Science.gov

Sample records for 60-kda heat shock

  1. Electron heating at interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Zwickl, R. D.

    1982-01-01

    Data for 41 forward interplanetary shocks show that the ratio of downstream to upstream electron temperatures, T/sub e/(d/u) is variable in the range between 1.0 (isothermal) and 3.0. On average, (T/sub e/(d/u) = 1.5 with a standard deviation, sigma e = 0.5. This ratio is less than the average ratio of proton temperatures across the same shocks, (T/sub p/(d/u)) = 3.3 with sigma p = 2.5 as well as the average ratio of electron temperatures across the Earth's bow shock. Individual samples of T/sub e/(d/u) and T/sub p/(d/u) appear to be weakly correlated with the number density ratio. However the amounts of electron and proton heating are well correlated with each other as well as with the bulk velocity difference across each shock. The stronger shocks appear to heat the protons relatively more efficiently than they heat the electrons.

  2. Heat shock in the springtime.

    PubMed

    Morano, Kevin A; Sistonen, Lea; Mezger, Valérie

    2014-11-01

    A collaborative workshop dedicated to the discussion of heat shock factors in stress response, development, and disease was held on April 22-24, 2014 at the Université Paris Diderot in Paris, France. Recent years have witnessed an explosion of interest in these highly conserved transcription factors, with biological roles ranging from environmental sensing to human development and cancer.

  3. Heat shock induces barotolerance in Listeria monocytogenes.

    PubMed

    Hayman, Melinda M; Anantheswaran, Ramaswamy C; Knabel, Stephen J

    2008-02-01

    The aim of this study was to investigate the effect of heat shock on the resistance of Listeria monocytogenes to high pressure processing (HPP). L. monocytogenes ATCC 19115 was grown to stationary phase at 15 degrees C and inoculated into whole ultrahigh-temperature milk at approximately 10(7) CFU/ml. Milk samples (5 ml) were placed into plastic transfer pipettes, which were heat sealed and then heated in a water bath at 48 degrees C for 10 min. Immediately after heat shock, the milk was cooled in water (20 degrees C) for 25 min and then placed on ice. The samples were high pressure processed at ambient temperature (approximately 23 degrees C) at 400 MPa for various times up to 150 s. Following HPP, the samples were spread plated on tryptic soy agar supplemented with yeast extract. Heat shock significantly increased the D400 MPa-value of L. monocytogenes from 35 s in non-heat-shocked cells to 127 s in heat-shocked cells (P < 0.05). Addition of chloramphenicol before heat shock eliminated the protective effect of heat shock (P < 0.05). Heat shock for 5, 10, 15, or 30 min at 48 degrees C resulted in maximal barotolerance (P < 0.05); increasing the time to 60 min significantly decreased survival compared with that at 5, 10, 15, or 30 min (P < 0.05). These results indicate that prior heat shock significantly increases the barotolerance of L. monocytogenes and that de novo protein synthesis during heat shock is required for this enhanced barotolerance.

  4. Heat Shock Proteins: Mediators of Atherosclerotic Development.

    PubMed

    Deniset, Justin F; Pierce, Grant N

    2015-01-01

    Heat shock proteins play important housekeeping roles in a variety of cells within the body during normal control conditions. The many different functions for heat shock proteins in the cell depend upon the specific heat shock protein involved. Each protein is nominally differentiated based upon its molecular size. However, in addition to their role in normal cell function, heat shock proteins may play an even more important role as pro-survival proteins conserved through evolution to protect the cell from a variety of stresses. The ability of a cell to withstand these environmental stresses is critical to its capacity to adapt and remain viable. Loss of this ability may lead to pathological states. Abnormal localization, structure or function of the heat shock proteins has been associated with many pathologies, including those involving heart disease. Heat shock proteins like HSP60 and HSP70 in particular have been identified as playing important roles in inflammation and immune reactions. Inflammation has been identified recently as an important pathological risk factor for heart disease. It is perhaps not surprising therefore, that heat shock protein family has been increasingly identified as an important intracellular pathway associated with inflammatory-mediated heart conditions including atherosclerosis. This paper reviews the evidence in support of a role for heat shock proteins in cardiovascular disease and the potential to target these proteins to alter the progression of atherosclerotic disease.

  5. Heat shock proteins in cancer.

    PubMed

    Sherman, Michael; Multhoff, Gabriele

    2007-10-01

    Heat shock proteins (Hsps) are highly conserved and inhabit nearly all subcellular locations where they perform a variety of chaperoning functions including folding and unfolding of nascent polypeptides, proteins, transport of proteins, and support of antigen presentation processes. Apart from their intracellular location Hsps with a molecular weight of 70 kDa (Hsp70) also have been found on the plasma membrane of malignantly transformed cells, on virally/bacterial infected cells and in the extracellular space. Depending on their intra- and extracellular location Hsps exert either protection against environmental stress or act as potent stimulators of the immune response. In this review we address the dual function of intracellular and extracellular located small Hsps and members of the Hsp70 family and its immunological consequences for cancer immunity.

  6. Heat Shock Proteins and Diabetes.

    PubMed

    Zilaee, Marzie; Shirali, Saeed

    2016-12-01

    Diabetes is a chronic disease, and its prevalence continues to rise and can increase the risk for the progression of microvascular (such as nephropathy, retinopathy and neuropathy) and also macrovascular complications. Diabetes is a condition in which the oxidative stress and inflammation rise. Heat shock proteins (HSPs) are a highly conserved family of proteins that are expressed by all cells exposed to environmental stress, and they have diverse functions. In patients with diabetes, the expression and levels of HSPs decrease, but these chaperones can aid in improving some complications of diabetes, such as oxidative stress and inflammation. (The suppression of some HSPs is associated with a generalized increase in tissue inflammation.) In this review, we summarize the current understanding of HSPs in diabetes as well as their complications, and we also highlight their potential role as therapeutic targets in diabetes. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  7. Ultrafast collisional ion heating by electrostatic shocks

    PubMed Central

    Turrell, A. E.; Sherlock, M.; Rose, S. J.

    2015-01-01

    High-intensity lasers can be used to generate shockwaves, which have found applications in nuclear fusion, proton imaging, cancer therapies and materials science. Collisionless electrostatic shocks are one type of shockwave widely studied for applications involving ion acceleration. Here we show a novel mechanism for collisionless electrostatic shocks to heat small amounts of solid density matter to temperatures of ∼keV in tens of femtoseconds. Unusually, electrons play no direct role in the heating and it is the ions that determine the heating rate. Ions are heated due to an interplay between the electric field of the shock, the local density increase during the passage of the shock and collisions between different species of ion. In simulations, these factors combine to produce rapid, localized heating of the lighter ion species. Although the heated volume is modest, this would be one of the fastest heating mechanisms discovered if demonstrated in the laboratory. PMID:26563440

  8. Heat shock response and homeostatic plasticity

    PubMed Central

    Karunanithi, Shanker; Brown, Ian R.

    2015-01-01

    Heat shock response and homeostatic plasticity are mechanisms that afford functional stability to cells in the face of stress. Each mechanism has been investigated independently, but the link between the two has not been extensively explored. We explore this link. The heat shock response enables cells to adapt to stresses such as high temperature, metabolic stress and reduced oxygen levels. This mechanism results from the production of heat shock proteins (HSPs) which maintain normal cellular functions by counteracting the misfolding of cellular proteins. Homeostatic plasticity enables neurons and their target cells to maintain their activity levels around their respective set points in the face of stress or disturbances. This mechanism results from the recruitment of adaptations at synaptic inputs, or at voltage-gated ion channels. In this perspective, we argue that heat shock triggers homeostatic plasticity through the production of HSPs. We also suggest that homeostatic plasticity is a form of neuroprotection. PMID:25814928

  9. Shock Heated Dust in Young Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Braun, R.; Strom, R. G.; van der Laan, H.; Greidanus, H.

    Infrared emission in young supernova remnants is interpreted as coming from shock-heated dust. Using models and data from other wavelength regimes, many physical parameters of the remnants can accurately be derived.

  10. Heat shock in cultured neurons and astrocytes: correlation of ultrastructure and heat shock protein synthesis.

    PubMed

    Nishimura, R N; Dwyer, B E; Vinters, H V; De Vellis, J; Cole, R

    1991-04-01

    Cultured cerebral cortical neurons and astrocytes were compared after a brief shock. Morphological findings were correlated with the synthesis of the 68 kD heat shock protein (HSP68). Heat shocked neurons demonstrated many severe morphological changes after exposure to temperatures of 43 degrees C for 15 min and 45 degrees C for 10 min. Nuclear membrane 'blebbing' with lysis of the membrane, chromatin clumping, and disappearance of the nucleolus were prominent after both conditions. Lysis of the cell membrane was noted in severely injured neurons; this was more prominent at the higher temperature. In addition, alterations to polyribosomes, Golgi apparatus, rough endoplasmic reticulum and mitochondria were noted in the cytoplasm of neurons after heat shock. In contrast, no significant changes were noted in either the nucleus or cytoplasm of heat shocked astrocytes. The severity of morphological changes in neurons directly correlated with the low level of induction of HSP68 in neurons. Neurons synthesized much less 68 kD heat shock protein than similarly heat shocked astrocytes. We conclude that cultured cerebral cortical neurons are more susceptible to injury after heat shock than heat resistant astrocytes and that one possible mechanism of injury is failure to synthesize adequate amounts of HSP68 after injury.

  11. Heat shock protein produced by Helicobacter pylori.

    PubMed

    Yokota, K; Hirai, Y; Haque, M; Hayashi, S; Isogai, H; Sugiyama, T; Nagamachi, E; Tsukada, Y; Fujii, N; Oguma, K

    1994-01-01

    The cells of Helicobacter pylori were suspended in the medium containing 35S-methionine. After a heat shock of the cells at 42 C for 5, 10, and 30 min, the production of proteins was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Out of many proteins produced by the cells, only 66 kDa protein production was dramatically increased by heat treatment. The N-terminal amino acid sequence of 66 kDa protein was quite similar to that of 62 kDa and 54 kDa proteins previously suggested as heat shock protein (HSP) of H. pylori based on the reaction with polyclonal and monoclonal antibodies against HSP 60 family proteins produced by other bacteria. Therefore, it was concluded that H. pylori produces the 66 kDa protein as its major heat shock protein which belongs to HSP 60 family.

  12. Electron heating in superhigh Mach number shocks

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.

    1988-01-01

    Fluid and MHD models, as well as direct extrapolation of the earth's bow shock measurements in the high Mach number (HMN) range to the superhigh Mach number (SHMN) range predict that the downstream electron pressure is only a negligible fraction of the Rankine-Hugoniot downstream pressure. Following Alfven, plasma physics experimental-theoretical data combined with magnetospheric observations were used to probe the physics of the SHMN shocks. It is shown that inclusion of proper plasma physics considerations in the interaction of the reflected and transmitted ions and the electrons at the 'foot' of the shock leads to the surprising result that electron heating can dominate in the SHNM range. A stationary model of the shock structure is derived and shown to be the result of extrapolation of the high Mach number shock physics wiht incorporation of collective interactions at the foot.

  13. Regulation of bacterial heat shock stimulons.

    PubMed

    Schumann, Wolfgang

    2016-11-01

    All organisms developed genetic programs to allow their survival under stressful conditions. In most cases, they increase the amount of a specific class of proteins which deal with the stress factor and allow cells to adapt to life-threatening conditions. One class of stress proteins are the heat shock proteins (HSPs) the amount of which is significantly increased after a sudden temperature rise. How is the heat shock response (HSR) regulated in bacteria? This has been studied in detail in Escherichia coli, Bacillus subtilis and Streptomyces spp. Two major mechanisms have been described so far to regulate expression of the HSGs, namely alternative sigma factors and transcriptional repressors. This review focuses on the regulatory details of the different heat shock regulons in the three well-studied bacterial species.

  14. Heat shock proteins in multiple myeloma

    PubMed Central

    Zhang, Lei; Fok, Jacqueline H.L.; Davies, Faith E.

    2014-01-01

    Heat shock proteins are molecular chaperones with a central role in protein folding and cellular protein homeostasis. They also play major roles in the development of cancer and in recent years have emerged as promising therapeutic targets. In this review, we discuss the known molecular mechanisms of various heat shock protein families and their involvement in cancer and in particular, multiple myeloma. In addition, we address the current progress and challenges in pharmacologically targeting these proteins as anti-cancer therapeutic strategies PMID:24675290

  15. Biophoton Emission Induced by Heat Shock

    PubMed Central

    Kobayashi, Katsuhiro; Okabe, Hirotaka; Kawano, Shinya; Hidaka, Yoshiki; Hara, Kazuhiro

    2014-01-01

    Ultraweak biophoton emission originates from the generation of reactive oxygen species (ROS) that are produced in mitochondria as by-products of cellular respiration. In healthy cells, the concentration of ROS is minimized by a system of biological antioxidants. However, heat shock changes the equilibrium between oxidative stress and antioxidant activity, that is, a rapid rise in temperature induces biophoton emission from ROS. Although the rate and intensity of biophoton emission was observed to increase in response to elevated temperatures, pretreatment at lower high temperatures inhibited photon emission at higher temperatures. Biophoton measurements are useful for observing and evaluating heat shock. PMID:25153902

  16. Biophoton emission induced by heat shock.

    PubMed

    Kobayashi, Katsuhiro; Okabe, Hirotaka; Kawano, Shinya; Hidaka, Yoshiki; Hara, Kazuhiro

    2014-01-01

    Ultraweak biophoton emission originates from the generation of reactive oxygen species (ROS) that are produced in mitochondria as by-products of cellular respiration. In healthy cells, the concentration of ROS is minimized by a system of biological antioxidants. However, heat shock changes the equilibrium between oxidative stress and antioxidant activity, that is, a rapid rise in temperature induces biophoton emission from ROS. Although the rate and intensity of biophoton emission was observed to increase in response to elevated temperatures, pretreatment at lower high temperatures inhibited photon emission at higher temperatures. Biophoton measurements are useful for observing and evaluating heat shock.

  17. The Heat Shock Paradox and Cardiac Myocytes: Role of Heat Shock Factor

    PubMed Central

    Kobba, Samuel; Kim, Se-Chan; Chen, Le; Kim, EunJung; Tran, Alice L.; Knuefermann, Pascal; Knowlton, Anne A.

    2012-01-01

    The induction of the heat shock response is accepted to be a protective response, reducing injury and improving cell survival. However, when inflammation precedes heat shock there is an unexpected increase in injury, known as the heat shock paradox, which is hypothesized to be a mechanism underlying multi-organ dysfunction. We hypothesized that the heat shock paradox would occur in adult cardiac myocytes and that heat shock factor (HSF)1 would contribute to injury. Heat shock (HS) at 42°C and TNF (10 ng/ml) were used as the HS and the inflammatory insult, respectively. The combination of TNF followed by HS (TNF/HS) caused the greatest amount of apoptosis in adult rat cardiac myocytes. TNF/HS resulted in an increase in heat shock protein (HSP) 60, compared to untreated cells, those receiving HS/TNF, or TNF alone. There was no increase in heme oxygenase 1 in any of the groups. HSP72 increased in all the groups, with the greatest levels with TNF/HS. NFκB activation was greatest with TNF/HS. Pretreatment with a DNA binding decoy for HSF1 prevented the increase in HSPs and decreased apoptosis in all groups. However, the increase in iNOS, seen in all treatment groups, was unaffected by the HSF1 binding decoy. We conclude that the heat shock paradox occurs in adult cardiac myocytes, that HSP60 is increased as part of the heat shock paradox, and that HSF1 activation contributes to injury. PMID:21192280

  18. [Heat shock proteins and their characteristics].

    PubMed

    Dzaman-Serafin, Sylwia; Telatyńska-Mieszek, Bogumiła; Ciechanowski, Kazimierz

    2005-08-01

    The main adaptable response to increased temperature is heat shock response resulting in induction of proteins called heat shock proteins (HSP). They are present in all cells under proper growth conditions and they create 5-10% of the whole protein contents. HSP were divided into five basic groups according to their approximate molecular mass, expressed in kDa and called respectively: HSP 100, HSP 90, HSP 70, HSP 60 and small HSP. Heat shock proteins can act like antigens in many infectious diseases. Immunological response against proteins from HSP 60, HSP 70 and HSP 90 families was observed in diseases caused by bacterial and protozoan pathogens. It is known that ischemia and reperfusion activate HSP genes transcription in heart cells of various experimental animals. Human and Chlamydia pneumoniae HSP 60 were found in patients with stable coronary disease. Hence many researchers connect the increase of ischaemia with the passed infection caused by Chlamydia pneumoniae, which can influence the origin or development of atheromatous plaque in the vascular wall. HSPs play an important role in hyperthermic therapy commonly used together with irradiation. Moreover, works on the possibility of HSP application to delay of disease process in neurodegenerative diseases, such as Parkinson or Alzheimer diseases are conducted. The paper presents characteristics of heat shock proteins, role in the state of health and disease and possibilities of their usage in monitoring and/or treatment of diseases, e.g. cancers.

  19. Heat Shock Proteins in Association with Heat Tolerance in Grasses

    PubMed Central

    Xu, Yan; Zhan, Chenyang; Huang, Bingru

    2011-01-01

    The grass family Poaceae includes annual species cultivated as major grain crops and perennial species cultivated as forage or turf grasses. Heat stress is a primary factor limiting growth and productivity of cool-season grass species and is becoming a more significant problem in the context of global warming. Plants have developed various mechanisms in heat-stress adaptation, including changes in protein metabolism such as the induction of heat shock proteins (HSPs). This paper summarizes the structure and function of major HSPs, recent research progress on the association of HSPs with grass tolerance to heat stress, and incorporation of HSPs in heat-tolerant grass breeding. PMID:22084689

  20. Genetic regulation during heat shock and function of heat-shock proteins: a review.

    PubMed

    Tanguay, R M

    1983-06-01

    The induction by thermal stress of certain specific genes (heat-shock genes) first described in Drosophila has recently been observed in a wide variety of unicellular and multicellular organisms, emphasizing the basic importance of this ubiquitous response. Recent data dealing with the molecular mechanisms involved in the intensive transcriptional and posttranscriptional regulation during heat shock is reviewed with emphasis on the induction of the response and the putative function of the heat-shock proteins. A model showing the various interactions of cellular regulatory mechanisms operating in the heat-shocked cell is presented. While the list of agents or treatments inducing heat-shock proteins (hsp's) in various organisms is increasing, the identification of a hypothetical common inducing factor is elusive. The recently described reorganization of some cytoskeletal elements upon heat shock is discussed both in terms of its potential involvement in transcriptional and (or) translational regulation and of its putative relation with the cellular localization of the hsp's. Studies on the cellular localization of hsp's in various organisms do not show a clear uniform pattern which could help in elucidating the function of hsp's. On the other hand, studies on the thermal resistance of various cells types show a strong correlation between the induction of hsp's and the development of transitory thermotolerance. Such a protective function for hsp's can probably be extended to other types of cellular aggression.

  1. Infrared Images of Shock-Heated Tin

    SciTech Connect

    Craig W. McCluskey; Mark D. Wilke; William D. Turley; Gerald D. Stevens; Lynn R. Veeser; Michael Grover

    2004-09-01

    High-resolution, gated infrared images were taken of tin samples shock heated to just below the 505 K melting point. Sample surfaces were either polished or diamond-turned, with grain sizes ranging from about 0.05 to 10 mm. A high explosive in contact with a 2-mm-thick tin sample induced a peak sample stress of 18 GPa. Interferometer data from similarly-driven tin shots indicate that immediately after shock breakout the samples spall near the free (imaged) surface with a scab thickness of about 0.1 mm.

  2. Heterogeneous nuclear ribonucleoprotein K inhibits heat shock-induced transcriptional activity of heat shock factor 1.

    PubMed

    Kim, Hee-Jung; Lee, Jae-Jin; Cho, Jin-Hwan; Jeong, Jaeho; Park, A Young; Kang, Wonmo; Lee, Kong-Joo

    2017-08-04

    When cells are exposed to heat shock and various other stresses, heat shock factor 1 (HSF1) is activated, and the heat shock response (HSR) is elicited. To better understand the molecular regulation of the HSR, we used 2D-PAGE-based proteome analysis to screen for heat shock-induced post-translationally modified cellular proteins. Our analysis revealed that two protein spots typically present on 2D-PAGE gels and containing heterogeneous nuclear ribonucleoprotein K (hnRNP K) with trioxidized Cys(132) disappeared after the heat shock treatment and reappeared during recovery, but the total amount of hnRNP K protein remained unchanged. We next tested whether hnRNP K plays a role in HSR by regulating HSF1 and found that hnRNP K inhibits HSF1 activity, resulting in reduced expression of hsp70 and hsp27 mRNAs. hnRNP K also reduced binding affinity of HSF1 to the heat shock element by directly interacting with HSF1 but did not affect HSF1 phosphorylation-dependent activation or nuclear localization. hnRNP K lost its ability to induce these effects when its Cys(132) was substituted with Ser, Asp, or Glu. These findings suggest that hnRNP K inhibits transcriptional activity of HSF1 by inhibiting its binding to heat shock element and that the oxidation status of Cys(132) in hnRNP K is critical for this inhibition. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Shock Heating: Effects on Chondritic Material

    NASA Technical Reports Server (NTRS)

    Desch, S. J.; Ciesla, F. J.; Hood, L. L.; Nakamoto, T.

    2004-01-01

    At the 1994 Conference on Chondrules and the Protoplanetary Disk, shock waves were discussed as mechanisms that may have been responsible for forming chondrules, millimeter-sized igneous spheres which are significant components of chondritic meteorites, and references therein]. At the time, shock waves were appealing because they were thought to be brief, repetitive events that were quantitatively shown to be able to rapidly heat silicates to the appropriate temperatures for chondrule formation. Since that meeting, more detailed models for the thermal processing of material in shock waves have been developed. These models have tracked the thermal evolution of the silicates for longer periods of time and found that their cooling rates are also consistent with what has been inferred for chondrules. In addition to the thermal histories of these particles, shock waves may be able to explain a number of other features observed in primitive meteorites. Here, we review the recent work that has been done in studying the interaction of solids with shock waves in the solar nebula.

  4. Heat-shock proteins and atherosclerosis.

    PubMed

    Ferreira, M Branco; Carlos, A G Palma

    2002-06-01

    In this review the authors focus on the possible role of heat-shock proteins (hsp) in the immune pathogenesis of the atherosclerotic process. The authors discuss evidence showing increased expression of these proteins in the vascular wall of stressed and atherosclerotic vessels and the immune mechanisms which could justify some of the inflammatory aspects that are now currently recognized in atherosclerosis, namely some of the possible hsp immune activating properties and also the possibility of hsp representing an innocent auto-antigen which could be the unwanted target of an immune response, initially directed against microbial heat-shock proteins. Epidemiological evidence linking atherosclerosis and cardiovascular diseases to soluble hsp levels as well as the intensity of anti-hsp immune response is also reviewed.

  5. Roles of heat shock factors in gametogenesis and development.

    PubMed

    Abane, Ryma; Mezger, Valérie

    2010-10-01

    Heat shock factors form a family of transcription factors (four in mammals), which were named according to the first discovery of their activation by heat shock. As a result of the universality and robustness of their response to heat shock, the stress-dependent activation of heat shock factor became a ‘paradigm’: by binding to conserved DNA sequences (heat shock elements), heat shock factors trigger the expression of genes encoding heat shock proteins that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stress and in several pathological conditions. Besides their roles in the stress response, heat shock factors perform crucial roles during gametogenesis and development in physiological conditions. First, during these process, in stress conditions, they are either proactive for survival or, conversely, for apoptotic process, allowing elimination or, inversely, protection of certain cell populations in a way that prevents the formation of damaged gametes and secure future reproductive success. Second, heat shock factors display subtle interplay in a tissue- and stage-specific manner, in regulating very specific sets of heat shock genes, but also many other genes encoding growth factors or involved in cytoskeletal dynamics. Third, they act not only by their classical transcription factor activities, but are necessary for the establishment of chromatin structure and, likely, genome stability. Finally, in contrast to the heat shock gene paradigm, heat shock elements bound by heat shock factors in developmental process turn out to be extremely dispersed in the genome, which is susceptible to lead to the future definition of ‘developmental heat shock element’.

  6. Regulation of heat-shock protein synthesis in chicken muscle culture during recovery from heat shock.

    PubMed

    Bag, J

    1983-10-03

    Exposure of chick myotube cultures to a temperature (45 degrees C) higher than their normal growing temperature (37 degrees C) caused extensive synthesis of three major polypeptides of Mr = 25 000, 65 000 and 81 000 referred to as 'heat-shock polypeptides' (hsps). When these cells were allowed to recover from heat-shock treatment at 37 degrees C for 6-8 h, the rate of accumulation of isotope into the 65 000-Mr and 81 000-Mr hsps declined to levels comparable to those in control cultures maintained at 37 degrees C. However, incorporation of isotope in the 25 000-Mr hsp continued at an elevated rate for a longer period than the 65 000-Mr and 81 000-Mr hsps. When heat-shocked cells were allowed to recover at 37 degrees C in the presence of actinomycin D to block new mRNA synthesis, the hsp synthesis as measured by the incorporation of radioactive isotope in these polypeptides continued at levels comparable to those in heat-shocked cells prior to recovery. The block of recovery by actinomycin D was due to the presence of a greater amount of functional hsp mRNAs in the polysomes as compared to untreated controls. The role of competition between the mRNAs for hsps and normal cellular proteins for the translation machinery in regulating protein synthesis during the recovery from heat shock has been discussed.

  7. Response to heat shock of different sea urchin species.

    PubMed

    Roccheri, M C; Sconzo, G; La Rosa, M; Oliva, D; Abrignani, A; Giudice, G

    1986-03-01

    It is demonstrated that sea urchin embryos of the species Sphaerechinus granularis are able to respond to heat shock by producing heat shock proteins at the same stage as embryos of Paracentrotus lividus, i.e. after hatching. Arbacia lixula embryos are able to synthesize heat shock proteins already at the stage of 64-128 blastomeres. Embryonic survival is observed if the embryos are heated at the stages at which they can synthesize the heat shock proteins. The inhibition of the bulk protein synthesis after heating at 31 degrees C is never less than 50%.

  8. Constitutive and heat-inducible heat shock element binding activities of heat shock factor in a group of filamentous fungi

    PubMed Central

    Xavier, Ilungo J.; Khachatourians, George G.; Ovsenek, Nick

    1999-01-01

    This study represents the initial characterization of the heat shock factor (HSF) in filamentous fungi. We demonstrate that HSFs from Beauveria bassiana, Metarhizium anisopliae, Tolypocladium nivea, Paecilomyces farinosus, and Verticillium lecanii bind to the heat shock element (HSE) constitutively (non-shocked), and that heat shock resulted in increased quantities and decreased mobility of HSF-HSE complexes. The monomeric molecular mass of both heat-induced and constitutive HSFs was determined to be 85.8 kDa by UV-crosslinking and the apparent molecular masses of the native HSF-HSE complexes as determined by pore exclusion gradient gel electrophoresis was 260 and 300 kDa, respectively. Proteolytic band clipping assays using trypsin and chymotrypsin revealed an identical partial cleavage profile for constitutive and heat-induced HSF-HSE complexes. Thus, it appears that both constitutive and heat-inducible complexes are formed by trimers composed of the same HSF molecule which undergoes conformational changes during heat shock. The mobility difference between the complexes was not abolished by enzymatic dephosphorylation and deglycosylation, indicating that the reduced mobility of the heat-induced HSF is probably due to a post-translational modification other than phosphorylation or glycosylation. PMID:10590835

  9. DNA transformation via local heat shock

    NASA Astrophysics Data System (ADS)

    Li, Sha; Meadow Anderson, L.; Yang, Jui-Ming; Lin, Liwei; Yang, Haw

    2007-07-01

    This work describes transformation of foreign DNA into bacterial host cells by local heat shock using a microfluidic system with on-chip, built-in platinum heaters. Plasmid DNA encoding ampicillin resistance and a fluorescent protein can be effectively transformed into the DH5α chemically competent E. coli using this device. Results further demonstrate that only one-thousandth of volume is required to obtain transformation efficiencies as good as or better than conventional practices. As such, this work complements other lab-on-a-chip technologies for potential gene cloning/therapy and protein expression applications.

  10. Heat shock-induced HIKESHI protects cell viability via nuclear translocation of heat shock protein 70.

    PubMed

    Yanoma, Toru; Ogata, Kyoichi; Yokobori, Takehiko; Ide, Munenori; Mochiki, Erito; Toyomasu, Yoshitaka; Yanai, Mitsuhiro; Kogure, Norimichi; Kimura, Akiharu; Suzuki, Masaki; Nakazawa, Nobuhiro; Bai, Tuya; Oyama, Tetsunari; Asao, Takayuki; Shirabe, Ken; Kuwano, Hiroyuki

    2017-09-01

    Heat shock proteins (HSPs), particularly HSP70, help restore normal cellular function following damage caused by stressors. HSP expression in tumor tissues indicates cancer progression, and while the development of HSP inhibitors is progressing, these substances are not widely used to treat cancer. HIKESHI (C11orf73) does not control the intracellular movement of HSP70 at normal temperatures; however, it does regulate the function and movements of HSP70 during heat shock. In this study, we examined the intracellular movement of HSP70 during heat shock to investigate the significance of HIKESHI expression in gastric cancer (GC) and determine if HIKESHI inhibition has cytotoxic effects. We examined HIKESHI using GC cell lines and immunostaining in 207 GC tissue samples. HIKESHI expression in GC tissues was associated with the progression of lymphatic invasion. Suppressing HIKESHI using siRNA did not affect cell viability at normal temperatures. However, suppressing HIKESHI during heat shock inhibited HSP70 nuclear transport and suppressed cell viability. Our results suggest that HIKESHI is a marker of cancer progression and that the combination of HIKESHI inhibition and hyperthermia is a therapeutic tool for refractory GC.

  11. Heat shock protein expression enhances heat tolerance of reptile embryos

    PubMed Central

    Gao, Jing; Zhang, Wen; Dang, Wei; Mou, Yi; Gao, Yuan; Sun, Bao-Jun; Du, Wei-Guo

    2014-01-01

    The role of heat shock proteins (HSPs) in heat tolerance has been demonstrated in cultured cells and animal tissues, but rarely in whole organisms because of methodological difficulties associated with gene manipulation. By comparing HSP70 expression patterns among representative species of reptiles and birds, and by determining the effect of HSP70 overexpression on embryonic development and hatchling traits, we have identified the role of HSP70 in the heat tolerance of amniote embryos. Consistent with their thermal environment, and high incubation temperatures and heat tolerance, the embryos of birds have higher onset and maximum temperatures for induced HSP70 than do reptiles, and turtles have higher onset and maximum temperatures than do lizards. Interestingly, the trade-off between benefits and costs of HSP70 overexpression occurred between life-history stages: when turtle embryos developed at extreme high temperatures, HSP70 overexpression generated benefits by enhancing embryo heat tolerance and hatching success, but subsequently imposed costs by decreasing heat tolerance of surviving hatchlings. Taken together, the correlative and causal links between HSP70 and heat tolerance provide, to our knowledge, the first unequivocal evidence that HSP70 promotes thermal tolerance of embryos in oviparous amniotes. PMID:25080340

  12. Heat shock protein expression enhances heat tolerance of reptile embryos.

    PubMed

    Gao, Jing; Zhang, Wen; Dang, Wei; Mou, Yi; Gao, Yuan; Sun, Bao-Jun; Du, Wei-Guo

    2014-09-22

    The role of heat shock proteins (HSPs) in heat tolerance has been demonstrated in cultured cells and animal tissues, but rarely in whole organisms because of methodological difficulties associated with gene manipulation. By comparing HSP70 expression patterns among representative species of reptiles and birds, and by determining the effect of HSP70 overexpression on embryonic development and hatchling traits, we have identified the role of HSP70 in the heat tolerance of amniote embryos. Consistent with their thermal environment, and high incubation temperatures and heat tolerance, the embryos of birds have higher onset and maximum temperatures for induced HSP70 than do reptiles, and turtles have higher onset and maximum temperatures than do lizards. Interestingly, the trade-off between benefits and costs of HSP70 overexpression occurred between life-history stages: when turtle embryos developed at extreme high temperatures, HSP70 overexpression generated benefits by enhancing embryo heat tolerance and hatching success, but subsequently imposed costs by decreasing heat tolerance of surviving hatchlings. Taken together, the correlative and causal links between HSP70 and heat tolerance provide, to our knowledge, the first unequivocal evidence that HSP70 promotes thermal tolerance of embryos in oviparous amniotes.

  13. Heat shock response: lessons from mouse knockouts.

    PubMed

    Christians, E S; Benjamin, I J

    2006-01-01

    Organisms are endowed with integrated regulatory networks that transduce and amplify incoming signals into effective responses, ultimately imparting cell death and/or survival pathways. As a conserved cytoprotective mechanism from bacteria to humans, the heat shock response has been established as a paradigm for inducible gene expression, stimulating the interests of biologists and clinicians alike to tackle fundamental questions related to the molecular switches, lineage-specific requirements, unique and/or redundant roles, and even efforts to harness the response therapeutically. Gene targeting studies in mice confirm HSF1 as a master regulator required for cell growth, embryonic development, and reproduction. For example, sterility of Hsf1-null female but not null male mice established strict requirements for maternal HSF1 expression in the oocyte. Yet Hsf2 knockouts by three independent laboratories have not fully clarified the role of mammalian HSF2 for normal development, fertility, and postnatal neuronal function. In contrast, Hsf4 knockouts have provided a consistent demonstration for HSF4's critical role during lens formation. In the future, molecular analysis of HSF knockout mice will bring new insights to HSF interactions, foster better understanding of gene regulation at the genome level, lead to a better integration of the HSF pathway in life beyond heat shock, the classical laboratory challenge.

  14. Mobile phones, heat shock proteins and cancer.

    PubMed

    French, P W; Penny, R; Laurence, J A; McKenzie, D R

    2001-06-01

    There are several reports which indicate that electromagnetic radiation (such as from mobile phones) at non-thermal levels may elicit a biological effect in target cells or tissues. Whether or not these biological effects lead to adverse health effects, including cancer, is unclear. To date there is limited scientific evidence of health issues, and no mechanism by which mobile phone radiation could influence cancer development. In this paper, we develop a theoretical mechanism by which radiofrequency radiation from mobile phones could induce cancer, via the chronic activation of the heat shock response. Upregulation of heat shock proteins (Hsps) is a normal defence response to a cellular stress. However, chronic expression of Hsps is known to induce or promote oncogenesis, metastasis and/or resistance to anticancer drugs. We propose that repeated exposure to mobile phone radiation acts as a repetitive stress leading to continuous expression of Hsps in exposed cells and tissues, which in turn affects their normal regulation, and cancer results. This hypothesis provides the possibility of a direct association between mobile phone use and cancer, and thus provides an important focus for future experimentation.

  15. Human cyclophilin 40 is a heat shock protein that exhibits altered intracellular localization following heat shock

    PubMed Central

    Mark, Peter J.; Ward, Bryan K.; Kumar, Premlata; Lahooti, Hooshang; Minchin, Rodney F.; Ratajczak, Thomas

    2001-01-01

    The unactivated steroid receptors are chaperoned into a conformation that is optimal for binding hormone by a number of heat shock proteins, including Hsp90, Hsp70, Hsp40, and the immunophilin, FKBP52 (Hsp56). Together with its partner cochaperones, cyclophilin 40 (CyP40) and FKBP51, FKBP52 belongs to a distinct group of structurally related immunophilins that modulate steroid receptor function through their association with Hsp90. Due to the structural similarity between the component immunophilins, FKBP52 and cyclophilin 40, we decided to investigate whether CyP40 is also a heat shock protein. Exposure of MCF-7 breast cancer cells to elevated temperatures (42°C for 3 hours) resulted in a 75-fold increase in CyP40 mRNA levels, but no corresponding increase in CyP40 protein expression, even after 7 hours of heat stress. The use of cycloheximide to inhibit protein synthesis revealed that in comparison to MCF-7 cells cultured at 37°C, those exposed to heat stress (42°C for 3 hours) displayed an elevated rate of degradation of both CyP40 and FKBP52 proteins. Concomitantly, the half-life of the CyP40 protein was reduced from more than 24 hours to just over 8 hours following heat shock. As no alteration in CyP40 protein levels occurred in cells exposed to heat shock, an elevated rate of degradation would imply that CyP40 protein was synthesized at an increased rate, hence the designation of human CyP40 as a heat shock protein. Application of heat stress elicited a marked redistribution of CyP40 protein in MCF-7 cells from a predominantly nucleolar localization, with some nuclear and cytoplasmic staining, to a pattern characterized by a pronounced nuclear accumulation of CyP40, with no distinguishable nucleolar staining. This increase in nuclear CyP40 possibly resulted from a redistribution of cytoplasmic and nucleolar CyP40, as no net increase in CyP40 expression levels occurred in response to stress. Exposure of MCF-7 cells to actinomycin D for 4 hours resulted in

  16. Differential recognition of heat shock elements by members of the heat shock transcription factor family.

    PubMed

    Yamamoto, Noritaka; Takemori, Yukiko; Sakurai, Mayumi; Sugiyama, Kazuhisa; Sakurai, Hiroshi

    2009-04-01

    Heat shock transcription factor (HSF), an evolutionarily conserved stress response regulator, forms trimers and binds to heat shock element (HSE), comprising at least three continuous inverted repeats of the sequence 5'-nGAAn-3'. The single HSF of yeast is also able to bind discontinuously arranged nGAAn units. We investigated interactions between three human HSFs and various HSE types in vitro, in yeast cells, and in HeLa cells. Human HSF1, a stress-activated regulator, preferentially bound to continuous HSEs rather than discontinuous HSEs, and heat shock of HeLa cells caused expression of reporter genes containing continuous HSEs. HSF2, whose function is implicated in neuronal specification and spermatogenesis, exhibited a slightly higher binding affinity to discontinuous HSEs than did HSF1. HSF4, a protein required for ocular lens development, efficiently recognized discontinuous HSEs in a trimerization-dependent manner. Among four human gamma-crystallin genes encoding structural proteins of the lens, heat-induced HSF1 preferred HSEs on the gammaA-crystallin and gammaB-crystallin promoters, whereas HSF4 preferred HSE on the gammaC-crystallin promoter. These results suggest that the HSE architecture is an important determinant of which HSF members regulate genes in diverse cellular processes.

  17. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress.

    PubMed

    Tang, Shu; Chen, Hongbo; Cheng, Yanfen; Nasir, Mohammad Abdel; Kemper, Nicole; Bao, Endong

    2016-01-01

    Heat shock factor 1 (HSF1) is a heat shock transcription factor that rapidly induces heat shock gene transcription following thermal stress. In this study, we subjected primary neonatal rat myocardial cells to heat stress in vitro to create a model system for investigating the trends in expression and association between various heat shock proteins (HSPs) and HSF1 under adverse environmental conditions. After the cells were subjected to heat stress at 42˚C for different periods of time, HSP and HSF1 mRNA and protein levels were detected by qPCR and western blot analysis in the heat-stressed cells. The HSF1 expression levels significantly increased in the cells following 120 min of exposure to heat stess compared to the levels observed at the beginning of heat stress exposure. HSP90 followed a similar trend in expression to HSF1, whereas HSP70 followed an opposite trend. However, no significant changes were observed in the crystallin, alpha B (CRYAB, also known as HSP beta-5) expression levels during the 480‑min period of exposure to heat stress. The interaction between the HSPs and HSF1 was analyzed by STRING 9.1, and it was found that HSF1 interacted with HSP90 and HSP70, and that it did not play a role in regulating CRYAB expression. Based on our findings, HSP70 may suppress HSF1 in rat myocardial cells under conditions of heat stress. Furthermore, our data demonstrate that HSF1 is not the key factor for all HSPs, and this was particularly the case for CRYAB.

  18. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress

    PubMed Central

    TANG, SHU; CHEN, HONGBO; CHENG, YANFEN; NASIR, MOHAMMAD ABDEL; KEMPER, NICOLE; BAO, ENDONG

    2016-01-01

    Heat shock factor 1 (HSF1) is a heat shock transcription factor that rapidly induces heat shock gene transcription following thermal stress. In this study, we subjected primary neonatal rat myocardial cells to heat stress in vitro to create a model system for investigating the trends in expression and association between various heat shock proteins (HSPs) and HSF1 under adverse environmental conditions. After the cells were subjected to heat stress at 42°C for different periods of time, HSP and HSF1 mRNA and protein levels were detected by qPCR and western blot analysis in the heat-stressed cells. The HSF1 expression levels significantly increased in the cells following 120 min of exposure to heat stess compared to the levels observed at the beginning of heat stress exposure. HSP90 followed a similar trend in expression to HSF1, whereas HSP70 followed an opposite trend. However, no significant changes were observed in the crystallin, alpha B (CRYAB, also known as HSP beta-5) expression levels during the 480-min period of exposure to heat stress. The interaction between the HSPs and HSF1 was analyzed by STRING 9.1, and it was found that HSF1 interacted with HSP90 and HSP70, and that it did not play a role in regulating CRYAB expression. Based on our findings, HSP70 may suppress HSF1 in rat myocardial cells under conditions of heat stress. Furthermore, our data demonstrate that HSF1 is not the key factor for all HSPs, and this was particularly the case for CRYAB. PMID:26719858

  19. Regulation of apoptosis by heat shock proteins.

    PubMed

    Kennedy, Donna; Jäger, Richard; Mosser, Dick D; Samali, Afshin

    2014-05-01

    Thermotolerance, the acquired resistance of cells to stress, is a well-established phenomenon. Studies of the key mediators of this response, the heat shock proteins (HSPs), have led to the discovery of the important roles played by these proteins in the regulation of apoptotic cell death. Apoptosis is critical for normal tissue homeostasis and is involved in diverse processes including development and immune clearance. Apoptosis is tightly regulated by both proapoptotic and antiapoptotic factors, and dysregulation of apoptosis plays a significant role in the pathophysiology of many diseases. In the recent years, HSPs have been identified as key determinants of cell survival, which can modulate apoptosis by directly interacting with components of the apoptotic machinery. Therefore, manipulation of the HSPs could represent a viable strategy for the treatment of diseases. Here, we review the current knowledge with regard to the mechanisms of HSP-mediated regulation of apoptosis. © 2014 International Union of Biochemistry and Molecular Biology.

  20. Heat shock proteins and Drosophila aging.

    PubMed

    Tower, John

    2011-05-01

    Since their discovery in Drosophila, the heat shock proteins (Hsps) have been shown to regulate both stress resistance and life-span. Aging is characterized by increased oxidative stress and the accumulation of abnormal (malfolded) proteins, and these stresses induce Hsp gene expression through the transcription factor HSF. In addition, a subset of Hsps is induced by oxidative stress through the JNK signaling pathway and the transcription factor Foxo. The Hsps counteract the toxicity of abnormal proteins by facilitating protein refolding and turnover, and through other mechanisms including inhibition of apoptosis. The Hsps are up-regulated in tissue-specific patterns during aging, and their expression correlates with, and sometimes predicts, life span, making them ideal biomarkers of aging. The tools available for experimentally manipulating gene function and assaying healthspan in Drosophila provides an unparalleled opportunity to further study the role of Hsps in aging.

  1. Heat shock proteins and Drosophila aging

    PubMed Central

    Tower, John

    2010-01-01

    Since their discovery in Drosophila, the heat shock proteins (Hsps) have been shown to regulate both stress resistance and life span. Aging is characterized by increased oxidative stress and the accumulation of abnormal (malfolded) proteins, and these stresses induce Hsp gene expression through the transcription factor HSF. In addition, a subset of Hsps is induced by oxidative stress through the JNK signaling pathway and the transcription factor Foxo. The Hsps counteract the toxicity of abnormal proteins by facilitating protein refolding and turnover, and through other mechanisms including inhibition of apoptosis. The Hsps are up-regulated in tissue-specific patterns during aging, and their expression correlates with, and sometimes predicts, life span, making them ideal biomarkers of aging. The tools available for experimentally manipulating gene function and assaying healthspan in Drosophila provides an unparalleled opportunity to further study the role of Hsps in aging. PMID:20840862

  2. Impact of heat shock step on bacterial transformation efficiency.

    PubMed

    Rahimzadeh, Maral; Sadeghizadeh, Majid; Najafi, Farhood; Arab, Seyed; Mobasheri, Hamid

    2016-12-01

    CaCl2 treatment followed by heat shock is the most common method for artificial transformation. Here, the cells were transformed using CaCl2 treatment either with heat shock (standard protocol) or without heat shock (lab protocol) to comprehend the difference in transformation efficiency. The BL21 strain of Escherichia coli (E. coli) was being susceptible using CaCl2 treatment. Some Cells were kept at -80 (o)C while the others were kept at 4 ˚C. Afterwards the susceptible cells were transformed using either standard or lab protocol. The transformation efficiency between cells experienced heat shock and those were not influenced by heat shock was almost the same. Moreover, regardless of transformation protocol, the cells kept at 4 ˚C were transformed more efficiently in compared to those were kept at -80 (o)C.

  3. Impact of heat shock step on bacterial transformation efficiency

    PubMed Central

    Rahimzadeh, Maral; Sadeghizadeh, Majid; Najafi, Farhood; Arab, Seyed; Mobasheri, Hamid

    2016-01-01

    CaCl2 treatment followed by heat shock is the most common method for artificial transformation. Here, the cells were transformed using CaCl2 treatment either with heat shock (standard protocol) or without heat shock (lab protocol) to comprehend the difference in transformation efficiency. The BL21 strain of Escherichia coli (E. coli) was being susceptible using CaCl2 treatment. Some Cells were kept at -80 oC while the others were kept at 4 ˚C. Afterwards the susceptible cells were transformed using either standard or lab protocol. The transformation efficiency between cells experienced heat shock and those were not influenced by heat shock was almost the same. Moreover, regardless of transformation protocol, the cells kept at 4 ˚C were transformed more efficiently in compared to those were kept at -80 oC. PMID:28261629

  4. Riboflavin protects mice against liposaccharide-induced shock through expression of heat shock protein 25

    USDA-ARS?s Scientific Manuscript database

    Riboflavin (vitamin B2) is a water-soluble vitamin essential for normal cellular functions, growth and development. The study was aimed at investigating the effects of vitamin B2 on the survival rate, and expressions of tissue heat shock protein 25 (HSP25) and heat shock factor 1 (HSF1) in mice und...

  5. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update

    PubMed Central

    2013-01-01

    Heat shock proteins (HSP) are a subset of the molecular chaperones, best known for their rapid and abundant induction by stress. HSP genes are activated at the transcriptional level by heat shock transcription factor 1 (HSF1). During the progression of many types of cancer, this heat shock transcriptional regulon becomes co-opted by mechanisms that are currently unclear, although evidently triggered in the emerging tumor cell. Concerted activation of HSF1 and the accumulation of HSPs then participates in many of the traits that permit the malignant phenotype. Thus cancers of many histologies exhibit activated HSF1 and increased HSP levels that may help to deter tumor suppression and evade therapy in the clinic. We review here the extensive work that has been carried out and is still in progress aimed at: (1) understanding the oncogenic mechanisms by which HSP genes are switched on, (2) determining the roles of HSF1 / HSP in malignant transformation and, (3) discovering approaches to therapy based on disrupting the influence of the HSF1 controlled transcriptome in cancer. PMID:22885793

  6. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update.

    PubMed

    Ciocca, Daniel R; Arrigo, Andre Patrick; Calderwood, Stuart K

    2013-01-01

    Heat shock proteins (HSP) are a subset of the molecular chaperones, best known for their rapid and abundant induction by stress. HSP genes are activated at the transcriptional level by heat shock transcription factor 1 (HSF1). During the progression of many types of cancer, this heat shock transcriptional regulon becomes co-opted by mechanisms that are currently unclear, although evidently triggered in the emerging tumor cell. Concerted activation of HSF1 and the accumulation of HSPs then participate in many of the traits that permit the malignant phenotype. Thus, cancers of many histologies exhibit activated HSF1 and increased HSP levels that may help to deter tumor suppression and evade therapy in the clinic. We review here the extensive work that has been carried out and is still in progress aimed at (1) understanding the oncogenic mechanisms by which HSP genes are switched on, (2) determining the roles of HSF1/HSP in malignant transformation and (3) discovering approaches to therapy based on disrupting the influence of the HSF1-controlled transcriptome in cancer.

  7. Infrared Emissions from Shock Heated Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Stephens, K. M.; Bauer, S. H.

    1994-01-01

    The primary objective of this study was to ascertain whether low molecular weight hydrocarbons (LMWH) in the range C4 to C7, upon heating to temperatures above 900 K, emit IR radiations at frequencies that correspond to the 'unidentified infrared' (UIR) features - the recorded emissions from a variety of astronomical sources - reflection nebulae, HII regions, planetary nebulae, spiral galaxies and other extra galactic objects. We describe IR emission spectra recorded from shock-heated gases (C2H2; (H3C)2C = CH2; H2C = C(CH3) - C(CH3) = CH2; (H3C)2C = CH - C(CH3) = CH2), that arise from excitation of the fundamental C-H stretching vibrations. While the IR emissions from LMWH, anticipated over the entire spectra range, do not present a perfect match to UIR, the correspondence over several wavelength regions is better than the emissions anticipated from polycyclic aromatic hydrocarbon (PAH) species. Finally, we briefly review the range of proposals that have been presented for the origin of the UIR bands.

  8. Structure of fast shocks in the presence of heat conduction

    NASA Astrophysics Data System (ADS)

    Tsai, C. L.; Chen, H. H.; Wu, B. H.; Lee, L. C.

    2007-12-01

    There are three types of magnetohydrodynamic (MHD) shocks: the fast shock, intermediate shock, and slow shock. The structure of slow shocks and intermediate shocks in the presence of heat conduction has been studied earlier [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002); C. L. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 12, 82501 (2005)]. Based on one-dimensional MHD numerical simulations with a heat conduction term, the evolution and structure of fast shocks are studied. The fast shock will form a foreshock in the presence of heat conduction. The foreshock is formed due to the heat flow from downstream to upstream and located in the immediate upstream of the main shock. In the steady state, the value of diffusion velocity Vd in the foreshock is found to nearly equal the upstream convection velocity in the fast shock frame. It is found that the density jump across the main shock in high Mach number case can be much larger than 4 in the early simulation time. However the density jump will gradually evolve to a value smaller than 4 at steady state. By using the modified Rankine-Hugoniot relations with heat flux, the density jump across the fast shock is examined for various upstream parameters. The results show that the calculated density jump with heat flux is very close to the simulation value and the density jump can far exceed the maximum value of 4 without heat conduction. The structure of foreshock and main shock is also studied under different plasma parameters, such as the heat conductivity K0, the ratio of upstream plasma pressure to magnetic pressure β1, Alfvén Mach number MA1, and the angle θ1 between shock normal and magnetic field. It is found that as the upstream shock parameters K0, β1, and MA1 increase or θ1 decreases, the width of foreshock Ld increases. The present results can be applied to fast shocks in the solar corona, solar wind, and magnetosphere, in which the heat conduction effects are important.

  9. Structure of fast shocks in the presence of heat conduction

    SciTech Connect

    Tsai, C. L.; Chen, H. H.; Wu, B. H.; Lee, L. C.

    2007-12-15

    There are three types of magnetohydrodynamic (MHD) shocks: the fast shock, intermediate shock, and slow shock. The structure of slow shocks and intermediate shocks in the presence of heat conduction has been studied earlier [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002); C. L. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 12, 82501 (2005)]. Based on one-dimensional MHD numerical simulations with a heat conduction term, the evolution and structure of fast shocks are studied. The fast shock will form a foreshock in the presence of heat conduction. The foreshock is formed due to the heat flow from downstream to upstream and located in the immediate upstream of the main shock. In the steady state, the value of diffusion velocity V{sub d} in the foreshock is found to nearly equal the upstream convection velocity in the fast shock frame. It is found that the density jump across the main shock in high Mach number case can be much larger than 4 in the early simulation time. However the density jump will gradually evolve to a value smaller than 4 at steady state. By using the modified Rankine-Hugoniot relations with heat flux, the density jump across the fast shock is examined for various upstream parameters. The results show that the calculated density jump with heat flux is very close to the simulation value and the density jump can far exceed the maximum value of 4 without heat conduction. The structure of foreshock and main shock is also studied under different plasma parameters, such as the heat conductivity K{sub 0}, the ratio of upstream plasma pressure to magnetic pressure {beta}{sub 1}, Alfven Mach number M{sub A1}, and the angle {theta}{sub 1} between shock normal and magnetic field. It is found that as the upstream shock parameters K{sub 0}, {beta}{sub 1}, and M{sub A1} increase or {theta}{sub 1} decreases, the width of foreshock L{sub d} increases. The present results can be applied to fast shocks in the solar corona, solar wind

  10. A mechanism for strong shock electron heating in supernova remnants

    NASA Technical Reports Server (NTRS)

    Cargill, P. J.; Papadopoulos, K.

    1988-01-01

    It is shown that collisionless shock waves propagating away from a supernova may be directly responsible for the 10 keV X-ray emission seen in supernova remnants. A sequence of plasma instabilities (Buneman and ion acoustic) between the reflected and/or transmitted ions and the background electrons at the foot of the shock front can give rise to rapid anomalous heating of electrons. Hybrid simulations of a perpendicular collisionless shock are presented to demonstrate that this heating can arise within a self-consistently computed shock structure.

  11. The heat shock response restricts virus infection in Drosophila

    PubMed Central

    Merkling, Sarah H.; Overheul, Gijs J.; van Mierlo, Joël T.; Arends, Daan; Gilissen, Christian; van Rij, Ronald P.

    2015-01-01

    Innate immunity is the first line of defence against pathogens and is essential for survival of the infected host. The fruit fly Drosophila melanogaster is an emerging model to study viral pathogenesis, yet antiviral defence responses remain poorly understood. Here, we describe the heat shock response, a cellular mechanism that prevents proteotoxicity, as a component of the antiviral immune response in Drosophila. Transcriptome analyses of Drosophila S2 cells and adult flies revealed strong induction of the heat shock response upon RNA virus infection. Dynamic induction patterns of heat shock pathway components were characterized in vitro and in vivo following infection with different classes of viruses. The heat shock transcription factor (Hsf), as well as active viral replication, were necessary for the induction of the response. Hsf-deficient adult flies were hypersensitive to virus infection, indicating a role of the heat shock response in antiviral defence. In accordance, transgenic activation of the heat shock response prolonged survival time after infection and enabled long-term control of virus replication to undetectable levels. Together, our results establish the heat shock response as an important constituent of innate antiviral immunity in Drosophila. PMID:26234525

  12. Methodological considerations for heat shock of the nematode Caenorhabditis elegans.

    PubMed

    Zevian, Shannin C; Yanowitz, Judith L

    2014-08-01

    Stress response pathways share commonalities across many species, including humans, making heat shock experiments valuable tools for many biologists. The study of stress response in Caenorhabditis elegans has provided great insight into many complex pathways and diseases. Nevertheless, the heat shock/heat stress field does not have consensus as to the timing, temperature, or duration of the exposure and protocols differ extensively between laboratories. The lack of cohesiveness makes it difficult to compare results between groups or to know where to start when preparing your own protocol. We present a discussion of some of the major hurdles to reproducibility in heat shock experiments as well as detailed protocols for heat shock and hormesis experiments.

  13. Automated Scalable Heat Shock Modification for Standard Aquatic Housing Systems.

    PubMed

    Saera-Vila, Alfonso; Kish, Phillip E; Kahana, Alon

    2015-08-01

    Heat shock is a common technique for inducible gene expression system in a variety of organisms. Heat shock treatment of adult zebrafish is more involved and generally consists of manually transferring fish between housing rack tanks and preheated water tanks or the use of timed heaters in stand-alone aquaria. To avoid excessive fish handling and to take advantage of the continuous flow of a standard housing rack, proposed modifications consisted of installing an aquarium heater inside each tank, manually setting the heater to reach heat shocking temperatures (> 37°C) and, after that, testing that every tank responded equally. To address the limitations in the existing systems, we developed a novel modification of standard zebrafish housing racks to perform heat shock treatment in conditions of continuous water flow. By adding an extra manifold to the housing rack and connecting it to a recirculating bath to create a parallel water flow system, we can increase the temperature from standard conditions (28.5°C) to heat shock conditions with high precision (38.0-38.3°C, mean ± SD = 38.1°C ± 0.14°C) and minimal variation among experimental tanks (coefficient of variation [CV] = 0.04%). This means that there is virtually no need for laborious pretreatment calibrations or continuous adjustments to minimize intertank variation. To test the effectiveness of our design, we utilized this system to induce enhanced green fluorescent protein (EGFP) expression in hsp70-EGFP fish and performed a fin regeneration experiment with hsp70l:dnfgfr1-EGFP fish to confirm that heat-induced gene expression reached physiological levels. In summary, our newly described aquatic heat shock system minimizes effort during heat shock experiments, while ensuring the best water quality and fish welfare and facilitating large heat shock settings or the use of multiple transgenic lines for both research and teaching experiments.

  14. Heat shock response and autophagy—cooperation and control

    PubMed Central

    Dokladny, Karol; Myers, Orrin B; Moseley, Pope L

    2015-01-01

    Protein quality control (proteostasis) depends on constant protein degradation and resynthesis, and is essential for proper homeostasis in systems from single cells to whole organisms. Cells possess several mechanisms and processes to maintain proteostasis. At one end of the spectrum, the heat shock proteins modulate protein folding and repair. At the other end, the proteasome and autophagy as well as other lysosome-dependent systems, function in the degradation of dysfunctional proteins. In this review, we examine how these systems interact to maintain proteostasis. Both the direct cellular data on heat shock control over autophagy and the time course of exercise-associated changes in humans support the model that heat shock response and autophagy are tightly linked. Studying the links between exercise stress and molecular control of proteostasis provides evidence that the heat shock response and autophagy coordinate and undergo sequential activation and downregulation, and that this is essential for proper proteostasis in eukaryotic systems. PMID:25714619

  15. Self heat shock and gamma delta T-cell reactivity.

    PubMed Central

    Rajasekar, R; Sim, G K; Augustin, A

    1990-01-01

    We have investigated the effects of heat shock on T-cell induction and selection in vitro. We find that when cell preparations containing T lymphocytes are incubated for 30 min at 42 degrees C, a selective proliferation of gamma delta + T cells bearing the gamma delta T-cell antigen receptor follows. A greater enrichment of gamma delta + T cells is observed, upon preexposure to mycobacterial antigens in vivo. By comparing the effects of heat shock with that of mitogen or specific T-cell triggering by conventional antigens and by analyzing the gamma delta T-cell receptor genes expressed in cells that proliferate as a result of heat shock induction, we conclude that a subset of murine gamma delta T cells react to antigens on self cells in which a heat shock response was induced. Images PMID:2106682

  16. Saccharomyces cerevisiae Genes Involved in Survival of Heat Shock

    PubMed Central

    Jarolim, Stefanie; Ayer, Anita; Pillay, Bethany; Gee, Allison C.; Phrakaysone, Alex; Perrone, Gabriel G.; Breitenbach, Michael; Dawes, Ian W.

    2013-01-01

    The heat-shock response in cells, involving increased transcription of a specific set of genes in response to a sudden increase in temperature, is a highly conserved biological response occurring in all organisms. Despite considerable attention to the processes activated during heat shock, less is known about the role of genes in survival of a sudden temperature increase. Saccharomyces cerevisiae genes involved in the maintenance of heat-shock resistance in exponential and stationary phase were identified by screening the homozygous diploid deletants in nonessential genes and the heterozygous diploid mutants in essential genes for survival after a sudden shift in temperature from 30 to 50°. More than a thousand genes were identified that led to altered sensitivity to heat shock, with little overlap between them and those previously identified to affect thermotolerance. There was also little overlap with genes that are activated or repressed during heat-shock, with only 5% of them regulated by the heat-shock transcription factor. The target of rapamycin and protein kinase A pathways, lipid metabolism, vacuolar H+-ATPase, vacuolar protein sorting, and mitochondrial genome maintenance/translation were critical to maintenance of resistance. Mutants affected in l-tryptophan metabolism were heat-shock resistant in both growth phases; those affected in cytoplasmic ribosome biogenesis and DNA double-strand break repair were resistant in stationary phase, and in mRNA catabolic processes in exponential phase. Mutations affecting mitochondrial genome maintenance were highly represented in sensitive mutants. The cell division transcription factor Swi6p and Hac1p involved in the unfolded protein response also play roles in maintenance of heat-shock resistance. PMID:24142923

  17. A New Mathematical Model for the Heat Shock Response

    NASA Astrophysics Data System (ADS)

    Petre, Ion; Mizera, Andrzej; Hyder, Claire L.; Mikhailov, Andrey; Eriksson, John E.; Sistonen, Lea; Back, Ralph-Johan

    We present in this paper a novel molecular model for the gene regulatory network responsible for the eukaryotic heat shock response. Our model includes the temperature-induced protein misfolding, the chaperone activity of the heat shock proteins, and the backregulation of their gene transcription. We then build a mathematical model for it, based on ordinary differential equations. Finally, we discuss the parameter fit and the implications of the sensitivity analysis for our model.

  18. The Relationship of Metallothionein Induction to the Heat Shock Response

    DTIC Science & Technology

    1993-04-01

    FIELD GROUP SUB-GROUP Sodium arsenite, heat shock proteins, stress points 19. ABSTRACT (Continue on reverse if necessary and identify by block number...and stress proteins. 20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACTSCURITY CLASSIFICATION IOUNCLASSIFIED/UNLIMITED 0 SAME AS RPT DTIC USERS...was about one-tenth of the increase after sodium arsenite treatment. These results suggest that MTs are heat shock and stress proteins. Accesion For

  19. The role of electron heating in electromagnetic collisionless shock formation

    NASA Astrophysics Data System (ADS)

    Bochkarev, S. G.; d'Humières, E.; Korneev, Ph.; Bychenkov, V. Yu.; Tikhonchuk, V.

    2015-12-01

    The role of electron dynamics in the process of a collisionless shock formation is analyzed with particle-in-cell simulations, the test-particles method, and quasilinear theory. The model of electron stochastic heating in turbulent electromagnetic fields corresponding to the nonlinear stage of two-stream and Weibel instabilities is developed. The analysis of electron and field heating rates shows that the ion motion provides the energy supply for a significant continuous heating of electrons. Such a heating thus plays a role of a friction force for ions, leading to their deceleration and a shock formation.

  20. Potent triazolothione inhibitor of heat-shock protein-90.

    PubMed

    Feldman, Richard I; Mintzer, Bob; Zhu, Daguang; Wu, James M; Biroc, Sandra L; Yuan, Shendong; Emayan, Kumar; Chang, Zheng; Chen, Deborah; Arnaiz, Damian O; Bryant, Judi; Ge, Xue Snow; Whitlow, Marc; Adler, Marc; Polokoff, Mark A; Li, Wei-Wei; Ferrer, Mike; Sato, Takashi; Gu, Jian-Ming; Shen, Jun; Tseng, Jih-Lie; Dinter, Harald; Buckman, Brad

    2009-07-01

    Heat-shock protein-90 is an attractive target for anticancer drugs, as heat-shock protein-90 blockers such as the ansamycin 17-(allylamino)-17-demethoxygeldanamycin greatly reduce the expression of many signaling molecules that are disregulated in cancer cells and are key drivers of tumor growth and metastasis. While 17-(allylamino)-17-demethoxygeldanamycin has shown promise in clinical trials, this compound class has significant template-related drawbacks. In this paper, we describe a new, potent non-ansamycin small-molecule inhibitor of heat-shock protein-90, BX-2819, containing resorcinol and triazolothione rings. Structural studies demonstrate binding of BX-2819 to the ADP/ATP-binding pocket of heat-shock protein-90. The compound blocked expression of heat-shock protein-90 client proteins in cancer cell lines and inhibited cell growth with a potency similar to 17-(allylamino)-17-demethoxygeldanamycin. In a panel of four cancer cell lines, BX-2819 blocked growth with an average IC(50) value of 32 nM (range of 7-72 nM). Efficacy studies demonstrated that treatment with BX-2819 significantly inhibited the growth of NCI-N87 and HT-29 tumors in nude mice, consistent with pharmacodynamic studies showing inhibition of heat-shock protein-90 client protein expression in tumors for greater than 16 h after dosing. These data support further studies to assess the potential of BX-2819 and related analogs for the treatment of cancer.

  1. Exciting cell membranes with a blustering heat shock.

    PubMed

    Liu, Qiang; Frerck, Micah J; Holman, Holly A; Jorgensen, Erik M; Rabbitt, Richard D

    2014-04-15

    Brief heat shocks delivered to cells by pulsed laser light can evoke action potentials in neurons and contraction in cardiomyocytes, but the primary biophysical mechanism has been elusive. In this report we show in the neuromuscular junction of Caenorhabditis elegans that application of a 500°C/s heat shock for 500 μs evoked ~35 pA of excitatory current and injected ~23 fC(femtocoulomb) of charge into the cell while raising the temperature only 0.25°C. The key variable driving the current was the rate of change of temperature (dT/dt heat shock), not temperature itself. The photothermal heat shock current was voltage-dependent and was from thermally driven displacement of ions near the plasma membrane. The charge movement was rapid during the heat shock and slow during thermal relaxation, thus leading to an asymmetrical capacitive current that briefly depolarized the cell. A simple quantitative model is introduced to describe modulation of the membrane potential and facilitate practical application of optical heat shock stimuli. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Barcoding heat shock proteins to human diseases: looking beyond the heat shock response

    PubMed Central

    Kakkar, Vaishali; Meister-Broekema, Melanie; Minoia, Melania; Carra, Serena; Kampinga, Harm H.

    2014-01-01

    There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR) – and thus generally restoring the disturbed protein homeostasis associated with such diseases – has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or ‘barcoded’ by a different set of HSPs that can rescue specific types of aggregation. Some of these ‘non-canonical’ HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated – so-called chaperonopathies – which are also discussed in this Review. PMID:24719117

  3. Post-Shock Sampling of Shock-Heated Hydrocarbon Fuels

    DTIC Science & Technology

    2016-07-07

    Statement Stanford’s recent work on a fast-kinetics scheme to model the pyrolysis reactions that dominate the first phase of hydrocarbon oxidation relies...on the ability to measure key hydrocarbon fragments (e.g. ethylene, methane, and acetylene) over a wide range of temperatures and pressures . The...fraction as a function of time, and the ultimate value for each shock condition was taken to be the ethylene mole fraction when the test pressure drops to

  4. Shock initiation of a heated ammonium perchlorate-based propellant

    SciTech Connect

    Tarver, C.M.; Urtiew, P.A.; Tao, W.C.

    1996-04-01

    Solid propellants are containing ammonium perchlorate (AP), aluminum, and a carboxylterminated polybutadiene binder (CTPB) are known to burn reliably and to be very insensitive to transition to detonation under ambient conditions. In accident scenarios, these propellants may become more shock sensitive when they are subjected to heat and/or multiple impacts. The shock sensitivity of one such propellant, ANB-3066, is determined using embedded manganin pressure gauges at an elevated temperature of 170 C. The measured pressure histories are modeled using the Ignition and Growth reactive flow model of shock initiation and detonation. The experiments clearly show that ANB-3066 is not significant more shock sensitive at 170 C than it is at ambient temperature. The Ignition and Growth reactive flow calculations indicate that less than 20% of the chemical energy of AP and CTPB reactions is released at input shock pressures as high as 21 GPa. The aluminum component does not reach the high temperatures required for it to react. These results indicate that AP-based solid propellants are still extremely resistant to shock to detonation transition even when heated to temperatures close to the thermal decomposition temperature of the propellant formulation. The shock insensitivity of heated AP-based propellants is hypothesized to be due to the melting of the AP component during shock loading and the relatively low temperatures produced by the weakly exothermic decomposition of AP and binder.

  5. ATF1 modulates the heat shock response by regulating the stress-inducible heat shock factor 1 transcription complex.

    PubMed

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko; Nakai, Akira

    2015-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

    PubMed Central

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko

    2014-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. PMID:25312646

  7. Ion heating and energy redistribution across supercritical perpendicular shocks: Application to planetary and interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Liu, Y. D.; Richardson, J. D.; Parks, G. K.

    2013-12-01

    We investigate how the ion dissipative process across supercritical perpendicular shocks depends on the shock front micro-structures. At a collisionless plasma shock, the dissipation and micro-structure of the shock font are dominated by wave-particle interactions. Comparison of the ion thermalization at different kinds of shocks, e.g., planetary and interplanetary shocks, can quantify how much interaction is occurring at the shock boundary. Investigation of this problem for diverse solar wind (SW) conditions will yield important information on the dependences of the ion thermalization and energy redistribution on plasma parameters. With the aid of a successful automatic separation method [Yang et al., 2009], the incident ions at the shock can be divided into two parts: reflected (R) ions and directly transmitted (DT) ions. Corresponding heating efficiency of each population of ions at the shock can be calculated respectively. Wilkinson & Schwartz [1990] have theorized that the amount of reflected ions at perpendicular shocks depends on plasma parameters. Based on the Rankine-Hugoniot (R-H) conservation laws, they found that the fraction reflected is strongly dependent on the magnitude of the ratio of specific heat capacities γ chosen in the R-H relations. The main goal of this work is to investigate how the plasma parameters, e.g. the particle velocity distribution, the plasma beta value, seed populations, etc. (from a particle dynamic point of view), control the amount of reflected ions by using one-dimensional (1-D) full-particle-cell simulations. The simulation results may help to explain the ion heating efficiency and energy redistribution at shocks observed by Cluster, Wind, Voyager, etc.

  8. P transposons controlled by the heat shock promoter.

    PubMed Central

    Steller, H; Pirrotta, V

    1986-01-01

    We have transformed Drosophila melanogaster with modified P-element transposons, which express the transposase function from the heat-inducible hsp70 heat shock promoter. The Icarus transposon, which contains a direct hsp70-P fusion gene, behaved like a very active autonomous P element even before heat shock induction. Although heat shock led to abundant somatic transcription, transposition of the Icarus element was confined to germ line cells. To reduce the constitutive transposase activity observed for the Icarus element, we attenuated the translational efficiency of the transposase RNA by inserting the transposon 5 neomycin resistance gene between the hsp70 promoter and the P-element sequences. The resulting construct, called Icarus-neo, conferred resistance to G418, and its transposition was significantly stimulated by heat shock. Heat shocks applied during the embryonic or third instar larval stage had similar effects, indicating that transposition of P elements is not restricted to a certain developmental stage. Both Icarus and Icarus-neo destabilized snw in a P-cytotype background and thus at least partially overcome the repression of transposition. Our results suggest that the regulation of P-element transposition occurs at both the transcriptional and posttranscriptional levels. Images PMID:3023899

  9. Simple, economical heat-shock devices for zebrafish housing racks.

    PubMed

    Duszynski, Robert J; Topczewski, Jacek; LeClair, Elizabeth E

    2011-12-01

    One reason for the popularity of the zebrafish (Danio rerio) as a model vertebrate is the ability to manipulate gene expression in this organism. A common method is to induce gene expression transiently under control of a heat-shock promoter (e.g., hsp70l). By making simple mechanical adjustments to small aquarium heaters (25-50W), we were able to produce consistent and reliable heat-shock conditions within a conventional zebrafish housing system. Up to two heat-shock intervals per day (>37°C) could be maintained under conditions of continuous flow (5-25 mL/min). Temperature logging every 30 s indicated rapid warm up times, consistent heat-shock lengths, and accurate and precise peak water temperatures (mean±SD=38°C±0.2°C). The biological effects of these heat-shock treatments were confirmed by observing inducible expression of enhanced green fluorescent protein (EGFP) and inhibition of caudal fin regeneration in a transgenic fish line expressing a dominant negative fibroblast growth factor receptor (Tg(hsp70l:dnfgfr1-EGFP)(pd1)). These devices are inexpensive, easily modified, and can be calibrated to accommodate a variety of experimental designs. After setup on a programmable timer, the heaters require no intervention to produce consistent daily heat shocks, and all other standard care protocols can be followed in the fish facility. The simplicity and stability of these devices make them suitable for long-term heat shocks at any stage of the zebrafish lifecycle (>7 days postfertilization), and useful for both laboratory and classroom experiments on transgenic zebrafish.

  10. Induction of heat shock proteins may combat insulin resistance.

    PubMed

    McCarty, Mark F

    2006-01-01

    The molecular mechanism responsible for obesity-associated insulin resistance has been partially clarified: increased fatty acid levels in muscle fibers promote diacylglycerol synthesis, which activates certain isoforms of protein kinase C (PKC). This in turn triggers a kinase cascade which activates both IkappaB kinase-beta (IKK-beta) and c-Jun N-terminal kinase (JNK), each of which can phosphorylate a key serine residue in IRS-1, rendering it a poor substrate for the activated insulin receptor. Heat shock proteins Hsp27 and Hsp72 have the potential to prevent the activation of IKK-beta and JNK, respectively; this suggests that induction of heat shock proteins may blunt the adverse impact of fat overexposure on insulin function. Indeed, bimoclomol--a heat shock protein co-inducer being developed for treatment of diabetic neuropathy--and lipoic acid--suspected to be a heat shock protein inducer--have each demonstrated favorable effects on the insulin sensitivity of obese rodents, and parenteral lipoic acid is reported to improve the insulin sensitivity of type 2 diabetics. Moreover, there is reason to believe that heat shock protein induction may have a favorable impact on the microvascular complications of diabetes, and on the increased risk for macrovascular disease associated with diabetes and insulin resistance syndrome. Heat shock protein induction may also have potential for preventing or treating neurodegenerative disorders, controlling inflammation, and possibly even slowing the aging process. The possible complementarity of bimoclomol and lipoic acid for heat shock protein induction should be assessed, and further efforts to identify well-tolerated agents active in this regard are warranted.

  11. Molecular cloning, phylogenetic analysis and heat shock response of Babesia gibsoni heat shock protein 90

    PubMed Central

    YAMASAKI, Masahiro; TSUBOI, Yoshihiro; TANIYAMA, Yusuke; UCHIDA, Naohiro; SATO, Reeko; NAKAMURA, Kensuke; OHTA, Hiroshi; TAKIGUCHI, Mitsuyoshi

    2016-01-01

    The Babesia gibsoni heat shock protein 90 (BgHSP90) gene was cloned and sequenced. The length of the gene was 2,610 bp with two introns. This gene was amplified from cDNA corresponding to full length coding sequence (CDS) with an open reading frame of 2,148 bp. A phylogenetic analysis of the CDS of HSP90 gene showed that B. gibsoni was most closely related to B. bovis and Babesia sp. BQ1/Lintan and lies within a phylogenetic cluster of protozoa. Moreover, mRNA transcription profile for BgHSP90 exposed to high temperature were examined by quantitative real-time reverse transcription-polymerase chain reaction. BgHSP90 levels were elevated when the parasites were incubated at 43°C for 1 hr. PMID:27149891

  12. Genomic Heat Shock Element Sequences Drive Cooperative Human Heat Shock Factor 1 DNA Binding and Selectivity*

    PubMed Central

    Jaeger, Alex M.; Makley, Leah N.; Gestwicki, Jason E.; Thiele, Dennis J.

    2014-01-01

    The heat shock transcription factor 1 (HSF1) activates expression of a variety of genes involved in cell survival, including protein chaperones, the protein degradation machinery, anti-apoptotic proteins, and transcription factors. Although HSF1 activation has been linked to amelioration of neurodegenerative disease, cancer cells exhibit a dependence on HSF1 for survival. Indeed, HSF1 drives a program of gene expression in cancer cells that is distinct from that activated in response to proteotoxic stress, and HSF1 DNA binding activity is elevated in cycling cells as compared with arrested cells. Active HSF1 homotrimerizes and binds to a DNA sequence consisting of inverted repeats of the pentameric sequence nGAAn, known as heat shock elements (HSEs). Recent comprehensive ChIP-seq experiments demonstrated that the architecture of HSEs is very diverse in the human genome, with deviations from the consensus sequence in the spacing, orientation, and extent of HSE repeats that could influence HSF1 DNA binding efficacy and the kinetics and magnitude of target gene expression. To understand the mechanisms that dictate binding specificity, HSF1 was purified as either a monomer or trimer and used to evaluate DNA-binding site preferences in vitro using fluorescence polarization and thermal denaturation profiling. These results were compared with quantitative chromatin immunoprecipitation assays in vivo. We demonstrate a role for specific orientations of extended HSE sequences in driving preferential HSF1 DNA binding to target loci in vivo. These studies provide a biochemical basis for understanding differential HSF1 target gene recognition and transcription in neurodegenerative disease and in cancer. PMID:25204655

  13. Forkhead Box M1 Is Regulated by Heat Shock Factor 1 and Promotes Glioma Cells Survival under Heat Shock Stress*

    PubMed Central

    Dai, Bingbing; Gong, Aihua; Jing, Zhitao; Aldape, Kenneth D.; Kang, Shin-Hyuk; Sawaya, Raymond; Huang, Suyun

    2013-01-01

    The forkhead box M1 (FoxM1) is a key transcription factor regulating multiple aspects of cell biology. Prior studies have shown that FoxM1 is overexpressed in a variety of human tumors, including brain tumor, and plays a critical role in cancer development and progression. In this study we found that FoxM1 was up-regulated by heat shock factor 1 (HSF1) under heat shock stress condition in multiple cell lines. Knockdown of HSF1 with HSF1 siRNA or inhibition of HSF1 with a HSF1 inhibitor abrogated heat shock-induced expression of FoxM1. Genetic deletion of HSF1 in mouse embryo fibroblast cells also abolished heat shock stress-induced FoxM1 expression. Moreover, we showed that HSF1 directly bound to FoxM1 promoter and increased FoxM1 promoter activity. Furthermore, we demonstrated that FoxM1 was required for the G2-M phase progression through regulating Cdc2, Cdc20, and Cdc25B under a mild heat shock stress but enhanced cell survival under lethal heat shock stress condition. Finally, in human glioblastoma specimens, FoxM1 overexpression correlated with elevated HSF1 expression. Our results indicate that FoxM1 is regulated by HSF1 and is critical for HSF1-mediated heat shock response. We demonstrated a novel mechanism of stress resistance controlled by HSF1 and a new HSF-FoxM1 connection that mediates cellular thermotolerance. PMID:23192351

  14. Heat shock proteins, end effectors of myocardium ischemic preconditioning?

    PubMed Central

    Guisasola, María Concepcion; Desco, Maria del Mar; Gonzalez, Fernanda Silvana; Asensio, Fernando; Dulin, Elena; Suarez, Antonio; Garcia Barreno, Pedro

    2006-01-01

    The purpose of this study was to investigate (1) whether ischemia-reperfusion increased the content of heat shock protein 72 (Hsp72) transcripts and (2) whether myocardial content of Hsp72 is increased by ischemic preconditioning so that they can be considered as end effectors of preconditioning. Twelve male minipigs (8 protocol, 4 sham) were used, with the following ischemic preconditioning protocol: 3 ischemia and reperfusion 5-minute alternative cycles and last reperfusion cycle of 3 hours. Initial and final transmural biopsies (both in healthy and ischemic areas) were taken in all animals. Heat shock protein 72 messenger ribonucleic acid (mRNA) expression was measured by a semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) method using complementary DNA normalized against the housekeeping gene cyclophilin. The identification of heat shock protein 72 was performed by immunoblot. In our “classic” preconditioning model, we found no changes in mRNA hsp72 levels or heat shock protein 72 content in the myocardium after 3 hours of reperfusion. Our experimental model is valid and the experimental techniques are appropriate, but the induction of heat shock proteins 72 as end effectors of cardioprotection in ischemic preconditioning does not occur in the first hours after ischemia, but probably at least 24 hours after it, in the so-called “second protection window.” PMID:17009598

  15. Mechanical analysis of a heat-shock induced developmental defect

    NASA Astrophysics Data System (ADS)

    Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane

    2014-03-01

    Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.

  16. Distribution of Mayaro virus RNA in polysomes during heat shock.

    PubMed

    Rosas, S L; Herculano, S; Carvalho, M da G

    1997-05-01

    Mayaro virus (alphavirus) infection of Aedes albopictus cells results in inhibition of cell protein synthesis and viral proteins are preferably synthesized. When infected cells are heat shocked, however, there is also an inhibition of viral protein synthesis, and there is preferential synthesis of heat shock proteins. Based on these observations, the distribution of Mayaro viral RNA in polysomes and the association of p34 (capsid protein) with ribosomal fractions of the cells under such conditions have been analyzed. During infection, the viral RNA is mainly observed in light polysomes (60% of total viral RNA in the cell) and also in heavy polysomes (13%). However, when infected cells are heat-shocked, the viral RNA is strongly mobilized from heavy polysomes to the light polysomes fraction and an enrichment in the unbound fraction can be noticed. The amount of p34 associated with the ribosomal fraction was also shown to be decreased in the heat shocked cells. These data lead to the suggestion that two mechanisms could be involved in the inhibition of Mayaro virus protein synthesis in response to heat shock: (1) mobilization of Mayaro virus RNA from heavy to light polysomes; (2) a decrease in the amount of the p34 within the ribosomal fraction.

  17. Atypical Particle Heating at a Supercritical Interplanetary Shock

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn B., III

    2010-01-01

    We present the first observations at an interplanetary shock of large amplitude (> 100 mV/m pk-pk) solitary waves and large amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.

  18. Structure of intermediate shocks and slow shocks in a magnetized plasma with heat conduction

    SciTech Connect

    Tsai, C.L.; Wu, B.H.; Lee, L.C.

    2005-08-15

    The structure of slow shocks and intermediate shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. This study is an extension of an earlier work [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002)], in which the effects of heat conduction are examined for the case that the tangential magnetic fields on the two side of initial current sheet are exactly antiparallel (B{sub y}=0). For the B{sub y}=0 case, a pair of slow shocks is formed as the result of evolution of the initial current sheet, and each slow shock consists of two parts: the isothermal main shock and the foreshock. In the present paper, cases with B{sub y}{ne}0 are also considered, in which the evolution process leads to the presence of an additional pair of time-dependent intermediate shocks (TDISs). Across the main shock of the slow shock, jumps in plasma density, velocity, and magnetic field are significant, but the temperature is continuous. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. In contrast to the earlier study, the foreshock is found to reach a steady state with a constant width in the slow shock frame. In cases with B{sub y}{ne}0, the plasma density and pressure increase and the magnetic field decreases across TDIS. The TDIS initially can be embedded in the slow shock's foreshock structure, and then moves out of the foreshock region. With an increasing B{sub y}, the propagation speed of foreshock leading edge tends to decrease and the foreshock reaches its steady state at an earlier time. Both the pressure and temperature downstreams of the main shock decrease with increasing B{sub y}. The results can be applied to the shock heating

  19. Structure of intermediate shocks and slow shocks in a magnetized plasma with heat conduction

    NASA Astrophysics Data System (ADS)

    Tsai, C. L.; Wu, B. H.; Lee, L. C.

    2005-08-01

    The structure of slow shocks and intermediate shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. This study is an extension of an earlier work [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002)], in which the effects of heat conduction are examined for the case that the tangential magnetic fields on the two side of initial current sheet are exactly antiparallel (By=0). For the By=0 case, a pair of slow shocks is formed as the result of evolution of the initial current sheet, and each slow shock consists of two parts: the isothermal main shock and the foreshock. In the present paper, cases with By≠0 are also considered, in which the evolution process leads to the presence of an additional pair of time-dependent intermediate shocks (TDISs). Across the main shock of the slow shock, jumps in plasma density, velocity, and magnetic field are significant, but the temperature is continuous. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. In contrast to the earlier study, the foreshock is found to reach a steady state with a constant width in the slow shock frame. In cases with By≠0, the plasma density and pressure increase and the magnetic field decreases across TDIS. The TDIS initially can be embedded in the slow shock's foreshock structure, and then moves out of the foreshock region. With an increasing By, the propagation speed of foreshock leading edge tends to decrease and the foreshock reaches its steady state at an earlier time. Both the pressure and temperature downstreams of the main shock decrease with increasing By. The results can be applied to the shock heating in the solar corona and solar wind.

  20. Multiple oligomeric structures of a bacterial small heat shock protein

    PubMed Central

    Mani, Nandini; Bhandari, Spraha; Moreno, Rodolfo; Hu, Liya; Prasad, B. V. Venkataram; Suguna, Kaza

    2016-01-01

    Small heat shock proteins are ubiquitous molecular chaperones that form the first line of defence against the detrimental effects of cellular stress. Under conditions of stress they undergo drastic conformational rearrangements in order to bind to misfolded substrate proteins and prevent cellular protein aggregation. Owing to the dynamic nature of small heat shock protein oligomers, elucidating the structural basis of chaperone action and oligomerization still remains a challenge. In order to understand the organization of sHSP oligomers, we have determined crystal structures of a small heat shock protein from Salmonella typhimurium in a dimeric form and two higher oligomeric forms: an 18-mer and a 24-mer. Though the core dimer structure is conserved in all the forms, structural heterogeneity arises due to variation in the terminal regions. PMID:27053150

  1. Synergistic Effects of Toxic Elements on Heat Shock Proteins

    PubMed Central

    Mahmood, Khalid; Mahmood, Qaisar; Irshad, Muhammad; Hussain, Jamshaid

    2014-01-01

    Heat shock proteins show remarkable variations in their expression levels under a variety of toxic conditions. A research span expanded over five decades has revealed their molecular characterization, gene regulation, expression patterns, vast similarity in diverse groups, and broad range of functional capabilities. Their functions include protection and tolerance against cytotoxic conditions through their molecular chaperoning activity, maintaining cytoskeleton stability, and assisting in cell signaling. However, their role as biomarkers for monitoring the environmental risk assessment is controversial due to a number of conflicting, validating, and nonvalidating reports. The current knowledge regarding the interpretation of HSPs expression levels has been discussed in the present review. The candidature of heat shock proteins as biomarkers of toxicity is thus far unreliable due to synergistic effects of toxicants and other environmental factors. The adoption of heat shock proteins as “suit of biomarkers in a set of organisms” requires further investigation. PMID:25136596

  2. Heat Shock Proteins in Tendinopathy: Novel Molecular Regulators

    PubMed Central

    Millar, Neal L.; Murrell, George A. C.

    2012-01-01

    Tendon disorders—tendinopathies—are the primary reason for musculoskeletal consultation in primary care and account for up to 30% of rheumatological consultations. Whilst the molecular pathophysiology of tendinopathy remains difficult to interpret the disease process involving repetitive stress, and cellular load provides important mechanistic insight into the area of heat shock proteins which spans many disease processes in the autoimmune community. Heat shock proteins, also called damage-associated molecular patterns (DAMPs), are rapidly released following nonprogrammed cell death, are key effectors of the innate immune system, and critically restore homeostasis by promoting the reconstruction of the effected tissue. Our investigations have highlighted a key role for HSPs in tendion disease which may ultimately affect tissue rescue mechanisms in tendon pathology. This paper aims to provide an overview of the biology of heat shock proteins in soft tissue and how these mediators may be important regulators of inflammatory mediators and matrix regulation in tendinopathy. PMID:23258952

  3. Synergistic effects of toxic elements on heat shock proteins.

    PubMed

    Mahmood, Khalid; Jadoon, Saima; Mahmood, Qaisar; Irshad, Muhammad; Hussain, Jamshaid

    2014-01-01

    Heat shock proteins show remarkable variations in their expression levels under a variety of toxic conditions. A research span expanded over five decades has revealed their molecular characterization, gene regulation, expression patterns, vast similarity in diverse groups, and broad range of functional capabilities. Their functions include protection and tolerance against cytotoxic conditions through their molecular chaperoning activity, maintaining cytoskeleton stability, and assisting in cell signaling. However, their role as biomarkers for monitoring the environmental risk assessment is controversial due to a number of conflicting, validating, and nonvalidating reports. The current knowledge regarding the interpretation of HSPs expression levels has been discussed in the present review. The candidature of heat shock proteins as biomarkers of toxicity is thus far unreliable due to synergistic effects of toxicants and other environmental factors. The adoption of heat shock proteins as "suit of biomarkers in a set of organisms" requires further investigation.

  4. Chromosome behavior of heat shock induced triploid in Fenneropenaeus chinensis

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojun; Li, Fuhua; Xiang, Jianhai

    2003-09-01

    Triploidy was induced in Chinese shrimp Fenneropenaeus chinensis by 30±0.5°C heat shock treatment (initiated at 20 min after fertilization) for 10 min to inhibit the release of PB2 at 18.0°C. The highest triploid rate obtained was 84.5% in nauplius stage. The effect of heat shock treatment on meiosis and cleavage of eggs was investigated in this work aimed to establish efficient procedures for triploid induction and to gain understanding of the mechanism of triploid production. Three pronuclei that could be observed in the treated eggs under fluorescence microscope developed into triploid embryos. Some abnormal chromosome behavior was observed in heat shocked eggs.

  5. Heat shock mediated labelling of Pseudomonas aeruginosa with quantum dots.

    PubMed

    Kumar, Natasha; Wiraja, Christian; Palanisamy, Kannan; Marsili, Enrico; Xu, Chenjie

    2016-06-01

    Biocompatible nanoparticles are good candidates to label bacteria for imaging and diagnosis purposes. A high labeling efficiency reduces the concentration of nanoparticles required for labeling and allows the labeled bacteria to be tracked for longer periods. This report explores the optimal labeling strategy for Pseudomonas aeruginosa, a common gram-negative opportunistic pathogen, with quantum dots. Three strategies including direct incubation, calcium chloride treatment, and heat shock are compared and the labeling efficiency is assessed through fluorescence microscopy and flow cytometry analysis. Of the three, heat shock is finally selected due to its comparable labeling efficiency and simplicity. Through the assay of the respiration rate of bacteria together with morphology analysis, the heat shock process does not show any negative effect over the cells activity even at sub-toxic concentrations.

  6. AGN feedback in clusters: Shock and sound heating

    NASA Astrophysics Data System (ADS)

    Nulsen, P. E. J.; McNamara, B. R.

    2013-04-01

    Observations support the view that feedback, in the form of radio outbursts from active nuclei in central galaxies, prevents catastrophic cooling of gas and rapid star formation in many groups and clusters of galaxies. Variations in jet power drive a succession of weak shocks that can heat regions close to the active galactic nuclei (AGN). On larger scales, shocks fade into sound waves. The Braginskii viscosity determines a well-defined sound damping rate in the weakly magnetised intracluster medium (ICM) that can provide sufficient heating on larger scales. It is argued that weak shocks and sound dissipation are the main means by which radio AGN heat the ICM, in which case, the power spectrum of AGN outbursts plays a central role in AGN feedback.

  7. Influence of heat shock on glycerol production in alcohol fermentation.

    PubMed

    Berovic, Marin; Pivec, Aleksandra; Kosmerl, Tatjana; Wondra, Mojmir; Celan, Stefan

    2007-02-01

    The influence of single and double heat shocks induced during the exponential growth phase of the Saccharomyces cerevisiae fermentation of cultivar Sauvignon Blanc grape must was examined. Rapid temperature changes from 18 degrees C to 34 degrees C have been applied. The effect of the duration of exposure to a high temperature has been analyzed. By the applications of a single heat shock and a double heat shock, up to 8.2 g l(-1) and 11.0 g l(-1) glycerol have been produced, respectively. To prevent the evaporation of fine wine bouquet compounds during the temperature changes, reflux coolers on the top of bioreactors have been employed. By using this method, glycerol production was increased by up to 65%.

  8. Heat Shock Protein-70 Inducers and iNOS Inhibitors as Therapeutics to Ameliorate Hemorrhagic Shock

    DTIC Science & Technology

    2004-09-01

    RTO-MP-HFM-109 P28 - 1 Heat Shock Protein-70 Inducers and iNOS Inhibitors as Therapeutics to Ameliorate Hemorrhagic Shock Juliann G. Kiang...mechanisms are still not fully understood, it has been shown that nitric oxide (NO) overproduction and inducible nitric oxide synthase (iNOS...tissues and leukotriene B4 (LTB4) generation increases. In a hemorrhage/resuscitation- induced injury model, iNOS, cyclooxygenase-2, and CD14 are all

  9. Increase in periosteal angiogenesis through heat shock conditioning

    PubMed Central

    2011-01-01

    Objective It is widely known that stress conditioning can protect microcirculation and induce the release of vasoactive factors for a period of several hours. Little, however, is known about the long-term effects of stress conditioning on microcirculation, especially on the microcirculation of the periosteum of the calvaria. For this reason, we used intravital fluorescence microscopy to investigate the effects of heat shock priming on the microcirculation of the periosteum over a period of several days. Methods Fifty-two Lewis rats were randomized into eight groups. Six groups underwent heat shock priming of the periosteum of the calvaria at 42.5°C, two of them (n = 8) for 15 minutes, two (n = 8) for 25 minutes and two (n = 8) for 35 minutes. After 24 hours, a periosteal chamber was implanted into the heads of the animals of one of each of the two groups mentioned above. Microcirculation and inflammatory responses were studied repeatedly over a period of 14 days using intravital fluorescence microscopy. The expression of heat shock protein (HSP) 70 was examined by immunohistochemistry in three further groups 24 hours after a 15-minute (n = 5), a 25-minute (n = 5) or a 35-minute (n = 5) heat shock treatment. Two groups that did not undergo priming were used as controls. One control group (n = 8) was investigated by intravital microscopy and the other (n = 5) by immunohistochemistry. Results During the entire observation period of 14 days, the periosteal chambers revealed physiological microcirculation of the periosteum of the calvaria without perfusion failures. A significant (p < 0.05) and continuous increase in functional capillary density was noted from day 5 to day 14 after 25-minute heat shock priming. Whereas a 15-minute exposure did not lead to an increase in functional capillary density, 35-minute priming caused a significant but reversible perfusion failure in capillaries. Non-perfused capillaries in the 35-minute treatment group were reperfused by day 10

  10. Heat shock and herpes virus: enhanced reactivation without untargeted mutagenesis

    SciTech Connect

    Lytle, C.D.; Carney, P.G.

    1988-01-01

    Enhanced reactivation of Ultraviolet-irradiated virus has been reported to occur in heat-shocked host cells. Since enhanced virus reactivation is often accompanied by untargeted mutagenesis, we investigated whether such mutagenesis would occur for herpes simplex virus (HSV) in CV-1 monkey kidney cells subjected to heat shock. In addition to expressing enhanced reactivation, the treated cells were transiently more susceptible to infection by unirradiated HSV. No mutagenesis of unirradiated HSV was found whether infection occurred at the time of increased susceptibility to infection or during expression of enhanced viral reactivation.

  11. Role of BRCA1 in heat shock response.

    PubMed

    Xian Ma, Yong; Fan, Saijun; Xiong, Jingbo; Yuan, Ren-Qi; Meng, Qinghui; Gao, Min; Goldberg, Itzhak D; Fuqua, Suzanne A; Pestell, Richard G; Rosen, Eliot M

    2003-01-09

    The heat shock response is an evolutionarily conserved response to heat and other stresses that promotes the maintenance of key metabolic functions and cell survival. We report that exposure of human prostate (DU-145) and breast (MCF-7) cancer cells to heat (42 degrees C) caused a rapid disappearance of the breast cancer susceptibility gene-1 (BRCA1) protein, starting at approximately 1 h after the onset of heating and slightly lagging behind the increase in heat shock protein 70 (HSP70) levels. The heat-induced loss of BRCA1 occurred at the protein level, since: (1) BRCA1 mRNA expression was unaffected; and (2) the BRCA1 protein loss was also observed in DU-145 cells that expressed exogenous wild-type BRCA1 (wtBRCA1). In addition to heat regulation of BRCA1 protein levels, we also found that BRCA1 could modulate the heat shock response. Thus, wtBRCA1 overexpressing DU-145 cell clones showed significantly decreased sensitivity to heat-induced cytotoxicity; and Brca1 mutant mouse embryo fibroblasts showed increased sensitivity to heat. The DU-145 wtBRCA1 clones also showed increased expression of the small heat shock protein HSP27; and reporter assays revealed that wtBRCA1 stimulated a two to four-fold increase in HSP27 promoter activity, consistent with its ability to upregulate HSP27 mRNA and protein levels. In studies using epitope-tagged truncated BRCA1 proteins, the ability to stimulate the HSP27 promoter and to mediate heat-induced degradation required the amino-terminus but not the carboxyl-terminus of BRCA1. Although the heat-induced loss of BRCA1 appeared to be due to protein degradation, various protein metabolic agents (or combinations) failed to block this event, including: MG132 (a 26S proteasomal inhibitor), N-acetyl-leucyl-leucyl-norleucinal (a calpain inhibitor), z-VAD-fmk (a pan-caspase inhibitor), and ammonium chloride and chloroquine (which stabilize lysosomes). These findings suggest that in addition to its other functions, BRCA1 may participate

  12. Celastrols as inducers of the heat shock response and cytoprotection.

    PubMed

    Westerheide, Sandy D; Bosman, Joshua D; Mbadugha, Bessie N A; Kawahara, Tiara L A; Matsumoto, Gen; Kim, Soojin; Gu, Wenxin; Devlin, John P; Silverman, Richard B; Morimoto, Richard I

    2004-12-31

    Alterations in protein folding and the regulation of conformational states have become increasingly important to the functionality of key molecules in signaling, cell growth, and cell death. Molecular chaperones, because of their properties in protein quality control, afford conformational flexibility to proteins and serve to integrate stress-signaling events that influence aging and a range of diseases including cancer, cystic fibrosis, amyloidoses, and neurodegenerative diseases. We describe here characteristics of celastrol, a quinone methide triterpene and an active component from Chinese herbal medicine identified in a screen of bioactive small molecules that activates the human heat shock response. From a structure/function examination, the celastrol structure is remarkably specific and activates heat shock transcription factor 1 (HSF1) with kinetics similar to those of heat stress, as determined by the induction of HSF1 DNA binding, hyperphosphorylation of HSF1, and expression of chaperone genes. Celastrol can activate heat shock gene transcription synergistically with other stresses and exhibits cytoprotection against subsequent exposures to other forms of lethal cell stress. These results suggest that celastrols exhibit promise as a new class of pharmacologically active regulators of the heat shock response.

  13. Inbreeding interferes with the heat-shock response.

    PubMed

    Franke, Kristin; Fischer, Klaus

    2015-01-01

    Inbreeding is typically detrimental to individual fitness, with negative effects being often exaggerated in stressful environments. However, the causal mechanisms underlying inbreeding depression in general and the often increased susceptibility to stress in particular are not well understood. We here test whether inbreeding interferes with the heat-shock response, comprising an important component of the stress response which may therefore underscore sensitivity to stress. To this end we subjected the tropical butterfly Bicyclus anynana to a full-factorial design with three temperatures and three levels of inbreeding, and measured the expression of heat-shock protein (HSP) 70 via qPCR. HSP70 expression increased after exposure to heat as compared with cold or control conditions. Most strikingly, inbreeding strongly interfered with the heat-shock response, with inbred individuals showing a very weak upregulation of HSP70 only. Our results thus indicate that, in our study organism, interference with the heat-shock response may be one mechanism underlying reduced fitness of inbred individuals, especially when exposed to stressful conditions. However, these indications need to be corroborated using a broader range of different temperatures, genes and taxa.

  14. Inbreeding interferes with the heat-shock response

    PubMed Central

    Franke, Kristin; Fischer, Klaus

    2015-01-01

    Inbreeding is typically detrimental to individual fitness, with negative effects being often exaggerated in stressful environments. However, the causal mechanisms underlying inbreeding depression in general and the often increased susceptibility to stress in particular are not well understood. We here test whether inbreeding interferes with the heat-shock response, comprising an important component of the stress response which may therefore underscore sensitivity to stress. To this end we subjected the tropical butterfly Bicyclus anynana to a full-factorial design with three temperatures and three levels of inbreeding, and measured the expression of heat-shock protein (HSP) 70 via qPCR. HSP70 expression increased after exposure to heat as compared with cold or control conditions. Most strikingly, inbreeding strongly interfered with the heat-shock response, with inbred individuals showing a very weak upregulation of HSP70 only. Our results thus indicate that, in our study organism, interference with the heat-shock response may be one mechanism underlying reduced fitness of inbred individuals, especially when exposed to stressful conditions. However, these indications need to be corroborated using a broader range of different temperatures, genes and taxa. PMID:25074571

  15. A novel 29-kDa chicken heat shock protein.

    PubMed

    Einat, M F; Haberfeld, A; Shamay, A; Horev, G; Hurwitz, S; Yahav, S

    1996-12-01

    The family of small heat shock proteins is the more variable among the highly conserved superfamily of heat shock proteins (HSP). Using a metabolic labeling procedure with tissue explants, we have detected in chickens a new member of the small HSP family with an apparent molecular weight of 29-kDa. This protein was induced in broiler chickens' heart muscle and lungs following an in vivo heat stress. The 29-kDa band appears after 3 h of heat stress, much later than the induction of HSP 90, HSP 70, and HSP 27. The late onset of induction suggests that HSP 29 plays a more specific role of a "second stage defense protein".

  16. Variation of the ratio of specific heats across a detached bow shock

    NASA Technical Reports Server (NTRS)

    Chao, J. K.; Wiskerchen, M. J.

    1974-01-01

    Equations are derived which allow the ratio of specific heats behind the earth's bow shock to be evaluated if several pre-shock parameters (the specific-heat ratio, the Alfvenic Mach number, the sonic Mach number, and the angle between the shock normal at the stagnation point and the magnetic field) and the density jump across the shock are known. Numerical examples show that the dependence of the post-shock ratio on the pre-shock ratio is weak.

  17. Inhibition of Heat Shock Induction of Heat Shock Protein 70 and Enhancement of Heat Shock Protein 27 Phosphorylation by Quercetin Derivatives

    PubMed Central

    Wang, Rongsheng E.; Kao, Jeffrey L.-F.; Hilliard, Carolyn A.; Pandita, Raj K.; Roti, Joseph L. Roti; Hunt, Clayton R.; Taylor, John-Stephen

    2009-01-01

    Inhibitors of heat-induced heat shock protein 70 (HSP70)a expression have the potential to enhance the therapeutic effectiveness of heat induced radiosensitization of tumors. Among known small molecule inhibitors, quercetin has the advantage of being easily modified for structure-activity studies. Herein, we report the ability of five mono-methyl and five carbomethoxymethyl derivatives of quercetin to inhibit heat-induced HSP70 expression and enhance HSP27 phosphorylation in human cells. While quercetin and several derivatives inhibit HSP70 induction and enhance HSP27 phosphorylation at Ser78, other analogs selectively inhibit HSP70 induction without enhancing HSP27 phosphorylation that would otherwise aid in cell survival. We also show that good inhibitors of HSP70 induction are also good inhibitors of both CK2 and CamKII, kinases that are known to activate HSP70 expression by phosphorylation of heat shock transcription factor 1. Derivatives that show poor inhibition of either or both kinases are not good inhibitors of HSP70 induction, suggesting that quercetin’s effectiveness is due to its ability to inhibit both kinases. PMID:19296652

  18. Heat Shock Protein (HSP) Drug Discovery and Development: Targeting Heat Shock Proteins in Disease

    PubMed Central

    Shrestha, Liza; Bolaender, Alexander; Patel, Hardik J.; Taldone, Tony

    2016-01-01

    Heat shock proteins (HSPs) present as a double edged sword. While they play an important role in maintaining protein homeostasis in a normal cell, cancer cells have evolved to co-opt HSP function to promote their own survival. As a result, HSPs such as HSP90 have attracted a great deal of interest as a potential anticancer target. These efforts have resulted in over 20 distinct compounds entering clinical evaluation for the treatment of cancer. However, despite the potent anticancer activity demonstrated in preclinical models, to date no HSP90 inhibitor has obtained regulatory approval. In this review we discuss the unique challenges faced in targeting HSPs that have likely contributed to their lack of progress in the clinic and suggest ways to overcome these so that the enormous potential of these compounds to benefit patients can finally be realized. We also provide a guideline for the future development of HSP-targeted agents based on the many lessons learned during the last two decades in developing HSP90 inhibitors. PMID:27072696

  19. Transcription Regulation of HYPK by Heat Shock Factor 1

    PubMed Central

    Das, Srijit; Bhattacharyya, Nitai Pada

    2014-01-01

    HYPK (Huntingtin Yeast Partner K) was originally identified by yeast two-hybrid assay as an interactor of Huntingtin, the protein mutated in Huntington's disease. HYPK was characterized earlier as an intrinsically unstructured protein having chaperone-like activity in vitro and in vivo. HYPK has the ability of reducing rate of aggregate formation and subsequent toxicity caused by mutant Huntingtin. Further investigation revealed that HYPK is involved in diverse cellular processes and required for normal functioning of cells. In this study we observed that hyperthermia increases HYPK expression in human and mouse cells in culture. Expression of exogenous Heat Shock Factor 1 (HSF1), upon heat treatment could induce HYPK expression, whereas HSF1 knockdown reduced endogenous as well as heat-induced HYPK expression. Putative HSF1-binding site present in the promoter of human HYPK gene was identified and validated by reporter assay. Chromatin immunoprecipitation revealed in vivo interaction of HSF1 and RNA polymerase II with HYPK promoter sequence. Additionally, acetylation of histone H4, a known epigenetic marker of inducible HSF1 binding, was observed in response to heat shock in HYPK gene promoter. Overexpression of HYPK inhibited cells from lethal heat-induced death whereas knockdown of HYPK made the cells susceptible to lethal heat shock-induced death. Apart from elevated temperature, HYPK was also upregulated by hypoxia and proteasome inhibition, two other forms of cellular stress. We concluded that chaperone-like protein HYPK is induced by cellular stress and under transcriptional regulation of HSF1. PMID:24465598

  20. Thermotolerance and Human Performance: Role of Heat Shock Proteins

    DTIC Science & Technology

    2009-10-01

    and provide a mechanistic basis for the requirement of HSF1 in the regulation of life span and establish a role for SIRT1 in protein homeostasis and...Stress-Inducible Regulation of Heat Shock Factor 1 by the Deacetylase SIRT1 . Science. 2009; 323: 1063-1066. Wilson N, Gisolfi C, Farber J, Hinrichs D

  1. Heat shock proteins and protection against ischemic injury.

    PubMed Central

    Dillmann, W H

    1999-01-01

    Heat shock proteins present a complex family of proteins exerting chaperone-like activities that are classified according to their molecular weight. We especially explored protective functions of inducible heat shock protein 70, the mitochondrial heat shock protein 60 and 10, and the small heat shock proteins HSP27 and alphaB-crystallin against ischemic, reoxygenation-mediated injury using transgenic animals and hearts under in vivo conditions and in isolated cardiac myocyte-derived cells using adenoviral vectors. We noted with great interest that differential protective effects are exerted by specific hsps. For example, alpha-B-crystallin and constitutive hsp70 markedly protect microtubular structure in cardiac myocytes from ischemia-induced injury. Inducible hsp70, hsp60 and hsp10 when coexpressed, and hsp27 and alphaB-crystallin have an overall protective effect against ischemic injury as determined by the release of enzymes like creatine kinase and LDH. We did not note inflammatory or immune responses elicited by the expression of hsps in transgenic animals and cardiac myocytes. The specific cell types in which hsps are expressed may contribute to the protective effect of hsps versus their inflammatory and immunogenic effects when expressed in other cell types. PMID:10231010

  2. Circuit architecture explains functional similarity of bacterial heat shock responses

    NASA Astrophysics Data System (ADS)

    Inoue, Masayo; Mitarai, Namiko; Trusina, Ala

    2012-12-01

    Heat shock response is a stress response to temperature changes and a consecutive increase in amounts of unfolded proteins. To restore homeostasis, cells upregulate chaperones facilitating protein folding by means of transcription factors (TFs). We here investigate two heat shock systems: one characteristic to gram negative bacteria, mediated by transcriptional activator σ32 in E. coli, and another characteristic to gram positive bacteria, mediated by transcriptional repressor HrcA in L. lactis. We construct simple mathematical models of the two systems focusing on the negative feedbacks, where free chaperones suppress σ32 activation in the former, while they activate HrcA repression in the latter. We demonstrate that both systems, in spite of the difference at the TF regulation level, are capable of showing very similar heat shock dynamics. We find that differences in regulation impose distinct constraints on chaperone-TF binding affinities: the binding constant of free σ32 to chaperone DnaK, known to be in 100 nM range, set the lower limit of amount of free chaperone that the system can sense the change at the heat shock, while the binding affinity of HrcA to chaperone GroE set the upper limit and have to be rather large extending into the micromolar range.

  3. Expression of heat shock protein genes in insect stress responses

    USDA-ARS?s Scientific Manuscript database

    The heat shock proteins (HSPs) that are abundantly expressed in insects are important modulators of insect survival. Expression of HSP genes in insects is not only developmentally regulated, but also induced by various stressors in order to confer protection against such stressors. The expression o...

  4. Heat shock factor 2 is activated during mouse heart development.

    PubMed

    Eriksson, M; Jokinen, E; Sistonen, L; Leppä, S

    2000-08-01

    Two members of the heat shock transcription factor family, HSF1 and HSF2, have been identified as activators of mammalian heat shock gene expression. HSF1 acts as a classical stress-responsive factor, whereas HSF2 might play a role in embryogenesis, since it is active during pre- and post-implantation periods up to 15.5 days of mouse embryonic development. In this study, we analyzed HSF1 and HSF2 expression and activation during mouse heart formation. Our results show an abundant expression of HSF1 throughout heart development. In contrast, expression of the alternatively spliced HSF2-alpha and HSF2-beta, and an additional higher molecular weight isoform is strongly upregulated in the developing mouse heart at E11.5-12.5, a stage after which tubular heart has looped and chambers formed, and the myocardial walls are maturating and the valves differentiating. At the same developmental stage, HSF2 DNA-binding activity is transiently induced, whereas the weak HSE-binding activity, which is detected throughout heart development, consists primarily of HSF1. Interestingly, heat shock gene expression shows no temporal or spatial correlation with HSF2 expression and activation. Taken together, our results indicate that HSF2 activation is associated with specific stages of heart formation but is not involved in the regulation of inducible heat shock gene expression.

  5. Inhibition of Heat Shock Protein 90 Prevents HIV Rebound.

    PubMed

    Joshi, Pheroze; Maidji, Ekaterina; Stoddart, Cheryl A

    2016-05-06

    HIV evades eradication because transcriptionally dormant proviral genomes persist in long-lived reservoirs of resting CD4(+) T cells and myeloid cells, which are the source of viral rebound after cessation of antiretroviral therapy. Dormant HIV genomes readily produce infectious virus upon cellular activation because host transcription factors activated specifically by cell stress and heat shock mediate full-length HIV transcription. The molecular chaperone heat shock protein 90 (Hsp90) is overexpressed during heat shock and activates inducible cellular transcription factors. Here we show that heat shock accelerates HIV transcription through induction of Hsp90 activity, which activates essential HIV-specific cellular transcription factors (NF-κB, NFAT, and STAT5), and that inhibition of Hsp90 greatly reduces gene expression mediated by these factors. More importantly, we show that Hsp90 controls virus transcription in vivo by specific Hsp90 inhibitors in clinical development, tanespimycin (17-(allylamino)-17-demethoxygeldanamycin) and AUY922, which durably prevented viral rebound in HIV-infected humanized NOD scid IL-2Rγ(-/-) bone marrow-liver-thymus mice up to 11 weeks after treatment cessation. Despite the absence of rebound viremia, we were able to recover infectious HIV from PBMC with heat shock. Replication-competent virus was detected in spleen cells from these nonviremic Hsp90 inhibitor-treated mice, indicating the presence of a tissue reservoir of persistent infection. Our novel findings provide in vivo evidence that inhibition of Hsp90 activity prevents HIV gene expression in replication-competent cellular reservoirs that would typically cause rebound in plasma viremia after antiretroviral therapy cessation. Alternating or supplementing Hsp90 inhibitors with current antiretroviral therapy regimens could conceivably suppress rebound viremia from persistent HIV reservoirs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. [Alterations in heat shock protein 70 kDa levels in human neutrophils under the heat shock conditions].

    PubMed

    Boĭko, A A; Vetchinin, S S; Sapozhnikov, A M; Kovalenko, E I

    2014-01-01

    Intracellular content of heat shock proteins of 70 kDa family (HSP70) possessing chaperone and cytoprotective functions depends on specialization and functional activity of the cells. The aim of this study was to analyze the dynamics of constitutive and inducible HSP70 levels evoked by heat shock in human neutrophils, the short-lived fraction of white blood cells providing non-specific defense against bacterial pathogens. Biphasic dynamics of the intracellular HSP70 level with an increase and following decrease in 15-30 min after the heat shock was revealed by flow cytometry. This dynamics was similar for constitutive and inducible forms of HSP70. Pre-incubation of neutrophils with cycloheximide, the inhibitor of protein synthesis, did not change the intracellular HSP70 dynamics registered by flow cytometry indicating that the increased HSP70 level detected immediately after the heat shock was not mediated by de novo protein synthesis. It was confirmed by Western blotting analysis of HSP70 intracellular content. It was suggested that the elevated HSP70 level was related to conformational HSP70 molecule changes and to increased availability of HSP70 epitopes for antibody binding. Using a panel of antibodies specific to the N-terminal ATP-binding or C-terminal substrate-binding domains of HSP70 it has been demonstrated by cell immunofluorescence and flow cytometry methods that the heat shock-associated increase of the intracellular HSP70 level was mediated by HSP70 interaction with antibodies recognizing HSP70 substrate-binding domain. It was demonstrated that the decrease of intracellular HSP70 level after heat treatment could be connected with a release of both inducible and constitutive HSP70 into extracellular space. Our data suggest that stress-induced release of HSP70 from neutrophils is regulated by ABC-transporters.

  7. Heat Shock Response in Lactobacillus plantarum

    PubMed Central

    De Angelis, Maria; Di Cagno, Raffaella; Huet, Claude; Crecchio, Carmine; Fox, Patrick F.; Gobbetti, Marco

    2004-01-01

    Heat stress resistance and response were studied in strains of Lactobacillus plantarum. Stationary-phase cells of L. plantarum DPC2739 had decimal reduction times (D values) (D value was the time that it took to reduce the number of cells by 1 log cycle) in sterile milk of 32.9, 14.7, and 7.14 s at 60, 72, and 75°C, respectively. When mid-exponential-phase cells were used, the D values decreased. The temperature increases which caused a 10-fold reduction in the D value ranged from 9 to 20°C, depending on the strain. Part of the cell population treated at 72°C for 90 s recovered viability during incubation at 7°C in sterile milk for 20 days. When mid-exponential- or stationary-phase cells of L. plantarum DPC2739 were adapted to 42°C for 1 h, the heat resistance at 72°C for 90 s increased ca. 3 and 2 log cycles, respectively. Heat-adapted cells also showed increased growth at pH 5 and in the presence of 6% NaCl. Two-dimensional gel electrophoresis of proteins expressed by control and heat-adapted cells revealed changes in the levels of expression of 31 and 18 proteins in mid-exponential- and stationary-phase cells, respectively. Twelve proteins were commonly induced. Nine proteins induced in the heat-adapted mid-exponential- and/or stationary-phase cells of L. plantarum DPC2739 were subjected to N-terminal sequencing. These proteins were identified as DnaK, GroEL, trigger factor, ribosomal proteins L1, L11, L31, and S6, DNA-binding protein II HlbA, and CspC. All of these proteins have been found to play a role in the mechanisms of stress adaptation in other bacteria. Antibodies against GroES detected a protein which was induced moderately, while antibodies against DnaJ and GrpE reacted with proteins whose level of expression did not vary after heat adaptation. This study showed that the heat resistance of L. plantarum is a complex process involving proteins with various roles in cell physiology, including chaperone activity, ribosome stability, stringent

  8. The role of heat shock proteins in kidney disease

    PubMed Central

    2016-01-01

    Abstract Heat Shock Proteins (HSP) belong to the family of intracellular proteins that are constitutively expressed and are upregulated by various stressors including heat, oxidative and chemical stress. HSP helps in reparative processes, including the refolding of damaged proteins and the removal of irreparably damaged proteins that would initiate cellular death or apoptosis. A growing body of evidence has expanded the role of HSP and defined their role in diseases such as neurodegenerative disorders, cancer, ischemic heart disease and kidney diseases. The protective role of HSP in ischemic renal injury has been described and HSP impairment has been noted in other forms of kidney injuries including post-transplant situation. Further research into the role of HSP in prevention of kidney injury is crucial if translation from the laboratory to patient bedside has to occur. This article aims to be a review of heat shock protein, and its relevance to kidney diseases. PMID:28191532

  9. Mathematical Modeling of the Heat-Shock Response in HeLa Cells

    DTIC Science & Technology

    2015-07-01

    the temper- ature-varying DNA-binding dynamics, the presence of free HSF during homeostasis and the initial phase of the heat-shock response, and...free HSF during homeostasis and the initial phase of the heat-shock response, and heat-shock protein dynamics in the long-term heat-shock response...dynamics, the pres- ence of free HSF during homeostasis and the initial phase of the heat-shock response, and HSP dynamics in the long- term heat

  10. Shock Heating of the Merging Galaxy Cluster A521

    NASA Technical Reports Server (NTRS)

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-01-01

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 +/- 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  11. SHOCK HEATING OF THE MERGING GALAXY CLUSTER A521

    SciTech Connect

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-02-10

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 {+-} 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  12. Shuttle ascent and shock impingement aerodynamic heating studies

    NASA Technical Reports Server (NTRS)

    Lanning, W. D.; Hung, F. T.

    1971-01-01

    The collection and analysis of aerodynamic heating data obtained from shock impingement experimental investigation were completed. The data were categorized into four interference areas; fin leading edge, wing/fuselage fin/plate corners, and space shuttle configurations. The effects of shock impingement were found to increase the heating rates 10 to 40 times the undisturbed values. A test program was completed at NASA/Langley Research Center to investigate the magnitudes and surface patterns of the mated shock interference flowfield. A 0.0065 scale thin-skin model of the MDAC 256-20 space shuttle booster mated with a Stycast model of the MDAC Internal tank orbiter was tested in the 20-inch M=6 tunnel, the 31-inch M=10 tunnel, and the 48-inch Unitary Plan Tunnel. The gap region of the ascent configuration was the principal area of interest where both thermocouple and phase-change paint data were obtained. Pressure and heat transfer distributions data on the leeward surface of a 75-degree sweep slab delta wing are presented. The effects of surface roughness on boundary layer transition and aerodynamic heating were investigated.

  13. Consensus sequence for Escherichia coli heat shock gene promoters.

    PubMed Central

    Cowing, D W; Bardwell, J C; Craig, E A; Woolford, C; Hendrix, R W; Gross, C A

    1985-01-01

    We have identified promoters for the Escherichia coli heat shock operons dnaK and groE and the gene encoding heat shock protein C62.5. Transcription from each promoter is heat-inducible in vivo, and each is recognized in vitro by RNA polymerase containing sigma 32, the sigma factor encoded by rpoH (htpR) but not by RNA polymerase containing sigma 70. We compared the sequences of the heat shock promoters and propose a consensus promoter sequence, having T-N-t-C-N-C-c-C-T-T-G-A-A in the -35 region and C-C-C-C-A-T-t-T-a in the -10 region. These sequences differ from the consensus sequence recognized by holoenzyme containing sigma 70, the major sigma in E. coli. We suggest that the accumulated consensus sequences of promoters recognized by alternate forms of holoenzyme are compatible with a model in which sigma recognizes only the -10 region of the promoter. Images PMID:3887408

  14. Multiple mild heat-shocks decrease the Gompertz component of mortality in Caenorhabditis elegans.

    PubMed

    Wu, Deqing; Cypser, James R; Yashin, Anatoli I; Johnson, Thomas E

    2009-09-01

    Exposure to mild heat-stress (heat-shock) can significantly increase the life expectancy of the nematode Caenorhabditis elegans. A single heat-shock early in life extends longevity by 20% or more and affects life-long mortality by decreasing initial mortality only; the rate of increase in subsequent mortality (Gompertz component) is unchanged. Repeated mild heat-shocks throughout life have a larger effect on life span than does a single heat-shock early in life. Here, we ask how multiple heat-shocks affect the mortality trajectory in nematodes and find increases of life expectancy of close to 50% and of maximum longevity as well. We examined mortality using large numbers of animals and found that multiple heat-shocks not only decrease initial mortality, but also slow the Gompertz rate of increase in mortality. Thus, multiple heat-shocks have anti-aging hormetic effects and represent an effective approach for modulating aging.

  15. The myocardial heat shock response following sodium salicylate treatment

    PubMed Central

    Locke, Marius; Atance, Joel

    2000-01-01

    In cultured cells, salicylate has been shown to potentiate the induction of Hsp72 so that a mild heat stress (40°C) in the presence of salicylate induces an Hsp72 response that is similar to a severe heat stress (42°C). To determine whether salicylate can potentiate the myocardial Hsp70 response in vivo and confer protection from an ischemic stress, male Sprague-Dawley rats (250–300 g) were placed into 5 groups: (1) control, (2) salicylate only (400 mg/kg), (3) mild heat stress (40°C for 15 minutes), (4) mild heat stress plus salicylate, and (5) severe heat stress (42°C for 15 minutes). Twenty-four hours following salicylate treatment and/or heat stress, animals were anesthetized, their hearts rapidly isolated, and hemodynamic function evaluated using the Langendorff technique. Hsp72 content was subsequently assessed by Western blotting. Although salicylate in combination with a mild heat stress induced heat shock factor activation, only the hearts from severely heat-stressed animals (42°C) demonstrated a significantly elevated myocardial Hsp72 content and a significantly enhanced postischemic recovery of left ventricular developed pressure and rates of contraction and relaxation. These results support the role for Hsp72 as a protective protein and suggest that neither salicylate treatment alone nor salicylate in combination with a mild heat stress potentiates the myocardial Hsp72 response. PMID:11048658

  16. Fast electron heating of dense plasma relevant to shock ignition

    NASA Astrophysics Data System (ADS)

    Fox, T. E.; Robinson, A. P. L.; Pasley, J.

    2013-10-01

    With an intensity in the range of 1016 W/cm2, the ignitor pulse in shock-ignition inertial confinement fusion is well above the threshold of parametric instabilities. Simulations (e.g. Klimo et al. 2011 Phys. Plasmas 18, 082709) indicate that a significant amount of energy will be deposited in energetic electrons with energies <100 keV and it has been proposed that these may play a beneficial role in enhancing the ignitor shock. Simulations by Gus'kov et al. (Phys. Rev. Lett. 109, 255004 (2012)) show that, under shock-ignition relevant conditions, a mono-energetic electron beam can drive strong shocks in a uniform plasma. We extend this study to the more realistic case of a Maxwellian energy distribution in the fast electron population. Having a distribution of electron mean-free-paths results in a more extended heating profile compared to a mono-energetic beam. However, we show it is still possible to launch strong shocks in this more realistic scenario and achieve equivalent pressures. The peak pressures achieved compare well with analytic scalings. We thank AWE for their financial assistance in support of the doctoral research of T. E. F.

  17. Heat shock protein response in phosphorus-deficient heat-stressed broiler chickens.

    PubMed

    Edens, F W; Hill, C H; Wang, S

    1992-12-01

    1. During acute in vivo heat stress, a normal heat shock protein (HSP) response was not inducible in chickens deficient in inorganic phosphorus (P(i)-deficient). 2. Small quantities of HSP 70 and HSP 90 were induced, but little or no HSP 23 was induced in P(i)-deficient chickens compared to P(i)-adequate chickens. 3. Increased susceptibility of P(i)-deficient chickens to acute heat stress was attributed to their inability to produce an adequate HSP response.

  18. Rice embryos can express heat-shock genes under anoxia.

    PubMed

    Mocquot, B; Ricard, B; Pradet, A

    1987-01-01

    Heat-shock proteins (hsps) are induced by a number of oxidative stresses. The proposal that the reduction products of oxygen initiate hsp induction was tested in rice embryos, capable of coleoptile growth under oxygen-free conditions. In such embryos, hsps could be detected by both in vivo labeling and in vitro translation of RNA using the reticulocyte lysate system. It is therefore improbable that the mechanism for hsp induction involves oxygen.

  19. The Effect of Heat Shock on Morphogenesis in Barley 1

    PubMed Central

    Beator, Jens; Pötter, Eyck; Kloppstech, Klaus

    1992-01-01

    The effect of daily heat-shock treatments on gene expression and morphogenesis of etiolated barley (Hordeum vulgare) was investigated. Heat-shock treatments in the dark induced shortening of the primary leaves and the coleoptiles to the length of those in light-grown plantlets. In addition, the mRNA levels of the light-induced genes that were investigated were raised under these conditions and showed distinct oscillations over a period of at least 3 d. While the mRNA levels for chlorophyll a/b binding protein (LHC II), plastocyanin, and the small subunit of ribulose-1,5-bisphosphate carboxylase had maxima between 8 and 12 pm (12-16h after the last heat-shock treatment), the mRNA levels for thionin oscillated with a phase opposed to that of LHC II. Etiolated barley, the circadian oscillator of which was synchronized by cyclic heatshock treatments, was illuminated for a constant interval at different times of the day; this led to the finding that greening was fastest at the time when the maximal levels of mRNA for LHC II were also observed. Whereas accumulation of chlorophyll a during a 4-h period of illumination oscillated by a factor of 3, chlorophyll b accumulation changed 10- to 15-fold. Similarly, accumulation of LHC II was highest when pigments accumulated maximally. Hence, greening or, in other words, thylakoid membrane assembly is under control of the circadian oscillator. Images Figure 4 Figure 6 PMID:16653197

  20. Competition between shock and turbulent heating in coronal loop system

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuma

    2016-11-01

    2.5-dimensional magnetohydrodynamic (MHD) simulations are performed with high spatial resolution in order to distinguish between competing models of the coronal heating problem. A single coronal loop powered by Alfvén waves excited in the photosphere is the target of this study. The coronal structure is reproduced in our simulations as a natural consequence of the transportation and dissipation of Alfvén waves. Further, the coronal structure is maintained as the spatial resolution is changed from 25 to 3 km, although the temperature at the loop top increases with the spatial resolution. The heating mechanisms change gradually across the magnetic canopy at a height of 4 Mm. Below the magnetic canopy, both the shock and the MHD turbulence are dominant heating processes. Above the magnetic canopy, the shock heating rate reduces to less than 10 per cent of the total heating rate while the MHD turbulence provides significant energy to balance the radiative cooling and thermal conduction loss or gain. The importance of compressibility shown in this study would significantly impact on the prospects of successful MHD turbulence theory in the solar chromosphere.

  1. Widespread regulation of translation by elongation pausing in heat shock.

    PubMed

    Shalgi, Reut; Hurt, Jessica A; Krykbaeva, Irina; Taipale, Mikko; Lindquist, Susan; Burge, Christopher B

    2013-02-07

    Global repression of protein synthesis is a hallmark of the cellular stress response and has been attributed primarily to inhibition of translation initiation, although this mechanism may not always explain the full extent of repression. Here, using ribosome footprinting, we show that 2 hr of severe heat stress triggers global pausing of translation elongation at around codon 65 on most mRNAs in both mouse and human cells. The genome-wide nature of the phenomenon, its location, and features of protein N termini suggested the involvement of ribosome-associated chaperones. After severe heat shock, Hsp70's interactions with the translational machinery were markedly altered and its association with ribosomes was reduced. Pretreatment with mild heat stress or overexpression of Hsp70 protected cells from heat shock-induced elongation pausing, while inhibition of Hsp70 activity triggered elongation pausing without heat stress. Our findings suggest that regulation of translation elongation in general, and by chaperones in particular, represents a major component of cellular stress responses.

  2. Heat shock proteins and heat therapy for type 2 diabetes: pros and cons.

    PubMed

    Krause, Mauricio; Ludwig, Mirna Stela; Heck, Thiago Gomes; Takahashi, Hilton Kenji

    2015-07-01

    Heat therapy, such as sauna and hot tub, has become an increasingly regular therapeutical practice around the world since several studies have shown benefits of heat therapy in metabolic and cardiovascular diseases. The use of heat therapy in people with type 2 diabetes mellitus revealed a striking reduction of 1% unit in the glycated hemoglobin, suggesting this therapy for the treatment of diabetes. Herein, we shall discuss the use of heat therapy and the mechanisms involved, and suggest a provisional guide for the use of heat therapy in obesity and diabetes. Human studies indicate that heat therapy reduces fasting glycemia, glycated hemoglobin, body weight, and adiposity. Animal studies have indicated that nitric oxide and the increase in heat shock protein 70 expression is involved in the improvements induced by heat therapy on insulin sensitivity, adiposity, inflammation, and vasomotricity. Heat therapy is a promising and inexpensive tool for the treatment of obesity and diabetes. We proposed that transient increments in nitric oxide and heat shock protein 70 levels may explain the benefits of heat therapy. We suggest that heat therapy (sauna: 80-100°C; hot tub: at 40°C) for 15 min, three times a week, for 3 months, is a safe method to test its efficiency.

  3. Magnetogasdynamic shock waves in a nonideal gas with heat conduction and radiation heat flux

    NASA Astrophysics Data System (ADS)

    Singh, K. K.; Nath, B.

    2012-09-01

    The purpose of this study is to obtain a self-similar solution of the problem of propagation of a magnetogasdynamic shock wave in a nonideal gas with heat conduction and radiation heat flux in the presence of a spatially decreasing azimuthal magnetic field strength. The initial density of the medium is assumed to be constant. The heat conduction is expressed in terms of Fourier's law, and the radiation is considered to be of a diffusion type for an optically thick gray gas model. The thermal conductivity and absorption coefficients are assumed to vary with temperature and density. The shock is assumed to be driven by a piston moving with a variable velocity. Similarity solutions are obtained, and the effects of variation of the gas nonidealness parameter and Alfven-Mach number on the flow field behind the shock are investigated.

  4. Small heat-shock proteins protect from heat-stroke-associated neurodegeneration.

    PubMed

    Kourtis, Nikos; Nikoletopoulou, Vassiliki; Tavernarakis, Nektarios

    2012-10-11

    Heat stroke is a life-threatening condition, characterized by catastrophic collapse of thermoregulation and extreme hyperthermia. In recent years, intensification of heat waves has caused a surge of heat-stroke fatalities. The mechanisms underlying heat-related pathology are poorly understood. Here we show that heat stroke triggers pervasive necrotic cell death and neurodegeneration in Caenorhabditis elegans. Preconditioning of animals at a mildly elevated temperature strongly protects from heat-induced necrosis. The heat-shock transcription factor HSF-1 and the small heat-shock protein HSP-16.1 mediate cytoprotection by preconditioning. HSP-16.1 localizes to the Golgi, where it functions with the Ca(2+)- and Mn(2+)-transporting ATPase PMR-1 to maintain Ca(2+) homeostasis under heat stroke. Preconditioning also suppresses cell death inflicted by diverse insults, and protects mammalian neurons from heat cytotoxicity. These findings reveal an evolutionarily conserved mechanism that defends against diverse necrotic stimuli, and may be relevant to heat stroke and other pathological conditions involving necrosis in humans.

  5. NF-κB signaling pathway is inhibited by heat shock independently of active transcription factor HSF1 and increased levels of inducible heat shock proteins.

    PubMed

    Janus, Patryk; Pakuła-Cis, Małgorzata; Kalinowska-Herok, Magdalena; Kashchak, Natalia; Szołtysek, Katarzyna; Pigłowski, Wojciech; Widlak, Wieslawa; Kimmel, Marek; Widlak, Piotr

    2011-12-01

    NF-κB transcription factor regulates numerous genes important for inflammation, immune responses and cell survival. HSF1 is the primary transcription factor activated under stress conditions that is responsible for induction of genes encoding heat shock proteins. Previous studies have shown that the NF-κB activation pathway is blocked by heat shock possibly involving heat shock proteins. Here, we investigate whether active HSF1 inhibited this pathway in the absence of stress conditions. Activation of the NF-κB pathway and expression of NF-κB-dependent genes were analyzed in TNFα-stimulated U-2 OS human osteosarcoma cells that were either heat-shocked or engineered to express a constitutively active form of HSF1 in the absence of heat shock. As expected, heat shock resulted in a general blockade in the degradation of the IκBα inhibitor, nuclear translocation of NF-κB and expression of NF-κB-dependent target genes. In marked contrast, the presence of constitutively active HSF1 did not block TNFα-induced activation of the NF-κB pathway or expression of a set of the NF-κB-dependent genes. We conclude that in the absence of heat shock, the NF-κB activation pathway is inhibited by neither active HSF1 transcription factor nor by increased levels of HSF1-induced heat shock proteins.

  6. Sub-adiabatic perpendicular electron heating across high-Mach number collisionless shocks

    NASA Astrophysics Data System (ADS)

    Sundkvist, D. J.; Mozer, F.

    2012-12-01

    Spacecraft observations of a high Mach number quasi-perpendicular bow shock with high plasma beta have revealed electrons that were sub-adiabatic through the shock ramp because they were less heated than expected from conservation of the first adiabatic invariant. This stands out in contrast to existing theories of electron heating at collisionless shocks in which the electrons are adiabatically heated through compression or more-than-adiabatically heated due to additional effects such as anomalous resistivity induced by microinstabilites.

  7. Heat Shock Factor 1 Deficiency Affects Systemic Body Temperature Regulation.

    PubMed

    Ingenwerth, Marc; Noichl, Erik; Stahr, Anna; Korf, Horst-Werner; Reinke, Hans; von Gall, Charlotte

    2016-01-01

    Heat shock factor 1 (HSF1) is a ubiquitous heat-sensitive transcription factor that mediates heat shock protein transcription in response to cellular stress, such as increased temperature, in order to protect the organism against misfolded proteins. In this study, we analysed the effect of HSF1 deficiency on core body temperature regulation. Body temperature, locomotor activity, and food consumption of wild-type mice and HSF1-deficient mice were recorded. Prolactin and thyroid-stimulating hormone levels were measured by ELISA. Gene expression in brown adipose tissue was analysed by quantitative real-time PCR. Hypothalamic HSF1 and its co-localisation with tyrosine hydroxylase was analysed using confocal laser scanning microscopy. HSF1-deficient mice showed an increase in core body temperature (hyperthermia), decreased overall locomotor activity, and decreased levels of prolactin in pituitary and blood plasma reminiscent of cold adaptation. HSF1 could be detected in various hypothalamic regions involved in temperature regulation, suggesting a potential role of HSF1 in hypothalamic thermoregulation. Moreover, HSF1 co-localises with tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, suggesting a potential role of HSF1 in the hypothalamic control of prolactin release. In brown adipose tissue, levels of prolactin receptor and uncoupled protein 1 were increased in HSF1-deficient mice, consistent with an up-regulation of heat production. Our data suggest a role of HSF1 in systemic thermoregulation. © 2015 S. Karger AG, Basel.

  8. Heat shock applied early in sporulation affects heat resistance of Bacillus megaterium spores.

    PubMed

    Sedlák, M; Vinter, V; Adamec, J; Vohradský, J; Voburka, Z; Chaloupka, J

    1993-12-01

    Cells of Bacillus megaterium 27 were challenged by a 30-min heat shock at 45 degrees C during various sporulation stages and then shifted back to a temperature permissive for sporulation (27 degrees C), at which they developed spores. Heat shock applied at 120 min after the end of the exponential phase induced synthesis of heat shock proteins (HSPs) in the sporangia and delayed the inactivation of spores at 85 degrees C. Several HSPs, mainly HSP 70, could be detected in the cytoplasm of these spores. An analogous HSP, the main HSP induced by increased temperature during growth, belongs to the GroEL group according to its N-terminal sequence. The identity of this protein was confirmed by Western blot (immunoblot) analysis with polyclonal antibodies against B. subtilis GroEL. Sporangia treated by heat shock immediately or 240 min after exponential phase also synthesized HSPs, but none of them could be detected in the spores in an appreciable amount. These spores showed only a slightly increased heat resistance.

  9. Role of the heat shock response in stability of mRNA in Escherichia coli K-12.

    PubMed Central

    Henry, M D; Yancey, S D; Kushner, S R

    1992-01-01

    The heat shock response in Escherichia coli involves extensive induction of the heat shock proteins, with the concomitant suppression of the synthesis of the non-heat shock proteins. While the induction of the heat shock proteins has been shown to occur primarily at the transcriptional level, the suppression of non-heat shock proteins is poorly understood. We have investigated the possibility that an increased decay of non-heat shock mRNAs is a means of decreasing the synthesis of non-heat shock proteins during the heat shock response. Heat shock response-defective strains were compared with wild-type controls by several criteria to evaluate both mRNA stability and the induction of enzymes known to be involved in mRNA turnover. Our results indicate that increased mRNA decay is not a mechanism used to regulate the synthesis of non-heat shock proteins. PMID:1732210

  10. A Chrysanthemum Heat Shock Protein Confers Tolerance to Abiotic Stress

    PubMed Central

    Song, Aiping; Zhu, Xirong; Chen, Fadi; Gao, Haishun; Jiang, Jiafu; Chen, Sumei

    2014-01-01

    Heat shock proteins are associated with protection against various abiotic stresses. Here, the isolation of a chrysanthemum cDNA belonging to the HSP70 family is reported. The cDNA, designated CgHSP70, encodes a 647-residue polypeptide, of estimated molecular mass 70.90 kDa and pI 5.12. A sub-cellular localization assay indicated that the cDNA product is deposited in the cytoplasm and nucleus. The performance of Arabidopsis thaliana plants constitutively expressing CgHSP70 demonstrated that the gene enhances tolerance to heat, drought and salinity. When CgHSP70 was stably over-expressed in chrysanthemum, the plants showed an increased peroxidase (POD) activity, higher proline content and inhibited malondialdehyde (MDA) content. After heat stress, drought or salinity the transgenic plants were better able to recover, demonstrating CgHSP70 positive effect. PMID:24663057

  11. Ploidy Manipulation of Zebrafish Embryos with Heat Shock 2 Treatment.

    PubMed

    Baars, Destiny L; Takle, Kendra A; Heier, Jonathon; Pelegri, Francisco

    2016-12-16

    Manipulation of ploidy allows for useful transformations, such as diploids to tetraploids, or haploids to diploids. In the zebrafish Danio rerio, specifically the generation of homozygous gynogenetic diploids is useful in genetic analysis because it allows the direct production of homozygotes from a single heterozygous mother. This article describes a modified protocol for ploidy duplication based on a heat pulse during the first cell cycle, Heat Shock 2 (HS2). Through inhibition of centriole duplication, this method results in a precise cell division stall during the second cell cycle. The precise one-cycle division stall, coupled to unaffected DNA duplication, results in whole genome duplication. Protocols associated with this method include egg and sperm collection, UV treatment of sperm, in vitro fertilization and heat pulse to cause a one-cell cycle division delay and ploidy duplication. A modified version of this protocol could be applied to induce ploidy changes in other animal species.

  12. Molecular communications between plant heat shock responses and disease resistance.

    PubMed

    Lee, Jae-Hoon; Yun, Hye Sup; Kwon, Chian

    2012-08-01

    As sessile, plants are continuously exposed to potential dangers including various abiotic stresses and pathogen attack. Although most studies focus on plant responses under an ideal condition to a specific stimulus, plants in nature must cope with a variety of stimuli at the same time. This indicates that it is critical for plants to fine-control distinct signaling pathways temporally and spatially for simultaneous and effective responses to various stresses. Global warming is currently a big issue threatening the future of humans. Reponses to high temperature affect many physiological processes in plants including growth and disease resistance, resulting in decrease of crop yield. Although plant heat stress and defense responses share important mediators such as calcium ions and heat shock proteins, it is thought that high temperature generally suppresses plant immunity. We therefore specifically discuss on interactions between plant heat and defense responses in this review hopefully for an integrated understanding of these responses in plants.

  13. Three heat shock proteins from Spodoptera exigua: Gene cloning, characterization and comparative stress response during heat and cold shocks.

    PubMed

    Xu, Qi; Zou, Qi; Zheng, Huizhen; Zhang, Fan; Tang, Bin; Wang, Shigui

    2011-06-01

    To gain insight into the comparative function in stress response of HSPs in insects, three HSP cDNAs were cloned from the fat body of the beet armyworm Spodoptera exigua (Lepidoptera, Noctuidae). SexHSP70, SexHSP74 and SexHSP83 cDNAs encoding the protein of 667, 685 and 717 amino acids, with the pI of 5.52, 5.75 and 5.02, respectively. Northern blotting revealed that all three SexHSP mRNAs are expressed in the fat body, mid-gut, spermary and tracheae. SexHSP70, SexHSP74and SexHSP83 mRNAs were expressed in the fat body and whole body at different levels during different developmental stages. The three SexHSP transcripts were highly expressed in the fat body on the first day of fifth instar larvae, on the fourth and seventh days of the pupa stage, and in the whole body on the initial stages of larvae. Under heat and cold shock conditions, SexHSP70 and SexHSP83 mainly functioned during heat shock and cooling and SexHSP83 also had a function in the recovery stage. SexHSP74 had important functions in short-term heat shock and recovery, as well as long-term cooling. The results revealed that long-term shocking can affect SexHSP74 and SexHSP83 expression and long-term cooling can influence SexHSP83 expression during the recovery stage.

  14. Effect of heat release on movement characteristics of shock train in an isolator

    NASA Astrophysics Data System (ADS)

    Zhang, Chenlin; Chang, Juntao; Liu, MengMeng; Feng, Shuo; Shi, Wen; Bao, Wen

    2017-04-01

    In this paper, the effect of heat release on movement characteristics of shock train is numerically investigated in an isolator. It is found that the combustion heat release has a distinct effect on the shock train movement characteristics in the isolator. With increasing heat release, a shock train gradually forms and then propagates toward isolator entrance. In process of shock train formation, separation bubbles before injection ports entrain the high temperature burning gas into the boundary layer, which causes the shock train to shrink and stretch, and changes in configuration and number of shock waves. At the same time, the system force fluctuates. In addition, the shock train movement is divided into three stages, which have different wall pressure distribution. It is believed that these findings have a help the better understanding of the effect of heat release on the movement characteristics of shock train in an isolator.

  15. Global transcriptome analysis of the heat shock response ofshewanella oneidensis

    SciTech Connect

    Gao, Haichun; Wang, Sarah; Liu, Xueduan; Yan, Tinfeng; Wu, Liyou; Alm, Eric; Arkin, Adam P.; Thompson, Dorothea K.; Zhou, Jizhong

    2004-04-30

    Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress using whole-genome DNA microarrays for S. oneidensis MR-1. Approximately 15 percent (711) of the predicted S. oneidensis genes represented on the microarray were significantly up- or down-regulated (P < 0.05) over a 25-min period following shift to the heat shock temperature (42 C). As expected, the majority of S. oneidensis genes exhibiting homology to known chaperones and heat shock proteins (Hsps) were highly and transiently induced. In addition, a number of predicted genes encoding enzymes in glycolys is and the pentose cycle, [NiFe] dehydrogenase, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced in response to heat stress. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed down-regulated co-expression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, based on computational comparative analysis of the upstream promoter regions of S.oneidensis heat-inducible genes, a putative regulatory motif, showing high conservation to the Escherichia coli sigma 32-binding consensus sequence, was identified.

  16. Integrative analysis of the heat shock response in Aspergillus fumigatus

    PubMed Central

    2010-01-01

    Background Aspergillus fumigatus is a thermotolerant human-pathogenic mold and the most common cause of invasive aspergillosis (IA) in immunocompromised patients. Its predominance is based on several factors most of which are still unknown. The thermotolerance of A. fumigatus is one of the traits which have been assigned to pathogenicity. It allows the fungus to grow at temperatures up to and above that of a fevered human host. To elucidate the mechanisms of heat resistance, we analyzed the change of the A. fumigatus proteome during a temperature shift from 30°C to 48°C by 2D-fluorescence difference gel electrophoresis (DIGE). To improve 2D gel image analysis results, protein spot quantitation was optimized by missing value imputation and normalization. Differentially regulated proteins were compared to previously published transcriptome data of A. fumigatus. The study was augmented by bioinformatical analysis of transcription factor binding sites (TFBSs) in the promoter region of genes whose corresponding proteins were differentially regulated upon heat shock. Results 91 differentially regulated protein spots, representing 64 different proteins, were identified by mass spectrometry (MS). They showed a continuous up-, down- or an oscillating regulation. Many of the identified proteins were involved in protein folding (chaperones), oxidative stress response, signal transduction, transcription, translation, carbohydrate and nitrogen metabolism. A correlation between alteration of transcript levels and corresponding proteins was detected for half of the differentially regulated proteins. Interestingly, some previously undescribed putative targets for the heat shock regulator Hsf1 were identified. This provides evidence for Hsf1-dependent regulation of mannitol biosynthesis, translation, cytoskeletal dynamics and cell division in A. fumigatus. Furthermore, computational analysis of promoters revealed putative binding sites for an AP-2alpha-like transcription factor

  17. Heat shock response and thermal resistance in cultured human retinal pigment epithelium.

    PubMed

    Wakakura, M; Foulds, W S

    1993-01-01

    The heat shock response was examined in cultured human retinal pigment epithelium (RPE) using indirect immunofluorescence. Mild head shock (39.5-40 degrees C for 1 hr) caused no changes in cell morphology and cells continued to produce the intermediate filament proteins, cytokeratin (keratin) and vimentin. In addition, cells subjected to mild heat shock demonstrated the presence of a heat shock protein (HSP-90). After severe heat shock (45.5-46 degrees C for 1 hr) most cells showed marked morphological changes and, in addition, HSP-90 and/or stress-induced 40 kDa protein production was significantly enhanced. The expression of vimentin was relatively well preserved whereas that of keratin was markedly reduced. When the more severe grade of heat shock was preceded by mild heat shock 20-24 hr earlier, the subsequent severe heat shock resulted in less marked morphological change than in cells not preconditioned and, in addition, the expression of both vimentin and keratin was relatively well preserved. Mildly heat shocked cells appeared to gain thermal resistance supporting the theory that the concomitant synthetic capacity for HSP and normal cellular proteins contributes to thermal resistance. In doubly heat shocked cells, however, HSP-90 expression was not enhanced. The discrepancy between the expression of HSP and thermal resistance is discussed.

  18. Galaxy bimodality due to cold flows and shock heating

    NASA Astrophysics Data System (ADS)

    Dekel, Avishai; Birnboim, Yuval

    2006-05-01

    We address the origin of the robust bimodality observed in galaxy properties about a characteristic stellar mass ~3 × 1010Msolar. Less massive galaxies tend to be ungrouped blue star forming discs, while more massive galaxies are typically grouped red old-star spheroids. Colour-magnitude data show a gap between the red and blue sequences, extremely red luminous galaxies already at z~ 1, a truncation of today's blue sequence above L*, and massive starbursts at z~ 2-4. We propose that these features are driven by the thermal properties of the inflowing gas and their interplay with the clustering and feedback processes, all functions of the dark matter halo mass and associated with a similar characteristic scale. In haloes below a critical shock-heating mass Mshock<~ 1012Msolar, discs are built by cold streams, not heated by a virial shock, yielding efficient early star formation. It is regulated by supernova feedback into a long sequence of bursts in blue galaxies constrained to a `fundamental line'. Cold streams penetrating through hot media in M>=Mshock haloes preferentially at z>= 2 lead to massive starbursts in L > L* galaxies. At z < 2, in M > Mshock haloes hosting groups, the gas is heated by a virial shock, and being dilute it becomes vulnerable to feedback from energetic sources such as active galactic nuclei. This shuts off gas supply and prevents further star formation, leading by passive evolution to `red-and-dead' massive spheroids starting at z~ 1. A minimum in feedback efficiency near Mshock explains the observed minimum in M/L and the qualitative features of the star formation history. The cold flows provide a hint for solving the angular momentum problem. When these processes are incorporated in simulations they recover the main bimodality features and solve other open puzzles.

  19. Associations between heat shock protein 70 genetic polymorphisms and calving traits in crossbred Brahman cows

    USDA-ARS?s Scientific Manuscript database

    Stressors such as heat, cold, toxins, and oxygen deprivation are known to induce heat shock proteins. Genetic polymorphisms associated with heat shock protein genes have been associated with decreased male and female fertility. Our objectives were to 1) confirm single nucleotide polymorphisms (SNP) ...

  20. Heat shock proteins: applications in health and disease.

    PubMed

    Jindal, S

    1996-01-01

    Heat shock proteins (hsps) assist the assembly, folding and translocation of other proteins, and apparently have a role in protecting cells against injuries and other types of stress. In addition, hsps are frequently recognized by the immune system as predominant antigens during infections and during the progression of certain autoimmune diseases and, thus, might provide a novel route for the development of immunotherapeutics. This review focuses on applications for hsps in health and disease, and discusses the pros and cons of considering them as targets for the development of therapeutics/pharmaceuticals.

  1. Heat shock proteins and their association with major pediatric malignancies.

    PubMed

    Skora, Dorota; Gorska, Magdalena

    2016-01-01

    Heat shock proteins belong to a group of molecular chaperones responsible for the regulation of many intracellular processes. HSPs play a pivotal role in the survival of cells under stressful conditions. Over-expression of these proteins have been found in both healthy and a great number of cancer cells. HSPs may be involved in numerous carcinogenic and chemoresistant processes. Due to that fact, they may be referred to as diagnostic biomarkers of oncogenesis and potential targets for anticancer drugs. Thus, we decided to review the involvement of major HSPs in the most malignant childhood cancers.

  2. TC1 (C8orf4) is upregulated by cellular stress and mediates heat shock response.

    PubMed

    Park, Juhee; Jung, Yusun; Kim, Jungtae; Kim, Ka-Young; Ahn, Sang-Gun; Song, Kyuyoung; Lee, Inchul

    2007-08-24

    TC1 (C8orf4) is associated with aggressive behavior and poor survival in cancer. We have recently reported that it is a target gene of NF-kappaB and regulates the Wnt/beta-catenin pathway. Here, we show that TC1 is upregulated by various cellular stresses and mediates heat shock response. Heat shock and other cellular stresses including H2O2, 12-O-tetradecanoylphorbol 13-acetate (TPA), lipopolysaccharide (LPS), and UV enhance TC1 transcription in HeLa, KATO-III, HEK293T, and HK cells. TC1 protein then moves into the nuclei independently of NF-kappaB activation. TC1 upregulates heat shock proteins, and TC1-knockdown inhibits stress-induced downstream regulation significantly. Heat shock factor 1(HSF1) and TC1 upregulate each other, suggesting a potential positive feedback in the heat shock response regulation. Our data suggest that TC1 is a novel heat shock response regulator.

  3. Investigation of the function of the heat shock proteins in Drosophila melanogaster tissue culture cells.

    PubMed

    Arrigo, A P

    1980-01-01

    The effect of inhibitors of protein synthesis on RNA synthesis was investigated before and during heat shock. The results indicate that proteins specifically made following heat shock might be required for the resumption, after heat shock, of the synthesis of the RNA normally made at 25 degrees C. It has previously been shown that the heat shock proteins, with the exception of hsp 84 are found in the nucleus bound to chromatin at 37 degrees C, and that they move to the cytoplasm on further incubation of the cells at 25 degrees C (Arrigo et al., 1980). Taken together, these results suggest that some protein(s) synthesized during heat shock may be involved in the regulation of RNA synthesis. However evidence is presented showing that the newly synthesized proteins at 37 degrees are not involved in repressing the transcription of most of the genes active before the heat shock.

  4. Proteome stability, heat hardening, and heat-shock protein expression profiles in Cataglyphis desert ants.

    PubMed

    Willot, Quentin; Gueydan, Cyril; Aron, Serge

    2017-02-23

    In ectotherms, high temperatures impose physical limits, impeding activity. Exposure to high heat levels causes various deleterious and lethal effects, including protein misfolding and denaturation. Thermophilic ectotherms have thus evolved various ways to increase macromolecular stability and cope with elevated body temperatures; these include the high constitutive expression of molecular chaperones. In this work, we investigated the effect of moderate to severe heat shock (37°C-45°C) on survival, heat hardening, protein damage, and the expression of five heat-tolerance related genes (hsc70-4 h1, hsc70-4 h2, hsp83, hsc70-5, and hsf1) in two rather closely related Cataglyphis ants that occur in distinct habitats. Our results show that the highly thermophilic Sahara ant Cataglyphis bombycina constitutively expresses HSC70 at higher levels, but has lower induced expression of heat-tolerance related genes in response to heat shock, as compared to the more mesophilic C. mauritanica found in the Atlas Mountains. As a result, C. bombycina demonstrates increased protein stability when exposed to acute heat stress but is less prone to acquiring induced thermotolerance via heat hardening. These results provide further insight into the evolutionary plasticity of the hsps gene expression system and subsequent physiological adaptations in thermophilous desert insects to adapt to harsh environmental conditions.

  5. DNA damage-responsive Drosophila melanogaster gene is also induced by heat shock

    SciTech Connect

    Vivino, A.A.; Smith, M.D.; Minton, K.W.

    1986-12-01

    A gene isolated by screening Drosophila melanogaster tissue culture cells for DNA damage regulation was also found to be regulated by heat shock. After UV irradiation or heat shock, induction is at the transcriptional level and results in the accumulation of a 1.0-kilobase polyadenylated transcript. The restriction map of the clone bears no resemblance to the known heat shock genes, which are shown to be uninduced by UV irradiation.

  6. Intra-binary Shock Heating of Black Widow Companions

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.; Sanchez, Nicolas

    2016-09-01

    The low-mass companions of evaporating binary pulsars (black widows and similar) are strongly heated on the side facing the pulsar. However, in high-quality photometric and spectroscopic data, the heating pattern does not match that expected for direct pulsar illumination. Here we explore a model where the pulsar power is intercepted by an intra-binary shock (IBS) before heating the low-mass companion. We develop a simple analytic model and implement it in the popular “ICARUS” light curve code. The model is parameterized by the wind momentum ratio β and the companion wind speed {f}v{v}{{orb}}, and assumes that the reprocessed pulsar wind emits prompt particles or radiation to heat the companion surface. We illustrate an interesting range of light curve asymmetries controlled by these parameters. The code also computes the IBS synchrotron emission pattern, and thus can model black widow X-ray light curves. As a test, we apply the results to the high-quality asymmetric optical light curves of PSR J2215+5135; the resulting fit gives a substantial improvement upon direct heating models and produces an X-ray light curve consistent with that seen. The IBS model parameters imply that at the present loss rate, the companion evaporation has a characteristic timescale of {τ }{{evap}}≈ 150 Myr. Still, the model is not fully satisfactory, indicating that there are additional unmodeled physical effects.

  7. The bromodomain protein BRD4 regulates splicing during heat shock

    PubMed Central

    Hussong, Michelle; Kaehler, Christian; Kerick, Martin; Grimm, Christina; Franz, Alexandra; Timmermann, Bernd; Welzel, Franziska; Isensee, Jörg; Hucho, Tim; Krobitsch, Sylvia; Schweiger, Michal R.

    2017-01-01

    The cellular response to heat stress is an ancient and evolutionarily highly conserved defence mechanism characterised by the transcriptional up-regulation of cyto-protective genes and a partial inhibition of splicing. These features closely resemble the proteotoxic stress response during tumor development. The bromodomain protein BRD4 has been identified as an integral member of the oxidative stress as well as of the inflammatory response, mainly due to its role in the transcriptional regulation process. In addition, there are also several lines of evidence implicating BRD4 in the splicing process. Using RNA-sequencing we found a significant increase in splicing inhibition, in particular intron retentions (IR), following heat treatment in BRD4-depleted cells. This leads to a decrease of mRNA abundancy of the affected transcripts, most likely due to premature termination codons. Subsequent experiments revealed that BRD4 interacts with the heat shock factor 1 (HSF1) such that under heat stress BRD4 is recruited to nuclear stress bodies and non-coding SatIII RNA transcripts are up-regulated. These findings implicate BRD4 as an important regulator of splicing during heat stress. Our data which links BRD4 to the stress induced splicing process may provide novel mechanisms of BRD4 inhibitors in regard to anti-cancer therapies. PMID:27536004

  8. The L-type cyclin CYL-1 and the heat-shock-factor HSF-1 are required for heat-shock-induced protein expression in Caenorhabditis elegans.

    PubMed

    Hajdu-Cronin, Yvonne M; Chen, Wen J; Sternberg, Paul W

    2004-12-01

    In a screen for suppressors of activated GOA-1 (Galpha(o)) under the control of the hsp-16.2 heat-shock promoter, we identified three genetic loci that affected heat-shock-induced GOA-1 expression. The cyl-1 mutants are essentially wild type in appearance, while hsf-1 and sup-45 mutants have egg-laying defects. The hsf-1 mutation also causes a temperature-sensitive developmental arrest, and hsf-1 mutants have decreased life span. Western analysis indicated that mutations in all three loci suppressed the activated GOA-1 transgene by decreasing its expression. Heat-shock-induced expression of hsp-16.2 mRNA was reduced in cyl-1 mutants and virtually eliminated in hsf-1 and sup-45 mutants, as compared to wild-type expression. The mutations could also suppress other transgenes under heat-shock control. cyl-1 and sup-45, but not hsf-1, mutations suppressed a defect caused by a transgene not under heat-shock control, suggesting a role in general transcription or a post-transcriptional aspect of gene expression. hsf-1 encodes the C. elegans homolog of the human heat-shock factor HSF1, and cyl-1 encodes a cyclin most similar to cyclin L. We believe HSF-1 acts in heat-shock-inducible transcription and CYL-1 acts more generally in gene expression.

  9. Differential expression of proteins in Listeria monocytogenes under thermotolerance-inducing, heat shock, and prolonged heat shock conditions.

    PubMed

    Agoston, Réka; Soni, Kamlesh; Jesudhasan, Palmy R; Russell, William K; Mohácsi-Farkas, Csilla; Pillai, Suresh D

    2009-11-01

    Listeria monocytogenes is a foodborne pathogen capable of employing stress adaptive responses to evade a variety of stressors including temperature stress. We employed two-dimensional gel electrophoresis coupled with matrix-assisted laser desorption/ionization-time of flight analysis to study the differential expression of L. monocytogenes (ATCC 43256) soluble proteins at heat shock (60 degrees C) conditions, prolonged heat shock (60 degrees C for 9 minutes) conditions, and thermotolerance-inducing (48 degrees C for 30 minutes followed by 60 degrees C for 9 minutes) conditions. We compared the proteome of L. monocytogenes under these conditions to the proteome at 37 degrees C. Eighteen proteins were differentially expressed at 60 degrees C (6 up-regulated and 12 down-regulated), 21 proteins were differentially expressed (12 up-regulated and 9 down-regulated) when the cells were exposed to 60 degrees C for 9 minutes, and 20 proteins were differentially expressed (10 up-regulated and 10 down-regulated) when cells were initially exposed to 48 degrees C for 30 minutes before 60 degrees C for 9 minutes. There was one unidentifiable protein with observed molecular weight of 50 kDa which was differentially expressed across the three temperature treatments. Thermotolerance-inducing conditions caused the up-regulation of a protein by as much as 12-fold. DnaN, a previously identified stress protein, was up-regulated almost threefold at 60 degrees C. TcsA, a lipoprotein (CD4 T cell-stimulating antigen), and Gap (glyceraldehyde-3-phosphate-dehydrogenase) were selectively expressed under prolonged heat shock conditions suggesting their potential as candidate marker proteins targets for identifying temperature-stressed L. monocytogenes cells.

  10. Heat shock factor 2 is associated with the occurrence of lung cancer by enhancing the expression of heat shock proteins

    PubMed Central

    Zhong, Yun-Hua; Cheng, Hong-Zhong; Peng, Hao; Tang, Shi-Cong; Wang, Ping

    2016-01-01

    Cancer is the leading cause of morbidity and mortality worldwide, particularly lung cancer. Heat shock proteins and their upstream heat shock factors are involved in the occurrence of cancer and have been widely researched. However, the role of heat shock factor 2 (HSF2) in lung cancer remains unclear. In the present study, expression levels of HSF2 in lung cancer tissues from 50 lung cancer patients were detected by reverse transcription quantitative polymerase chain reaction, and 76% (38/50) were upregulated compared with the matched normal tissues. This suggested possible involvement of HSF2 in lung cancer. To additionally investigate the role of HSF2 in lung cancer occurrence, a plasmid encoding HSF2 was constructed. HSF2 was over expressed in normal lung epithelial BEAS-2B cells and lung cancer A549 cells. The results showed that HSF2 overexpression promoted cell proliferation and cell migration in BEAS-2B and A549 cells. Additional experiments showed that the HSF2-induced cell proliferation and cell migration were dependent on induction of HSPs, particularly HSP27 and HSP90, as co-transfection of HSP27 small interfering RNA (siRNA) or HSP90 siRNA attenuated HSF2-induced cell growth and migration. In conclusion, the present study showed that HSF2 is aberrantly expressed in lung cancer, and it may be an upstream regulator of HSPs, which may strongly affect cell growth and cell migration. Additional studies are required to explain the detailed mechanism between lung cancer, HSF2, HSPs and other possible signaling pathways. PMID:28101237

  11. In vivo phosphorus-31 nuclear magnetic resonance reveals lowered ATP during heat shock of Tetrahymena

    SciTech Connect

    Findly, R.C.; Gillies, R.J.; Shulman, R.G.

    1983-03-11

    Cells synthesize a characteristic set of proteins--heat shock proteins--in response to a rapid temperature jump or certain other stress treatments. The technique of phosphorus-31 nuclear magnetic resonance spectroscopy was used to examine in vivo the effects of temperature jump on two species of Tetrahymena that initiate the heat shock response at different temperatures. An immediate 50 percent decrease in cellular adenosine triphosphate was observed when either species was jumped to a temperature that strongly induces synthesis of heat shock proteins. This new adenosine triphosphate concentration was maintained at the heat shock temperature.

  12. Exploring temporal transcription regulation structure of Aspergillus fumigatus in heat shock by state space model

    PubMed Central

    Do, Jin Hwan; Yamaguchi, Rui; Miyano, Satoru

    2009-01-01

    Background The thermotolerance of Aspergillus fumigatus plays a critical role in mammalian and avian infections. Thus, the identification of its adaptation mechanism to higher temperature is very important for an efficient anti-fungal drug development as well as fundamental understanding of its pathogenesis. We explored the temporal transcription regulation structure of this pathogenic fungus under heat shock conditions using the time series microarray data reported by Nierman et al. (Nature 2005, 438:1151-1156). Results The estimated transcription regulation structure of A. fumigatus shows that the heat shock proteins are strongly negatively associated with central metabolic pathway genes such as the tricarboxylic acid cycle (TCA cycle) and carbohydrate metabolism. It was 60 min and 120 min, respectively, after the growth temperature changes from 30°C (corresponding to environments of tropical soil) to 37°C and 48°C (corresponding to temperatures in the human body and compost, respectively) that some of genes in TCA cycle were started to be upregulated. In these points, most of heat shock proteins showed lowest expression level after heat shocks. Among the heat shock proteins, the HSP30 (AFU6G06470), a single integral plasma membrane heat shock protein, presented most active role in transcription regulation structure in both heat shock conditions of 37°C and 48°C. The metabolic genes associated with multiple genes in the gene regulation network showed a tendency to have opposite expression patterns of heat shock proteins. The role of those metabolic genes was second regulator in the coherent feed-forward loop type of regulation structure having heat shock protein as its first regulator. This type of regulation structure might be very advantageous for the thermal adaptation of A. fumigatus under heat shock because a small amount of heat shock proteins can rapidly magnify their regulation effect on target genes. However, the coherent feed-forward loop type of

  13. The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa.

    PubMed

    Li, Wei; Zhang, Chunyan; Lu, Qingtao; Wen, Xiaogang; Lu, Congming

    2011-10-15

    Under natural conditions or in the field, plants are often subjected to a combination of different stresses such as salt stress and heat shock. Although salt stress and heat shock have been extensively studied, little is known about how their combination affects plants. We used proteomics, coupled with physiological measurements, to investigate the effect of salt stress, heat shock, and their combination on Suaeda salsa plants. A combination of salt stress and heat shock resulted in suppression of CO(2) assimilation and the photosystem II efficiency. Approximately 440 protein spots changed their expression levels upon salt stress, heat shock and their combination, and 57 proteins were identified by MS. These proteins were classified into several categories including disease/defense, photosynthesis, energy production, material transport, and signal transduction. Some proteins induced during salt stress, e.g. choline monooxygenase, chloroplastic ATP synthase subunit beta, and V-type proton ATPase catalytic subunit A, and some proteins induced during heat shock, e.g. heat shock 70kDa protein, probable ion channel DMI1, and two component sensor histidine kinase, were either unchanged or suppressed during a combination of salt stress and heat shock. In contrast, the expression of some proteins, including nucleoside diphosphate kinase 1, chlorophyll a/b binding protein, and ABC transporter I family member 1, was specifically induced during a combination of salt stress and heat shock. The potential roles of the stress-responsive proteins are discussed.

  14. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    SciTech Connect

    Pack, Chan-Gi; Ahn, Sang-Gun

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  15. KPNA3-knockdown eliminates the second heat shock protein peak associated with the heat shock response of male silkworm pupae (Bombyx mori) by reducing heat shock factor transport into the nucleus.

    PubMed

    Li, Jun; Wei, Guoqing; Wang, Lei; Qian, Cen; Li, Kedong; Zhang, Congfen; Dai, Lishang; Sun, Yu; Liu, Dongran; Zhu, Baojian; Liu, Chaoliang

    2016-01-10

    In this study, we investigated the role of karyopherin alpha 3 in the heat shock response in male silkworm pupae. Karyopherin alpha recognizes the classical nuclear location sequence on proteins and transports them into the nucleus by forming a trimetric complex with karyopherin beta. Three predicted karyopherin alphas (KPNA1, KPNA2 and KPNA3) have been identified from the silkworm Bombyx mori. Pull-down assay result showed that KPNA3 can pull down heat shock transcription factor (HSF) from proteins extracted from tissues using non-denature lysis buffer. After 45 °C heat shock on male B. mori pupae for 30 min, we identified two heat shock protein (HSP) mRNA expression peaks correlating with HSP19.9, HSP20.4 and HSP25.4 at 4 h (peak 1) and 24 h (peak 2). The second peak was eliminated after knockdown of KPNA3. Similar results were obtained following knockdown of HSF, which is the trans-activating factor of heat shock. However, KPNA3 knockdown was not accompanied by the decreased HSF protein levels at 24 h after heat shock which were observed following HSF knockdown. We also expressed recombinant protein GST-KPNA3 and His-HSF in Escherichia coli to perform GST pull-down assay and the result confirmed the interaction between KPNA3 and HSF. We concluded that KPNA3 knockdown eliminates the second heat shock protein peak in the heat shock response of male silkworm pupae by reducing HSF transport into the nucleus. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Modification of tooth development by heat shock protein 60.

    PubMed

    Papp, Tamas; Polyak, Angela; Papp, Krisztina; Meszar, Zoltan; Zakany, Roza; Meszar-Katona, Eva; Tünde, Palne Terdik; Ham, Chang Hwa; Felszeghy, Szabolcs

    2016-03-30

    Although several heat shock proteins have been investigated in relation to tooth development, no available information is available about the spatial and temporal expression pattern of heat shock protein 60 (Hsp 60). To characterize Hsp 60 expression in the structures of the developing tooth germ, we used Western blotting, immunohistochemistry and in situ hybridization. Hsp 60 was present in high amounts in the inner and outer enamel epithelia, enamel knot (EK) and stratum intermedium (SI). Hsp 60 also appeared in odontoblasts beginning in the bell stage. To obtain data on the possible effect of Hsp 60 on isolated lower incisors from mice, we performed in vitro culturing. To investigate the effect of exogenous Hsp 60 on the cell cycle during culturing, we used the 5-bromo-2-deoxyuridine (BrdU) incorporation test on dental cells. Exogenously administered Hsp 60 caused bluntness at the apical part of the 16.5-day-old tooth germs, but it did not influence the proliferation rate of dental cells. We identified the expression of Hsp 60 in the developing tooth germ, which was present in high concentrations in the inner and outer enamel epithelia, EK, SI and odontoblasts. High concentration of exogenous Hsp 60 can cause abnormal morphology of the tooth germ, but it did not influence the proliferation rate of the dental cells. Our results suggest that increased levels of Hsp 60 may cause abnormalities in the morphological development of the tooth germ and support the data on the significance of Hsp during the developmental processes.

  17. Small heat shock proteins and protein-misfolding diseases.

    PubMed

    Laskowska, Ewa; Matuszewska, Ewelina; Kuczyńska-Wiśnik, Dorota

    2010-02-01

    Small heat shock proteins (sHsps) are molecular chaperones ubiquitously distributed in numerous species, from bacteria to humans. A conserved C-terminal "alpha-crystallin" domain organized in a beta-sheet sandwich and oligomeric structure are common features of sHsps. sHsps protect cells against many kinds of stresses including heat shock, oxidative and osmotic stress. sHsps recognize unfolded proteins, prevent their irreversible aggregation and facilitate refolding of bound substrates in cooperation with ATP-dependent molecular chaperones (Hsp70/Hsp40). Mammalian sHsps (HSPBs) are multifunctional proteins involved in many cellular processes including those which are not directly related to protein folding and aggregation. HSPBs participate in cell development and cancerogenesis, regulate apoptosis and control cytoskeletal architecture. Recent data revealed that HSPBs also play an important role in membrane stabilization. Mutation in HSPB genes have been identified, which are responsible for the development of cataract, desmin related myopathy and neuropathies. HSPBs are often found as components of protein aggregates associated with protein-misfolding disorders, such as Parkinson's, Alzheimer's, Alexander's and prion diseases. It is supposed that the presence of HSPBs in intra- or extracellular protein deposits is a consequence of the chaperone activity of HSPBs, however more studies are needed to reveal the exact function of HSPBs during the formation (or removal) of disease-related aggregates.

  18. Heat shock protein 90 from neglected protozoan parasites.

    PubMed

    Roy, Nainita; Nageshan, Rishi Kumar; Ranade, Shatakshi; Tatu, Utpal

    2012-03-01

    Significant advances have been made in our understanding of heat shock protein 90 (Hsp90) in terms of its structure, biochemical characteristics, post-translational modifications, interactomes, regulation and functions. In addition to yeast as a model several new systems have now been examined including flies, worms, plants as well as mammalian cells. This review discusses themes emerging out of studies reported on Hsp90 from infectious disease causing protozoa. A common theme of sensing and responding to host cell microenvironment emerges out of analysis of Hsp90 in Malaria, Trypanosmiasis as well as Leishmaniasis. In addition to their functional roles, the potential of Hsp90 from these infectious disease causing organisms to serve as drug targets and the current status of this drug development endeavor are discussed. Finally, a unique and the only known example of a split Hsp90 gene from another disease causing protozoan Giardia lamblia and its evolutionary significance are discussed. Clearly studies on Hsp90 from protozoan parasites promise to reveal important new paradigms in Hsp90 biology while exploring its potential as an anti-infective drug target. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90). Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Protein disorder reduced in Saccharomyces cerevisiae to survive heat shock

    PubMed Central

    Vicedo, Esmeralda; Gasik, Zofia; Dong, Yu-An; Goldberg, Tatyana; Rost, Burkhard

    2015-01-01

    Recent experiments established that a culture of Saccharomyces cerevisiae (baker’s yeast) survives sudden high temperatures by specifically duplicating the entire chromosome III and two chromosomal fragments (from IV and XII). Heat shock proteins (HSPs) are not significantly over-abundant in the duplication. In contrast, we suggest a simple algorithm to “ postdict ” the experimental results: Find a small enough chromosome with minimal protein disorder and duplicate this region. This algorithm largely explains all observed duplications. In particular, all regions duplicated in the experiment reduced the overall content of protein disorder. The differential analysis of the functional makeup of the duplication remained inconclusive. Gene Ontology (GO) enrichment suggested over-representation in processes related to reproduction and nutrient uptake. Analyzing the protein-protein interaction network (PPI) revealed that few network-central proteins were duplicated. The predictive hypothesis hinges upon the concept of reducing proteins with long regions of disorder in order to become less sensitive to heat shock attack. PMID:26673203

  20. Transcriptional Profiling of Mycoplasma hyopneumoniae during Heat Shock Using Microarrays†

    PubMed Central

    Madsen, Melissa L.; Nettleton, Dan; Thacker, Eileen L.; Edwards, Robert; Minion, F. Chris

    2006-01-01

    Bacterial pathogens undergo stress during host colonization and disease processes. These stresses result in changes in gene expression to compensate for potentially lethal environments developed in the host during disease. Mycoplasma hyopneumoniae colonizes the swine epithelium and causes a pneumonia that predisposes the host to enhanced disease from other pathogens. How M. hyopneumoniae responds to changing environments in the respiratory tract during disease progression is not known. In fact, little is known concerning the capabilities of mycoplasmas to respond to changing growth environments. With limited genes, mycoplasmas are thought to possess only a few mechanisms for gene regulation. A microarray consisting of 632 of the 698 open reading frames of M. hyopneumoniae was constructed and used to study gene expression differences during a temperature shift from 37°C to 42°C, a temperature swing that might be encountered during disease. To enhance sensitivity, a unique hexamer primer set was employed for generating cDNA from only mRNA species. Our analysis identified 91 genes that had significant transcriptional differences in response to heat shock conditions (P < 0.01) with an estimated false-discovery rate of 4 percent. Thirty-three genes had a change threshold of 1.5-fold or greater. Many of the heat shock proteins previously characterized in other bacteria were identified as significant in this study as well. A proportion of the identified genes (54 of 91) currently have no assigned function. PMID:16368969

  1. Regulation of protein turnover by heat shock proteins.

    PubMed

    Bozaykut, Perinur; Ozer, Nesrin Kartal; Karademir, Betul

    2014-12-01

    Protein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin-proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Heat-shock protein 70 binds microtubules and interacts with kinesin in tobacco pollen tubes.

    PubMed

    Parrotta, Luigi; Cresti, Mauro; Cai, Giampiero

    2013-09-01

    The heat-shock proteins of 70 kDa are a family of ubiquitously expressed proteins important for protein folding. Heat-shock protein 70 assists other nascent proteins to achieve the spatial structure and ultimately helps the cell to protect against stress factors, such as heat. These proteins are localized in different cellular compartments and are associated with the cytoskeleton. We identified a heat-shock protein 70 isoform in the pollen tube of tobacco that binds to microtubules in an ATP-dependent manner. The heat-shock protein 70 was identified as part of the so-called ATP-MAP (ATP-dependent microtubule-associated protein) fraction, which also includes the 90-kDa kinesin, a mitochondria-associated motor protein. The identity of heat-shock protein 70 was validated by immunological assays and mass spectrometry. Sequence analysis showed that this heat-shock protein 70 is more similar to specific heat-shock proteins of Arabidopsis than to corresponding proteins of tobacco. Two-dimensional electrophoresis indicated that this heat-shock protein 70 isoform only is part of the ATP-MAP fraction and that is associated with the mitochondria of pollen tubes. Sedimentation assays showed that the binding of heat-shock protein 70 to microtubules is not affected by AMPPNP but it increases in the presence of the 90-kDa kinesin. Binding of heat-shock protein 70 to microtubules occurs only partially in the presence of ATP but it does not occur if, in addition to ATP, the 90-kDa kinesin is also present. Data suggest that the binding (but not the release) of heat-shock protein 70 to microtubules is facilitated by the 90-kDa kinesin. Copyright © 2013 Wiley Periodicals, Inc.

  3. Electron Heating at Galaxy Cluster Shocks: Measuring the Temperature of the Bullet Cluster Shock with NuSTAR

    NASA Astrophysics Data System (ADS)

    Wik, Daniel R.

    2017-01-01

    The Bullet cluster is famous for driving a shock into an oncoming subcluster's intracluster medium with its cool core (the "bullet"). Chandra data suggest a very high electron temperature right at the front (>30 keV), implying that electrons are directly heated by the passing shock contrary to expectations. However, Chandra's sensitivity to such high temperatures is low, given that its effective area declines swiftly above ˜4 keV. NuSTAR, the first focusing hard (>10 keV) X-ray observatory, is much better matched to the emission from gas with high temperatures, assuming its much poorer spatial resolution can be appropriately modeled. We present a demonstration of this technique with joint Chandra-NuSTAR imaging spectroscopy of the Bullet cluster and its shock. On average across its entire length, the shock temperature is in line with both the expectations of no direct heating by the shock (only increased temperature from adiabatic compression) and direct heating; both predictions overlap due to the lower Mach number farther away from the cool core. To compare directly with the Chandra-only measurement, we also constrain the shock temperature immediately ahead of the cool core, possibly to confirm this exciting example of direct electron heating driven by a weak shock. The prospects for future measurements in other clusters with NuSTAR will also be discussed.

  4. Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough.

    SciTech Connect

    Arkin, A. P.; Wall, J. D.; Hazen, T. C.; He, Z.; Zhou, J.; Huang, K. H.; Gaucher, Sara P.; He, Q.; Hadi, Masood Z.; Chhabra, Swapnil R.; Alm, Eric J.; Singh, A. K.

    2005-08-01

    Desulfovibrio vulgaris Hildenborough belongs to a class of sulfate-reducing bacteria (SRB) and is found ubiquitously in nature. Given the importance of SRB-mediated reduction for bioremediation of metal ion contaminants, ongoing research on D. vulgaris has been in the direction of elucidating regulatory mechanisms for this organism under a variety of stress conditions. This work presents a global view of this organism's response to elevated growth temperature using whole-cell transcriptomics and proteomics tools. Transcriptional response (1.7-fold change or greater; Z {ge} 1.5) ranged from 1,135 genes at 15 min to 1,463 genes at 120 min for a temperature up-shift of 13 C from a growth temperature of 37 C for this organism and suggested both direct and indirect modes of heat sensing. Clusters of orthologous group categories that were significantly affected included posttranslational modifications; protein turnover and chaperones (up-regulated); energy production and conversion (down-regulated), nucleotide transport, metabolism (down-regulated), and translation; ribosomal structure; and biogenesis (down-regulated). Analysis of the genome sequence revealed the presence of features of both negative and positive regulation which included the CIRCE element and promoter sequences corresponding to the alternate sigma factors {sigma}{sup 32} and {sigma}{sup 54}. While mechanisms of heat shock control for some genes appeared to coincide with those established for Escherichia coli and Bacillus subtilis, the presence of unique control schemes for several other genes was also evident. Analysis of protein expression levels using differential in-gel electrophoresis suggested good agreement with transcriptional profiles of several heat shock proteins, including DnaK (DVU0811), HtpG (DVU2643), HtrA (DVU1468), and AhpC (DVU2247). The proteomics study also suggested the possibility of posttranslational modifications in the chaperones DnaK, AhpC, GroES (DVU1977), and GroEL (DVU1976

  5. Examination of KNK437- and quercetin-mediated inhibition of heat shock-induced heat shock protein gene expression in Xenopus laevis cultured cells.

    PubMed

    Manwell, Laurie A; Heikkila, John J

    2007-11-01

    We examined the effect of quercetin (3,3',4',5,7-pentahydroxyflavon) and KNK437 (N-formyl-3,4-methylenedioxy-benzylidene-gamma-butyrolactam), a benzylidene lactam compound, on heat-induced heat shock protein (hsp) gene expression in Xenopus laevis A6 kidney epithelial cells. In previous studies, both quercetin and KNK437 inhibited heat shock factor activity resulting in a repression of hsp mRNA and protein accumulation in human cultured cells. In this first study of the effect of these hsp gene expression inhibitors in a non-mammalian cell line, we report that both quercetin and KNK437 reduced the heat shock-induced accumulation of hsp30, hsp47 and hsp70 mRNA in X. laevis cultured cells. However, these inhibitors had no effect on the relative level of a non-heat shock protein mRNA, ef1alpha, in either control or heat shocked cells. Western blot and immunocytochemical analyses revealed that quercetin partially inhibited HSP30 protein accumulation. In contrast, HSP30 protein was not detectable in KNK437-treated cells. Finally, treatment of A6 cells with KNK437 inhibited the heat shock-induced acquisition of thermotolerance, as determined by preservation of actin filaments and cellular morphology using immunocytochemistry and laser scanning confocal microscopy.

  6. Heat-shock protein 27 (Hsp27) as a target of methylglyoxal in gastrointestinal cancer.

    PubMed

    Oya-Ito, Tomoko; Naito, Yuji; Takagi, Tomohisa; Handa, Osamu; Matsui, Hirofumi; Yamada, Masaki; Shima, Keisuke; Yoshikawa, Toshikazu

    2011-07-01

    The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role of methylglyoxal modifications in gastrointestinal tumors. Methylglyoxal is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins. By using a monoclonal antibody to methylglyoxal-modified proteins, we found that murine heat-shock protein 25 and human heat-shock protein 27 were the major adducted proteins in rat gastric carcinoma mucosal cell line and human colon cancer cell line, respectively. Furthermore, we found that heat-shock protein 27 was modified by methylglyoxal in ascending colon and rectum of patients with cancer. However, methylglyoxal-modified heat-shock protein 25/heat-shock protein 27 was not detected in non cancerous cell lines or in normal subject. Matrix-associated laser desorption/ionization mass spectrometry/mass spectrometry analysis of peptide fragments identified Arg-75, Arg-79, Arg-89, Arg-94, Arg-127, Arg-136, Arg-140, Arg-188, and Lys-123 as methylglyoxal modification sites in heat-shock protein 27 and in phosphorylated heat-shock protein 27. The transfer of methylglyoxal-modified heat-shock protein 27 into rat intestinal epithelial cell line RIE was even more effective in preventing apoptotic cell death than that of native control heat-shock protein 27. Furthermore, methylglyoxal modification of heat-shock protein 27 protected the cells against both the hydrogen peroxide- and cytochrome c-mediated caspase activation, and the hydrogen peroxide-induced production of intracellular reactive oxygen species. The levels of lactate converted from methylglyoxal were increased in carcinoma mucosal cell lines. Our results suggest that posttranslational modification of heat-shock protein 27 by methylglyoxal may have important implications for epithelial cell injury in gastrointestinal cancer.

  7. A heat shock protein localized to chloroplasts is a member of a eukaryotic superfamily of heat shock proteins.

    PubMed Central

    Vierling, E; Nagao, R T; DeRocher, A E; Harris, L M

    1988-01-01

    We have isolated cDNA clones from soybean and pea that specify nuclear-encoded heat shock proteins (HSPs) which localize to chloroplasts. The mRNAs for these HSPs are undetectable at control temperatures, but increase approximately 150-fold during a 2-h heat shock. Hybridization-selection followed by in vitro translation demonstrates that these HSPs are synthesized as precursor proteins which are processed by the removal of 5-6.5 kd during import into isolated chloroplasts. The nucleotide sequence of the cDNAs shows the derived amino acid sequences of the mature pea and soybean proteins are 79% identical. While the predicted transit peptide encoded by the pea cDNA has some characteristics typical of transit sequences, including high Ser content, multiple basic residues and no acidic residues, it lacks two domains proposed to be important for import and maturation of other chloroplast proteins. The carboxy-terminal region of the chloroplast HSP has significant homology to cytoplasmic HSPs from soybean and other eukaryotes. We hypothesize that the chloroplast HSP shares a common structural and functional domain with low mol. wt HSPs which localize to other parts of the cell, and may have evolved from a nuclear gene. Images PMID:3396532

  8. Heat-shock response in cultured chick embryo chondrocytes. Osteonectin is a secreted heat-shock protein.

    PubMed

    Neri, M; Descalzi-Cancedda, F; Cancedda, R

    1992-04-15

    We investigated the induction of specific protein expression by heat shock in dedifferentiated and hypertrophic chick embryo chondrocytes in a culture system that allows 'in vitro' differentiation of cartilage cells [Castagnola, P., Moro, G., Descalzi-Cancedda, F. and Cancedda, R. (1986) J. Cell. Biol. 102, 2310-2317]. As control, we used cultures of embryonic fibroblasts from the whole body and from the skin. In the cell lysates of all cultures we identified four major heat-shock proteins (HSP), with a molecular size corresponding to HSP families previously described (HSP 90, HSP 70, HSP 47 and HSP 26). Some of these proteins were constantly induced when the temperature was raised, others were expressed in a more variable manner. Differences also existed in the relative amount of the HSP synthesized by the four cultures. When we specifically investigated HSP species released into the culture medium, we observed a 43-45 kDa protein constantly expressed and secreted in large amount by the cells. On the basis of its biochemical characteristic and its precipitation by specific antibodies, this protein has been identified as osteonectin (SPARC, BM-40).

  9. Exposure to heat shock affects thermosensitivity of the locust flight system.

    PubMed

    Robertson, R M; Xu, H; Shoemaker, K L; Dawson-Scully, K

    1996-03-01

    The natural habitat of the migratory locust, Locusta migratoria, is likely to result in locusts being heat stressed during their normal adult life. It is known that locusts exhibit a heat-shock response: exposure to 45 degrees C for 3 h induces thermotolerance and the expression of heat-shock proteins. We investigated the effects of exposure to heat-shock conditions on the thermosensitivity of flight rhythm generation in tethered, intact animals and in deafferented preparations. Heat shock had no effect on wingbeat frequency measured at the start of flight sequences, nor did it affect the postimaginal maturation of this parameter. During sustained flight, heat shock slowed the characteristic asymptotic reduction of wingbeat frequency. Wingbeat frequency of heat-shocked animals was less sensitive to temperature in the range 24 degrees to 47 degrees C than that of control animals, and the upper temperature limit, above which flight rhythms could not be produced, was 6 degrees to 7 degrees C higher in heat-shocked animals. These results were mirrored in the response of deafferented preparations, indicating that modifications in the properties of the flight neuromuscular system were involved in mediating the response of the intact animal. We propose that exposure to heat shock had the adaptive consequences of reducing thermosensitivity of the neural circuits in the flight system and allowing them to operate at higher temperatures.

  10. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses.

    PubMed

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M; Currie, Suzanne

    2012-01-01

    Acute temperature stress in animals results in increases in heat shock proteins (HSPs) and stress hormones. There is evidence that stress hormones influence the magnitude of the heat shock response; however, their role is equivocal. To determine whether and how stress hormones may affect the heat shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout. We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response but provided insight into stress-coping styles and environmental stress. HR fish also had a significantly greater and faster heat shock response and less oxidative protein damage than LR fish. Despite these clear differences in the physiological and cellular responses to heat shock, there were no differences in the thermal tolerance of HR and LR fish. Our results support the hypothesis that responsiveness to environmental change underpins the physiological differences in stress-coping styles. Here, we demonstrate that the heat shock response is a distinguishing feature of the HR and LR lines and suggest that it may have been coselected with the hormonal responses to stress.

  11. Magnetogasdynamic Cylindrical Shock Waves in a Rotating Nonideal Gas with Radiation Heat Flux

    NASA Astrophysics Data System (ADS)

    Vishwakarma, J. P.; Patel, Nanhey

    2015-03-01

    A similarity solution is presented for a cylindrical magnetogasdynamic shock wave in a rotating nonideal gas in the presence of a variable axial magnetic field in the case where the radiation heat flux is of importance. The initial angular velocity of the medium is assumed to vary as some power of the distance from the symmetry axis. The radiation heat flux is evaluated from the equation of motion without explicit use of the radiation transfer equations. It is shown that the gas nonidealness increases the shock strength but decreases the shock velocity. On the other hand, the presence of a magnetic field decreases the shock strength but increases the shock velocity. Moreover, the shock velocity increases with the ratio of specific heats. The total energy of the shock wave increases with time.

  12. Expression of hsrω-RNAi transgene prior to heat shock specifically compromises accumulation of heat shock-induced Hsp70 in Drosophila melanogaster.

    PubMed

    Singh, Anand K; Lakhotia, Subhash C

    2016-01-01

    A delayed organismic lethality was reported in Drosophila following heat shock when developmentally active and stress-inducible noncoding hsrω-n transcripts were down-regulated during heat shock through hs-GAL4-driven expression of the hsrω-RNAi transgene, despite the characteristic elevation of all heat shock proteins (Hsp), including Hsp70. Here, we show that hsrω-RNAi transgene expression prior to heat shock singularly prevents accumulation of Hsp70 in all larval tissues without affecting transcriptional induction of hsp70 genes and stability of their transcripts. Absence of the stress-induced Hsp70 accumulation was not due to higher levels of Hsc70 in hsrω-RNAi transgene-expressing tissues. Inhibition of proteasomal activity during heat shock restored high levels of the induced Hsp70, suggesting very rapid degradation of the Hsp70 even during the stress when hsrω-RNAi transgene was expressed ahead of heat shock. Unexpectedly, while complete absence of hsrω transcripts in hsrω (66) homozygotes (hsrω-null) did not prevent high accumulation of heat shock-induced Hsp70, hsrω-RNAi transgene expression in hsrω-null background blocked Hsp70 accumulation. Nonspecific RNAi transgene expression did not affect Hsp70 induction. These observations reveal that, under certain conditions, the stress-induced Hsp70 can be selectively and rapidly targeted for proteasomal degradation even during heat shock. In the present case, the selective degradation of Hsp70 does not appear to be due to down-regulation of the hsrω-n transcripts per se; rather, this may be an indirect effect of the expression of hsrω-RNAi transgene whose RNA products may titrate away some RNA-binding proteins which may also be essential for stability of the induced Hsp70.

  13. Dynamics of a Spherical Accretion Shock with Neutrino Heating and Alpha-Particle Recombination

    NASA Astrophysics Data System (ADS)

    Fernández, Rodrigo; Thompson, Christopher

    2009-10-01

    We investigate the effects of neutrino heating and α-particle recombination on the hydrodynamics of core-collapse supernovae. Our focus is on the nonlinear dynamics of the shock wave that forms in the collapse and the assembly of positive energy material below it. To this end, we perform time-dependent hydrodynamic simulations with FLASH2.5 in spherical and axial symmetry. These generalize our previous calculations by allowing for bulk neutrino heating and for nuclear statistical equilibrium between n, p, and α. The heating rate is freely tunable, as is the starting radius of the shock relative to the recombination radius of α-particles. An explosion in spherical symmetry involves the excitation of an overstable mode, which may be viewed as the ell = 0 version of the "Standing Accretion Shock Instability." In two-dimensional simulations, nonspherical deformations of the shock are driven by plumes of material with positive Bernoulli parameter, which are concentrated well outside the zone of strong neutrino heating. The nonspherical modes of the shock reach a large amplitude only when the heating rate is also high enough to excite convection below the shock. The critical heating rate that causes an explosion depends sensitively on the initial position of the shock relative to the recombination radius. Weaker heating is required to drive an explosion in two dimensions than in one, but the difference also depends on the size of the shock. Forcing the infalling heavy nuclei to break up into n and p below the shock only causes a slight increase in the critical heating rate, except when the shock starts out at a large radius. This shows that heating by neutrinos (or some other mechanism) must play a significant role in pushing the shock far enough out that recombination heating takes over.

  14. Heat Stress in Rat Adriamycin Cardiomyopathy: Heat Shock Protein 25 and Myosin Accumulation

    PubMed Central

    Rada, Alegna; Tejero, Félix; Hermoso, Tomás

    2010-01-01

    In order to evaluate the effects of hyperthermia on adriamycin cardiomyopathy and its relationship with heat shock protein induction and myosin accumulation, female Sprague-Dawley rats (21–24 days) were randomized into four groups: the control, adriamycin, temperature and temperature-adriamycin groups. Adriamycin was injected i.v. at a dose of 27 mg/Kg (0.1 ml). The rats were exposed to a temperature of 45ºC for 35 min, followed by a recovery (1 h) at room temperature prior to adriamycin treatment. Body weight was recorded weekly. The thickness of the ventricular wall and percentage of cellular damage were biometrically and ultrastructurally evaluated, respectively. Heat shock protein 25 and myosin accumulation were determined through Western blot analysis. The determinations were carried out monthly until the third month after treatment. At eight and twelve weeks after treatment, the thickness of the ventricular wall seemed to decrease in the adriamycin-treated rats in relation to the other groups. An electron microscopic analysis of the adriamycin group’s left ventricular wall samples, showed more sarcomeric changes and loss of myofibrils than the control, temperature and temperature-adriamycin groups. At 24 hours after treatment with adriamycin, higher levels of heat shock protein 25 and myosin were observed (week 0) in the temperature-adriamycin group than in the control and adriamycin groups (4, 8 and 12 weeks). Hyperthermia was confirmed by a multivariate approach to induce heat shock protein 25 and myosin, which would strengthen cardiac-sarcomeric myosin arrangement. PMID:22272033

  15. The chicken ubiquitin gene contains a heat shock promoter and expresses an unstable mRNA in heat-shocked cells.

    PubMed Central

    Bond, U; Schlesinger, M J

    1986-01-01

    A chicken genomic library was screened to obtain genomic clones for ubiquitin genes. Two genes that differ in their genomic location and organization were identified. One gene, designated Ub I, contains four copies of the protein-coding sequence arranged in tandem, while the second gene, Ub II, contains three. The origin of the two major mRNAs that are induced after heat shock in chicken embryo fibroblasts was determined by generating DNA probes from the 5'-and 3'-noncoding regions of the two genes. Both mRNAs are transcribed from Ub I, the larger being the unspliced precursor of the smaller. A 674-base-pair intron was located within the 5'-noncoding region of Ub I. The second gene, Ub II, does not appear to code for an RNA species in normal or heat-shocked chicken embryo fibroblasts. The expression of ubiquitin mRNA during heat shock and recovery was examined. Addition of actinomycin D before heat shock completely abolished the response of ubiquitin mRNA to the stress. Analysis of the stability of the mRNA during recovery revealed that the mRNA accumulated during the heat shock is rapidly degraded with a half-life of approximately 1.5 h, suggesting a specialized but transient role for ubiquitin during heat shock. Images PMID:3025663

  16. Synthesis of the low molecular weight heat shock proteins in plants

    SciTech Connect

    Mansfield, M.A.; Key, J.L. )

    1987-08-01

    Heat shock of living tissue induces the synthesis of a unique group of proteins, the heat shock proteins. In plants, the major group of heat shock proteins has a molecular mass of 15 to 25 kilodaltons. Accumulation to these proteins to stainable levels has been reported in only a few species. To examine accumulation of the low molecular weight heat shock proteins in a broader range of species, two-dimensional electrophoresis was used to resolve total protein from the following species: soybean (Glycine max L. Merr., var Wayne), pea (Pisum sativum L., var Early Alaska), sunflower (Helianthus annuus L.), wheat (Triticum asetivum L.), rice (Oryza sativa L., cv IR-36), maize (Zea mays L.), pearl millet (Pennisetum americanum L. Leeke, line 23DB), and Panicum miliaceum L. When identified by both silver staining and incorporation of radiolabel, a diverse array of low molecular weight heat shock proteins was synthesized in each of these species. These proteins accumulated to significant levels after three hours of heat shock but exhibited considerable heterogeneity in isoelectric point, molecular weight, stainability, and radiolabel incorporation. Although most appeared to be synthesized only during heat shock, some were detectable at low levels in control tissue. Compared to the monocots, a higher proportion of low molecular weight heat shock proteins was detectable in control tissues from dicots.

  17. HSF transcription factor family, heat shock response, and protein intrinsic disorder.

    PubMed

    Westerheide, Sandy D; Raynes, Rachel; Powell, Chase; Xue, Bin; Uversky, Vladimir N

    2012-02-01

    Intrinsically disordered proteins are highly abundant in all kingdoms of life, and several protein functional classes, such as transcription factors, transcriptional regulators, hub and scaffold proteins, signaling proteins, and chaperones are especially enriched in intrinsic disorder. One of the unique cellular reactions to protein damaging stress is the so-called heat shock response that results in the upregulation of heat shock proteins including molecular chaperones. This molecular protective mechanism is conserved from prokaryotes to eukaryotes and allows an organism to respond to various proteotoxic stressors, such as heat shock, oxidative stress, exposure to heavy metals, and drugs. The heat shock response- related proteins can be expressed during normal conditions (e.g., during the cell growth and development) or can be induced by various pathological conditions, such as infection, inflammation, and protein conformation diseases. The initiation of the heat shock response is manifested by the activation of the heat shock transcription factors HSF 1, part of a family of related HSF transcription factors. This review analyzes the abundance and functional roles of intrinsic disorder in various heat shock transcription factors and clearly shows that the heat shock response requires HSF flexibility to be more efficient. © 2012 Bentham Science Publishers

  18. Heat flux and diffusion velocities behind shock wave: state-to-state approach

    NASA Astrophysics Data System (ADS)

    Kunova, O.; Kustova, E.; Mekhonoshina, M.; Nagnibeda, E.

    2017-06-01

    The influence of vibrational populations and dissociation-recombination reactions on the heat and mass transfer in the relaxation zone behind shock waves is studied. The contribution of various processes and in§uence of different initial conditions on diffusion velocities and total energy §ux in the flows of shock heated air components is estimated.

  19. Effects of several factors on the heat-shock-induced thermotolerance of Listeria monocytogenes.

    PubMed Central

    Pagán, R; Condón, S; Sala, F J

    1997-01-01

    The influence of the temperature at which Listeria monocytogenes had been grown (4 or 37 degrees C) on the response to heat shocks of different durations at different temperatures was investigated. For cells grown at 4 degrees C, the effect of storage, prior to and after heat shock, on the induced thermotolerance was also studied. Death kinetics of heat-shocked cells is also discussed. For L. monocytogenes grown at 37 degrees C, the greatest response to heat shock was a fourfold increase in thermotolerance. For L. monocytogenes grown at 4 degrees C, the greatest response to heat shock was a sevenfold increase in thermotolerance. The only survival curves of cells to have shoulders were those for cells that had been heat shocked. A 3% concentration of sodium chloride added to the recovery medium made these shoulders disappear and decreased decimal reduction times. The percentage of cells for which thermotolerance increased after a heat shock was smaller the milder the heat shock and the longer the prior storage. PMID:9251209

  20. Heat shock treatment reduces beta amyloid toxicity in vivo by diminishing oligomers.

    PubMed

    Wu, Yanjue; Cao, Zhiming; Klein, William L; Luo, Yuan

    2010-06-01

    Heat shock response, mediated by heat shock proteins, is a highly conserved physiological process in multicellular organisms for reestablishment of cellular homeostasis. Expression of heat shock factors and subsequent heat shock protein plays a role in protection against proteotoxicity in invertebrate and vertebrate models. Proteotoxicity due to beta-amyloid peptide (Abeta) oligomerization has been linked to the pathogenesis of Alzheimer's disease. Previously, we demonstrated that progressive paralysis induced by expression of human Abeta(1-42) in transgenic Caenorhabditis elegans was alleviated by Abeta oligomer inhibitors Ginkgo biloba extract and its constituents [Wu, Y., Wu, Z., Butko, P., Christen, Y., Lambert, M.P., Klein, W.L., Link, C.D., Luo, Y., 2006. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J. Neurosci. 26(50): 13102-13113]. In this study, we apply a protective heat shock to the transgenic C. elegans and demonstrate: (1) a delay in paralysis, (2) increased expression of small heat shock protein HSP16.2, and (3) significant reduction of Abeta oligomers in a heat shock time-dependent manner. These results suggest that transient heat shock lessens Abeta toxicity by diminishing Abeta oligomerization, which provides a link between up regulation of endogenous chaperone proteins and protection against Abeta proteotoxicity in vivo.

  1. SPERM MOTILITY IN HSF1 KNOCKOUT MICE AFTER HEAT SHOCK IS ASSOCIATED WITH FERTILITY DEFICITS

    EPA Science Inventory

    SPERM MOTILITY IN HSF1 KNOCKOUT MICE AFTER HEAT SHOCK IS ASSOCIATED WITH FERTILITY DEFICITS. L.F. Strader*, S.D. Perreault, J.C. Luft*, and D.J. Dix*. US EPA/ORD, Reproductive Toxicology Div., Research Triangle Park, NC
    Heat shock proteins (HSPs) protect cells from environm...

  2. SPERM MOTILITY IN HSF1 KNOCKOUT MICE AFTER HEAT SHOCK IS ASSOCIATED WITH FERTILITY DEFICITS

    EPA Science Inventory

    SPERM MOTILITY IN HSF1 KNOCKOUT MICE AFTER HEAT SHOCK IS ASSOCIATED WITH FERTILITY DEFICITS. L.F. Strader*, S.D. Perreault, J.C. Luft*, and D.J. Dix*. US EPA/ORD, Reproductive Toxicology Div., Research Triangle Park, NC
    Heat shock proteins (HSPs) protect cells from environm...

  3. Heat shock factor 1 promotes TERRA transcription and telomere protection upon heat stress.

    PubMed

    Koskas, Sivan; Decottignies, Anabelle; Dufour, Solenne; Pezet, Mylène; Verdel, André; Vourc'h, Claire; Faure, Virginie

    2017-03-27

    In response to metabolic or environmental stress, cells activate powerful defense mechanisms to prevent the formation and accumulation of toxic protein aggregates. The main orchestrator of this cellular response is HSF1 (heat shock factor 1), a transcription factor involved in the up-regulation of protein-coding genes with protective roles. It has become very clear that HSF1 has a broader function than initially expected. Indeed, our previous work demonstrated that, upon stress, HSF1 activates the transcription of a non-coding RNA, named Satellite III, at pericentromeric heterochromatin. Here, we observe that the function of HSF1 extends to telomeres and identify subtelomeric DNA as a new genomic target of HSF1. We show that the binding of HSF1 to subtelomeric regions plays an essential role in the upregulation of non-coding TElomeric Repeat containing RNA (TERRA) transcription upon heat shock. Importantly, our data show that telomere integrity is impacted by heat shock and that telomeric DNA damages are markedly enhanced in HSF1 deficient cells. Altogether, our findings reveal a new direct and essential function of HSF1 in the transcriptional activation of TERRA and in telomere protection upon stress.

  4. [The role of heat shock protein (HSP) in SIRS].

    PubMed

    Takahashi, Toru; Morita, Kiyoshi

    2004-12-01

    Despite recent progress in critical care, sepsis remains a serious problem with high rate of mortality. Although the pathophysiology of sepsis has not been fully elucidated, oxidative stress associated with excessive systemic inflammation plays an important role in its pathogenesis. Oxidative stress conditions principally involving transcriptional activation of genes encoding proteins that participate in the defense against oxidative tissue injuries. One of them is heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme catabolism, as well as the 32 kDa heat shock protein. HO-1 induction has been shown to confer protection, while its abrogation accelerates oxidative tissue injuries. In this review, recent findings concerning the role of HO-1 as a protective response against oxidative stress conditions in sepsis are summarized.

  5. Heat Shock Protein 90 regulates encystation in Entamoeba

    PubMed Central

    Singh, Meetali; Sharma, Shalini; Bhattacharya, Alok; Tatu, Utpal

    2015-01-01

    Enteric protozoan Entamoeba histolytica is a major cause of debilitating diarrheal infection worldwide with high morbidity and mortality. Even though the clinical burden of this parasite is very high, this infection is categorized as a neglected disease. Parasite is transmitted through feco-oral route and exhibit two distinct stages namely – trophozoites and cysts. Mechanism and regulation of encystation is not clearly understood. Previous studies have established the role of Heat shock protein 90 (Hsp90) in regulating stage transition in various protozoan parasites like Giardia, Plasmodium, Leishmania, and Toxoplasma. Our study for the first time reports that Hsp90 plays a crucial role in life cycle of Entamoeba as well. We identify Hsp90 to be a negative regulator of encystation in Entamoeba. We also show that Hsp90 inhibition interferes with the process of phagocytosis in Entamoeba. Overall, we show that Hsp90 plays an important role in virulence and transmission of Entamoeba. PMID:26528271

  6. Heat Shock Protein 90 regulates encystation in Entamoeba.

    PubMed

    Singh, Meetali; Sharma, Shalini; Bhattacharya, Alok; Tatu, Utpal

    2015-01-01

    Enteric protozoan Entamoeba histolytica is a major cause of debilitating diarrheal infection worldwide with high morbidity and mortality. Even though the clinical burden of this parasite is very high, this infection is categorized as a neglected disease. Parasite is transmitted through feco-oral route and exhibit two distinct stages namely - trophozoites and cysts. Mechanism and regulation of encystation is not clearly understood. Previous studies have established the role of Heat shock protein 90 (Hsp90) in regulating stage transition in various protozoan parasites like Giardia, Plasmodium, Leishmania, and Toxoplasma. Our study for the first time reports that Hsp90 plays a crucial role in life cycle of Entamoeba as well. We identify Hsp90 to be a negative regulator of encystation in Entamoeba. We also show that Hsp90 inhibition interferes with the process of phagocytosis in Entamoeba. Overall, we show that Hsp90 plays an important role in virulence and transmission of Entamoeba.

  7. Heat Shock Protein 70: Roles in Multiple Sclerosis

    PubMed Central

    Mansilla, María José; Montalban, Xavier; Espejo, Carmen

    2012-01-01

    Heat shock proteins (HSP) have long been considered intracellular chaperones that possess housekeeping and cytoprotective functions. Consequently, HSP overexpression was proposed as a potential therapy for neurodegenerative diseases characterized by the accumulation or aggregation of abnormal proteins. Recently, the discovery that cells release HSP with the capacity to trigger proinflammatory as well as immunoregulatory responses has focused attention on investigating the role of HSP in chronic inflammatory autoimmune diseases such as multiple sclerosis (MS). To date, the most relevant HSP is the inducible Hsp70, which exhibits both cytoprotectant and immunoregulatory functions. Several studies have presented contradictory evidence concerning the involvement of Hsp70 in MS or experimental autoimmune encephalomyelitis (EAE), the MS animal model. In this review, we dissect the functions of Hsp70 and discuss the controversial data concerning the role of Hsp70 in MS and EAE. PMID:22669475

  8. Targeted heat shock protein 72 for pulmonary cytoprotection.

    PubMed

    Parseghian, Missag H; Hobson, Stephen T; Richieri, Richard A

    2016-06-01

    Heat shock protein 72 (HSP72) is perhaps the most important member of the HSP70 family of proteins, given that it is induced in a wide variety of tissues and cells to combat stress, particularly oxidative stress. Here, we review independent observations of the critical role this protein plays as a pulmonary cytoprotectant and discuss the merits of developing HSP72 as a therapeutic for rapid delivery to cells and tissues after a traumatic event. We also discuss the fusion of HSP72 to a cell-penetrating single-chain Fv antibody fragment derived from mAb 3E10, referred to as Fv-HSP70. This fusion construct has been validated in vivo in a cerebral infarction model and is currently in testing as a clinical therapeutic to treat ischemic events and as a fieldable medical countermeasure to treat inhalation of toxicants caused by terrorist actions or industrial accidents.

  9. Heat shock proteins and DNA repair mechanisms: an updated overview.

    PubMed

    Sottile, Mayra L; Nadin, Silvina B

    2017-09-26

    Heat shock proteins (HSPs), also known as molecular chaperones, participate in important cellular processes, such as protein aggregation, disaggregation, folding, and unfolding. HSPs have cytoprotective functions that are commonly explained by their antiapoptotic role. Their involvement in anticancer drug resistance has been the focus of intense research efforts, and the relationship between HSP induction and DNA repair mechanisms has been in the spotlight during the past decades. Because DNA is permanently subject to damage, many DNA repair pathways are involved in the recognition and removal of a diverse array of DNA lesions. Hence, DNA repair mechanisms are key to maintain genome stability. In addition, the interactome network of HSPs with DNA repair proteins has become an exciting research field and so their use as emerging targets for cancer therapy. This article provides a historical overview of the participation of HSPs in DNA repair mechanisms as part of their molecular chaperone capabilities.

  10. Immunity to heat shock proteins and arthritic disorders.

    PubMed Central

    van Eden, W

    1999-01-01

    Adjuvant arthritis (AA) is a frequently used model of experimental arthritis. Because of its histopathology, which is reminiscent of rheumatoid arthritis in humans, AA is used as a model for the development of novel anti-inflammatory drugs. Recently, it has become evident that AA is a typical T-cell-mediated autoimmune condition. Therefore, novel immunotherapies targeted to T cells can be developed in this model. Analysis of responding T cells in AA have now led to the definition of various antigens with potential relevance to arthritis, including human arthritic conditions. One such antigen defined in AA is the 60kD heat shock protein. Both T-cell vaccination approaches and active antigen immunizations and antigen toleration approaches have turned out to be effective in suppressing AA. PMID:10231009

  11. Optimization of Salmonella enteritidis recombinant heat shock protein 60 production.

    PubMed

    Rainczak, K; Bajzert, J; Galli, J; Selera, A; Wieliczko, A; Borkowski, J; Stefaniak, T

    2011-01-01

    The aim of the study was to optimize conditions for producing Salmonella Enteritidis recombinant heat shock protein 60 (rHsp60). Seven Escherichia coli host strains (Rosetta, Turner, C41, C43, Origami, BL21pLys, Rosetta pLys) were transformed by a recombinant plasmid containing Hsp60 gene from Salmonella Enteritidis, and then cultured and induced by isopropyl-beta-D-thiogalactopyranoside (IPTG). The highest S. Enteritidis rHsp60 yield was obtained using E. coli strain C41. Induction of this strain using IPTG allowed the yield 400 microg of S. Enteritidis Hsp60 protein/2L of culture, but by autoinduction the yield exceeded 800 microg/2L.

  12. Heat shock proteins (HSP): dermatological implications and perspectives.

    PubMed

    Vidal Magalhães, Wagner; Gouveia Nogueira, Marcelo Fábio; Kaneko, Telma Mary

    2012-01-01

    In recent years, several studies have demonstrated the protective effect of Heat Shock Proteins (HSP) on different organs and tissues under stressful conditions. However, most research explores the performance of those molecular chaperones during immune responses or pathological conditions like cancer, whereas the number of studies related to the performance of HSPs in the skin during diverse natural or physiopathological conditions is very low. Therefore, the aim of this article was to summarize the main concepts concerning the expression and performance of HSPs, from analysis of current medicine and cosmetics publications, as well as exploring the importance of these proteins in the dermatological area in physiological events such as cutaneous aging, skin cancer and wound healing and to present final considerations related to biotechnology performance in this area.

  13. In vivo heat shock protects rat myocardial mitochondria.

    PubMed

    Bornman, L; Steinmann, C M; Gericke, G S; Polla, B S

    1998-05-29

    Heat shock (HS)/stress proteins (HSP) provide protection from a variety of stresses other than HS, including oxidative stress and mitochondria have been implicated as the target of HS-related protection in stressed cultured cells. Here we investigated whether mitochondria also are targets for the HS-mediated protection in vivo. Sprague Dawley rats were exposed, or not, to HS (41 degrees C, 15 min). After a 21 h recovery period, hearts were excised and perfused with or without H2O2 (0.15 mM). Myocardial mitochondria were then isolated, and their oxygen consumption was analyzed. HS prevented H2O2-induced alterations in state 3 respiration while increasing the expression of Hsp70 and heme oxygenase (HO). Thus, in vivo HS protects rat myocardial mitochondrial respiration against the deleterious effects of oxidative injury, a protection relating to Hsp70 and/or HO and targeting state 3 respiration.

  14. Protein expression in Vibrio parahaemolyticus 690 subjected to sublethal heat and ethanol shock treatments.

    PubMed

    Chiang, Ming-Lun; Ho, Wei-Li; Yu, Roch-Chui; Chou, Cheng-Chun

    2008-11-01

    Cells of Vibrio parahaemolyticus 690 were subjected either to heat shock at 42 degrees C for 45 min or to ethanol shock in the presence of 5% ethanol for 60 min. The protein profiles of the unstressed and stressed V. parahaemolyticus cells were compared. Additionally, the induction of DnaK- and GroEL-like proteins in the unstressed and stressed cells of V. parahaemolyticus was also examined. Analysis with one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that three proteins with molecular masses of 93, 77, and 58 kDa were induced by both heat shock and ethanol shock. The protein patterns revealed by two-dimensional electrophoresis were more detailed than those revealed by one-dimensional SDS-PAGE. It was found that heat shock and ethanol shock affected the expression of a total of 28 proteins. Among them, four proteins with molecular masses of 94, 32.1, 26.7, and 25.7 kDa were enhanced by both heat shock and ethanol shock. Furthermore, immunoblot analysis showed the presence of a GroEL-like protein with a molecular mass of 61 kDa in the test organism, with the heat-shocked and ethanol-shocked cells producing a GroEL-like protein in a larger quantity than the unstressed cells. However, DnaK-like protein was not detectable in either the unstressed or the stressed cells.

  15. Examine the Correlation between Heat Shock Protein IbpA and Heat Tolerance in Cronobacter sakazakii.

    PubMed

    Zhao, Zhi Jing; Wang, Bin; Yuan, Jing; Liang, Hao Yu; Dong, Si Guo; Zeng, Ming

    2017-08-01

    We used a proteomic approach to identify IbpA in Cronobacter sakazakii (C. sakazaki), which is related to heat tolerance in this strain. The abundance of IbpA in C. sakazakii strains strongly increased after heat shock. C. sakazakii CMCC 45402 ibpA deletion mutants were successfully constructed. The C. sakazakii CMCC 45402 ΔibpA and wild-type strains could not be distinguished based on colony morphology on LB agar plates or biochemical assays. The growth of the C. sakazakii CMCC 45402 ΔibpA mutant in heat shock conditions was indistinguishable from that of the isogenic wild-type, but showed greater heat resistance than E. coli O157:H7 strain CMCC 44828. This study suggests that the absence of a single ibpA gene has no obvious effect on the phenotype or heat resistance of the strain C. sakazakii CMCC 45402. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  16. Modification of tooth development by heat shock protein 60

    PubMed Central

    Papp, Tamas; Polyak, Angela; Papp, Krisztina; Meszar, Zoltan; Zakany, Roza; Meszar-Katona, Eva; Tünde, Palne Terdik; Ham, Chang Hwa; Felszeghy, Szabolcs

    2016-01-01

    Although several heat shock proteins have been investigated in relation to tooth development, no available information is available about the spatial and temporal expression pattern of heat shock protein 60 (Hsp 60). To characterize Hsp 60 expression in the structures of the developing tooth germ, we used Western blotting, immunohistochemistry and in situ hybridization. Hsp 60 was present in high amounts in the inner and outer enamel epithelia, enamel knot (EK) and stratum intermedium (SI). Hsp 60 also appeared in odontoblasts beginning in the bell stage. To obtain data on the possible effect of Hsp 60 on isolated lower incisors from mice, we performed in vitro culturing. To investigate the effect of exogenous Hsp 60 on the cell cycle during culturing, we used the 5-bromo-2-deoxyuridine (BrdU) incorporation test on dental cells. Exogenously administered Hsp 60 caused bluntness at the apical part of the 16.5-day-old tooth germs, but it did not influence the proliferation rate of dental cells. We identified the expression of Hsp 60 in the developing tooth germ, which was present in high concentrations in the inner and outer enamel epithelia, EK, SI and odontoblasts. High concentration of exogenous Hsp 60 can cause abnormal morphology of the tooth germ, but it did not influence the proliferation rate of the dental cells. Our results suggest that increased levels of Hsp 60 may cause abnormalities in the morphological development of the tooth germ and support the data on the significance of Hsp during the developmental processes. PMID:27025262

  17. The hexameric structures of human heat shock protein 90.

    PubMed

    Lee, Cheng-Chung; Lin, Ta-Wei; Ko, Tzu-Ping; Wang, Andrew H-J

    2011-01-01

    The human 90-kDa heat shock protein (HSP90) functions as a dimeric molecular chaperone. HSP90 identified on the cell surface has been found to play a crucial role in cancer invasion and metastasis, and has become a validated anti-cancer target for drug development. It has been shown to self-assemble into oligomers upon heat shock or divalent cations treatment, but the functional role of the oligomeric states in the chaperone cycle is not fully understood. Here we report the crystal structure of a truncated HSP90 that contains the middle segment and the carboxy-terminal domain, termed MC-HSP90. The structure reveals an architecture with triangular bipyramid geometry, in which the building block of the hexameric assembly is a dimer. In solution, MC-HSP90 exists in three major oligomer states, namely dimer, tetramer and hexamer, which were elucidated by size exclusion chromatography and analytical ultracentrifugation. The newly discovered HSP90 isoform HSP90N that lacks the N-terminal ATPase domain also exhibited similar oligomerization states as did MC-HSP90. While lacking the ATPase domain, both MC-HSP90 and HSP90N can self-assemble into a hexameric structure, spontaneously. The crystal structure of MC-HSP90 reveals that, in addition to the C-terminal dimerization domain, the residue W320 in the M domain plays a critical role in its oligomerization. This study not only demonstrates how the human MC-HSP90 forms a hexamer, but also justifies the similar formation of HSP90N by using 3D modeling analysis.

  18. Pentylenetetrazol-kindling in mice overexpressing heat shock protein 70.

    PubMed

    Ammon-Treiber, Susanne; Grecksch, Gisela; Angelidis, Charalampos; Vezyraki, Patra; Höllt, Volker; Becker, Axel

    2007-04-01

    Kindling induced by the convulsant pentylenetetrazol (PTZ) is an accepted model of primary generalized epilepsy. Because seizures represent a strong distressing stimulus, stress-induced proteins such as heat shock proteins might counteract the pathology of increased neuronal excitation. Therefore, the aim of the present study was to determine whether PTZ kindling outcome parameters are influenced by heat shock protein 70 (Hsp70) overexpression in Hsp70 transgenic mice as compared to the respective wild-type mice. Kindling was performed by nine intraperitoneal injections of PTZ (ED(16) for induction of clonic-tonic seizures, every 48 h); control animals received saline instead of PTZ. Seven days after the final injection, all mice received a PTZ challenge dose. Outcome parameters included evaluation of seizure stages and overall survival rates. In addition, histopathological findings such as cell number in hippocampal subfields CA1 and CA3 were determined. The onset of the highest convulsion stage was delayed in Hsp70 transgenic mice as compared to wild-type mice, and overall survival during kindling was improved in Hsp70 transgenic mice as compared to wild-type mice. In addition, a challenge dose after termination of kindling produced less severe seizures in Hsp70 transgenic mice than in wild-type mice. PTZ kindling did not result in significant subsequent neuronal cell loss in CA1 or CA3 neither in wild-type mice nor in the Hsp70 transgenic mice. The results of the present experiments clearly demonstrate that overexpression of Hsp70 exerts protective effects regarding seizure severity and overall survival during PTZ kindling. In addition, the decreased seizure severity in Hsp70 transgenic mice after a challenge dose suggests an interference of Hsp70 with the developmental component of kindling.

  19. Responses of Entamoeba invadens to heat shock and encystation are related.

    PubMed

    Field, J; Van Dellen, K; Ghosh, S K; Samuelson, J

    2000-01-01

    An Entamoeba invadens gene encoding a homologue of BiP/GRP78, a 70-kDa heat shock protein or chaperonin was cloned. The predicted E. invadens BiP contained an ATP-binding site, a substrate-recognition domain, and a carboxy-terminal KDEL-peptide. Messenger RNAs of E. invadens for BiP, for a 70-kDa heat shock cognate, for a cyst wall glycoprotein (Jacob), and for chitinase were all induced by heat shock and by encystation medium. The presence of Jacob in heat-shocked amebae was confirmed by confocal microscopy and suggests that heat shock and encystation responses in E. invadens are related.

  20. Report on the VIIth International Symposium on Heat Shock Proteins in Biology & Medicine.

    PubMed

    Calderwood, Stuart K; Hightower, Lawrence E

    2015-03-01

    This seventh symposium in a series on heat shock proteins in biology and medicine was held November 1-5, 2014, at the Hilton Hotel in Old Town Alexandria, Virginia. Approximately 70 participants including principal investigators, postdoctoral fellows, and graduate students were in attendance. The major themes were: new properties of heat shock proteins (HSPs) and heat shock factor (HSF) and role in the etiology of cancer, molecular chaperones in aging, extracellular HSPs in inflammation and immunity, role of heat shock and the heat shock response in immunity and cancer, protein aggregation disorders and HSP expression, and Hsp70 in blood cell differentiation. The next meeting is planned for the fall of 2016 in the same venue.

  1. Effects of Heat Shock on the Dynamic Tensile Behavior of Granitic Rocks

    NASA Astrophysics Data System (ADS)

    Mardoukhi, Ahmad; Mardoukhi, Yousof; Hokka, Mikko; Kuokkala, Veli-Tapani

    2017-05-01

    This paper presents a new experimental method for the characterization of the surface damage caused by a heat shock on a Brazilian disk test sample. Prior to mechanical testing with a Hopkinson Split Pressure bar device, the samples were subjected to heat shock by placing a flame torch at a fixed distance from the sample's surface for periods of 10, 30, and 60 s. The sample surfaces were studied before and after the heat shock using optical microscopy and profilometry, and the images were analyzed to quantify the damage caused by the heat shock. The complexity of the surface crack patterns was quantified using fractal dimension of the crack patterns, which were used to explain the results of the mechanical testing. Even though the heat shock also causes damage below the surface which cannot be quantified from the optical images, the presented surface crack pattern analysis can give a reasonable estimate on the drop rate of the tension strength of the rock.

  2. 4-Hydroxynonenal induces a DNA-binding protein similar to the heat-shock factor.

    PubMed Central

    Cajone, F; Salina, M; Benelli-Zazzera, A

    1989-01-01

    By using a gel mobility assay, we have shown that treatment of HeLa cells with 4-hydroxynonenal, a major product of the peroxidation of membrane lipids and an inducer of heat-shock proteins, has the same effect as heat shock in causing the appearance of a protein which binds to the sequence of DNA specific for the induction of heat-shock genes. Lipoperoxidation and heat exposure seem to share a common mechanism of specific gene activation. Images Fig. 1. Fig. 2. PMID:2590181

  3. The expression and induction of heat shock proteins in molluscs.

    PubMed

    Liu, Dongwu; Chen, Zhiwei

    2013-05-01

    Living cells respond to stress stimuli by triggering rapid changes in the protein profiles, and the induction of heat shock proteins (HSPs) plays an important part in this process. HSPs, mainly acting as molecular chaperones, are constitutively expressed in cells and involved in protein folding, assembly, degradation, and intracellular localization. The overexpression of HSPs represents a ubiquitous molecular mechanism to cope with stress. Compared to vertebrates, molluscs have a biphasic life cycle where pelagic larvae go through settlement and metamorphosis. HSPs may play an important role in the survival strategy of molluscs during the biphasic life stages. Since aquatic environments are highly dynamic, molluscs may be subject to a variety of sources of stress and HSPs might play a more important role in the adaptation of these animals. Moreover, the mechanisms of stress tolerance in molluscs can offer fundamental insights into the adaptation of organisms for a wide range of environmental challenges. The cDNA of HSPs has been cloned from some molluscs, and HSPs can be induced by heat stress, hypoxia, heavy metal contamination, and aestivation, etc. The expression of HSPs was detected in the neuroendocrine system, mollusc development, and reproductive process. Furthermore, the induction of HSPs is related with the phosphorylation of stress-activated p38 mitogen-activated protein kinase (p38 MAPK) and cJun-N-terminal kinases (JNKs) in molluscs.

  4. Previous heat shock treatment inhibits Mayaro virus replication in human lung adenocarcinoma (A549) cells.

    PubMed

    Virgilio, P L; Godinho-Netto, M C; Carvalho Mda, G

    1997-01-01

    Human lung adenocarcinoma cells (A549) were submitted to mild or severe heat shock (42 degrees C or 44 degrees C) for 1 h, while another group of cells was double-heat-shocked (submitted to 42 degrees C for 1 h, returned to 37 degrees C for 3 h, then exposed to 44 degrees C for 1 h). After each heat treatment, the cells were infected with Mayaro virus for 24 h and incubated at 37 degrees C. The results showed that the double-heat-shocked thermotolerant cells exhibited a 10(4)-fold virus titre inhibition, despite the recovery of protein synthesis and original morphology 24 h post-infection. In contrast, cells submitted to mild or severe heat shock exhibited weaker inhibition of Mayaro virus titre (10(2)-fold). The mildly heat-shocked cells also presented a full recovery in protein synthesis, which was not observed in severely heat-shocked cells. These results indicate that exposure of A549 cells to a mild or to a double heat shock treatment before Mayaro virus infection induces an antiviral state.

  5. Induction of heat shock proteins in response to primary alcohols in Acinetobacter calcoaceticus.

    PubMed

    Benndorf, D; Loffhagen, N; Babel, W

    1999-01-01

    Cells of Acinetobacter calcoaceticus 69-V, a species able to metabolize a range of aliphatic hydrocarbons and alcohols, were confronted with ethanol, butanol, hexanol or heat shock during growth on acetate as sole source of carbon and energy. The primary alcohols and the heat shock led to the synthesis of new proteins or amplified expression of specific, common and general proteins, which were detected by silver staining after two-dimensional gel electrophoresis. Some of the alcohol-inducible proteins were identified as heat shock proteins by comparing protein patterns of alcohol-shocked cells with those of heat-shocked cells, and by N-terminal amino acid sequencing. DnaK was found to be amplified after all treatments, but GroEI only after heat shock and ethanol treatment. The N-terminal amino acid sequence of the protein, which was considerably amplified after alcohol treatment and heat shock, shows homology to HtpG (high temperature protein G). Some of the heat shock proteins induced by ethanol differ from those induced by butanol and hexanol, suggesting there are at least two different signals for the induction of some heat shock proteins by primary alcohols. This could be due to the different localization of ethanol, butanol and hexanol in the membrane, or because higher cytoplasmic concentrations of ethanol than of butanol or hexanol were applied in these tests in order to keep concentrations of the alcohols in the membrane roughly similar. Besides heat shock proteins, a group of proteins were observed which were only induced by butanol and hexanol, possibly indicating the existence of a further defense mechanism against high concentrations of hydrophobic substrates preventing protein denaturation and membrane damage.

  6. The Membrane-Associated Transient Receptor Potential Vanilloid Channel Is the Central Heat Shock Receptor Controlling the Cellular Heat Shock Response in Epithelial Cells

    PubMed Central

    Bromberg, Zohar; Goloubinoff, Pierre; Saidi, Younousse; Weiss, Yoram George

    2013-01-01

    The heat shock response (HSR) is a highly conserved molecular response to various types of stresses, including heat shock, during which heat-shock proteins (Hsps) are produced to prevent and repair damages in labile proteins and membranes. In cells, protein unfolding in the cytoplasm is thought to directly enable the activation of the heat shock factor 1 (HSF-1), however, recent work supports the activation of the HSR via an increase in the fluidity of specific membrane domains, leading to activation of heat-shock genes. Our findings support the existence of a plasma membrane-dependent mechanism of HSF-1 activation in animal cells, which is initiated by a membrane-associated transient receptor potential vanilloid receptor (TRPV). We found in various non-cancerous and cancerous mammalian epithelial cells that the TRPV1 agonists, capsaicin and resiniferatoxin (RTX), upregulated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70 and Hsp90 respectively, while the TRPV1 antagonists, capsazepine and AMG-9810, attenuated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70, Hsp90, respectively. Capsaicin was also shown to activate HSF-1. These findings suggest that heat-sensing and signaling in mammalian cells is dependent on TRPV channels in the plasma membrane. Thus, TRPV channels may be important drug targets to inhibit or restore the cellular stress response in diseases with defective cellular proteins, such as cancer, inflammation and aging. PMID:23468922

  7. Plasma heating at collisionless shocks due to the kinetic cross-field streaming instability

    NASA Technical Reports Server (NTRS)

    Winske, D.; Quest, K. B.; Tanaka, M.; Wu, C. S.

    1985-01-01

    Heating at collisionless shocks due to the kinetic cross-field streaming instability, which is the finite beta (ratio of plasma to magnetic pressure) extension of the modified two stream instability, is studied. Heating rates are derived from quasi-linear theory and compared with results from particle simulations to show that electron heating relative to ion heating and heating parallel to the magnetic field relative to perpendicular heating for both the electrons and ions increase with beta. The simulations suggest that electron dynamics determine the saturation level of the instability, which is manifested by the formation of a flattop electron distribution parallel to the magnetic field. As a result, both the saturation levels of the fluctuations and the heating rates decrease sharply with beta. Applications of these results to plasma heating in simulations of shocks and the earth's bow shock are described.

  8. Heating a plasma by a broadband stream of fast electrons: Fast ignition, shock ignition, and Gbar shock wave applications

    SciTech Connect

    Gus’kov, S. Yu.; Nicolai, Ph.; Ribeyre, X.; Tikhonchuk, V. T.

    2015-09-15

    An exact analytic solution is found for the steady-state distribution function of fast electrons with an arbitrary initial spectrum irradiating a planar low-Z plasma with an arbitrary density distribution. The solution is applied to study the heating of a material by fast electrons of different spectra such as a monoenergetic spectrum, a step-like distribution in a given energy range, and a Maxwellian spectrum, which is inherent in laser-produced fast electrons. The heating of shock- and fast-ignited precompressed inertial confinement fusion (ICF) targets as well as the heating of a target designed to generate a Gbar shock wave for equation of state (EOS) experiments by laser-produced fast electrons with a Maxwellian spectrum is investigated. A relation is established between the energies of two groups of Maxwellian fast electrons, which are responsible for generation of a shock wave and heating the upstream material (preheating). The minimum energy of the fast and shock igniting beams as well as of the beam for a Gbar shock wave generation increases with the spectral width of the electron distribution.

  9. Expression profile of heat shock response factors during hookworm larval activation and parasitic development.

    PubMed

    Gelmedin, Verena; Delaney, Angela; Jennelle, Lucas; Hawdon, John M

    2015-07-01

    When organisms are exposed to an increase in temperature, they undergo a heat shock response (HSR) regulated by the transcription factor heat shock factor 1 (HSF-1). The heat shock response includes the rapid changes in gene expression initiated by binding of HSF-1 to response elements in the promoters of heat shock genes. Heat shock proteins function as molecular chaperones to protect proteins during periods of elevated temperature and other stress. During infection, hookworm infective third stage larvae (L3) undergo a temperature shift from ambient to host temperature. This increased temperature is required for the resumption of feeding and activation of L3, but whether this increase initiates a heat shock response is unknown. To investigate the role of the heat shock in hookworm L3 activation and parasitic development, we identified and characterized the expression profile of several components of the heat shock response in the hookworm Ancylostoma caninum. We cloned DNAs encoding an hsp70 family member (Aca-hsp-1) and an hsp90 family member (Aca-daf-21). Exposure to a heat shock of 42°C for one hour caused significant up-regulation of both genes, which slowly returned to near baseline levels following one hour attenuation at 22°C. Neither gene was up-regulated in response to host temperature (37°C). Conversely, levels of hsf-1 remained unchanged during heat shock, but increased in response to incubation at 37°C. During activation, both hsp-1 and daf-21 are down regulated early, although daf-21 levels increase significantly in non-activated control larvae after 12h, and slightly in activated larvae by 24h incubation. The heat shock response modulators celastrol and KNK437 were tested for their effects on gene expression during heat shock and activation. Pre-incubation with celastrol, an HSP90 inhibitor that promotes heat shock gene expression, slightly up-regulated expression of both hsp-1 and daf-21 during heat shock. KNK437, an inhibitor of heat shock

  10. BH3-only protein BIM mediates heat shock-induced apoptosis.

    PubMed

    Mahajan, Indra M; Chen, Miao-Der; Muro, Israel; Robertson, John D; Wright, Casey W; Bratton, Shawn B

    2014-01-01

    Acute heat shock can induce apoptosis through a canonical pathway involving the upstream activation of caspase-2, followed by BID cleavage and stimulation of the intrinsic pathway. Herein, we report that the BH3-only protein BIM, rather than BID, is essential to heat shock-induced cell death. We observed that BIM-deficient cells were highly resistant to heat shock, exhibiting short and long-term survival equivalent to Bax(-/-)Bak(-/-) cells and better than either Bid(-/-) or dominant-negative caspase-9-expressing cells. Only Bim(-/-) and Bax(-/-)Bak(-/-) cells exhibited resistance to mitochondrial outer membrane permeabilization and loss of mitochondrial inner membrane potential. Moreover, while dimerized caspase-2 failed to induce apoptosis in Bid(-/-) cells, it readily did so in Bim(-/-) cells, implying that caspase-2 kills exclusively through BID, not BIM. Finally, BIM reportedly associates with MCL-1 following heat shock, and Mcl-1(-/-) cells were indeed sensitized to heat shock-induced apoptosis. However, pharmacological inhibition of BCL-2 and BCL-X(L) with ABT-737 also sensitized cells to heat shock, most likely through liberation of BIM. Thus, BIM mediates heat shock-induced apoptosis through a BAX/BAK-dependent pathway that is antagonized by antiapoptotic BCL-2 family members.

  11. HSF1 and HSF3 cooperatively regulate the heat shock response in lizards

    PubMed Central

    Takii, Ryosuke; Fujimoto, Mitsuaki; Matsuura, Yuki; Wu, Fangxu; Oshibe, Namiko; Takaki, Eiichi; Katiyar, Arpit; Akashi, Hiroshi; Makino, Takashi; Kawata, Masakado

    2017-01-01

    Cells cope with temperature elevations, which cause protein misfolding, by expressing heat shock proteins (HSPs). This adaptive response is called the heat shock response (HSR), and it is regulated mainly by heat shock transcription factor (HSF). Among the four HSF family members in vertebrates, HSF1 is a master regulator of HSP expression during proteotoxic stress including heat shock in mammals, whereas HSF3 is required for the HSR in birds. To examine whether only one of the HSF family members possesses the potential to induce the HSR in vertebrate animals, we isolated cDNA clones encoding lizard and frog HSF genes. The reconstructed phylogenetic tree of vertebrate HSFs demonstrated that HSF3 in one species is unrelated with that in other species. We found that the DNA-binding activity of both HSF1 and HSF3 in lizard and frog cells was induced in response to heat shock. Unexpectedly, overexpression of lizard and frog HSF3 as well as HSF1 induced HSP70 expression in mouse cells during heat shock, indicating that the two factors have the potential to induce the HSR. Furthermore, knockdown of either HSF3 or HSF1 markedly reduced HSP70 induction in lizard cells and resistance to heat shock. These results demonstrated that HSF1 and HSF3 cooperatively regulate the HSR at least in lizards, and suggest complex mechanisms of the HSR in lizards as well as frogs. PMID:28686674

  12. BH3-Only Protein BIM Mediates Heat Shock-Induced Apoptosis

    PubMed Central

    Mahajan, Indra M.; Chen, Miao-Der; Muro, Israel; Robertson, John D.; Wright, Casey W.; Bratton, Shawn B.

    2014-01-01

    Acute heat shock can induce apoptosis through a canonical pathway involving the upstream activation of caspase-2, followed by BID cleavage and stimulation of the intrinsic pathway. Herein, we report that the BH3-only protein BIM, rather than BID, is essential to heat shock-induced cell death. We observed that BIM-deficient cells were highly resistant to heat shock, exhibiting short and long-term survival equivalent to Bax−/−Bak−/− cells and better than either Bid−/− or dominant-negative caspase-9-expressing cells. Only Bim−/− and Bax−/−Bak−/− cells exhibited resistance to mitochondrial outer membrane permeabilization and loss of mitochondrial inner membrane potential. Moreover, while dimerized caspase-2 failed to induce apoptosis in Bid−/− cells, it readily did so in Bim−/− cells, implying that caspase-2 kills exclusively through BID, not BIM. Finally, BIM reportedly associates with MCL-1 following heat shock, and Mcl-1−/− cells were indeed sensitized to heat shock-induced apoptosis. However, pharmacological inhibition of BCL-2 and BCL-XL with ABT-737 also sensitized cells to heat shock, most likely through liberation of BIM. Thus, BIM mediates heat shock-induced apoptosis through a BAX/BAK-dependent pathway that is antagonized by antiapoptotic BCL-2 family members. PMID:24427286

  13. Life extension after heat shock exposure: assessing meta-analytic evidence for hormesis.

    PubMed

    Lagisz, Malgorzata; Hector, Katie L; Nakagawa, Shinichi

    2013-03-01

    Hormesis is the response of organisms to a mild stressor resulting in improved health and longevity. Mild heat shocks have been thought to induce hormetic response because they promote increased activity of heat shock proteins (HSPs), which may extend lifespan. Using data from 27 studies on 12 animal species, we performed a comparative meta-analysis to quantify the effect of heat shock exposure on longevity. Contrary to our expectations, heat shock did not measurably increase longevity in the overall meta-analysis, although we observed much heterogeneity among studies. Thus, we explored the relative contributions of different experimental variables (i.e. moderators). Higher temperatures, longer durations of heat shock exposure, increased shock repeat and less time between repeat shocks, all decreased the likelihood of a life-extending effect, as would be expected when a hormetic response crosses the threshold to being a damaging exposure. We conclude that there is limited evidence that mild heat stress is a universal way of promoting longevity at the whole-organism level. Life extension via heat-induced hormesis is likely to be constrained to a narrow parameter window of experimental conditions.

  14. Reversible phosphorylation of tau to form A68 in heat-shocked neuronal PC12 cells.

    PubMed

    Wallace, W; Johnson, G; Sugar, J; Merril, C R; Refolo, L M

    1993-07-01

    A68, the primary protein constituent of Alzheimer's disease-associated neurofibrillary tangles, is an abnormally phosphorylated form of the microtubule-associated protein tau. We find that A68 is formed in neuronal PC12 cells when the cells are subjected to a heat shock (45 degrees C for 30 min). A68 was identified by immunoprecipitation with two different anti-tau antibodies (tau-2 and Alz50). Upon separation by SDS-polyacrylamide gel electrophoresis, the tau immunoprecipitates from heat-shocked cells exhibited an additional polypeptide of reduced electrophoretic mobility (approximately 68 kDa) when compared to control cells. A68 was formed with heat shock in the presence of cycloheximide, suggesting that its production occurred by post-translational modification of existing polypeptides. The tau/A68 polypeptides were identified as phosphoproteins by incorporation of 32P into the immunoprecipitates. The phosphorylation of tau to form A68 was reversed with recovery of the intact cells from the heat shock. Finally, immunoprecipitation of lysates from heat-shocked cells with antibodies to heat shock protein (hsp) 72/73 resulted in co-precipitation of tau with hsp 72, which indicates a stable complex formation between these two proteins. On the other hand, A68 remained unassociated with hsp during the heat shock. These results suggest that tau is reversibly phosphorylated to form A68 in neuronal PC12 cells under conditions of stress.

  15. Pharmacological induction of heat shock protein 68 synthesis in cultured rat astrocytes.

    PubMed

    Nishimura, R N; Dwyer, B E

    1995-12-15

    The induction of the highly inducible 70-kDa heat shock protein (HSP 70) is associated with thermotolerance and survival from many other types of stress. This investigation studied the pharmacological induction of HSP 68 (HSP 68 is the rat homolog of human HSP 70) by 1,10-phenanthroline in cultured rat astrocytes under conditions that activated heat shock transcription factor-1 without inducing HSP 68 synthesis. Two conditions that activate heat shock transcription factor-1 and promote its binding to the heat shock element without subsequent transcription of HSP 68 mRNA, intracellular acidosis and exposure to salicylate, showed synthesis of HSP 68 when 1,10-phenanthroline was added to culture medium after the activation of heat shock transcription factor-1. 1,10-phenanthroline mimicked heat shock by inducing HSP 68 mRNA and protein under both conditions. 1,10-phenanthroline added alone to culture medium did not induce the synthesis of HSP 68 or activate heat shock transcription factor-1. These findings strongly suggest a multistep activation for HSP 68 synthesis and also demonstrate that the synthesis of HSP 68 can be pharmacologically regulated.

  16. Exercise-induced ROS in heat shock proteins response.

    PubMed

    Dimauro, Ivan; Mercatelli, Neri; Caporossi, Daniela

    2016-09-01

    Cells have evolved multiple and sophisticated stress response mechanisms aiming to prevent macromolecular (including proteins, lipids, and nucleic acids) damage and to maintain or re-establish cellular homeostasis. Heat shock proteins (HSPs) are among the most highly conserved, ubiquitous, and abundant proteins in all organisms. Originally discovered more than 50 years ago through heat shock stress, they display multiple, remarkable roles inside and outside cells under a variety of stresses, including also oxidative stress and radiation, recognizing unfolded or misfolded proteins and facilitating their restructuring. Exercise consists in a combination of physiological stresses, such as metabolic disturbances, changes in circulating levels of hormones, increased temperature, induction of mild to severe inflammatory state, increased production of reactive oxygen and nitrogen species (ROS and RNS). As a consequence, exercise is one of the main stimuli associated with a robust increase in different HSPs in several tissues, which appears to be also fundamental in facilitating the cellular remodeling processes related to the training regime. Among all factors involved in the exercise-related modulation of HSPs level, the ROS production in the contracting muscle or in other tissues represents one of the most attracting, but still under discussion, mechanism. Following exhaustive or damaging muscle exercise, major oxidative damage to proteins and lipids is likely involved in HSP expression, together with mechanically induced damage to muscle proteins and the inflammatory response occurring several days into the recovery period. Instead, the transient and reversible oxidation of proteins by physiological concentrations of ROS seems to be involved in the activation of stress response following non-damaging muscle exercise. This review aims to provide a critical update on the role of HSPs response in exercise-induced adaptation or damage in humans, focusing on experimental

  17. Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting.

    PubMed

    Dolan, E B; Haugh, M G; Tallon, D; Casey, C; McNamara, L M

    2012-12-07

    Severe heat-shock to bone cells caused during orthopaedic procedures can result in thermal damage, leading to cell death and initiating bone resorption. By contrast, mild heat-shock has been proposed to induce bone regeneration. In this study, bone cells are exposed to heat-shock for short durations occurring during surgical cutting. Cellular viability, necrosis and apoptosis are investigated immediately after heat-shock and following recovery of 12, 24 h and 4 days, in osteocyte-like MLO-Y4 and osteoblast-like MC3T3-E1 cells, using flow cytometry. The regeneration capacity of heat-shocked Balb/c mesenchymal stem cells (MSCs) and MC3T3-E1s has been investigated following 7 and 14 day's recovery, by quantifying proliferation, differentiation and mineralization. An immediate necrotic response to heat-shock was shown in cells exposed to elevated temperatures (45°C, 47°C and most severe at 60°C). A longer-term apoptotic response is induced in MLO-Y4s and, to a lesser extent, in MC3T3-E1s. Heat-shock-induced differentiation and mineralization by MSCs. These findings indicate that heat-shock is more likely to induce apoptosis in osteocytes than osteoblasts, which might reflect their role as sensors detecting and communicating damage within bone. Furthermore, it is shown for the first time that mild heat-shock (less than equal to 47°C) for durations occurring during surgical cutting can positively enhance osseointegration by osteoprogenitors.

  18. Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting

    PubMed Central

    Dolan, E. B.; Haugh, M. G.; Tallon, D.; Casey, C.; McNamara, L. M.

    2012-01-01

    Severe heat-shock to bone cells caused during orthopaedic procedures can result in thermal damage, leading to cell death and initiating bone resorption. By contrast, mild heat-shock has been proposed to induce bone regeneration. In this study, bone cells are exposed to heat-shock for short durations occurring during surgical cutting. Cellular viability, necrosis and apoptosis are investigated immediately after heat-shock and following recovery of 12, 24 h and 4 days, in osteocyte-like MLO-Y4 and osteoblast-like MC3T3-E1 cells, using flow cytometry. The regeneration capacity of heat-shocked Balb/c mesenchymal stem cells (MSCs) and MC3T3-E1s has been investigated following 7 and 14 day's recovery, by quantifying proliferation, differentiation and mineralization. An immediate necrotic response to heat-shock was shown in cells exposed to elevated temperatures (45°C, 47°C and most severe at 60°C). A longer-term apoptotic response is induced in MLO-Y4s and, to a lesser extent, in MC3T3-E1s. Heat-shock-induced differentiation and mineralization by MSCs. These findings indicate that heat-shock is more likely to induce apoptosis in osteocytes than osteoblasts, which might reflect their role as sensors detecting and communicating damage within bone. Furthermore, it is shown for the first time that mild heat-shock (less than equal to 47°C) for durations occurring during surgical cutting can positively enhance osseointegration by osteoprogenitors. PMID:22915633

  19. Altered expression and phosphorylation of amyloid precursor protein in heat shocked neuronal PC12 cells.

    PubMed

    Johnson, G; Refolo, L M; Merril, C R; Wallace, W

    1993-07-01

    The pathology of the Alzheimer's disease (AD) brain, including amyloid plaques, neurofibrillary tangles and neuronal degeneration, indicates that neurons affected by AD exist under conditions of stress. In fact, the brains of AD patients undergo many changes classically associated with the heat shock response, which is one form of a stress response. These changes include reduced protein synthesis, disrupted cytoskeleton, increased number of proteins associated with ubiquitin, and the induction of heat shock proteins. To investigate the response of neurons to stress, we examined neuronal PC12 cells incubated at either 37 degrees C (control cells) or 45 degrees C (heat-shocked cells). After a 30 min exposure at 45 degrees C, the heat-shocked cells exhibited several features characteristic of the classical heat shock response including a 45% reduction in total protein synthesis, the induction of heat shock protein 72, and an increased phosphorylation of the protein synthesis initiation factor eIF-2 alpha. We used this cellular model system to study the neuronal response to stress specifically focusing on protein synthesis elongation factor 2 (EF-2) and the Alzheimer's amyloid precursor protein (APP), the precursor form of beta-amyloid peptide. Hyperphosphorylation of EF-2 has been observed in the neocortex and hippocampus of AD brain. However, in our system, we find no hyperphosphorylation of EF-2 in response to heat shock. Heat-shocked neuronal PC12 cells exhibited two additional APP-like polypeptides not present in controls. We also found a significant decrease in the phosphorylation state of APP in response to heat shock.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Effects of cycloheximide on thermotolerance expression, heat shock protein synthesis, and heat shock protein mRNA accumulation in rat fibroblasts.

    PubMed Central

    Widelitz, R B; Magun, B E; Gerner, E W

    1986-01-01

    A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis. Images PMID:3785158

  1. Heat Stress and Cardiovascular, Hormonal, and Heat Shock Proteins in Humans

    PubMed Central

    Iguchi, Masaki; Littmann, Andrew E.; Chang, Shuo-Hsiu; Wester, Lydia A.; Knipper, Jane S.; Shields, Richard K.

    2012-01-01

    Context: Conditions such as osteoarthritis, obesity, and spinal cord injury limit the ability of patients to exercise, preventing them from experiencing many well-documented physiologic stressors. Recent evidence indicates that some of these stressors might derive from exercise-induced body temperature increases. Objective: To determine whether whole-body heat stress without exercise triggers cardiovascular, hormonal, and extra-cellular protein responses of exercise. Design: Randomized controlled trial. Setting: University research laboratory. Patients or Other Participants: Twenty-five young, healthy adults (13 men, 12 women; age = 22.1 ± 2.4 years, height = 175.2 ± 11.6 cm, mass = 69.4 ± 14.8 kg, body mass index = 22.6 ± 4.0) volunteered. Intervention(s): Participants sat in a heat stress chamber with heat (73°C) and without heat (26°C) stress for 30 minutes on separate days. We obtained blood samples from a subset of 13 participants (7 men, 6 women) before and after exposure to heat stress. Main Outcome Measure(s): Extracellular heat shock protein (HSP72) and catecholamine plasma concentration, heart rate, blood pressure, and heat perception. Results: After 30 minutes of heat stress, body temperature measured via rectal sensor increased by 0.8°C. Heart rate increased linearly to 131.4 ± 22.4 beats per minute (F6,24 = 186, P < .001) and systolic and diastolic blood pressure decreased by 16 mm Hg (F6,24 = 10.1, P < .001) and 5 mm Hg (F6,24 = 5.4, P < .001), respectively. Norepinephrine (F1,12 = 12.1, P = .004) and prolactin (F1,12 = 30.2, P < .001) increased in the plasma (58% and 285%, respectively) (P < .05). The HSP72 (F1,12 = 44.7, P < .001) level increased with heat stress by 48.7% ± 53.9%. No cardiovascular or blood variables showed changes during the control trials (quiet sitting in the heat chamber with no heat stress), resulting in differences between heat and control trials. Conclusions: We found that whole-body heat stress triggers some of the

  2. Heat stress and cardiovascular, hormonal, and heat shock proteins in humans.

    PubMed

    Iguchi, Masaki; Littmann, Andrew E; Chang, Shuo-Hsiu; Wester, Lydia A; Knipper, Jane S; Shields, Richard K

    2012-01-01

    Conditions such as osteoarthritis, obesity, and spinal cord injury limit the ability of patients to exercise, preventing them from experiencing many well-documented physiologic stressors. Recent evidence indicates that some of these stressors might derive from exercise-induced body temperature increases. To determine whether whole-body heat stress without exercise triggers cardiovascular, hormonal, and extracellular protein responses of exercise. Randomized controlled trial. University research laboratory. Twenty-five young, healthy adults (13 men, 12 women; age = 22.1 ± 2.4 years, height = 175.2 ± 11.6 cm, mass = 69.4 ± 14.8 kg, body mass index = 22.6 ± 4.0) volunteered. Participants sat in a heat stress chamber with heat (73°C) and without heat (26°C) stress for 30 minutes on separate days. We obtained blood samples from a subset of 13 participants (7 men, 6 women) before and after exposure to heat stress. Extracellular heat shock protein (HSP72) and catecholamine plasma concentration, heart rate, blood pressure, and heat perception. After 30 minutes of heat stress, body temperature measured via rectal sensor increased by 0.8°C. Heart rate increased linearly to 131.4 ± 22.4 beats per minute (F₆,₂₄ = 186, P < .001) and systolic and diastolic blood pressure decreased by 16 mm Hg (F₆,₂₄ = 10.1, P < .001) and 5 mm Hg (F₆,₂₄ = 5.4, P < .001), respectively. Norepinephrine (F₁,₁₂ = 12.1, P = .004) and prolactin (F₁,₁₂ = 30.2, P < .001) increased in the plasma (58% and 285%, respectively) (P < .05). The HSP72 (F₁,₁₂ = 44.7, P < .001) level increased with heat stress by 48.7% ± 53.9%. No cardiovascular or blood variables showed changes during the control trials (quiet sitting in the heat chamber with no heat stress), resulting in differences between heat and control trials. We found that whole-body heat stress triggers some of the physiologic responses observed with exercise. Future studies are necessary to investigate whether

  3. Hormetic heat shock and HSF-1 overexpression improve C. elegans survival and proteostasis by inducing autophagy.

    PubMed

    Kumsta, Caroline; Hansen, Malene

    2017-03-23

    The cellular recycling process of macroautophagy/autophagy is an essential homeostatic system induced by various stresses, but it remains unclear how autophagy contributes to organismal stress resistance. In a recent study, we report that a mild and physiologically beneficial ("hormetic") heat shock as well as overexpression of the heat-shock responsive transcription factor HSF-1 systemically increases autophagy in C. elegans. Accordingly, we found HSF-1- and heat stress-inducible autophagy to be required for C. elegans thermoresistance and longevity. Moreover, a hormetic heat shock or HSF-1 overexpression alleviated PolyQ protein aggregation in an autophagy-dependent manner. Collectively, we demonstrate a critical role for autophagy in C. elegans stress resistance and hormesis, and reveal a requirement for autophagy in HSF-1 regulated functions in the heat-shock response, proteostasis, and aging.

  4. The role of heat shock protein 90 in the regulation of tumor cell apoptosis.

    PubMed

    Kaigorodova, E V; Ryazantseva, N V; Novitskii, V V; Belkina, M V; Maroshkina, A N

    2011-02-01

    Programmed death of Jurkat tumor cells was studied under conditions of culturing with 17-AAG selective inhibitor of heat shock protein with a molecular weight of 90 kDa and etoposide. Apoptosis realization was evaluated by fluorescent microscopy with FITC-labeled annexin V and propidium iodide. Activity of caspase-3 was evaluated spectrophotometrically. Inhibition of heat shock protein with a molecular weight of 90 kDa activated the apoptotic program in Jurkat tumor cells and etoposide-induced apoptosis. The heat shock protein with a molecular weight of 90 kDa acted as apoptosis inhibitor in tumor cells.

  5. Role of TRP channels in the induction of heat shock proteins (Hsps) by heating skin

    PubMed Central

    Hsu, Wen-Li; Yoshioka, Tohru

    2015-01-01

    Transient receptor potential (TRP) channels in skin are crucial for achieving temperature sensitivity to maintain internal temperature balance and thermal homeostasis, as well as to protect skin cells from environmental stresses such as infrared (IR) or near-infrared (NIR) radiation via heat shock protein (Hsp) production. However, the mechanisms by which IR and NIR activate TRP channels and produce Hsps intracellularly have been independently reported. In this review, we discuss the relationship between TRP channel activation and Hsp production, and introduce the roles of several skin TRP channels in the regulation of HSP production by IR and NIR exposure. PMID:27493511

  6. Role of TRP channels in the induction of heat shock proteins (Hsps) by heating skin.

    PubMed

    Hsu, Wen-Li; Yoshioka, Tohru

    2015-01-01

    Transient receptor potential (TRP) channels in skin are crucial for achieving temperature sensitivity to maintain internal temperature balance and thermal homeostasis, as well as to protect skin cells from environmental stresses such as infrared (IR) or near-infrared (NIR) radiation via heat shock protein (Hsp) production. However, the mechanisms by which IR and NIR activate TRP channels and produce Hsps intracellularly have been independently reported. In this review, we discuss the relationship between TRP channel activation and Hsp production, and introduce the roles of several skin TRP channels in the regulation of HSP production by IR and NIR exposure.

  7. Heat shock protein induction in rat pancreatic islets by recombinant human interleukin 1 beta.

    PubMed

    Helqvist, S; Polla, B S; Johannesen, J; Nerup, J

    1991-03-01

    Interleukin 1 beta, potentiated by tumour necrosis factor alpha, is cytotoxic to pancreatic Beta cells in vitro. We have hypothesized that interleukin 1 beta induces oxygen free radicals in Beta cells. Since cytotoxicity induced by free radicals and by heat may activate the same cellular repair mechanism (the heat shock response), the aim of this study was to investigate the pattern of protein synthesis in isolated islets after exposure to interleukin 1 beta (150 pg/ml, 24 h), tumour necrosis factor alpha (50 ng/ml, 24 h) heat shock (43 degrees C, 30 min) and H2O2 (0.1 mmol/l, 20 min). By polyacrylamide gel electrophoresis, autoradiography, Western-blot analysis and partial peptide mapping of 35S-methionine labelled islets, interleukin 1 beta was found to induce a 73 kilodalton protein belonging to the heat shock protein family heat shock protein 70, a heat shock protein 90, and haem oxygenase. A minor induction of heat shock protein 73 and haem oxygenase was seen after H2O2. Interleukin 1 beta did not induce heat shock proteins in rat thyroid cells, rat mesangial cells or in human monocytes. Tumour necrosis factor alpha did not induce selective protein synthesis. Pre-exposure of islets to heat, tumour necrosis factor alpha, or H2O2 did not prevent the impairment of glucose-stimulated insulin release seen after 24 h of interleukin 1 beta exposure. The data are compatible with free radical induction by interleukin 1 beta. However, the heat shock response is not specific for oxidative injury, and previous studies have shown discrepant effects as to a protective effect of free radical scavengers against interleukin 1 beta-mediated beta-cytotoxicity.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Heat Shock Proteins in Dermatophytes: Current Advances and Perspectives

    PubMed Central

    Martinez-Rossi, Nilce M.; Jacob, Tiago R.; Sanches, Pablo R.; Peres, Nalu T.A.; Lang, Elza A.S.; Martins, Maíra P.; Rossi, Antonio

    2016-01-01

    Heat shock proteins (HSPs) are proteins whose transcription responds rapidly to temperature shifts. They constitute a family of molecular chaperones, involved in the proper folding and stabilisation of proteins under physiological and adverse conditions. HSPs also assist in the protection and recovery of cells exposed to a variety of stressful conditions, including heat. The role of HSPs extends beyond chaperoning proteins, as they also participate in diverse cellular functions, such as the assembly of macromolecular complexes, protein transport and sorting, dissociation of denatured protein aggregates, cell cycle control, and programmed cell death. They are also important antigens from a variety of pathogens, are able to stimulate innate immune cells, and are implicated in acquired immunity. In fungi, HSPs have been implicated in virulence, dimorphic transition, and drug resistance. Some HSPs are potential targets for therapeutic strategies. In this review, we discuss the current understanding of HSPs in dermatophytes, which are a group of keratinophilic fungi responsible for superficial mycoses in humans and animals. Computational analyses were performed to characterise the group of proteins in these dermatophytes, as well as to assess their conservation and to identify DNA-binding domains (5′-nGAAn-3′) in the promoter regions of the hsp genes. In addition, the quantification of the transcript levels of few genes in a pacC background helped in the development of an extended model for the regulation of the expression of the hsp genes, which supports the participation of the pH-responsive transcriptional regulator PacC in this process. PMID:27226766

  9. Changes in the transcriptome of morula-stage bovine embryos caused by heat shock: relationship to developmental acquisition of thermotolerance

    PubMed Central

    2013-01-01

    Background While initially sensitive to heat shock, the bovine embryo gains thermal resistance as it progresses through development so that physiological heat shock has little effect on development to the blastocyst stage by Day 5 after insemination. Here, experiments using 3’ tag digital gene expression (3’DGE) and real-time PCR were conducted to determine changes in the transcriptome of morula-stage bovine embryos in response to heat shock (40 degrees C for 8 h) that could be associated with thermotolerance. Results Using 3’DGE, expression of 173 genes were modified by heat shock, with 94 genes upregulated by heat shock and 79 genes downregulated by heat shock. A total of 38 differentially-regulated genes were associated with the ubiquitin protein, UBC. Heat shock increased expression of one heat shock protein gene, HSPB11, and one heat shock protein binding protein, HSPBP1, tended to increase expression of HSPA1A and HSPB1, but did not affect expression of 64 other genes encoding heat shock proteins, heat shock transcription factors or proteins interacting with heat shock proteins. Moreover, heat shock increased expression of five genes associated with oxidative stress (AKR7A2, CBR1, GGH, GSTA4, and MAP2K5), decreased expression of HIF3A, but did not affect expression of 42 other genes related to free radical metabolism. Heat shock also had little effect on genes involved in embryonic development. Effects of heat shock for 2, 4 and 8 h on selected heat shock protein and antioxidant genes were also evaluated by real-time PCR. Heat shock increased steady-state amounts of mRNA for HSPA1A (P<0.05) and tended to increase expression of HSP90AA1 (P<0.07) but had no effect on expression of SOD1 or CAT. Conclusions Changes in the transcriptome of the heat-shocked bovine morula indicate that the embryo is largely resistant to effects of heat shock. As a result, transcription of genes involved in thermal protection is muted and there is little disruption of gene

  10. Increased heat shock protein expression after stress in Japanese quail.

    PubMed

    Hoekstra, K A; Iwama, G K; Nichols, C R; Godin, D V; Cheng, K M

    1998-12-01

    Heat shock proteins (HSPs) have been shown to provide information on the biological impact of environmental stress to organisms, yet none have investigated the HSP response to stress in birds. Japanese quail were exposed to seven different stressors (mild restraint, loud noise, inescapable irritation, cold temperature, isolation in darkness, and two stressful social situations) and expression of HSP30, 60, 70, and 90 in heart, liver, lung, kidney and gonads was examined. Tonic Immobility (TI) tests were also conducted to assess whether the stressors increased fear response. Increased expression of HSP70 was found in the myocardial tissue of birds exposed to loud noise, inescapable irritation, cold temperature, and isolation in darkness. Increased expression of other HSPs was not apparent in the heart or any of the other all tissues examined. Longer TI was observed only in birds exposed to the noise stress. Evidence is presented that a fairly wide range of stressors caused increased expression of HSP70 in the Japanese quail myocardial tissue and that HSPs may provide useful biomarkers for the study of environmental stress in birds.

  11. The Role of Heat Shock Proteins in Antigen Cross Presentation

    PubMed Central

    Murshid, Ayesha; Gong, Jianlin; Calderwood, Stuart K.

    2012-01-01

    Heat shock proteins (HSPs) are molecular chaperones that bind tumor antigens and mediate their uptake into antigen presenting cells. HSP–antigen complexes are then directed toward either the MHC class I pathway through antigen cross presentation or the conventional class II pathway, leading to activation of T cell subsets. Uptake of HSP-chaperoned polypeptides can involve both receptor-mediated and receptor-independent routes, and mechanisms of antigen sorting between the Class I and II pathways after uptake are currently under investigation. The processes involved in internalization of HSP–antigen complexes differ somewhat from the mechanisms previously determined for (unchaperoned) particulate and free soluble antigens. A number of studies show that HSP-facilitated antigen cross presentation requires uptake of the complexes by scavenger receptors (SR) followed by processing in the proteasome, and loading onto MHC class I molecules. In this review we have examined the roles of HSPs and SR in antigen uptake, sorting, processing, cell signaling, and activation of innate and adaptive immunity. PMID:22566944

  12. Responses to heat shock, arsenite and cadmium in soybean

    SciTech Connect

    Edelman, L. ); Key, J.L. )

    1989-04-01

    Heat shock (HS), arsenite (As) and cadmium (Cd) treatments induced the HS response in soybean seedlings but differed in their abilities to induce stress tolerance. Pretreatment of seedlings with sub-lethal HS protected them from subsequent normally lethal HS treatment. However, the protection was much more pronounced in 1 day-old than in 2 day-old plants. Sublethal arsenite pretreatment resulted in only a low level of protection against lethal As or HS treatment and severe damage still occurred in specific tissues. Cadmium did not induce any self- or cross-protection. DNA sequence analyses revealed that HS, As and Cd induced the transcription of similar sequences. However, Northern blot analyses of HS mRNAs, and analyses of in vitro translation products and in vivo-labeled proteins by 1D and 2D SDS-PAGE demonstrated that, compared to HS, the response to the chemical stresses was slower, less intense and not as selective. Apparently any causal relationship between HS proteins and induced stress tolerance must also involve developmental-, tissue-, and/or quantitative-specificities.

  13. Heat Shock Proteins: Cellular and molecular mechanisms in the CNS

    PubMed Central

    Stetler, R. Anne; Gan, Yu; Zhang, Wenting; Liou, Anthony K.; Gao, Yanqin; Cao, Guodong; Chen, Jun

    2010-01-01

    Emerging evidence describe heat shock proteins (HSPs) as critical regulators in normal neural physiological function as well as in cell stress responses. The functions of HSPs represent an enormous and diverse range of cellular activities, far beyond the originally identified role in protein folding and chaperoning. Now understood to be involved in processes such as synaptic transmission, autophagy, ER stress response, protein kinase and cell death signaling as well as protein chaperone and folding, manipulation of HSPs have robust effects on the fate of cells in neurological injury and disease states. The ongoing exploration of multiple HSP superfamilies has underscored the pluripotent nature of HSPs in the cellular context, and demanded the recent restructuring of the nomenclature referring to these families to reflect a re-organization based on structure and function. In keeping with this re-organization, we have first discussed the HSP superfamilies in terms of protein structure, regulation and expression and distribution in the brain. We then explore major cellular functions of HSPs that are relevant to neural physiological states, and from there discuss known and proposed HSP impact on major neurological disease states. This review article presents a three-part discussion on the array of HSPs families relevant to neuronal tissue, their cellular functions, and the exploration of therapeutic targets of these proteins in the context of neurological diseases. PMID:20685377

  14. The role of small heat shock proteins in parasites.

    PubMed

    Pérez-Morales, Deyanira; Espinoza, Bertha

    2015-09-01

    The natural life cycle of many protozoan and helminth parasites involves exposure to several hostile environmental conditions. Under these circumstances, the parasites arouse a cellular stress response that involves the expression of heat shock proteins (HSPs). Small HSPs (sHSPs) constitute one of the main families of HSPs. The sHSPs are very divergent at the sequence level, but their secondary and tertiary structures are conserved and some of its members are related to α-crystallin from vertebrates. They are involved in a variety of cellular processes. As other HSPs, the sHSPs act as molecular chaperones; however, they have shown other activities apparently not related to chaperone action. In this review, the diverse activities of sHSPs in the major genera of protozoan and helminth parasites are described. These include stress response, development, and immune response, among others. In addition, an analysis comparing the sequences of sHSPs from some parasites using a distance analysis is presented. Because many parasites face hostile conditions through its life cycles the study of HSPs, including sHSPs, is fundamental.

  15. Heat shock proteins: a therapeutic target worth to consider

    PubMed Central

    Dubey, Amita; Prajapati, K. S.; Swamy, Madhu; Pachauri, V.

    2015-01-01

    Heat shock proteins (HSPs) are the molecular chaperones, that are not only expressed during the normal growth process of cell cycle consecutively, but also get induced in cells during various stress conditions produced by cellular insult, environmental changes, temperature, infections, tumors etc. According to their molecular weight and functions, HSPs are divided into five major families. HSP90, HSP70, HSP60 and HSP100 are the most studied members of the family. Experimental studies have proved that overexpression and/or inhibition of HSPs play an important role in maintaining the tolerance and cell viability under above-described stress conditions. HSP90 is found to be a promising the candidate for the diagnosis, prognosis and treatment of cancer. Similarly, HSP70, HSP60 and small HSPs experimentally and clinically have potential for the treatment of neurodegenerative disease, ischemia, cell death, autoimmunity, graft rejection, etc. In a way, exploring, the cytoprotective and immunoregulatory role of HSPs can open a new avenue for the drug discovery and treatment of critical diseases. PMID:27046995

  16. Involvement of heat shock proteins in gluten-sensitive enteropathy.

    PubMed

    Sziksz, Erna; Pap, Domonkos; Veres, Gábor; Fekete, Andrea; Tulassay, Tivadar; Vannay, Ádám

    2014-06-07

    Gluten-sensitive enteropathy, also known as coeliac disease (CD), is an autoimmune disorder occurring in genetically susceptible individuals that damages the small intestine and interferes with the absorption of other nutrients. As it is triggered by dietary gluten and related prolamins present in wheat, rye and barley, the accepted treatment for CD is a strict gluten-free diet. However, a complete exclusion of gluten-containing cereals from the diet is often difficult, and new therapeutic strategies are urgently needed. A class of proteins that have already emerged as drug targets for other autoimmune diseases are the heat shock proteins (HSPs), which are highly conserved stress-induced chaperones that protect cells against harmful extracellular factors. HSPs are expressed in several tissues, including the gastrointestinal tract, and their levels are significantly increased under stress circumstances. HSPs exert immunomodulatory effects, and also play a crucial role in the maintenance of epithelial cell structure and function, as they are responsible for adequate protein folding, influence the degradation of proteins and cell repair processes after damage, and modulate cell signalling, cell proliferation and apoptosis. The present review discusses the involvement of HSPs in the pathophysiology of CD. Furthermore, HSPs may represent a useful therapeutic target for the treatment of CD due to the cytoprotective, immunomodulatory, and anti-apoptotic effects in the intestinal mucosal barrier.

  17. Plasmodium falciparum heat shock protein 70 lacks immune modulatory activity.

    PubMed

    Pooe, Ofentse Jacob; Köllisch, Gabriele; Heine, Holger; Shonhai, Addmore

    2017-02-14

    Heat shock protein 70 (Hsp70) family are conserved molecules that constitute a major part of the cell's protein folding machinery. The role of Hsp70s of parasitic origin in host cell immune modulation has remained contentious. This is largely due to the fact that several studies implicating Hsp70 in immune modulation rely on the use of recombinant protein derived from bacteria which is often fraught contamination. Thus, in the current study, we expressed recombinant Plasmodium falciparum Hsp70 (PfHsp70) using in three bacterial expression hosts: E. coli XL1 Blue, E. coli ClearColi BL21 and Brevibacillus choshinensis, respectively. We further investigated the immunostimulatory capability of the protein by assessing cytokine production by murine immune cells cultured in the presence of the protein. Recombinant PfHsp70 obtained from E. coli XL1 Blue expression host induced IL6 and IL8 cytokines. On the other hand, PfHsp70 produced in E. coli ClearColi and B. choshinensis expression systems was associated with no detectable traces of LPS and exhibited no immunomodulatory activity. Our findings suggest that PfHsp70 does not possess immunomodulatory function. Furthermore, our study suggests that E. coli ClearColi and B. choshinensis are versatile for the production of recombinant protein for use in immunomodulatory studies.

  18. Recent Patents on Heat Shock Proteins Targeting Antibodies.

    PubMed

    Fernandes, Joao C; Alves, Pedro

    2017-01-01

    Heat shock proteins (Hsp) are major chaperone molecules that have recently emerged as cancer therapeutic targets owing to their involvement in tumor cell proliferation, differentiation, invasion and metastasis. High levels of extracellular Hsp90 and Hsp70 have been closely associated with a wide range of human cancers. Accumulating evidence suggests that the pharmacological inhibition of these molecules can play a pivotal role in non-surgical cancer treatment. Efforts have been taken to develop monoclonal antibodies (mAbs) and antibody fragments targeting extracellular Hsp90 and Hsp70, alone or conjugated with standard anticancer agents, to control several types of cancer, such as breast, colon, prostate or melanoma. To provide an overview on the development of monoclonal antibodies and antibody fragments with capacity to bind Hsp90 and Hsp70, aiming at being used for cancer treatment. A systematic review was performed using European Patent Office and Google patents databases. Based on the available literature and patents, we report the potential anticancer strategies based on these biological molecules. Supported by the recent developments in this field, Hsp targeting antibodies therapy may emerge for clinical use in the future for cancer patients, namely as antibody-drug conjugates combining the specificity of these antibodies with the potency of cytotoxic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. EXTRACELLULAR HEAT SHOCK PROTEINS: A NEW LOCATION, A NEW FUNCTION

    PubMed Central

    De Maio, Antonio; Vazquez, Daniel

    2015-01-01

    The expression of heat shock proteins (hsp) is a basic and well conserved cellular response to an array of stresses. These proteins are involved in the repair of cellular damage induced by the stress, which is necessary for the salutary resolution from the insult. Moreover, they confer protection from subsequent insults, which has been coined stress tolerance. Since these proteins are expressed in subcellular compartments, it was thought that their function during stress conditions was circumscribed to the intracellular environment. However, it is now well established that hsp can also be present outside cells where they appear to display a function different than the well understood chaperone role. Extracellular hsp act as alert stress signals priming other cells, particularly of the immune system, to avoid the propagation of the insult and favor resolution. Since the majority of hsp do not possess a secretory peptide signal, they are likely be exported by a non-classical secretory pathway. Different mechanisms have been proposed to explain the export of hsp, including translocation across the plasma membrane and release associated with lipid vesicles, as well as the passive release after cell death by necrosis. Extracellular hsp appear in various flavors, including membrane-bound and membrane-free forms. All of these variants of extracellular hsp suggest that their interactions with cells may be quite diverse, both in target cell types and the activation signaling pathways. This review addresses some of our current knowledge about the release and relevance of extracellular hsp. PMID:23807250

  20. A developmentally regulated membrane protein gene in Dictyostelium discoideum is also induced by heat shock and cold shock.

    PubMed Central

    Maniak, M; Nellen, W

    1988-01-01

    We have analyzed the expression of the Dictyostelium gene P8A7 which had been isolated as a cDNA clone from an early developmentally regulated gene. The single genomic copy generated two mRNAs which were subject to different control mechanisms: while one mRNA (P8A7S) was regulated like the cell-type-nonspecific late genes, the other one (P8A7L) was induced during development, when cells were allowed to attach to a substrate, and when cells were subjected to stress, such as heat shock and cadmium. Interestingly the same induction was also observed with cold shock. RNA processing was inhibited by heat and cold shock, leading to nuclear accumulation of a precursor. The translated region of the cDNA was common to both mRNAs and encoded an unusually hydrophobic peptide with the characteristics of a membrane protein. Images PMID:3336356

  1. Characterization of the major 68 kDa heat shock protein in a rat transformed astroglial cell line.

    PubMed

    Nishimura, R N; Dwyer, B E; de Vellis, J; Clegg, K B

    1992-01-01

    The heat shock response in a transformed astrocyte line was compared with nontransformed astrocytes. The synthesis of HSP 68, the major inducible heat shock protein (HSP 68) was induced by a non-lethal 45 degrees C, 10 min heat shock. Although the incorporation of [35S]methionine into HSP 68 suggested that similar amounts of protein were being synthesized after heat shock, Western immunoblotting demonstrated striking differences in the HSP immunostaining between the two cell types. By one- and 'two-dimensional gel electrophoresis the major 68 kDa heat shock protein (HSP 68) was similar in both cell types. However, HSP 68 from heat shocked, transformed astrocytes did not immunostain with the monoclonal antibody, C-92, which is specific for the major inducible heat shock protein of HeLa cells. In contrast HSP 68 from heat shocked, nontransformed astrocytes immunostained quite well. A polyclonal antibody raised against the inducible 72 kDa heat shock protein of HeLa cells immunostained the HSP 68 from both astrocytes and transformed astrocytes. Analysis of the mRNA from the two cell types after heat shock revealed two bands of approximately 2.5 and 2.8 kb in astrocytes but only a single 2.5 kb band in the heat shocked transformed astroglia. These results suggest that structural differences in the HSP 68 may be present in the transformed astrocytes compared to the normal astrocytes.

  2. Destabilization and recovery of a yeast prion after mild heat shock.

    PubMed

    Newnam, Gary P; Birchmore, Jennifer L; Chernoff, Yury O

    2011-05-06

    Yeast prion [PSI(+)] is a self-perpetuating amyloid of the translational termination factor Sup35. Although [PSI(+)] propagation is modulated by heat shock proteins (Hsps), high temperature was previously reported to have little or no effect on [PSI(+)]. Our results show that short-term exposure of exponentially growing yeast culture to mild heat shock, followed by immediate resumption of growth, leads to [PSI(+)] destabilization, sometimes persisting for several cell divisions after heat shock. Prion loss occurring in the first division after heat shock is preferentially detected in a daughter cell, indicating the impairment of prion segregation that results in asymmetric prion distribution between a mother cell and a bud. Longer heat shock or prolonged incubation in the absence of nutrients after heat shock led to [PSI(+)] recovery. Both prion destabilization and recovery during heat shock depend on protein synthesis. Maximal prion destabilization coincides with maximal imbalance between Hsp104 and other Hsps such as Hsp70-Ssa. Deletions of individual SSA genes increase prion destabilization and/or counteract recovery. The dynamics of prion aggregation during destabilization and recovery are consistent with the notion that efficient prion fragmentation and segregation require a proper balance between Hsp104 and other (e.g., Hsp70-Ssa) chaperones. In contrast to heat shock, [PSI(+)] destabilization by osmotic stressors does not always depend on cell proliferation and/or protein synthesis, indicating that different stresses may impact the prion via different mechanisms. Our data demonstrate that heat stress causes asymmetric prion distribution in a cell division and confirm that the effects of Hsps on prions are physiologically relevant.

  3. Destabilization and recovery of a yeast prion after mild heat shock

    PubMed Central

    Newnam, Gary P.; Birchmore, Jennifer L.; Chernoff, Yury O.

    2011-01-01

    Yeast prion [PSI+] is a self-perpetuating amyloid of the translational termination factor Sup35. Although [PSI+] propagation is modulated by heat shock proteins (Hsps), high temperature was previously reported to have little or no effect on [PSI+]. Our results show that short-term exposure of exponentially growing yeast culture to mild heat shock, followed by immediate resumption of growth, leads to [PSI+] destabilization, sometimes persisting for several cell divisions after heat shock. Prion loss occurring in the first division after heat shock is preferentially detected in a daughter cell, indicating the impairment of prion segregation that results in asymmetric prion distribution between a mother cell and a bud. Longer heat shock or prolonged incubation in the absence of nutrients after heat shock lead to [PSI+] recovery. Both prion destabilization and recovery during heat shock depend on protein synthesis. Maximal prion destabilization coincides with maximal imbalance between Hsp104 and other Hsps such as Hsp70-Ssa. Deletions of individual SSA genes increase prion destabilization and/or counteract recovery. Dynamics of prion aggregation during destabilization and recovery is consistent with the notion that efficient prion fragmentation and segregation require a proper balance between Hsp104 and other (e. g. Hsp70-Ssa) chaperones. In contrast to heat shock, [PSI+] destabilization by osmotic stressors does not always depend on cell proliferation and/or protein synthesis, indicating that different stresses may impact the prion via different mechanisms. Our data demonstrate that heat stress causes asymmetric prion distribution in a cell division, and confirm that effects of Hsps on prions are physiologically relevant. PMID:21392508

  4. Heat shock suppresses mating and sperm transfer in the rice leaf folder Cnaphalocrocis medinalis.

    PubMed

    Liao, H J; Qian, Q; Liu, X D

    2014-06-01

    Temperature is a key environmental factor in determining the population size of Cnaphalocrocis medinalis in summer. High temperatures inhibit survival, development and fecundity of this insect. However, biological responses of female and male adults to heat shock, and physiological mechanism of high temperature suppressing population development are still ambiguous. We experimentally tested the impact of heat shock (5 h day-1) on biological traits, spermatogenesis and sperm transfer of adults of C. medinalis. The result showed that heat exposure to 39 and 40 °C for 5 h reduced longevity and copulation frequency of adults, and hatchability of eggs. Immediate survival rate of males was lower than that of females after 3 days of exposure to 41 °C. The oviposition period, copulation frequency, fecundity of adults and hatchability of eggs were significantly lower when male adults were exposed to 40 or 41 °C for 3 days. Heat shock decreased frequency and success rate of mating when males were exposed, and it also resulted in postponement of mating behaviour and prolongation of mating duration as both the female and male adults were exposed. Heat shock did not affect spermatogenesis, but significantly inhibited sperms maturation. Moreover, males could not ejaculate sperm into females during copulation when these male moths received heat shock. Heat shock remarkably suppressed mating behaviour and sperm transfer, which led to a dramatic decline of rice leaf folder populations.

  5. Silkworm Thermal Biology: A Review of Heat Shock Response, Heat Shock Proteins and Heat Acclimation in the Domesticated Silkworm, Bombyx mori

    PubMed Central

    Manjunatha, H. B.; Rajesh, R. K.; Aparna, H. S.

    2010-01-01

    Heat shock proteins (HSPs) are known to play ecological and evolutionary roles in this postgenomic era. Recent research suggests that HSPs are implicated in cardiovascular biology and disease development, proliferation and regulation of cancer cells, cell death via apoptosis, and several other key cellular functions. These activities have generated great interest amongst cell and molecular biologists, and these biologists are keen to unravel other hitherto unknown potential functions of this group of proteins. Consequently, the biological significance of HSPs has led to cloning and characterization of genes encoding HSPs in many organisms including the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). However, most of the past investigations in B. mori were confined to expression of HSPs in tissues and cell lines, whereas information on their specific functional roles in biological, physiological, and molecular processes is scarce. Naturally occurring or domesticated polyvoltines (known to be the tropical race) are more resistant to high temperatures and diseases than bi- or univoltines (temperate races). The mechanism of ecological or evolutionary modification of HSPs during the course of domestication of B. mori - particularly in relation to thermotolerance in geographically distinct races/strains - is still unclear. In addition, the heat shock response, thermal acclimation, and hardening have not been studied extensively in B. mori compared to other organisms. Towards this, recent investigations on differential expression of HSPs at various stages of development, considering the concept of the whole organism, open ample scope to evaluate their biological and commercial importance in B. mori which has not been addressed in any of the representative organisms studied so far. Comparatively, heat shock response among different silkworm races/strains of poly-, bi-, and univoltines varies significantly and thermotolerance increases as the larval development proceeds

  6. Heat-shock treatment-mediated increase in transduction by recombinant adeno-associated virus 2 vectors is independent of the cellular heat-shock protein 90.

    PubMed

    Zhong, Li; Qing, Keyun; Si, Yue; Chen, Linyuan; Tan, Mengqun; Srivastava, Arun

    2004-03-26

    Recombinant adeno-associated virus 2 (AAV) vectors transduction efficiency varies greatly in different cell types. We have described that a cellular protein, FKBP52, in its phosphorylated form interacts with the D-sequence in the viral inverted terminal repeat, inhibits viral second strand DNA synthesis, and limits transgene expression. Here we investigated the role of cellular heat-shock protein 90 (HSP90) in AAV transduction because FKBP52 forms a complex with HSP90, and because heat-shock treatment augments AAV transduction efficiency. Heat-shock treatment of HeLa cells resulted in tyrosine dephosphorylation of FKBP52, led to stabilization of the FKBP52-HSP90 complex, and resulted in approximately 6-fold increase in AAV transduction. However, when HeLa cells were pre-treated with tyrphostin 23, a specific inhibitor of cellular epidermal growth factor receptor tyrosine kinase, which phosphorylates FKBP52 at tyrosine residues, heat-shock treatment resulted in a further 18-fold increase in AAV transduction. HSP90 was shown to be a part of the FKBP52-AAV D-sequence complex, but HSP90 by itself did not bind to the D-sequence. Geldanamycin treatment, which disrupts the HSP90-FKBP52 complex, resulted in >22-fold increase in AAV transduction in heat-shock-treated cells compared with heat shock alone. Deliberate overexpression of the human HSP90 gene resulted in a significant decrease in AAV-mediated transduction in tyrphostin 23-treated cells, whereas down-modulation of HSP90 levels led to a decrease in HSP90-FKBP52-AAV D-sequence complex formation, resulting in a significant increase in AAV transduction following pre-treatment with tyrphostin 23. These studies suggest that the observed increase in AAV transduction efficiency following heat-shock treatment is unlikely to be mediated by HSP90 alone and that increased levels of HSP90, in the absence of heat shock, facilitate binding of FKBP52 to the AAV D-sequence, thereby leading to inhibition of AAV-mediated transgene

  7. EFFECTS OF HEAT AND BROMOCHLOROACETIC ACID ON MALE REPRODUCTION IN HEAT SHOCK FACTOR-1 GENE KNOCKOUT MICE

    EPA Science Inventory

    Effects of heat and bromochloroacetic acid on male reproduction in heat shock factor-1 gene knockout mice.
    Luft JC1, IJ Benjamin2, JB Garges1 and DJ Dix1. 1Reproductive Toxicology Division, USEPA, RTP, NC, 27711 and 2Dept of Internal Medicine, Univ.of Texas Southwestern Med C...

  8. EFFECTS OF HEAT AND BROMOCHLOROACETIC ACID ON MALE REPRODUCTION IN HEAT SHOCK FACTOR-1 GENE KNOCKOUT MICE

    EPA Science Inventory

    Effects of heat and bromochloroacetic acid on male reproduction in heat shock factor-1 gene knockout mice.
    Luft JC1, IJ Benjamin2, JB Garges1 and DJ Dix1. 1Reproductive Toxicology Division, USEPA, RTP, NC, 27711 and 2Dept of Internal Medicine, Univ.of Texas Southwestern Med C...

  9. Heat shock protein (Hsp70) induced by a mild heat shock slightly moderates plasma osmolarity increases upon salinity transfer in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Niu, C J; Rummer, J L; Brauner, C J; Schulte, P M

    2008-11-01

    We have investigated whether mild heat shock, and resulting Hsp70 expression, can confer cross-protection against the stress associated with transfer from freshwater (FW) to seawater (SW) in juvenile rainbow trout (Oncorhynchus mykiss). In experimental Series I, juvenile trout reared in FW were transferred from 13.5 degrees C to 25.5 degrees C in FW, held for 2 h, returned to 13.5 degrees C for 12 h, and then transferred to 32 ppt SW at 13.5 degrees C. Branchial Hsp70 increased approximately 10-fold in the heat-shocked fish relative to the control by the end of recovery and remained high 2, 8, and 24 h post-salinity transfer. However, no clear differences could be detected in blood parameters (blood hemoglobin, hematocrit, MCHC, plasma Na(+) and plasma osmolarity) or muscle water content between heat-shocked and sham-shocked fish in SW at any sampling interval (0, 2, 8, 24, 48, 120, 240 and 360 h post-SW transfer). In experimental Series II, trout acclimated to 8 degrees C were heat-shocked at 22 degrees C for 2 h, allowed to recover 18 h, and exposed to a more severe salinity transfer (either 36 or 45 ppt) than in Series I. Branchial Hsp70 levels increased approximately 6-fold in heat-shocked fish, but had declined to baseline after 120 h in SW. Plasma osmolarity and chloride increased in both groups upon transfer to 36 ppt; however, the increase was significantly less in heat-shocked fish when compared to the increase observed in sham-shocked fish at 24 h. No significant differences could be detected in branchial Na(+)/K(+)-ATPase activity or Na(+)/K(+)-ATPase alpha1a and alpha1b mRNA expression between the two groups. Our data indicate that a mild temperature shock has only modest effects on the ability of rainbow trout to resist osmotic stress during FW to SW transfer.

  10. The combined effect of drought stress and heat shock on gene expression in tobacco.

    PubMed

    Rizhsky, Ludmila; Liang, Hongjian; Mittler, Ron

    2002-11-01

    In nature, plants encounter a combination of environmental conditions that may include stresses such as drought or heat shock. Although drought and heat shock have been extensively studied, little is known about how their combination affect plants. We used cDNA arrays, coupled with physiological measurements, to study the effect of drought and heat shock on tobacco (Nicotiana tabacum) plants. A combination of drought and heat shock resulted in the closure of stomata, suppression of photosynthesis, enhancement of respiration, and increased leaf temperature. Some transcripts induced during drought, e.g. those encoding dehydrin, catalase, and glycolate oxidase, and some transcripts induced during heat shock, e.g. thioredoxin peroxidase, and ascorbate peroxidase, were suppressed during a combination of drought and heat shock. In contrast, the expression of other transcripts, including alternative oxidase, glutathione peroxidase, phenylalanine ammonia lyase, pathogenesis-related proteins, a WRKY transcription factor, and an ethylene response transcriptional co-activator, was specifically induced during a combination of drought and heat shock. Photosynthetic genes were suppressed, whereas transcripts encoding some glycolysis and pentose phosphate pathway enzymes were induced, suggesting the utilization of sugars through these pathways during stress. Our results demonstrate that the response of plants to a combination of drought and heat shock, similar to the conditions in many natural environments, is different from the response of plants to each of these stresses applied individually, as typically tested in the laboratory. This response was also different from the response of plants to other stresses such as cold, salt, or pathogen attack. Therefore, improving stress tolerance of plants and crops may require a reevaluation, taking into account the effect of multiple stresses on plant metabolism and defense.

  11. Heat shock regulatory elements are present in telomeric repeats of Chironomus thummi.

    PubMed

    Martinez, J L; Sanchez-Elsner, T; Morcillo, G; Diez, J L

    2001-11-15

    As in other Diptera, the telomeres of Chironomus thummi lack canonical short telomerase-specified repeats and instead contain complex sequences. They react to heat shock and other stress treatments by forming giant puffs at some chromosome termini, which are visible in polytene cells. All telomeres, except the telocentric end of chromosome four (4L), consist of large blocks of repeats, 176 bp in length. Three subfamilies of telomeric sequences have been found to show different distribution patterns between chromosome ends. TsA and TsC are characteristic of telomeres 3R and 4R, respectively, whereas TsB is present in the other non-telocentric telomeres. Heat shock transcription regulatory elements have been identified in the telomeric sequences, appearing differentially represented in the three subfamilies, but otherwise rather similar in size and sequence. Interestingly, TsA and TsB repeats share the well-conserved heat shock element (HSE) and GAGA motif, while the TATA box is only present in the former. Neither a HSE nor a TATA box appear in TsC repeats. Moreover, experimental data indicate that the HSE is functionally active in binding heat shock transcription factor (HSF). These results provide, for the first time, a molecular basis for the effect of heat shock on C.thummi telomeres and might also explain the different behaviour they show. A positive correlation between the presence of HSE and telomeric puffing and transcription under heat shock was demonstrated. This was also confirmed in the sibling species Chironomus piger. The significance of heat shock activation of telomeric repeats in relation to telomeric function is unknown at present, but it might be compared to the behaviour of other non-heat shock protein coding sequences, such as SINE-like and LINE-like retroelements, which have been reported to be activated by stress.

  12. Effects of heat shock on survival, proliferation and differentiation of mouse neural stem cells.

    PubMed

    Omori, Hiroyuki; Otsu, Masahiro; Suzuki, Asami; Nakayama, Takashi; Akama, Kuniko; Watanabe, Masaru; Inoue, Nobuo

    2014-02-01

    Hyperthermia during pregnancy is a significant cause of reproductive problems ranging from abortion to congenital defects of the central nervous system (CNS), including neural tube defects and microcephaly. Neural stem cells (NSCs) can proliferate and differentiate into neurons and glia, playing a key role in the formation of the CNS. Here, we examined the effects of heat shock on homogeneous proliferating NSCs derived from mouse embryonic stem cells. After heat shock at 42 °C for 20 min, the proliferating NSCs continued to proliferate, although subtle changes were observed in gene expression and cell survival and proliferation. In contrast, heat shock at 43 °C caused a variety of responses: the up-regulation of genes encoding heat shock proteins (HSP), induction of apoptosis, temporal inhibition of cell proliferation and retardation of differentiation. Finally, effects of heat shock at 44 °C were severe, with almost all cells disappearing and the remaining cells losing the capacity to proliferate and differentiate. These temperature-dependent effects of heat shock on NSCs may be valuable in elucidating the mechanisms by which hyperthermia during pregnancy causes various reproductive problems.

  13. Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays.

    PubMed

    Stewart, Graham R; Wernisch, Lorenz; Stabler, Richard; Mangan, Joseph A; Hinds, Jason; Laing, Ken G; Young, Douglas B; Butcher, Philip D

    2002-10-01

    Regulation of the expression of heat-shock proteins plays an important role in the pathogenesis of Mycobacterium tuberculosis. The heat-shock response of bacteria involves genome-wide changes in gene expression. A combination of targeted mutagenesis and whole-genome expression profiling was used to characterize transcription factors responsible for control of genes encoding the major heat-shock proteins of M. tuberculosis. Two heat-shock regulons were identified. HspR acts as a transcriptional repressor for the members of the Hsp70 (DnaK) regulon, and HrcA similarly regulates the Hsp60 (GroE) response. These two specific repressor circuits overlap with broader transcriptional changes mediated by alternative sigma factors during exposure to high temperatures. Several previously undescribed heat-shock genes were identified as members of the HspR and HrcA regulons. A novel HspR-controlled operon encodes a member of the low-molecular-mass alpha-crystallin family. This protein is one of the most prominent features of the M. tuberculosis heat-shock response and is related to a major antigen induced in response to anaerobic stress.

  14. Aging results in an unusual expression of Drosophila heat shock proteins

    SciTech Connect

    Fleming, J.E.; Walton, J.K.; Dubitsky, R.; Bensch, K.G. )

    1988-06-01

    The authors used high-resolution two-dimensional polyacrylamide gel electrophoresis to evaluate the effect of aging on the heat shock response in Drosophila melanogaster. Although the aging process is not well understood at the molecular level, recent observations suggest that quantitative changes in gene expression occur as these fruit flies approach senescence. Such genetic alterations are in accord with our present data, which clearly show marked differences in the synthesis of heat shock proteins between young and old fruit flies. In 10-day-old flies, a heat shock of 20 min results in the expression of 14 new proteins as detectable by two-dimensional electrophoresis of ({sup 35}S)methionine-labeled polypeptides, whereas identical treatment of 45-day-old flies leads to the expression of at least 50 new or highly up-regulated proteins. In addition, there is also a concomitant increase in the rate of synthesis of a number of the normal proteins in the older animals. Microdensitometric determinations of the low molecular weight heat shock polypeptides on autoradiographs of five age groups revealed that their maximum expression occurs at 47 days for a population of flies with a mean life span of 33.7 days. Moreover, a heat shock effect similar to that observed in senescent flies occurs in young flies fed canavanine, an arginine analogue, before heat shock.

  15. Heat shock reduces stalled RNA polymerase II and nucleosome turnover genome-wide

    PubMed Central

    Teves, Sheila S.; Henikoff, Steven

    2011-01-01

    Heat shock rapidly induces expression of a subset of genes while globally repressing transcription, making it an attractive system to study alterations in the chromatin landscape that accompany changes in gene regulation. We characterized these changes in Drosophila cells by profiling classical low-salt-soluble chromatin, RNA polymerase II (Pol II), and nucleosome turnover dynamics at single-base-pair resolution. With heat shock, low-salt-soluble chromatin and stalled Pol II levels were found to decrease within gene bodies, but no overall changes were detected at transcriptional start sites. Strikingly, nucleosome turnover decreased genome-wide within gene bodies upon heat shock in a pattern similar to that observed with inhibition of Pol II elongation, especially at genes involved in the heat-shock response. Relatively high levels of nucleosome turnover were also observed throughout the bodies of genes with paused Pol II. These observations suggest that down-regulation of transcription during heat shock involves reduced nucleosome mobility and that this process has evolved to promote heat-shock gene regulation. Our ability to precisely map both nucleosomal and subnucleosomal particles directly from low-salt-soluble chromatin extracts to assay changes in the chromatin landscape provides a simple general strategy for epigenome characterization. PMID:22085965

  16. Is Catalytic Activity of Chaperones a Selectable Trait for the Emergence of Heat Shock Response?

    PubMed Central

    Çetinbaş, Murat; Shakhnovich, Eugene I.

    2015-01-01

    Although heat shock response is ubiquitous in bacterial cells, the underlying physical chemistry behind heat shock response remains poorly understood. To study the response of cell populations to heat shock we employ a physics-based ab initio model of living cells where protein biophysics (i.e., folding and protein-protein interactions in crowded cellular environments) and important aspects of proteins homeostasis are coupled with realistic population dynamics simulations. By postulating a genotype-phenotype relationship we define a cell division rate in terms of functional concentrations of proteins and protein complexes, whose Boltzmann stabilities of folding and strengths of their functional interactions are exactly evaluated from their sequence information. We compare and contrast evolutionary dynamics for two models of chaperon action. In the active model, foldase chaperones function as nonequilibrium machines to accelerate the rate of protein folding. In the passive model, holdase chaperones form reversible complexes with proteins in their misfolded conformations to maintain their solubility. We find that only cells expressing foldase chaperones are capable of genuine heat shock response to the increase in the amount of unfolded proteins at elevated temperatures. In response to heat shock, cells’ limited resources are redistributed differently for active and passive models. For the active model, foldase chaperones are overexpressed at the expense of downregulation of high abundance proteins, whereas for the passive model; cells react to heat shock by downregulating their high abundance proteins, as their low abundance proteins are upregulated. PMID:25606691

  17. Molecular Dynamics Simulations of Shocks Including Electronic Heat Conduction and Electron-Phonon Coupling

    NASA Astrophysics Data System (ADS)

    Ivanov, Dmitriy S.; Zhigilei, Leonid V.; Bringa, Eduardo M.; De Koning, Maurice; Remington, Bruce A.; Caturla, Maria Jose; Pollaine, Stephen M.

    2004-07-01

    Shocks are often simulated using the classical molecular dynamics (MD) method in which the electrons are not included explicitly and the interatomic interaction is described by an effective potential. As a result, the fast electronic heat conduction in metals and the coupling between the lattice vibrations and the electronic degrees of freedom can not be represented. Under conditions of steep temperature gradients that can form near the shock front, however, the electronic heat conduction can play an important part in redistribution of the thermal energy in the shocked target. We present the first atomistic simulation of a shock propagation including the electronic heat conduction and electron-phonon coupling. The computational model is based on the two-temperature model (TTM) that describes the time evolution of the lattice and electron temperatures by two coupled non-linear differential equations. In the combined TTM-MD method, MD substitutes the TTM equation for the lattice temperature. Simulations are performed with both MD and TTM-MD models for an EAM Al target shocked at 300 kbar. The target includes a tilt grain boundary, which provides a region where shock heating is more pronounced and, therefore, the effect of the electronic heat conduction is expected to be more important. We find that the differences between the predictions of the MD and TTM-MD simulations are significantly smaller as compared to the hydrodynamics calculations performed at similar conditions with and without electronic heat conduction.

  18. Synthesis of calmodulin-binding proteins during heat shock in tobacco cells

    SciTech Connect

    Lu, Yingtang; Harrington, M. )

    1990-05-01

    Heat shock treatment induces the synthesis of heat shock proteins (HSPs), but little is known about the functions of these proteins in the heat shock response. Here we report isolation and analysis of heat-shock induced or enhanced calmodulin-binding proteins (CaMBPs) from cultured tobacco cells (Nicotiana tabacum cv. Wisconsin-38) using CaM-sepharose affinity chromatography. Analyses of {sup 35}S-methionine-labeled proteins by SDS-PAGE indicate that at least 12 HSP bands with apparent molecular weights ranging from 105 to 17 kD exhibit Ca{sup 2+}-dependent binding to CaM sepharose even in the presence of 0.3M NaCl. Thee proteins do not bind to sepharose 4B suggesting a specific interaction with CaM. Gel overlay analysis of HSPs binding to CaM-sepharose indicates that not all of these peptides bind to {sup 125}I-CaM in this assay. This may be due to the structural modification of {sup 125}I-CaM, the resolution of the assay, or the small amount of the CaMBPs synthesized during heat shock. An alternative approach is being employed using {sup 35}S-labeled CaM made from a synthetic CaM gene (VUC-1) to confirm the CaMBP/HSP by overlay analysis and to screen a heat shock cDNA expression library.

  19. Is catalytic activity of chaperones a selectable trait for the emergence of heat shock response?

    PubMed

    Çetinbaş, Murat; Shakhnovich, Eugene I

    2015-01-20

    Although heat shock response is ubiquitous in bacterial cells, the underlying physical chemistry behind heat shock response remains poorly understood. To study the response of cell populations to heat shock we employ a physics-based ab initio model of living cells where protein biophysics (i.e., folding and protein-protein interactions in crowded cellular environments) and important aspects of proteins homeostasis are coupled with realistic population dynamics simulations. By postulating a genotype-phenotype relationship we define a cell division rate in terms of functional concentrations of proteins and protein complexes, whose Boltzmann stabilities of folding and strengths of their functional interactions are exactly evaluated from their sequence information. We compare and contrast evolutionary dynamics for two models of chaperon action. In the active model, foldase chaperones function as nonequilibrium machines to accelerate the rate of protein folding. In the passive model, holdase chaperones form reversible complexes with proteins in their misfolded conformations to maintain their solubility. We find that only cells expressing foldase chaperones are capable of genuine heat shock response to the increase in the amount of unfolded proteins at elevated temperatures. In response to heat shock, cells' limited resources are redistributed differently for active and passive models. For the active model, foldase chaperones are overexpressed at the expense of downregulation of high abundance proteins, whereas for the passive model; cells react to heat shock by downregulating their high abundance proteins, as their low abundance proteins are upregulated.

  20. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.

    PubMed

    Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik

    2014-01-01

    Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on 'Penn-A4' creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha-1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.

  1. Heat Shock Proteins in Relation to Heat Stress Tolerance of Creeping Bentgrass at Different N Levels

    PubMed Central

    Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik

    2014-01-01

    Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on ‘Penn-A4’ creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha−1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance. PMID:25050702

  2. Heat-shock protein expression in canine corneal wound healing.

    PubMed

    Peterson, Cornelia W M; Carter, Renee T; Bentley, Ellison; Murphy, Christopher J; Chandler, Heather L

    2016-05-01

    Heat-shock proteins, particularly the 70-kDa member (Hsp70), have been implicated in facilitating wound healing in multiple tissues. Expression and localization of three HSPs were assessed in normal and wounded canine corneas to elucidate a role in epithelial healing. Paraffin-embedded normal corneas, acute and repeatedly abraded corneas, and keratectomies of spontaneous chronic corneal epithelial defects (SCCEDs) were subjected to routine immunohistochemistry for Hsp27, 47, and 70 expression. Ex vivo corneal defects were created and treated with anti-HSPs or IgG controls, and wound healing was monitored. Primary cultures of canine corneal stromal fibroblasts and corneal epithelial cells were treated with exogenous Hsp70, and an artificial wound was created in vitro to monitor restoration of the monolayer. Normal canine corneas exhibited constitutive expression of all HSPs evaluated. Inducible expression was demonstrated in acutely wounded tissues, and expression in the chronically abraded corneas was relocalized. All HSP expression was below the limits of detection in the epithelium of SCCED samples. Inhibition of HSPs in culture resulted in delayed wound healing when compared to controls. Hsp70-treated fibroblasts demonstrated significantly (P < 0.001) increased migration and proliferation compared to the vehicle control; however, there was no significant effect of exogenous Hsp70 on corneal epithelial cells. These findings suggest that HSPs are induced in the normal canine cornea during re-epithelialization. Hsp70 expression is likely important for inducing the cytoarchitectural remodeling, migration, and proliferation necessary early in the canine corneal healing response, and suppressed expression may contribute to the pathophysiology of nonhealing defects. © 2015 American College of Veterinary Ophthalmologists.

  3. Heat Shock Protein 27 Mediated Signaling in Viral Infection

    PubMed Central

    Rajaiya, Jaya; Yousuf, Mohammad A.; Singh, Gurdeep; Stanish, Heather; Chodosh, James

    2013-01-01

    Heat shock proteins (HSPs) play a critical role in many intracellular processes, including apoptosis and delivery of other proteins to intracellular compartments. Small HSPs have been shown previously to participate in many cellular functions, including IL-8 induction. Human adenovirus infection activates intracellular signaling, involving particularly the c-Src and mitogen-activated protein kinases [Natarajan, K., et al. (2003) J. Immunol. 170, 6234–6243]. HSP27 and MK2 are also phosphorylated, and c-Src, and its downstream targets, p38, ERK1/2, and c-Jun-terminal kinase (JNK), differentially mediate IL-8 and MCP-1 expression. Specifically, activation and translocation of transcription factor NFκB-p65 occurs in a p38-dependent fashion [Rajaiya, J., et al. (2009) Mol. Vision 15, 2879–2889]. Herein, we report a novel role for HSP27 in an association of p38 with NFκB-p65. Immunoprecipitation assays of virus-infected but not mock-infected cells revealed a signaling complex including p38 and NFκB-p65. Transfection with HSP27 short interfering RNA (siRNA) but not scrambled RNA disrupted this association and reduced the level of IL-8 expression. Transfection with HSP27 siRNA also reduced the level of nuclear localization of NFκB-p65 and p38. By use of tagged p38 mutants, we found that amino acids 279–347 of p38 are necessary for the association of p38 with NFκB-p65. These studies strongly suggest that HSP27, p38, and NFκB-p65 form a signalosome in virus-infected cells and influence downstream expression of pro-inflammatory mediators. PMID:22734719

  4. Circulating Heat Shock Protein 70 in Health, Aging and Disease

    PubMed Central

    2011-01-01

    Background Heat shock proteins (Hsp) are ubiquitously synthesised in virtually all species and it is hypothesised that they might have beneficial health effects. Recent studies have identified circulating Hsp as an important mediator in inflammation - the effects of low-grade inflammation in the aging process are overwhelming. While much is known about intracellular Hsp70, scant data exist on circulating Hsp70 in the aging context. Therefore, the objectives of this study were to investigate the effect of age and disease on circulating Hsp70 and, in particular, to evaluate the association between circulating Hsp70 and inflammatory parameters. Results Serum Hsp70, Interleukin (IL) -10, IL-6 and Tumor Necrosis Factor (TNF) alpha concentrations were determined in 90 hospitalised geriatric patients (aged 83 ± 6 years) and in 200 community-dwelling control subjects (100 elderly, aged 74 ± 5 years, and 100 young, aged 23 ± 3 years). In the community-dwelling elderly, serum Hsp70 and IL-10 concentrations were significantly lower and IL-6 was significantly higher when compared to healthy young control subjects. Elderly patients presenting inflammation (CRP serum levels ≥5 mg/L) showed significantly (p = 0.007) higher Hsp70 values; and Hsp70 correlated positively (p < 0.001) with IL-6 and CRP, but not with TNF-alpha or IL-10. A significant association was also noted between Hsp70 levels and the degree of dependency and cognitive decline in geriatric patients. Conclusions The present data provide new evidence that serum concentration of Hsp70 decreases with age in a normal population. Our study also shows that higher levels of Hsp70 are associated with inflammation and frailty in elderly patients. PMID:21443787

  5. Transcriptional profiles of human epithelial cells in response to heat: computational evidence for novel heat shock proteins.

    PubMed

    Laramie, Jason M; Chung, T Philip; Brownstein, Buddy; Stormo, Gary D; Cobb, J Perren

    2008-05-01

    We hypothesized that broad-scale expression profiling would provide insight into the regulatory pathways that control gene expression in response to stress and potentially identify novel heat-responsive genes. HEp2 cells, a human malignant epithelial cell line, were heated at 37 degrees C to 43 degrees C for 60 min to gauge the heat shock response, using as a proxy inducible Hsp70 quantified by Western blot analysis. Based on these results, microarray experiments were conducted at 37 degrees C, 40 degrees C, 41 degrees C, 42 degrees C, and 43 degrees C. Using linear modeling, we compared the sets of microarrays at 40 degrees C, 41 degrees C, 42 degrees C, and 43 degrees C with the 37 degrees C baseline temperature and took the union of the genes exhibiting differential gene expression signal to create two sets of "heat shock response" genes, each set reflecting either increased or decreased RNA abundance. Leveraging human and mouse orthologous alignments, we used the two lists of coexpressed genes to predict transcription factor binding sites in silico, including those for heat shock factor (HSF) 1 and HSF2 transcription factors. We discovered HSF1 and HSF2 binding sites in 15 genes not previously associated with the heat shock response. We conclude that microarray experiments coupled with upstream promoter analysis can be used to identify novel genes that respond to heat shock. Additional experiments are required to validate these putative heat shock proteins and facilitate a deeper understanding of the mechanisms involved during the stress response.

  6. Use of conditioned media is critical for studies of regulation in response to rapid heat shock.

    PubMed

    Mahat, Dig B; Lis, John T

    2017-01-01

    Heat shock response (HSR) maintains and restores protein homeostasis when cells are exposed to proteotoxic heat stress. Heat shock (HS) triggers a rapid and robust change in genome-wide transcription, protein synthesis, and chaperone activity; and therefore, the HSR has been widely used as a model system in these studies. The conventional method of performing instantaneous HS in the laboratory uses heated fresh media to induce HSR when added to cells. However, addition of fresh media to cells may evoke additional cellular responses and signaling pathways. Here, we compared the change in global transcription profile when HS is performed with either heated fresh media or heated conditioned media. We found that the use of heated fresh media induces transcription of hundreds of genes that HS alone does not induce, and masks or partially masks HS-mediated downregulation of thousands of genes. The fresh-media-dependent upregulated genes encode ribosomal subunit proteins involved in translation and RNA processing factors. More importantly, fresh media also induce transcription of several heat shock protein genes (Hsps) in a heat shock factor 1 (HSF1)-independent manner. Thus, we conclude that a conventional method of HS with heated fresh media causes changes in transcription regulation that confound the actual change caused solely by elevated temperature of cells.

  7. Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.

    1987-01-01

    An experimental study of shock wave interference heating on a cylindrical leading edge representative of the cowl of a rectangular hypersonic engine inlet at Mach numbers of 6.3, 6.5, and 8.0 is presented. Stream Reynolds numbers ranged from 0.5 x 106 to 4.9 x 106 per ft. and stream total temperature ranged from 2100 to 3400 R. The model consisted of a 3" dia. cylinder and a shock generation wedge articulated to angles of 10, 12.5, and 15 deg. A fundamental understanding was obtained of the fluid mechanics of shock wave interference induced flow impingement on a cylindrical leading edge and the attendant surface pressure and heat flux distributions. The first detailed heat transfer rate and pressure distributions for two dimensional shock wave interference on a cylinder was provided along with insight into the effects of specific heat variation with temperature on the phenomena. Results show that the flow around a body in hypersonic flow is altered significantly by the shock wave interference pattern that is created by an oblique shock wave from an external source intersecting the bow shock wave produced in front of the body.

  8. Superantigenic activity of toxic shock syndrome toxin-1 is resistant to heating and digestive enzymes.

    PubMed

    Li, S-J; Hu, D-L; Maina, E K; Shinagawa, K; Omoe, K; Nakane, A

    2011-03-01

    To elucidate the stability of superantigenic activity and pathogenesis of toxic shock syndrome toxin 1 (TSST-1) and staphylococcal enterotoxin A (SEA) against heating and digestive enzymes. Purified TSST-1 and SEA were treated with heating, pepsin and trypsin that are related to food cooking, stomach and intestine conditions. The integrity, superantigenic activity and toxicity of treated TSST-1 and SEA were analysed by Western blotting, spleen cell culture, cytokine assay and toxic shock models. Both TSST-1 and SEA showed strong resistance to heating, pepsin and trypsin digestion. Furthermore, the treated TSST-1 showed significant higher induction of interferon-γ and toxic shock compared with that of SEA. Pepsin- or trypsin-digested TSST-1 fragments still showed significant superantigenic and lethal shock toxicities. The superantigenic activity of TSST-1 was stable to heating and digestive enzymes. Pepsin- and trypsin-digested TSST-1 fragments still showed superantigenic and lethal shock activities, indicating that digested TSST-1 could cross epithelial cells and induce systemic toxicity. This study found, for the first time, that pepsin- or trypsin-digested smaller TSST-1 retained significant superantigenic and lethal shock activities. The different resistance of TSST-1 and SEA participates in the different pathogenic activities during food poisoning and toxic shock syndrome. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  9. Enhancement of presynaptic performance in transgenic Drosophila overexpressing heat shock protein Hsp70.

    PubMed

    Karunanithi, Shanker; Barclay, Jeffrey W; Brown, Ian R; Robertson, R Meldrum; Atwood, Harold L

    2002-04-01

    Prior heat shock confers protection to Drosophila synapses during subsequent heat stress by stabilizing quantal size and reducing the decline of quantal emission at individual synaptic boutons. The major heat shock protein Hsp70, which is strongly induced by high temperatures in Drosophila, may be responsible for this synaptic protection. To test this hypothesis, we investigated synaptic protection and stabilization at larval neuromuscular junctions of transgenic Drosophila which produce more than the normal amount of Hsp70 in response to heat shock. Overexpression of Hsp70 coincides with enhanced protection of presynaptic performance, assayed by measuring mean quantal content and percentage success of transmission. Quantal size was not selectively altered, indicating no effects of overexpression on postsynaptic performance. Thus, presynaptic mechanisms can be protected by manipulating levels of Hsp70, which would provide stability to neural circuits otherwise susceptible to heat stress. Copyright 2002 Wiley-Liss, Inc.

  10. [Kinetics of heat shock response upon disfunction of general transcription factor (HSF)].

    PubMed

    Funikov, S Iu; Garbuz, D G; Zatsepina, O G

    2014-01-01

    The heat shock transcription factor (HSF) is a universal activator of hsp gene expression in eukaryotes. A temperature sensitive Drosophila melanogaster strain (hsf4) with a mutation in the hsfgene was originally described as a strain lacking the transcription of hsp genes in response to heat shock. Our results demonstrated that physiological function of HSF4 is not fully abrogated after heat exposure and is able to recover even after severe heat stress, causing the induction of hsp gene expression. We have studied the kinetics of accumulation and degradation of hsp gene products at transcriptional and translational levels and shown that induction of hsp genes, particularly hsp68, in mutant strain is weaker than that in the wild type. Thus, despite the fact that the HSF4 causes a delayed ac- tivation of hsp, response to heat shock in hsf4 strain remains defective.

  11. RNAi screen in Drosophila larvae identifies histone deacetylase 3 as a positive regulator of the hsp70 heat shock gene expression during heat shock.

    PubMed

    Achary, Bhavana G; Campbell, Katie M; Co, Ivy S; Gilmour, David S

    2014-05-01

    The transcription regulation of the Drosophila hsp70 gene is a complex process that involves the regulation of multiple steps, including the establishment of paused Pol II and release of Pol II into elongation upon heat shock activation. While the major players involved in the regulation of gene expression have been studied in detail, additional factors involved in this process continue to be discovered. To identify factors involved in hsp70 expression, we developed a screen that capitalizes on a visual assessment of heat shock activation using a hsp70-beta galactosidase reporter and publicly available RNAi fly lines to deplete candidate proteins. We validated the screen by showing that the depletion of HSF, CycT, Cdk9, Nurf 301, or ELL prevented the full induction of hsp70 by heat shock. Our screen also identified the histone deacetylase HDAC3 and its associated protein SMRTER as positive regulators of hsp70 activation. Additionally, we show that HDAC3 and SMRTER contribute to hsp70 gene expression at a step subsequent to HSF-mediated activation and release of the paused Pol II that resides at the promoter prior to heat shock induction. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. RNAi screen in Drosophila larvae identifies histone deacetylase 3 as a positive regulator of the hsp70 heat shock gene expression during heat shock

    PubMed Central

    Achary, Bhavana G.; Campbell, Katie M.; Co, Ivy S.; Gilmour, David S.

    2014-01-01

    Transcription regulation of the Drosophila hsp70 gene is a complex process that involves regulation of multiple steps including establishment of paused Pol II and release of Pol II into elongation upon heat shock activation. While the major players involved in regulation of gene expression have been studied in detail, additional factors involved in this process continue to be discovered. To identify factors involved in hsp70 expression, we developed a screen that capitalizes on a visual assessment of heat shock activation using a hsp70-beta galactosidase reporter and publicly available RNAi fly lines to deplete candidate proteins. We validated the screen by showing that depletion of HSF, CycT, Cdk9, Nurf 301, or ELL prevented full induction of hsp70 by heat shock. Our screen also identified the histone deacetylase HDAC3 and its associated protein SMRTER as positive regulators of hsp70 activation. Additionally we show that HDAC3 and SMRTER contribute to hsp70 gene expression at a step subsequent to HSF-mediated activation and release of the paused Pol II that resides at the promoter prior to heat shock induction. PMID:24607507

  13. Regulation of Cyclooxygenase-2 Expression by Heat: A Novel Aspect of Heat Shock Factor 1 Function in Human Cells

    PubMed Central

    Trotta, Edoardo; Angelini, Mara; Santoro, M. Gabriella

    2012-01-01

    The heat-shock response, a fundamental defense mechanism against proteotoxic stress, is regulated by a family of heat-shock transcription factors (HSF). In humans HSF1 is considered the central regulator of heat-induced transcriptional responses. The main targets for HSF1 are specific promoter elements (HSE) located upstream of heat-shock genes encoding cytoprotective heat-shock proteins (HSP) with chaperone function. In addition to its cytoprotective function, HSF1 was recently hypothesized to play a more complex role, regulating the expression of non-HSP genes; however, the non-canonical role of HSF1 is still poorly understood. Herein we report that heat-stress promotes the expression of cyclooxygenase-2 (COX-2), a key regulator of inflammation controlling prostanoid and thromboxane synthesis, resulting in the production of high levels of prostaglandin-E2 in human cells. We show that heat-induced COX-2 expression is regulated at the transcriptional level via HSF1-mediated signaling and identify, by in-vitro reporter gene activity assay and deletion-mutant constructs analysis, the COX-2 heat-responsive promoter region and a new distal cis-acting HSE located at position −2495 from the transcription start site. As shown by ChIP analysis, HSF1 is recruited to the COX-2 promoter rapidly after heat treatment; by using shRNA-mediated HSF1 suppression and HSE-deletion from the COX-2 promoter, we demonstrate that HSF1 plays a central role in the transcriptional control of COX-2 by heat. Finally, COX-2 transcription is also induced at febrile temperatures in endothelial cells, suggesting that HSF1-dependent COX-2 expression could contribute to increasing blood prostaglandin levels during fever. The results identify COX-2 as a human non-classical heat-responsive gene, unveiling a new aspect of HSF1 function. PMID:22347460

  14. Induction of heat shock protein 72 in C6 glioma cells by methyl jasmonate through ROS-dependent heat shock factor 1 activation.

    PubMed

    Oh, Su Young; Kim, Ji Hye; Park, Min Jung; Kim, Sun Mi; Yoon, Chang Shin; Joo, Young Mi; Park, Jang Su; Han, Song Iy; Park, Hye Gyeong; Kang, Ho Sung

    2005-11-01

    Salicylate and jasmonates are two different types of plant hormone that play critical roles in plant defense responses against insect herbivores and microbial pathogens, through activating defense genes. These two natural products have been shown to have similar activities in animal cells: the compounds are able to induce cell cycle arrest or apoptosis in a variety of human cancer cells including those of colon, prostate, breast, and leukemia, suggesting the chemicals may potentially be a novel class of anti-cancer drugs. Since sodium salicylate can induce the heat shock response in animals, we examined the effects of jasmonates on the heat shock response in C6 glioma cells. Here, we show that brief exposure to methyl jasmonate (MeJA), but not to jasmonic acid, induces heat shock protein 72 (HSP72), but not HSP73 and HSP90, via heat shock factor I (HSF1) activation in C6 glioma cells without affecting cell viability. Intracellular H2O2 and O2-, and mitochondrial ROS were prominently increased in response to 5 mM MeJA in C6 cells. MeJA-induced HSP72 expression, HSF1 DNA binding, and human HSP70 promoter-driven CAT activity were prevented by N-acetyl-L-cysteine (a general antioxidant), catalase (a specific antioxidant for H2O2), and sodium formate (an inhibitor of OH.), but not by Rac1 dominant negative mutant Rac1N17 and diphenyleneiodonium (a NADPH oxidase inhibitor), indicating that MeJA induces HSP72 expression though HSF1 that is activated via Rac1-NADPH oxidase-independent ROS production pathway. These results suggest that the plant stress hormones share the ability to induce heat shock response in animal cells.

  15. Role of Heat Shock Protein 70 in Innate Alloimmunity

    PubMed Central

    Land, Walter G.

    2012-01-01

    This article briefly describes our own experience with the proven demonstration of heat shock protein 70 (HSP70) in reperfused renal allografts from brain-dead donors and reflects about its potential role as a typical damage-associated molecular pattern (DAMP) in the setting of innate alloimmunity. In fact, our group was able to demonstrate a dramatic up-regulation of HSP70 expression after postischemic reperfusion of renal allografts. Of note, up-regulation of this stress protein expression, although to a lesser extent, was already observed after cold storage of the organ indicating that this molecule is already induced in the stressed organism of a brain-dead donor. However, whether or not the dramatic up-regulation of HSP70 expression contributes to mounting an innate alloimmune response cannot be judged in view of these clinical findings. Nevertheless, HSP70, since generated in association with postischemic reperfusion-induced allograft injury, can be called a typical DAMP – as can every molecule be termed a DAMP that is generated in association with any stressful tissue injury regardless of its final positive or negative regulatory function within the innate immune response elicited by it. In fact, as we discuss in this article, the context-dependent, even contradistinctive activities of HSP70 reflect the biological phenomenon that, throughout evolution, mammals have developed an elaborate network of positive and negative regulatory mechanisms, which provide balance between defensive and protective measures against unwarranted destruction of the host. In this sense, up-regulated expression of HSP70 in an injured allograft might reflect a pure protective response against the severe oxidative injury of a reperfused donor organ. On the other hand, up-regulated expression of this stress protein in an injured allograft might reflect a (futile) attempt of the innate immune system to restore homeostasis with the aim to eliminate the “unwanted foreign allograft

  16. Ventilation during cardiopulmonary bypass: impact on heat shock protein release.

    PubMed

    Beer, L; Szerafin, T; Mitterbauer, A; Kasiri, M M; Debreceni T Palotás, L; Dworschak, M; Roth, G A; Ankersmit, H J

    2014-12-01

    Cardiopulmonary bypass (CPB), utilized in on-pump coronary artery bypass graft procedures (CABG) induces generalized immune suppression, release of heat shock proteins (HSP), inflammatory markers and apoptosis-specific proteins. We hypothesized that continued mechanical ventilation during cardiopulmonary bypass attenuates immune response and HSP liberation. Thirty patients undergoing conventional coronary artery bypass graft (CABG) operation were randomized into a ventilated on CPB (VG; N.=15) and a non-ventilated CPB group (NVG; N.=15). Blood samples were drawn at the beginning and end of surgery, as well as on the five consecutive postoperative days (POD). Molecular markers were measured by ELISA. Data are given as mean ± (SD). Mann-Whitney-U-test was used for statistical analysis. Serum concentrations of HSP70 were significantly lower in VG compared to NVG on POD-1 (VG: 1629±608 vs. NVG: 5203±2128.6 pg/mL, P<0.001). HSP27 and HSP60 depicted a minor increase in both study groups at the end of surgery without any intergroup differences (HSP27: VG 6207.9±1252.5 vs. NVG 7424.1±2632.5; HSP60: VG 1046.2±478.8 vs. NVG 1223.5±510.1). IL-8 and CK-18 M30 evidenced the highest serum concentrations at the end of surgery (IL-8: VG 119.5±77.9 vs. NVG 148.0±184.55; CK-18 M30: VG 62.1±39.2 vs. NVG 67.5±33.9) with no differences between groups. Decreased ICAM-1 serum concentrations were detected postoperatively, however ICAM-1 concentrations on POD-1 to POD-5 showed slightly elevated concentrations in both study groups with no intergroup differences. Significantly less HSP70 was detectable in patients receiving uninterrupted mechanical lung ventilation on CPB, indicating either different inflammatory response, cellular stress or cell damage between the ventilated and non-ventilated group. These data suggest that continued mechanical ventilation has a modulatory effect on the immune response in patients after CABG surgery.

  17. Lysosomal responses to heat-shock of seasonal temperature extremes in Cd-exposed mussels.

    PubMed

    Múgica, M; Izagirre, U; Marigómez, I

    2015-07-01

    The present study was aimed at determining the effect of temperature extremes on lysosomal biomarkers in mussels exposed to a model toxic pollutant (Cd) at different seasons. For this purpose, temperature was elevated 10°C (from 12°C to 22°C in winter and from 18°C to 28°C in summer) for a period of 6h (heat-shock) in control and Cd-exposed mussels, and then returned back to initial one. Lysosomal membrane stability and lysosomal structural changes in digestive gland were investigated. In winter, heat-shock reduced the labilisation period (LP) of the lysosomal membrane, especially in Cd-exposed mussels, and provoked transient lysosomal enlargement. LP values recovered after the heat-shock cessation but lysosomal enlargement prevailed in both experimental groups. In summer, heat-shock induced remarkable reduction in LP and lysosomal enlargement (more markedly in Cd-exposed mussels), which recovered within 3 days. Besides, whilst heat-shock effects on LP were practically identical for Cd-exposed mussels in winter and summer, the effects were longer-lasting in summer than in winter for control mussels. Thus, lysosomal responsiveness after heat-shock was higher in summer than in winter but recovery was faster as well, and therefore the consequences of the heat shock seem to be more decisive in winter. In contrast, inter-season differences were attenuated in the presence of Cd. Consequently, mussels seem to be better prepared in summer than in winter to stand short periods of abrupt temperature change; this is, however, compromised when mussels are exposed to pollutants such as Cd.

  18. Olfactory conditioning in the third instar larvae of Drosophila melanogaster using heat shock reinforcement.

    PubMed

    Khurana, Sukant; Robinson, Brooks G; Wang, Zihe; Shropshire, William C; Zhong, Allen C; Garcia, Laura E; Corpuz, Jonathan; Chow, Jonathan; Hatch, Michael M; Precise, Eric F; Cady, Amanda; Godinez, Ryan M; Pulpanyawong, Terapat; Nguyen, Andrew T; Li, Wen-Ke; Seiter, Max; Jahanian, Kambiz; Sun, Jeffrey C; Shah, Ruchita; Rajani, Sunaina; Chen, William Y; Ray, Sofia; Ryazanova, Natalie V; Wakou, Dorah; Prabhu, Rohith K; Atkinson, Nigel S

    2012-01-01

    Adult Drosophila melanogaster has long been a popular model for learning and memory studies. Now the larval stage of the fruit fly is also being used in an increasing number of classical conditioning studies. In this study, we employed heat shock as a novel negative reinforcement for larvae and obtained high learning scores following just one training trial. We demonstrated heat-shock conditioning in both reciprocal and non-reciprocal paradigms and observed that the time window of association for the odor and heat shock reinforcement is on the order of a few minutes. This is slightly wider than the time window for electroshock conditioning reported in previous studies, possibly due to lingering effects of the high temperature. To test the utility of this simplified assay for the identification of new mutations that disrupt learning, we examined flies carrying mutations in the dnc gene. While the sensitivity to heat shock, as tested by writhing, was similar for wild type and dnc homozygotes, dnc mutations strongly diminished learning. We confirmed that the learning defect in dnc flies was indeed due to mutation in the dnc gene using non-complementation analysis. Given that heat shock has not been employed as a reinforcement for larvae in the past, we explored learning as a function of heat shock intensity and found that optimal learning occurred around 41 °C, with higher and lower temperatures both resulting in lower learning scores. In summary, we have developed a very simple, robust paradigm of learning in fruit fly larvae using heat shock reinforcement.

  19. Genetic variation in heat shock protein 70 is associated with septic shock: narrowing the association to a specific haplotype.

    PubMed

    Kee, C; Cheong, K Y; Pham, K; Waterer, G W; Temple, S E L

    2008-12-01

    Heat shock protein 70 (HSP70) plays a major role in immune responses. Polymorphisms within the gene have been associated with development of septic shock. This study refines the region of the HSP70 gene associated with development of septic shock and confirms its functionality. Subjects (n = 31) were grouped into one of three haplotypes based on their HSPA1B-179C>T and HSPA1B1267A>G genotypes. Mononuclear cells from these subjects were stimulated with heat-killed bacteria (10(7 )colony-forming units/mL Escherichia coli or Streptococcus pneumoniae) for 8 and 21 h. HSP70 and tumour necrosis factor (TNF) mRNA and protein levels were measured by reverse transcriptase-polymerase chain reaction and ELISA, respectively. The HSPA1B-179*C:1267*A haplotype was associated with significantly lower levels of HSPA1B mRNA and protein and higher production of TNF mRNA and protein compared to the other haplotypes. Induction of HSP70 was TNF independent. These results suggest that the HSPA1B-179C>T:1267A>G haplotype is functional and may explain the association of the HSP70 gene with development of septic shock.

  20. Phylogenetic analysis of heat shock proteins in Glassy-winged sharpshooter (Homalodisca vitripennis)

    USDA-ARS?s Scientific Manuscript database

    Heat shock proteins were identified in the glassy-winged sharpshooter, GWSS, Homalodisca vitripennis. The overall importance and function of HSPs lie in their ability to maintain protein integrity and activity during stressful conditions, such as extreme heat, cold, drought, or other stresses. The G...

  1. Investigation of shock wave-boundary layer instability on the heated ramp surface

    NASA Astrophysics Data System (ADS)

    Glushneva, A. V.; Saveliev, A. S.; Son, E. E.; Tereshonok, D. V.

    2015-11-01

    By means of particle image velocimetry method shock-wave boundary layer interaction on the pre-heated ramp surface was investigated. The influence of surface heating on separation region unsteadiness was proved. It was found experimentally that increasing of wall to outer flow temperature ratio raises amplitude of separation region oscillation.

  2. Heat sensitivity in a bentgrass variant. Failure to accumulate a chloroplast heat shock protein isoform implicated in heat tolerance.

    PubMed

    Wang, Dongfang; Luthe, Dawn S

    2003-09-01

    Two variants of creeping bentgrass (Agrostis stolonifera cv palustris), developed using tissue culture, have been used to determine the roles of chloroplast-localized small heat shock proteins (CP-sHSPs) in heat tolerance. Results from previous research indicate that the heat-tolerant variant expressed two additional CP-sHSP isoforms not expressed in the heat-sensitive variant, that accumulation of the additional CP-sHSP isoforms was genetically linked to thermotolerance, and that the presence of the additional isoforms in the heat-tolerant variant provided greater protection to photosystem II during heat stress. To determine the basis of the differential expression, we isolated the genes encoding the CP-sHSPs from both variants and characterized their structure and expression. Two genes, ApHsp26.2 and ApHsp26.7a, were isolated from the heat-tolerant variant, and three genes, ApHsp26.2m, ApHsp26.8, and ApHsp26.7b, were isolated from the heat-sensitive variant. The sequence of ApHsp26.2m from the heat-sensitive variant was identical to ApHsp26.2, except for a point mutation that generated a premature stop codon. Therefore, the protein product of ApHsp26.2m did not accumulate in the heat-sensitive line. Mass spectrometry analysis confirmed that ApHsp26.2 encoded for the CP-sHSP isoforms unique to the heat-tolerant variant. An identical mutation was detected in one of the three parental lines used to develop the creeping bentgrass variants. This suggests that ApHsp26.2m was inherited from this parent and did not arise from a mutation that occurred during tissue culture. The presence of two isoforms encoded by the same gene might be due to differential processing of the N-terminal amino acids during or after import into the chloroplast.

  3. Effects of Heat Shock on Amino Acid Metabolism of Cowpea Cells 1

    PubMed Central

    Mayer, Randall R.; Cherry, Joe H.; Rhodes, David

    1990-01-01

    When cowpea (Vigna unguiculata) cells maintained at 26°C are transferred to 42°C, rapid accumulation of γ-aminobutyrate (>10-fold) is induced. Several other amino acids (including β-alanine, alanine, and proline) are also accumulated, but less extensively than γ-aminobutyrate. Total free amino acid levels are increased approximately 1.5-fold after 24 hours at 42°C. Heat shock also leads to release of amino acids into the medium, indicating heat shock damage to the integrity of the plasmalemma. Some of the changes in metabolic rates associated with heat shock were estimated by monitoring the 15N labeling kinetics of free intracellular, extracellular and protein-bound amino acids of cultures supplied with 15NH4+, and analyzing the labeling data by computer simulation. Preliminary computer simulation models of nitrogen flux suggest that heat shock induces an increase in the γ-aminobutyrate synthesis rate from 12.5 nanomoles per hour per gram fresh weight in control cells maintained at 26°C, to as high as 800 nanomoles per hour per gram fresh weight within the first 2 hours of heat shock. This 64-fold increase in the γ-aminobutyrate synthesis rate greatly exceeds the expected (Q10) change of metabolic rate of 2.5- to 3-fold due to a 16°C increase in temperature. We suggest that this metabolic response may in part involve an activation of glutamate decarboxylase in vivo, perhaps mediated by a transient cytoplasmic acidification. Proline appears to be synthesized from glutamate and not from ornithine in cowpea cells. Proline became severalfold more heavily labeled than ornithine, citrulline and arginine in both control and heat-shocked cultures. Proline synthesis rate was increased 2.7-fold by heat shock. Alanine, β-alanine, valine, leucine, and isoleucine synthesis rates were increased 1.6-, 3.5-, 2.0-, 5.0-, and 6.0-fold, respectively, by heat shock. In contrast, the phenylalanine synthesis rate was decreased by 50% in response to heat shock. The

  4. Flat plate heat transfer for laminar transition and turbulent boundary layers using a shock tube

    NASA Technical Reports Server (NTRS)

    Brostmeyer, J. D.; Nagamatsu, H. T.

    1984-01-01

    Heat transfer results are presented for laminar, transition, and turbulent boundary layers for a Mach number of 0.12 with gas temperatures of 425 K and 1000 K over a flat plate at room temperature. The measurements were made in air for a Reynolds number range of 600 to 6 million. The heat transfer measurements were conducted in a 70-ft long, 4 in. diameter shock tube. Reflecting wedges were used to reflect the incident shock wave to produce a flow Mach number of 0.12 behind the reflected shock wave. Thin film platinum heat gages were mounted on the plate surface to measure the local heat flux. The laminar results for gas temperatures of 425 K to 1000 K agree well with theory. The turbulent results are also close to incompressible theory, with the 1000 K flow case being slightly higher. The transition results lie between the laminar and turbulent predictions.

  5. Heat-flow equation motivated by the ideal-gas shock wave.

    PubMed

    Holian, Brad Lee; Mareschal, Michel

    2010-08-01

    We present an equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, in order to model shockwave propagation in gases. Our approach is motivated by the observation of a disequilibrium among the three components of temperature, namely, the difference between the temperature component in the direction of a planar shock wave, versus those in the transverse directions. This difference is most prominent near the shock front. We test our heat-flow equation for the case of strong shock waves in the ideal gas, which has been studied in the past and compared to Navier-Stokes solutions. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations of hard spheres under strong shockwave conditions.

  6. Radiative cooling of shock-heated air in an explosively driven shock tube.

    NASA Technical Reports Server (NTRS)

    Cooper, D. M.; Borucki, W. J.; Chien, K. Y.

    1972-01-01

    Results are presented of an experimental program to measure the effect of radiative cooling on the enthalpy distribution behind incident shock waves traveling in air. The shock velocity was nominally 16 km/sec and the preshock ambient pressure was varied from 0.4 to 1.6 torr. Shock-tube diameters of 4.7 and 9.4 cm were used to investigate the effects of varying optical depths. Radiative cooling rates were determined from spatially resolved measurements of the profile of the H sub alpha line and from absolute measurements of the continuum radiation. The measured enthalpy profiles are in good agreement with the theoretical predictions of Chien and Compton which account for both nongrey and multidimensional aspects of the radiative transport in the shock tube.

  7. Electron heating and phase space signatures at strong and weak quasi-perpendicular shocks

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Scudder, J. D.; Frank, L. A.; Paterson, W. R.; Kivelson, M. G.

    1998-02-01

    The coherent effects implied by the magnetic field jump [B] and the deHoffmann-Teller frame (HTF) potential jump [ΦHT] on electron heating and phase space signatures at shocks of different strengths are presented. Of particular interest is whether these coherent effects have sufficiently different signatures to explain the observed preferential transverse heating in weak shocks while still producing nearly isotropic heating for strong shocks. Vlasov-Liouville mappings of an upstream electron core-halo distribution function f1, modified to reflect electron mirroring, are employed to determine the downstream electron distribution function f2. Electrons within the shock are treated as a laminar Vlasov guiding center ordered fluid. These mappings demonstrate that the coherent effects play a major role in producing, at all pitch angles, characteristic electron distribution function signatures observed behind strong and weak shocks and thus significantly impact electron heating. A favorable test of the Vlasov-Liouville mapping concept was performed using detailed upstream and downstream distribution functions at a weak bow shock observed by Galileo on the second Earth flyby. Especially noteworthy is that the Vlasov-Liouville procedure recovers the anisotropic inflationary signatures of the observed downstream electron distribution function.

  8. A thermochemical model for shock-induced reactions (heat detonations) in solids

    NASA Astrophysics Data System (ADS)

    Boslough, Mark B.

    1990-02-01

    Recent advances in studies of shock-induced chemistry in reactive solids have led to the recognition of a new class of energetic materials which are unique in their response to shock waves. Experimental work has shown that chemical energy can be released on a time scale shorter than shock-transit times in laboratory samples. However, for many compositions, the reaction products remain in the condensed state upon release from high pressure, and no sudden expansion takes place. Nevertheless, if such a reaction is sufficiently rapid, it can be modeled as a type of detonation, termed ``heat detonation'' in the present paper. It is shown that unlike an explosive detonation, an unsupported heat detonation will decay to zero unless certain conditions are met. An example of such a reaction is Fe2 O3 +2Al+shock→Al2 O3 +2Fe (the standard thermite reaction). A shock-wave equation of state is determined from a mixture theory for reacted and unreacted porous thermite. The calculated shock temperatures are compared to experimentally measured shock temperatures, demonstrating that a shock-induced reaction takes place. Interpretation of the measured temperature history in the context of the thermochemical model implies that the principal rate-controlling kinetic mechanism is dynamic mixing at the shock front. Despite the similarity in thermochemical modeling of heat detonations to explosive detonations, the two processes are qualitatively very different in reaction mechanism as well as in the form the energy takes upon release, with explosives producing mostly work and heat detonations producing mostly heat.

  9. Shock compression and flash-heating of molecular adsorbates on the picosecond time scale

    NASA Astrophysics Data System (ADS)

    Berg, Christopher Michael

    An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock

  10. Heat shock protein 70 and anti–heat shock protein 70 antibodies in nasal secretions of patients with chronic rhinosinusitis

    PubMed Central

    Tsybikov, Namjil N.; Egorova, Elena V.; Kuznik, Boris I.; Fefelova, Elena V.

    2016-01-01

    Background: The issue of heat shock protein (HSP) 70 and anti-HSP70 antibodies in chronic rhinosinusitis (CRS) has never been explored. Objective: To determine the nasal secretion (NS) levels of HSP70 and anti-HSP70 antibodies in patients with CRS with nasal polyps (CRSwNP) and patients with CRS without nasal polyps (CRSsNP), and to evaluate their associations with CRS clinical severity and correlation with NS interleukin (IL), IL-5 and interferon λ. Methods: CRS severity was determined by Lund-Mackay scores. Levels of immunoglobulin E (IgE), IL-4, IL-5, interferon λ, HSP70, and anti-HSP70 antibody levels in NS were measured by enzyme-linked immunosorbent assay. Results: Forty-six patients with CRSsNP (25 women [54.3%] and 21 men [45.7%], mean [standard deviation {SD}]) age, 34.1 ± 12.3 years; 54 patients with CRSwNP (24 women [44.4%] and 30 men [55.6%], mean [SD] age, 37.9 ± 17.5 years). A group of 40 healthy subjects served as controls. Compared with the controls (with a mean [SD] NS HSP70 level of 0.05 ± 0.03 μg/mL), mean [SD] NS HSP70 levels in both the CRSsNP group (0.16 ± 0.07 μg/mL) and CRSwNP group (0.21 ± 0.10 μg/mL) were increased (p < 0.001). Similarly, the mean (SD) NS anti-HSP70 antibody levels were significantly higher in patients with CRSwNP (0.25 ± 0.09 optical density value [ODV]) compared with CRSsNP (0.13 ± 0.04 ODV) (p < 0.001) and healthy controls (0.14 ± 0.02 ODV) (p < 0.001). NS HSP70 in subjects with CRSwNP showed a significant positive correlation with the Lund-Mackay score (r = 0.31; p < 0.05). NS levels of either HSP70 or anti-HSP70 antibodies were strongly correlated with NS IL-4 in the CRSwNP group (r = 0.62, p < 0.001; and r = 0.69, p < 0.001, respectively). Conclusion: NS concentrations of HSP70 and secretory IgA anti HSP70 antibodies are increased in CRSwNP (but not in CRSsNP) and correlate positively with the Lund-Mackay score, NS IL-4, and NS IL-5. PMID:27103555

  11. A mRNA-based thermosensor controls expression of rhizobial heat shock genes

    PubMed Central

    Nocker, Andreas; Hausherr, Thomas; Balsiger, Sylvia; Krstulovic, Nila-Pia; Hennecke, Hauke; Narberhaus, Franz

    2001-01-01

    Expression of several heat shock operons, mainly coding for small heat shock proteins, is under the control of ROSE (repression of heat shock gene expression) in various rhizobial species. This negatively cis-acting element confers temperature control by preventing expression at physiological temperatures. We provide evidence that ROSE-mediated regulation occurs at the post-transcriptional level. A detailed mutational analysis of ROSE1–hspA translationally fused to lacZ revealed that its highly conserved 3′-half is required for repression at normal temperatures (30°C). The mRNA in this region is predicted to form an extended secondary structure that looks very similar in all 15 known ROSE elements. Nucleotides involved in base pairing are strongly conserved, whereas nucleotides in loop regions are more divergent. Base substitutions leading to derepression of the lacZ fusion at 30°C exclusively resided in potential stem structures. Optimised base pairing by elimination of a bulged residue and by introduction of complementary nucleotides in internal loops resulted in ROSE elements that were tightly repressed not only at normal but also at heat shock temperatures. We propose a model in which the temperature-regulated secondary structure of ROSE mRNA influences heat shock gene expression by controlling ribosome access to the ribosome-binding site. PMID:11726689

  12. A mRNA-based thermosensor controls expression of rhizobial heat shock genes.

    PubMed

    Nocker, A; Hausherr, T; Balsiger, S; Krstulovic, N P; Hennecke, H; Narberhaus, F

    2001-12-01

    Expression of several heat shock operons, mainly coding for small heat shock proteins, is under the control of ROSE (repression of heat shock gene expression) in various rhizobial species. This negatively cis-acting element confers temperature control by preventing expression at physiological temperatures. We provide evidence that ROSE-mediated regulation occurs at the post-transcriptional level. A detailed mutational analysis of ROSE(1)-hspA translationally fused to lacZ revealed that its highly conserved 3'-half is required for repression at normal temperatures (30 degrees C). The mRNA in this region is predicted to form an extended secondary structure that looks very similar in all 15 known ROSE elements. Nucleotides involved in base pairing are strongly conserved, whereas nucleotides in loop regions are more divergent. Base substitutions leading to derepression of the lacZ fusion at 30 degrees C exclusively resided in potential stem structures. Optimised base pairing by elimination of a bulged residue and by introduction of complementary nucleotides in internal loops resulted in ROSE elements that were tightly repressed not only at normal but also at heat shock temperatures. We propose a model in which the temperature-regulated secondary structure of ROSE mRNA influences heat shock gene expression by controlling ribosome access to the ribosome-binding site.

  13. Heat shock factor-4 (HSF-4a) is a repressor of HSF-1 mediated transcription.

    PubMed

    Zhang, Y; Frejtag, W; Dai, R; Mivechi, N F

    2001-01-01

    Heat shock transcription factors (HSFs) regulate the expression of heat shock proteins and other molecular chaperones that are involved in cellular processes from higher order assembly to protein degradation and apoptosis. Among the human HSFs, HSF-4 is expressed as at least two splice variants. One isoform (HSF-4b) possesses a transcriptional activation domain, but this region is absent in the other isoform (HSF-4a). We have recently shown that the HSF-4a isoform represses basal transcription from heterologous promoters both in vitro and in vivo. Here we show that HSF-4a and HSF-4b have dramatically different effects on HSF-1-containing nuclear bodies, which form after heat shock. While the expression of HSF-4b colocalizes with nuclear granules, the expression of HSF-4a prevents their formation. In addition, there is a concurrent reduction of HSF-1 in the nucleus, and there is reduction in its DNA binding activity and in HSE-dependent transcription of a reporter gene. To better understand the mechanism by which HSF-4a represses transcription, we inducibly expressed HSF-4a in cells and found that HSF-4a binds to the heat shock element (HSE) during attenuation of the heat shock response. Thus HSF-4a is an active repressor of HSF-1-mediated transcription. This repressor function makes the HSF-4a isoform unique within the HSF family.

  14. Heat shock and developmental expression of hsp83 in the filarial nematode Brugia pahangi.

    PubMed

    Thompson, F J; Cockroft, A C; Wheatley, I; Britton, C; Devaney, E

    2001-11-01

    hsp83 was cloned from the filarial nematode Brugia pahangi. The mRNA was constitutively expressed at 37 degrees C in life cycle stages that live in the mammalian host (microfilariae and adult worms). Heat shock resulted in only a minimal increase in levels of transcription. A genomic copy of hsp83 was isolated and was shown to contain 11 introns while sequencing of the 5' upstream region revealed several heat shock elements. Using a chloramphenicol acetyltransferase (CAT) reporter gene construct the expression of hsp83 from B. pahangi (Bp-hsp83) was studied by transfection of COS-7 cells. Similar to the expression pattern in the parasite, CAT activity was detected at 37 degrees C and was not influenced by heat shock. When the free-living nematode Caenorhabditis elegans was transfected with the same construct, CAT activity was not observed at normal growth temperatures (21 degrees C) or under moderate heat shock conditions (28 degrees C). However exposure to more severe heat shock (35 degrees C) resulted in an increase in CAT activity. These results suggest that Bp-hsp83 has a temperature threshold > or = 35 degrees C for expression.

  15. Heat-shock response of the upper intertidal barnacle Balanus glandula: thermal stress and acclimation.

    PubMed

    Berger, Michael S; Emlet, Richard B

    2007-06-01

    In the intertidal zone in the Pacific Northwest, body temperatures of sessile marine organisms can reach 35 degrees C for an extended time during low tide, resulting in potential physiological stress. We used immunochemical assays to examine the effects of thermal stress on endogenous Hsp70 levels in the intertidal barnacle Balanus glandula. After thermal stress, endogenous Hsp70 levels did not increase above control levels in B. glandula exposed to 20 and 28 degrees C. In a separate experiment, endogenous Hsp70 levels were higher than control levels when B. glandula was exposed to 34 degrees C for 8.5 h. Although an induced heat-shock response was observed, levels of conjugated ubiquitin failed to indicate irreversible protein damage at temperatures up to 34 degrees C. With metabolic labeling, we examined temperature acclimation and thermally induced heat-shock proteins in B. glandula. An induced heat-shock response of proteins in the 70-kDa region (Hsp70) occurred in B. glandula above 23 degrees C. This heat-shock response was similar in molting and non-molting barnacles. Acclimation of B. glandula to relatively higher temperatures resulted in higher levels of protein synthesis in the 70-kDa region and lack of an upward shift in the induction temperature for heat-shock proteins. Our results suggest that B. glandula may be well adapted to life in the high intertidal zone but may lack the plasticity to acclimate to higher temperatures.

  16. Arctigenin from Fructus Arctii is a novel suppressor of heat shock response in mammalian cells

    PubMed Central

    Ishihara, Keiichi; Yamagishi, Nobuyuki; Saito, Youhei; Takasaki, Midori; Konoshima, Takao; Hatayama, Takumi

    2006-01-01

    Because heat shock proteins (Hsps) are involved in protecting cells and in the pathophysiology of diseases such as inflammation, cancer, and neurodegenerative disorders, the use of regulators of the expression of Hsps in mammalian cells seems to be useful as a potential therapeutic modality. To identify compounds that modulate the response to heat shock, we analyzed several natural products using a mammalian cell line containing an hsp promoter-regulated reporter gene. In this study, we found that an extract from Fructus Arctii markedly suppressed the expression of Hsp induced by heat shock. A component of the extract arctigenin, but not the component arctiin, suppressed the response at the level of the activation of heat shock transcription factor, the induction of mRNA, and the synthesis and accumulation of Hsp. Furthermore, arctigenin inhibited the acquisition of thermotolerance in mammalian cells, including cancer cells. Thus, arctigenin seemed to be a new suppressive regulator of heat shock response in mammalian cells, and may be useful for hyperthermia cancer therapy. PMID:16817321

  17. High power cold shock phenomena in Loop Heat Pipes

    NASA Astrophysics Data System (ADS)

    Nikitkin, Michael N.; Bienert, Walter B.

    2001-02-01

    DCI's most recent experiments with a wide range of the LHP configurations (from kilowatt systems with parallel condensers for deployable radiators to miniature few-watts-LHPs for cooling electronics) have discovered a new, interesting phenomenon that we called the ``cold shock.'' Initially, the cold shock behavior was discovered during routine acceptance tests of large LHPs with large-volume condensers. Traditional power-up steps appeared to lead to unexplainable temperature instabilities and significant temperature overshoots when the condenser was initially very cold. After the occurrence of these anomalies we performed hundreds of experiments on dozens of typical LHPs, trying to understand the overshoots and find ways to avoid them. .

  18. Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks

    NASA Technical Reports Server (NTRS)

    Veltri, P.; Mangeney, A.; Scudder, J. D.

    1992-01-01

    The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.

  19. Heat-shock and stress response of the parasitic nematode Haemonchus contortus.

    PubMed

    van Leeuwen, M A

    1995-01-01

    Before and after a stress treatment, larval stages and adult worms of Haemonchus contortus were tested for the induction and expression of heat-shock proteins (HSPs) using immunoblot analysis with HSP70-and HSP65-specific monoclonal antibodies. Stress treatment or heat shock did not alter the signals obtained with these antibodies, but the amount of HSP70 differed between the successive stages. In addition, the different stages were metabolically labeled with [35S]-methionine during a temperature-shock or chemical treatment and proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The shocks resulted in an altered protein pattern. New was the de novo expression of a 20-kDa protein of adult worms after anthelmintic treatment.

  20. Corequake and shock heating model of the 5 March 1979 gamma ray burst

    NASA Technical Reports Server (NTRS)

    Ellison, D. C.; Kazanas, D.

    1983-01-01

    Ramatry, et al. proposed a model to account for the 5 March 1979 gamma ray burst in terms of a neutron star corequake and subsequent shock heating of the neutron star atmosphere. This model is extended by examining the overall energetics and characteristics of these shocks, taking into account the e(+)-e(-) pair production behind the shock. The effects of a dipole magnetic field in the shock jump conditions are also examined and it is concluded that the uneven heating produced by such a field can account for the temperature difference between pole and equator implied by the pulsating phase of the burst. The overall energetics and distribution of energy between e(+)-(-) pairs and photons appears to be in agreement with observations if this event is at a distance of 55 kpc as implied by its association with the Large Magellanic Cloud.

  1. Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance.

    PubMed Central

    Tanabe, M; Kawazoe, Y; Takeda, S; Morimoto, R I; Nagata, K; Nakai, A

    1998-01-01

    The vertebrate genome encodes a family of heat shock factors (HSFs 1-4) of which the DNA-binding and transcriptional activities of HSF1 and HSF3 are activated upon heat shock. HSF1 has the properties of a classical HSF and exhibits rapid activation of DNA-binding and transcriptional activity upon exposure to conditions of heat shock and other stresses, whereas HSF3 typically is activated at higher temperatures and with distinct delayed kinetics. To address the role of HSF3 in the heat shock response, null cells lacking the HSF3 gene were constructed by disruption of the resident gene by somatic recombination in an avian lymphoid cell line. Null cells lacking HSF3, yet expressing normal levels of HSF1, exhibited a severe reduction in the heat shock response, as measured by inducible expression of heat shock genes, and did not exhibit thermotolerance. At intermediate heat shock temperatures, where HSF1 oligomerizes to an active trimer in wild-type cells, HSF1 remained as an inert monomer in the HSF3 null cell line. HSF3 null cells were restored to a nearly normal heat shock-responsive state by reintroduction of an exogenous HSF3 gene. These results reveal that HSF3 has a dominant role in the regulation of the heat shock response and directly influences HSF1 activity. PMID:9501096

  2. Induction of a chicken small heat shock (stress) protein: evidence of multilevel posttranscriptional regulation.

    PubMed Central

    Edington, B V; Hightower, L E

    1990-01-01

    A novel form of regulation of expression of a vertebrate heat shock gene is described. A cDNA clone encoding human Hsp27 was shown to specifically recognize chicken Hsp23 RNA by Northern (RNA) blot analysis and hybrid-select translation. This probe was then used to measure chicken hsp23 gene activity in control and heat-stressed cells. The hsp23 gene(s) was transcriptionally active in non-heat-stressed cells, and its rate of transcription did not increase significantly upon heat shock. Cytoplasmic Hsp23 mRNA, which was metabolically very stable in nonstressed cells, underwent a fourfold increase in amount after a 1-h heat shock, resulting in a twofold increase in Hsp23 mRNA in polysomes. Hsp23 mRNA was relatively abundant and translationally active even in non-heat-shocked cells. Taken together, these data implicated posttranscriptional nuclear events as an important control point for induction of Hsp23 RNA transcripts. The protein half-life of Hsp23 increased from approximately 2 h in control cultures to 13 h in heat-shocked cells, revealing a second major control point. Hsp23 which was synthesized prior to heat shock also increased in stability and contributed to the overall accumulation of Hsp23 in heat-shocked cells. Cycloheximide had no effect on this change in Hsp23 half-life, while dactinomycin blocked the stabilization of Hsp23, suggesting a need for newly synthesized RNA. These data indicated that stabilization of Hsp23 protein and posttranscriptional nuclear events resulting in increased production of Hsp23 mRNA were primarily responsible for a 13-fold increase in the accumulation of newly synthesized Hsp23 after 1 h of heat shock. The regulation of the hsp23 gene is discussed in comparison with several other posttranscriptionally regulated genes, including the proto-oncogene c-fos, the developmentally regulated chicken delta-crystallin gene, and regulation of cellular gene expression by the proto-oncogene c-myc. Images PMID:2388629

  3. Shock initiation of the TATB based explosive PBX 9502 heated to ~ 76∘C

    NASA Astrophysics Data System (ADS)

    Gustavsen, Richard; Gehr, Russell; Bucholtz, Scott; Pacheco, Adam; Bartram, Brian

    2015-06-01

    Recently we reported on shock initiation of PBX 9502 (95 wt.% tri-amino-trinitro-benzene, 5 wt.% Kel-F800 binder) cooled to -55°C and to 77K Shock waves were generated by gas-gun driven plate impacts and reactive flow in the cooled PBX 9502 was measured with embedded electromagnetic gauges. Here we use similar methods to warm the explosive to ~ 76°C. The explosive sample is heated by warm air flowing through channels in an aluminum sample mounting plate and a copper tubing coil surrounding the sample. Temperature in the sample is monitored using six type-E thermocouples. Results show increased shock sensitivity; time and distance to detonation onset vs. initial shock pressure are shorter than when the sample is initially at ambient temperature. Our results are consistent with those reported by Dallman & Wackerle. Particle velocity wave profiles were also obtained during the shock-to-detonation transition and will be presented.

  4. Flow and heat transfer measurements in a pseudo-shock region with surface cooling

    NASA Technical Reports Server (NTRS)

    Cuffel, R. F.; Back, L. H.

    1976-01-01

    An experimental investigation was conducted to acquire information on the flow structure, mean flowfield, and temperature distributions in a pseudo-shock region in a supersonic diffuser with surface cooling. The Mach number upstream was 2.9, and the wall to stagnation temperature ratio was 0.44. A Mach-disk-like shock wave emanated from the thin separated flow region near the beginning of the compression region, and reattachment occurred one diameter downstream so that the flow was not separated over most of the pseudo-shock region. The flow compression was a shock-free, predominantly viscous process. Along the pseudo-shock region the measured heat-transfer coefficient increased approximately as the 0.8 power of the measured wall static pressure. The estimated wall shear stress increased downstream of flow attachment, but was still considerably less than the upstream value.

  5. Inactivation of Aspergillus niger in mango nectar by high-pressure homogenization combined with heat shock.

    PubMed

    Tribst, Alline A L; Franchi, Mark A; Cristianini, Marcelo; de Massaguer, Pilar R

    2009-01-01

    This research evaluated the inactivation of a heat-resistant Aspergillus niger conidia in mango nectar by high-pressure homogenization (HPH) combined with heat shock. A. niger were inoculated in mango nectar (10(6) conidia mL(-1)) and subjected to HPH (300 to 100 MPa) and heat shock (80 degrees C for 5 to 20 min) before or after HPH. Processes were evaluated according to number of decimal reductions reached by each isolated or combined process. Scanning electron microscopy was performed to observe conidia wall after pressure treatment. Pressures below 150 MPa did not inactivate A. niger while pressures of 200 and 300 MPa resulted in 2 and more than 6 log reductions, respectively. D(80 degrees C) of A. niger was determined as 5.03 min. A heat shock of 80 degrees C/15 min, reaching 3 decimal conidia reductions, was applied before or after a 200 MPa pressure treatment to improve the decimal reduction to 5 log cycles. Results indicated that HPH inactivated A. niger in mango nectar at 300 MPa (>6.24 log cycles) and that, with pressure (200 MPa) combined with post heat shock, it was possible to obtain the same decimal reduction, showing a synergistic effect. On the other hand, pre heat shock associated with HPH resulted in an additive effect. The observation of A. niger conidia treated by HPH at 100 and 200 MPa by scanning electron microscopy indicated that HPH promoted intense cell wall damage, which can sensitize the conidia to post heat shock and possibly explain the synergistic effect observed. Practical Application: The results obtained in this paper are relevant to elucidate the mechanism of conidia inactivation in order to develop the application of HPH as an alternative pasteurization process for the fruit nectar industry.

  6. The time development of a blast wave with shock heated electrons

    NASA Technical Reports Server (NTRS)

    Edgar, R. J.; Cox, D. P.

    1983-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures.

  7. The time development of a blast wave with shock-heated electrons

    NASA Technical Reports Server (NTRS)

    Edgar, R. J.; Cox, D. P.

    1984-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures.

  8. Relative induction of heat shock protein in coronary endothelial cells and cardiomyocytes: implications for myocardial protection.

    PubMed

    Amrani, M; Latif, N; Morrison, K; Gray, C C; Jayakumar, J; Corbett, J; Goodwin, A T; Dunn, M J; Yacoub, M H

    1998-01-01

    Induction of the 70 kd heat shock protein in the heart is known to exert a protective effect against postischemic mechanical and endothelial dysfunction. However, the exact site of induction and the mechanisms involved remain unknown. The aim of this study was to investigate the relative capacity of endothelial and myocardial cells to express the 70 kd heat shock protein in response to heat stress, as well as their significance. (1) Postischemic recovery of cardiac mechanical and endothelial function was studied in isolated rat hearts with and without endothelial denudation with saponin. (2) Semiquantitative determination of induction of 70 kd heat shock protein by Western immunoblotting was performed in the whole cardiac homogenate, in isolated cardiac myocytes, and in coronary endothelial cells. (3) Immunocytochemistry was used to visualize the distribution of induction of 70 kd heat shock protein in both cell types. Postischemic recovery (percent preischemic value +/- standard error of the mean) of cardiac output in hearts from heat-stressed animals was significantly improved (66.7 +/- 6.9 vs 44.5 +/- 4.5 in the control group, p < 0.01). In heat-stressed hearts treated with saponin no improvement in the recovery of cardiac output was noted (44.7 +/- 6.9 in heat-stressed hearts vs 38.0 +/- 4.0 in heat-stressed, saponin-treated hearts, p = not significant). Endothelial function (as assessed by the vasodilatory response to the endothelium-dependent vasodilator 5-hydroxytryptamine) improved from 31.0 +/- 5.2 in the control group to 65.8 +/- 7.1 in heat-stressed hearts (p < 0.02 vs control) and dropped to -1.9 +/- 3.8 in heat-stressed hearts treated with saponin. Immunocytochemistry showed that only sections of hearts from heat-treated rats showed a strong specific reaction with heat shock protein antibody. The positive staining was seen in endothelial cells. Induction of 70 kd heat shock protein content in the whole cardiac homogenate from heat-stressed rats as

  9. Decreased levels of heat shock proteins in gut epithelial cells after exposure to plant lectins

    PubMed Central

    Ovelgonne, J; Koninkx, J; Pusztai, A; Bardocz, S; Kok, W; Ewen, S; Hendriks, H; van Dijk, J E

    2000-01-01

    BACKGROUND—The enterocytes of the intestinal epithelium are regularly exposed to potentially harmful substances of dietary origin, such as lectins. Expression of heat shock proteins (HSPs) by this epithelium may be part of a protective mechanism developed by intestinal epithelial cells to deal with noxious components in the intestinal lumen.
AIM—To investigate if the lectins PHA, a lectin from kidney beans (Phaseolus vulgaris) and WGA, a lectin from wheat germ (Triticum aestivum) could modify the heat shock response in gut epithelial cells and to establish the extent of this effect.
METHODS—Jejunal tissue sections from PHA and WGA fed rats were screened for expression of HSP70, HSP72, and HSP90 using monoclonal antibodies. Differentiated Caco-2 cells, the in vitro counterpart of villus enterocytes, were exposed to 100 µg/ml of PHA-E4 or WGA for 48 hours and investigated for changes in DNA and protein synthesis by double labelling with [2-14C]thymidine and L-[methyl-3H]methionine. The relative concentrations of HSP60, HSP70, HSP72, and HSP90 and binding protein (BiP) in these cells exposed to lectins were analysed by polyacrylamide gel electrophoresis and immunoblotting. To establish if lectin exposed differentiated Caco-2 cells were still capable of producing a heat shock response, these cells received a heat shock (40°C, 41°C, and 42°C) for one hour and were allowed to recover for six hours at 37°C. During heat shock and recovery periods, lectin exposure was continued.
RESULTS—Constitutive levels of HSPs were measured in the intestinal cells of lactalbumin fed (control) rats, as may be expected from the function of this tissue. However, in PHA and WGA fed rats a marked decline in the binding of antibodies against several HSPs to the intestinal epithelium was found. These results were confirmed by in vitro experiments using differentiated Caco-2 cells exposed to PHA-E4 and WGA. However, after exposure to lectins, these cells were still capable

  10. Thermal transport in shock wave–compressed solids using pulsed laser heating

    SciTech Connect

    La Lone, B. M.; Capelle, G.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.

    2014-07-01

    A pulsed laser heating method was developed for determining thermal transport properties of solids under shock-wave compression. While the solid is compressed, a laser deposits a known amount of heat onto the sample surface, which is held in the shocked state by a transparent window. The heat from the laser briefly elevates the surface temperature and then diffuses into the interior via one-dimensional heat conduction. The thermal effusivity is determined from the time history of the resulting surface temperature pulse, which is recorded with optical pyrometry. Thermal effusivity is the square root of the product of thermal conductivity and volumetric heat capacity and is the key thermal transport parameter for relating the surface temperature to the interior temperature of the sample in a dynamic compression experiment. Therefore, this method provides information that is needed to determine the thermodynamic state of the interior of a compressed metal sample from a temperature measurement at the surface. The laser heat method was successfully demonstrated on tin that was shock compressed with explosives to a stress and temperature of ~25 GPa and ~1300 K. In this state, tin was observed to have a thermal effusivity of close to twice its ambient value. The implications on determining the interior shock wave temperature of tin are discussed.

  11. Thermal transport in shock wave–compressed solids using pulsed laser heating

    SciTech Connect

    La Lone, B. M. Capelle, G.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.

    2014-07-15

    A pulsed laser heating method was developed for determining thermal transport properties of solids under shock-wave compression. While the solid is compressed, a laser deposits a known amount of heat onto the sample surface, which is held in the shocked state by a transparent window. The heat from the laser briefly elevates the surface temperature and then diffuses into the interior via one-dimensional heat conduction. The thermal effusivity is determined from the time history of the resulting surface temperature pulse, which is recorded with optical pyrometry. Thermal effusivity is the square root of the product of thermal conductivity and volumetric heat capacity and is the key thermal transport parameter for relating the surface temperature to the interior temperature of the sample in a dynamic compression experiment. Therefore, this method provides information that is needed to determine the thermodynamic state of the interior of a compressed metal sample from a temperature measurement at the surface. The laser heat method was successfully demonstrated on tin that was shock compressed with explosives to a stress and temperature of ∼25 GPa and ∼1300 K. In this state, tin was observed to have a thermal effusivity of close to twice its ambient value. The implications on determining the interior shock wave temperature of tin are discussed.

  12. Long-Lived and Short-Lived Heat-Shock Proteins in Tobacco Mesophyll Protoplasts

    PubMed Central

    Meyer, Yves; Chartier, Yvette

    1983-01-01

    We have studied modifications in the pattern of proteins synthesized by tobacco (Nicotiana tabacum var Maryland) mesophyll protoplasts when they are transferred from 25°C to 40°C. The synthesis of one group of proteins is practically unaffected by the heat shock. On the other hand, the synthesis of most other 25°C proteins is greatly reduced, while specific heat-shock proteins appear: 17 stable, neutral, major proteins, which are synthesized throughout the culture period at the higher temperature and which correspond to those observed in other organisms, and two basic proteins with a short lifetime and which are synthesized only during the first 2 hours of heat shock. We suggest that these latter proteins are regulatory peptides which intervene in the inhibition of 25°C syntheses. Images Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:16662973

  13. Suppression of first cleavage in the Mexican axolotl (Ambystoma mexicanum) by heat shock or hydrostatic pressure

    SciTech Connect

    Gillespie, L.L.; Armstrong, J.B.

    1981-12-01

    Androgenetic diploid axolotls were produced by ultraviolet inactivation of the egg pronucleus shortly after fertilization, followed by suppression of the first cleavage division by hydrostatic pressure or heat shock. After treatment at 14,000 psi for 8 minutes, diploidy was restored in 74% of the embryos, but only 0.8% survived to hatching. A 36-37 degrees C heat shock of 10-minutes duration, applied 5.5 hours after the eggs were collected, yielded a slightly lower percentage of diploids. However, the proportion surviving to hatching was significantly greater (up to 4.6%). A second generation of androgenetic diploids was produced from one of the oldest of the first generation males with a similar degree of success. The lack of significant improvement suggests that the low survival is due to the heat shock per se and not to the uncovering of recessive lethal genes carried by the parent.

  14. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice.

    PubMed Central

    Radford, N B; Fina, M; Benjamin, I J; Moreadith, R W; Graves, K H; Zhao, P; Gavva, S; Wiethoff, A; Sherry, A D; Malloy, C R; Williams, R S

    1996-01-01

    Heat shock proteins are proposed to limit injury resulting from diverse environmental stresses, but direct metabolic evidence for such a cytoprotective function in vertebrates has been largely limited to studies of cultured cells. We generated lines of transgenic mice to express human 70-kDa heat shock protein constitutively in the myocardium. Hearts isolated from these animals demonstrated enhanced recovery of high energy phosphate stores and correction of metabolic acidosis following brief periods of global ischemia sufficient to induce sustained abnormalities of these variables in hearts from nontransgenic littermates. These data demonstrate a direct cardioprotective effect of 70-kDa heat shock protein to enhance postischemic recovery of the intact heart. Images Fig. 1 Fig. 3 PMID:8637874

  15. Genome-wide chromatin remodeling modulates the Alu heat shock response.

    PubMed

    Kim, C; Rubin, C M; Schmid, C W

    2001-10-03

    During heat shock recovery in Hela cells, the level of Alu RNA transiently increases with kinetics that approximately parallel the transient expression of heat shock protein mRNAs. Coincidentally, there is a transient increase in the accessibility of Alu chromatin to restriction enzyme cleavage suggesting that an opening and re-closing of chromatin regulates the Alu stress response. Similar changes occur in alpha satellite and LINE1 chromatin showing that heat shock induces a genome-wide remodeling of chromatin structure which is independent of transcription. The increased accessibility of restriction sites within these repetitive sequences is inconsistent with a simple lengthening of the nucleosome linker region but instead suggests a scrambling of nucleosome positions. Chromatin structure and its dynamics account for many of the principal features of SINE transcriptional regulation potentially providing a functional rationale for the dispersion and high copy number of SINEs.

  16. Comparison of viscous shock layer and boundary layer reentry heating techniques for Orbiter nose cap

    NASA Technical Reports Server (NTRS)

    Ting, P. C.; Rochelle, W. C.; Curry, D. M.

    1986-01-01

    A comparison of two viscous shock layer methods and one boundary layer method for predicting the aerodynamic heating around the Orbiter nose cap during STS-5 entry is presented. The object of the study was to compare these methods with one another and with the measured Orbiter flight data for this trajectory. The nonequilibrium, chemically reacting viscous flow fields obtained by these methods are evaluated, and effects on heating rate of wall catalycity variation with time are presented. The effects of shock slip and combined wall/shock slip are considered at high altitudes (above 300,000 ft). Using the variable wall catalycity analysis, it is shown that heating rates can be predicted within a 5.7 percent flight data band for altitudes between 175,000 ft and 265,000 ft in this trajectory.

  17. Conditions for shock revival by neutrino heating in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Janka, H.-Th.

    2001-03-01

    Energy deposition by neutrinos can rejuvenate the stalled bounce shock and can provide the energy for the supernova explosion of a massive star. This neutrino-heating mechanism, though investigated by numerical simulations and analytic studies, is not finally accepted or proven as the trigger of the explosion. Part of the problem is that different groups have obtained seemingly discrepant results, and the complexity of the hydrodynamic models often hampers a clear and simple interpretation of the results. This demands a deeper theoretical understanding of the requirements of a successful shock revival. A toy model is developed here for discussing the neutrino heating phase analytically. The neutron star atmosphere between the neutrinosphere and the supernova shock can well be considered to be in hydrostatic equilibrium, with a layer of net neutrino cooling below the gain radius and a layer of net neutrino heating above. Since the mass infall rate to the shock is in general different from the rate at which gas is advected into the neutron star, the mass in the gain layer varies with time. Moreover, the gain layer receives additional energy input by neutrinos emitted from the neutrinosphere and the cooling layer. Therefore the determination of the shock evolution requires a time-dependent treatment. To this end the hydrodynamical equations of continuity and energy are integrated over the volume of the gain layer to obtain conservation laws for the total mass and energy in this layer. The radius and velocity of the supernova shock can then be calculated from global properties of the gain layer as solutions of an initial value problem, which expresses the fact that the behavior of the shock is controlled by the cumulative effects of neutrino heating and mass accumulation in the gain layer. The described toy model produces steady-state accretion and mass outflow from the nascent neutron star as special cases. The approach is useful to illuminate the conditions that can

  18. Heat-transfer measurements and computations of swept-shock-wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Lee, Y.; Settles, G. S.; Horstman, C. C.

    1994-01-01

    An experimental and computational research program providing new knowledge of the heat transfer in swept-shock-wave/boundary-layer interactions is described. An equilibrium turbulent boundary layer on a flat plate is subjected to impingement by a swept planar shock wave generated by a sharp fin. Five different interactions with fin angles ranging from 10 to 20 deg at freestream Mach numbers of 3 and 4 produce a variety of interaction strengths ranging from weak to very strong. A foil heater generates a uniform heat flux over the flat plate surface, and miniature thin-film-resistance sensors are used to measure the local surface temperature. The heat convection equation is then solved for the heat transfer distribution within an interaction, yielding an uncertainty of about +/- 10%. These data are compared with numerical Navier-Stokes solutions that employ a k-epsilon turbulence model. A simple peak heat transfer correlation for fin interactions is suggested.

  19. Development of a Heat-Shock Inducible Gene Expression System in the Red Alga Cyanidioschyzon merolae

    PubMed Central

    Sumiya, Nobuko; Fujiwara, Takayuki; Kobayashi, Yusuke; Misumi, Osami; Miyagishima, Shin-ya

    2014-01-01

    The cell of the unicellular red alga Cyanidioschyzon merolae contains a single chloroplast and mitochondrion, the division of which is tightly synchronized by a light/dark cycle. The genome content is extremely simple, with a low level of genetic redundancy, in photosynthetic eukaryotes. In addition, transient transformation and stable transformation by homologous recombination have been reported. However, for molecular genetic analyses of phenomena that are essential for cellular growth and survival, inducible gene expression/suppression systems are needed. Here, we report the development of a heat-shock inducible gene expression system in C. merolae. CMJ101C, encoding a small heat shock protein, is transcribed only when cells are exposed to an elevated temperature. Using a superfolder GFP as a reporter protein, the 200-bp upstream region of CMJ101C orf was determined to be the optimal promoter for heat-shock induction. The optimal temperature to induce expression is 50°C, at which C. merolae cells are able to proliferate. At least a 30-min heat shock is required for the expression of a protein of interest and a 60-min heat shock yields the maximum level of protein expression. After the heat shock, the mRNA level decreases rapidly. As an example of the system, the expression of a dominant negative form of chloroplast division DRP5B protein, which has a mutation in the GTPase domain, was induced. Expression of the dominant negative DRP5B resulted in the appearance of aberrant-shaped cells in which two daughter chloroplasts and the cells are still connected by a small DRP5B positive tube-like structure. This result suggests that the dominant negative DRP5B inhibited the final scission of the chloroplast division site, but not the earlier stages of division site constriction. It is also suggested that cell cycle progression is not arrested by the impairment of chloroplast division at the final stage. PMID:25337786

  20. Transportable, Chemical Genetic Methodology for the Small Molecule-Mediated Inhibition of Heat Shock Factor 1.

    PubMed

    Moore, Christopher L; Dewal, Mahender B; Nekongo, Emmanuel E; Santiago, Sebasthian; Lu, Nancy B; Levine, Stuart S; Shoulders, Matthew D

    2016-01-15

    Proteostasis in the cytosol is governed by the heat shock response. The master regulator of the heat shock response, heat shock factor 1 (HSF1), and key chaperones whose levels are HSF1-regulated have emerged as high-profile targets for therapeutic applications ranging from protein misfolding-related disorders to cancer. Nonetheless, a generally applicable methodology to selectively and potently inhibit endogenous HSF1 in a small molecule-dependent manner in disease model systems remains elusive. Also problematic, the administration of even highly selective chaperone inhibitors often has the side effect of activating HSF1 and thereby inducing a compensatory heat shock response. Herein, we report a ligand-regulatable, dominant negative version of HSF1 that addresses these issues. Our approach, which required engineering a new dominant negative HSF1 variant, permits dosable inhibition of endogenous HSF1 with a selective small molecule in cell-based model systems of interest. The methodology allows us to uncouple the pleiotropic effects of chaperone inhibitors and environmental toxins from the concomitantly induced compensatory heat shock response. Integration of our method with techniques to activate HSF1 enables the creation of cell lines in which the cytosolic proteostasis network can be up- or down-regulated by orthogonal small molecules. Selective, small molecule-mediated inhibition of HSF1 has distinctive implications for the proteostasis of both chaperone-dependent globular proteins and aggregation-prone intrinsically disordered proteins. Altogether, this work provides critical methods for continued exploration of the biological roles of HSF1 and the therapeutic potential of heat shock response modulation.

  1. Overexpression of the HspL Promotes Agrobacterium tumefaciens Virulence in Arabidopsis Under Heat Shock Conditions.

    PubMed

    Hwang, Hau-Hsuan; Liu, Yin-Tzu; Huang, Si-Chi; Tung, Chin-Yi; Huang, Fan-Chen; Tsai, Yun-Long; Cheng, Tun-Fang; Lai, Erh-Min

    2015-02-01

    Agrobacterium tumefaciens transfers a specific DNA fragment from the resident tumor-inducing (Ti) plasmid and effector virulence (Vir) proteins to plant cells during infection. A. tumefaciens VirB1-11 and VirD4 proteins assemble as the type IV secretion system (T4SS), which mediates transfer of the T-DNA and effector Vir protein into plant cells, thus resulting in crown gall disease in plants. Previous studies revealed that an α-crystallin-type, small heat-shock protein (HspL) is a more effective VirB8 chaperone than three other small heat-shock proteins (HspC, HspAT1, and HspAT2). Additionally, HspL contributes to efficient T4SS-mediated DNA transfer and tumorigenesis under room-temperature growth. In this study, we aimed to characterize the impact of HspL on Agrobacterium-mediated transformation efficiency under heat-shock treatment. During heat shock, transient transformation efficiency and VirB8 protein accumulation were lower in the hspL deletion mutant than in the wild type. Overexpression of HspL in A. tumefaciens enhanced the transient transformation efficiency in root explants of both susceptible and recalcitrant Arabidopsis ecotypes. In addition, the reduced transient transformation efficiency during heat stress was recovered by overexpression of HspL in A. tumefaciens. HspL may help maintain VirB8 homeostasis and elevate Agrobacterium-mediated transformation efficiency under both heat-shock and nonheat-shock growth.

  2. Heat shock decreases the embryonic quality of frozen-thawed bovine blastocysts produced in vitro.

    PubMed

    Mori, Miyuki; Hayashi, Takeshi; Isozaki, Yoshihiro; Takenouchi, Naoki; Sakatani, Miki

    2015-01-01

    In this study, the effect of heat shock on frozen-thawed blastocysts was evaluated using in vitro-produced (IVP) bovine embryos. In experiment 1, the effects of 6 h of heat shock at 41.0 C on fresh blastocysts were evaluated. HSPA1A expression as a reflection of stress was increased by heat shock (P < 0.05), but the expressions of the quality markers IFNT and POU5F1 were not affected. In experiment 2, frozen-thawed blastocysts were incubated at 38.5 C for 6 h (cryo-con) or exposed to heat shock at 41.0 C for 6 h (cryo-HS). Then, blastocysts were cultured at 38.5 C until 48 h after thawing (both conditions). Cryo-HS blastocysts exhibited a decreased recovery rate: HSPA1A expression was dramatically increased compared with that in fresh or cryo-con blastocysts at 6 h, and IFNT expression was decreased compared with that in cryo-con blastocysts at 6 h (both P < 0.05). Cryo-con blastocysts at 6 h also exhibited higher HSPA1A expression than fresh blastocysts (P < 0.05). At 48 h after thawing, the number of hatched blastocysts and blastocyst diameter were lower in cryo-HS blastocysts (P < 0.05). Cryo-con blastocysts showed lower POU5F1 levels at 48 h than fresh, cryo-con or cryo-HS blastocysts at 6 h (P < 0.05), but their POU5F1 levels were not different from those of cryo-HS blastocysts at 48 h. These results indicated that application of heat shock to frozen-thawed blastocysts was highly damaging. The increase in damage by the interaction of freezing-thawing and heat shock might be one reason for the low conception rate in frozen-thawed embryo transfer in summer.

  3. Small heat shock proteins in redox metabolism: implications for cardiovascular diseases.

    PubMed

    Christians, Elisabeth S; Ishiwata, Takahiro; Benjamin, Ivor J

    2012-10-01

    A timely review series on small heat shock proteins has to appropriately examine their fundamental properties and implications in the cardiovascular system since several members of this chaperone family exhibit robust expression in the myocardium and blood vessels. Due to energetic and metabolic demands, the cardiovascular system maintains a high mitochondrial activity but irreversible oxidative damage might ensue from increased production of reactive oxygen species. How equilibrium between their production and scavenging is achieved becomes paramount for physiological maintenance. For example, heat shock protein B1 (HSPB1) is implicated in maintaining this equilibrium or redox homeostasis by upholding the level of glutathione, a major redox mediator. Studies of gain or loss of function achieved by genetic manipulations have been highly informative for understanding the roles of those proteins. For example, genetic deficiency of several small heat shock proteins such as HSPB5 and HSPB2 is well-tolerated in heart cells whereas a single missense mutation causes human pathology. Such evidence highlights both the profound genetic redundancy observed among the multigene family of small heat shock proteins while underscoring the role proteotoxicity plays in driving disease pathogenesis. We will discuss the available data on small heat shock proteins in the cardiovascular system, redox metabolism and human diseases. From the medical perspective, we envision that such emerging knowledge of the multiple roles small heat shock proteins exert in the cardiovascular system will undoubtedly open new avenues for their identification and possible therapeutic targeting in humans. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The dynamic state of heat shock proteins in chicken embryo fibroblasts

    PubMed Central

    1986-01-01

    Subcellular fractionation and immunofluorescence microscopy have been used to study the intracellular distributions of the major heat shock proteins, hsp 89, hsp 70, and hsp 24, in chicken embryo fibroblasts stressed by heat shock, allowed to recover and then restressed. Hsp 89 was localized primarily to the cytoplasm except during the restress when a portion of this protein concentrated in the nuclear region. Under all conditions, hsp 89 was readily extracted from cells by detergent. During stress and restress, significant amounts of hsp 70 moved to the nucleus and became resistant to detergent extraction. Some of this hsp 70 was released from the insoluble form in an ATP-dependent reaction. Hsp 24 was confined to the cytoplasm and, during restress, aggregated to detergent-insoluble perinuclear phase-dense granules. These granules dissociated during recovery and hsp 24 could be solubilized by detergent. The nuclear hsps reappeared in the cytoplasm in cells allowed to recover at normal temperatures. Sodium arsenite also induces hsps and their distributions were similar to that observed after a heat shock, except for hsp 89, which remained cytoplasmic. We also examined by immunofluorescence the cytoskeletal systems of chicken embryo fibroblasts subjected to heat shock and found no gross morphological changes in cytoplasmic microfilaments or microtubules. However, the intermediate filament network was very sensitive and collapsed around the nucleus very shortly after a heat shock. The normal intermediate filament morphology reformed when cells were allowed to recover from the stress. Inclusion of actinomycin D during the heat shock--a condition that prevents synthesis of the hsps--did not affect the intermediate filament collapse, but recovery of the normal morphology did not occur. We suggest that an hsp(s) may aid in the formation of the intermediate filament network after stress. PMID:3533955

  5. Heat shock decreases the embryonic quality of frozen-thawed bovine blastocysts produced in vitro

    PubMed Central

    MORI, Miyuki; HAYASHI, Takeshi; ISOZAKI, Yoshihiro; TAKENOUCHI, Naoki; SAKATANI, Miki

    2015-01-01

    In this study, the effect of heat shock on frozen-thawed blastocysts was evaluated using in vitro-produced (IVP) bovine embryos. In experiment 1, the effects of 6 h of heat shock at 41.0 C on fresh blastocysts were evaluated. HSPA1A expression as a reflection of stress was increased by heat shock (P < 0.05), but the expressions of the quality markers IFNT and POU5F1 were not affected. In experiment 2, frozen-thawed blastocysts were incubated at 38.5 C for 6 h (cryo-con) or exposed to heat shock at 41.0 C for 6 h (cryo-HS). Then, blastocysts were cultured at 38.5 C until 48 h after thawing (both conditions). Cryo-HS blastocysts exhibited a decreased recovery rate: HSPA1A expression was dramatically increased compared with that in fresh or cryo-con blastocysts at 6 h, and IFNT expression was decreased compared with that in cryo-con blastocysts at 6 h (both P < 0.05). Cryo-con blastocysts at 6 h also exhibited higher HSPA1A expression than fresh blastocysts (P < 0.05). At 48 h after thawing, the number of hatched blastocysts and blastocyst diameter were lower in cryo-HS blastocysts (P < 0.05). Cryo-con blastocysts showed lower POU5F1 levels at 48 h than fresh, cryo-con or cryo-HS blastocysts at 6 h (P < 0.05), but their POU5F1 levels were not different from those of cryo-HS blastocysts at 48 h. These results indicated that application of heat shock to frozen-thawed blastocysts was highly damaging. The increase in damage by the interaction of freezing-thawing and heat shock might be one reason for the low conception rate in frozen-thawed embryo transfer in summer. PMID:26096768

  6. Clinical, Prognostic and Therapeutic Significance of Heat Shock Proteins in Cancer.

    PubMed

    Saini, Jasleen; Sharma, Pushpender K

    2017-08-23

    Heat shock proteins (HSPs) constitute a group of proteins that play crucial role in process of proteins folding. HSPs are also known to modulate number of key apoptotic factors. High expression of these proteins is reported in array of cancers, such as breast, prostate, colorectal, lung, ovarian, gastric, oral and esophageal cancer. Ample amount of investigations carried out on variety of cancers suggests HSPs as a promising hallmark in cancers. Their expression profile in several tumors elucidates that they help in proliferation, invasion, metastasis and death of cancerous cells. Detection of the levels of heat shock proteins and their specific antibodies in the sera of diseased individuals can play an important role in cancer diagnosis. This review will present and summarize latest research being carried out on heat shock proteins. It will also highlight the clinical and prognostic features of HSP27, HSP60, HSP70, HSP90 and HSP110, and will further shed light into future implications of these HSPs in diagnosis and prognosis of cancer. Furthermore, role of heat shock proteins as a therapeutic target in cancer will be discussed. In addition, the review article will further shed light into different studies, where HSPs have been targeted for its therapeutic potential. In summary, multiple experimental investigations have successful in suggesting the role of heat shock protein as a clinical biomarker and therapeutic target in cancer. HSPs are associated with number of cancer hallmarks such as cell proliferation, invasion, and metastasis. Inhibition of HSPs has resulted in successful therapeutic outcome in cancer. It has served as a novel anti-cancer therapy for the treatment of several cancer forms. However, more experimental studies are required to elucidate the reliability and efficacy of heat shock proteins in combination with other conventional markers for cancer diagnosis and prognosis. Novel and effective interventions through HSP inhibition are expected to

  7. Golgi fragmentation induced by heat shock or inhibition of heat shock proteins is mediated by non-muscle myosin IIA via its interaction with glycosyltransferases.

    PubMed

    Petrosyan, Armen; Cheng, Pi-Wan

    2014-03-01

    The Golgi apparatus is a highly dynamic organelle which frequently undergoes morphological changes in certain normal physiological processes or in response to stress. The mechanisms are largely not known. We have found that heat shock of Panc1 cells expressing core 2 N-acetylglucosaminyltransferase-M (Panc1-C2GnT-M) induces Golgi disorganization by increasing non-muscle myosin IIA (NMIIA)-C2GnT-M complexes and polyubiquitination and proteasomal degradation of C2GnT-M. These effects are prevented by inhibition or knockdown of NMIIA. Also, the speed of Golgi fragmentation induced by heat shock is found to be positively correlated with the levels of C2GnT-M in the Golgi. The results are reproduced in LNCaP cells expressing high levels of two endogenous glycosyltransferases-core 2 N-acetylglucosaminyltransferase-L:1 and β-galactoside:α2-3 sialyltransferase 1. Further, during recovery after heat shock, Golgi reassembly as monitored by a Golgi matrix protein giantin precedes the return of C2GnT-M to the Golgi. The results are consistent with the roles of giantin as a building block of the Golgi architecture and a docking site for transport vesicles carrying glycosyltransferases. In addition, inhibition/depletion of HSP70 or HSP90 in Panc1-C2GnT-M cells also causes an increase of NMIIA-C2GnT-M complexes and NMIIA-mediated Golgi fragmentation but results in accumulation or degradation of C2GnT-M, respectively. These results can be explained by the known functions of these two HSP: participation of HSP90 in protein folding and HSP70 in protein folding and degradation. We conclude that NMIIA is the master regulator of Golgi fragmentation induced by heat shock or inhibition/depletion of HSP70/90.

  8. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice.

    PubMed

    Ohno, Y; Egawa, T; Yokoyama, S; Nakai, A; Sugiura, T; Ohira, Y; Yoshioka, T; Goto, K

    2015-12-01

    Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  9. Heat shock proteins as key biological targets of the marine natural cyclopeptide perthamide C.

    PubMed

    Margarucci, Luigi; Monti, Maria Chiara; Mencarelli, Andrea; Cassiano, Chiara; Fiorucci, Stefano; Riccio, Raffaele; Zampella, Angela; Casapullo, Agostino

    2012-04-01

    Linking bioactive compounds to their cellular targets is a central challenge in chemical biology. Herein we report the mode of action of perthamide C, a natural cyclopeptide isolated from the marine sponge Theonella swinhoei. Through an emerging mass spectrometry-based chemical proteomics approach, Heat Shock Protein 90 and Glucose Regulated Protein 94 were identified as key targets of perthamide C and this evidence has been validated using surface plasmon resonance. The ability of perthamide C to influence heat shock protein-mediated cell apoptosis revealed that this marine metabolite could be a good candidate for the development of a lead compound with therapeutic applications based on apoptosis modulation.

  10. Heat shock protein 72 (Hsp72) improves long term recovery after focal cerebral ischemia in mice.

    PubMed

    Xu, Lijun; Xiong, Xiaoxing; Ouyang, Yibing; Barreto, George; Giffard, Rona

    2011-01-25

    Many brain protective strategies have been tested over short survival intervals, but few have been examined for long term benefit. The inducible member of the Heat shock protein 70 (Hsp70) family, Heat shock protein 72 (Hsp72), has been widely found to reduce ischemic injury. Here we assessed outcome in Hsp72 transgenic overexpressing mice and wild type littermates for one month following transient focal ischemia. Hsp72 reduced infarct area lost and improved behavioral outcome on rotarod and foot fault at one month. Thus protection by Hsp72 overexpression is long lasting, and includes improved recovery of motor function over one month.

  11. Significance of shock and body slip conditions on Jovian entry heating

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Szema, K. Y.

    1979-01-01

    The influence of the body and shock slip conditions on the heating of a Jovian entry body is investigated. The flow in the shock layer is considered to be axisymmetric, steady, laminar, viscous, and in chemical equilibrium. Realistic thermophysical and step-function spectral models are employed and results are obtained by implicit finite-difference and iteractive procedures. The freestream conditions correspond to a typical Jovian entry trajectory point. The results indicate that the effect of the slip conditions is significant when the altitudes are higher than 225 km and that the contribution of a radiative heat-flux term in the energy equation should not be neglected at any altitude.

  12. Heat shock factor 1 binds to and transcribes satellite II and III sequences at several pericentromeric regions in heat-shocked cells

    SciTech Connect

    Eymery, Angeline; Souchier, Catherine; Vourc'h, Claire; Jolly, Caroline

    2010-07-01

    Cells respond to stress by activating the synthesis of heat shock proteins (HSPs) which protect the cells against the deleterious effects of stress. This mechanism is controlled by the heat shock factor 1 (HSF1). In parallel to HSP gene transcription, in human cells, HSF1 also binds to and transcribes satellite III repeated sequences present in numerous copies in the 9q12 pericentromeric region of chromosome 9. These HSF1 accumulation sites are termed nuclear stress bodies (nSBs). In tumor cells, however, the number of nSBs is higher than the number of 9q12 copies, suggesting the existence of other HSF1 targets. In this paper, we were interested in characterizing these other HSF1 binding sites. We show that HSF1 indeed binds to the pericentromeric region of 14 chromosomes, thereby directing the formation of 'secondary nSBs'. The appearance of secondary nSBs depends on the number of satellite sequences present in the target locus, and on the cellular amount of HSF1 protein. Moreover, secondary nSBs also correspond to transcription sites, thus demonstrating that heat shock induces a genome-wide transcription of satellite sequences. Finally, by analyzing published transcriptomic data, we show that the derepression of these large heterochromatic blocks does not significantly affect the transcription of neighboring genes.

  13. Digital-analog hybrid control model for eukaryotic heat shock response illustrating the dynamics of heat shock protein 70 on exposure to thermal stress.

    PubMed

    Dwivedi, Anjana; Karan, Bhuwan Mohan; Das, Barda Nand; Sinha, Rakesh Kumar

    2008-04-01

    We are introducing in this paper a digital-analog hybrid model approach for the study of a complete gene regulatory network; the heat shock response (HSR) network of eukaryotes. HSR is a crucial and widely studied cellular phenomenon occurring due to various stresses on the cell, and is characterised by the induction of heat shock genes resulting in the production of heat shock proteins (HSPs) which restores cellular homeostasis by maintaining protein integrity. We are proposing a model which incorporates simple digital and analog components which mimic the functioning of biological molecules involved in HSR and model their dynamics and behaviour. The simulation result of the circuit for the production of HSP70 has been found to be consistent with published experimental results. The qualitative behaviour of the HSR is expressed through a truth table. Through this novel approach, the authors have tried to develop a level of understanding of the interactions of the parts of the HSR system and of this system as a whole.

  14. Expression of Heat Shock and Other Stress Response Proteins in Ticks and Cultured Tick Cells in Response to Anaplasma spp. Infection and Heat Shock

    PubMed Central

    Villar, Margarita; Ayllón, Nieves; Busby, Ann T.; Galindo, Ruth C.; Blouin, Edmour F.; Kocan, Katherine M.; Bonzón-Kulichenko, Elena; Zivkovic, Zorica; Almazán, Consuelo; Torina, Alessandra; Vázquez, Jesús; de la Fuente, José

    2010-01-01

    Ticks are ectoparasites of animals and humans that serve as vectors of Anaplasma and other pathogens that affect humans and animals worldwide. Ticks and the pathogens that they transmit have coevolved molecular interactions involving genetic traits of both the tick and the pathogen that mediate their development and survival. In this paper, the expression of heat shock proteins (HSPs) and other stress response proteins (SRPs) was characterized in ticks and cultured tick cells by proteomics and transcriptomics analyses in response to Anaplasma spp. infection and heat shock. The results of these studies demonstrated that the stress response was activated in ticks and cultured tick cells after Anaplasma spp. infection and heat shock. However, in the natural vector-pathogen relationship, HSPs and other SRPs were not strongly activated, which likely resulted from tick-pathogen coevolution. These results also demonstrated pathogen- and tick-specific differences in the expression of HSPs and other SRPs in ticks and cultured tick cells infected with Anaplasma spp. and suggested the existence of post-transcriptional mechanisms induced by Anaplasma spp. to control tick response to infection. These results illustrated the complexity of the stress response in ticks and suggested a function for the HSPs and other SRPs during Anaplasma spp. infection. PMID:22084679

  15. Nitric oxide induces heat-shock protein 70 expression in vascular smooth muscle cells via activation of heat shock factor 1.

    PubMed Central

    Xu, Q; Hu, Y; Kleindienst, R; Wick, G

    1997-01-01

    Current data suggest that nitric oxide (NO) is a double-edged sword that could result in relaxation and/or cytotoxicity of vascular smooth muscle cells (SMCs) via cGMP- dependent or -independent signal pathways. Stress or heat shock proteins (hsps) have been shown to be augmented in arterial SMCs during acute hypertension and atherosclerosis, both conditions that are believed to correlate with disturbed NO production. In the present study, we demonstrate that NO generated from sodium nitroprusside (SNP), S-nitroso-N-acetylpenicillamine, and spermine/nitric oxide complex leads to hsp70 induction in cultured SMCs. Western blot analysis demonstrated that hsp70 protein expression peaked between 6 and 12 h after treatment with SNP, and elevated protein levels were preceded by induction of hsp70 mRNA within 3 h. Induction of hsp70 mRNA was associated with the activation of heat shock transcription factor 1 (HSF1), suggesting that the response was regulated at the transcriptional level. HSF1 activation was completely blocked by hemoglobin, dithiothreitol, and cycloheximide, suggesting that the protein damage and nascent polypeptide formation induced by NO may initiate this activation. Furthermore, SMCs pretreated with heat shock (42 degrees C) for 30 min were significantly protected from death induced by NO. Thus, we provide evidence that NO induces hsp70 expression in SMCs via HSF1 activation. Induction of hsp70 could be important in protecting SMCs from injury resulting from NO stimulation. PMID:9276725

  16. Bortezomib-induced heat shock response protects multiple myeloma cells and is activated by heat shock factor 1 serine 326 phosphorylation

    PubMed Central

    Shah, Shardule P.; Nooka, Ajay K.; Jaye, David L.; Bahlis, Nizar J.; Lonial, Sagar; Boise, Lawrence H.

    2016-01-01

    Proteasome inhibitors such as bortezomib are highly active in multiple myeloma by affecting signaling cascades and leading to a toxic buildup of misfolded proteins. Bortezomib-treated cells activate the cytoprotective heat shock response (HSR), including upregulation of heat shock proteins (HSPs). Here we inhibited the bortezomib-induced HSR by silencing its master regulator, Heat Shock Factor 1 (HSF1). HSF1 silencing led to bortezomib sensitization. In contrast, silencing of individual and combination HSPs, except HSP40β, did not result in significant bortezomib sensitization. However, HSP40β did not entirely account for increased bortezomib sensitivity upon HSF1 silencing. To determine the mechanism of HSF1 activation, we assessed phosphorylation and observed bortezomib-inducible phosphorylation in cell lines and patient samples. We determined that this bortezomib-inducible event is phosphorylation at serine 326. Prior clinical use of HSP inhibitors in combination with bortezomib has been disappointing in multiple myeloma therapy. Our results provide a rationale for targeting HSF1 activation in combination with bortezomib to enhance multiple myeloma treatment efficacy. PMID:27487129

  17. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L.).

    PubMed

    Ding, Xiaotao; Jiang, Yuping; Hao, Ting; Jin, Haijun; Zhang, Hongmei; He, Lizhong; Zhou, Qiang; Huang, Danfeng; Hui, Dafeng; Yu, Jizhu

    2016-01-01

    Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease.

  18. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L.)

    PubMed Central

    Hao, Ting; Jin, Haijun; Zhang, Hongmei; He, Lizhong; Zhou, Qiang; Huang, Danfeng; Hui, Dafeng; Yu, Jizhu

    2016-01-01

    Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease. PMID:27065102

  19. Heat shock induces apoptosis through reactive oxygen species involving mitochondrial and death receptor pathways in corneal cells.

    PubMed

    Hsu, Ya-Ling; Yu, Hsin-Su; Lin, Hsien-Chung; Wu, Kwou-Yeung; Yang, Rei-Cheng; Kuo, Po-Lin

    2011-10-01

    Although many studies have been performed to elucidate the molecular consequences of ultraviolet irradiation, little is known about the effect of infrared radiation on ocular disease. In addition to photons, heat is generated as a consequence of infrared irradiation, and heat shock is widely considered to be an environmental stressor. Here, we are the first to investigate the biological effect of heat shock on Statens Seruminstitut Rabbit Cornea (SIRC) cells. Our results indicate that heat shock exhibits effective cell proliferation inhibition by inducing apoptosis. Heat shock triggers the mitochondrial apoptotic pathway indicated by a change in Bax/Bcl-2 ratios, resulting in caspase-9 activity. In addition, heat shock triggered the death receptor apoptotic pathway indicated by a change in Fas ligand expression, resulting in caspase-8 activity. Furthermore, we also found that generation of reactive oxygen species (ROS) is a critical mediator in heat shock-induced apoptosis. In addition, the antioxidant vitamin C significantly decreased heat shock-mediated apoptosis. Taken together, these findings suggest a critical role for ROS involving mitochondrial and death receptor pathways in heat shock-mediated apoptosis of cornea cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Heat flux and shock shape measurements on an Aeroassist Flight Experiment model in a high enthalpy free piston shock tunnel

    NASA Technical Reports Server (NTRS)

    Gai, S. L.; Mudford, N. R.; Hackett, C.

    1992-01-01

    This paper describes measurements of heat flux and shock shapes made on a 2.08 percent scale model of the proposed Aeroassist Flight Experiment model in a high enthalpy free piston shock tunnel T3 at the Australian National University in Canberra, Australia. The enthalpy and Reynolds number range covered were 7.5 MJ/kg to 20 MJ/kg and 150,000 to 270,000 per meter respectively. The test Mach number varied between 7.5 and 8. Two test gases, air and nitrogen, were used and the model angle of attack varied from -10 deg to +10 deg to the free stream. The results are discussed and compared to the Mach 10 cold hypersonic air data as obtained in the Langley 31 inch Mach 10 Facility as well as the perfect gas CFD calculations of NASA LaRC.

  1. Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    SciTech Connect

    Wang, Feng-Wei; Wu, Xian-Rui; Liu, Wen-Ju; Liao, Yi-Ji; Lin, Sheng; Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin; Mai, Shi-Juan; Xie, Dan

    2011-12-20

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  2. Heat shock proteins: in vivo heat treatments reveal adipose tissue depot-specific effects.

    PubMed

    Rogers, Robert S; Beaudoin, Marie-Soleil; Wheatley, Joshua L; Wright, David C; Geiger, Paige C

    2015-01-01

    Heat treatments (HT) and the induction of heat shock proteins (HSPs) improve whole body and skeletal muscle insulin sensitivity while decreasing white adipose tissue (WAT) mass. However, HSPs in WAT have been understudied. The purpose of the present study was to examine patterns of HSP expression in WAT depots, and to examine the effects of a single in vivo HT on WAT metabolism. Male Wistar rats received HT (41°C, 20 min) or sham treatment (37°C), and 24 h later subcutaneous, epididymal, and retroperitoneal WAT depots (SCAT, eWAT, and rpWAT, respectively) were removed for ex vivo experiments and Western blotting. SCAT, eWAT, and rpWAT from a subset of rats were also cultured separately and received a single in vitro HT or sham treatment. HSP72 and HSP25 expression was greatest in more metabolically active WAT depots (i.e., eWAT and rpWAT) compared with the SCAT. Following HT, HSP72 increased in all depots with the greatest induction occurring in the SCAT. In addition, HSP25 increased in the rpWAT and eWAT, while HSP60 increased in the rpWAT only in vivo. Free fatty acid (FFA) release from WAT explants was increased following HT in the rpWAT only, and fatty acid reesterification was decreased in the rpWAT but increased in the SCAT following HT. HT increased insulin responsiveness in eWAT, but not in SCAT or rpWAT. Differences in HSP expression and induction patterns following HT further support the growing body of literature differentiating distinct WAT depots in health and disease.

  3. Shock

    MedlinePlus

    ... you think a person is in shock: Call 911 for immediate medical help. Check the person's airway, ... help. When to Contact a Medical Professional Call 911 any time a person has symptoms of shock. ...

  4. Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential.

    PubMed

    Czarnecka-Verner, E; Yuan, C X; Scharf, K D; Englich, G; Gurley, W B

    2000-07-01

    Based on phylogeny of DNA-binding domains and the organization of hydrophobic repeats, two families of heat shock transcription factors (HSFs) exist in plants. Class A HSFs are involved in the activation of the heat shock response, but the role of class B HSFs is not clear. When transcriptional activities of full-length HSFs were monitored in tobacco protoplasts, no class B HSFs from soybean or Arabidopsis showed activity under control or heat stress conditions. Additional assays confirmed the finding that the class B HSFs lacked the capacity to activate transcription. Fusion of a heterologous activation domain from human HSF1 (AD2) to the C-terminus of GmHSFB1-34 gave no evidence of synergistic enhancement of AD2 activity, which would be expected if weak activation domains were present. Furthermore, activity of AtHSFB1-4 (class B) was not rescued by coexpression with AtHSFA4-21 (class A) indicating that the class A HSF was not able to provide a missing function required for class B activity. The transcriptional activation potential of Arabidopsis AtHSFA4-21 was mapped primarily to a 39 amino acid fragment in the C-terminus enriched in bulky hydrophobic and acidic residues. Deletion mutagenesis of the C-terminal activator regions of tomato and Arabidopsis HSFs indicated that these plant HSFs lack heat-inducible regulatory regions analogous to those of mammalian HSF1. These findings suggest that heat shock regulation in plants may differ from metazoans by partitioning negative and positive functional domains onto separate HSF proteins. Class A HSFs are primarily responsible for stress-inducible activation of heat shock genes whereas some of the inert class B HSFs may be specialized for repression, or down-regulation, of the heat shock response.

  5. Increased immunogenicity is an integral part of the heat shock response following renal ischemia.

    PubMed

    Bidmon, Bettina; Kratochwill, Klaus; Rusai, Krisztina; Kuster, Lilian; Herzog, Rebecca; Eickelberg, Oliver; Aufricht, Christoph

    2012-05-01

    Renal ischemia increases tubular immunogenicity predisposing to increased risk of kidney allograft rejection. Ischemia-reperfusion not only disrupts cellular homeostasis but also induces the cytoprotective heat shock response that also plays a major role in cellular immune and defense processes. This study therefore tested the hypothesis that upregulation of renal tubular immunogenicity is an integral part of the heat shock response after renal ischemia. Expressions of 70 kDa heat shock protein (Hsp70), major histocompatibility complex (MHC) class II, and intercellular adhesion molecule-1 (ICAM-1) were assessed in normal rat kidney (NRK) cells following ATP depletion (antimycin A for 3 h) and heat (42°C for 24 h). In vitro, transient Hsp70 transfection and heat shock factor-1 (HSF-1) transcription factor decoy treatment were performed. In vivo, ischemic renal cortex was investigated in Sprague-Dawley rats following unilateral renal artery clamping for 45 min and 24 h recovery. Upregulation of Hsp70 was closely and significantly correlated with upregulation of MHC class II and/or ICAM-1 following ATP depletion and heat injury. Bioinformatics analysis searching the TRANSFAC database predicted HSF-1 binding sites in these genes. HSF-1 decoy significantly reduced the expression of immunogenicity markers in stressed NRK cells. In the in vivo rat model of renal ischemia, concordant upregulation of MHC class II molecules and Hsp70 suggests biological relevance of this link. The results demonstrate that upregulation of renal tubular immunogenicity is an integral part of the heat shock response after renal ischemia. Bioinformatic analysis predicted a molecular link to tubular immunogenicity at the level of the transcription factor HSF-1 that was experimentally verified by HSF-1 decoy treatment. Future studies in HSF-1 knockout mice are needed.

  6. Recombinant HSP70 and mild heat shock stimulate growth of aged mesenchymal stem cells.

    PubMed

    Andreeva, N V; Zatsepina, O G; Garbuz, D G; Evgen'ev, M B; Belyavsky, A V

    2016-07-01

    Heat shock proteins including the major stress protein HSP70 support intracellular homeostasis and prevent protein damage after a temperature increase and other stressful environmental stimuli, as well as during aging. We have shown earlier that prolonged administration of recombinant human HSP70 to mice exhibiting Alzheimer's-like neurodegeneration as well as during sepsis reduces the clinical manifestations of these pathologies. Herein, we studied the action of recombinant human HSP70 on young and aged mouse mesenchymal stem cells (MSCs) in culture. The results obtained indicate that HSP70 at concentrations of 2 μg/ml and higher significantly stimulates growth of aged but not young MSCs. A similar effect is produced by application of a mild heat shock (42 °C 5 min) to the cells. Importantly, responses of young and aged MSCs to heat shock treatment of various durations differed drastically, and aged MSCs were significantly more sensitive to higher heat stress exposures than the young cells. Western blotting and protein labeling experiments demonstrated that neither mild heat shock nor exogenous HSP70 administration resulted in significant endogenous HSP70 induction in young and aged MSCs, whereas mild heat shock increased HSC70 levels in aged MSCs. The results of this study suggest that the administration of exogenous HSP70 and the application of mild heat stress may produce a certain "rejuvenating" effect on MSCs and possibly other cell types in vivo, and these interventions may potentially be used for life extension by delaying various manifestations of aging at the molecular and cellular level.

  7. Absolute protein quantification of the yeast chaperome under conditions of heat shock.

    PubMed

    Mackenzie, Rebecca J; Lawless, Craig; Holman, Stephen W; Lanthaler, Karin; Beynon, Robert J; Grant, Chris M; Hubbard, Simon J; Eyers, Claire E

    2016-08-01

    Chaperones are fundamental to regulating the heat shock response, mediating protein recovery from thermal-induced misfolding and aggregation. Using the QconCAT strategy and selected reaction monitoring (SRM) for absolute protein quantification, we have determined copy per cell values for 49 key chaperones in Saccharomyces cerevisiae under conditions of normal growth and heat shock. This work extends a previous chemostat quantification study by including up to five Q-peptides per protein to improve confidence in protein quantification. In contrast to the global proteome profile of S. cerevisiae in response to heat shock, which remains largely unchanged as determined by label-free quantification, many of the chaperones are upregulated with an average two-fold increase in protein abundance. Interestingly, eight of the significantly upregulated chaperones are direct gene targets of heat shock transcription factor-1. By performing absolute quantification of chaperones under heat stress for the first time, we were able to evaluate the individual protein-level response. Furthermore, this SRM data was used to calibrate label-free quantification values for the proteome in absolute terms, thus improving relative quantification between the two conditions. This study significantly enhances the largely transcriptomic data available in the field and illustrates a more nuanced response at the protein level. © 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Absolute protein quantification of the yeast chaperome under conditions of heat shock

    PubMed Central

    Mackenzie, Rebecca J.; Lawless, Craig; Holman, Stephen W.; Lanthaler, Karin; Beynon, Robert J.; Grant, Chris M.; Hubbard, Simon J.

    2016-01-01

    Chaperones are fundamental to regulating the heat shock response, mediating protein recovery from thermal‐induced misfolding and aggregation. Using the QconCAT strategy and selected reaction monitoring (SRM) for absolute protein quantification, we have determined copy per cell values for 49 key chaperones in Saccharomyces cerevisiae under conditions of normal growth and heat shock. This work extends a previous chemostat quantification study by including up to five Q‐peptides per protein to improve confidence in protein quantification. In contrast to the global proteome profile of S. cerevisiae in response to heat shock, which remains largely unchanged as determined by label‐free quantification, many of the chaperones are upregulated with an average two‐fold increase in protein abundance. Interestingly, eight of the significantly upregulated chaperones are direct gene targets of heat shock transcription factor‐1. By performing absolute quantification of chaperones under heat stress for the first time, we were able to evaluate the individual protein‐level response. Furthermore, this SRM data was used to calibrate label‐free quantification values for the proteome in absolute terms, thus improving relative quantification between the two conditions. This study significantly enhances the largely transcriptomic data available in the field and illustrates a more nuanced response at the protein level. PMID:27252046

  9. Test of a new heat-flow equation for dense-fluid shock waves.

    PubMed

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2010-09-21

    Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.

  10. Polyamine regulation of heat-shock-induced spermidine N1-acetyltransferase activity.

    PubMed Central

    Fuller, D J; Carper, S W; Clay, L; Chen, J R; Gerner, E W

    1990-01-01

    The enzyme spermidine/spermine N1-acetyltransferase (N1-SAT) is rapidly induced by heat shock in CHO and A549 cells, with activity declining by 24 h. Depletion of intracellular polyamines by alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase, blocks this induction. Re-addition of putrescine to these cultures restores the response to heat shock, with a concomitant increase in intracellular N1-acetylspermidine. Diaminopropane is more than twice as effective as the naturally occurring diamine putrescine, suggesting that the propylamine moiety of spermidine is involved in the regulation of N1-SAT induction. Inhibitor studies indicate transcriptional activation and that the enzyme has an apparent half-life of 30-60 min. A second heat shock rapidly inhibits induced N1-SAT activity, which decays with a half-life of 2-3 min. Despite its induction by heat, N1-SAT is not a stable enzyme, suggesting that the activity observed is not due to a modification of an existing peptide, but is due to a transcriptional event, which may justify the inclusion of this enzyme in the family of heat-shock proteins. Images Fig. 2. PMID:2111132

  11. Cytoskeletal stability and heat shock-mediated thermoprotection of central pattern generation in Locusta migratoria.

    PubMed

    Garlick, Kristopher M; Robertson, R Meldrum

    2007-06-01

    Prior exposure to extreme temperatures can induce thermoprotection in migratory locusts, which is important for survival in their natural environment. An important motor activity that needs to be protected is ventilation. The mechanism underlying heat shock is not fully understood, and our goal was to test the idea that cytoskeletal stability is critical for such thermoprotection. Cytoskeletal stabilizers (concanavalin A) and destabilizers (colchicine) were bath-applied in semi-intact locust preparations in both control (C) and pre-treated heat-shocked (3 h, 45 degrees C) animals. We measured parameters of the ventilatory motor pattern during maintained high temperature (43 degrees C) and recorded the times taken for motor pattern generation to fail and then recover on returning to room temperature. We found that concanavalin A mimicked the effects of a prior heat stress in control animals by increasing time to failure and decreasing time to recovery of motor pattern generation. However, colchicine destroyed protection in heat-shocked animals by decreasing time to failure and increasing time to recovery. Our findings confirm that the cytoskeleton has a mechanistic role in preserving neural function at high temperatures, possibly through stabilizing ion channels and other integral membrane proteins (e.g. Na(+)/K(+) ATPase) and their interactions with heat shock proteins.

  12. A minimal titration model of the mammalian dynamical heat shock response

    NASA Astrophysics Data System (ADS)

    Sivéry, Aude; Courtade, Emmanuel; Thommen, Quentin

    2016-12-01

    Environmental stress, such as oxidative or heat stress, induces the activation of the heat shock response (HSR) and leads to an increase in the heat shock proteins (HSPs) level. These HSPs act as molecular chaperones to maintain cellular proteostasis. Controlled by highly intricate regulatory mechanisms, having stress-induced activation and feedback regulations with multiple partners, the HSR is still incompletely understood. In this context, we propose a minimal molecular model for the gene regulatory network of the HSR that reproduces quantitatively different heat shock experiments both on heat shock factor 1 (HSF1) and HSPs activities. This model, which is based on chemical kinetics laws, is kept with a low dimensionality without altering the biological interpretation of the model dynamics. This simplistic model highlights the titration of HSF1 by chaperones as the guiding line of the network. Moreover, by a steady states analysis of the network, three different temperature stress regimes appear: normal, acute, and chronic, where normal stress corresponds to pseudo thermal adaption. The protein triage that governs the fate of damaged proteins or the different stress regimes are consequences of the titration mechanism. The simplicity of the present model is of interest in order to study detailed modelling of cross regulation between the HSR and other major genetic networks like the cell cycle or the circadian clock.

  13. Analytical and experimental studies of shock interference heating in hypersonic flows

    NASA Technical Reports Server (NTRS)

    Keyes, J. W.; Hains, F. D.

    1973-01-01

    An analytical and experimental study is presented of the aerodynamic heating resulting from six types of shock interference patterns encountered in high speed flow. Centerline measurements of pressure and heat transfer distributions on basic bodies were obtained in four wind tunnels for Mach numbers from 6 to 20, specific heat ratios from 1.27 to 1.67, and free stream Reynolds numbers from 3 million to 25.6 million per meter. Peak heating and peak pressures up to 17 and 7.5 times stagnation values, respectively, were measured. In general, results obtained from semiempirical methods developed for each of the six types of interference agreed with the experimental peaks.

  14. Differential heat shock tolerance and expression of heat-inducible proteins in two stored-product psocids.

    PubMed

    Guedes, R N C; Zhu, K Y; Opit, G P; Throne, J E

    2008-12-01

    The recent recognition of psocids as a major concern in stored products and also the reemergence of heat treatment as a control tactic of stored-product insects led to the present investigation. The objectives of this study were to determine whether there are differences in heat shock tolerance of two species of stored-product psocids--Lepinotus reticulatus Enderlein (Trogiidae) and Liposcelis entomophila (Enderlein) (Liposcelididae)--and to determine whether heat shock proteins (HSPs) underlay such tolerance. Time-response bioassays were therefore carried out at increasing temperatures for both psocids. The lethal time (LT)50 and LT95 estimates were correlated with the expression of heat shock proteins after exposure at the same range of temperatures for 30 min. The expression of HSP was determined through Western blot analyses using HSP 70 antibody. Liposcelis entomophila was more than two-fold more tolerant than L. reticulatus for nearly all of the range of temperatures (> or = 40.0 degrees C). Expression of HSP 70 was not observed for either of the psocid species, but the expression of two low-molecular-mass heat-inducible proteins (HIPs; 23 and 27 kDa) was observed in L. entomophila. The expression of these small proteins was induced by exposure to higher temperatures, and the trend was particularly strong for HIP 27. In contrast, no expression of small heat-inducible proteins was detected in L. reticulatus, reflecting its higher susceptibility to heat treatments. The relatively high heat tolerance of L. entomophila might help explain its more common occurrence in grain stored in warmer regions of the world.

  15. Genome-Wide Analysis of the Yeast Transcriptome Upon Heat and Cold Shock

    PubMed Central

    Becerra, M.; Lombardía, L. J.; González-Siso, M. I.; Rodríguez-Belmonte, E.; Hauser, N. C.

    2003-01-01

    DNA arrays were used to measure changes in transcript levels as yeast cells responded to temperature shocks. The number of genes upregulated by temperature shifts from 30 ℃ to 37℃ or 45℃ was correlated with the severity of the stress. Pre-adaptation of cells, by growth at 37 ℃ previous to the 45℃ shift, caused a decrease in the number of genes related to this response. Heat shock also caused downregulation of a set of genes related to metabolism, cell growth and division, transcription, ribosomal proteins, protein synthesis and destination. Probably all of these responses combine to slow down cell growth and division during heat shock, thus saving energy for cell rescue. The presence of putative binding sites for Xbp1p in the promoters of these genes suggests a hypothetical role for this transcriptional repressor, although other mechanisms may be considered. The response to cold shock (4℃) affected a small number of genes, but the vast majority of those genes induced by exposure to 4 ℃ were also induced during heat shock; these genes share in their promoters cis-regulatory elements previously related to other stress responses. PMID:18629074

  16. Labor reduction for mold preparation of a commercial titanium cast denture system using a heat-shock method.

    PubMed

    Harun-Urashid, Q M; Tamaki, Y; Zhang, Z; Ozawa, A; Miyazaki, T; Shimakura, M

    2000-12-01

    The purpose of this study was to investigate the application of a heat-shock method to fabricate titanium cast plates. Duplications of a maxillary model were prepared using DM under different firing schedules. Molds with patterns on the duplications were made by an outer investment (D), followed by heat shock at 850 degrees C. Duplications heat shocked at 850 degrees C after 30 min from mixing exploded within a few minutes. This explosion was successfully avoided by a drying procedure prior to the heat-shock. The molds were available for the heat shock at 850 degrees C when the duplicate models were prepared by firing either using the conventional method and the heat shock above method described. Therefore, we could reduce the preparation time from about 16 hr with the conventional method to about 10 hr at the longest with the heat-shock method. These results suggested that the heat-shock method was labor-saving for fabricating titanium cast denture plates when controlling preliminary conditions prior to use.

  17. HEAT SHOCK FACTOR 1-MEDIATED THERMOTOLERANCE PREVENTS CELL DEATH AND RESULTS IN G2/M CELL CYCLE ARREST

    EPA Science Inventory

    Mammalian cells respond to stress by activating heat shock transcription factors (e.g., HSF1) that regulate increased synthesis of heat shock proteins (HSPs). HSPs mediate protection from deleterious effects of stress by preventing permanent disruption of normal cellular mitosis...

  18. EFFECT OF EXPOSURE PROTOCOL AND HEAT SHOCK PROTEIN EXPRESSION ON ARSENITE INDUCED GENOTOXICITY IN MCF-7 BREAST CANCER CELLS

    EPA Science Inventory


    Effect of exposure protocol and heat shock protein expression on arsenite induced genotoxicity in MCF-7 breast cancer cells

    The genotoxic effects of arsenic (As) are well accepted, yet its mechanism of action is not clearly defined. Heat-shock proteins (HSPs) protect...

  19. HEAT SHOCK FACTOR 1-MEDIATED THERMOTOLERANCE PREVENTS CELL DEATH AND RESULTS IN G2/M CELL CYCLE ARREST

    EPA Science Inventory

    Mammalian cells respond to stress by activating heat shock transcription factors (e.g., HSF1) that regulate increased synthesis of heat shock proteins (HSPs). HSPs mediate protection from deleterious effects of stress by preventing permanent disruption of normal cellular mitosis...

  20. EFFECT OF EXPOSURE PROTOCOL AND HEAT SHOCK PROTEIN EXPRESSION ON ARSENITE INDUCED GENOTOXICITY IN MCF-7 BREAST CANCER CELLS

    EPA Science Inventory


    Effect of exposure protocol and heat shock protein expression on arsenite induced genotoxicity in MCF-7 breast cancer cells

    The genotoxic effects of arsenic (As) are well accepted, yet its mechanism of action is not clearly defined. Heat-shock proteins (HSPs) protect...

  1. Modulation of heat shock protein 90 affects TGF-β-induced collagen synthesis in human dermal fibroblast cells.

    PubMed

    Lee, Sae Bin; Lim, A-Ram; Rah, Dong Kyun; Kim, Kyung Soo; Min, Hyun Jin

    2016-12-01

    Heat shock protein 90 is a chaperone molecule that aids in proper folding of target proteins. Recently, heat shock protein 90 was found to play a role in would healing through regulation of fibroblast functions. The aim of the present study was to investigate the role of heat shock protein 90 in collagen synthesis in human dermal fibroblasts. The effects of transforming growth factor-β, 17-N-allylamino-17-demethoxygeldanamycin, and transfection of heat shock protein 90 were evaluated by real-time PCR, western blot, and immunofluorescence assays. The Smad 2/3 and Akt pathways were evaluated to identify the signaling pathways involved in collagen synthesis. Heat shock protein 90 and collagen levels were compared in keloid and control tissues by immunohistochemical analysis. The expression of collagen was significantly increased after treatment with transforming growth factor-β, while 17-N-allylamino-17-demethoxygeldanamycin inhibited transforming growth factor-β-induced collagen synthesis. Overexpression of heat shock protein 90 itself with or without transforming growth factor-β increased collagen synthesis. These effects were dependent on Smad 2/3 pathway signaling. Finally, expression of heat shock protein 90 was increased in keloid tissue compared with control tissues. Taken together, these results demonstrate that modulation of heat shock protein 90 influences transforming growth factor-β-induced collagen synthesis via regulation of Smad 2/3 phosphorylation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Asymmetric shock heating and the terrestrial magma ocean origin of the Moon.

    PubMed

    Karato, Shun-ichiro

    2014-01-01

    One of the difficulties of the current giant impact model for the origin of the Moon is to explain the marked similarity in the isotopic compositions and the substantial differences in the major element chemistry. Physics of shock heating is analyzed to show that the degree of heating is asymmetric between the impactor and the target, if the target (the proto-Earth) had a magma-ocean but the impactor did not. The magma ocean is heated much more than the solid impactor and the vapor-rich jets come mainly from the magma-ocean from which the Moon might have been formed. In this scenario, the similarity and differences in the composition between the Moon and Earth would be explained as a natural consequence of a collision in the later stage of planetary formation. Including the asymmetry in shock heating is the first step toward explaining the chemical composition of the Moon.

  3. Leishmania braziliensis panamensis: Increased Infectivity Resulting from Heat Shock

    DTIC Science & Technology

    1988-01-01

    Schlesinger, M. Ashburner, and A. Tissieres, perature, leishmania promastigotes un- Eds.), pp. 11-18. Cold Spring Harbor Laboratory, dergo a conversion to heat...induced differ- Cold Spring Harbor , NY. entiating forms. Macrophages may then en- DUNCAN, R., AND HERSHEY, J. W. B. 1984. Heat gulf the parasites...singer, M. Ashburner, and A. Tissieres, Eds.), pp. JACKSON. P. R.. PAPPAS. M. G.. AND HANSEN, b. D. 1-9. Cold Spring Harbor Laboratory, Cold Spring

  4. Shock heated dust in L1551: L(IR) greater than 20 solar luminosities

    NASA Technical Reports Server (NTRS)

    Clark, F. O.; Laureijs, R. J.; Chlewicki, G.; Zhang, C. Y.; Vanoosterom, W.; Kester, D.

    1987-01-01

    The infrared bolometric luminosity of the extended emission from the L1551 flow exceeds 20 solar luminosities. Ultraviolet radiation from the shock associated with the flow appears to heat the dust requiring shock temperatures from 10,000 to 90,000 K in L1551, velocities of approximately 50 km/s near the end of the flow, and a minimum mechanical luminosity of approximately 40 solar luminosities. The total energy requirement of the infrared emission over a 10,000 year lifetime is 10 to the 46th to 47th ergs, two orders of magnitude higher than previous estimates for L1551. Infrared radiation offers a method of probing interstellar shocks, by sampling the untraviolet halo surrounding the shock. At least one current model for bipolar flows is capable of meeting the energetic requirements.

  5. Numerical Study of Erosion, Heating, and Acceleration of the Magnetic Cloud as Impacted by Fast Shock

    NASA Astrophysics Data System (ADS)

    Mao, Shoudi; He, Jiansen; Zhang, Lei; Yang, Liping; Wang, Linghua

    2017-06-01

    The impact of an overtaking fast shock on a magnetic cloud (MC) is a pivotal process in CME-CME (CME: coronal mass ejection) interactions and CME-SIR (SIR: stream interaction region) interactions. MC with a strong and rotating magnetic field is usually deemed a crucial part of CMEs. To study the impact of a fast shock on an MC, we perform a 2.5 dimensional numerical magnetohydrodynamic simulation. Two cases are run in this study: without and with impact by fast shock. In the former case, the MC expands gradually from its initial state and drives a relatively slow magnetic reconnection with the ambient magnetic field. Analyses of forces near the core of the MC as a whole body indicates that the solar gravity is quite small compared to the Lorentz force and the pressure gradient force. In the second run, a fast shock propagates, relative to the background plasma, at a speed twice that of the perpendicular fast magnetosonic speed, catches up with and takes over the MC. Due to the penetration of the fast shock, the MC is highly compressed and heated, with the temperature growth rate enhanced by a factor of about 10 and the velocity increased to about half of the shock speed. The magnetic reconnection with ambient magnetic field is also sped up by a factor of two to four in reconnection rate as a result of the enhanced density of the current sheet, which is squeezed by the forward motion of the shocked MC.

  6. Translational control of small heat shock genes in mesophilic and thermophilic cyanobacteria by RNA thermometers.

    PubMed

    Cimdins, Annika; Klinkert, Birgit; Aschke-Sonnenborn, Ursula; Kaiser, Friederike M; Kortmann, Jens; Narberhaus, Franz

    2014-01-01

    Cyanobacteria constitute a heterogeneous phylum of oxygen-producing, photosynthetic prokaryotes. They are susceptible to various stress conditions like heat, salt, or light stress, all inducing the cyanobacterial heat shock response (HSR). Cyanobacterial small heat shock proteins (sHsps) are known to preserve thylakoid membrane integrity under stress conditions, thereby protecting the photosynthesis machinery. In Synechocystis sp PCC 6803, synthesis of the sHsp Hsp17 is regulated by an RNA thermometer (RNAT) in the 5'-untranslated region (5'-UTR) of the hsp17 mRNA. RNATs are direct temperature sensors that control expression of many bacterial heat shock and virulence genes. They hinder translation at low temperatures by base pairing, thus blocking ribosome access to the mRNA.   To explore the temperature range in which RNATs act, we studied various RNAT candidates upstream of sHsp genes from mesophilic and thermophilic cyanobacteria. The mesophilic cyanobacteria Anabaena variabilis and Nostoc sp chromosomally encode two sHsps each. Reporter gene studies suggested RNAT-mediated post-transcriptional regulation of shsp expression in both organisms. Detailed structural analysis of the two A. variabilis candidates revealed two novel RNAT types. The first, avashort, regulates translation primarily by masking of the AUG translational start codon. The second, featuring an extended initial hairpin, thus named avalong, presumably makes use of complex tertiary interaction. The 5'-UTR of the small heat shock gene hspA in the thermophile Thermosynechococcus elongatus is predicted to adopt an extended secondary structure. Structure probing revealed that the ribosome binding site was blocked at temperatures below 55 °C. The results of this study demonstrate that cyanobacteria commonly use RNATs to control expression of their small heat shock genes.

  7. Translational control of small heat shock genes in mesophilic and thermophilic cyanobacteria by RNA thermometers

    PubMed Central

    Cimdins, Annika; Klinkert, Birgit; Aschke-Sonnenborn, Ursula; Kaiser, Friederike M; Kortmann, Jens; Narberhaus, Franz

    2014-01-01

    Cyanobacteria constitute a heterogeneous phylum of oxygen-producing, photosynthetic prokaryotes. They are susceptible to various stress conditions like heat, salt, or light stress, all inducing the cyanobacterial heat shock response (HSR). Cyanobacterial small heat shock proteins (sHsps) are known to preserve thylakoid membrane integrity under stress conditions, thereby protecting the photosynthesis machinery. In Synechocystis sp PCC 6803, synthesis of the sHsp Hsp17 is regulated by an RNA thermometer (RNAT) in the 5′-untranslated region (5′-UTR) of the hsp17 mRNA. RNATs are direct temperature sensors that control expression of many bacterial heat shock and virulence genes. They hinder translation at low temperatures by base pairing, thus blocking ribosome access to the mRNA.   To explore the temperature range in which RNATs act, we studied various RNAT candidates upstream of sHsp genes from mesophilic and thermophilic cyanobacteria. The mesophilic cyanobacteria Anabaena variabilis and Nostoc sp chromosomally encode two sHsps each. Reporter gene studies suggested RNAT-mediated post-transcriptional regulation of shsp expression in both organisms. Detailed structural analysis of the two A. variabilis candidates revealed two novel RNAT types. The first, avashort, regulates translation primarily by masking of the AUG translational start codon. The second, featuring an extended initial hairpin, thus named avalong, presumably makes use of complex tertiary interaction. The 5′-UTR of the small heat shock gene hspA in the thermophile Thermosynechococcus elongatus is predicted to adopt an extended secondary structure. Structure probing revealed that the ribosome binding site was blocked at temperatures below 55 °C. The results of this study demonstrate that cyanobacteria commonly use RNATs to control expression of their small heat shock genes. PMID:24755616

  8. Accretion shock stability on a dynamically heated YSO atmosphere with radiative transfer

    NASA Astrophysics Data System (ADS)

    de Sá, Lionel; Chièze, Jean-Pierre; Stehlé, Chantal; Matsakos, Titos; Ibgui, Laurent; Lanz, Thierry; Hubeny, Ivan

    2014-01-01

    Theory and simulations predict Quasi-Periodic Oscillations of shocks which develop in magnetically driven accretion funnels connecting the stellar disc to the photosphere of Young Stellar Objects (YSO). X-ray observations however do not show evidence of the expected periodicity. We examine here, in a first attempt, the influence of radiative transfer on the evolution of material impinging on a dynamically heated stellar atmosphere, using the 1D ALE-RHD code ASTROLABE. The mechanical shock heating mechanism of the chromosphere only slightly perturbs the flow. We also show that, since the impacting flow, and especially the part which penetrates into the chromosphere, is not treated as a purely radiating transparent medium, a sufficiently efficient coupling between gas and radiation may affect or even suppress the oscillations of the shocked column. This study shows the importance of the description of the radiation effects in the hydrodynamics and of the accuracy of the opacities for an adequate modeling.

  9. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways

    PubMed Central

    Swindell, William R; Huebner, Marianne; Weber, Andreas P

    2007-01-01

    Background The heat shock response of Arabidopsis thaliana is dependent upon a complex regulatory network involving twenty-one known transcription factors and four heat shock protein families. It is known that heat shock proteins (Hsps) and transcription factors (Hsfs) are involved in cellular response to various forms of stress besides heat. However, the role of Hsps and Hsfs under cold and non-thermal stress conditions is not well understood, and it is unclear which types of stress interact least and most strongly with Hsp and Hsf response pathways. To address this issue, we have analyzed transcriptional response profiles of Arabidopsis Hsfs and Hsps to a range of abiotic and biotic stress treatments (heat, cold, osmotic stress, salt, drought, genotoxic stress, ultraviolet light, oxidative stress, wounding, and pathogen infection) in both above and below-ground plant tissues. Results All stress treatments interact with Hsf and Hsp response pathways to varying extents, suggesting considerable cross-talk between heat and non-heat stress regulatory networks. In general, Hsf and Hsp expression was strongly induced by heat, cold, salt, and osmotic stress, while other types of stress exhibited family or tissue-specific response patterns. With respect to the Hsp20 protein family, for instance, large expression responses occurred under all types of stress, with striking similarity among expression response profiles. Several genes belonging to the Hsp20, Hsp70 and Hsp100 families were specifically upregulated twelve hours after wounding in root tissue, and exhibited a parallel expression response pattern during recovery from heat stress. Among all Hsf and Hsp families, large expression responses occurred under ultraviolet-B light stress in aerial tissue (shoots) but not subterranean tissue (roots). Conclusion Our findings show that Hsf and Hsp family member genes represent an interaction point between multiple stress response pathways, and therefore warrant functional

  10. Heat transfer and wall temperature effects in shock wave turbulent boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Bernardini, M.; Asproulias, I.; Larsson, J.; Pirozzoli, S.; Grasso, F.

    2016-12-01

    Direct numerical simulations are carried out to investigate the effect of the wall temperature on the behavior of oblique shock wave turbulent boundary layer interactions at free-stream Mach number 2.28 and shock angle of the wedge generator φ =8∘ . Five values of the wall-to-recovery-temperature ratio (Tw/Tr ) are considered, corresponding to cold, adiabatic, and hot wall thermal conditions. We show that the main effect of cooling is to decrease the characteristic scales of the interaction in terms of upstream influence and extent of the separation bubble. The opposite behavior is observed in the case of heating, which produces a marked dilatation of the interaction region. The distribution of the Stanton number shows that a strong amplification of the heat transfer occurs across the interaction, with the maximum thermal and dynamic loads found for the case of the cold wall. The analysis reveals that the fluctuating heat flux exhibits a strong intermittent behavior, characterized by scattered spots with extremely high values compared to the mean. Furthermore, the analogy between momentum and heat transfer, typical of compressible, wall-bounded, equilibrium turbulent flows, does not apply for most of the interaction domain. The premultiplied spectra of the wall heat flux do not show any evidence of the influence of the low-frequency shock motion, and the primary mechanism for the generation of peak heating is found to be linked with the turbulence amplification in the interaction region.

  11. Upregulation of Heat Shock Proteins is Essential for Cold Survival during Insect Diapause

    USDA-ARS?s Scientific Manuscript database

    Diapause, the dormancy common to overwintering insects, evokes a unique pattern of gene expression. In the flesh fly most, but not all, of the fly’s heat shock proteins (Hsps) are upregulated. The diapause upregulated Hsps include two members of the Hsp70 family, one member of the Hsp60 family (TC...

  12. Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress

    SciTech Connect

    Bryantsev, A.L.; Chechenova, M.B.; Shelden, E.A. . E-mail: eshelden@wsu.edu

    2007-01-01

    During stress, the mammalian small heat shock protein Hsp27 enters cell nuclei. The present study examines the requirements for entry of Hsp27 into nuclei of normal rat kidney (NRK) renal epithelial cells, and for its interactions with specific nuclear structures. We find that phosphorylation of Hsp27 is necessary for the efficient entry into nuclei during heat shock but not sufficient for efficient nuclear entry under control conditions. We further report that Hsp27 is recruited to an RNAse sensitive fraction of SC35 positive nuclear speckles, but not other intranuclear structures, in response to heat shock. Intriguingly, Hsp27 phosphorylation, in the absence of stress, is sufficient for recruitment to speckles found in post-anaphase stage mitotic cells. Additionally, pseudophosphorylated Hsp27 fused to a nuclear localization peptide (NLS) is recruited to nuclear speckles in unstressed interphase cells, but wildtype and nonphosphorylatable Hsp27 NLS fusion proteins are not. The expression of NLS-Hsp27 mutants does not enhance colony forming abilities of cells subjected to severe heat shock, but does regulate nuclear speckle morphology. These data demonstrate that phosphorylation, but not stress, mediates Hsp27 recruitment to an RNAse soluble fraction of nuclear speckles and support a site-specific role for Hsp27 within the nucleus.

  13. Calving traits of crossbred Brahman Cows are Associated with Heat Shock Protein 70 Genetic Polymorphisms

    USDA-ARS?s Scientific Manuscript database

    Objectives were to: 1) identify single nucleotide polymorphisms (SNP) located in the promoter region of the bovine heat shock protein 70 gene, and 2) evaluate associations between Hsp70 SNP and calving rates of Brahman-influenced cows. Specific primers were designed for PCR amplification of a 539 b...

  14. Associations among heat shock protein 70 genotype, forage system, and horn fly infestation of beef cattle

    USDA-ARS?s Scientific Manuscript database

    Horn fly infestations on beef cattle results in decreased productivity and challenges enterprise sustainability. Objective of this experiment was to determine the relationships among, cattle breed, heat shock protein 70 (Hsp70) genotype, and horn fly density. Angus (n = 20), Brahman (n = 17), and ...

  15. Proteasome inhibition leads to the activation of all members of the heat-shock-factor family.

    PubMed

    Kawazoe, Y; Nakai, A; Tanabe, M; Nagata, K

    1998-07-15

    Heat-shock proteins and molecular chaperones are involved in various cellular metabolic processes including protein synthesis and degradation. These expressions are elevated at the level of transcription by the accumulation of abnormal proteins when these metabolic processes are disturbed. Recent works suggest the induction of heat-shock proteins by the inhibiton of proteasome. To elucidate the mechanism of this induction, we examined the activation of heat-shock transcription factors by proteasome inhibitors in avian cells. Activation of the two heat-shock-inducible factors, HSF1 and HSF3, was produced by the treatment of cells with proteasome inhibitors. This activation was not produced by treatment with various other protease inhibitors. The HSF activation by proteasome inhibitors was completely blocked in the presence of the protein synthesis inhibitor cycloheximide. Unexpectedly, the development-related factor HSF2 was also activated by proteasome inhibitors, with an increase in its protein level. These results suggest that the ubiqutin-proteasome pathway may regulate all of the three HSFs by controlling the level of some regulatory factor for HSF or HSF itself, as well as controlling abnormal proteins.

  16. THE EFFECTS OF HEAT SHOCK PROTEIN 70 (HSP70) AND EXPOSURE PROTOCOL ON ARSENITE INDUCED GENOTOXICITY

    EPA Science Inventory

    The Effects of Heat Shock Protein 70 (Hsp70) and Exposure Protocol on Arsenite Induced Genotoxicity

    Barnes, J.A.1,2, Collins, B.W.2, Dix, D.J.3 and Allen J.W2.
    1National Research Council, 2Environmental Carcinogenesis Division, 3Reproductive Toxicology Division, Office...

  17. Non-lethal heat shock increases tolerance to metal exposure in brine shrimp.

    PubMed

    Pestana, João L T; Novais, Sara C; Norouzitallab, Parisa; Vandegehuchte, Michiel B; Bossier, Peter; De Schamphelaere, Karel A C

    2016-11-01

    Pollution and temperature increase are two of the most important stressors that aquatic organisms are facing. Exposure to elevated temperatures and metal contamination both induce heat shock proteins (HSPs), which may thus be involved in the induced cross-tolerance in various organisms. This study aimed to test the hypothesis that exposure to a non-lethal heat shock (NLHS) causes an increased tolerance to subsequent metal exposure. Using gnotobiotic cultures of the brine shrimp Artemia franciscana, the tolerance to Cd and Zn acute exposures was tested after a prior NLHS treatment (30min exposure to 37°C). The effects of NLHS and metal exposure were also assessed by measuring 70kDa-HSPs production, along with the analysis of epigenetic markers such as DNA methylation and histone H3 and histone H4 acetylation. Our results showed that heat-shocked Artemia had increased acute tolerance to Cd and Zn. However, different patterns of HSPs were observed between the two metal compounds and no epigenetic alterations were observed in response to heat shock or metal exposure. These results suggest that HSP production is a phenotypically plastic trait with a potential role in temperature-induced tolerance to metal exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Response of a mouse hybridoma cell line to heat shock, agitation, and sparging

    NASA Technical Reports Server (NTRS)

    Passini, Cheryl A.; Goochee, Charles F.

    1989-01-01

    A mouse hybridoma cell line is used as a model system for studying the effect of environmental stress on attachment-independent mammalian cells. The full time course of recovery for a mouse hybridoma cell line from both a mild and intermediate heat shock is examined. The pattern of intracellular synthesis is compared for actively growing, log phase cells and nondividing, stationary phase cells.

  19. Phylogenetic analysis of heat shock proteins in Glassy-winged sharpshooter

    USDA-ARS?s Scientific Manuscript database

    Four heat shock protein transcripts were produced from the glassy-winged sharpshooter Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) which is the major vector of Xylella fastidiosa, the causal agent of Pierce’s disease of grapes. As genomic information has continued to be produced resea...

  20. Baculovirus replication induces the expression of heat shock proteins in vivo and in vitro

    USDA-ARS?s Scientific Manuscript database

    A recent handful of studies have linked baculovirus infection with the induction of heat shock proteins, a highly conserved family of cytoprotective proteins. Here, we demonstrate baculovirus-stimulated upregulation of hsp70 transcription in the natural host, Helicoverpa zea. Larvae lethally infec...

  1. Heat shock proteins as a target for phylogenetic analysis of Homalodisca vitripennis

    USDA-ARS?s Scientific Manuscript database

    Production of genomic data from the glassy-winged sharpshooter has identified a set of heat shock proteins which may be used to further the understanding of leafhopper biology and genetics. The glassy-winged sharpshooter, GWSS, Homalodisca vitripennis (Germar)(Hemiptera: Cicadellidae), is the major ...

  2. Human immune response directed against Plasmodium falciparum heat shock-related proteins.

    PubMed Central

    Kumar, N; Zhao, Y; Graves, P; Perez Folgar, J; Maloy, L; Zheng, H

    1990-01-01

    Heat shock-related stress proteins present in all eucaryotes and procaryotes have been shown to be immune targets in a broad range of infections. We have analyzed sera from people exposed primarily to Plasmodium falciparum for specific antibodies against two heat shock-related proteins (proteins similar to the heat shock protein with a molecular weight of 75,000 [Pfhsp] and a glucose-regulated protein with a molecular weight of 72,000 [Pfgrp]). In an immunoprecipitation analysis with metabolically labeled parasites and synthetic peptides in an enzyme-linked immunosorbent assay, specific antibodies against Pfhsp and Pfgrp were detected in the sera of these individuals. Sera from people exposed to a different human malarial parasite, Plasmodium vivax, did not react with the peptides in an enzyme-linked immunosorbent assay. Southern blot analysis with DNA isolated from P. falciparum from different geographical locations showed a conservation of genes for these stress proteins; thus, they are likely to be immune targets in various endemic areas. Lymphocytes from two tested immune donors responded in proliferation assays to purified Pfhsp and Pfgrp and purified recombinant proteins. However, a similar response was also seen in lymphocytes from nonimmune individuals and has raised questions pertaining to a generalized responsiveness of lymphocytes to some common determinants present in heat shock-related proteins in various pathogens. Images PMID:1691147

  3. Retaspimycin hydrochloride (IPI-504): a novel heat shock protein inhibitor as an anticancer agent.

    PubMed

    Hanson, Britt Erika; Vesole, David H

    2009-09-01

    Heat shock proteins are vital to cell survival under conditions of stress. They bind client proteins to assist in protein stabilization, translocation of polypeptides across cell membranes and recovery of proteins from aggregates. Heat shock protein inhibitors are a diverse group of novel agents that have been demonstrated to have pro-apoptotic effects on malignant cells through inhibition of ATP binding on the ATP/ADP-binding pocket of the heat shock protein. Initial development of heat shock protein 90 inhibitors, geldanamycin and 17-AAG, were limited by hepatotoxicity and the need for solvent carrying agents. In contrast, retaspimycin, or IPI-504, a derivative of geldanamycin and 17-AAG, is highly soluble in water and generally well tolerated. In Phase I/II trials, retaspimycin has shown activity in NSCLC and gastrointestinal stromal tumor. The most promising activity was observed in gastrointestinal stromal tumors. Phase I/II trials are currently underway to evaluate the dosing schedules and activity of IPI-504 in breast cancer. Given the in vitro activity in diffuse large B-cell lymphoma, mantle cell lymphoma, melanoma, leukemia and pancreatic cancer, current and future trials are of clinical interest. This article reviews IPI-504 and its utility in a wide variety of cancer phenotypes.

  4. Influence of the real and simulated microgravity on gene expression of heat-shock proteins

    NASA Astrophysics Data System (ADS)

    Kozeko, L. Ye.

    The possibility of heat-shock proteins' (HSP) participation in adaptation of living systems to microgravity is considered. The published information on HSP gene expression in cells under real and simulated microgravity is analysed. The necessity of detailed investigation on this problem is supposed.

  5. Heat Shock Protein Induction in Human Cells by CO2 Laser Irradiation

    DTIC Science & Technology

    1993-06-14

    Boorstein W. A review of the role of 70 kD heat shock proteins in protein translocation across membranes. Antonie Van Leeuwenhoek 1990:58:137-46. 32...1991;65:363-366. 55. Young DB. Stress proteins and the immune response. Antonie Van Leeuwenhoek 1990;58:203-208. 56. Craig EA, Kramer J, Kosic-Smithers

  6. Heat-shock protein ClpL/HSP100 increases penicillin tolerance in Streptococcus pneumoniae.

    PubMed

    Tran, Thao Dang-Hien; Kwon, Hyog-Young; Kim, Eun-Hye; Kim, Ki-Woo; Briles, David E; Pyo, Suhkneung; Rhee, Dong-Kwon

    2011-01-01

    Penicillin resistance and tolerance has been an increasing threat to the treatment of pneumococcal pneumoniae. However, no penicillin tolerance-related genes have been claimed. Here we show that a major heat shock protein ClpL/HSP100 could modulate the expression of a cell wall synthesis enzyme PBP2x, and subsequently increase cell wall thickness and penicillin tolerance in Streptococus pneumoniae.

  7. The heat shock factor HSF1 juggles protein quality control and metabolic regulation.

    PubMed

    Cantó, Carles

    2017-03-06

    Transcriptional regulators often act as central hubs to integrate multiple nutrient and stress signals. In this issue, Qiao et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201607091) demonstrate how heat shock factor 1 (HSF1) uncouples metabolic control from proteostatic regulation and unveils HSF1 as a critical transcriptional regulator of NAD(+) metabolism.

  8. Interference heating from interactions of shock waves with turbulent boundary layers at Mach 6

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Kaufman, L. G., II

    1974-01-01

    An experimental investigation of interference heating resulting from interactions of shock waves and turbulent boundary layers was conducted. Pressure and heat-transfer distributions were measured on a flat plate in the free stream and on the wall of the test section of the Langley Mach 6 high Reynolds number tunnel for Reynolds numbers ranging from 2 million to 400 million. Various incident shock strengths were obtained by varying a wedge-shock generator angle (from 10 deg to 15 deg) and by placing a spherical-shock generator at different vertical positions above the instrumented flat plate and tunnel wall. The largest heating-rate amplification factors obtained for completely turbulent boundary layers were 22.1 for the flat plate and 11.6 for the tunnel wall experiments. Maximum heating correlated with peak pressures using a power law with a 0.85 exponent. Measured pressure distributions were compared with those calculated using turbulent free-interaction pressure rise theories, and separation lengths were compared with values calculated by using different methods.

  9. Arachidonate is a potent modulator of human heat shock gene transcription.

    PubMed Central

    Jurivich, D A; Sistonen, L; Sarge, K D; Morimoto, R I

    1994-01-01

    Cell and tissue injury activate the inflammatory response through the action(s) of arachidonic acid and its metabolites, leading to the expression of acute-phase proteins and inflammatory cytokines. At the molecular level, little is known how arachidonic acid regulates the inflammatory response. As inflammation is also associated with local increase in tissue temperatures, we examined whether arachidonic acid was directly involved in the heat shock response. Extracellular exposure to arachidonic acid induced heat shock gene transcription in a dose-dependent manner via acquisition of DNA-binding activity and phosphorylation of heat shock factor 1 (HSF1). In addition, exposure of cells to low concentrations of arachidonic acid, which by themselves did not induce HSF1 DNA-binding activity, reduced the temperature threshold for HSF1 activation from elevated temperatures which are not physiologically relevant (> 42 degrees C) to temperatures which can be attained during the febrile response (39-40 degrees C). These results indicate that elevated heat shock gene expression is a direct consequence of an arachidonic acid-mediated cellular response. Images PMID:8134388

  10. Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery.

    PubMed Central

    Plumier, J C; Ross, B M; Currie, R W; Angelidis, C E; Kazlaris, H; Kollias, G; Pagoulatos, G N

    1995-01-01

    Heat shock treatment induces expression of several heat shock proteins and subsequent post-ischemic myocardial protection. Correlations exist between the degree of stress used to induce the heat shock proteins, the amount of the inducible heat shock protein 70 (HSP70) and the level of myocardial protection. The inducible HSP70 has also been shown to be protective in transfected myogenic cells. Here we examined the role of human inducible HSP70 in transgenic mouse hearts. Overexpression of the human HSP70 does not appear to affect normal protein synthesis or the stress response in transgenic mice compared with nontransgenic mice. After 30 min of ischemia, upon reperfusion, transgenic hearts versus nontransgenic hearts showed significantly improved recovery of contractile force (0.35 +/- 0.08 versus 0.16 +/- 0.05 g, respectively, P < 0.05), rate of contraction, and rate of relaxation. Creatine kinase, an indicator of cellular injury, was released at a high level (67.7 +/- 23.0 U/ml) upon reperfusion from nontransgenic hearts, but not transgenic hearts (1.6 +/- 0.8 U/ml). We conclude that high level constitutive expression of the human inducible HSP70 plays a direct role in the protection of the myocardium from ischemia and reperfusion injury. Images PMID:7706492

  11. CHEMOSENSITIZATION BY A NON-APOPTOGENIC HEAT SHOCK PROTEIN 70-BINDING APOPTOSIS INDUCING FACTOR MUTANT

    EPA Science Inventory

    Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis inducing factor mutant

    Abstract
    HSP70 inhibits apoptosis by neutralizing the caspase activator Apaf-1 and by interacting with apoptosis inducing factor (AIF), a mitochondrial flavoprotein wh...

  12. Identification of genes differentially expressed during heat shock treatment in Aedes aegypti.

    USDA-ARS?s Scientific Manuscript database

    : Temperature is important for mosquito development and physiological response. Several genes of heat shock protein (HSP) families are known to be expressed in mosquitoes and may be crucial in responding to stress induced by elevated temperature. Suppression subtractive hybridization (SSH) was used ...

  13. Identification of genes specifically expressed during heat shock treatment in Aedes aegypti

    USDA-ARS?s Scientific Manuscript database

    Temperature is important for mosquito development and physiological response. Several genes of heat shock protein (HSP) families are known to be expressed in mosquitoes and may be crucial in responding to stress induced by elevated temperature. Suppression subtractive hybridization (SSH) was used to...

  14. CHEMOSENSITIZATION BY A NON-APOPTOGENIC HEAT SHOCK PROTEIN 70-BINDING APOPTOSIS INDUCING FACTOR MUTANT

    EPA Science Inventory

    Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis inducing factor mutant

    Abstract
    HSP70 inhibits apoptosis by neutralizing the caspase activator Apaf-1 and by interacting with apoptosis inducing factor (AIF), a mitochondrial flavoprotein wh...

  15. THE EFFECTS OF HEAT SHOCK PROTEIN 70 (HSP70) AND EXPOSURE PROTOCOL ON ARSENITE INDUCED GENOTOXICITY

    EPA Science Inventory

    The Effects of Heat Shock Protein 70 (Hsp70) and Exposure Protocol on Arsenite Induced Genotoxicity

    Barnes, J.A.1,2, Collins, B.W.2, Dix, D.J.3 and Allen J.W2.
    1National Research Council, 2Environmental Carcinogenesis Division, 3Reproductive Toxicology Division, Office...

  16. Periodic heat shock accelerated the chondrogenic differentiation of human mesenchymal stem cells in pellet culture.

    PubMed

    Chen, Jing; Li, Chenghai; Wang, Sihong

    2014-01-01

    Osteoarthritis (OA) is one of diseases that seriously affect elderly people's quality of life. Human mesenchymal stem cells (hMSCs) offer a potential promise for the joint repair in OA patients. However, chondrogenic differentiation from hMSCs in vitro takes a long time (∼ 6 weeks) and differentiated cells are still not as functionally mature as primary isolated chondrocytes, though chemical stimulations and mechanical loading have been intensively studied to enhance the hMSC differentiation. On the other hand, thermal stimulations of hMSC chondrogenesis have not been well explored. In this study, the direct effects of mild heat shock (HS) on the differentiation of hMSCs into chondrocytes in 3D pellet culture were investigated. Periodic HS at 41 °C for 1 hr significantly increased sulfated glycosaminoglycan in 3D pellet culture at Day 10 of chondrogenesis. Immunohistochemical and Western Blot analyses revealed an increased expression of collagen type II and aggrecan in heat-shocked pellets than non heat-shocked pellets on Day 17 of chondrogenesis. In addition, HS also upregulated the expression of collagen type I and X as well as heat shock protein 70 on Day 17 and 24 of differentiation. These results demonstrate that HS accelerated the chondrogenic differentiation of hMSCs and induced an early maturation of chondrocytes differentiated from hMSCs. The results of this study will guide the design of future protocols using thermal treatments to facilitate cartilage regeneration with human mesenchymal stem cells.

  17. Urinary heat shock protein 72 as a biomarker of acute kidney injury in dogs.

    PubMed

    Bruchim, Yaron; Avital, Yochai; Horowitz, Michal; Mazaki-Tovi, Michal; Aroch, Itamar; Segev, Gilad

    2017-07-01

    Early recognition of acute kidney injury (AKI) is important, as therapy is potentially more efficacious if instituted early in the course of disease. Urinary heat shock protein-72 to urinary creatinine ratio (uHSP72/uCr) was assessed as a diagnostic and prognostic marker in AKI in dogs. Fifty-three dogs were enrolled in five groups: healthy controls (n=11), urinary tract infection (n=10), chronic kidney disease (CKD; n=11), AKI (n=13), and acute decompensating CKD (n=8). Urinary heat shock protein-72 to urinary creatinine ratio was highest in the AKI group (P<0.001 when compared to the control and urinary tract infection groups, individually; P>0.05 compared to each of the other two groups). The area under the curve (AUC) for the receiver operator characteristic (ROC) analysis of uHSP72/uCr to predict AKI, compared to the control group, was 0.97. A cutoff value of 0.20ng/mg corresponded to sensitivity and specificity of 100% and 82%, respectively. Urinary heat shock protein-72 to urinary creatinine ratio was significantly lower in dogs categorized as survivors vs. non-survivors of AKI; ROC AUC, 0.91 (95% confidence intervals, 0.74-1.0). Urinary heat shock protein-72 to urinary creatinine ratio is a potentially useful diagnostic and prognostic biomarker of AKI in dogs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The declined phosphorylation of Heat shock protein 27 in rat cardiac muscle after hindlimb unloading

    NASA Astrophysics Data System (ADS)

    Yuan, Ming; Jiang, Shizhong; Li, Zhili; Yuan, Min; Ting, Li; Ying, Zhang; Wang, Desheng

    2009-07-01

    Hindlimb unloading can induce the cardiac atrophy and diminished cardiac function, however, the mechanisms responsible for which remain elusive. The chronic volume unloading of heart, which decreases the local mechanical stress, may lead to cardiac atrophy after hindlimb unloading. Many studies showed that integrin signaling, p38 MAPK, Heat shock protein 27 and cytoskeleton involved in the hypertrophic growth induced by mechanical stress. However, the mechanisms responsible for cardiac atrophy after hindlimb unloading are still unclear. In this study, we used the tail-suspended, hindlimb unloading rat model to simulate the effects of microgravity. Western blot analysis was used to detect the protein expression of Heat shock protein 27, focal adhesion kinase, p38 MAPK and their phosphorylation levels in rat cardiac muscle after 14d hindlimb unloading. The results showed that the phosphorylation levels of both Heat shock protein 27 and p38 MAPK were decreased significantly in rat cardiac muscle after hindlimb unloading. However, the phosphorylation level of focal adhesion kinase was not decreased significantly. The results suggested that Heat shock protein 27, the downstream of p38 MAPK, might play a critical role in the cardiac atrophy in response to simulated microgravity induced by hindlimb unloading.

  19. Heat shock proteins are important mediators of skeletal muscle insulin sensitivity.

    PubMed

    Geiger, Paige C; Gupte, Anisha A

    2011-01-01

    Endogenous heat shock proteins (HSP) are decreased in disease states associated with insulin resistance and aging. Induction of HSPs has been shown to decrease oxidative stress, inhibit inflammatory pathways, and enhance metabolic characteristics in skeletal muscle. As such, HSPs have the potential to function as an important defense system against the development of insulin resistance and type 2 diabetes.

  20. The central role of heat shock factor 1 in synaptic fidelity and memory consolidation.

    PubMed

    Hooper, Philip L; Durham, Heather D; Török, Zsolt; Hooper, Paul L; Crul, Tim; Vígh, László

    2016-09-01

    Networks of neuronal synapses are the fundamental basis for making and retaining memory. Reduced synapse number and quality correlates with loss of memory in dementia. Heat shock factor 1 (HSF1), the major transcription factor regulating expression of heat shock genes, plays a central role in proteostasis, in establishing and sustaining synaptic fidelity and function, and in memory consolidation. Support for this thesis is based on these observations: (1) heat shock induces improvements in synapse integrity and memory consolidation; (2) synaptic depolarization activates HSF1; (3) activation of HSF1 alone (independent of the canonical heat shock response) augments formation of essential synaptic elements-neuroligands, vesicle transport, synaptic scaffolding proteins, lipid rafts, synaptic spines, and axodendritic synapses; (4) HSF1 coalesces and activates memory receptors in the post-synaptic dendritic spine; (5) huntingtin or α-synuclein accumulation lowers HSF1 while HSF1 lowers huntingtin and α-synuclein aggregation-a potential vicious cycle; and (6) HSF1 agonists (including physical activity) can improve cognitive function in dementia models. Thus, via direct gene expression of synaptic elements, production of HSPs that assure high protein fidelity, and activation of other neuroprotective signaling pathways, HSF1 agonists could provide breakthrough therapy for dementia-associated disease.

  1. Ceramide formation during heat shock: a potential mediator of alpha B-crystallin transcription.

    PubMed Central

    Chang, Y; Abe, A; Shayman, J A

    1995-01-01

    Ceramide has been identified as a potential second messenger that may mediate cell differentiation and apoptosis after exposure to hormonal agonists such as 1 alpha, 25-dihydroxyvitamin D3, tumor necrosis factor alpha, or gamma-interferon. The secondary cellular events that follow ceramide generation remain undefined. We report that in NIH WT-3T3 cells, ceramide induces an enhancement of gene transcription of alpha B-crystallin, a small heat shock protein. The levels of alpha B-crystallin, as measured by Northern blot and immunoblot analyses, were increased by the addition of an exogenous short-chain ceramide, N-acetylsphingosine, or by increasing endogenous intracellular ceramide by inhibition of glucosylceramide synthase. Similar effects were not seen in the expression of the closely related gene, Hsp25. To ascertain whether ceramide-mediated gene transcription was a feature of the heat shock response, cell ceramide was measured in heat shocked cells and observed to be elevated 2-fold immediately upon the return of cells to 37 degrees C. Thus ceramide formed after heat shock treatment of 3T3 cells may mediate the transcription events associated with the cell stress response. Images Fig. 1 Fig. 2 Fig. 3 PMID:8618884

  2. Response of a mouse hybridoma cell line to heat shock, agitation, and sparging

    NASA Technical Reports Server (NTRS)

    Passini, Cheryl A.; Goochee, Charles F.

    1989-01-01

    A mouse hybridoma cell line is used as a model system for studying the effect of environmental stress on attachment-independent mammalian cells. The full time course of recovery for a mouse hybridoma cell line from both a mild and intermediate heat shock is examined. The pattern of intracellular synthesis is compared for actively growing, log phase cells and nondividing, stationary phase cells.

  3. Huntingtin interacting protein HYPK is a negative regulator of heat shock response and is downregulated in models of Huntington's Disease.

    PubMed

    Das, Srijit; Bhattacharyya, Nitai Pada

    2016-05-01

    Huntingtin interacting protein HYPK (Huntingtin Yeast Partner K) is an intrinsically unstructured protein having chaperone-like activity and can suppress mutant huntingtin aggregates and toxicity in cell model of Huntington's Disease (HD). Heat shock response is an adaptive mechanism of cells characterized by upregulation of heat shock proteins by heat-induced activation of heat shock factor 1 (HSF1). The trans-activation ability of HSF1 is arrested upon restoration of proteostasis. We earlier identified HYPK as a heat-inducible protein and transcriptional target of HSF1. Here we show that HYPK can act as negative regulator of heat shock response by repressing transcriptional activity of HSF1. As part of its role as a repressor of heat shock response, HYPK can also inhibit HSF1-dependent trans-activation of its own promoter. HYPK is downregulated in cell and animal model of HD. We further show that transcriptional downregulation of HYPK in HD cell model is a consequence of reduced occupancy of HSF1 in HYPK promoter. Moreover, presence of mutant huntingtin inhibits effective induction of HYPK in response to heat shock. Taken together, our findings reveal that HYPK can suppress heat shock response via an autoregulatory loop and downregulation of HYPK in HD is caused by impaired transcriptional activity of HSF1 in presence of mutant huntingtin. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite Leishmania

    PubMed Central

    Brochu, Christian; Haimeur, Anass; Ouellette, Marc

    2004-01-01

    Antimony-containing drugs are still the drugs of choice in the treatment of infections caused by the parasite Leishmania. Resistance to antimony is now common in some parts of the world, and several mechanisms of resistance have been described. By transfecting cosmid banks and selecting with potassium antimonyl tartrate (SbIII), we have isolated a cosmid associated with resistance. This cosmid contains 2 copies of the heat shock protein 70 (HSP70) and 1 copy of the heat shock cognate protein 70 (HSC70). Several data linked HSP70 to antimony response and resistance. First, several Leishmania species, both as promastigotes and amastigotes, increased the expression of their HSP70 proteins when grown in the presence of 1 or 2 times the Effect Concentration 50% of SbIII. In several mutants selected for resistance to either SbIII or to the related metal arsenite, the HSP70 proteins were found to be overexpressed. This increase was also observed in revertant cells grown for several passages in the absence of SbIII, suggesting that this increased production of HSP70 is stable. Transfection of HSP70 or HSC70 in Leishmania cells does not confer resistance directly, though these transfectants were better able to tolerate a shock with SbIII. Our results are consistent with HSP70 and HSC70 being a first line of defense against SbIII until more specific and efficient resistance mechanisms take over. PMID:15544167

  5. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502.

    PubMed

    Selby, Katja; Mascher, Gerald; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2017-01-01

    Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism.

  6. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502

    PubMed Central

    Selby, Katja; Mascher, Gerald; Somervuo, Panu; Korkeala, Hannu

    2017-01-01

    Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism. PMID:28464023

  7. Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster.

    PubMed

    Gonsalves, Sarah E; Moses, Alan M; Razak, Zak; Robert, Francois; Westwood, J Timothy

    2011-01-14

    During heat shock (HS) and other stresses, HS gene transcription in eukaryotes is up-regulated by the transcription factor heat shock factor (HSF). While the identities of the major HS genes have been known for more than 30 years, it has been suspected that HSF binds to numerous other genes and potentially regulates their transcription. In this study, we have used a chromatin immunoprecipitation and microarray (ChIP-chip) approach to identify 434 regions in the Drosophila genome that are bound by HSF. We have also performed a transcript analysis of heat shocked Kc167 cells and third instar larvae and compared them to HSF binding sites. The heat-induced transcription profiles were quite different between cells and larvae and surprisingly only about 10% of the genes associated with HSF binding sites show changed transcription. There were also genes that showed changes in transcript levels that did not appear to correlate with HSF binding sites. Analysis of the locations of the HSF binding sites revealed that 57% were contained within genes with approximately 2/3rds of these sites being in introns. We also found that the insulator protein, BEAF, has enriched binding prior to HS to promoters of genes that are bound by HSF upon HS but that are not transcriptionally induced during HS. When the genes associated with HSF binding sites in promoters were analyzed for gene ontology terms, categories such as stress response and transferase activity were enriched whereas analysis of genes having HSF binding sites in introns identified those categories plus ones related to developmental processes and reproduction. These results suggest that Drosophila HSF may be regulating many genes besides the known HS genes and that some of these genes may be regulated during non-stress conditions.

  8. Uncertainty quantification of bacterial aerosol neutralization in shock heated gases

    NASA Astrophysics Data System (ADS)

    Schulz, J. C.; Gottiparthi, K. C.; Menon, S.

    2015-01-01

    A potential method for the neutralization of bacterial endospores is the use of explosive charges since the high thermal and mechanical stresses in the post-detonation flow are thought to be sufficient in reducing the endospore survivability to levels that pose no significant health threat. While several experiments have attempted to quantify endospore survivability by emulating such environments in shock tube configurations, numerical simulations are necessary to provide information in scenarios where experimental data are difficult to obtain. Since such numerical predictions require complex, multi-physics models, significant uncertainties could be present. This work investigates the uncertainty in determining the endospore survivability from using a reduced order model based on a critical endospore temperature. Understanding the uncertainty in such a model is necessary in quantifying the variability in predictions using large-scale, realistic simulations of bacterial endospore neutralization by explosive charges. This work extends the analysis of previous large-scale simulations of endospore neutralization [Gottiparthi et al. in (Shock Waves, 2014. doi:10.1007/s00193-014-0504-9)] by focusing on the uncertainty quantification of predicting endospore neutralization. For a given initial mass distribution of the bacterial endospore aerosol, predictions of the intact endospore percentage using nominal values of the input parameters match the experimental data well. The uncertainty in these predictions are then investigated using the Dempster-Shafer theory of evidence and polynomial chaos expansion. The studies show that the endospore survivability is governed largely by the endospore's mass distribution and their exposure or residence time at the elevated temperatures and pressures. Deviations from the nominal predictions can be as much as 20-30 % in the intermediate temperature ranges. At high temperatures, i.e., strong shocks, which are of the most interest, the

  9. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1.

    PubMed Central

    Baler, R; Dahl, G; Voellmy, R

    1993-01-01

    Transcriptional activity of heat shock (hsp) genes is controlled by a heat-activated, group-specific transcription factor(s) recognizing arrays of inverted repeats of the element NGAAN. To date genes for two human factors, HSF1 and HSF2, have been isolated. To define their properties as well as the changes they undergo during heat stress activation, we prepared polyclonal antibodies to these factors. Using these tools, we have shown that human HeLa cells constitutively synthesize HSF1, but we were unable to detect HSF2. In unstressed cells HSF1 is present mainly in complexes with an apparent molecular mass of about 200 kDa, unable to bind to DNA. Heat treatment induces a shift in the apparent molecular mass of HSF1 to about 700 kDa, concomitant with the acquisition of DNA-binding ability. Cross-linking experiments suggest that this change in complex size may reflect the trimerization of monomeric HSF1. Human HSF1 expressed in Xenopus oocytes does not bind DNA, but derepression of DNA-binding activity, as well as oligomerization of HSF1, occurs during heat treatment at the same temperature at which hsp gene expression is induced in this organism, suggesting that a conserved Xenopus protein(s) plays a role in this regulation. Inactive HSF1 resides in the cytoplasm of human cells; on activation it rapidly translocates to a soluble nuclear fraction, and shortly thereafter it becomes associated with the nuclear pellet. On heat shock, activatable HSF1, which might already have been posttranslationally modified in the unstressed cell, undergoes further modification. These different process provide multiple points of regulation of hsp gene expression. Images PMID:8455624

  10. Cbk1 kinase and Bck2 control MAP kinase activation and inactivation during heat shock

    PubMed Central

    Kuravi, Venkata K.; Kurischko, Cornelia; Puri, Manasi; Luca, Francis C.

    2011-01-01

    Saccharomyces cerevisiae Cbk1 kinase is a LATS/NDR tumor suppressor orthologue and component of the Regulation of Ace2 and Morphogenesis signaling network. Cbk1 was previously implicated in regulating polarized morphogenesis, gene expression, and cell integrity. Here we establish that Cbk1 is critical for heat shock and cell wall stress signaling via Bck2, a protein associated with the Pkc1-Mpk1 cell integrity pathway. We demonstrate that cbk1 and bck2 loss-of-function mutations prevent Mpk1 kinase activation and Mpk1-dependent gene expression but do not disrupt Mpk1 Thr-190/Tyr-192 phosphorylation. Bck2 overexpression partially restores Mpk1-dependent Rlm1 transcription factor activity in cbk1 mutants, suggesting that Bck2 functions downstream of Cbk1. We demonstrate that Bck2 precisely colocalizes with the mitogen-activated protein kinase (MAPK) phosphatase Sdp1. During heat shock, Bck2 and Sdp1 transiently redistribute from nuclei and the cytosol to mitochondria and other cytoplasmic puncta before returning to their pre-stressed localization patterns. Significantly, Cbk1 inhibition delays the return of Bck2 and Sdp1 to their pre-stressed localization patterns and delays Mpk1 Thr-190/Tyr-192 dephosphorylation upon heat shock adaptation. We conclude that Cbk1 and Bck2 are required for Mpk1 activation during heat shock and cell wall stress and for Mpk1 dephosphorylation during heat shock adaptation. These data provide the first evidence that Cbk1 kinase regulates MAPK-dependent stress signaling and provide mechanistic insight into Sdp1 phosphatase regulation. PMID:22031291

  11. Nonnative Disulfide Bond Formation Activates the σ32-Dependent Heat Shock Response in Escherichia coli

    PubMed Central

    Müller, Alexandra; Hoffmann, Jörg H.; Meyer, Helmut E.; Narberhaus, Franz; Jakob, Ursula

    2013-01-01

    Formation of nonnative disulfide bonds in the cytoplasm, so-called disulfide stress, is an integral component of oxidative stress. Quantification of the extent of disulfide bond formation in the cytoplasm of Escherichia coli revealed that disulfide stress is associated with oxidative stress caused by hydrogen peroxide, paraquat, and cadmium. To separate the impact of disulfide bond formation from unrelated effects of these oxidative stressors in subsequent experiments, we worked with two complementary approaches. We triggered disulfide stress either chemically by diamide treatment of cells or genetically in a mutant strain lacking the major disulfide-reducing systems TrxB and Gor. Studying the proteomic response of E. coli exposed to disulfide stress, we found that intracellular disulfide bond formation is a particularly strong inducer of the heat shock response. Real-time quantitative PCR experiments showed that disulfide stress induces the heat shock response in E. coli σ32 dependently. However, unlike heat shock treatment, which induces these genes transiently, transcripts of σ32-dependent genes accumulated over time in disulfide stress-treated cells. Analyzing the stability of σ32, we found that this constant induction can be attributed to an increase of the half-life of σ32 upon disulfide stress. This is concomitant with aggregation of E. coli proteins treated with diamide. We conclude that oxidative stress triggers the heat shock response in E. coli σ32 dependently. The component of oxidative stress responsible for the induction of heat shock genes is disulfide stress. Nonnative disulfide bond formation in the cytoplasm causes protein unfolding. This stabilizes σ32 by preventing its DnaK- and FtsH-dependent degradation. PMID:23585533

  12. Heat shock modulates the subcellular localization, stability, and activity of HIPK2

    SciTech Connect

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam

    2016-04-15

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress – such as hypoxia, oxidative stress, or UV damage – is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors.

  13. Unraveling Biological Design Principles Using Engineering Methods: The Heat Shock Response as a Case Study

    NASA Astrophysics Data System (ADS)

    El-Samad, Hana

    2006-03-01

    The bacterial heat shock response refers to the mechanism by which bacteria react to a sudden increase in the ambient temperature. The consequences of such an unmediated temperature increase at the cellular level is the unfolding, misfolding, or aggregation of cell proteins, which threatens the life of the cell. To combat such effects, cells have evolved an intricate set of feedback and feedforward mechanisms. In this talk, we present a mathematical model that describes the core functionality of these mechanisms. We illustrate how such a model provides valuable insight, explaining dynamic phenomena exhibited by wild type and mutant heat shock responses, corroborating experimental data and guiding novel biological experiments. Furthermore, we demonstrate, through the careful control analysis of the model, several design principles that appear to have shaped the feedback structure of the heat shock system. Specifically, we itemize the roles of the various feedback strategies and demonstrate their necessity in achieving performance objectives such as efficiency, robustness, stability, good transient response, and noise rejection in the presence of limited cellular energies and materials. Examined from this perspective, the heat shock model can be decomposed, both conceptually and mathematically, into functional modules. These modules possess the characteristics of more familiar modular structures: sensors, actuators and controllers present in a typical technological control system. We finally point to various theoretical research challenges inspired by the heat shock response system, and discuss the crucial relevance of these challenges in the modeling and analysis of many classes of systems that are likely to arise in the study of gene regulatory networks.

  14. Heat shock modulates the subcellular localization, stability, and activity of HIPK2.

    PubMed

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam

    2016-04-15

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress - such as hypoxia, oxidative stress, or UV damage - is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Oxidative Stress and Heat-Shock Responses in Desulfovibrio vulgaris by Genome-Wide Transcriptomic Analysis

    SciTech Connect

    Zhang, Weiwen; Culley, David E.; Hogan, Mike; Vitiritti, Luigi; Brockman, Fred J.

    2006-05-30

    Abstract Sulfate-reducing bacteria, like Desulfovibrio vulgaris have developed a set of reactions allowing them to survive in environments. To obtain further knowledge of the protecting mechanisms employed in D. vulgaris against the oxidative stress and heat shock, we performed a genome-wide transcriptomic analysis to determine the cellular responses to both stimuli. The results showed that 130 genes were responsive to oxidative stress, while 427 genes responsive to heat-shock, respectively. Functional analyses suggested that the genes regulated were involved in a variety of cellular functions. Metabolic analysis showed that amino acid biosynthetic pathways were induced by both oxidative stress and heat shock treatments, while fatty acid metabolism, purine and cofactor biosynthesis were induced by heat shock only. Rubrerythrin gene (rbR) were upregulated by the oxidative stress, suggesting its important role in the oxidative resistance, whereas the expression of rubredoxin oxidoreductase (rbO), superoxide ismutase (sodB) and catalase (katA) genes were not subjected to regulation by oxidative stress in D. vulgaris. In addition, the results showed that thioredoxin reductase (trxB) was responsive to oxidative stress, suggesting the thiol-specific redox system might be involved in oxidative protection in D. vulgaris. Comparison of cellular responses to oxidative stress and heat-shock allowed the identification of 66 genes that showed a similar drastic response to both environmental stimuli, implying that they might be part of the general stress response (GSR) network in D. vulgaris, which was further supported by the finding of a conserved motif upstream these common-responsive genes.

  16. Chaperone co-inducer BGP-15 inhibits histone deacetylases and enhances the heat shock response through increased chromatin accessibility.

    PubMed

    Budzyński, Marek A; Crul, Tim; Himanen, Samu V; Toth, Noemi; Otvos, Ferenc; Sistonen, Lea; Vigh, Laszlo

    2017-05-04

    Defects in cellular protein homeostasis are associated with many severe and prevalent pathological conditions such as neurodegenerative diseases, muscle dystrophies, and metabolic disorders. One way to counteract these defects is to improve the protein homeostasis capacity through induction of the heat shock response. Despite numerous attempts to develop strategies for chemical activation of the heat shock response by heat shock transcription factor 1 (HSF1), the underlying mechanisms of drug candidates' mode of action are poorly understood. To lower the threshold for the heat shock response activation, we used the chaperone co-inducer BGP-15 that was previously shown to have beneficial effects on several proteinopathic disease models. We found that BGP-15 treatment combined with heat stress caused a substantial increase in HSF1-dependent heat shock protein 70 (HSPA1A/B) expression already at a febrile range of temperatures. Moreover, BGP-15 alone inhibited the activity of histone deacetylases (HDACs), thereby increasing chromatin accessibility at multiple genomic loci including the stress-inducible HSPA1A. Intriguingly, treatment with well-known potent HDAC inhibitors trichostatin A and valproic acid enhanced the heat shock response and improved cytoprotection. These results present a new pharmacological strategy for restoring protein homeostasis by inhibiting HDACs, increasing chromatin accessibility, and lowering the threshold for heat shock response activation.

  17. Catabolite control of the elevation of PGK mRNA levels by heat shock in Saccharomyces cerevisiae.

    PubMed

    Piper, P W; Curran, B; Davies, M W; Hirst, K; Lockheart, A; Seward, K

    1988-05-01

    Heat shock enhances the very high level of transcription of the phosphoglycerate kinase (PGK) gene in fermentative cultures of Saccharomyces cerevisiae. This response of PGK mRNA levels was not found on gluconeogenic carbon sources, and could be switched on or off subject to availability of fermentable carbon source. The addition of glucose to yeast growing on glycerol resulted in acquisition, within 30-60 min, of the ability to elevate PGK mRNA levels after heat shock. In addition, in aerobic cultures growing on glucose the exhaustion of the medium glucose coincided with a loss of the heat-shock effect on PGK mRNA and a switch-over to slower growth by aerobic respiration. Levels of hsp26 mRNA were analysed during these experiments. Contrasting with this requirement for fermentable catabolite for manifestation of a heat-shock response of PGK mRNA levels, the PGK enzyme was not synthesized at a greater level in heat-shocked fermentative than in gluconeogenic cultures. PGK is one of only a few proteins made efficiently after mild heat shock of yeast. Thus, heat-stress-induced elevation of PGK mRNA levels does not appreciably increase PGK synthesis during exposure to high temperatures and so its role may be to assist cells repressed in mitochondrial function during recovery following a heat shock.

  18. Inhibition by polyols of the heat-shock-induced activation of trehalase in the yeast Zygosaccharomyces rouxii.

    PubMed

    Fernandez, J; Soto, T; Vicente-Soler, J; Cansado, J; Gacto, M

    1996-02-01

    Trehalase activity was markedly enhanced in Zygosaccharomyces rouxii upon exposure of the cells to a heat shock. The increase in trehalase was independent of rapid changes in the intracellular concentration of cAMP and was not blocked by inhibitors of protein synthesis. Trehalase activated in vivo by heat shock was deactivated in vitro by phosphatase, suggesting that heat stress triggers a cAMP-independent signalling pathway that includes the activation of trehalase by phosphorylation of the enzyme protein. The addition to these cells before heating of either glycerol or other polyols produced a significant decrease in the heat-shock induced activation of trehalase. However, the trehalose content in cells heat-shocked in the presence of polyols did not increase significantly, indicating that these compounds may also influence the synthesis of the disaccharide.

  19. Induction of heat shock protein 72 in RGCs of rat acute glaucoma model after heat stress or zinc administration.

    PubMed

    Qing, Guoping; Duan, Xuanchu; Jiang, Youqin

    2004-03-01

    To investigate the dynamics of heat shock protein 72 (HSP72) expression in retinal ganglion cells (RGCs) in rat model of acute glaucoma treated with heat stress or intraperitoneal injection of zinc sulfate. Twenty-seven male Wistar rats were used to make acute glaucoma models. Five others served as normal control. Acute glaucoma models were made by intracameral irrigation in the right eyes with balanced salt saline (BSS) at 102 mmHg for 2 hours. Nine model rats were killed at different intervals after intracameral irrigation without treatment, which served as damage control. Ten were treated with heat stress 40 degrees C-42 degrees C, and 8 were used for zinc sulfate administration 2 days posterior to intracameral irrigation. Treated model rats were sacrificed at designed intervals after treatment. Right eyes were enucleated immediately, and the retinas were dissected for Western blot. No HSP72 was found in RGCs of normal Wistar rats. In damage control group, slight HSP72 was detected during 6-36 hours posterior to intracameral irrigation. HSP72 was detected significantly expressed in RGCs of both heat shock group and zinc sulfate group. But the dynamics of HSP72 production were quite different in these two treated groups. In heat shock group, HSP72 appeared at the sixth hour after treatment, and increased gradually until its peak production emerged at the 48th hour. HSP72 vanished 8 days later after treatment. In zinc sulfate group, HSP72 expression began 24 hours later after zinc administration, and reached its highest level at the 72th hour posterior to treatment. HSP72 expression then decreased slowly, and disappeared 21 days later after treatment. HSP72 can be induced in RGCs of rat acute glaucoma models with heat stress or zinc sulfate administration. But the dynamics of the HSP72 induction in those two groups were quite different.

  20. Effect of temperature shock and inventory surprises on natural gas and heating oil futures returns.

    PubMed

    Hu, John Wei-Shan; Hu, Yi-Chung; Lin, Chien-Yu

    2014-01-01

    The aim of this paper is to examine the impact of temperature shock on both near-month and far-month natural gas and heating oil futures returns by extending the weather and storage models of the previous study. Several notable findings from the empirical studies are presented. First, the expected temperature shock significantly and positively affects both the near-month and far-month natural gas and heating oil futures returns. Next, significant temperature shock has effect on both the conditional mean and volatility of natural gas and heating oil prices. The results indicate that expected inventory surprises significantly and negatively affects the far-month natural gas futures returns. Moreover, volatility of natural gas futures returns is higher on Thursdays and that of near-month heating oil futures returns is higher on Wednesdays than other days. Finally, it is found that storage announcement for natural gas significantly affects near-month and far-month natural gas futures returns. Furthermore, both natural gas and heating oil futures returns are affected more by the weighted average temperature reported by multiple weather reporting stations than that reported by a single weather reporting station.

  1. Effect of Temperature Shock and Inventory Surprises on Natural Gas and Heating Oil Futures Returns

    PubMed Central

    Hu, John Wei-Shan; Lin, Chien-Yu

    2014-01-01

    The aim of this paper is to examine the impact of temperature shock on both near-month and far-month natural gas and heating oil futures returns by extending the weather and storage models of the previous study. Several notable findings from the empirical studies are presented. First, the expected temperature shock significantly and positively affects both the near-month and far-month natural gas and heating oil futures returns. Next, significant temperature shock has effect on both the conditional mean and volatility of natural gas and heating oil prices. The results indicate that expected inventory surprises significantly and negatively affects the far-month natural gas futures returns. Moreover, volatility of natural gas futures returns is higher on Thursdays and that of near-month heating oil futures returns is higher on Wednesdays than other days. Finally, it is found that storage announcement for natural gas significantly affects near-month and far-month natural gas futures returns. Furthermore, both natural gas and heating oil futures returns are affected more by the weighted average temperature reported by multiple weather reporting stations than that reported by a single weather reporting station. PMID:25133233

  2. Molecular cloning and expression of a human heat shock factor, HSF1

    SciTech Connect

    Rabindran, S.K.; Giorgi, G.; Clos, J.; Wu, C. )

    1991-08-15

    Human cells respond to heat stress by inducing the binding of a preexisting transcriptional activator (heat shock factor, HSF) to DNA. The authors isolated recombinant DNA clones for a human cDNA fragment. The human HSF1 probe was produced by the PCR with primers deduced from conserved amino acids in the Drosophila and yeast HSF sequences. The human HSF1 mRNA is constitutively expressed in HeLa cells under nonshock conditions and encodes a protein with four conserved leucine zipper motifs. Like its counterpart in Drosophila, human HSF1 produced in Escherichia coli in the absence of heat shock is active as a DNA binding transcription factor, suggesting that the intrinsic activity of HSF is under negative control in human cells. Surprisingly, an independently isolated human HSF clone, HSF2, is related to but significantly different from HSF.

  3. Characterization of high-molecular-mass heat shock proteins and 42 degrees C-specific heat shock proteins of murine cells.

    PubMed

    Hatayama, T; Yasuda, K; Nishiyama, E

    1994-10-14

    There are two isoforms of high-molecular-mass heat shock protein (HMM-HSP), hsp105A and hsp105B, in murine FM3A cells. To characterize the HMM-HSPs, we here purified hsp105A and hsp105B, as well as 42 degrees C-specific HSPs that are specifically induced by continuous heating at 42 degrees C, from the cytoplasmic extracts of the FM3A cells heat-shocked at 42 degrees C for 8 h. Digestion of the hsp105A, hsp105B, and 42 degrees C-specific HSPs with lysyl endopeptidase generated 17,000-Da polypeptide fragments in common, and the N-terminal amino acid sequences of the fragments revealed a homology with those of the adenosine binding domain of hsp70 family proteins and actin. Thus, the two isoforms of hsp105 and the 42 degrees C-specific HSPs seemed to be very similar proteins having a ATP binding domain in common, and these HSPs may constitute a HMM-HSP family in murine cells.

  4. Observation of extremely strong shock waves in solids launched by petawatt laser heating

    NASA Astrophysics Data System (ADS)

    Lancaster, K. L.; Robinson, A. P. L.; Pasley, J.; Hakel, P.; Ma, T.; Highbarger, K.; Beg, F. N.; Chen, S. N.; Daskalova, R. L.; Freeman, R. R.; Green, J. S.; Habara, H.; Jaanimagi, P.; Key, M. H.; King, J.; Kodama, R.; Krushelnick, K.; Nakamura, H.; Nakatsutsumi, M.; MacKinnon, A. J.; MacPhee, A. G.; Stephens, R. B.; Van Woerkom, L.; Norreys, P. A.

    2017-08-01

    Understanding hydrodynamic phenomena driven by fast electron heating is important for a range of applications including fast electron collimation schemes for fast ignition and the production and study of hot, dense matter. In this work, detailed numerical simulations modelling the heating, hydrodynamic evolution, and extreme ultra-violet (XUV) emission in combination with experimental XUV images indicate shock waves of exceptional strength (200 Mbar) launched due to rapid heating of materials via a petawatt laser. We discuss in detail the production of synthetic XUV images and how they assist us in interpreting experimental XUV images captured at 256 eV using a multi-layer spherical mirror.

  5. Heat-shock protein 70 expression in shrimp Fenneropenaeus chinensis during thermal and immune-challenged stress

    NASA Astrophysics Data System (ADS)

    Guo, Zhenyu; Jiao, Chuanzhen; Xiang, Jianhai

    2004-12-01

    Using western immunoblotting we obtained heat-shock protein 70 (HSP70) induction data and distribution in different tissues from shrimp Fenneropenaeus chinensis during thermal and immune-challenged stresses. This is probably the first report of the effects of various stressors on the expression of HSP70 in shrimp. HSP70 was prominently induced in hepatopancreas and gills, but not in muscle, eyestalk and hemolymph, when the shrimp were exposed to heat shock and Vibrio anguillavium-challenged stresses. Cold shock and WSSV treatment had no significant effects on the levels of HSP70 expression in all tissues examined. HSP70 induction was greatest after 2 h exposure to heat shock stress, which was elevated after acute heat shock exposure of 10°C above ambient temperature.

  6. Genetic variation in resistance of the preimplantation bovine embryo to heat shock.

    PubMed

    Hansen, Peter J

    2014-12-01

    Reproduction is among the physiological functions in mammals most susceptible to disruption by hyperthermia. Many of the effects of heat stress on function of the oocyte and embryo involve direct effects of elevated temperature (i.e. heat shock) on cellular function. Mammals limit the effects of heat shock by tightly regulating body temperature. This ability is genetically controlled: lines of domestic animals have been developed with superior ability to regulate body temperature during heat stress. Through experimentation in cattle, it is also evident that there is genetic variation in the resistance of cells to the deleterious effects of elevated temperature. Several breeds that were developed in hot climates, including Bos indicus (Brahman, Gir, Nelore and Sahiwal) and Bos taurus (Romosinuano and Senepol) are more resistant to the effects of elevated temperature on cellular function than breeds that evolved in cooler climates (Angus, Holstein and Jersey). Genetic differences are expressed in the preimplantation embryo by Day 4-5 of development (after embryonic genome activation). It is not clear whether genetic differences are expressed in cells in which transcription is repressed (oocytes >100 µm in diameter or embryos at stages before embryonic genome activation). The molecular basis for cellular thermotolerance has also not been established, although there is some suggestion for involvement of heat shock protein 90 and the insulin-like growth factor 1 system. Given the availability of genomic tools for genetic selection, identification of genes controlling cellular resistance to elevated temperature could be followed by progress in selection for those genes within the populations in which they exist. It could also be possible to introduce genes from thermotolerant breeds into thermally sensitive breeds. The ability to edit the genome makes it possible to design new genes that confer protection of cells from stresses like heat shock.

  7. Heat shock inhibits. alpha. -amylase synthesis in barley aleurone without inhibiting the activity of endoplasmic reticulum marker enzymes

    SciTech Connect

    Sticher, L.; Biswas, A.K.; Bush, D.S.; Jones, R.L. )

    1990-02-01

    The effects of heat shock on the synthesis of {alpha}-amylase and on the membranes of the endoplasmic reticulum (ER) of barley (Hordeum vulgare) aleurone were studied. Heat shock, imposed by raising the temperature of incubation from 25{degree}C to 40{degree}C for 3 hours, inhibits the accumulation of {alpha}-amylase and other proteins in the incubation medium of barley aleurone layers treated with gibberellic acid and Ca{sup 2+}. When ER is isolated from heat-shocked aleurone layers, less newly synthesized {alpha}-amylase is found associated with this membrane system. ER membranes, as indicated by the activities of NADH cytochrome c reductase and ATP-dependent Ca{sup 2+} transport, are not destroyed by heat stress, however. Although heat shock did not reduce the activity of ER membrane marker enzymes, it altered the buoyant density of these membranes. Whereas ER from control tissue showed a peak of marker enzyme activity at 27% to 28% sucrose (1.113-1.120 grams per cubic centimeter), ER from heat-shocked tissue peaked at 30% to 32% sucrose (1.127-1.137 grams per cubic centimeter). The synthesis of a group of proteins designated as heat-shock proteins (HSPs) was stimulated by heat shock. These HSPs were localized to different compartments of the aleurone cell. Several proteins ranging from 15 to 30 kilodaltons were found in the ER and the mitochondrial/plasma membrane fractions of heat-shocked cells, but none of the HSPs accumulated in the incubation medium of heat-shocked aleurone layers.

  8. HMX and HNS Shock Sensitivity Correlation with Specific Heat and Reactive Temperature Magnitudes

    NASA Astrophysics Data System (ADS)

    Billingsley, J. P.

    1999-06-01

    A paper in the 1995 SCCM Conference Proceedings(pages 429-432) documents that shock sensitivity of five explosives(TETRYL, PETN,TNT, RDX, and TATB) could be correlated with their specific heats and reactive temperature magnitudes. In fact, it was demonstrated that the shock sensitivity of these explosives was basically related to their reactive temperatures such as T(melt), T(phase change), and T(explode). Two additional explosives(HMX and HNS) have also been investigated and similar results are documented in this article. Thus, this concept has been affirmatively demonstrated via comparisons with experimental results for seven important explosive chemical compounds.

  9. [The role of alkylhydroxybenzenes in the adaptation of Micrococcus luteus to heat shock].

    PubMed

    Stepanenko, I Iu; Muliukin, A L; Kozlova, A N; Nikolaev, Iu A; El'-Registan, G I

    2005-01-01

    The response of the gram-positive bacterium Micrococcus luteus to heat shock (45 degrees C, 15 min) and the adaptogenic activity of alkylhydroxybenzenes (AHB), which are extracellular growth-regulating substances of these bacteria, were studied. The perception of stress and the postshock behavior of M. luteus cells proved to depend on the growth phase and medium. The magnitude of stress response was more pronounced in cultures grown on synthetic medium than in cultures grown on rich medium (nutrient broth). During exponential or linear growth, the cells were more sensitive to the temperature effect than during decelerated growth. In linearly growing M. luteus cultures, the amount of total intra- and extracellular alkylhydroxybenzenes, the anabiosis inducers, increased in response to heat shock. AHB redistribution between cells and culture liquid occurred in the course of stress and after stress. In micrococci exposed to heat shock, an increase in the AHB concentration both in cells and culture liquid is likely a defense reaction of stress resistance. This conclusion was confirmed in the experiments with the addition 30 min before the heat shock of a chemical analogue of the anabiosis inducer, C7-AHB (12 mM), which protected M. luteus cells so that their intense growth was observed after shock without any lag. The protective effect of AHB is a result of their ability to form complexes with enzyme macromolecules and stabilize them. The data obtained extend the knowledge of the stress-protective functions of low-molecular-weight autoregulators and of the role of intercellular communications in the stress response of bacterial cultures.

  10. Shock

    MedlinePlus

    ... the heart cannot pump blood effectively. This may happen after a heart attack. Neurogenic shock is caused by damage to the nervous system. Symptoms of shock include Confusion or lack of alertness Loss of consciousness Sudden and ongoing rapid heartbeat Sweating Pale skin ...

  11. Escherichia coli Heat Shock Protein DnaK: Production and Consequences in Terms of Monitoring Cooking

    PubMed Central

    Seyer, Karine; Lessard, Martin; Piette, Gabriel; Lacroix, Monique; Saucier, Linda

    2003-01-01

    Through use of commercially available DnaK proteins and anti-DnaK monoclonal antibodies, a competitive enzyme-linked immunosorbent assay was developed to quantify this heat shock protein in Escherichia coli ATCC 25922 subjected to various heating regimens. For a given process lethality (F7010 of 1, 3, and 5 min), the intracellular concentration of DnaK in E. coli varied with the heating temperature (50 or 55°C). In fact, the highest DnaK concentrations were found after treatments at the lower temperature (50°C) applied for a longer time. Residual DnaK after heating was found to be necessary for cell recovery, and additional DnaK was produced during the recovery process. Overall, higher intracellular concentrations of DnaK tended to enhance cell resistance to a subsequent lethal stress. Indeed, E. coli cells that had undergone a sublethal heat shock (105 min at 55°C, F7010 = 3 min) accompanied by a 12-h recovery (containing 76,786 ± 25,230 molecules/cell) resisted better than exponentially growing cells (38,500 ± 6,056 molecules/cell) when later heated to 60°C for 50 min (F7010 = 5 min). Results reported here suggest that using stress protein to determine cell adaptation and survival, rather than cell counts alone, may lead to more efficient heat treatment. PMID:12788720

  12. Not changes in membrane fluidity but proteotoxic stress triggers heat shock protein expression in Chlamydomonas reinhardtii.

    PubMed

    Rütgers, Mark; Muranaka, Ligia Segatto; Schulz-Raffelt, Miriam; Thoms, Sylvia; Schurig, Juliane; Willmund, Felix; Schroda, Michael

    2017-09-06

    A conserved reaction of all organisms exposed to heat stress is an increased expression of heat shock proteins (HSPs). Several studies have proposed that HSP expression in heat-stressed plant cells is triggered by an increased fluidity of the plasma membrane. Among the main lines of evidence in support of this model are (i) the degree of membrane lipid saturation was higher in cells grown at elevated temperatures and correlated with a lower amplitude of HSP expression upon a temperature upshift; (ii) membrane fluidizers induce HSP expression at physiological temperatures; (iii) membrane rigidifier dimethylsulfoxide dampens heat-induced HSP expression. Here we tested whether this holds also for Chlamydomonas reinhardtii. We show that heat-induced HSP expression in cells grown at elevated temperatures was reduced because they already contained elevated levels of cytosolic HSP70A/90A that apparently act as negative regulators of heat shock factor 1. We find that membrane rigidifier dimethylsulfoxide impaired translation under heat stress conditions and that membrane fluidizer benzyl alcohol induced HSP expression, but also caused protein aggregation. These findings support the classical model for the cytosolic unfolded protein response, according to which HSP expression is induced by the accumulation of unfolded proteins. Hence, the membrane fluidity model should be reconsidered. This article is protected by copyright. All rights reserved.

  13. Prostaglandin E synthase interacts with inducible heat shock protein 70 after heat stress in bovine primary dermal fibroblast cells.

    PubMed

    Richter, Constanze; Viergutz, Torsten; Schwerin, Manfred; Weitzel, Joachim M

    2015-01-01

    Exposure to heat stress in dairy cows leads to undesired side effects that are reflected by complex alterations in endocrine parameters, such as reduced progesterone, estradiol, and thyroid hormone concentrations. These endocrine maladaptation leads to failure to resume cyclicity, a poor uterine environment and inappropriate immune responses in postpartum dairy cows. Prostaglandins (PG's) are lipid mediators, which serve as signal molecules in response to various external stimuli as well as to cell-specific internal signal molecules. A central role in PG synthesis plays prostaglandin E synthase (PGES) that catalyzes the isomerization of PGH2 to PGE2 .The present study was conducted to investigate heat stress associated PGES expression. Expression of PGES and inducible heat shock protein 70 (HSP70), as a putative chaperonic protein, was studied in bovine primary fibroblasts under different heat shock conditions. Bovine primary fibroblasts produce PGE2 at homoiothermical norm temperature (38.5°C in bovine), but reduce PGE2 production rates under extreme heat stress (at 45°C for 6 h). By contrast, PGE2 production rates are maintained after a milder heat stress (at 41.5°C for 6 h). PGE2 synthesis is abolished by application of cyclooxygenase inhibitor indomethacin, indicating de novo synthesis. Heat stress increases HSP70 but not PGES protein concentrations. HSP70 physically interacts with PGES and the PGES-HSP70 complex did not dissociate upon heat stress at 45°C even after returning the cells to 37°C. The PGE2 production negatively correlates with the portion of PGES-HSP70 complex. These results suggest a protein interaction between HSP70 and PGES in dermal fibroblast cells. Blockage of PGES protein by HSP70 seems to interfere with the regulatory processes essential for cellular adaptive protection. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  14. Sex Differences in Heat Shock Protein 72 Expression in Peripheral Blood Mononuclear Cells to Acute Exercise in the Heat

    PubMed Central

    Gillum, Trevor; Kuennen, Matthew; Gourley, Cheryl; Dokladny, Karol; Schneider, Suzanne; Moseley, Pope

    2013-01-01

    Background: Heat shock protein 72 (Hsp72) is responsible for maintaining critical cellular function during heat stress. Hsp72 confers thermotolerance and may play a role in heat acclimation. Animal research suggests a difference between sexes in Hsp72 expression in response to exercise, however, human data is lacking. Objectives: To determine sex differences in intracellular heat shock protein 72 (Hsp72) following exercise in the heat. Patients and Methods: Nine non-heat acclimated women with normal menstrual cycles (VO2pk 58 ± 5 mL.kgFFM-1.min-1) and nine non-heat acclimated men (VO2pk 60 ± 7 ml.kgFFM-1.min-1) completed 2 treadmill bouts at 60% VO2pk for 60 min in a 42°C, 20% RH environment. Women were tested in follicular (fol) and luteal (lut) phases. The duplicate trials were separated by 12 days for men and women. Blood samples were drawn pre, immediately post, 1, and 4 hrs post-exercise. Results: Men and women differed in their Hsp72 response after exercise (time X sex X trial interaction; P < 0.05). Men increased Hsp72 after exercise more than women. Both men and women produced less Hsp72 during trial 2 compared to trial 1. Estrogen (r = 0.24; P > 0.05) and progesterone (r = 0.27, P > 0.05) concentrations were not correlated with Hsp72. Conclusion: Our findings suggest that men and women differ in their cellular stress response. Men up-regulated Hsp72 after a single bout of exercise in the heat, which persists for 12 days, suggesting an accumulation of Hsp72 which may lead to acquired cellular thermotolerance. PMID:24719632

  15. Differential heat shock tolerance and expression of heat shock inducible proteins in two stored-product psocids

    USDA-ARS?s Scientific Manuscript database

    The recent recognition of psocid infestations as a major concern in stored products, where their management with fumigants and conventional insecticides has proven difficult, and also the recent reemergence of heat treatment as a potential tactic for control of stored-product insects led to the pres...

  16. Heat shock transcription factor HSF1 is required for survival of sensory hair cells against acoustic overexposure.

    PubMed

    Sugahara, Kazuma; Inouye, Sachiye; Izu, Hanae; Katoh, Yumiko; Katsuki, Kensaku; Takemoto, Tsuyoshi; Shimogori, Hiroaki; Yamashita, Hiroshi; Nakai, Akira

    2003-08-01

    To analyze the role of heat shock response in the cochleae, we induced major heat shock proteins, Hsp70, Hsp90, and Hsp27 by perfusion of hot saline into the middle ear cavity (called 'local heat shock') in guinea pigs. Hsps were induced in almost all of the cochlear cells including the sensory hair cells in the organ of Corti. We showed that loss of both the sensory hair cells and the auditory function induced by acoustic overexposure was inhibited by pretreatment of the inner ear with local heat shock. To examine the role of heat shock transcription factor 1(HSF), which activates heat shock genes in response to heat shock, in the protection of sensory hair cells, we analyzed acoustic injury in HSF1-null mice. We found that the loss of sensory hair cells was more significant in HSF1-null mice compared with that of wild-type mice when mice were subjected to acoustic overexposure. These results indicate that HSF1 is required for survival of the sensory hair cells against acoustic overexposure.

  17. Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation

    PubMed Central

    Shinkawa, Toyohide; Tan, Ke; Fujimoto, Mitsuaki; Hayashida, Naoki; Yamamoto, Kaoru; Takaki, Eiichi; Takii, Ryosuke; Prakasam, Ramachandran; Inouye, Sachiye; Mezger, Valerie; Nakai, Akira

    2011-01-01

    Heat shock response is characterized by the induction of heat shock proteins (HSPs), which facilitate protein folding, and non-HSP proteins with diverse functions, including protein degradation, and is regulated by heat shock factors (HSFs). HSF1 is a master regulator of HSP expression during heat shock in mammals, as is HSF3 in avians. HSF2 plays roles in development of the brain and reproductive organs. However, the fundamental roles of HSF2 in vertebrate cells have not been identified. Here we find that vertebrate HSF2 is activated during heat shock in the physiological range. HSF2 deficiency reduces threshold for chicken HSF3 or mouse HSF1 activation, resulting in increased HSP expression during mild heat shock. HSF2-null cells are more sensitive to sustained mild heat shock than wild-type cells, associated with the accumulation of ubiquitylated misfolded proteins. Furthermore, loss of HSF2 function increases the accumulation of aggregated polyglutamine protein and shortens the lifespan of R6/2 Huntington's disease mice, partly through αB-crystallin expression. These results identify HSF2 as a major regulator of proteostasis capacity against febrile-range thermal stress and suggest that HSF2 could be a promising therapeutic target for protein-misfolding diseases. PMID:21813737

  18. Heat Shock Proteins 70kDa, Eosinophil Cationic Protein, and Nitric Oxide During Chronic Superficial Keratitis in Dogs.

    PubMed

    Urban-Chmiel, Renata; Balicki, Ireneusz; Wernicki, Andrzej

    2017-03-01

    The objective of the study is to determine the levels of eosinophil cationic protein (ECP), heat shock proteins 70, and nitric oxide ions measured as nitrite ions (Griess reaction) in dogs with chronic superficial keratitis (CSK). The study was conducted on 24 dogs with CSK. Blood sera from the animals were tested for concentrations of heat shock proteins 70, ECP, and nitrite ions before treatment and again 5 weeks and 6 months after treatment. Dogs with CSK were treated for 6 months with various regimes involving the use of ophthalmic drops containing dexamethasone, dimethyl sulfoxide, and cyclosporine. The control group consisted of 16 clinically healthy German Shepherds. The results obtained indicated a significant (P ≤ 0.05) elevation in the concentrations of heat shock proteins 70 and nitrite ions in dogs with CSK in comparison to healthy dogs and dogs after 5 weeks of therapy. After 6 months of treatment, concentrations of heat shock proteins 70, ECP, and nitrite ions had fallen below pretreatment values. Significant correlations were found between concentrations of heat shock proteins 70, ECP, and nitrite ions in healthy animals and animals with CSK. The elevated concentrations of heat shock proteins 70, ECP, and nitrite ions in dogs with CSK may indicate that the disease was both localized and systemic. The significant correlation between levels of heat shock proteins 70 and nitrite ions suggests that these parameters may be used as indirect indicators of CSK. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Fish in hot water: hypoxaemia does not trigger catecholamine mobilization during heat shock in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Currie, S; Ahmady, E; Watters, M A; Perry, S F; Gilmour, K M

    2013-06-01

    Rainbow trout (Oncorhynchus mykiss) exposed to an acute heat shock (1 h at 25 °C after raising water temperature from 13 °C to 25 °C over 4 h) mount a significant catecholamine response. The present study investigated the proximate mechanisms underlying catecholamine mobilization. Trout exposed to heat shock in vivo exhibited a significant reduction in arterial O(2) tension, but arterial O(2) concentration was not affected by heat shock, nor was catecholamine release during heat shock prevented by prior and concomitant exposure to hyperoxia (to prevent the fall in arterial O(2) tension). Thus, catecholamine mobilization probably was not triggered by impaired blood O(2) transport. Heat-shocked trout also exhibited an elevation of arterial CO(2) tension coupled with a fall in arterial pH, but these factors are not expected to trigger catecholamine release. The changes in blood O(2) and CO(2) tension occurred despite a significant hyperventilatory response to heat shock. Future studies should investigate whether catecholamine mobilization during heat shock in rainbow trout is triggered by a specific effect of high temperature activating the sympathetic nervous system via a thermosensitive transient receptor potential channel.

  20. Global Analysis of Heat Shock Response in Desulfovibrio vulgaris Hildenborough.

    SciTech Connect

    Chhabra, S.R.; He, Q.; Huang, K.H.; Gaucher, S.P.; Alm, E.J.; He,Z.; Hadi, M.Z.; Hazen, T.C.; Wall, J.D.; Zhou, J.; Arkin, A.P.; Singh, A.K.

    2005-09-16

    Desulfovibrio vulgaris Hildenborough belongs to a class ofsulfate-reducing bacteria (SRB) and is found ubiquitously in nature.Given the importance of SRB-mediated reduction for bioremediation ofmetal ion contaminants, ongoing research on D. vulgaris has been in thedirection of elucidating regulatory mechanisms for this organism under avariety of stress conditions. This work presents a global view of thisorganism's response to elevated growth temperature using whole-celltranscriptomics and proteomics tools. Transcriptional response (1.7-foldchange or greater; Z>1.5) ranged from 1,135 genes at 15 min to 1,463genes at 120 min for a temperature up-shift of 13oC from a growthtemperature of 37oC for this organism and suggested both direct andindirect modes of heat sensing. Clusters of orthologous group categoriesthat were significantly affected included posttranslationalmodifications; protein turnover and chaperones (up-regulated); energyproduction and conversion (down-regulated), nucleotide transport,metabolism (down-regulated), and translation; ribosomal structure; andbiogenesis (down-regulated). Analysis of the genome sequence revealed thepresence of features of both negative and positive regulation whichincluded the CIRCE element and promoter sequences corresponding to thealternate sigma factors ?32 and ?54. While mechanisms of heat shockcontrol for some genes appeared to coincide with those established forEscherichia coli and Bacillus subtilis, the presence of unique controlschemes for several other genes was also evident. Analysis of proteinexpression levels using differential in-gel electrophoresis suggestedgood agreement with transcriptional profiles of several heat shockproteins, including DnaK (DVU0811), HtpG (DVU2643), HtrA (DVU1468), andAhpC (DVU2247). The proteomics study also suggested the possibility ofposttranslational modifications in the chaperones DnaK, AhpC, GroES(DVU1977), and GroEL (DVU1976) and also several periplasmic ABCtransporters.

  1. Heat shock increases oxidative stress to modulate growth and physico-chemical attributes in diverse maize cultivars

    NASA Astrophysics Data System (ADS)

    Hussain, Iqbal; Ashraf, Muhammad Arslan; Rasheed, Rizwan; Iqbal, Muhammad; Ibrahim, Muhammad; Ashraf, Shamila

    2016-10-01

    The present investigation was conducted to appraise the physiochemical adjustments in contrasting maize cultivars, namely, PakAfgoi (tolerant) and EV-5098 (sensitive) subjected to heat shock. Seven-day-old seedlings were exposed to heat shock for different time intervals (1, 3, 6, 24, 48 and 72 h) and data for various physiochemical attributes determined to appraise time course changes in maize. After 72 h of heat shock, the plants were grown under normal conditions for 5 d and data for different growth attributes and photosynthetic pigments recorded. Exposure to heat shock reduced growth and photosynthetic pigments in maize cultivars. The plants exposed to heat shock for up to 3 h recovered growth and photosynthetic pigments when stress was relieved. A time course rise in the relative membrane permeability, hydrogen peroxide (H2O2) and malondialdehyde contents was recorded particularly in the EV-5098 indicating that heat shock-induced oxidative stress. Activities of different enzymatic antioxidants greatly altered due to heat shock. For instance, an increase in superoxide dismutase activity was recorded in both maize cultivars. The activity of ascorbate peroxidase was greater in Pak-Afgoi. However, the peroxidase and catalase activities were higher in plants of EV-5098. Heat shock caused a significant rise in the proline and decline in the total free amino acids. Overall, the performance of Pak-Afgoi was better in terms of having lesser oxidative damage and greater cellular levels of proline. The results suggested that oxidative stress indicators (relative membrane permeability, H2O2 and malondialdehyde) and proline can be used as markers for heat shock tolerant plants.

  2. The role of Hsp27 and actin in the regulation of movement in human cancer cells responding to heat shock

    PubMed Central

    Doshi, Bindi M.; Hightower, Lawrence E.

    2009-01-01

    Human heat shock 27-kDa protein 1 (HSPB1)/heat shock protein (Hsp) 27 is a small heat shock protein which is thought to have several roles within the cell. One of these roles includes regulating actin filament dynamics in cell movement, since Hsp27 has previously been found to inhibit actin polymerization in vitro. In this study, the role of Hsp27 in regulating actin filament dynamics is further investigated. Hsp27 protein levels were reduced using siRNA in SW480 cells, a human colon cancer cell line. An in vitro wound closure assay showed that cells with knocked down Hsp27 levels were unable to close wounds, indicating that this protein is involved in regulating cell motility. Immunoprecipitation pull down assays were done, to observe if and when Hsp27 and actin are in the same complex within the cell, before and after heat shock. At all time points tested, Hsp27 and actin were present in the same cell lysate fraction. Lastly, indirect immunostaining was done before and after heat shock to evaluate Hsp27 and actin interaction in cells. Hsp27 and actin showed colocalization before heat shock, little association 3 h after heat shock, and increased association 24 h after heat shock. Cytoprotection was observed as early as 3 h after heat shock, yet cells were still able to move. These results show that Hsp27 and actin are in the same complex in cells and that Hsp27 is important for cell motility. Electronic supplementary material The online version of this article (doi:10.1007/s12192-008-0098-1) contains supplementary material, which is available to authorized users. PMID:19224398

  3. Microinjection of ubiquitin: changes in protein degradation in HeLa cells subjected to heat-shock

    SciTech Connect

    Carlson, N.; Rogers, S.; Rechsteiner, M.

    1987-03-01

    Ubiquitin was radiolabeled by reaction with /sup 125/I-Bolton-Hunter reagent and introduced into HeLa cells using erythrocyte-mediated microinjection. The injected cells were then incubated at 45 degrees C for 5 min (reversible heat-shock) or for 30 min (lethal heat-shock). After either treatment, there were dramatic changes in the levels of ubiquitin conjugates. Under normal culture conditions, approximately 10% of the injected ubiquitin is linked to histones, 40% is found in conjugates with molecular weights greater than 25,000, and the rest is unconjugated. After heat-shock, the free ubiquitin pool and the level of histone-ubiquitin conjugates decreased rapidly, and high molecular weight conjugates predominated. Formation of large conjugates did not require protein synthesis; when analyzed by two-dimensional electrophoresis, the major conjugates did not co-migrate with heat-shock proteins before or after thermal stress. Concomitant with the loss of free ubiquitin, the degradation of endogenous proteins, injected hemoglobin, BSA, and ubiquitin was reduced in heat-shocked HeLa cells. After reversible heat-shock, the decrease in proteolysis was small, and both the rate of proteolysis and the size of the free ubiquitin pool returned to control levels upon incubation at 37 degrees C. In contrast, neither proteolysis nor free ubiquitin pools returned to control levels after lethal heat-shock. However, lethally heat-shocked cells degraded denatured hemoglobin more rapidly than native hemoglobin and ubiquitin-globin conjugates formed within them. Therefore, stabilization of proteins after heat-shock cannot be due to the loss of ubiquitin conjugation or inability to degrade proteins that form conjugates with ubiquitin.

  4. Microinjection of ubiquitin: changes in protein degradation in HeLa cells subjected to heat-shock.

    PubMed

    Carlson, N; Rogers, S; Rechsteiner, M

    1987-03-01

    Ubiquitin was radiolabeled by reaction with 125I-Bolton-Hunter reagent and introduced into HeLa cells using erythrocyte-mediated microinjection. The injected cells were then incubated at 45 degrees C for 5 min (reversible heat-shock) or for 30 min (lethal heat-shock). After either treatment, there were dramatic changes in the levels of ubiquitin conjugates. Under normal culture conditions, approximately 10% of the injected ubiquitin is linked to histones, 40% is found in conjugates with molecular weights greater than 25,000, and the rest is unconjugated. After heat-shock, the free ubiquitin pool and the level of histone-ubiquitin conjugates decreased rapidly, and high molecular weight conjugates predominated. Formation of large conjugates did not require protein synthesis; when analyzed by two-dimensional electrophoresis, the major conjugates did not co-migrate with heat-shock proteins before or after thermal stress. Concomitant with the loss of free ubiquitin, the degradation of endogenous proteins, injected hemoglobin, BSA, and ubiquitin was reduced in heat-shocked HeLa cells. After reversible heat-shock, the decrease in proteolysis was small, and both the rate of proteolysis and the size of the free ubiquitin pool returned to control levels upon incubation at 37 degrees C. In contrast, neither proteolysis nor free ubiquitin pools returned to control levels after lethal heat-shock. However, lethally heat-shocked cells degraded denatured hemoglobin more rapidly than native hemoglobin and ubiquitin-globin conjugates formed within them. Therefore, stabilization of proteins after heat-shock cannot be due to the loss of ubiquitin conjugation or inability to degrade proteins that form conjugates with ubiquitin.

  5. Wind Observations of Wave Heating and/or Particle Energization at Supercritical Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn Bruce, III; Szabo, Adam; Koval, Andriy; Cattell, Cynthia A.; Kellogg, Paul J.; Goetz, Keith; Breneman, Aaron; Kersten, Kris; Kasper, Justin C.; Pulupa, Marc

    2011-01-01

    We present the first observations at supercritical interplanetary shocks of large amplitude (> 100 mV/m pk-pk) solitary waves, approx.30 mV/m pk-pk waves exhibiting characteristics consistent with electron Bernstein waves, and > 20 nT pk-pk electromagnetic lower hybrid-like waves, with simultaneous evidence for wave heating and particle energization. The solitary waves and the Bernstein-like waves were likely due to instabilities driven by the free energy provided by reflected ions [Wilson III et al., 2010]. They were associated with strong particle heating in both the electrons and ions. We also show a case example of parallel electron energization and perpendicular ion heating due to a electromagnetic lower hybrid-like wave. Both studies provide the first experimental evidence of wave heating and/or particle energization at interplanetary shocks. Our experimental results, together with the results of recent Vlasov [Petkaki and Freeman, 2008] and PIC [Matsukyo and Scholer, 2006] simulations using realistic mass ratios provide new evidence to suggest that the importance of wave-particle dissipation at shocks may be greater than previously thought.

  6. Isolation and functional analysis of chicken 90-kDa heat shock protein gene promoter.

    PubMed Central

    Vourc'h, C; Binart, N; Chambraud, B; David, J P; Jérôme, V; Baulieu, E E; Catelli, M G

    1989-01-01

    We report the nucleotide sequence of a 2652 bp derived from a chicken 90-kDa heat shock protein (hsp 90) genomic clone. This fragment contains 890 bp of the 5' flanking region and 1762 bp of structural gene sequence encoding the first 85 amino acids of the protein. The start site of transcription was determined by primer extension and RNase mapping. Two introns have been identified. The first intron presents two features in common with the unique intron of the hsp 83 of drosophila: its location just before the ATG initiation codon and its length of approximately 1.3 Kb. The 5' flanking region contains a TATAA element, a CCAAT box and several putative cis-regulatory elements that might account for the basal level of expression and developmental regulation of the gene. Functional analyses show that hsp 90 gene expression is constitutive and heat inducible and that a full heat shock response requires the cooperativity of two distinct blocks of overlapping heat shock response elements. Images PMID:2762125

  7. Heat Shock Factor Increases the Reinitiation Rate from Potentiated Chromatin Templates†

    PubMed Central

    Sandaltzopoulos, Raphael; Becker, Peter B.

    1998-01-01

    Transcription by RNA polymerase II is highly regulated at the level of initiation and elongation. Well-documented transcription activation mechanisms, such as the recruitment of TFIID and TFIIB, control the early phases of preinitiation complex formation. The heat shock genes provide an example for transcriptional regulation at a later step: in nuclei TFIID can be detected at the TATA box prior to heat induction. Using cell-free systems for chromatin reconstitution and transcription, we have analyzed the mechanisms by which heat shock factor (HSF) increases transcription of heat shock genes in chromatin. HSF affected transcription of naked DNA templates in multiple ways: (i) by speeding up the rate of preinitiation complex formation, (ii) by increasing the number of productive templates, and (iii) by increasing the reinitiation rate. Under the more physiological conditions of potentiated chromatin templates, HSF affected only the reinitiation rate. Activator-dependent reinitiation of transcription, obviating the slow assembly of the TFIID-TFIIA complex on a promoter, may be especially crucial for genes requiring a fast response to inducers. PMID:9418883

  8. Role of Heat-Shock Proteins in Cellular Function and in the Biology of Fungi

    PubMed Central

    Tiwari, Shraddha; Thakur, Raman; Shankar, Jata

    2015-01-01

    Stress (biotic or abiotic) is an unfavourable condition for an organism including fungus. To overcome stress, organism expresses heat-shock proteins (Hsps) or chaperons to perform biological function. Hsps are involved in various routine biological processes such as transcription, translation and posttranslational modifications, protein folding, and aggregation and disaggregation of proteins. Thus, it is important to understand holistic role of Hsps in response to stress and other biological conditions in fungi. Hsp104, Hsp70, and Hsp40 are found predominant in replication and Hsp90 is found in transcriptional and posttranscriptional process. Hsp90 and Hsp70 in combination or alone play a major role in morphogenesis and dimorphism. Heat stress in fungi expresses Hsp60, Hsp90, Hsp104, Hsp30, and Hsp10 proteins, whereas expression of Hsp12 protein was observed in response to cold stress. Hsp30, Hsp70, and Hsp90 proteins showed expression in response to pH stress. Osmotic stress is controlled by small heat-shock proteins and Hsp60. Expression of Hsp104 is observed under high pressure conditions. Out of these heat-shock proteins, Hsp90 has been predicted as a potential antifungal target due to its role in morphogenesis. Thus, current review focuses on role of Hsps in fungi during morphogenesis and various stress conditions (temperature, pH, and osmotic pressure) and in antifungal drug tolerance. PMID:26881084

  9. Significance of heat shock proteins in the skin upon UV exposure.

    PubMed

    Jonak, Constanze; Klosner, Gabriele; Trautinger, Franz

    2009-01-01

    The expression of heat shock proteins (Hsp) expression is induced in all cells by exposure to heat and other environmental stress and Hsp can protect cells from damage through further exposure. Hsp are highly conserved and it is likely that they are essential for survival in a potentially harmful environment. Most Hsp are molecular chaperones sensing unfolded proteins and mediating their re-folding, transport, and interaction. In human epidermis Hsp are associated with differentiation, photoprotection, and skin disease. Recent research has mainly focused on the 27kD and 72kD Hsp that are constitutively expressed in keratinocytes. Cell death induced by ultraviolet radiation (UV) can be inhibited by previous heat shock and UV itself can induce Hsp experimentally. Regulation of Hsp can be pharmacologically modified and topical and systemic inducers and inhibitors of Hsp expression are under development. Whether phototherapy exerts its clinical efficacy by modulation of Hsp has not been sufficiently studied. The UV-wavelength ranges, -intensities and -doses that are required to interfere with the heat shock response in the skin still remain to be elucidated.

  10. Increased light intensity induces heat shock protein Hsp60 in coral species.

    PubMed

    Chow, Ari M; Ferrier-Pagès, Christine; Khalouei, Sam; Reynaud, Stéphanie; Brown, Ian R

    2009-09-01

    The effect of increased light intensity and heat stress on heat shock protein Hsp60 was examined in two coral species using a branched coral and a laminar coral, selected for their different resistance to environmental perturbation. Transient Hsp60 induction was observed in the laminar coral following either light or thermal stress. Sustained induction was observed when these stresses were combined. The branched coral exhibited comparatively weak transient Hsp60 induction after heat stress and no detectable induction following light stress, consistent with its susceptibility to bleaching in native environments compared to the laminar coral. Our observations also demonstrate that increased light intensity and heat stress exhibited a greater negative impact on the photosynthetic capacity of environmentally sensitive branched coral than the more resistant laminar coral. This supports a correlation between stress induction of Hsp60 and (a) ability to counter perturbation of photosynthetic capacity by light and heat stress and (b) resistance to environmentally induced coral bleaching.

  11. Heat shock protein synthesis and trehalose accumulation are not required for induced thermotolerance in depressed Saccharomyces cerevisiae.

    PubMed

    Gross, C; Watson, K

    1996-03-27

    Intrinsic and heat shock induced thermotolerance of Saccharomyces cerevisiae was investigated in cells grown on glucose and acetate supplemented media. Heat shocked cells (37 degrees C/30 min), in either medium, exhibited induced synthesis of heat shock proteins (hsp) and trehalose. In all cases, with the notable exception of repressed cells of a relatively thermosensitive strain, heat shock acquisition of thermotolerance also occurred in the absence of protein synthesis and coincident decrease in trehalose accumulation. Results indicted that the marked increase in thermotolerance exhibited by non-fermenting (acetate) cells compared with fermenting (glucose) cells was not closely correlated with levels of hsp or trehalose. It was concluded that mechanisms for intrinsic and induced thermotolerance appear to be different and that growth on acetate endows cells with a biochemical predisposition, other than hsp or trehalose, that confers intrinsic tolerance, a factor which may be subject to heat induced modification.

  12. Small Heat Shock Proteins Can Release Light Dependence of Tobacco Seed during Germination1[OPEN

    PubMed Central

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia

    2015-01-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. PMID:25604531

  13. Small heat shock proteins can release light dependence of tobacco seed during germination.

    PubMed

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia; Hong, Choo Bong

    2015-03-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination.

  14. The Role of the Membrane-Initiated Heat Shock Response in Cancer

    PubMed Central

    Bromberg, Zohar; Weiss, Yoram

    2016-01-01

    The heat shock response (HSR) is a cellular response to diverse environmental and physiological stressors resulting in the induction of genes encoding molecular chaperones, proteases, and other proteins that are essential for protection and recovery from cellular damage. Since different perturbations cause accumulation of misfolded proteins, cells frequently encounter fluctuations in the environment which alter proteostasis. Since tumor cells use their natural adaptive mechanism of coping with stress and misfolded proteins, in recent years, the proteostasis network became a promising target for anti-tumor therapy. The membrane is the first to be affected by heat shock and therefore may be the first one to sense heat shock. The membrane also connects between the extracellular and the intracellular signals. Hence, there is a “cross talk” between the HSR and the membranes since heat shock can induce changes in the fluidity of membranes, leading to membrane lipid remodeling that occurs in several diseases such as cancer. During the last decade, a new possible therapy has emerged in which an external molecule is used that could induce membrane lipid re-organization. Since at the moment there are very few substances that regulate the HSR effectively, an alternative way has been searched to modulate chaperone activities through the plasma membrane. Recently, we suggested that the use of the membrane Transient Receptor Potential Vanilloid-1 (TRPV1) modulators regulated the HSR in cancer cells. However, the primary targets of the signal transduction pathway are yet un-known. This review provides an overview of the current literature regarding the role of HSR in membrane remodeling in cancer since a deep understanding of the membrane biology in cancer and the membrane heat sensing pathway is essential to design novel efficient therapies. PMID:27200359

  15. Bovine oocytes show a higher tolerance to heat shock in the warm compared with the cold season of the year.

    PubMed

    Maya-Soriano, M J; López-Gatius, F; Andreu-Vázquez, C; López-Béjar, M

    2013-01-15

    Heat stress is especially harmful for bovine ovarian follicle development and oocyte competence. In this study, we assessed the effects of heat shock on oocyte maturation in oocytes collected during the cold (February-March; n = 114) or warm (May-June; n = 116) periods of the year. In both cases, cumulus-oocyte complexes were matured under control (38 °C) and heat shock conditions (41.5 °C, 18-21 h of maturation). For each oocyte, nuclear stage, cortical granule distribution and steroidogenic activity of cumulus cells were evaluated. Based on the odds ratio, heat-shocked oocytes were 26.83 times more likely to show an anomalous metaphase II morphology. When matured under heat shock conditions, oocytes obtained in both seasons were similarly affected in terms of nuclear maturation, whereas a seasonal effect was observed on cytoplasmic maturation. For oocytes collected during the cold season, the likelihood to show an anomalous maturation was 25.96 times higher when exposed to the heat treatment than when matured under control conditions. By contrast, oocytes collected during the warm season matured under control or heat shock did not show significant risk of showing an anomalous cytoplasmic maturation. Our findings indicate an increased rate of premature oocytes in response to heat shock as well as a higher tolerance to this stress of oocytes harvested in the warm season compared with those collected in the colder period.

  16. Generation of shock lamellae and melting in rocks by lightning-induced shock waves and electrical heating

    NASA Astrophysics Data System (ADS)

    Chen, Jiangzhi; Elmi, Chiara; Goldsby, David; Gieré, Reto

    2017-09-01

    The very rapid energy release from impact events, such as those resulting from lightning strikes or meteorites, can drive a variety of physical and chemical processes which alter rocks and result in the formation of natural glasses (i.e., fulgurites and tektites). Fulgurite is the vitrified soil, sand, or rock resulting from lightning strikes. A thunderbolt is associated with air temperatures of up to 105 K, which can heat rocks to >2000 K within tens of microseconds. The rapid fusing and subsequent quenching of the surface of the rock leaves a distinctive, thin, garbled coating composed of a glassy to fine-grained porous material. Previous studies on rock fulgurites found planar deformation features in quartz crystals within the target rock substrate, evidence of strong shock waves during fulgurite formation. In this paper, we simulated the shock pressure and temperature caused by an idealized lightning impact on rocks and compared the model results with observations on rock fulgurites from the literature. Our model results indicate that a lightning strike can cause >7 GPa pressure on the rock surface, generate a layer of fulgurite (of radius ˜9 cm), and leave a burned region (of radius ˜11 cm). The fulgurites found on rock surfaces share many features with sand fulgurites, but their spatial distribution is completely different, as sand fulgurites are hollow tube structures. Our study on rock fulgurites provides an indirect constraint on the energy of a lightning event and also demonstrates that the presence of shock features in rocks cannot be taken as unequivocal evidence for impact events.

  17. Heat-induced mortality and expression of heat shock proteins in Colorado potato beetles treated with imidacloprid.

    PubMed

    Chen, Jie; Kitazumi, Ai; Alpuerto, Jasper; Alyokhin, Andrei; de Los Reyes, Benildo

    2016-08-01

    The Colorado potato beetle is an important pest of solanaceous plants in the Northern Hemisphere. Better understanding of its physiological responses to temperature stress and their interactions with still-prevalent chemical control has important implications for the management of this insect. We measured mortality and expression of the Hsp70 heat shock proteins in the Colorado potato beetle larvae exposed to sublethal concentration of the commonly used insecticide imidacloprid, and to supraoptimal temperatures. Both turned out to be significant stress factors, although induction of Hsp70 by imidacloprid observed in the present study was low compared to its induction by the heat. The two factors also interacted with each other. At an extreme temperature of 43 °C, exposure to a sublethal dose of imidacloprid resulted in a significant rise in larval mortality, which was not observed at an optimal temperature of 25 °C. Heat-stressed larvae also failed to respond to imidacloprid by producing more Hsp70. These findings suggest that when field rates of insecticides become insufficient for killing the exposed beetles under optimal temperature conditions due to the evolution of resistance in beetle populations, they may still reduce the probability of resistant beetles surviving the heat shock created by using propane flamers as a rescue treatment. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  18. POST-SHOCK-REVIVAL EVOLUTION IN THE NEUTRINO-HEATING MECHANISM OF CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Yamamoto, Yu; Yamada, Shoichi; Fujimoto, Shin-ichiro; Nagakura, Hiroki

    2013-07-01

    We perform experimental simulations with spherical symmetry and axisymmetry to understand the post-shock-revival evolution of core-collapse supernovae. Assuming that the stalled shock wave is relaunched by neutrino heating and employing the so-called light bulb approximation, we induce shock revival by raising the neutrino luminosity up to the critical value, which is determined by dynamical simulations. A 15 M{sub Sun} progenitor model is employed. We incorporate nuclear network calculations with a consistent equation of state in the simulations to account for the energy release by nuclear reactions and their feedback to hydrodynamics. Varying the shock-relaunch time rather arbitrarily, we investigate the ensuing long-term evolutions systematically, paying particular attention to the explosion energy and nucleosynthetic yields as a function of relaunch time, or equivalently, the accretion rate at shock revival. We study in detail how the diagnostic explosion energy approaches the asymptotic value and which physical processes contribute in what proportions to the explosion energy. Furthermore, we study the dependence of physical processes on the relaunch time and the dimension of dynamics. We find that the contribution of nuclear reactions to the explosion energy is comparable to or greater than that of neutrino heating. In particular, recombinations are dominant over burnings in the contributions of nuclear reactions. Interestingly, one-dimensional (1D) models studied in this paper cannot produce the appropriate explosion energy and nickel mass simultaneously; nickels are overproduced. This problem is resolved in 2D models if the shock is relaunched at 300-400 ms after the bounce.

  19. BAG3 Is a Modular, Scaffolding Protein that physically Links Heat Shock Protein 70 (Hsp70) to the Small Heat Shock Proteins.

    PubMed

    Rauch, Jennifer N; Tse, Eric; Freilich, Rebecca; Mok, Sue-Ann; Makley, Leah N; Southworth, Daniel R; Gestwicki, Jason E

    2017-01-06

    Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that are important for binding and stabilizing unfolded proteins. In this task, the sHsps have been proposed to coordinate with ATP-dependent chaperones, including heat shock protein 70 (Hsp70). However, it is not yet clear how these two important components of the chaperone network are linked. We report that the Hsp70 co-chaperone, BAG3, is a modular, scaffolding factor to bring together sHsps and Hsp70s. Using domain deletions and point mutations, we found that BAG3 uses both of its IPV motifs to interact with sHsps, including Hsp27 (HspB1), αB-crystallin (HspB5), Hsp22 (HspB8), and Hsp20 (HspB6). BAG3 does not appear to be a passive scaffolding factor; rather, its binding promoted de-oligomerization of Hsp27, likely by competing for the self-interactions that normally stabilize large oligomers. BAG3 bound to Hsp70 at the same time as Hsp22, Hsp27, or αB-crystallin, suggesting that it might physically bring the chaperone families together into a complex. Indeed, addition of BAG3 coordinated the ability of Hsp22 and Hsp70 to refold denatured luciferase in vitro. Together, these results suggest that BAG3 physically and functionally links Hsp70 and sHsps.

  20. Heat shock protein 70 gene family in the Glanville fritillary butterfly and their response to thermal stress.

    PubMed

    Luo, Shiqi; Ahola, Virpi; Shu, Chang; Xu, Chongren; Wang, Rongjiang

    2015-02-10

    Temperature variation in the environment is a great challenge to organisms. Induction of heat shock protein 70 (HSP70) is a common genetic mechanism to cope with thermal stress. The Glanville fritillary butterfly (Melitaea cinxia) is a model species in population and evolutionary biology, and its behavior and life history are greatly influenced by ambient temperature. We cloned and sequenced the full coding sequences of seven hsp70 genes from the Glanville fritillary. Of those genes, McHsc70-1 and McHsc70-2 were identified as heat shock cognate 70 (hsc70), of which the latter located in endoplasmic reticulum. We analyzed the expression patterns of different hsp70s under various thermal stresses using quantitative PCR. Heat shock at 40°C for 2h induced high expression of McHsp70-1, McHsp70-2 and McHsc70-2. Only McHsc70-2 had a small increase after cold shock at 0°C for 2h. Acclimation at 35°C for three days before heat shock reduced expression of McHsp70 after heat shock. The maximum mRNA level of McHsp70s was reached in the first 2h after the heat shock. This study uncovers the complexity of the hsp70 system, and provides the valuable information for further temperature-related research in the Glanville fritillary butterfly.

  1. Effects of heat shock protein 90 expression on pectoralis major oxidation in broilers exposed to acute heat stress.

    PubMed

    Hao, Y; Gu, X H

    2014-11-01

    This study was conducted to determine the effects of heat shock protein 90 (HSP90) expression on pH, lipid peroxidation, heat shock protein 70 (HSP70), and glucocorticoid receptor (GR) expression of pectoralis major in broilers exposed to acute heat stress. In total, 90 male broilers were randomly allocated to 3 groups: control (CON), heat stress (HS), or geldanamycin treatment (GA). On d 41, the broilers in the GA group were injected intraperitoneally with GA (5 μg/kg of BW), and the broilers in the CON and HS groups were injected intraperitoneally with saline. Twenty-four hours later, the broilers in the CON group were moved to environmental chambers controlled at 22°C for 2 h, and the broilers in the HS and GA groups were moved to environmental chambers controlled at 40°C for 2 h. The pH values of the pectoralis major after 30 min and 24 h of chilling after slaughter of HS and GA broilers were significantly lower (P < 0.01) than those of the CON broilers. Heat stress caused significant increases in sera corticosterone and lactic dehydrogenase, the activity of malondialdehyde and superoxide dismutase, the expression of HSP90 and HSP70, and nuclear expression of GR protein in the pectoralis major (P < 0.05). Heat stress induced a significant decrease in GR protein expression in the cytoplasm and GR mRNA expression. Furthermore, the low expression of HSP90 significantly increased levels of lactic dehydrogenase and malondialdehyde and GR protein expression in the cytoplasm under heat stress (P < 0.01), and significantly decreased nuclear GR protein expression (P < 0.01). Heat shock protein 90 was positively correlated with corticosterone and superoxide dismutase activities (P < 0.01), and HSP90 mRNA was negatively correlated with pH after chilling for 24 h. The results demonstrated that HSP90 plays a pivotal role in protecting cells from oxidation. ©2014 Poultry Science Association Inc.

  2. Heat shock and deciliation induce phosphorylation of histone H1 in T. pyriformis.

    PubMed

    Glover, C V; Vavra, K J; Guttman, S D; Gorovsky, M A

    1981-01-01

    Both heat shock and decilliation of Tetrahymena pyriformis lead to an increase in the level of histone H1 phosphorylation. After heat shock, starved or growing cells reach the same maximum level of H1 phosphorylation, although the increase is more easily detected in starved cells because of their relatively low initial level of phosphorylation. In starved cells, stress-induced phosphorylation is rapid, involves a large percentage of the H1, occurs at multiple sites on the H1 molecule and is inhibited by cycloheximide. Stress-induced phosphorylation of H1 in Tetrahymena thus has many properties in common with cell-cycle-dependent H1 phosphorylation although it is not coupled to the cell cycle.

  3. [Effect of heat shock on cells of phytopathogenic mycoplasma Acholeplasma laidlawii PG-8A].

    PubMed

    Vishniakov, I E; Levitskiĭ, S A; Borkhsenius, S N

    2015-01-01

    Heat shock caused a more active formation of the "dormant" forms (minibodies), as well as increased production of extracellular membrane vesicles by Acholeplasma laidlawii PG-8A cells. Raise of the amount of the minibodies that have increased resistance to biogenic and abiogenic stress factors and pathogenicity may lead to more successful persistence of mycoplasmas in their hosts. Increased production of the extracellular membrane vesicles containing virulence factors by Acholeplasma laidlawii cells during stress may be an additional burden for the infected organism. It has been recently revealed that the vesicles of A. laidlawii contain appreciable quantities of small heat shock protein IbpA (Hsp20). In this paper, using immune-electron microscopy, have shown that at elevated temperature IbpA is associated with A. laidlawii minibodies. Perhaps, IbpA contributes to increased resistance and pathogenicity of the minibodies, keeping their proteins and polypeptides, including protein virulence factors in the folding-competent state.

  4. Effect of heat shock on ultrastructure and calcium distribution in Lavandula pinnata L. glandular trichomes.

    PubMed

    Huang, S S; Kirchoff, B K; Liao, J P

    2013-02-01

    The effects of heat shock (HS) on the ultrastructure and calcium distribution of Lavandula pinnata secretory trichomes are examined using transmission electron microscopy and potassium antimonate precipitation. After 48-h HS at 40°C, plastids become distorted and lack stroma and osmiophilic deposits, the cristae of the mitochondria become indistinct, the endoplasmic reticulum acquires a chain-like appearance with ribosomes prominently attached to the lamellae, and the plasma and organelle membranes become distorted. Heat shock is associated with a decrease in calcium precipitates in the trichomes, while the number of precipitates increases in the mesophyll cells. Prolonged exposure to elevated calcium levels may be toxic to the mesophyll cells, while the lack of calcium in the glands cell may deprive them of the normal protective advantages of elevated calcium levels. The inequality in calcium distribution may result not only from uptake from the transpiration stream, but also from redistribution of calcium from the trichomes to the mesophyll cells.

  5. Induction temperature of human heat shock factor is reprogrammed in a Drosophila cell environment

    NASA Astrophysics Data System (ADS)

    Clos, Joachim; Rabindran, Sridhar; Wisniewski, Jan; Wu, Carl

    1993-07-01

    HEAT shock factor (HSF)1,2, the transcriptional activator of eukaryotic heat shock genes, is induced to bind DNA by a monomer to trimer transition involving leucine zipper interactions3,4. Although this mode of regulation is shared among many eukaryotic species, there is variation in the temperature at which HSF binding activity is induced. We investigated the basis of this variation by analysing the response of a human HSF expressed in Drosophila cells and Drosophila HSF expressed in human cells. We report here that the temperature that induces DNA binding and trimerization of human HSF in Drosophila was decreased by ~10 °C to the induction temperature