsin and trypsin, into peptides of different length. The N-glycosylated peptides of zebrafish were then captured by the solid phase extraction of N-linked glycopeptides (SPEG) method and the peptides were identified with an LTQ OrbiTrap Velos mass spectrometer. From 265 unique glycopeptides, including 269 consensus NXT/S glycosites, we identified 169 different N-glycosylated proteins. The identified glycoproteins were highly abundant in proteins belonging to the transporter, cell adhesion, and ion channel/ion binding categories which are important to embryonic, organ, and central nervous system development. This proteomics data will expand our knowledge about glycoproteins in zebrafish and may be used to elucidate the role glycosylation plays in cellular processes and disease. The glycoprotein data are available through the GlycoFish database (http://betenbaugh.jhu.edu/GlycoFish) introduced in this paper. PMID:21591763

  20. Cell surface expression of biologically active influenza C virus HEF glycoprotein expressed from cDNA.

    PubMed

    Pekosz, A; Lamb, R A

    1999-10-01

    The hemagglutinin, esterase, and fusion (HEF) glycoprotein of influenza C virus possesses receptor binding, receptor destroying, and membrane fusion activities. The HEF cDNAs from influenza C/Ann Arbor/1/50 (HEF-AA) and influenza C/Taylor/1223/47 (HEF-Tay) viruses were cloned and expressed, and transport of HEF to the cell surface was monitored by susceptibility to cleavage by exogenous trypsin, indirect immunofluorescence microscopy, and flow cytometry. Previously it has been found in studies with the C/Johannesburg/1/66 strain of influenza C virus (HEF-JHB) that transport of HEF to the cell surface is severely inhibited, and it is thought that the short cytoplasmic tail, Arg-Thr-Lys, is involved in blocking HEF cell surface expression (F. Oeffner, H.-D. Klenk, and G. Herrler, J. Gen. Virol. 80:363-369, 1999). As the cytoplasmic tail amino acid sequences of HEF-AA and HEF-Tay are identical to that of HEF-JHB, the data indicate that cell surface expression of HEF-AA and HEF-Tay is not inhibited by this amino acid sequence. Furthermore, the abundant cell surface transport of HEF-AA and HEF-Tay indicates that their cell surface expression does not require coexpression of another viral protein. The HEF-AA and HEF-Tay HEF glycoproteins bound human erythrocytes, promoted membrane fusion in a low-pH and trypsin-dependent manner, and displayed esterase activity, indicating that the HEF glycoprotein alone mediates all three known functions at the cell surface.

  1. A vital region for human glycoprotein hormone trafficking revealed by an LHB mutation.

    PubMed

    Potorac, Iulia; Rivero-Müller, Adolfo; Trehan, Ashutosh; Kiełbus, Michał; Jozwiak, Krzysztof; Pralong, Francois; Hafidi, Aicha; Thiry, Albert; Ménagé, Jean-Jacques; Huhtaniemi, Ilpo; Beckers, Albert; Daly, Adrian F

    2016-12-01

    Glycoprotein hormones are complex hormonally active macromolecules. Luteinizing hormone (LH) is essential for the postnatal development and maturation of the male gonad. Inactivating Luteinizing hormone beta (LHB) gene mutations are exceptionally rare and lead to hypogonadism that is particularly severe in males. We describe a family with selective LH deficiency and hypogonadism in two brothers. DNA sequencing of LHB was performed and the effects of genetic variants on hormone function and secretion were characterized by mutagenesis studies, confocal microscopy and functional assays. A 20-year-old male from a consanguineous family had pubertal delay, hypogonadism and undetectable LH. A homozygous c.118_120del (p.Lys40del) mutation was identified in the patient and his brother, who subsequently had the same phenotype. Treatment with hCG led to pubertal development, increased circulating testosterone and spermatogenesis. Experiments in HeLa cells revealed that the mutant LH is retained intracellularly and showed diffuse cytoplasmic distribution. The mutated LHB heterodimerizes with the common alpha-subunit and can activate its receptor. Deletion of flanking glutamic acid residues at positions 39 and 41 impair LH to a similar extent as deletion of Lys40. This region is functionally important across all heterodimeric glycoprotein hormones, because deletion of the corresponding residues in hCG, follicle-stimulating hormone and thyroid-stimulating hormone beta-subunits also led to intracellular hormone retention. This novel LHB mutation results in hypogonadism due to intracellular sequestration of the hormone and reveals a discrete region in the protein that is crucial for normal secretion of all human glycoprotein hormones.

  2. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc.

    PubMed

    Barriga, Gonzalo P; Villalón-Letelier, Fernando; Márquez, Chantal L; Bignon, Eduardo A; Acuña, Rodrigo; Ross, Breyan H; Monasterio, Octavio; Mardones, Gonzalo A; Vidal, Simon E; Tischler, Nicole D

    2016-07-01

    Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses.

  3. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc

    PubMed Central

    Barriga, Gonzalo P.; Villalón-Letelier, Fernando; Márquez, Chantal L.; Bignon, Eduardo A.; Acuña, Rodrigo; Ross, Breyan H.; Monasterio, Octavio; Mardones, Gonzalo A.; Vidal, Simon E.; Tischler, Nicole D.

    2016-01-01

    Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses

  4. Cryo-electron Microscopy Structure of the Native Prototype Foamy Virus Glycoprotein and Virus Architecture

    PubMed Central

    Effantin, Grégory; Estrozi, Leandro F.; Aschman, Nick; Renesto, Patricia; Stanke, Nicole; Lindemann, Dirk; Schoehn, Guy; Weissenhorn, Winfried

    2016-01-01

    Foamy viruses (FV) belong to the genus Spumavirus, which forms a distinct lineage in the Retroviridae family. Although the infection in natural hosts and zoonotic transmission to humans is asymptomatic, FVs can replicate well in human cells making it an attractive gene therapy vector candidate. Here we present cryo-electron microscopy and (cryo-)electron tomography ultrastructural data on purified prototype FV (PFV) and PFV infected cells. Mature PFV particles have a distinct morphology with a capsid of constant dimension as well as a less ordered shell of density between the capsid and the membrane likely formed by the Gag N-terminal domain and the cytoplasmic part of the Env leader peptide gp18LP. The viral membrane contains trimeric Env glycoproteins partly arranged in interlocked hexagonal assemblies. In situ 3D reconstruction by subtomogram averaging of wild type Env and of a Env gp48TM- gp80SU cleavage site mutant showed a similar spike architecture as well as stabilization of the hexagonal lattice by clear connections between lower densities of neighboring trimers. Cryo-EM was employed to obtain a 9 Å resolution map of the glycoprotein in its pre-fusion state, which revealed extensive trimer interactions by the receptor binding subunit gp80SU at the top of the spike and three central helices derived from the fusion protein subunit gp48TM. The lower part of Env, presumably composed of interlaced parts of gp48TM, gp80SU and gp18LP anchors the spike at the membrane. We propose that the gp48TM density continues into three central transmembrane helices, which interact with three outer transmembrane helices derived from gp18LP. Our ultrastructural data and 9 Å resolution glycoprotein structure provide important new insights into the molecular architecture of PFV and its distinct evolutionary relationship with other members of the Retroviridae. PMID:27399201

  5. Preferential immune response to virion surface glycoproteins by caprine arthritis-encephalitis virus-infected goats.

    PubMed Central

    Johnson, G C; Barbet, A F; Klevjer-Anderson, P; McGuire, T C

    1983-01-01

    Six months after inoculation with caprine arthritis-encephalitis virus, the serum and synovial fluid of virus-infected goats had antibodies to [35S]methionine-labeled viral proteins with apparent molecular weights of 125,000, 90,000, 28,000, and 15,000. The 125,000-, 90,000-, and 15,000-molecular-weight methionine-labeled proteins were identified as virion surface glycoproteins by lactoperoxidase iodination and galactose oxidase-boro[3H]hydride reduction labeling techniques. Radioimmunoassay antibody titers to purified p28, the most abundant viral structural protein, averaged 1:182 in synovial fluid and 1:67 in serum 6 months after inoculation. High dilutions of serum and synovial fluid reacted with gp90 and gp125 electroblotted onto nitrocellulose paper from polyacrylamide gels. Anti-gp90 activity was detected at dilutions with an immunoglobulin G content of 0.02 to 11 micrograms, whereas antibody to p28, when detectable on Western blots, was present in samples with an immunoglobulin G content of 0.1 to 2 mg, representing 100- to 1,000-fold-greater titers of antibody to the surface glycoprotein. Synovial fluids often contained more anti-gp90 antibody than did sera. Immunoprecipitation of lactoperoxidase-iodinated virus confirmed the presence of high antibody titers to the two virion surface glycoproteins. Because antiviral gp90 and gp125 antibody is abundant in the synovial fluid of infected goats, it probably contributes to the high immunoglobulin G1 concentrations seen at this site 6 months after caprine arthritis-encephalitis virus infection. Images PMID:6307878

  6. Structural characterization of the N-linked pentasaccharide decorating glycoproteins of the halophilic archaeon Haloferax volcanii.

    PubMed

    Kandiba, Lina; Lin, Chia-Wei; Aebi, Markus; Eichler, Jerry; Guerardel, Yann

    2016-07-01

    N-Glycosylation is a post-translational modification performed in all three domains of life. In the halophilic archaea Haloferax volcanii, glycoproteins such as the S-layer glycoprotein are modified by an N-linked pentasaccharide assembled by a series of Agl (archaeal glycosylation) proteins. In the present study, mass spectrometry (MS) and nuclear magnetic resonance spectroscopy were used to define the structure of this glycan attached to at least four of the seven putative S-layer glycoprotein N-glycosylation sites, namely Asn-13, Asn-83, Asn-274 and Asn-279. Such approaches detected a trisaccharide corresponding to glucuronic acid (GlcA)-β1,4-GlcA-β1,4-glucose-β1-Asn, a tetrasaccharide corresponding to methyl-O-4-GlcA-β-1,4-galacturonic acid-α1,4-GlcA-β1,4-glucose-β1-Asn, and a pentasaccharide corresponding to hexose-1,2-[methyl-O-4-]GlcA-β-1,4-galacturonic acid-α1,4-GlcA-β1,4-glucose-β1-Asn, with previous MS and radiolabeling experiments showing the hexose at the non-reducing end of the pentasaccharide to be mannose. The present analysis thus corrects the earlier assignment of the penultimate sugar as a methyl ester of a hexuronic acid, instead revealing this sugar to be a methylated GlcA. The assignments made here are in good agreement with what was already known of the Hfx. volcanii N-glycosylation pathway from previous genetic and biochemical efforts while providing new insight into the process.

  7. Characterization of African bat henipavirus GH-M74a glycoproteins.

    PubMed

    Weis, Michael; Behner, Laura; Hoffmann, Markus; Krüger, Nadine; Herrler, Georg; Drosten, Christian; Drexler, Jan Felix; Dietzel, Erik; Maisner, Andrea

    2014-03-01

    In recent years, novel henipavirus-related sequences have been identified in bats in Africa. To evaluate the potential of African bat henipaviruses to spread in non-bat mammalian cells, we compared the biological functions of the surface glycoproteins G and F of the prototype African henipavirus GH-M74a with those of the glycoproteins of Nipah virus (NiV), a well-characterized pathogenic member of the henipavirus genus. Glycoproteins are central determinants for virus tropism, as efficient binding of henipavirus G proteins to cellular ephrin receptors and functional expression of fusion-competent F proteins are indispensable prerequisites for virus entry and cell-to-cell spread. In this study, we analysed the ability of the GH-M74a G and F proteins to cause cell-to-cell fusion in mammalian cell types readily permissive to NiV or Hendra virus infections. Except for limited syncytium formation in a bat cell line derived from Hypsignathus monstrosus, HypNi/1.1 cells, we did not observe any fusion. The highly restricted fusion activity was predominantly due to the F protein. Whilst GH-M74a G protein was found to interact with the main henipavirus receptor ephrin-B2 and induced syncytia upon co-expression with heterotypic NiV F protein, GH-M74a F protein did not cause evident fusion in the presence of heterotypic NiV G protein. Pulse-chase and surface biotinylation analyses revealed delayed F cleavage kinetics with a reduced expression of cleaved and fusion-active GH-M74a F protein on the cell surface. Thus, the F protein of GH-M74a showed a functional defect that is most likely caused by impaired trafficking leading to less efficient proteolytic activation and surface expression.

  8. Palmitoylation of the Rous Sarcoma Virus Transmembrane Glycoprotein Is Required for Protein Stability and Virus Infectivity

    PubMed Central

    Ochsenbauer-Jambor, Christina; Miller, David C.; Roberts, Charles R.; Rhee, Sung S.; Hunter, Eric

    2001-01-01

    The Rous sarcoma virus (RSV) transmembrane (TM) glycoprotein is modified by the addition of palmitic acid. To identify whether conserved cysteines within the hydrophobic anchor region are the site(s) of palmitoylation, and to determine the role of acylation in glycoprotein function, cysteines at residues 164 and 167 of the TM protein were mutated to glycine (C164G, C167G, and C164G/C167G). In CV-1 cells, palmitate was added to env gene products containing single mutations but was absent in the double-mutant Env. Although mutant Pr95 Env precursors were synthesized with wild-type kinetics, the phenotypes of the mutants differed markedly. Env-C164G had properties similar to those of the wild type, while Env-C167G was degraded faster, and Env containing the double mutant C164G/C167G was very rapidly degraded. Degradation occurred after transient plasma membrane expression. The decrease in steady-state surface expression and increased rate of internalization into endosomes and lysosomes paralleled the decrease in palmitoylation observed for the mutants. The phenotypes of mutant viruses were assessed in avian cells in the context of the pATV8R proviral genome. Virus containing the C164G mutation replicated with wild-type kinetics but exhibited reduced peak reverse transcriptase levels. In contrast, viruses containing either the C167G or the C164G/C167G mutation were poorly infectious or noninfectious, respectively. These phenotypes correlated with different degrees of glycoprotein incorporation into virions. Infectious revertants of the double mutant demonstrated the importance of cysteine-167 for efficient plasma membrane expression and Env incorporation. The observation that both cysteines within the membrane-spanning domain are accessible for acylation has implications for the topology of this region, and a model is proposed. PMID:11689636

  9. Core structure of S2 from the human coronavirus NL63 spike glycoprotein.

    PubMed

    Zheng, Qi; Deng, Yiqun; Liu, Jie; van der Hoek, Lia; Berkhout, Ben; Lu, Min

    2006-12-26

    Human coronavirus NL63 (HCoV-NL63) has recently been identified as a causative agent of acute respiratory tract illnesses in infants and young children. The HCoV-NL63 spike (S) protein mediates virion attachment to cells and subsequent fusion of the viral and cellular membranes. This viral entry process is a primary target for vaccine and drug development. HCoV-NL63 S is expressed as a single-chain glycoprotein and consists of an N-terminal receptor-binding domain (S1) and a C-terminal transmembrane fusion domain (S2). The latter contains two highly conserved heptad-repeat (HR) sequences that are each extended by 14 amino acids relative to those of the SARS coronavirus or the prototypic murine coronavirus, mouse hepatitis virus. Limited proteolysis studies of the HCoV-NL63 S2 fusion core identify an alpha-helical domain composed of a trimer of the HR segments N57 and C42. The crystal structure of this complex reveals three C42 helices entwined in an oblique and antiparallel manner around a central triple-stranded coiled coil formed by three N57 helices. The overall geometry comprises distinctive high-affinity conformations of interacting cross-sectional layers of the six helices. As a result, this structure is unusually stable, with an apparent melting temperature of 78 degrees C in the presence of the denaturant guanidine hydrochloride at 5 M concentration. The extended HR regions may therefore be required to prime the group 1 S glycoproteins for their fusion-activating conformational changes during viral entry. Our results provide an initial basis for understanding an intriguing interplay between the presence or absence of proteolytic maturation among the coronavirus groups and the membrane fusion activity of their S glycoproteins. This study also suggests a potential strategy for the development of improved HCoV-NL63 fusion inhibitors.

  10. Fasciola hepatica Surface Tegument: Glycoproteins at the Interface of Parasite and Host*

    PubMed Central

    Ravidà, Alessandra; Cwiklinski, Krystyna; Aldridge, Allison M.; Clarke, Paul; Thompson, Roisin; Gerlach, Jared Q.; Kilcoyne, Michelle; Hokke, Cornelis H.; Dalton, John P.; O'Neill, Sandra M.

    2016-01-01

    Fasciola hepatica, commonly known as liver fluke, is a trematode that causes Fasciolosis in ruminants and humans. The outer tegumental coat of F. hepatica (FhTeg) is a complex metabolically active biological matrix that is continually exposed to the host immune system and therefore makes a good vaccine target. F. hepatica tegumental coat is highly glycosylated and helminth-derived immunogenic oligosaccharide motifs and glycoproteins are currently being investigated as novel vaccine candidates. This report presents the first systematic characterization of FhTeg glycosylation using lectin microarrays to characterize carbohydrates motifs present, and lectin histochemistry to localize these on the F. hepatica tegument. We discovered that FhTeg glycoproteins are predominantly oligomannose oligosaccharides that are expressed on the spines, suckers and tegumental coat of F. hepatica and lectin blot analysis confirmed the abundance of N- glycosylated proteins. Although some oligosaccharides are widely distributed on the fluke surface other subsets are restricted to distinct anatomical regions. We selectively enriched for FhTeg mannosylated glycoprotein subsets using lectin affinity chromatography and identified 369 proteins by mass spectrometric analysis. Among these proteins are a number of potential vaccine candidates with known immune modulatory properties including proteases, protease inhibitors, paramyosin, Venom Allergen-like II, Enolase and two proteins, nardilysin and TRIL, that have not been previously associated with F. hepatica. Furthermore, we provide a comprehensive insight regarding the putative glycosylation of FhTeg components that could highlight the importance of further studies examining glycoconjugates in host-parasite interactions in the context of F. hepatica infection and the development of an effective vaccine. PMID:27466253

  11. Core Structure of S2 from the Human Coronavirus NL63 Spike Glycoprotein

    SciTech Connect

    Zheng,Q.; Deng, Y.; Liu, J.; van der Hoek, L.; Berkhout, B.; Lu, M.

    2006-01-01

    Human coronavirus NL63 (HCoV-NL63) has recently been identified as a causative agent of acute respiratory tract illnesses in infants and young children. The HCoV-NL63 spike (S) protein mediates virion attachment to cells and subsequent fusion of the viral and cellular membranes. This viral entry process is a primary target for vaccine and drug development. HCoV-NL63 S is expressed as a single-chain glycoprotein and consists of an N-terminal receptor-binding domain (S1) and a C-terminal transmembrane fusion domain (S2). The latter contains two highly conserved heptad-repeat (HR) sequences that are each extended by 14 amino acids relative to those of the SARS coronavirus or the prototypic murine coronavirus, mouse hepatitis virus. Limited proteolysis studies of the HCoV-NL63 S2 fusion core identify an {alpha}-helical domain composed of a trimer of the HR segments N57 and C42. The crystal structure of this complex reveals three C42 helices entwined in an oblique and antiparallel manner around a central triple-stranded coiled coil formed by three N57 helices. The overall geometry comprises distinctive high-affinity conformations of interacting cross-sectional layers of the six helices. As a result, this structure is unusually stable, with an apparent melting temperature of 78 {sup o}C in the presence of the denaturant guanidine hydrochloride at 5 M concentration. The extended HR regions may therefore be required to prime the group 1 S glycoproteins for their fusion-activating conformational changes during viral entry. Our results provide an initial basis for understanding an intriguing interplay between the presence or absence of proteolytic maturation among the coronavirus groups and the membrane fusion activity of their S glycoproteins. This study also suggests a potential strategy for the development of improved HCoV-NL63 fusion inhibitors.

  12. Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica.

    PubMed

    Roehrig, J T; Bolin, R A; Kelly, R G

    1998-07-05

    Although dengue (DEN) virus is the etiologic agent of dengue fever, the most prevalent vector-borne viral disease in the world, precise information on the antigenic structure of the dengue virion is limited. We have prepared a set of murine monoclonal antibodies (MAbs) specific for the envelope (E) glycoprotein of DEN 2 virus and used these antibodies in a comprehensive biological and biochemical analysis to identify 16 epitopes. Following domain nomenclature developed for the related flavivirus, tick-borne encephalitis, three functional domains were identified. Five epitopes associated with domain A were arranged in three spatially independent regions. These A-domain epitopes were destroyed by reduction, and antibodies reactive with these epitopes were able to block virus hemagglutination, neutralize virus infectivity, and block virus-mediated cell membrane fusion. Domain-A epitopes were present on the full-length E glycoprotein, a 45-kDa tryptic peptide representing its first 400 amino acids (aa) and a 22-kDa tryptic peptide representing at least aa 1-120. Four epitopes mapped into domain B, as determined by their partial resistance to reduction and the localization of these epitopes on a 9-kDa tryptic or chymotryptic peptide fragment (aa 300-400). One domain-B-reactive MAb was also capable of binding to a DEN 2 synthetic peptide corresponding to aa 333-351 of the E glycoprotein, confirming the location of this domain. Domain-B epitopes elicited MAbs that were potent neutralizers of virus infectivity and blocked hemagglutination, but they did not block virus-mediated cell-membrane fusion. Domains A and B were spatially associated. As with tick-borne encephalitis virus, determination of domain C was more problematic; however, at least four epitopes had biochemical characteristics consistent with C-domain epitopes.

  13. A viral regulator of glycoprotein complexes contributes to human cytomegalovirus cell tropism.

    PubMed

    Li, Gang; Nguyen, Christopher C; Ryckman, Brent J; Britt, William J; Kamil, Jeremy P

    2015-04-07

    Viral glycoproteins mediate entry of enveloped viruses into cells and thus play crucial roles in infection. In herpesviruses, a complex of two viral glycoproteins, gH and gL (gH/gL), regulates membrane fusion events and influences virion cell tropism. Human cytomegalovirus (HCMV) gH/gL can be incorporated into two different protein complexes: a glycoprotein O (gO)-containing complex known as gH/gL/gO, and a complex containing UL128, UL130, and UL131 known as gH/gL/UL128-131. Variability in the relative abundance of the complexes in the virion envelope correlates with differences in cell tropism exhibited between strains of HCMV. Nonetheless, the mechanisms underlying such variability have remained unclear. We have identified a viral protein encoded by the UL148 ORF (UL148) that influences the ratio of gH/gL/gO to gH/gL/UL128-131 and the cell tropism of HCMV virions. A mutant disrupted for UL148 showed defects in gH/gL/gO maturation and enhanced infectivity for epithelial cells. Accordingly, reintroduction of UL148 into an HCMV strain that lacked the gene resulted in decreased levels of gH/gL/UL128-131 on virions and, correspondingly, decreased infectivity for e