Science.gov

Sample records for 60-min middle cerebral

  1. Duplicated middle cerebral artery.

    PubMed

    Perez, Jesus; Machado, Calixto; Scherle, Claudio; Hierro, Daniel

    2009-01-01

    Duplicated middle cerebral artery (DMCA) is an anomalous vessel arising from the internal carotid artery. The incidence DMCA is relatively law, and an association between this anomaly and cerebral aneurysms has been documented. There is a controversy whether DMCA may have perforating arteries. This is an important fact to consider in aneurysm surgery. We report the case of a 34-year-old black woman who suffered a subarachnoid hemorrhage and the angiography a left DMCA, and an aneurysm in an inferior branch of the main MCA. The DMCA and the MCA had perforating arteries. The aneurysm was clipped without complications. The observation of perforating arteries in our patient confirms that the DMCA may have perforating arteries. This is very important to be considered in cerebral aneurysms surgery. Moreover, the DMCA may potentially serve as a collateral blood supply to the MCA territory in cases of MCA occlusion.

  2. Middle Cerebral Artery Calcification

    PubMed Central

    Kao, Hung-Wen; Liou, Michelle; Chung, Hsiao-Wen; Liu, Hua-Shan; Tsai, Ping-Huei; Chiang, Shih-Wei; Chou, Ming-Chung; Peng, Giia-Sheun; Huang, Guo-Shu; Hsu, Hsian-He; Chen, Cheng-Yu

    2015-01-01

    Abstract Calcification of the middle cerebral artery (MCA) is uncommon in the healthy elderly. Whether calcification of the MCA is associated with cerebral ischemic stroke remains undetermined. We intended to investigate the association using Agatston calcium scoring of the MCA. This study retrospectively included 354 subjects with ischemic stroke in the MCA territory and 1518 control subjects who underwent computed tomography (CT) of the brain. We recorded major known risk factors for ischemic stroke, including age, gender, hypertension, diabetes mellitus, smoking, hyperlipidemia, and obesity, along with the MCA calcium burden, measured with the Agatston calcium scoring method. Univariate and modified logistic regression analyses were performed to examine the association between the MCA calcification and ischemic stroke. The univariate analyses showed significant associations of ischemic stroke with age, hypertension, diabetes mellitus, smoking, total MCA Agatston score, and the presence of calcification on both or either side of the MCA. Subjects with the presence of MCA calcification on both or either side of the MCA were 8.46 times (95% confidence interval, 4.93–14.53; P < 0.001) more likely to have a cerebral infarct than subjects without MCA calcification after adjustment for the major known risk factors, including age, hypertension, diabetes mellitus, and smoking. However, a higher degree of MCA calcification reflected by the Agatston score was not associated with higher risk of MCA ischemic stroke after adjustment for the confounding factors and presence of MCA calcification. These results suggest that MCA calcification is associated with ischemic stroke in the MCA territory. Further prospective studies are required to verify the clinical implications of the MCA calcification. PMID:26683969

  3. Correlation of CT cerebral vascular territories with function. 3. Middle cerebral artery

    SciTech Connect

    Berman, S.A.; Hayman, L.A.; Hinck, V.C.

    1984-05-01

    Schematic displays are presented of the cerebral territories supplied by branches of the middle cerebral artery as they would appear on axial and coronal computed tomographic (CT) scan sections. Companion diagrams of regional cortical function and a discussion of the fiber tracts are provided to simplify correlation of clinical deficits with coronal and axial CT abnormalities.

  4. Neuroprotective effect of lercanidipine in middle cerebral artery occlusion model of stroke in rats.

    PubMed

    Gupta, Sangeetha; Sharma, Uma; Jagannathan, Naranamangalam R; Gupta, Yogendra Kumar

    2017-02-01

    Oxidative stress, inflammation and apoptotic neuronal cell death are cardinal mechanisms involved in the cascade of acute ischemic stroke. Lercanidipine apart from calcium channel blocking activity possesses anti-oxidant, anti-inflammatory and anti-apoptotic properties. In the present study, we investigated neuroprotective efficacy and therapeutic time window of lercanidipine in a 2h middle cerebral artery occlusion (MCAo) model in male Wistar rats. The study design included: acute (pre-treatment and post-treatment) and sub-acute studies. In acute studies (pre-treatment) lercanidipine (0.25, 0.5 and 1mg/kg, i.p.) was administered 60min prior MCAo. The rats were assessed 24h post-MCAo for neurological deficit score (NDS), motor deficit paradigms (grip test and rota rod) and cerebral infarction via 2,3,5-triphenyltetrazolium chloride (TTC) staining. The most effective dose was found to be at 0.5mg/kg, i.p., which was considered for further studies. Regional cerebral blood flow (rCBF) was monitored till 120min post-reperfusion to assess vasodilatory property of lercanidipine (0.5mg/kg, i.p.) administered at two different time points: 60min post-MCAo and 15min post-reperfusion. In acute studies (post-treatment) lercanidipine (0.5mg/kg, i.p.) was administered 15min, 120min and 240min post-reperfusion. Based on NDS and cerebral infarction via TTC staining assessed 24h post-MCAo, effectiveness was evident upto 120min. For sub-acute studies same dose/vehicle was repeated for next 3days and magnetic resonance imaging (MRI) was performed 96h after the last dose. Biochemical markers estimated in rat brain cortex 24h post-MCAo were oxidative stress (malondialdehyde, reduced glutathione, nitric oxide, superoxide dismutase), blood brain barrier damage (matrix metalloproteinases-2 and -9) and apoptotic (caspase-3 and -9). Lercanidipine significantly reduced NDS, motor deficits and cerebral infarction volume as compared to the control group. Lercanidipine (60min post

  5. Performing Permanent Distal Middle Cerebral with Common Carotid Artery Occlusion in Aged Rats to Study Cortical Ischemia with Sustained Disability.

    PubMed

    Wayman, Christina; Duricki, Denise A; Roy, Lisa A; Haenzi, Barbara; Tsai, Shi-Yen; Kartje, Gwendolyn; Beech, John S; Cash, Diana; Moon, Lawrence

    2016-02-23

    Stroke typically occurs in elderly people with a range of comorbidities including carotid (or other arterial) atherosclerosis, high blood pressure, obesity and diabetes. Accordingly, when evaluating therapies for stroke in animals, it is important to select a model with excellent face validity. Ischemic stroke accounts for 80% of all strokes, and the majority of these occur in the territory of the middle cerebral artery (MCA), often inducing infarcts that affect the sensorimotor cortex, causing persistent plegia or paresis on the contralateral side of the body. We demonstrate in this video a method for producing ischemic stroke in elderly rats, which causes sustained sensorimotor disability and substantial cortical infarcts. Specifically, we induce permanent distal middle cerebral artery occlusion (MCAO) in elderly female rats by using diathermy forceps to occlude a short segment of this artery. The carotid artery on the ipsilateral side to the lesion was then permanently occluded and the contralateral carotid artery was transiently occluded for 60 min. We measure the infarct size using structural T2-weighted magnetic resonance imaging (MRI) at 24 hr and 8 weeks after stroke. In this study, the mean infarct volume was 4.5% ± 2.0% (standard deviation) of the ipsilateral hemisphere at 24 hr (corrected for brain swelling using Gerriet's equation, n = 5). This model is feasible and clinically relevant as it permits the induction of sustained sensorimotor deficits, which is important for the elucidation of pathophysiological mechanisms and novel treatments.

  6. Performing Permanent Distal Middle Cerebral with Common Carotid Artery Occlusion in Aged Rats to Study Cortical Ischemia with Sustained Disability

    PubMed Central

    Roy, Lisa A.; Haenzi, Barbara; Tsai, Shi-Yen; Kartje, Gwendolyn; Beech, John S.; Cash, Diana; Moon, Lawrence

    2016-01-01

    Stroke typically occurs in elderly people with a range of comorbidities including carotid (or other arterial) atherosclerosis, high blood pressure, obesity and diabetes. Accordingly, when evaluating therapies for stroke in animals, it is important to select a model with excellent face validity. Ischemic stroke accounts for 80% of all strokes, and the majority of these occur in the territory of the middle cerebral artery (MCA), often inducing infarcts that affect the sensorimotor cortex, causing persistent plegia or paresis on the contralateral side of the body. We demonstrate in this video a method for producing ischemic stroke in elderly rats, which causes sustained sensorimotor disability and substantial cortical infarcts. Specifically, we induce permanent distal middle cerebral artery occlusion (MCAO) in elderly female rats by using diathermy forceps to occlude a short segment of this artery. The carotid artery on the ipsilateral side to the lesion was then permanently occluded and the contralateral carotid artery was transiently occluded for 60 min. We measure the infarct size using structural T2-weighted magnetic resonance imaging (MRI) at 24 hr and 8 weeks after stroke. In this study, the mean infarct volume was 4.5% ± 2.0% (standard deviation) of the ipsilateral hemisphere at 24 hr (corrected for brain swelling using Gerriet’s equation, n = 5). This model is feasible and clinically relevant as it permits the induction of sustained sensorimotor deficits, which is important for the elucidation of pathophysiological mechanisms and novel treatments. PMID:26967269

  7. Cerebral hyperperfusion syndrome after intracranial stenting of the middle cerebral artery

    PubMed Central

    Maramattom, Boby Varkey

    2016-01-01

    Cerebral hyperperfusion syndrome (CHS) is a rare complication following cerebral revascularization. It presents with ipsilateral headache, seizures, and intracerebral hemorrhage. It has mostly been described following extracranial carotid endarterectomy and stenting and it is very unusual after intracranial stenting. A 71-year-old man with a stuttering stroke was taken up for a cerebral angiogram (digital subtraction angiography), which showed a dissection of the distal left middle cerebral artery. This was recanalized with a solitaire AB stent. After 12 h, the patient developed a right hemiplegia and aphasia. Computed tomography brain showed two discrete intracerebral hematomas in the left hemisphere. This is the first reported case of CHS following intracranial stenting from India. PMID:27829722

  8. Utilizing a cranial window to visualize the middle cerebral artery during endothelin-1 induced middle cerebral artery occlusion.

    PubMed

    Regenhardt, Robert W; Ansari, Saeed; Azari, Hassan; Caldwell, Kenneth J; Mecca, Adam P

    2013-02-22

    Creation of a cranial window is a method that allows direct visualization of structures on the cortical surface of the brain(1-3). This technique can be performed in many locations overlying the rat cerebrum, but is most easily carried out by creating a craniectomy over the readily accessible frontal or parietal bones. Most frequently, we have used this technique in combination with the endothelin-1 middle cerebral artery occlusion model of ischemic stroke to quantify the changes in middle cerebral artery vessel diameter that occur with injection of endothelin-1 into the brain parenchyma adjacent to the proximal MCA(4, 5). In order to visualize the proximal portion of the MCA during endothelin -1 induced MCAO, we use a technique to create a cranial window through the temporal bone on the lateral aspect of the rat skull (Figure 1). Cerebral arteries can be visualized either with the dura intact or with the dura incised and retracted. Most commonly, we leave the dura intact during visualization since endothelin-1 induced MCAO involves delivery of the vasoconstricting peptide into the brain parenchyma. This bypasses the need to incise the dura directly over the visualized vessels for drug delivery. This protocol will describe how to create a cranial window to visualize cerebral arteries in a step-wise fashion, as well as how to avoid many of the potential pitfalls pertaining to this method.

  9. Giant Serpentine Aneurysm of the Middle Cerebral Artery

    PubMed Central

    Lee, Seung Joo; Kwun, Byung Duk; Kim, Chang Jin

    2010-01-01

    Giant serpentine aneurysms are rare and have distinct angiographic findings. The rarity, large size, complex anatomy and hemodynamic characteristics of giant serpentine aneurysms make treatment difficult. We report a case of a giant serpentine aneurysm of the right middle cerebral artery (MCA) that presented as headache. Treatment involved a superficial temporal artery (STA)-MCA bypass followed by aneurysm resection. The patient was discharged without neurological deficits, and early and late follow-up angiography disclosed successful removal of the aneurysm and a patent bypass graft. We conclude that STA-MCA bypass and aneurysm excision is a successful treatment method for a giant serpentine aneurysm. PMID:20856671

  10. Early serial SPET in acute middle cerebral artery infarction.

    PubMed

    Nuutinen, J; Kuikka, J; Roivainen, R; Vanninen, E; Sivenius, J

    2000-05-01

    The size and severity of perfusion defects in acute cerebral ischaemia on single photon emission tomographic (SPET) images may provide useful information regarding long-term (> 3 month) stroke outcome. A decreased predictive value has been reported with delayed SPET more than 24 h after stroke onset. We examined 20 patients with acute middle cerebral artery (MCA) infarctions using serial 99Tcm-ECD or 99Tcm-HMPAO SPET (SPET 1 one day and SPET 2 three days after stroke onset). Neurological (NIH, SSS) and functional (Barthel, Rankin) scores were calculated simultaneously and 3 months poststroke. The two SPET scans correlated equally well with the severity of functional and neurological deficits evaluated 3 months after stroke onset. In comparison to clinical assessment, the prognostic value of SPET was relatively better on the first day than the third day. Crossed cerebellar diaschisis correlated with early SPET deficits, but did not predict functional outcome. Our results suggest that SPET, either with 99Tcm-ECD or 99Tcm-HMPAO, can be used to predict stroke outcome in acute MCA infarction up to 72 h poststroke without significant interference from luxury perfusion.

  11. Middle cerebral artery alterations in a rat chronic hypoperfusion model

    PubMed Central

    Márquez-Martín, Ana; Jiménez-Altayó, Francesc; Dantas, Ana P.; Caracuel, Laura; Planas, Anna M.

    2012-01-01

    Chronic cerebral hypoperfusion (CHP) induces microvascular changes that could contribute to the progression of vascular cognitive impairment and dementia in the aging brain. This study aimed to analyze the effects of CHP on structural, mechanical, and myogenic properties of the middle cerebral artery (MCA) after bilateral common carotid artery occlusion (BCCAO) in adult male Wistar rats. Sham animals underwent a similar surgical procedure without carotid artery (CA) ligation. After 15 days of occlusion, MCA and CA were dissected and MCA structural, mechanical, and myogenic properties were assessed by pressure myography. Collagen I/III expression was determined by immunofluorescence in MCA and CA and by Western blot in CA. mRNA levels for 1A1, 1A2, and 3A1 collagen subunits were quantified by quantitative real-time PCR in CA. Matrix metalloproteinase (MMP-1, MMP-2, MMP-9, and MMP-13) and hypoxia-inducible factor-1α (HIF-1α) protein expression were determined in CA by Western blot. BCCAO diminished cross-sectional area, wall thickness, and wall-to-lumen ratio. Nevertheless, whereas wall stress was increased, stiffness was not modified and myogenic response was diminished. Hypoperfusion triggered HIF-1α expression. Collagen I/III protein expression diminished in MCA and CA after BCCAO, despite increased mRNA levels for 1A1 and 3A1 collagen subunits. Therefore, the reduced collagen expression might be due to proteolytic degradation, since the expression of MMP-1 and MMP-9 increased in the CA. These data suggest that BCCAO induces hypotrophic remodeling by a mechanism that involves a reduction of collagen I/III in association with increased MMP-1 and MMP-9 and that decreases myogenic tone in major arteries supplying the brain. PMID:22096118

  12. Middle cerebral artery thrombosis: acute blood-brain barrier consequences

    SciTech Connect

    Dietrich, W.D.; Prado, R.; Watson, B.D.; Nakayama, H.

    1988-07-01

    The effect of middle cerebral artery (MCA) thrombosis on the integrity of the blood-brain barrier (BBB) was studied in rats using horseradish peroxidase (HRP). Endothelial injury with subsequent platelet thrombosis was produced by means of a rose bengal-sensitized photochemical reaction, facilitated by irradiating the right proximal MCA segment with the focused beam of an argon laser. At 15 minutes following thrombosis formation, diffuse leakage of HRP was observed bilaterally within cortical and subcortical brain areas. Peroxidase extravasation was most dense within the territory of the occluded artery including neocortical areas and dorso-lateral striatum. Contralaterally, a similar distribution was observed but with less intense HRP leakage. Ultrastructural studies demonstrated an increase in permeability to HRP within arterioles, venules and capillaries. At these sites, the vascular endothelium contained HRP-filled pinocytotic vesicles and tubular profiles. Although less intense, bilateral HRP leakage was also observed following MCA stenosis or femoral artery occlusion. Endothelial-platelet interactions at the site of vascular injury may be responsible for releasing substances or neurohumoral factors which contribute to the acute opening of the BBB.

  13. Patterns of music agnosia associated with middle cerebral artery infarcts.

    PubMed

    Ayotte, J; Peretz, I; Rousseau, I; Bard, C; Bojanowski, M

    2000-09-01

    The objective of the study is to evaluate if the rupture of an aneurysm located on the middle cerebral artery (MCA) results in disorders of music recognition. To this aim, 20 patients having undergone brain surgery for the clipping of a unilateral left (LBS), right (RBS) or bilateral (BBS) aneurysm(s) of the MCA and 20 neurologically intact control subjects (NC) were evaluated with a series of tests assessing most of the abilities involved in music recognition. In general, the study shows that a ruptured aneurysm on the MCA that is repaired by brain surgery is very likely to produce deficits in the auditory processing of music. The incidence of such a deficit was not only very high but also selective. The results show that the LBS group was more impaired than the NC group in all three tasks involving musical long-term memory. The study also uncovered two new cases of apperceptive agnosia for music. These two patients (N.R. and R.C.) were diagnosed as such because both exhibit a clear deficit in each of the three music memory tasks and both are impaired in all discrimination tests involving musical perception. Interestingly, the lesions overlap in the right superior temporal lobe and in the right insula, making the two new cases very similar to an earlier case report. Altogether, the results are also consistent with the view that apperceptive agnosia results from damage to right hemispheric structures while associative agnosia results from damage to the left hemisphere.

  14. Endovascular revascularization of symptomatic chronic middle cerebral artery occlusions: Two case reports

    PubMed Central

    Wan, Yue; Lo, Wai-Ting; Liu, Yang-Xia

    2016-01-01

    For patients with chronic middle cerebral artery occlusions who have recurrent ischemic symptoms despite antiplatelet therapy and vascular risk factor control, treatment options are limited. Because of concerns about the safety of endovascular revascularization of these occlusions and the technical skills required, these procedures have not been widely performed. We report on two patients with successful endovascular revascularization of the chronic middle cerebral artery occlusion with impaired cerebral hemodynamics, with vessel patency maintained on follow-up imaging and no recurrence of stroke. A literature review of treatment options for such patients was performed. Revascularization is technically feasible and can be considered an option for carefully selected chronic middle cerebral artery occlusion patients with recurrent ischemic symptoms despite medical therapy. PMID:26647227

  15. Protective effect of extract of Cordyceps sinensis in middle cerebral artery occlusion-induced focal cerebral ischemia in rats

    PubMed Central

    2010-01-01

    Background Ischemic hypoxic brain injury often causes irreversible brain damage. The lack of effective and widely applicable pharmacological treatments for ischemic stroke patients may explain a growing interest in traditional medicines. From the point of view of "self-medication" or "preventive medicine," Cordyceps sinensis was used in the prevention of cerebral ischemia in this paper. Methods The right middle cerebral artery occlusion model was used in the study. The effects of Cordyceps sinensis (Caterpillar fungus) extract on mortality rate, neurobehavior, grip strength, lactate dehydrogenase, glutathione content, Lipid Peroxidation, glutathione peroxidase activity, glutathione reductase activity, catalase activity, Na+K+ATPase activity and glutathione S transferase activity in a rat model were studied respectively. Results Cordyceps sinensis extract significantly improved the outcome in rats after cerebral ischemia and reperfusion in terms of neurobehavioral function. At the same time, supplementation of Cordyceps sinensis extract significantly boosted the defense mechanism against cerebral ischemia by increasing antioxidants activity related to lesion pathogenesis. Restoration of the antioxidant homeostasis in the brain after reperfusion may have helped the brain recover from ischemic injury. Conclusions These experimental results suggest that complement Cordyceps sinensis extract is protective after cerebral ischemia in specific way. The administration of Cordyceps sinensis extract significantly reduced focal cerebral ischemic/reperfusion injury. The defense mechanism against cerebral ischemia was by increasing antioxidants activity related to lesion pathogenesis. PMID:20955613

  16. Intravenous administration of pravastatin immediately after middle cerebral artery occlusion reduces cerebral oedema in spontaneously hypertensive rats.

    PubMed

    Mariucci, Giuseppina; Taha, Elena; Tantucci, Michela; Spaccatini, Cristiano; Tozzi, Alessandro; Ambrosini, Maria Vittoria

    2011-06-25

    3-hydroxy-3-methyl-glutaryl-coenzyme-A (HMG-CoA) reductase inhibitors (statins) have been shown to protect against ischemic stroke by mechanisms that are independent of lowering serum cholesterol levels. In this study we investigated the potential neuroprotective effect of a single i.v. treatment with four increasing doses of pravastatin on permanent occlusion of middle cerebral artery (MCAo) in spontaneously hypertensive rats. Pravastatin was given 10 min after MCAo and its effect was determined 24 h later. Treatment results were evaluated in terms of infarct volume, homolateral hemisphere oedema, glial fibrillary acid (GFAP), vimentin (Vim) and endothelial NO synthase (eNOS) immunoreactivity and TUNEL positivity. Cerebral levels of eNOS were measured by western blot analysis. Pravastatin did not reduce cerebral infarct while it mitigated homolateral hemisphere oedema in a dose-dependent manner with respect to controls. No differences among groups were found regarding GFAP and Vim immunoreactivity and TUNEL positivity. Instead, pravastatin-treated animals presented a more marked cerebral eNOS immunoreactivity as compared with controls. In agreement with immunohistochemistry, immunoblot revealed dose-dependent increases in cerebral levels of eNOS in pravastatin rats. Our data confirm statin neuroprotection in cerebral ischemia. In particular, it is of great interest that a single i.v. Pravastatin administration reduced cerebral oedema by upregulating eNOS expression/activity. This, by increasing vascular NO bioavailability, could have produced proximal vasodilation and contributed to reducing perfusional deficit. It is worthy stressing how important the anti-oedema action is that pravastatin seems to exert. Indeed, cerebral oedema, when widespread and beyond limits of physiological compensation, causes endocranic hypertension and additional cerebral damage over time.

  17. A Count Model to Study the Correlates of 60 Min of Daily Physical Activity in Portuguese Children

    PubMed Central

    Borges, Alessandra; Gomes, Thayse Natacha; Santos, Daniel; Pereira, Sara; dos Santos, Fernanda K.; Chaves, Raquel; Katzmarzyk, Peter T.; Maia, José

    2015-01-01

    This study aimed to present data on Portuguese children (aged 9–11 years) complying with moderate-to-vigorous physical activity (MVPA) guidelines, and to identify the importance of correlates from multiple domains associated with meeting the guidelines. Physical activity (PA) was objectively assessed by accelerometry throughout seven days on 777 children. A count model using Poisson regression was used to identify the best set of correlates that predicts the variability in meeting the guidelines. Only 3.1% of children met the recommended daily 60 min of MVPA for all seven days of the week. Further, the Cochrane–Armitage chi-square test indicated a linear and negative trend (p < 0.001) from none to all seven days of children complying with the guidelines. The count model explained 22% of the variance in meeting MVPA guidelines daily. Being a girl, having a higher BMI, belonging to families with higher income, sleeping more and taking greater time walking from home to a sporting venue significantly reduced the probability of meeting daily recommended MVPA across the seven days. Furthermore, compared to girls, increasing sleep time in boys increased their chances of compliance with the MVPA recommendations. These results reinforce the relevance of considering different covariates’ roles on PA compliance when designing efficient intervention strategies to promote healthy and active lifestyles in children. PMID:25730296

  18. Appetite, energy intake and resting metabolic responses to 60 min treadmill running performed in a fasted versus a postprandial state.

    PubMed

    Deighton, Kevin; Zahra, Jessica C; Stensel, David J

    2012-06-01

    This study investigated the effect of fasted and postprandial exercise on appetite, energy intake and resting metabolic responses. Twelve healthy males (mean±SD: age 23±3 years, body mass index 22.9±2.1 kg m(-2), maximum oxygen uptake 57.5±9.7 mL kg(-1) min(-1)) performed three 10 h experimental trials (control, fasted exercise and postprandial exercise) in a Latin Square design. Trials commenced at 8 am after an overnight fast. Sixty min of treadmill running at ∼70% of maximum oxygen uptake was performed at 0-1 h in the fasted exercise trial and 4-5 h in the postprandial exercise trial. A standardised breakfast was provided at 1.5 h and ad libitum buffet meals at 5.5 and 9.5 h. Appetite ratings and resting expired air samples were collected throughout each trial. Postprandial exercise suppressed appetite to a greater extent than fasted exercise. Ad libitum energy intake was not different between trials, resulting in a negative energy balance in exercise trials relative to control after accounting for differences in energy expenditure (control: 9774±2694 kJ; fasted exercise: 6481±2318 kJ; postprandial exercise: 6017±3050 kJ). These findings suggest that 60 min treadmill running induces a negative daily energy balance relative to a sedentary day but is no more effective when performed before or after breakfast.

  19. Cerebral Hemodynamics and Vascular Reactivity in Mild and Severe Ischemic Rodent Middle Cerebral Artery Occlusion Stroke Models

    PubMed Central

    Sim, Jeongeun; Jo, Areum; Kang, Bok-Man; Lee, Sohee; Bang, Oh Young; Heo, Chaejeong; Jhon, Gil-Ja; Lee, Youngmi

    2016-01-01

    Ischemia can cause decreased cerebral neurovascular coupling, leading to a failure in the autoregulation of cerebral blood flow. This study aims to investigate the effect of varying degrees of ischemia on cerebral hemodynamic reactivity using in vivo real-time optical imaging. We utilized direct cortical stimulation to elicit hyper-excitable neuronal activation, which leads to induced hemodynamic changes in both the normal and middle cerebral artery occlusion (MCAO) ischemic stroke groups. Hemodynamic measurements from optical imaging accurately predict the severity of occlusion in mild and severe MCAO animals. There is neither an increase in cerebral blood volume nor in vessel reactivity in the ipsilateral hemisphere (I.H) of animals with severe MCAO. The pial artery in the contralateral hemisphere (C.H) of the severe MCAO group reacted more slowly than both hemispheres in the normal and mild MCAO groups. In addition, the arterial reactivity of the I.H in the mild MCAO animals was faster than the normal animals. Furthermore, artery reactivity is tightly correlated with histological and behavioral results in the MCAO ischemic group. Thus, in vivo optical imaging may offer a simple and useful tool to assess the degree of ischemia and to understand how cerebral hemodynamics and vascular reactivity are affected by ischemia. PMID:27358581

  20. [A case of accessory middle cerebral artery associated with internal carotid artery aneurysm (author's transl)].

    PubMed

    Munekata, K; Omori, H; Kanazawa, Y; Miyazaki, S; Fukushima, H; Kamata, K

    1979-12-01

    A case of accessory middle cerebral artery associated with internal carotid artery aneurysm was reported. A 50-year-old female was admitted to our hospital with complaints of headache, nausea, vomiting and conciousness disturbance. Lumbar puncture showed bloody CSF. Right carotid angiogram revealed saccular aneurysm of the internal carotid-posterior communicating artery and accessory middle cerebral artery originating from the horizontal portion of the right anterior cerebral artery. No other vascular lesion was observed on other angiograms. Operation was performed 2 days after admission. The neck of the aneurysm was clipped. Postoperative aseptic meningitis was cured by frequent lumbar punctures, and her course was uneventful. The etiological hypothesis of these cerebral vascular anomalies was briefly discussed.

  1. [Radio-anatomical study of the main trunk of the middle cerebral artery (author's transl)].

    PubMed

    Grellier, P; Roche, J L; Duplay, J

    1978-01-01

    This work corroborates anatomical data well known since G. Lazorthes about the main trunk of the middle cerebral artery. The data are interesting in various fields: Sylvian aneurysms, big sphenoïd ridge meningiomas, extra-intra cranial micro neurosurgical anastomoses. This work is based upon 280 angiographic pictures, 20 dissections of brain arteries and 12 plastic injections of the brain arterial vascular tree. The most important data to point out are variations of length and of division (no division, simple bifurcation, trifurcation or multiple divisions), variability in the central arteries and some rare anomalies like accessory middle cerebral arteries and duplication.

  2. Dural arteriovenous fistula at the anterior clinoid process draining directly into the superficial middle cerebral vein.

    PubMed

    Ushikoshi, Satoshi; Honma, Toshimi; Uchida, Kazuki; Yasuda, Hiroshi; Ajiki, Minoru

    2013-01-01

    A 76-year-old man presented with subarachnoid hemorrhage. Selective angiography revealed a dural arteriovenous fistula (DAVF) at the right anterior clinoid process, draining into the superficial middle cerebral vein in a retrograde fashion. Two internal carotid artery aneurysms were also demonstrated at the origin of the posterior communicating artery and the anterior choroidal artery on the same side. The patient underwent craniotomy, and all lesions were treated simultaneously. Rupture of the anterior choroidal artery aneurysm was confirmed. DAVF draining directly into the superficial middle cerebral vein is extremely rare. The precise location of the shunt, the anatomical features, and venous drainage must be evaluated to consider treatment.

  3. Adenovirus-mediated brain-derived neurotrophic factor expression regulated by hypoxia response element protects brain from injury of transient middle cerebral artery occlusion in mice.

    PubMed

    Shi, Qindong; Zhang, Pengbo; Zhang, Junfeng; Chen, Xinlin; Lu, Haixia; Tian, Yumei; Parker, T L; Liu, Yong

    2009-11-20

    Some gene expression may be regulated by hypoxia-responsive element (HRE) that is bound by hypoxia-inducible factor-1 (HIF-1) which is up-regulated during cerebral ischemia. To explore ischemia/hypoxia-controlled expression and the neuroprotective effects of brain-derived neurotrophic factor (BDNF) after ischemic brain injury, an adenoviral vector using five copies of hypoxia response element (HRE) in the vascular endothelial growth factor gene to regulate the expression of BDNF gene (Ad5HRE:BDNF) was constructed, and its efficacy was verified for driving BDNF expression in cultured Hela cells under hypoxic condition by ELISA. We found that the concentration of BDNF in the Ad5HRE:BDNF-transfected culture media was 28-fold greater in a hypoxic condition than under normoxia. To examine the effect of Ad5HRE:BDNF on ischemic brain injury in vivo, Ad5HRE:BDNF was injected into right caudate putamen of adult mice 7 days prior to 60 min transient middle cerebral artery occlusion (MCAO). It was found that exogenous BDNF expression was increased in the Ad5HRE-BDNF-treated group and infarct volume of the Ad5HRE:BDNF-treated group at 3 days after MCAO was significantly smaller than that of vehicle- or AdNull-treated groups. Moreover, Ad5HRE:BDNF injection resulted in significantly improved sensorimotor scores 7 days after MCAO and induced a reduction in the number of Fluoro-Jade B-positive neurons and TUNEL-positive cells, compared with vehicle- or AdNull-injection. Our findings suggest that BDNF expression could be regulated in hypoxia/ischemia condition with five copies of HRE and ameliorates ischemic brain injury in a mouse focal cerebral ischemia model.

  4. Middle Cerebral Artery Occlusion with Moyamoya-Like Vessels and Aneurysms

    PubMed Central

    Rivera, Rodrigo; Sordo, Juan; Badilla, Lautaro; Bravo, Eduardo; Riveros, Rodrigo; Giacaman, Pablo

    2014-01-01

    Summary We describe two cases of aneurysmal rupture in moyamoya-like vessels in middle cerebral artery occlusion. This phenomenon was previously described in severe steno-occlusive disease and accounts for the hemorrhagic presentation. To our knowledge, these are the second and third clinical cases published in modern neuroradiological literature. PMID:24556306

  5. Tumor necrosis factor-α inhibition attenuates middle cerebral artery remodeling but increases cerebral ischemic damage in hypertensive rats.

    PubMed

    Pires, Paulo W; Girgla, Saavia S; Moreno, Guillermo; McClain, Jonathon L; Dorrance, Anne M

    2014-09-01

    Hypertension causes vascular inflammation evidenced by an increase in perivascular macrophages and proinflammatory cytokines in the arterial wall. Perivascular macrophage depletion reduced tumor necrosis factor (TNF)-α expression in cerebral arteries of hypertensive rats and attenuated inward remodeling, suggesting that TNF-α might play a role in the remodeling process. We hypothesized that TNF-α inhibition would improve middle cerebral artery (MCA) structure and reduce damage after cerebral ischemia in hypertensive rats. Six-week-old male stroke-prone spontaneously hypertensive rats (SHRSP) were treated with the TNF-α inhibitor etanercept (ETN; 1.25 mg·kg(-1)·day(-1) ip daily) or PBS (equivolume) for 6 wk. The myogenic tone generation, postischemic dilation, and passive structure of MCAs were assessed by pressure myography. Cerebral ischemia was induced by MCA occlusion (MCAO). Myogenic tone was unchanged, but MCAs from SHRSP + ETN had larger passive lumen diameter and reduced wall thickness and wall-to-lumen ratio. Cerebral infarct size was increased in SHRSP + ETN after transient MCAO, despite an improvement in dilation of nonischemic MCA. The increase in infarct size was linked to a reduction in the number of microglia in the infarct core and upregulation of markers of classical macrophage/microglia polarization. There was no difference in infarct size after permanent MCAO or when untreated SHRSP subjected to transient MCAO were given ETN at reperfusion. Our data suggests that TNF-α inhibition attenuates hypertensive MCA remodeling but exacerbates cerebral damage following ischemia/reperfusion injury likely due to inhibition of the innate immune response of the brain.

  6. [Superselective fibrinolysis for a middle cerebral artery embolism caused by a left atrial myxoma: case report].

    PubMed

    Yamanome, T; Yoshida, K; Miura, K; Ogawa, A

    2000-07-01

    A case of successful treatment by local fibrinolysis of a middle cerebral artery embolism caused by a thrombus from a left atrial myxoma is reported. A 62-year-old woman using a pacemaker and suffering from sick sinus syndrome was admitted on December 29th 1996, complaining of transient restlessness. CT and cerebral angiography revealed no abnormal vascular lesions. Eighteen months after the initial episode, she suffered a sudden onset of left hemiparesis and loss of consciousness. CT scan performed during the second episode revealed no lesions and, in particular, no early CT infarction sign, but emergent cerebral angiography revealed a right middle cerebral artery embolic occlusion. Local fibrinolysis using a tissue plasminogen activator was performed within 3 hours after the beginning of the episode, and partial recanalization was obtained within one hour after initiation of the fibrinolytic therapy. On the first hospital day, though CT revealed a small low-density area in the right basal ganglia, motor deficits gradually improved. Considering the possibility of a cardiac source of the embolism, trans-esophageal echocardiography was performed and revealed a left atrial tumor suspected to be a myxoma. It was removed by surgery on the 34th hospital day. Histological examination proved it to be a myxoma. Nine months after local fibrinolytic therapy, the patient returned to work. The diagnosis of cerebral embolism caused by cardiac myxoma is difficult to make at the time when the patient is first examined after admission. It is also hard to discover during emergent cerebral angiography with fibrinolytic therapy. Therefore, in the case of patients with cerebral embolism for which local fibrinolysis is ineffective, it should be presumed that cardiac myxoma is the source of the embolus. Direct PTA alone may be effective for such tumoral embolism.

  7. Neuroprotective effects of progesterone after transient middle cerebral artery occlusion in rat.

    PubMed

    Chen, J; Chopp, M; Li, Y

    1999-12-01

    Treatment of focal cerebral ischemia in the rat with intraperitoneal administration of progesterone dissolved in dimethyl sulfoxide (DMSO) has demonstrated therapeutic efficacy. In the present study we test whether iv administration of water soluble progesterone 2 h after the onset of middle cerebral artery occlusion provides therapeutic benefit for the treatment of stroke. In addition, we perform a battery of functional tests: rotarod, adhesive-backed somatosensory, and neurological score, as well as a dose-response study. The data indicate that iv administration of progesterone at a dose of 8 mg/kg significantly reduces the volume of cerebral infarction and significantly improves outcome on the array of functional measures employed. Treatment with 4 mg/kg or 32 mg/kg of progesterone failed to provide any therapeutic benefit. Progesterone, a non toxic, clinically employed, pluripotent therapeutic agent which targets both neuroprotective as well as neuroregenerative strategies, may have important therapeutic benefits for the treatment of stroke.

  8. [Diagnostic image (162) A woman with temporary hemiplegia. Temporary embolic occlusion of the left middle cerebral artery by a thrombus].

    PubMed

    Groeneveld, G J; van der Schaaf, I C

    2003-10-25

    A 48-year-old woman with right-sided hemiplegia by embolic occlusion of the left middle cerebral artery was treated with alteplase. A pre- and post-treatment CT angiography scan showed the vanishing blood clot.

  9. Blood flow increase by cervical spinal cord stimulation in middle cerebral and common carotid arteries.

    PubMed

    Robaina, Francisco; Clavo, Bernardino; Catalá, Luis; Caramés, Miguel Á; Morera, Jesús

    2004-01-01

    The effect of spinal cord stimulation (SCS) on cerebral blood flow (CBF) has, in the past, been evaluated by semiquantitative techniques, but has not been used to treat CBF diseases. The aim of this study was to assess the effect of cervical SCS on regional blood flow by both semiquantitative and quantitative methods. Thirty-five patients with cervical SCS-implanted devices were enrolled. The following parameters were measured before and after cervical SCS: systolic and diastolic velocity (cm/s) in the middle cerebral artery (MCA) by transcranial Doppler (TCD) and volume blood flow quantification (ml/min) in the common carotid artery (CCA) by color Doppler. During cervical SCS there was a significant and bilateral increase in systolic (21%) and diastolic (26%) velocity in the MCA and in CCA blood flow (50%). We conclude that cervical SCS increases blood flow in the middle cerebral artery and common carotid artery. The consistent increase supports the potential usefulness of cervical SCS as an adjuvant treatment for cerebral blood flow diseases.

  10. Environmental reduplication in a patient with right middle cerebral artery occlusion.

    PubMed

    Likitcharoen, Yuthachai; Phanthumchinda, Kammant

    2004-12-01

    Environmental reduplication or reduplicative paramnesia is one of the content-specific delusions (CSD) which is characterized by reduplication of places. CSD has been reported in focal and diffuse cerebral disorders. A focal lesion such as frontal lobes and the right hemispheric lesion have been documented The authors describe a 66 year-old woman who had a delusion of misidentification for place one month after right middle cerebral artery occlusion. The patient did not have any history of schizophrenia or other psychiatric diseases. The patient believed that her car, furniture and house were duplicated. She also mentioned that her son and friends tried to takeover all of her properties and told everyone that she was insane. The prominent cortical signs were tactile and visual neglect. Neuropsychological assessments revealed poor attention but she had neither confusion nor dementia. Clock drawing and construction tests revealed visuospatial impairment which was compatible with non-dominant hemispheric abnormality. MRI showed evidence of cerebral infarction in the right middle cerebral artery territory. Only one similar patient who had an intracerbral hematoma of the right frontal lobe has been reported in the literature. The role of occipito-parietal and fronto-temporal lobes or their connections in environmental reduplication is proposed.

  11. Fluid Intake Related to Brain Edema in Acute Middle Cerebral Artery Infarction.

    PubMed

    Dharmasaroja, Pornpatr A

    2016-02-01

    Evidence of the appropriate amount of fluid intake during the first few days after acute stroke was scarce. Concerns were raised in patients with acute malignant middle cerebral infarction, who tended to have malignant brain edema later. The purpose of the study was to evaluate the effect of fluid intake on the occurrence of malignant brain edema in patients with acute middle cerebral artery infarction. Patients with acute middle cerebral artery infarction who had National Institute of Health Stroke Scale (NIHSS) score of at least 15 were included. Baseline characteristics and amount of fluid intake during the first few days were compared in patients with and without malignant brain edema. One hundred ninety-three patients were studied. Mean NIHSS score was 20. Malignant brain edema occurred in 69 patients (36%). Higher amount of fluid intake (>1650 ml or >28 ml/kg/day or >93% of daily maintenance fluid) showed a significant association with malignant brain edema (OR = 13.86, 95% CI 5.11-37.60, p value <0.001). Decompressive surgery was performed in 35 patients (18%). With mean follow-up of 12 months, 49 patients (49/184, 27%) had favorable outcomes (modified Rankin scale (mRS) 0-2) at final follow-up. Seventy-nine patients (79/184, 43%) died. In the subgroup of patients with malignant brain edema, 39 patients (39/65, 60%) died and only 11% (7/65 patients) had favorable outcome. High amount of fluid intake in the first few days of acute middle cerebral infarction was related to the occurrence of malignant brain edema.

  12. Treatment of a pediatric recurrent fusiform middle cerebral artery (MCA) aneurysm with a flow diverter.

    PubMed

    Burrows, Anthony M; Zipfel, Gregory; Lanzino, Giuseppe

    2012-11-15

    Pediatric patients with aneurysm often have different localizations and morphologies from adults and recurrences are not uncommon after successful clip reconstruction/obliteration. Treatment of a recurrent pediatric aneurysm after clip ligation is a technical challenge. We present the case of an adolescent with a middle cerebral artery (MCA) fusiform aneurysm which recurred following clip reconstruction and bypass. The aneurysm was successfully treated with endovascular flow diversion.

  13. Treatment of a pediatric recurrent fusiform middle cerebral artery (MCA) aneurysm with a flow diverter.

    PubMed

    Burrows, Anthony M; Zipfel, Gregory; Lanzino, Giuseppe

    2013-11-01

    Pediatric patients with aneurysm often have different localizations and morphologies from adults and recurrences are not uncommon after successful clip reconstruction/obliteration. Treatment of a recurrent pediatric aneurysm after clip ligation is a technical challenge. We present the case of an adolescent with a middle cerebral artery (MCA) fusiform aneurysm which recurred following clip reconstruction and bypass. The aneurysm was successfully treated with endovascular flow diversion.

  14. Near-infrared spectroscopy and transcranial sonography to evaluate cerebral autoregulation in middle cerebral artery steno-occlusive disease.

    PubMed

    Oldag, Andreas; Neumann, Jens; Goertler, Michael; Hinrichs, Hermann; Heinze, Hans-Jochen; Kupsch, Andreas; Sweeney-Reed, Catherine M; Kopitzki, Klaus

    2016-11-01

    The measurement of autoregulatory delay by near-infrared spectroscopy (NIRS) has been proposed as an alternative technique to assess cerebral autoregulation, which is routinely assessed via transcranial Doppler sonography (TCD) in most centers. Comparitive studies of NIRS and TCD, however, are largely missing. We investigated whether cerebrovascular reserve (CVR), as assessed via TCD, correlates with the delay of the autoregulatory response to changes in arterial blood pressure (ABP) as assessed by NIRS, i.e., if impaired upstream vasomotor reactivity is reflected by downstream cortical autoregulation. Twenty patients with unilateral high-grade steno-occlusion of the middle cerebral artery (MCA) underwent bilateral multichannel NIRS of the cortical MCA distributions over a period of 6 min while breathing at a constant rate of 6 cycles/min to induce stable oscillations in ABP. The phase shift φ between ABP and cortical blood oxygenation was calculated as a measure of autoregulatory latency. In a subgroup of 13 patients, CO2 reactivity of the MCAs was determined by TCD to assess CVR in terms of normalized autoregulatory response (NAR). Mean phase shift between ABP and blood oxygenation was significantly increased over the hemisphere ipsilateral to the steno-occlusion (n = 20, p = 0.042). The interhemispheric difference Δφ in phase shift was significantly larger in patients with markedly diminished or exhausted CVR (NAR < 10) than in patients with normal NAR values (NAR ≥ 10) (p = 0.007). Within the MCA core distribution territory, a strong correlation existed between Δφ and CO2 reactivity of the affected MCA (n = 13, r = -0.78, p = 0.011). NIRS may provide an alternative or supplementary approach to evaluate cerebral autoregulation in risk assessment of ischemic events in steno-occlusive disease of cerebral arteries, especially in patients with insufficient bone windows for TCD.

  15. Magnetic Resonance Imaging of Plaque Burden in Vascular Walls of the Middle Cerebral Artery Correlates with Cerebral Infarction.

    PubMed

    Li, Fei; Chen, Qian-Xue; Chen, Zhi-Biao; Tian, Dao-Feng; Cai, Qiang

    2016-01-01

    Intracranial atherosclerosis may be related to the risk of ischemic stroke. High-resolution magnetic resonance imaging (H-R MRI) makes it possible to measure the intracranial atheroma in vivo. The aim of this study was to evaluate the plaque burden of the middle cerebral artery (MCA) using H-R MRI, and to determine its relationship with both cerebral infarction size and plaque burden in the carotid artery (CA). 54 patients with MCA territory infarction were enrolled and HR-MRI was performed within 7 days following stroke onset. The lumen area (LA), wall area (WA), total vessel area (TVA), and the normalized wall index (NWI) of MCA and CA were measured. We analyzed the status of MCA and CA atheroma, and the size of cerebral infarction, in the corresponding vascular territory. We observed a significant positive correlation between the NWI of the index artery and the volume of the ipsilateral ischemic lesions. In addition, the mean NWI of MCA was significantly correlated with that of the ipsilateral CA (left, r = 0.88, P.0.001; right, r = 0.79, P.0.001), and the plaque burden of the M1 segment of MCA was significantly higher than that of the ipsilateral CA (P < 0.05). There was no significant correlation between the TVA and WA of MCA and that of CA. Our findings suggest that MCA atherosclerosis is significantly correlated with cerebral infarction. In ischemic stroke patients, the plaque burden of M1 segment of MCA is more significant than that of CA.

  16. Carvacrol Exerts Neuroprotective Effects Via Suppression of the Inflammatory Response in Middle Cerebral Artery Occlusion Rats.

    PubMed

    Li, Zhenlan; Hua, Cong; Pan, Xiaoqiang; Fu, Xijia; Wu, Wei

    2016-08-01

    Increasing evidence demonstrates that inflammation plays an important role in cerebral ischemia. Carvacrol, a monoterpenic phenol, is naturally occurring in various plants belonging to the family Lamiaceae and exerts protective effects in a mice model of focal cerebral ischemia/reperfusion injury by reducing infarct volume and decreasing the expression of cleaved caspase-3. However, the anti-inflammatory mechanisms by which carvacrol protect the brain have yet to be fully elucidated. We investigated the effects of carvacrol on inflammatory reaction and inflammatory mediators in middle cerebral artery occlusion rats. The results of the present study showed that carvacrol inhibited the levels of inflammatory cytokines and myeloperoxidase (MPO) activity, as well as the expression of iNOS and COX-2. It also increased SOD activity and decreased MDA level in ischemic cortical tissues. In addition, carvacrol treatment suppressed the ischemia/reperfusion-induced increase in the protein expression of nuclear NF-kB p65. In conclusion, we have shown that carvacrol inhibits the inflammatory response via inhibition of the NF-kB signaling pathway in a rat model of focal cerebral ischemia. Therefore, carvacrol may be a potential therapeutic agent for the treatment of cerebral ischemia injury.

  17. Infusion Rate Dependent Pharmacokinetics of Bendamustine with Altered Formation of γ-hydroxybendamustine (M3) Metabolite Following 30- and 60-min Infusion of Bendamustine in Rats.

    PubMed

    Srinivas, N R; Richter, W; Devaraj, V C; Suresh, P S; Bhamdipati, R K; Mullangi, R

    2016-07-01

    Bendamustine is an alkylating agent administered as 1 h intravenous infusion in the clinic for the treatment of malignant haematological cancers. The aim of the study was to evaluate the pharmacokinetics of bendamustine and its key cytochrome P 450 (CYP) 1A2 mediated γ-hydroxybendamustine (M3) metabolite after 30- and 60-min intravenous infusion of bendamustine in rats. 2 groups were assigned to receive bendamustine either as 30- or 60-min infusion and doses were normalized to 15 mg/kg for the sake of statistical evaluation. Serial pharmacokinetic samples were collected and were analysed for the circulatory levels of bendamustine and its M3 metabolite. Standard pharmacokinetic parameters were generated for bendamustine and its M3 metabolite. Regardless of the intravenous regimens, Cmax coincided with end of infusion for both bendamustine and its M3 metabolite. Immediately after stoppage of infusion, a rapid decline in the plasma levels occurred for both bendamustine and M3 metabolite. The Cmax and AUC0-∞ parameters for bendamustine after 60-min infusion were 1.90 and 1.34-fold higher; while CL was lower by 1.32-fold as compared to the 30-min infusion. In contrast, the Cmax and AUC0-∞ after 30-min infusion for the M3 metabolite was 2.15- and 2.78-fold greater; while CL was 2.32-fold lower when compared to the 60-min infusion. However, T1/2 and Vz values were similar between the 2 intravenous treatments for bendamustine or the M3 metabolite. The data unequivocally confirmed the existence of differential pharmacokinetics of bendamustine and its M3 metabolite as the function of the duration of intravenous infusion.

  18. Severity of middle cerebral artery occlusion determines retinal deficits in rats

    PubMed Central

    Allen, Rachael S.; Sayeed, Iqbal; Cale, Heather A.; Morrison, Katherine C.; Boatright, Jeffrey H.; Pardue, Machelle T.; Stein, Donald G.

    2014-01-01

    Middle cerebral artery occlusion (MCAO) using the intraluminal suture technique is a common model used to study cerebral ischemia in rodents. Due to the proximity of the ophthalmic artery to the middle cerebral artery, MCAO blocks both arteries, causing both cerebral and retinal ischemia. While previous studies have shown retinal dysfunction at 48 hours post-MCAO, we investigated whether these retinal function deficits persist until 9 days and whether they correlate with central neurological deficits. Rats received 90 minutes of transient MCAO followed by electroretinography at 2 and 9 days to assess retinal function. Retinal damage was assessed with cresyl violet staining, immunohistochemistry for glial fibrillary acidic protein (GFAP) and glutamine synthetase, and TUNEL staining. Rats showed behavioral deficits as assessed with neuroscore that correlated with cerebral infarct size and retinal function at 2 days. Two days after surgery, rats with moderate MCAO (neuroscore < 5) exhibited delays in electroretinogram implicit time, while rats with severe MCAO (neuroscore ≥ 5) exhibited reductions in amplitude. Glutamine synthetase was upregulated in Müller cells 3 days after MCAO in both severe and moderate animals, however, retinal ganglion cell death was only observed in MCAO retinas from severe animals. By 9 days after MCAO, both glutamine synthetase labeling and electroretinograms had returned to normal levels in moderate animals. Early retinal function deficits correlated with behavioral deficits. However, retinal function decreases were transient and selective retinal cell loss was observed only with severe ischemia, suggesting that the retina is less susceptible to MCAO than the brain. Temporary retinal deficits caused by MCAO are likely due to ischemia-induced increases in extracellular glutamate that impair signal conduction, but resolve by 9 days after MCAO. PMID:24518488

  19. Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest

    NASA Technical Reports Server (NTRS)

    Clark, J. M.; Skolnick, B. E.; Gelfand, R.; Farber, R. E.; Stierheim, M.; Stevens, W. C.; Beck, G. Jr; Lambertsen, C. J.

    1996-01-01

    Cerebral blood flow (CBF) was measured by 133Xe clearance simultaneously with the velocity of blood flow through the left middle cerebral artery (MCA) over a wide range of arterial PCO2 in eight normal men. Average arterial PCO2, which was varied by giving 4% and 6% CO2 in O2 and by controlled hyperventilation on O2, ranged from 25.3 to 49.9 mm Hg. Corresponding average values of global CBF15 were 27.2 and 65.0 ml 100 g min-1, respectively, whereas MCA blood-flow velocity ranged from 42.8 to 94.2 cm/s. The relationship of CBF to MCA blood-flow velocity over the imposed range of arterial PCO2 was described analytically by a parabola with the equation: CBF = 22.8 - 0.17 x velocity + 0.006 x velocity2 The observed data indicate that MCA blood-flow velocity is a useful index of CBF response to change in arterial PCO2 during O2 breathing at rest. With respect to baseline values measured while breathing 100% O2 spontaneously, percent changes in velocity were significantly smaller than corresponding percent changes in CBF at increased levels of arterial PCO2 and larger than CBF changes at the lower arterial PCO2. These observed relative changes are consistent with MCA vasodilation at the site of measurement during exposure to progressive hypercapnia and also during extreme hyperventilation hypocapnia.

  20. Transneuronal Degeneration of Thalamic Nuclei following Middle Cerebral Artery Occlusion in Rats

    PubMed Central

    2016-01-01

    Objective. Postinfarction transneuronal degeneration refers to secondary neuronal death that occurs within a few days to weeks following the disruption of input or output to synapsed neurons sustaining ischemic insults. The thalamus receives its blood supply from the posterior circulation; however, infarctions of the middle cerebral arterial may cause secondary transneuronal degeneration in the thalamus. In this study, we presented the areas of ischemia and associated transneuronal degeneration following MCAo in a rat model. Materials and Methods. Eighteen 12-week-old male Sprague-Dawley rats were randomly assigned to receive middle cerebral artery occlusion surgery for 1, 7, and 14 days. Cerebral atrophy was assessed by 2,3,5-triphenyltetrazolium hydrochloride staining. Postural reflex and open field tests were performed prior to animal sacrifice to assess the effects of occlusion on behavior. Results. Myelin loss was observed at the lesion site following ischemia. Gliosis was also observed in thalamic regions 14 days following occlusion. Differential degrees of increased vascular endothelial growth factor expression were observed at each stage of infarction. Increases in myelin basic protein levels were also observed in the 14-day group. Conclusion. The present rat model of ischemia provides evidence of transneuronal degeneration within the first 14 days of occlusion. The observed changes in protein expression may be associated with self-repair mechanisms in the damaged brain. PMID:27597962

  1. Risk Factors for the Rupture of Middle Cerebral Artery Bifurcation Aneurysms Using CT Angiography

    PubMed Central

    Wang, Guang-xian; Yu, Jiao-yan; Wen, Li; Zhang, Lei; Mou, Ke-jie; Zhang, Dong

    2016-01-01

    Background and Purpose To investigate the clinical and morphological characteristics associated with risk factors for the rupture of bifurcation-type middle cerebral artery aneurysms (MCAAs). Methods A total of 169 consecutive patients with 177 bifurcation-type MCAAs were reviewed from August 2011 to January 2016. Based on the clinical and morphologic characteristics findings, the risk factors of aneurysm rupture were assessed using statistical methods. Results Age, cerebral atherosclerosis, no hypertension, hypertension grade 2 and coronary artery disease (CAD) were negatively correlated with aneurysm rupture. The mean diameter (MD) of the parent and two daughter arteries was negatively correlated with rupture. Aneurysms with irregularity, depth, width, maximum size, aspect ratio, depth-to-width ratio, bottleneck factor, and size ratio were positively correlated with rupture. The multivariate logistic regression model revealed that irregular shape (odds ratio (OR) 2.697) and aspect ratio (OR 3.723) were significantly and positively correlated with rupture, while cerebral atherosclerosis (OR 0.033), CAD (OR 0.080), and MD (OR 0.201) were negatively correlated with rupture. Receiver operating characteristic analysis revealed that the threshold value of the aspect ratio and MD were 0.96 and 2.43 mm, respectively. Conclusions Cerebral atherosclerosis and CAD are protective factors against rupture. Morphological characteristics such as an aneurysm with an irregular shape, a high aspect ratio (>0.96) and a small MD (<2.43 mm) are likely better predictors of rupture. PMID:27977691

  2. Symptomatic Middle Cerebral Artery Stenosis Treated by Percutaneous Transluminal Angioplasty: Improvement of Cerebrovascular Reserves

    PubMed Central

    Abe, A.; Ueda, T.; Ueda, M.; Nogoshi, S.; Nishiyama, Y.; Katayama, Y.

    2012-01-01

    Summary This study evaluated the recoveries of cerebrovascular reserves (CVR) after applying percutaneous transluminal angioplasty (PTA) to patients with symptomatic middle cerebral artery (MCA) stenosis of varying severity. The patients were submitted to single photon emission computed tomography (SPECT) to obtain their regional cerebral blood flows at resting stage (rCBFrest) and acetazolamide-challenged CBF in five regions of interest (ROIs), including the MCA, on the ipsilateral and contralateral sides of the hemisphere. rCVR values were then calculated from these CBF data to evaluate the CVR recoveries after PTA treatment. When the PTA effects were statistically analyzed of the patients dichotomized into more severe (n=9) and less severe (n=5) groups, distinctly significant ROI-specific PTA effectiveness was observed for CVR rather than CBF values in the patients of the severer group. PMID:22681739

  3. Intraoperative laser speckle contrast imaging improves the stability of rodent middle cerebral artery occlusion model

    NASA Astrophysics Data System (ADS)

    Yuan, Lu; Li, Yao; Li, Hangdao; Lu, Hongyang; Tong, Shanbao

    2015-09-01

    Rodent middle cerebral artery occlusion (MCAO) model is commonly used in stroke research. Creating a stable infarct volume has always been challenging for technicians due to the variances of animal anatomy and surgical operations. The depth of filament suture advancement strongly influences the infarct volume as well. We investigated the cerebral blood flow (CBF) changes in the affected cortex using laser speckle contrast imaging when advancing suture during MCAO surgery. The relative CBF drop area (CBF50, i.e., the percentage area with CBF less than 50% of the baseline) showed an increase from 20.9% to 69.1% when the insertion depth increased from 1.6 to 1.8 cm. Using the real-time CBF50 marker to guide suture insertion during the surgery, our animal experiments showed that intraoperative CBF-guided surgery could significantly improve the stability of MCAO with a more consistent infarct volume and less mortality.

  4. Persistent primitive olfactory artery connected with middle cerebral artery: case report.

    PubMed

    Kim, Myoung Soo

    2013-11-01

    A persistent primitive olfactory artery (PPOA) is an extremely rare variation of the proximal anterior cerebral artery (ACA). The PPOA is connected to the distal ACA, ethmoidal artery, or both. I describe one patient with a PPOA connected to the middle cerebral artery (MCA). I analyzed the radiological characteristics of this anomalous vessel in this patient, who presented with headache. Computed tomography-angiography revealed an abnormal vessel in the patient, which originated from the distal ACA and ran anteromedially along the olfactory tract; it then made an abrupt turn and became the MCA. A PPOA connected to the MCA has been described in only two patients, including my own, in the English-language literature.

  5. Endovascular Treatment of Giant Serpentine Aneurysm of the Middle Cerebral Artery

    PubMed Central

    Jeong, Young Ha; Koo, Youn Moo; Choi, Jong Wook; Whang, Kum; Hu, Chul; Cho, Sung Min

    2016-01-01

    Giant serpentine aneurysms are uncommon types of aneurysmal disease and have angiographically authentic features. We report a case of a 44-year-old male with headache and seizure. He presented a giant serpentine aneurysm arising from the middle cerebral artery (MCA). It was a large intracranial aneurysm thrombosed as a mass-like lesion while it maintained its outflow drainage into the distal MCA branches. The balloon occlusion test (BOT) was performed to test the tolerance of temporary collateral circulation. Following routine cerebral angiography, we performed an endovascular embolization on the proximal artery of MCA. He was discharged from the hospital with alert mental status and mild Gerstmann syndrome. The short-term follow-up imaging studies showed the decreased mass effect, and the patient presented an improved Gerstmann syndrome. After a careful evaluation of BOT, an endovascular embolization can be one of the powerful therapeutic instruments for giant serpentine aneurysm. PMID:27847772

  6. Effects of CD11b/18 monoclonal antibody on rats with permanent middle cerebral artery occlusion.

    PubMed Central

    Garcia, J. H.; Liu, K. F.; Bree, M. P.

    1996-01-01

    The progression of a lesion from ischemic injury to infarct, after the permanent occlusion of a middle cerebral artery, may be influenced by the influx of leukocytes into the ischemic territory. We aimed to evaluate the effectiveness of treating rats that had permanent middle cerebral artery occlusion with a single dose of an anti-CD11b/18 monoclonal antibody injected 1 hour after the arterial occlusion. To mimic the clinical situation of patients with ischemic strokes who may be treated within 1 hour of the ischemic event, the artery remained occluded. Forty-one adult Wistar rats had permanent middle cerebral artery occlusion, and one was subjected to a sham operation. One hour later, 22 rats received CD11b/18 monoclonal antibody and an additional 20 were injected either with a nonspecific antibody (n = 10) or a buffer solution (n = 10). Experiments were terminated at intervals ranging 12 to 96 hours after the arterial occlusion. Endpoints included neurological testing, daily evaluation of body weight, counts of white blood cells in the peripheral blood, measurement of the area of pallor in the ischemic hemisphere, counts of necrotic neurons, and counts of leukocytes sequestered in the ischemic hemisphere. In experiments terminated 12 hours after the arterial occlusion (n = 4), there were fewer necrotic neurons in the group treated with the CD11b/18 monoclonal antibody compared with the two controls (P < .05), but this difference was not reflected in the neurological scores. Numbers of necrotic neurons in experiments terminated > 12 hours later were not different among the three subgroups. White blood cell counts in peripheral blood were lower in animals with arterial occlusion injected with the monoclonal antibody CD11b/18 (P < .05); numbers of leukocytes sequestered in the ischemic hemisphere were not different in the three groups. Neither changes in body weight nor in the volume of the area of pallor were significantly different among the three groups. Images

  7. Fully Endoscope-Controlled Clipping Bilateral Middle Cerebral Artery Aneurysm Via Unilateral Supraorbital Keyhole Approach

    PubMed Central

    Wang, Jian-peng; Wu, Ze-yu; Xu, Jian; Dou, Yi-he

    2016-01-01

    Abstract Clipping bilateral middle cerebral artery (bMCA) aneurysms via unilateral approach in a single-stage operation is considered as a challenge procedure. To our knowledge, there is no study in surgical management of patients with bMCA aneurysms by fully endoscope-controlled techniques. The author reported a patient with bMCA aneurysms who underwent aneurysms clipping via a unilateral supraorbital keyhole approach by endoscope-controlled microneurosurgery, and the patient had an uneventful postoperative course without neurologic impairment and complication. Furthermore, the author discussed the advantages and adaptation of endoscope-controlled clipping bMCA aneurysms via unilateral supraorbital keyhole approach. PMID:28005775

  8. Atorvastatin Modulates Regulatory T Cells and Attenuates Cerebral Damage in a Model of Transient Middle Cerebral Artery Occlusion in Rats.

    PubMed

    Rodríguez-Perea, Ana Lucía; Gutierrez-Vargas, Johanna; Cardona-Gómez, Gloria Patricia; Guarin, Carlos Julio Montoya; Rojas, Mauricio; Hernández, Paula Andrea Velilla

    2017-03-01

    Regulatory T cells (Tregs) inhibit the activation of the immune response which could down-regulate the systemic and focal activation observed during ischemic stroke. In fact, in animal models, Tregs infiltrate the infarcted brain and reduce the pro-inflammatory cytokine production and infarct volume, mainly in late stages of ischemia. Recently, an expansion and greater suppressive capacity of circulating Tregs after treatment with statins was observed, in addition to their cardio- and neuroprotective actions demonstrated previously. Thus, to determine whether Treg modulation mediated by statins can also be beneficial during stroke, cerebral ischemia was artificially induced in Wistar rats by transient middle cerebral artery occlusion (tMCAO) during 60 minutes with subsequent reperfusion for 7 days. Six hours after surgery, some animals were treated with atorvastatin (ATV, 10 mg/kg) or carboxymethylcellulose as vehicle at the same concentration every other day during 7 days. Some animals were sham operated as control group of surgery. Interestingly, ATV treatment prevented the development of infarct volume, reduced the neurological deficits, and the circulating and cervical lymph node CD25(+)FoxP3(+) Treg population. Moreover, there was a reduction of glial cell activation, which correlated with decreased circulating Tregs. Remarkably, treatment with ATV induced an increase in the frequency of CD4(+)CD25(+) T cells, in particular of those expressing CTLA-4, in brain samples. Together, these results suggest that ATV can modulate Tregs in peripheral tissue and favor their accumulation in the brain, where they can exert neuroprotective actions maybe by the reduction of glial cell activation.

  9. Cerebral Arterial Calcification Is an Imaging Prognostic Marker for Revascularization Treatment of Acute Middle Cerebral Arterial Occlusion

    PubMed Central

    Lee, Seong-Joon; Hong, Ji Man; Lee, Manyong; Huh, Kyoon; Choi, Jin Wook

    2015-01-01

    Background and Purpose To study the significance of intracranial artery calcification as a prognostic marker for acute ischemic stroke patients undergoing revascularization treatment after middle cerebral artery (MCA) trunk occlusion. Methods Patients with acute MCA trunk occlusion, who underwent intravenous and/or intra-arterial revascularization treatment, were enrolled. Intracranial artery calcification scores were calculated by counting calcified intracranial arteries among major seven arteries on computed tomographic angiography. Patients were divided into high (HCB; score ≥3) or low calcification burden (LCB; score <3) groups. Demographic, imaging, and outcome data were compared, and whether HCB is a prognostic factor was evaluated. Grave prognosis was defined as modified Rankin Scale 5-6 for this study. Results Of 80 enrolled patients, the HCB group comprised 15 patients, who were older, and more commonly had diabetes than patients in the LCB group. Initial National Institutes of Health Stroke Scale (NIHSS) scores did not differ (HCB 13.3±2.7 vs. LCB 14.6±3.8) between groups. The final good reperfusion after revascularization treatment (thrombolysis in cerebral infarction score 2b-3, HCB 66.7% vs. LCB 69.2%) was similarly achieved in both groups. However, the HCB group had significantly higher NIHSS scores at discharge (16.0±12.3 vs. 7.9±8.3), and more frequent grave outcome at 3 months (57.1% vs. 22.0%) than the LCB group. HCB was proven as an independent predictor for grave outcome at 3 months when several confounding factors were adjusted (odds ratio 4.135, 95% confidence interval, 1.045-16.359, P=0.043). Conclusions Intracranial HCB was associated with grave prognosis in patients who have undergone revascularization for acute MCA trunk occlusion. PMID:25692109

  10. Allopurinol and dimethylthiourea reduce brain infarction following middle cerebral artery occlusion in rats.

    PubMed

    Martz, D; Rayos, G; Schielke, G P; Betz, A L

    1989-04-01

    Free radicals have been shown to play an important role in ischemia-reperfusion injury in several organ systems; however, the role of free radicals in central nervous system ischemia has been less well studied. Many potential free radical-generating systems exist. The primary products of these reactions, superoxide and hydrogen peroxide, may combine to produce hydroxyl radicals. Of the many potential sources of free radical generation, the enzyme xanthine oxidase has been shown to be important in ischemia in noncerebral tissue. We investigated the effect of the hydroxyl radical scavenger dimethylthiourea and the xanthine oxidase inhibitor allopurinol on infarct volume in a model of continuous partial ischemia. Male Sprague-Dawley rats were treated with dimethylthiourea or allopurinol before middle cerebral artery occlusion. Infarct volume was measured by triphenyltetrazolium chloride staining of brains removed 3 or 24 hours after occlusion. Stroke volume was reduced by 30% after dimethylthiourea treatment and by 32-35% after allopurinol treatment. At 24 hours after stroke, cortical tissue was more effectively protected than caudate tissue with both agents. Pretreatment with dimethylthiourea and allopurinol also significantly reduced cerebral edema formation and improved blood-brain barrier function as measured by fluorescein uptake. Our results imply that hydroxyl radicals are important in tissue injury secondary to partial cerebral ischemia and that xanthine oxidase may be the primary source of these radicals.

  11. Fully distributed absolute blood flow velocity measurement for middle cerebral arteries using Doppler optical coherence tomography

    PubMed Central

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping

    2016-01-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement. PMID:26977365

  12. Dyke-Davidoff-Masson syndrome: case report of fetal unilateral ventriculomegaly and hypoplastic left middle cerebral artery.

    PubMed

    Piro, Ettore; Piccione, Maria; Marrone, Gianluca; Giuffrè, Mario; Corsello, Giovanni

    2013-05-14

    Prenatal ultrasonographic detection of unilateral cerebral ventriculomegaly arises suspicion of pathological condition related to cerebrospinal fluid flow obstruction or cerebral parenchimal pathology. Dyke-Davidoff-Masson syndrome is a rare condition characterized by cerebral hemiatrophy, calvarial thickening, skull and facial asymmetry, contralateral hemiparesis, cognitive impairment and seizures. Congenital and acquired types are recognized and have been described, mainly in late childhood, adolescence and adult ages. We describe a female infant with prenatal diagnosis of unilateral left ventriculomegaly in which early brain MRI and contrast enhanced-MRI angiography, showed cerebral left hemiatrophy associated with reduced caliber of the left middle cerebral artery revealing the characteristic findings of the Dyke-Davidoff-Masson syndrome. Prenatal imaging, cerebral vascular anomaly responsible for the cerebral hemiatrophy and the early clinical evolution have never been described before in such a young child and complete the acquired clinical descriptions in older children. Differential diagnosis, genetic investigations, neurophysiologic assessments, short term clinical and developmental follow up are described. Dyke-Davidoff-Masson syndrome must be ruled out in differential diagnosis of fetal unilateral ventriculomegaly. Early clinical assessment, differential diagnosis and cerebral imaging including cerebral MRI angiography allow the clinicians to diagnose also in early infancy this rare condition.

  13. Alterations to the middle cerebral artery of the hypertensive-arthritic rat model potentiates intracerebral hemorrhage

    PubMed Central

    Chokshi, Killol; Kane, Brittany; Chang, Hilary; Naiel, Safaa; Dickhout, Jeffrey G.

    2016-01-01

    Aims We have recently created an age-dependent hypertensive-mono-arthritic animal model from the stroke-resistant spontaneously hypertensive rat to model populations with autoimmune disease who are hypertensive and are prone to stroke. The model exhibits signs of hemorrhagic stroke (HS) subsequent to chronic inflammation and hypertension. HS is also associated with the inability of middle cerebral arteries to undergo pressure dependent constriction (PDC). We investigated alterations in the cerebrovasculature of our hypertensive mono-arthritic animals that develop stroke. Main Methods Animals were fed either a high salt diet (HSD) (4% NaCl) or Purina chow (0.58% NaCl) from weaning. Complete Freund’s Adjuvant (CFA) was injected into the left hind paw at 21–28 weeks; controls received saline and histological and functional studies were performed. Results Brain damage was more prominent with the high salt, with inflammation exacerbating the damage. High salt alone significantly decreased middle cerebral artery’s (MCA’s) ability to undergo PDC. Inflammation significantly decreased the ability of cerebrovasculature to respond to pressure step in the regular salt diet. The responses to vasoactive peptides were also significantly attenuated in both inflamed groups regardless of diet. Conclusion Induction of chronic systemic inflammation increases brain damage, and affect the MCA’s vasogenic function, decreasing its ability to respond to intraluminal pressure. HSD further exacerbates organ damage associated with chronic inflammation, further compromising cerebrovascular function, and likely increasing the incidence of intracerebral hemorrhage and injury. PMID:27833798

  14. Middle Cerebral Artery Occlusion Model of Stroke in Rodents: A Step-by-Step Approach

    PubMed Central

    Shahjouei, Shima; Cai, Peter Y.; Ansari, Saeed; Sharififar, Sharareh; Azari, Hassan; Ganji, Sarah; Zand, Ramin

    2016-01-01

    Stroke is one of the leading causes of morbidity and mortality in developed countries and an immense amount of medical care resources are devoted to combat the poststroke debilitating consequences. The key to develop effective and clinically applicable treatment methodologies is a better understanding of the pathophysiology of the disease, including the root causes and targets for pharmacology. Developing these foundations requires the use of standard animal models that mimic the physicochemical process of the diseases that can reliably replicate results in order to test and fine-tune therapeutic modalities. Middle cerebral artery occlusion (MCAO), endothelin-1-induced ischemic stroke, photothrombosis, devascularization, embolization, and spontaneous infarction using hemorrhage are some examples of different animal models. Reliability of MCAO has been proved and due to the ability to induce reperfusion similar to tissue plasminogen activator (tPA) therapy, this model is widely used in preclinical studies. Here, we describe a detailed methodology on how to develop MCAO stroke in rodents using intra-arterial insertion of filament to occlude the middle cerebral artery. This approach allows for the study of a wide array of basic pathophysiology mechanisms, regenerative medicine and rehabilitation therapy. PMID:26958146

  15. The transient intraluminal filament middle cerebral artery occlusion model as a model of endovascular thrombectomy in stroke.

    PubMed

    Sutherland, Brad A; Neuhaus, Ain A; Couch, Yvonne; Balami, Joyce S; DeLuca, Gabriele C; Hadley, Gina; Harris, Scarlett L; Grey, Adam N; Buchan, Alastair M

    2016-02-01

    The clinical relevance of the transient intraluminal filament model of middle cerebral artery occlusion (tMCAO) has been questioned due to distinct cerebral blood flow profiles upon reperfusion between tMCAO (abrupt reperfusion) and alteplase treatment (gradual reperfusion), resulting in differing pathophysiologies. Positive results from recent endovascular thrombectomy trials, where the occluding clot is mechanically removed, could revolutionize stroke treatment. The rapid cerebral blood flow restoration in both tMCAO and endovascular thrombectomy provides clinical relevance for this pre-clinical model. Any future clinical trials of neuroprotective agents as adjuncts to endovascular thrombectomy should consider tMCAO as the model of choice to determine pre-clinical efficacy.

  16. Validity of Laser Doppler Flowmetry in Predicting Outcome in Murine Intraluminal Middle Cerebral Artery Occlusion Stroke

    PubMed Central

    Hedna, Vishnumurthy Shushrutha; Ansari, Saeed; Shahjouei, Shima; Cai, Peter Y.; Ahmad, Abdullah Shafique; Mocco, J; Qureshi, Adnan I.

    2015-01-01

    Background Laser Doppler flowmetry (LDF) can reliably reflect brain perfusion in experimental stroke by monitoring both the degree and the duration of relative regional cerebral blood flow (rCBF). Variation in rCBF was continuously monitored in 68 mice undergoing middle cerebral artery occlusion (MCAO) and 25 mice undergoing sham-operation and documented as LDF (%). Transcranial LDF changes in the territory of right middle cerebral artery during MCAO procedure were correlated with corrected infarct volume (CIV) and neurological deficit score (NDS). Methods Ninety-three C57BL/6 mice (Harlan Laboratories, Indianapolis, IN) between 9 and 11 weeks old were randomly selected and assigned to either MCAO for 45 minutes (n = 68) or sham group (n = 25). Ischemia was induced using the transient intraluminal filament model of MCAO based on Koizumi’s method and transcranial LDF was used to measure CBF during the procedure. Neurological deficits were measured at 2 and 23 hours after MCA reperfusion with NDS and 2% triphenyltetrazolium chloride (TTC) staining of carefully dissected brains was performed at 23 hours after reperfusion to determine infarct area. Results After common carotid artery occlusion (CCAO), there was a negative association between LDF drop from base line and NDS at 2 hours (r = −0.43, P = 0.038) and 23 hours (r = −0.61, P = 0.003). Also, a negative correlation was noted between MCA reperfusion LDF and NDS at 23 hours (r = −0.53, P = 0.001). Moreover, post-MCA reperfusion LDF had a positive association with initial CCAO LDF (r = 0.761, P = 0.000) and MCA occlusion LDF (r = 0.31, P = 0.036) in predicting neurological outcome. NDS at 23 hours corresponded well with the infarct volume (r = 0.31, P = 0.005). Conclusions Greater augmentation of rCBF after MCA reperfusion was associated with improved neurological deficit scoring. Interestingly, greater reduction of regional cerebral blood flow after CCAO was also associated with improved neurological

  17. A case of catatonia status-post left middle cerebral artery cerebrovascular accident, treated successfully with olanzapine.

    PubMed

    Spiegel, David R; Klaiber, Nicholas

    2013-01-01

    Catatonia is a psychomotor phenomenon associated with psychiatric/medical conditions. We present a patient who developed catatonia status-post left middle cerebral artery infarct. With a Bush Francis Catatonia Rating Scale score of 43 on admission, treatment with olanzapine reduced this score to 2, by discharge.

  18. Middle cerebral artery blood flow velocity in elite power athletes during maximal weight-lifting.

    PubMed

    Dickerman, R D; McConathy, W J; Smith, G H; East, J W; Rudder, L

    2000-06-01

    Cerebral blood flow velocity (CBFV) has been shown to significantly increase during dynamic exercise (running) secondary to increases in cardiac output. Static exercise (weight-lifting) induces supraphysiological arterial pressures up to 450/380 mmHg, and thus may alter CBFV. Catastrophic brain injuries such as stroke, cerebral hemorrhage, subarachnoid hemorrhage, retinal hemorrhage and retinal detachment have been associated with weight-lifting. A recent study has shown that intra-ocular pressure (IOP), which is an indirect measure of intracranial pressure, elevates to pathophysiologic levels during weight-lifting. Recent CBFV studies instituting Valsalva have demonstrated decreases in CBFV from 21%-52%. To date, no studies have examined CBFV during maximal weight-lifting to elucidate the cerebrovascular responses to extreme pressure alterations. We recruited nine elite power athletes, including a multi-world record holder in powerlifting, for a transcranial Doppler study of middle cerebral artery blood flow velocity at rest and during maximal weight-lifting. All subjects' resting blood flow velocities were within normal ranges (mean 64.4 +/- 9.5 cm sec2). Blood flow velocities were significantly (p < 0.0001) decreased in all subjects during maximal lifting (mean 48.4 +/- 10.1 cm sec2). Linear regression analysis demonstrated a significant inverse linear relationship in the net change of blood velocities from rest to maximal lift for each subject (r = 0.8585, p < 0.001). This study demonstrates that blood flow velocities are significantly decreased during heavy resistance training. The drop in CBFV during weight-lifting was significantly less than previous Valsalva studies, which likely reveals the cardiovascular, baroreflex, and cerebrovascular system adaptations occurring in these elite power athletes.

  19. Malignant infarction of the middle cerebral artery in a porcine model. A pilot study

    PubMed Central

    Martínez-Valverde, Tamara; Sánchez-Guerrero, Ángela; Campos, Mireia; Esteves, Marielle; Gandara, Dario; Torné, Ramon; Castro, Lidia; Dalmau, Antoni; Tibau, Joan

    2017-01-01

    Background and purpose Interspecies variability and poor clinical translation from rodent studies indicate that large gyrencephalic animal stroke models are urgently needed. We present a proof-of-principle study describing an alternative animal model of malignant infarction of the middle cerebral artery (MCA) in the common pig and illustrate some of its potential applications. We report on metabolic patterns, ionic profile, brain partial pressure of oxygen (PtiO2), expression of sulfonylurea receptor 1 (SUR1), and the transient receptor potential melastatin 4 (TRPM4). Methods A 5-hour ischemic infarct of the MCA territory was performed in 5 2.5-to-3-month-old female hybrid pigs (Large White x Landrace) using a frontotemporal approach. The core and penumbra areas were intraoperatively monitored to determine the metabolic and ionic profiles. To determine the infarct volume, 2,3,5-triphenyltetrazolium chloride staining and immunohistochemistry analysis was performed to determine SUR1 and TRPM4 expression. Results PtiO2 monitoring showed an abrupt reduction in values close to 0 mmHg after MCA occlusion in the core area. Hourly cerebral microdialysis showed that the infarcted tissue was characterized by reduced concentrations of glucose (0.03 mM) and pyruvate (0.003 mM) and increases in lactate levels (8.87mM), lactate-pyruvate ratio (4202), glycerol levels (588 μM), and potassium concentration (27.9 mmol/L). Immunohistochemical analysis showed increased expression of SUR1-TRPM4 channels. Conclusions The aim of the present proof-of-principle study was to document the feasibility of a large animal model of malignant MCA infarction by performing transcranial occlusion of the MCA in the common pig, as an alternative to lisencephalic animals. This model may be useful for detailed studies of cerebral ischemia mechanisms and the development of neuroprotective strategies. PMID:28235044

  20. The Effect of Photoluminescence of Bioceramic Irradiation on Middle Cerebral Arterial Occlusion in Rats

    PubMed Central

    Zhang, Lei; Chan, Paul; Liu, Zhong-Min; Hwang, Ling-Ling; Lin, Kuo-Chi; Chan, Wing P.; Leung, Ting-Kai; Choy, Cheuk Sing

    2016-01-01

    The purpose of this study is to determine the possible effect of photoluminescence of bioceramic (PLB) on ischemic cerebral infarction (stroke), by using an animal model of transient middle cerebral artery occlusion (MCAO). Sprague-Dawley rats were used to induce MCAO to block the origin of the left MCAO; three months later, the positive chronic stroke rats were selected by running tunnel maze; the MCAO rats with significant chronic stroke and neurological defects were used for treadmill experiments with varying speed settings to test their capability for restoration after muscular fatigue under conditions of with and without PLB irradiation. As a result, PLB irradiation could improve exercise completion rate and average running speed during slow and fast treadmill settings. After PLB irradiation, the selected MCAO rats successfully completed all the second-round treadmill exercises at the maximum speed setting, and they had better restoration from muscular fatigue. An in vitro cell study on astrocytes of rats by bioceramic irradiation further demonstrated increased intracellular nitric oxide. To explain these results, we suggest that cortical brain stimulation of microcirculation and enhancement of peripheral muscular activity are the main causes of the improved exercise performance in MCAO rats by PLB. PMID:27375765

  1. Using High-Field Magnetic Resonance Imaging to Estimate Distensibility of the Middle Cerebral Artery

    PubMed Central

    Warnert, Esther A.H.; Verbree, Jasper; Wise, Richard G.; van Osch, Matthias J.P.

    2016-01-01

    Background Although cerebral arterial stiffness may be an important marker for cerebrovascular health, there is not yet a measurement that accurately reflects the distensibility of major intracranial arteries. Herein, we aim to noninvasively measure distension of the human middle cerebral artery (MCA). Methods Ten healthy volunteers (age: 30.3 ± 10.8 years) underwent ultra-high-field (7-tesla) MRI scanning. Time-of-flight angiography and phase-contrast flow imaging were used to locate the M1 segment of the MCA and to determine the occurrence of systole and diastole. High-resolution cross-sectional cardiac triggered T2-weighted images of the M1 segment of the MCA were acquired in systole and diastole. Results The average distension of the MCA area from diastole to systole was 2.58% (range: 0.08%-6.48%). There was no significant correlation between MCA distension and the pulsatility index, calculated from the phase-contrast flow velocity profiles. Conclusion These results lead to the first noninvasive image-based estimation of distensibility of the MCA (approx. 5.8 × 10-4 mm Hg-1) and demonstrate that ultra-high-field MRI could be a promising tool for investigating distensibility of intracranial arteries in relation to cerebrovascular pathology. PMID:27449212

  2. Ovine middle cerebral artery characterization and quantification of ultrastructure and other features: changes with development.

    PubMed

    Goyal, Ravi; Henderson, David A; Chu, Nina; Longo, Lawrence D

    2012-02-15

    Regulation of tone, blood pressure, and blood flow in the cerebral vasculature is of vital importance, particularly in the developing infant. We tested the hypothesis that, in addition to accretion of smooth muscle cells (SMCs) in cell layers with vessel thickening, significant changes in smooth muscle structure, as well as phenotype, extracellular matrix, and membrane proteins, in the media of cerebral arteries (CAs) during the course of late fetal development account for associated changes in contractility. Using transmission electron, confocal, wide-field epifluorescence, and light microscopy, we examined the structure and ultrastructure of CAs. Also, we utilized wire myography, Western immunoblotting, and real-time quantitative PCR to examine several other features of these arteries. We compared the main branch ovine middle CAs of 95- and 140-gestational day (GD) fetuses with those of adults (n = 5 for each experimental group). We observed a graded increase in phenylephrine- and KCl-induced contractile responses with development. Structurally, lumen diameter, media thickness, and media cross-sectional area increased dramatically from one age group to the next. With maturation, the cross-sectional profiles of CA SMCs changed from flattened bands in the 95-GD fetus to irregular ovoid-shaped fascicles in the 140-GD fetus and adult. We also observed a change in the type of collagen, specific integrin molecules, and several other parameters of SMC morphology with maturation. Ovine CAs at 95 GD appeared morphologically immature and poorly equipped to respond to major hemodynamic adjustments with maturation.

  3. Extracerebral Tissue Damage in the Intraluminal Filament Mouse Model of Middle Cerebral Artery Occlusion

    PubMed Central

    Vaas, Markus; Ni, Ruiqing; Rudin, Markus; Kipar, Anja; Klohs, Jan

    2017-01-01

    Middle cerebral artery occlusion is the most common model of focal cerebral ischemia in the mouse. In the surgical procedure, the external carotid artery (ECA) is ligated; however, its effect on the tissue supplied by the vessel has not been described so far. C57BL/6 mice underwent 1 h of transient MCAO (tMCAO) or sham surgery. Multi-spectral optoacoustic tomography was employed at 30 min after surgery to assess oxygenation in the temporal muscles. Microstructural changes were assessed with magnetic resonance imaging and histological examination at 24 h and 48 h after surgery. Ligation of the ECA resulted in decreased oxygenation of the left temporal muscle in most sham-operated and tMCAO animals. Susceptible mice of both groups exhibited increased T2 relaxation times in the affected muscle with histological evidence of myofibre degeneration, interstitial edema, and neutrophil influx. Ligatures had induced an extensive neutrophil-dominated inflammatory response. ECA ligation leads to distinct hypoxic degenerative changes in the tissue of the ECA territory and to ligature-induced inflammatory processes. An impact on outcome needs to be considered in this stroke model. PMID:28348545

  4. Blockage of transient receptor potential vanilloid 4 inhibits brain edema in middle cerebral artery occlusion mice.

    PubMed

    Jie, Pinghui; Tian, Yujing; Hong, Zhiwen; Li, Lin; Zhou, Libin; Chen, Lei; Chen, Ling

    2015-01-01

    Brain edema is an important pathological process during stroke. Activation of transient receptor potential vanilloid 4 (TRPV4) causes an up-regulation of matrix metalloproteinases (MMPs) in lung tissue. MMP can digest the endothelial basal lamina to destroy blood brain barrier, leading to vasogenic brain edema. Herein, we tested whether TRPV4-blockage could inhibit brain edema through inhibiting MMPs in middle cerebral artery occlusion (MCAO) mice. We found that the brain water content and Evans blue extravasation at 48 h post-MCAO were reduced by a TRPV4 antagonist HC-067047. The increased MMP-2/9 protein expression in hippocampi of MCAO mice was attenuated by HC-067046, but only the increased MMP-9 activity was blocked by HC-067047. The loss of zonula occludens-1 (ZO-1) and occludin protein in MCAO mice was also attenuated by HC-067047. Moreover, MMP-2/9 protein expression increased in mice treated with a TRPV4 agonist GSK1016790A, but only MMP-9 activity was increased by GSK1016790A. Finally, ZO-1 and occludin protein expression was decreased by GSK1016790A, which was reversed by an MMP-9 inhibitor. We conclude that blockage of TRPV4 may inhibit brain edema in cerebral ischemia through inhibiting MMP-9 activation and the loss of tight junction protein.

  5. Transdifferentiation-Induced Neural Stem Cells Promote Recovery of Middle Cerebral Artery Stroke Rats

    PubMed Central

    Ma, Jianhua; Zhang, Maoying; Li, Shaowu; Wu, Bingshan; Nie, Xiaohu; Jiao, Jiao; Zhao, Hao; Wang, Shanshan; Yang, Yuanyuan; Zhang, Yesen; Sun, Yilin; Wicha, Max S.; Chang, Alfred E.; Gao, Shaorong; Li, Qiao; Xu, Ruxiang

    2015-01-01

    Induced neural stem cells (iNSCs) can be directly transdifferentiated from somatic cells. One potential clinical application of the iNSCs is for nerve regeneration. However, it is unknown whether iNSCs function in disease models. We produced transdifferentiated iNSCs by conditional overexpressing Oct4, Sox2, Klf4, c-Mycin mouse embryonic fibroblasts. They expanded readily in vitro and expressed NSC mRNA profile and protein markers. These iNSCs differentiated into mature astrocytes, neurons and oligodendrocytes in vitro. Importantly, they reduced lesion size, promoted the recovery of motor and sensory function as well as metabolism status in middle cerebral artery stroke rats. These iNSCs secreted nerve growth factors, which was associated with observed protection of neurons from apoptosis. Furthermore, iNSCs migrated to and passed through the lesion in the cerebral cortex, where Tuj1+ neurons were detected. These findings have revealed the function of transdifferentiated iNSCs in vivo, and thus provide experimental evidence to support the development of personalized regenerative therapy for CNS diseases by using genetically engineered autologous somatic cells. PMID:26352672

  6. The Effect of Photoluminescence of Bioceramic Irradiation on Middle Cerebral Arterial Occlusion in Rats.

    PubMed

    Zhang, Lei; Chan, Paul; Liu, Zhong-Min; Hwang, Ling-Ling; Lin, Kuo-Chi; Chan, Wing P; Leung, Ting-Kai; Choy, Cheuk Sing

    2016-01-01

    The purpose of this study is to determine the possible effect of photoluminescence of bioceramic (PLB) on ischemic cerebral infarction (stroke), by using an animal model of transient middle cerebral artery occlusion (MCAO). Sprague-Dawley rats were used to induce MCAO to block the origin of the left MCAO; three months later, the positive chronic stroke rats were selected by running tunnel maze; the MCAO rats with significant chronic stroke and neurological defects were used for treadmill experiments with varying speed settings to test their capability for restoration after muscular fatigue under conditions of with and without PLB irradiation. As a result, PLB irradiation could improve exercise completion rate and average running speed during slow and fast treadmill settings. After PLB irradiation, the selected MCAO rats successfully completed all the second-round treadmill exercises at the maximum speed setting, and they had better restoration from muscular fatigue. An in vitro cell study on astrocytes of rats by bioceramic irradiation further demonstrated increased intracellular nitric oxide. To explain these results, we suggest that cortical brain stimulation of microcirculation and enhancement of peripheral muscular activity are the main causes of the improved exercise performance in MCAO rats by PLB.

  7. Krypton laser-induced photothrombotic distal middle cerebral artery occlusion without craniectomy in mice.

    PubMed

    Sugimori, Hiroshi; Yao, Hiroshi; Ooboshi, Hiroaki; Ibayashi, Setsuro; Iida, Mitsuo

    2004-08-01

    Recent advances in genetical engineering of the mouse have highlighted the importance of reproducible and less invasive models of cerebral ischemia in mice. In this paper, we developed minimally invasive and reproducible model of distal middle cerebral artery (MCA) occlusion in mice using krypton (Kr) laser-induced photothrombosis. C57BL/6 or BALB mice (n=8 each) were anesthetized with halothane. The skin was cut, the temporal muscle was retracted, and the right distal MCA was observed through the skull. A Kr laser beam of wavelength 568 nm was focused onto the MCA over the intact skull. Upon laser irradiation, intravenous administration of a rose bengal solution was begun. After 4 min of irradiation, the laser beam was refocused on the MCA just proximal to the first spot, and another 4-min irradiation was performed. Then, the right common carotid artery (CCA) was ligated. Three days later, the brain was removed, and infarct volume was determined. Infarction confined almost solely to the cortical area was produced in each mouse. Mean infarct volume in C57BL/6 mice was 25.2+/-13.7 mm3. The BALB mice group showed significantly larger and more reproducible infarction (44.1+/-5.2 mm3; the coefficient of variation was 12%) than did C57BL/6 mice (P<0.005). Our photothrombosis model of stroke in mice can be performed without craniectomy, and its reproducibility is satisfactory when using BALB mice.

  8. Stent-assisted coil embolization of a symptomatic middle cerebral artery aneurysm in an infant.

    PubMed

    Savastano, Luis E; Chaudhary, Neeraj; Gemmete, Joseph J; Garton, Hugh J L; Maher, Cormac O; Pandey, Aditya S

    2014-11-01

    Pediatric intracranial aneurysms are rare and challenging to treat. Achieving efficacy and durability of aneurysmal occlusion while maintaining parent vessel patency requires innovative treatment strategies, especially in cases in which aneurysmal location or morphology pose substantial morbidity associated with microsurgical treatment. In the last 3 decades, endovascular treatments have had a remarkable evolution and are currently considered safe and effective therapeutic options for cerebral aneurysms. While endovascular techniques are well described in the English literature, the endovascular management of pediatric aneurysms continues to pose a challenge. In this report, the authors describe the case of a 9-month-old infant who presented with a 1-day history of acute-onset left-sided hemiparesis and left facial droop. Imaging revealed a large symptomatic saccular middle cerebral artery aneurysm. Treatment included successful stent-assisted aneurysm coiling. At follow-up, the patient continued to fare well and MR angiography confirmed complete occlusion of the aneurysm dome. This case features the youngest patient in the English literature to harbor an intracranial aneurysm successfully treated with stent-assisted coiling. Based on this experience, endovascular intervention with vascular reconstruction can be safe and effective for the treatment of infants and could further improve prognosis; however, further studies are necessary to confirm these findings.

  9. Intrauterine blood transfusion in immune hydrops fetalis, corrects middle cerebral artery Doppler velocimetry very quickly

    PubMed Central

    Yalinkaya, Ahmet; Evsen, Mehmet Sıddık; Celik, Yusuf; Sak, Muhammet Erdal; Soydinc, Hatice Ender; Taner, Mehmet Zeki

    2012-01-01

    The aim of our study was to evaluate the middle cerebral artery velocimetry before and after intrauterine blood transfusion in immune hydrops fetalis. The current study was conducted in a tertiary research hospital, from February 2009 to January 2011. Nineteen intrauterine blood transfusions performed during the study period. The factors recorded were age of the mothers, gestational weeks, pre-transfusion fetal hematocrit and post-transfusion fetal hematocrit, and also middle cerebral artery peak systolic velocimetry (MCA-PSV) was detected and recorded before and after intrauterine transfusion. A control group of twenty two cases for normal MCA doppler velocimetry was also included to the study. During the study, a total of eleven rhesus isoimmunized pregnancies underwent intrauterine blood transfusions at our perinatal diagnose unit. Before transfusion seventeen severe and two moderate anemias were detected and mean MoM of MCA-PSV was 1.76±0.38 MoM. Post transfusion mean MoM of MCA-PSV in the patient group and control group were 1.08±0.22 MoM and 0.96±0.21 MoM, respectively. The mean MCA-PSV values were higher in RI fetuses than post transfusion and control group. In current study, we found that MCA-PSV is a valuable parameter in detecting fetal anemia requiring intrauterine transfusion and mean MCA-PSV values is higher than 1.5 MoM in fetuses with anemia. And also decrease in MCA-PSV just after transfusion in anemic fetuses showed the quick response of the fetus to correction of anemia. PMID:22364302

  10. Comparison of BMSs with SES for Symptomatic Intracranial Disease of the Middle Cerebral Artery Stenosis

    SciTech Connect

    Yue Xuanye; Yin Qin; Xi Gangming; Zhu Wusheng; Xu Gelin; Zhang Renliang; Zhou Zhiming; Ma Minmin; Jin Guangfu; Liu Xinfeng

    2011-02-15

    This study was designed to compare the clinical and angiographic outcomes of patients with symptomatic atherosclerotic middle cerebral artery stenosis treated with balloon-mounted stents (BMS) and self-expandable Wingspan system (SES). We reviewed the 69 consecutive stent placement procedures for symptomatic atherosclerotic stenosis ({>=}70) in M1 segment of middle cerebral artery in 67 patients in 3 years. According to the stent types, the patients were classed as BMS and SES groups. The demographic characteristics, conventional risk factors of ischemic stroke, degree of stenosis, periprocedural complications, stent types, and clinical and angiographic outcomes were analyzed. There were 39 patients in the BMS group and 28 patients in the SES group. The demographic characteristics, conventional risk factors, and periprocedural complications were similar but different in residual stenosis after stenting in both groups (5.9% {+-} 9.9% vs. 14.4% {+-} 14.6%; P = 0.01). For the overall cohort, the rate of stroke or death and restenosis was 10.9% (7/66) and 24.5% (14/57), respectively. The frequency of restenosis was higher in the SES group than in the BMS group (log-rank, P = 0.04; crude hazard ratio = 3.03; 95% confidence interval (CI), 1.01-9.15; P = 0.049; and adjusted hazard ratio = 3.61; 95% CI, 1.06-12.27; P = 0.04); however, there was no difference in clinical outcomes (log-rank, P = 0.51; crude hazard ratio = 1.66; 95% CI, 0.36-7.61; P = 0.51; and adjusted hazard ratio = 0.59; 95% CI, 0.04-7.89; P = 0.69). The corrected degree of restenosis was higher in the SES than the BMS group. The prevalence of restenosis was higher in the SES than the BMS group, but the perioperative complications and follow-up clinical outcomes had no significant difference.

  11. Screen-imaging guidance using a modified portable video macroscope for middle cerebral artery occlusion.

    PubMed

    Zhu, Xingbao; Luo, Junli; Liu, Yun; Chen, Guolong; Liu, Song; Ruan, Qiangjin; Deng, Xunding; Wang, Dianchun; Fan, Quanshui; Pan, Xinghua

    2012-04-25

    The use of operating microscopes is limited by the focal length. Surgeons using these instruments cannot simultaneously view and access the surgical field and must choose one or the other. The longer focal length (more than 1 000 mm) of an operating telescope permits a position away from the operating field, above the surgeon and out of the field of view. This gives the telescope an advantage over an operating microscope. We developed a telescopic system using screen-imaging guidance and a modified portable video macroscope constructed from a Computar MLH-10 × macro lens, a DFK-21AU04 USB CCD Camera and a Dell laptop computer as monitor screen. This system was used to establish a middle cerebral artery occlusion model in rats. Results showed that magnification of the modified portable video macroscope was appropriate (5-20 ×) even though the Computar MLH-10 × macro lens was placed 800 mm away from the operating field rather than at the specified working distance of 152.4 mm with a zoom of 1-40 ×. The screen-imaging telescopic technique was clear, life-like, stereoscopic and matched the actual operation. Screen-imaging guidance led to an accurate, smooth, minimally invasive and comparatively easy surgical procedure. Success rate of the model establishment evaluated by neurological function using the modified neurological score system was 74.07%. There was no significant difference in model establishment time, sensorimotor deficit and infarct volume percentage. Our findings indicate that the telescopic lens is effective in the screen surgical operation mode referred to as "long distance observation and short distance operation" and that screen-imaging guidance using an modified portable video macroscope can be utilized for the establishment of a middle cerebral artery occlusion model and micro-neurosurgery.

  12. Reduction of Midline Shift Following Decompressive Hemicraniectomy for Malignant Middle Cerebral Artery Infarction

    PubMed Central

    Jeon, Sang-Beom; Kwon, Sun U.; Park, Jung Cheol; Lee, Deok Hee; Yun, Sung-Cheol; Kim, Yeon-Jung; Ahn, Jae-Sung; Kwun, Byung-Duk; Kang, Dong-Wha; Choi, H. Alex; Lee, Kiwon; Kim, Jong S.

    2016-01-01

    Background and Purpose Hemicraniectomy is a decompressive surgery used to remove a large bone flap to allow edematous brain tissue to bulge extracranially. However, early indicators of the decompressive effects of hemicraniectomy are unclear. We investigated whether reduction of midline shift following hemicraniectomy is associated with improved consciousness and survival in patients with malignant middle cerebral artery infarctions. Methods We studied 70 patients with malignant middle cerebral artery infarctions (MMI) who underwent hemicraniectomies. Midline shift was measured preoperatively and postoperatively using computed tomography (CT). Consciousness level was evaluated using the Glasgow Coma Scale on postoperative day 1. Patient survival was assessed six months after stroke onset. Results The median time interval between preoperative and postoperative CT was 8.3 hours (interquartile range, 6.1–10.2 hours). Reduction in midline shift was associated with higher postoperative Glasgow Coma Scale scores (P<0.05). Forty-three patients (61.4%) were alive at six months after the stroke. Patients with reductions in midline shifts following hemicraniectomy were more likely to be alive at six months post-stroke than those without (P<0.001). Reduction of midline shift was associated with lower mortality at six months after stroke, after adjusting for age, sex, National Institutes of Health Stroke Scale score, and preoperative midline shift (adjusted hazard ratio, 0.71; 95% confidence interval, 0.62–0.81; P<0.001). Conclusions Reduction in midline shift following hemicraniectomy was associated with improved consciousness and six-month survival in patients with MMI. Hence, it may be an early indicator of effective decompression following hemicraniectomy. PMID:27733025

  13. Nylon filament coated with paraffin for intraluminal permanent middle cerebral artery occlusion in rats.

    PubMed

    Zuo, Xia-Lin; Wu, Ping; Ji, Ai-Min

    2012-06-21

    A variety of intraluminal nylon filament has been used in rat middle cerebral artery occlusion (MCAO) models. However the lesion extent and its reproducibility vary among laboratories. The properties of nylon filament play a part of reasons for these variations. In the present study, we used paraffin-coated nylon filament for rat MCAO model, tested the effects and advanced improvement for making the rat MCAO. Forty male Sprague-Dawley (SD) rats were randomized into two groups, MCAO with traditional uncoated nylon filament (uMCAO) and MCAO with paraffin-coated nylon filament (cMCAO), three rats as normal group and sham group respectively. Assessment included mortality rates, model success rates, neurological deficit evaluation, and infarct volume. The study showed two rats died in uMCAO group, no rat died in cMCAO group within the 12h. The model success rate of uMCAO was 100%, while the uMCAO group was 55% (n=20, two died within 12h, seven rats were excluded as the brain slices showed no TTC staining due to subarachanoid hemorrhage). Neurological evaluation demonstrated group cMCAO had more worse neurological outcomes than group uMCAO, and the difference was statistically signification (p<0.05). TTC staining cMCAO group had significantly larger infarct volumes than uMCAO group, and also showed statistically significant difference (p<0.05). The result demonstrated that the paraffin-coated nylon filament intraluminal occlusion provide better occlusion of middle cerebral artery than the uncoated nylon filament, improve the consistent of model, and raise the success rate to reduce the number of experimental animals. These positive results are much encouraging and interesting.

  14. Predicting Cerebral Hyperperfusion Syndrome Following Superficial Temporal Artery to Middle Cerebral Artery Bypass based on Intraoperative Perfusion-Weighted Magnetic Resonance Imaging.

    PubMed

    Wang, Defeng; Zhu, Fengping; Fung, Ka Ming; Zhu, Wei; Luo, Yishan; Chu, Winnie Chiu Wing; Mok, Vincent Chung Tong; Wu, Jinsong; Shi, Lin; Ahuja, Anil T; Mao, Ying

    2015-09-14

    Moyamoya disease leads to the formation of stenosis in the cerebrovasculature. A superficial temporal artery to middle cerebral artery (STA-MCA) bypass is an effective treatment for the disease, yet it is usually associated with postoperative cerebral hyperperfusion syndrome (CHS). This study aimed to evaluate cerebral hemodynamic changes immediately after surgery and assess whether a semiquantitative analysis of an intraoperative magnetic resonance perfusion-weighted image (PWI) is useful for predicting postoperative CHS. Fourteen patients who underwent the STA-MCA bypass surgery were included in this study. An atlas-based registration method was employed for studying hemodynamics in different cerebral regions. Pre- versus intraoperative and group-wise comparisons were conducted to evaluate the hemodynamic changes. A postoperative increase in relative cerebral blood flow (CBF) at the terminal MCA territory (P = 0.035) and drop in relative mean-time-transit at the central MCA territory (P = 0.012) were observed in all patients. However, a significant raise in the increasing ratio of relative-CBF at the terminal MCA territory was only found in CHS patients (P = 0.023). The cerebrovascular changes of the patients after revascularization treatment were confirmed. Intraoperative PWI might be helpful in predicting the change in relative-CBF at MCA terminal territory which might indicate a risk of CHS.

  15. Hemodynamic changes in a rat parietal cortex after endothelin-1-induced middle cerebral artery occlusion monitored by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Ma, Yushu; Dou, Shidan; Wang, Yi; La, Dongsheng; Liu, Jianghong; Ma, Zhenhe

    2016-07-01

    A blockage of the middle cerebral artery (MCA) on the cortical branch will seriously affect the blood supply of the cerebral cortex. Real-time monitoring of MCA hemodynamic parameters is critical for therapy and rehabilitation. Optical coherence tomography (OCT) is a powerful imaging modality that can produce not only structural images but also functional information on the tissue. We use OCT to detect hemodynamic changes after MCA branch occlusion. We injected a selected dose of endothelin-1 (ET-1) at a depth of 1 mm near the MCA and let the blood vessels follow a process first of occlusion and then of slow reperfusion as realistically as possible to simulate local cerebral ischemia. During this period, we used optical microangiography and Doppler OCT to obtain multiple hemodynamic MCA parameters. The change trend of these parameters from before to after ET-1 injection clearly reflects the dynamic regularity of the MCA. These results show the mechanism of the cerebral ischemia-reperfusion process after a transient middle cerebral artery occlusion and confirm that OCT can be used to monitor hemodynamic parameters.

  16. Mapping the dynamics of brain perfusion using functional ultrasound in a rat model of transient middle cerebral artery occlusion.

    PubMed

    Brunner, Clément; Isabel, Clothilde; Martin, Abraham; Dussaux, Clara; Savoye, Anne; Emmrich, Julius; Montaldo, Gabriel; Mas, Jean-Louis; Baron, Jean-Claude; Urban, Alan

    2017-01-01

    Following middle cerebral artery occlusion, tissue outcome ranges from normal to infarcted depending on depth and duration of hypoperfusion as well as occurrence and efficiency of reperfusion. However, the precise time course of these changes in relation to tissue and behavioral outcome remains unsettled. To address these issues, a three-dimensional wide field-of-view and real-time quantitative functional imaging technique able to map perfusion in the rodent brain would be desirable. Here, we applied functional ultrasound imaging, a novel approach to map relative cerebral blood volume without contrast agent, in a rat model of brief proximal transient middle cerebral artery occlusion to assess perfusion in penetrating arterioles and venules acutely and over six days thanks to a thinned-skull preparation. Functional ultrasound imaging efficiently mapped the acute changes in relative cerebral blood volume during occlusion and following reperfusion with high spatial resolution (100 µm), notably documenting marked focal decreases during occlusion, and was able to chart the fine dynamics of tissue reperfusion (rate: one frame/5 s) in the individual rat. No behavioral and only mild post-mortem immunofluorescence changes were observed. Our study suggests functional ultrasound is a particularly well-adapted imaging technique to study cerebral perfusion in acute experimental stroke longitudinally from the hyper-acute up to the chronic stage in the same subject.

  17. Curcumin attenuates the middle cerebral artery occlusion-induced reduction in γ-enolase expression in an animal model

    PubMed Central

    Gim, Sang-Ah; Lee, So-Ra; Shah, Fawad-Ali

    2015-01-01

    Curcumin exerts a protective effect in cerebral ischemia through its anti-oxidant and anti-inflammatory activities. γ-enolase is a glycolytic enzyme expressed in neurons that is known to exerts a neuroprotective effect. We investigated whether curcumin regulates γ-enolase expression in focal cerebral ischemic injury in rats. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia. Adult male rats were injected intraperitoneally with either vehicle or curcumin (50 mg/kg) 1 h after MCAO and cerebral cortex tissues were isolated 24 h after MCAO. We found that MCAO-induced injury resulted in a reduction in γ-enolase expression in vehicle-treated animals using a proteomics approach. However, this reduction was attenuated in animals with MCAO treated with curcumin. Reverse-transcription PCR and Western blot analyses also showed that curcumin treatment prevented the MCAO injury-induced reduction in γ-enolase expression. The results of this study suggest that curcumin exerts its neuroprotective function in focal cerebral ischemia by regulating the expression of γ-enolase. PMID:26755923

  18. Insulin sensitivity and first-phase insulin secretion in obese Chinese with hyperglycemia in 30 and/or 60 min during glucose tolerance tests.

    PubMed

    Hong, Jie; Zhang, Yi-Fei; Gu, Wei-qiong; Zhang, Yu-wen; Su, Yu-xia; Chi, Zhen-ni; Wang, Wei-qing; Li, Xiao-ying; Ning, Guang

    2008-01-01

    The purpose of this study was to investigate insulin sensitivity and first-phase insulin secretion in obesity with hyperglycemia in 30 and/or 60 min during oral glucose tolerance (OGTT, glucose > or = 11.1 mmol/l, post-loading hyperglycemia, PLH) in Chinese population. A total of 196 nondiabetic subjects were included in the present study, among them 99 had normal glucose tolerance (NGT, subdivided into 32 lean NGT and 67 obese NGT), 74 had obesity with impaired glucose tolerance (IGT) and 23 had obesity with PLH. A standard 75-g oral glucose tolerance test was performed after fasting and at 30 min, 1, 2 and 3 h. Insulin sensitivity index (S(I)) was assessed by the Bergman's minimal model method with frequently sampled intravenous glucose tolerance test (FSIGTT), insulin secretion was determined by acute insulin response to glucose (AIRg). The disposition index (DI), the product of AIRg and S(I) was used to determine whether AIRg was adequate to compensate for insulin resistance. S(I) was significantly equally lower in three obese subgroups. AIRg was significantly increased in obese NGT as compared with lean NGT controls, and reduced to the same extent in IGT and PLH subjects. There was no significant difference among lean NGT, IGT and PLH subjects. DI value was reduced from obese NGT individuals, IGT and PLH subjects had a similar lower level of DI. In conclusion, our present results demonstrated that the pathophysiological basis of obese subjects with PLH were clearly insulin resistance and defective in first-phase insulin secretion as that in IGT subjects in Chinese population.

  19. Mouth rinsing with a sweet solution increases energy expenditure and decreases appetite during 60 min of self-regulated walking exercise.

    PubMed

    Deighton, Kevin; Duckworth, Lauren; Matu, Jamie; Suter, Matthew; Fletcher, Charlotte; Stead, Samuel; Ali, Shaho; Gunby, Neil; Korsness, Keelie

    2016-12-01

    Carbohydrate mouth rinsing can improve endurance exercise performance and is most ergogenic when exercise is completed in the fasted state. This strategy may also be beneficial to increase exercise capacity and the energy deficit achieved during moderate-intensity exercise relevant to weight control when performed after an overnight fast. Eighteen healthy men (mean (SD); age, 23 (4) years; body mass index, 23.1 (2.4) kg·m(-2)) completed a familiarisation trial and 3 experimental trials. After an overnight fast, participants performed 60 min of treadmill walking at a speed that equated to a rating of perceived exertion of 13 ("fairly hard"). Participants manually adjusted the treadmill speed to maintain this exertion. Mouth rinses for the experimental trials contained either a 6.4% maltodextrin solution with sweetener (CHO), a taste-matched placebo (PLA), or water (WAT). Appetite ratings were collected using visual analogue scales and exercise energy expenditure and substrate oxidation were calculated from online gas analysis. Increased walking distance during CHO and PLA induced greater energy expenditure compared with WAT (mean difference (90% confidence interval); 79 (60) kJ, P = 0.035, d = 0.24; and 90 (63) kJ, P = 0.024, d = 0.27, respectively). Appetite area under the curve was lower in CHO and PLA than WAT (8 (6) mm, P = 0.042, d = 0.43; and 6 (8) mm, P = 0.201, d = 0.32, respectively). Carbohydrate oxidation was higher in CHO than PLA and WAT (7.3 (6.7) g, P = 0.078, d = 0.47; and 10.1 (6.5) g, P = 0.015, d = 0.81, respectively). This study provides novel evidence that mouth rinsing with a sweetened solution may promote a greater energy deficit during moderate-exertion walking exercise by increasing energy expenditure and decreasing appetite. A placebo effect may have contributed to these benefits.

  20. Mildronate treatment improves functional recovery following middle cerebral artery occlusion in rats.

    PubMed

    Svalbe, Baiba; Zvejniece, Liga; Vavers, Edijs; Pugovics, Osvalds; Muceniece, Ruta; Liepinsh, Edgars; Dambrova, Maija

    2011-09-12

    Mildronate (3-(2,2,2-trimethylhydrazinium) propionate) is an inhibitor of l-carnitine biosynthesis and an anti-ischemic drug. In the present study, we investigated the effects of mildronate in rats following focal cerebral ischemia. Male Wistar rats were subjected to transient occlusion of the middle cerebral artery (MCAO) for 90min, followed by the intraperitoneal administration of mildronate at doses of 100 and 200mg/kg 2h after reperfusion and then daily for an additional 14days. The beam-walking, rota-rod and cylinder tests were used to assess sensorimotor function, and vibrissae-evoked forelimb-placing and limb-placing tests examined responses to tactile and proprioceptive stimulation. Following behavioural testing, the infarct volume was measured. The cerebellar concentrations of l-carnitine, γ-butyrobetaine (GBB) and mildronate were also measured. The results showed that saline-treated MCAO rats had minor or no spontaneous recovery in sensorimotor and proprioceptive function up to 14days post-stroke. Treatment with mildronate at a dose of 200mg/kg was found to accelerate recovery of motor and proprioceptive deficits in limb-placing, cylinder and beam-walking tests. Analysis of rat cerebellar tissue extracts revealed that l-carnitine and GBB concentrations changed with mildronate treatment; the concentration of l-carnitine was significantly decreased by mildronate treatment, whereas the concentration of GBB was significantly increased. Cerebellar concentrations of mildronate also increased in a dose-dependent manner following systemic administration. Infarct size did not differ among the experimental groups on post-stroke day 14. The present study suggests that mildronate treatment improves the functional outcome in MCAO rats without influencing infarct size.

  1. Deviation from Optimal Vascular Caliber Control at Middle Cerebral Artery Bifurcations Harboring Aneurysms

    PubMed Central

    Baharoglu, Merih I.; Lauric, Alexandra; Wu, Chengyuan; Hippelheuser, James; Malek, Adel M.

    2014-01-01

    Cerebral aneurysms form preferentially at arterial bifurcations. The vascular optimality principle (VOP) decrees that minimal energy loss across bifurcations requires optimal caliber control between radii of parent (r0) and daughter branches (r1 and r2): r0n=r1n+r2n, with n approximating three. VOP entails constant wall shear stress (WSS), an endothelial phenotype regulator. We sought to determine if caliber control is maintained in aneurysmal intracranial bifurcations. Three-dimensional rotational angiographic volumes of 159 middle cerebral artery (MCA) bifurcations (62 aneurysmal) were processed using 3D gradient edge-detection filtering, enabling threshold-insensitive radius measurement. Radius ratio (RR)=r03/(r13+r23) and estimated junction exponent (n) were compared between aneurysmal and non-aneurysmal bifurcations using Student t-test and Wilcoxon rank-sum analysis. The results show that non-aneurysmal bifurcations display optimal caliber control with mean RR of 1.05 and median n of 2.84. In contrast, aneurysmal bifurcations had significantly lower RR (0.76, p<.0001) and higher n (4.28, p<.0001). Unexpectedly, 37% of aneurysmal bifurcations revealed a daughter branch larger than its parent vessel, an absolute violation of optimality, not witnessed in non-aneurysmal bifurcations. The aneurysms originated more often off the smaller daughter (52%) vs. larger daughter branch (16%). Aneurysm size was not statistically correlated to RR or n. Aneurysmal males showed higher deviation from VOP. Non-aneurysmal MCA bifurcations contralateral to aneurysmal ones showed optimal caliber control. Aneurysmal bifurcations, in contrast to non-aneurysmal counterparts, disobey the VOP and may exhibit dysregulation in WSS-mediated caliber control. The mechanism of this focal divergence from optimality may underlie aneurysm pathogenesis and requires further study. PMID:25242132

  2. Difference in Transcranial Doppler Velocity and Patient Age between Proximal and Distal Middle Cerebral Artery Vasospasms after Aneurysmal Subarachnoid Hemorrhage

    PubMed Central

    Kohama, Misaki; Sugiyama, Shinichiro; Sato, Kenichi; Endo, Hidenori; Niizuma, Kuniyasu; Endo, Toshiki; Ohta, Makoto; Matsumoto, Yasushi; Fujimura, Miki; Tominaga, Teiji

    2016-01-01

    Background Transcranial Doppler (TCD) is used to monitor cerebral vasospasm after subarachnoid hemorrhage (SAH), but its diagnostic ability is reported to be limited. Therefore, the purpose of this study was to investigate the relationship between the diagnosability of TCD and the localization of the vasospasm. Methods This retrospective study included 20 patients who presented with symptomatic vasospasm after SAH. All 20 patients underwent daily TCD examinations and cerebral angiography after the onset of delayed cerebral ischemia. We defined positive findings on TCD as a maximum flow velocity >200 cm/s or as a mean flow velocity >120 cm/s at the horizontal part of the middle cerebral artery (MCA). We also examined the site of vasospasm on cerebral angiography. Results Fourteen patients had true-positive findings on TCD examination, and cerebral angiography showed diffuse vasospasm involving the horizontal segment of the MCA. However, 6 patients had false-negative findings on TCD examination, and cerebral angiography showed vasospasm localized at the distal part of the MCA (the insular and/or cortical segments). The patients with proximal vasospasm were significantly younger than those with distal vasospasm. Blood flow velocity at initial TCD and the increase in velocity at the onset of vasospasm were lower and smaller, respectively, in the distal vasospasm group. Conclusions In patients with cerebral vasospasm localized at the distal part of the MCA, flow velocity at the horizontal segment of the MCA did not increase to the level we defined as positive. To avoid such false negatives, a slight increase in velocity on TCD should be considered as positive in distal vasospasm cases, especially in older patients. PMID:27665361

  3. Cerebral/Peripheral Vascular Reactivity and Neurocognition in Middle-Age Athletes

    PubMed Central

    Tarumi, Takashi; Gonzales, Mitzi M.; Fallow, Bennett; Nualnim, Nantinee; Lee, Jeongseok; Pyron, Martha; Tanaka, Hirofumi; Haley, Andreana P.

    2015-01-01

    Introduction Midlife vascular disease risk is associated with higher incidence of cognitive impairment in late life. Regular aerobic exercise improves vascular function, which in turn may translate into better cognitive function. The purpose of this study was to determine the associations among cardiorespiratory fitness, cerebral and peripheral vascular reactivity, and cognitive function in the sedentary and endurance-trained middle-aged adults. Methods Thirty-two endurance-trained and 27 healthy sedentary participants aged 43–65 years underwent measurements of maximal oxygen uptake (VO2max), neurocognitive assessment, cerebrovascular reactivity to CO2 (CVR), and brachial artery flow-mediated dilation (FMD). Results There were no group differences in age, sex, education level, fasting blood glucose, and blood pressure. Compared with sedentary subjects, endurance-trained athletes demonstrated better cognitive performance on memory (z-score: −0.36±1.11 vs. 0.30±0.76, P<0.01), attention-executive function (z-score: −0.21±0.53 vs. 0.18±0.72, P=0.02), and total cognitive composite scores (z-score: −0.27±0.63 vs. 0.23±0.57, P<0.01). Furthermore, brachial FMD (4.70±2.50 % vs. 7.13±3.09 %, P<0.01) and CVR (4.19±0.71 %/mmHg vs. 4.69±1.06 %/mmHg, P=0.052) were greater in endurance-trained individuals than in the sedentary subjects. Total cognitive composite scores showed a significant positive association with brachial FMD (r = 0.36, P < 0.01) and CVR (r = 0.30, P = 0.03). Finally, when brachial FMD and CVR were entered as covariates, fitness-related group differences in total cognitive composite score were significantly attenuated (all P>0.05). Conclusion Endurance-trained middle-aged adults demonstrated better cognitive performance which may, at least in part, be mediated by their enhanced vascular function, including cerebral and endothelial-dependent vascular reactivity. PMID:26083772

  4. Intraoperative dexmedetomidine and postoperative cerebral hyperperfusion syndrome in patients who underwent superficial temporal artery-middle cerebral artery anastomosis for moyamoya disease

    PubMed Central

    Seo, Hyungseok; Ryu, Ho-Geol; Son, Je Do; Kim, Jeong-Soo; Ha, Eun Jin; Kim, Jeong-Eun; Park, Hee-Pyoung

    2016-01-01

    Abstract Dexmedetomidine, a selective α2-agonist, reduces cerebral blood flow and has neuroprotective effects against cerebral ischemia/reperfusion injury in experimental animals. We examined whether intraoperative dexmedetomidine would reduce the incidence of postoperative cerebral hyperperfusion syndrome (CHS) after superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis in patients with moyamoya disease. The electronic medical records of 117 moyamoya patients who underwent STA-MCA anastomosis were reviewed retrospectively. The patients were divided into 2 groups: 48 patients received intraoperative dexmedetomidine (Group D), while 69 patients did not (Group ND). The incidence (primary outcome), onset, and duration of postoperative CHS were noted. The incidence of postoperative CHS was 45.8% and 40.6% in groups D and ND, respectively (P = 0.708). The duration of postoperative CHS was shorter in group D than in group ND (median [Q1–Q3], 5 [3–7] vs 8 [5–10] days, P = 0.021). There was no significant difference in the onset of CHS between group D and group ND (0 [0–2] vs 1 [0–3] days, P = 0.226). In conclusion, intraoperative dexmedetomidine did not reduce the incidence of postoperative CHS, although it reduced the duration of CHS, in patients who had undergone direct revascularization surgery for moyamoya disease. PMID:28033272

  5. Color-Coded Digital Subtraction Angiography in the Management of a Rare Case of Middle Cerebral Artery Pure Arterial Malformation

    PubMed Central

    Feliciano, Caleb E; Pamias-Portalatin, Eva; Mendoza-Torres, Jorge; Effio, Euclides; Moran, Yadira; Rodriguez-Mercado, Rafael

    2014-01-01

    Summary The advent of flow dynamics and the recent availability of perfusion analysis software have provided new diagnostic tools and management possibilities for cerebrovascular patients. To this end, we provide an example of the use of color-coded angiography and its application in a rare case of a patient with a pure middle cerebral artery (MCA) malformation. A 42-year-old male chronic smoker was evaluated in the emergency room due to sudden onset of severe headache, nausea, vomiting and left-sided weakness. Head computed tomography revealed a right basal ganglia hemorrhage. Cerebral digital subtraction angiography (DSA) showed a right middle cerebral artery malformation consisting of convoluted and ectatic collateral vessels supplying the distal middle cerebral artery territory-M1 proximally occluded. An associated medial lenticulostriate artery aneurysm was found. Brain single-photon emission computed tomography with and without acetazolamide failed to show problems in vascular reserve that would indicate the need for flow augmentation. Twelve months after discharge, the patient recovered from the left-sided weakness and did not present any similar events. A follow-up DSA and perfusion study using color-coded perfusion analysis showed perforator aneurysm resolution and adequate, albeit delayed perfusion in the involved vascular territory. We propose a combined congenital and acquired mechanism involving M1 occlusion with secondary dysplastic changes in collateral supply to the distal MCA territory. Angiographic and cerebral perfusion work-up was used to exclude the need for flow augmentation. Nevertheless, the natural course of this lesion remains unclear and long-term follow-up is warranted. PMID:25496681

  6. Successful endovascular reconstruction of a recurrent giant middle cerebral artery aneurysm with multiple telescoping flow diverters in a pediatric patient.

    PubMed

    Ikeda, Daniel S; Marlin, Evan S; Shaw, Andrew; Powers, Ciarán J

    2015-01-01

    Intracranial aneurysms of the pediatric population are rare, but giant fusiform aneurysms (GFAs) of the middle cerebral artery (MCA) are common within this cohort of patients. These aneurysms are difficult to treat and often require advanced microsurgical skills, as they are usually not amenable to direct clipping. Here, we report the successful treatment of a recurrent GFA of the MCA with three telescoping Pipeline Embolization Devices 6 months after attempted clip reconstruction in a pediatric patient.

  7. Middle cerebral artery median peak systolic velocity validation: effect of measurement technique.

    PubMed

    Patterson, Tamula M; Alexander, Amy; Szychowski, Jeff M; Owen, John

    2010-09-01

    We sought to validate center-specific published medians and estimate the effects of sonologist and Doppler measurement techniques on middle cerebral artery (MCA) peak systolic velocity (PSV) values. We studied 154 gravidas with normal singletons who underwent MCA PSV measurement at 18 to 35 weeks' gestation by one of three experienced sonologists. Pregnancies complicated by a known fetal anomaly (structural or aneuploidy), amniotic fluid volume disturbance, intrauterine growth restriction, multiple gestation, or isoimmunization were excluded. MCA PSV was measured using both manual caliper and auto-trace techniques. Regression models of log-transformed PSV values and gestational age were developed. Although auto-trace medians were significantly lower than those obtained with manual calipers ( P < 0.0001), they more closely approximated published medians used in clinical practice. Minimal intersonologist differences (maximum mean difference <3 cm/s) were statistically significant ( P < 0.01). Compared with manual caliper, auto-trace measurement yielded significantly lower medians. However, center-specific medians obtained by our sonologists using auto-trace more closely approximated published standards. Estimated interobserver variability suggested that different sonologists may utilize the same median values. We suggest that centers that utilize Doppler velocimetry for the prediction of fetal anemia examine their measurement protocol and consider formal confirmation of their own center-specific median values.

  8. Accumulation of exogenous 45Ca after middle cerebral artery occlusion in rats.

    PubMed

    Tomabechi, M; Sako, K; Yonemasu, Y

    1994-02-01

    The distribution of exogenous 45Ca in the focal ischemia rat model (middle cerebral artery occlusion) was studied using 45Ca autoradiography. High 45Ca accumulations were observed in the frontal cortex and caudate-putamen corresponding with morphological damage shown by HE staining. Regional 45Ca concentrations were calculated from the optical density on the 45Ca autoradiograms. Rapid uptake of 45Ca in the ischemic brain occurred during the first 5 hours, and continued more slowly between 5 and 24 hours after ischemia. The area of 45Ca accumulation was also expanded between 5 and 24 hours. An area of low 45Ca concentration around the area of high accumulation developed 5 hours after ischemia, which presumably accumulated 45Ca between 5 and 24 hours after ischemia. The lower concentration of 45Ca in the periphery of ischemia may result from: 1) a decrease in the total amount of calcium due to narrowing of extracellular space accompanied by cytotoxic edema, and 2) delayed accumulation of exogenous 45Ca due to reduced clearance of extracellular fluid.

  9. Middle cerebral artery anatomy and characteristics of embolic signals: a dual gate computer simulation study.

    PubMed

    Mess, W H; Titulaer, B M; Ackerstaff, R G

    1999-05-01

    In terms of microembolic signal (MES) detection, the anatomy of the middle cerebral artery (MCA) mainstem has only scarcely been considered. The vessel itself, however, could be at least partly responsible for the enormous variation when calculating the essential time difference (deltat) values of MES using the dual-gate technique. Therefore, we studied the time characteristics of MES in a computer simulation applying an anatomically realistic vessel and a dual-gate TCD approach. Three different MCA anatomies and two MES to blood intensities were simulated as well as two different sample volume settings. The MES length (proximal sample volume t1; distal sample volume t2) and deltat were calculated for different angles of insonation and sample volume depths. The calculations of the time characteristics of MES showed extreme variation, with only modest changes of the insonation angle (t1 4-34 ms; deltat 9-27 ms) or the sample volume depth (t1 7-27 ms; deltat 6-32 ms). The variation could be considerably reduced with modified TCD settings i.e., a shorter gate separation combined with a shorter receiver gate time in the distal sample volume (deltat with changing insonation angles 6-19 ms; deltat with changing insonation depths 13-17 ms). These results not only urge us to a cautious interpretation of the properties of single MES, but also contribute to an understanding of the marked deltat variation using the dual-gate technique.

  10. Modeling Stroke in Mice: Permanent Coagulation of the Distal Middle Cerebral Artery

    PubMed Central

    Plesnila, Nikolaus; Veltkamp, Roland; Liesz, Arthur

    2014-01-01

    Stroke is the third most common cause of death and a main cause of acquired adult disability in developed countries. Only very limited therapeutical options are available for a small proportion of stroke patients in the acute phase. Current research is intensively searching for novel therapeutic strategies and is increasingly focusing on the sub-acute and chronic phase after stroke because more patients might be eligible for therapeutic interventions in a prolonged time window. These delayed mechanisms include important pathophysiological pathways such as post-stroke inflammation, angiogenesis, neuronal plasticity and regeneration. In order to analyze these mechanisms and to subsequently evaluate novel drug targets, experimental stroke models with clinical relevance, low mortality and high reproducibility are sought after. Moreover, mice are the smallest mammals in which a focal stroke lesion can be induced and for which a broad spectrum of transgenic models are available. Therefore, we describe here the mouse model of transcranial, permanent coagulation of the middle cerebral artery via electrocoagulation distal of the lenticulostriatal arteries, the so-called “coagulation model”. The resulting infarct in this model is located mainly in the cortex; the relative infarct volume in relation to brain size corresponds to the majority of human strokes. Moreover, the model fulfills the above-mentioned criteria of reproducibility and low mortality. In this video we demonstrate the surgical methods of stroke induction in the “coagulation model” and report histological and functional analysis tools. PMID:25145316

  11. The behavioral effects of bilateral middle cerebral artery hemorrhagic ischemia in rat.

    PubMed

    McDaniel, W F; Fjordbak, T; Schmidt, M S; Tucker, J C; Davis, B K

    1991-11-01

    After learning position discrimination in a T-maze water escape task, rats had either a 2 mm section of the middle cerebral artery removed bilaterally (bMCA) or they received a sham operation. Beginning on the day of surgery either total brain gangliosides (50 mg kg-1) or saline were administered daily for five days. Of the several measures of neurological function that were tested, only a temporary deficit in grasping with the front paws was observed in bMCA damaged rats. Ganglioside treatment normalized this practical function. Memory of the preoperative habit was not influenced by bMCA damage, but acquisition of a reversal of this habit was compromised. Ganglioside treatment did not influence this deficit. Acquisition of a spatial alternation strategy was influenced by neither the bMCA lesion nor the ganglioside treatment. The preservation that accompanies bMCA interruption might serve as a useful model of the functional declines that accompany stroke and frontal lobe damage.

  12. Reappraisal of primary balloon angioplasty without stenting for patients with symptomatic middle cerebral artery stenosis.

    PubMed

    Okada, Hideo; Terada, Tomoaki; Tanaka, Yuko; Tomura, Nagatsuki; Kono, Kenichi; Yoshimura, Ryo; Shintani, Aki

    2015-01-01

    There is a controversy regarding the safety and efficacy of intracranial stenting. We describe our experience with primary balloon angioplasty without stenting for symptomatic middle cerebral artery (MCA) stenosis. All patients who underwent balloon angioplasty without stenting for MCA stenosis between 1996 and 2010 were retrospectively reviewed. We evaluated technical success rates, degrees of stenosis, and stroke or death within 30 days. Among patients who were followed-up for > 1 year we evaluated latest functional outcomes, stroke recurrence at 1 year, and restenosis. In total 45/47 patients (95.7%) were successfully treated. Average pre- and postprocedure stenosis rates were 79.9% and 39.5%, respectively. Three neurological complications occurred within 30 days: one thromboembolism during the procedure; one lacunar infarction; and one fatal intraparenchymal hemorrhage after the procedure. Stroke or death rate within 30 days was 6.4%. Thirty-three patients were available for follow-up analysis with a mean period of 51.5 months. The combined rate of stroke or death within 30 days and ipsilateral ischemic stroke of the followed-up patients within 1 year beyond 30 days was 9.4%. Restenosis was observed in 26.9% of patients and all remained asymptomatic. In our retrospective series, balloon angioplasty without stenting was a safe, effective modality for symptomatic MCA stenosis. For patients refractory to medical therapy, primary balloon angioplasty may offer a better supplemental treatment option.

  13. Fetal Hemodynamic Parameters in Low Risk Pregnancies: Doppler Velocimetry of Uterine, Umbilical, and Middle Cerebral Artery

    PubMed Central

    Dertkigil, M. S.; Pereira, S. L.; Bennini, J. R.; Mayrink, J.

    2016-01-01

    Objective. To elaborate curves of longitudinal reference intervals of pulsatility index (PI) and systolic velocity (SV) for uterine (UtA), umbilical (UA), and middle cerebral arteries (MCA), in low risk pregnancies. Methods. Doppler velocimetric measurements of PI and SV from 63 low risk pregnant women between 16 and 41 weeks of gestational age. Means (±SD) for intervals of gestational age and percentiles 5, 50, and 95 were calculated for each parameter. The Intraclass Correlation Coefficients (ICC) were also estimated for assessing intra- and intervariability of measurements. Results. Mean PI of UtA showed decreasing values during pregnancy, but no regular pattern was identified for mean SV. For UA, PI decreased and SV increased along gestation. MCA presented PI increasing values until 32–35 weeks. SV showed higher levels with increasing gestation. High ICC values indicated good reproducibility. Conclusions. Reference intervals for the assessment of SV and PI of UtA, UA, and MCA were established. These reference intervals showed how a normal pregnancy is expected to progress regarding these Doppler velocimetric parameters and are useful to follow high risk pregnancies. The comparison between results using different curves may provide insights about the best patterns to be used. PMID:27957524

  14. Sequential neuronal and astrocytic changes after transient middle cerebral artery occlusion in the rat.

    PubMed

    Chen, H; Chopp, M; Schultz, L; Bodzin, G; Garcia, J H

    1993-09-01

    The temporal evolution and spatial distribution of ischemic cell injury was investigated after transient middle cerebral artery (MCA) occlusion. Male Wistar rats (n = 61) were subjected to 2 h of MCA occlusion induced by advancing a nylon monofilament into the right internal carotid artery. Animals were killed after different durations of reperfusion, ranging from 4 to 166 h (n = 6-11 for each group). Neuronal injury and astrocytic reaction were evaluated using hematoxylin and eosin (H & E) and glial fibrillary acidic protein (GFAP) immunohistochemistry, respectively. Eosinophilic neurons were detected at 4 h of reperfusion in the basal ganglia, and at 10 h of reperfusion in the cortex. Focal brain infarct developed by 46 h of reperfusion, both in the cortex and the basal ganglia, and the volume remained constant between 46 and 166 h of reperfusion. Significant differences in astrocytic reaction were detected between the lesion and the periphery of the lesion at reperfusion times from 46 to 166 h; GFAP staining decreased in the core of the lesion and increased in the peripheral areas. Our data suggest that, after 2 h of MCA occlusion, brain tissue progresses from isolated neuronal injury to infarct with a time course dependent on anatomical site; and astrocytic reactivity, expressed by GFAP staining, reflects the outcome of the ischemic injury.

  15. Reappraisal of Primary Balloon Angioplasty without Stenting for Patients with Symptomatic Middle Cerebral Artery Stenosis

    PubMed Central

    OKADA, Hideo; TERADA, Tomoaki; TANAKA, Yuko; TOMURA, Nagatsuki; KONO, Kenichi; YOSHIMURA, Ryo; SHINTANI, Aki

    2015-01-01

    There is a controversy regarding the safety and efficacy of intracranial stenting. We describe our experience with primary balloon angioplasty without stenting for symptomatic middle cerebral artery (MCA) stenosis. All patients who underwent balloon angioplasty without stenting for MCA stenosis between 1996 and 2010 were retrospectively reviewed. We evaluated technical success rates, degrees of stenosis, and stroke or death within 30 days. Among patients who were followed-up for > 1 year we evaluated latest functional outcomes, stroke recurrence at 1 year, and restenosis. In total 45/47 patients (95.7%) were successfully treated. Average pre- and postprocedure stenosis rates were 79.9% and 39.5%, respectively. Three neurological complications occurred within 30 days: one thromboembolism during the procedure; one lacunar infarction; and one fatal intraparenchymal hemorrhage after the procedure. Stroke or death rate within 30 days was 6.4%. Thirty-three patients were available for follow-up analysis with a mean period of 51.5 months. The combined rate of stroke or death within 30 days and ipsilateral ischemic stroke of the followed-up patients within 1 year beyond 30 days was 9.4%. Restenosis was observed in 26.9% of patients and all remained asymptomatic. In our retrospective series, balloon angioplasty without stenting was a safe, effective modality for symptomatic MCA stenosis. For patients refractory to medical therapy, primary balloon angioplasty may offer a better supplemental treatment option. PMID:25746307

  16. Endovascular treatment of distal middle cerebral artery aneurysms: Report of eight cases and literature review

    PubMed Central

    Lv, Nan; Zhou, Yu; Yang, Pengfei; Li, Qiang; Zhao, Rui; Fang, Yibin; Xu, Yi; Hong, Bo; Zhao, Wenyuan; Liu, Jianmin

    2016-01-01

    Background Endovascular treatment is an alternative choice for the treatment of distal middle cerebral artery (dMCA) aneurysm, in addition to open surgery; but is still seldom considered. We performed this retrospective study to evaluate the outcome of dMCA in patients. Methods During a period of 10 years, we were able to identify seven patients with a total of eight dMCA aneurysms that were treated endovascularly. They were five men and two women, with a mean age of 36.1 years. All of the aneurysms, including five infectious and three dissecting ones, were treated for the aneurysm and its parent artery’s occlusion, using coils and/or glue. Results The clinical follow-up (9–96 m, mean 36.8 m) showed that they all improved over baseline; except for one patient in whom a mild right hemiparesis remained, after the hematoma evacuation. Angiographic follow-up (7–24 m; mean: 14.6 m) showed that all of them were stable and without the need for recanalization. Conclusions Our data indicated that endovascular treatment is a safe and effective alternative for the treatment of dMCA aneurysms, and should be considered when treating these aneurysms. PMID:26637241

  17. Neurological sequelae and long-term behavioural assessment of rats with transient middle cerebral artery occlusion.

    PubMed

    Modo, M; Stroemer, R P; Tang, E; Veizovic, T; Sowniski, P; Hodges, H

    2000-12-15

    Animal models of stroke, notably transient middle cerebral artery occlusion (MCAo), are used to assess the efficacy of pharmacological and transplant treatments. Long-term studies (>1 month) of the functional effects of treatments in animal models are required to predict treatments likely to improve dysfunctions associated with stroke damage. These pre-clinical studies require (1) optimum post-operative care to ensure long-term survival, (2) methods for assignment of rats to groups with equivalent impairments to reduce variability and enhance detection of treatment effects, and (3) behavioural tests that detect long-term stable deficits. For long-term functional assessment, a battery of behavioural tests sensitive to a range of deficits observed after MCAo was developed. The bilateral asymmetry test evaluated the time course of sensory neglect. Deficits of motor integration were examined in the footfault test, and motor bias was assessed by pharmacological stimulation of rotation. The water maze was used to detect long-term deficits in spatial information processing. Long-term differences between control and MCAo animals in this battery of tests indicate that the protocol provides an efficient assessment suitable for evaluating treatment outcomes in pre-clinical studies of stroke, and that the post-operative care procedure and method of assignment to groups were effective.

  18. Simultaneous rupture of two middle cerebral artery aneurysms presented with two aneurysm-associated intracerebral hemorrhages.

    PubMed

    Havakeshian, Sina; Bozinov, Oliver; Burkhardt, Jan-Karl

    2013-12-01

    Simultaneous rupture of more than one intracranial aneurysm is a rare event and difficult to diagnose. In this case report, we present the case of a patient with a simultaneous rupture of two middle cerebral artery (MCA) aneurysms with two separately localized aneurysm-associated intracerebral hemorrhages (ICH). Initially, the patient presented with headache and neck stiffness as well as progressive decrease of consciousness. Computed tomography (CT) revealed a subarachnoid hemorrhage with a frontal and temporal space-occupying ICH. CT angiography demonstrated two MCA aneurysms located in adjacency to the ICHs, one located at the M1 segment and the other in the bifurcation of the left MCA. Rupture of both aneurysms was confirmed during surgery, and both aneurysms were clipped microsurgically without complications. Although rupture of one aneurysm in patients with multiple aneurysms is the most common event, this case indicates that simultaneous rupture should be kept in mind in patients with multiple aneurysms. In patients with multiple aneurysms, the identification of the ruptured aneurysm(s) is necessary to avoid leaving a ruptured aneurysm untreated.

  19. Cerebroprotective effect of Moringa oleifera against focal ischemic stroke induced by middle cerebral artery occlusion.

    PubMed

    Kirisattayakul, Woranan; Wattanathorn, Jintanaporn; Tong-Un, Terdthai; Muchimapura, Supaporn; Wannanon, Panakaporn; Jittiwat, Jinatta

    2013-01-01

    The protection against ischemic stroke is still required due to the limitation of therapeutic efficacy. Based on the role of oxidative stress in stroke pathophysiology, we determined whether Moringa oleifera, a plant possessing potent antioxidant activity, protected against brain damage and oxidative stress in animal model of focal stroke. M. oleifera leaves extract at doses of 100, 200 and 400 mg·kg(-1) was orally given to male Wistar rats (300-350 g) once daily at a period of 2 weeks before the occlusion of right middle cerebral artery (Rt.MCAO) and 3 weeks after Rt.MCAO. The determinations of neurological score and temperature sensation were performed every 7 days throughout the study period, while the determinations of brain infarction volume, MDA level, and the activities of SOD, CAT, and GSH-Px were performed 24 hr after Rt.MCAO. The results showed that all doses of extract decreased infarction volume in both cortex and subcortex. The protective effect of medium and low doses of extract in all areas occurred mainly via the decreased oxidative stress. The protective effect of the high dose extract in striatum and hippocampus occurred via the same mechanism, whereas other mechanisms might play a crucial role in cortex. The detailed mechanism required further exploration.

  20. Cognitive tasks during walking affect cerebral blood flow signal features in middle cerebral arteries and their correlation to gait characteristics.

    PubMed

    Gatouillat, Arthur; Bleton, Héloïse; VanSwearingen, Jessie; Perera, Subashan; Thompson, Scott; Smith, Traci; Sejdić, Ervin

    2015-09-26

    Gait is a complex process involving both cognitive and sensory ability and is strongly impacted by the environment. In this paper, we propose to study of the impact of a cognitive task during gait on the cerebral blood flow velocity, the blood flow signal features and the correlation of gait and blood flow features through a dual task methodology. Both cerebral blood flow velocity and gait characteristics of eleven participants with no history of brain or gait conditions were recorded using transcranial Doppler on mid-cerebral artery while on a treadmill. The cognitive task was induced by a backward counting starting from 10,000 with decrement of 7. Central blood flow velocity raw and envelope features were extracted in both time, frequency and time-scale domain; information-theoretic metrics were also extracted and statistical significances were inspected. A similar feature extraction was performed on the stride interval signal. Statistical differences between the cognitive and baseline trials, between the left and right mid-cerebral arteries signals and the impact of the antropometric variables where studied using linear mixed models. No statistical differences were found between the left and right mid-cerebral arteries flows or the baseline and cognitive state gait features, while statistical differences for specific features were measured between cognitive and baseline states. These statistical differences found between the baseline and cognitive states show that cognitive process has an impact on the cerebral activity during walking. The state was found to have an impact on the correlation between the gait and blood flow features.

  1. Ruptured distal middle cerebral artery aneurysm filled with tumor cells in a patient with intravascular large B-cell lymphoma.

    PubMed

    Anda, Takeo; Haraguchi, Wataru; Miyazato, Hajime; Tanaka, Shinsuke; Ishihara, Tokuhiro; Aozasa, Katsuyuki; Nakamichi, Itsuko

    2008-09-01

    The authors describe a very rare case of intravascular large B-cell lymphoma in a woman whose ruptured distal middle cerebral artery (MCA) aneurysms were filled with lymphoma cells. A 69-year-old woman who had undergone artificial graft replacement for an aortic aneurysm presented with transient left hemiparesis. Magnetic resonance imaging demonstrated a small fresh cerebral infarction in the right frontal lobe, although major cervical and cerebral arteries were shown to be intact on MR angiography. Antiplatelet and anticoagulation treatments commenced. On the 21st day after onset, the patient suffered a subarachnoid hemorrhage, and a digital subtraction angiogram revealed aneurysmal lesions in the distal MCA. Based on the histological examination of the resected aneurysms, proliferation of large B-cell lymphoma was identified in the dilated arterial lumen. On the 71st day after ischemic onset, intracranial hemorrhage recurred, and she died. Postmortem examination revealed similar lymphoma cells only in the intimal layer that had grown on the artificial graft, and it was decided that the patient had had intravascular large B-cell lymphoma. The preceding cerebral infarction was thought to be due to occlusion of the distal MCA by tumor embolus, which may be the initial pathological stage in aneurysm formation. For patients with incomprehensible ischemic cerebral stroke, neoplasm must be taken in consideration.

  2. Early retinal inflammatory biomarkers in the middle cerebral artery occlusion model of ischemic stroke

    PubMed Central

    Ritzel, Rodney M.; Pan, Sarah J.; Verma, Rajkumar; Wizeman, John; Crapser, Joshua; Patel, Anita R.; Lieberman, Richard; Mohan, Royce

    2016-01-01

    Purpose The transient middle cerebral artery occlusion (MCAO) model of stroke is one of the most commonly used models to study focal cerebral ischemia. This procedure also results in the simultaneous occlusion of the ophthalmic artery that supplies the retina. Retinal cell death is seen days after reperfusion and leads to functional deficits; however, the mechanism responsible for this injury has not been investigated. Given that the eye may have a unique ocular immune response to an ischemic challenge, this study examined the inflammatory response to retinal ischemia in the MCAO model. Methods Young male C57B/6 mice were subjected to 90-min transient MCAO and were euthanized at several time points up to 7 days. Transcription of inflammatory cytokines was measured with quantitative real-time PCR, and immune cell activation (e.g., phagocytosis) and migration were assessed with ophthalmoscopy and flow cytometry. Results Observation of the affected eye revealed symptoms consistent with Horner’s syndrome. Light ophthalmoscopy confirmed the reduced blood flow of the retinal arteries during occlusion. CX3CR1-GFP reporter mice were then employed to evaluate the extent of the ocular microglia and monocyte activation. A significant increase in green fluorescent protein (GFP)-positive macrophages was seen throughout the ischemic area compared to the sham and contralateral control eyes. RT–PCR revealed enhanced expression of the monocyte chemotactic molecule CCL2 early after reperfusion followed by a delayed increase in the proinflammatory cytokine TNF-α. Further analysis of peripheral leukocyte recruitment by flow cytometry determined that monocytes and neutrophils were the predominant immune cells to infiltrate at 72 h. A transient reduction in retinal microglia numbers was also observed, demonstrating the ischemic sensitivity of these cells. Blood–eye barrier permeability to small and large tracer molecules was increased by 72 h. Retinal microglia exhibited enhanced

  3. Amplitude-integrated electroencephalographic activity and middle cerebral artery Doppler flow measurements in preterm small for gestational age infants.

    PubMed

    Kolsuz, Leyla Daban; Topcuoglu, Sevilay; Gursoy, Tugba; Karatekin, Güner; Ovali, H Fahri

    2015-03-01

    Amplitude-integrated encephalography (EEG) is frequently used in neonatal intensive care units to monitor brain functions. Its bedside application and easy interpretation are the most important features. Brain development of small for gestational age infants can be affected by intrauterine chronic hypoxia. The current study aimed to evaluate cerebral functions of small for gestational age infants by means of amplitude-integrated EEG. Thirty- to 34-week-old 22 small for gestational age and 27 appropriate for gestational age preterm infants were included in the study. The mode of delivery, gender, birth weight, and Apgar scores of the patients were recorded. Following middle cerebral artery mean velocity measurement with cranial Doppler at the 24th hour of birth, an amplitude-integrated EEG recording was performed on all infants, for a period of 4 to 24 hours. Small for gestational age infants had significantly higher middle cerebral artery mean velocity than appropriate for gestational age infants (21.09 ± 4.25 vs 17.8 ± 4.07; P = .029). The amplitude-integrated EEG recordings showed lower "lower border of quiet sleep" and total Burdjalov score in small for gestational age infants when compared with appropriate for gestational age infants (2.5 [1-3.25] µV vs 3 [2.75-4] µV; P = .04, 8 [6-10], 9 [9-11]; P = .04, respectively). Increased middle cerebral artery blood flow observed in small for gestational age infants might be a marker of chronic intrauterine hypoxia to which these infants were exposed. These infants demonstrated a more immature pattern of amplitude-integrated EEG.

  4. Differential increases in blood flow velocity in the middle cerebral artery after tourniquet deflation during sevoflurane, isoflurane or propofol anaesthesia.

    PubMed

    Kadoi, Y; Kawauchi, C H; Ide, M; Saito, S; Mizutani, A

    2009-07-01

    The purpose of this study was to examine the comparative effects of sevoflurane, isoflurane or propofol on cerebral blood flow velocity after tourniquet deflation during orthopaedic surgery. Thirty patients undergoing elective orthopaedic surgery were randomly divided into sevoflurane, isoflurane and propofol groups. Anaesthesia was maintained with sevoflurane, isoflurane or propofol infusion in 33% oxygen and 67% nitrous oxide, in whatever concentrations were necessary to keep bispectral index values between 45 and 50. Ventilatory rate or tidal volume was adjusted to target PaCO2 of 35 mmHg. A 2.0 MHz transcranial Doppler probe was attached to the patient's head at the temporal window and mean blood flow velocity in the middle cerebral artery was continuously measured. The extremity was exsanguinated with an Esmarch bandage and the pneumatic tourniquet was inflated to a pressure of 450 mmHg. Arterial blood pressure, heart rate, velocity in the middle cerebral artery and arterial blood gas analysis were measured every minute for 10 minutes after release of the tourniquet in all three groups. Velocity in the middle cerebral artery in the three groups increased for five minutes after tourniquet deflation. Because of the different cerebrovascular effects of the three agents, the degree of increase in flow velocity in the isoflurane group was greater than in the other two groups, the change in flow velocity in the propofol group being the lowest (at three minutes after deflation 40 +/- 7%, 32 +/- 6% and 28 +/- 10% in the isoflurane, sevoflurane and propofol groups respectively, P < 0.05).

  5. Repeated edaravone treatment reduces oxidative cell damage in rat brain induced by middle cerebral artery occlusion.

    PubMed

    Yamamoto, Yorihiro; Yanagisawa, Makoto; Tak, Nyou Wei; Watanabe, Kazutoshi; Takahashi, Chizuko; Fujisawa, Akio; Kashiba, Misato; Tanaka, Masahiko

    2009-01-01

    The free radical scavenger 3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone) has been used to treat acute brain infarction in Japan since 2001. To obtain direct evidence that edaravone serves as an antioxidant in vivo, four groups of rats were prepared: (i) an ischemia/reperfusion (I/R) group receiving 2 h occlusion-reperfusion of the middle cerebral artery; (ii) a single administration group treated by intravenous infusion of edaravone (3 mg/kg) immediately after I/R; (iii) a repeated treatment group receiving twice daily edaravone administration for 14 days; and (iv) a sham operation group without occlusion. Repeated treatment with edaravone significantly improved the neurological symptoms and impairment of motor function as compared to the I/R group, while single administration demonstrated limited efficacy. No significant differences in plasma antioxidants such as ascorbate, urate, and vitamin E, or in redox status of coenzyme Q(9) were observed among the four groups. In contrast, the plasma content of oleic acid in the total free fatty acids (percentage 18:1) was significantly increased in the I/R group for 7 days as compared to the sham operation group. Oleic acid was produced from stearic acid by the action of stearoyl-CoA desaturase to compensate for the oxidative loss of polyunsaturated fatty acids. The above results suggest that cellular oxidative damage in the rat brain is evident for at least 7 days after I/R. Repeated treatment suppressed the percentage 18:1 increment, while the single administration did not, which is consistent with the limited efficacy of single administration.

  6. Decompressive craniectomy for malignant middle cerebral artery infarction: Impact on mortality and functional outcome

    PubMed Central

    Raffiq, Mohammad Azman Mohammed; Haspani, Mohammed Saffari Mohammad; Kandasamy, Regunath; Abdullah, Jafri Malin

    2014-01-01

    Background: Malignant middle cerebral artery (MCA) infarction is a devastating clinical entity affecting about 10% of stroke patients. Decompressive craniectomy has been found to reduce mortality rates and improve outcome in patients. Methods: A retrospective case review study was conducted to compare patients treated with medical therapy and decompressive surgery for malignant MCA infarction in Hospital Kuala Lumpur over a period of 5 years (from January 2007 to December 2012). A total of 125 patients were included in this study; 90 (72%) patients were treated with surgery, while 35 (28%) patients were treated with medical therapy. Outcome was assessed in terms of mortality rate at 30 days, Glasgow Outcome Score (GOS) on discharge, and modified Rankin scale (mRS) at 3 and 6 months. Results: Decompressive craniectomy resulted in a significant reduction in mortality rate at 30 days (P < 0.05) and favorable GOS outcome at discharge (P < 0.05). Good functional outcome based on mRS was seen in 48.9% of patients at 3 months and in 64.4% of patients at 6 months (P < 0.05). Factors associated with good outcome include infarct volume of less than 250 ml, midline shift of less than 10 mm, absence of additional vascular territory involvement, good preoperative Glasgow Coma Scale (GCS) score, and early surgical intervention (within 24 h) (P < 0.05). Age and dominant hemisphere infarction had no significant association with functional outcome. Conclusion: Decompressive craniectomy achieves good functional outcome in, young patients with good preoperative GCS score and favorable radiological findings treated with surgery within 24 h of ictus. PMID:25101197

  7. Predictors of malignant brain edema in middle cerebral artery infarction observed on CT angiography.

    PubMed

    Kim, Hoon; Jin, Seon Tak; Kim, Young Woo; Kim, Seong Rim; Park, Ik Seong; Jo, Kwang Wook

    2015-03-01

    Patients with middle cerebral artery (MCA) infarction accompanied by MCA occlusion with or without internal carotid artery (ICA) occlusion have a poor prognosis, as a result of brain cell damage caused by both the infarction and by space-occupying and life-threatening edema formation. Multiple treatments can reduce the likelihood of edema formation, but tend to show limited efficacy. Decompressive hemicraniectomy with duroplasty has been promising for improving functional outcomes and reducing mortality, particularly improved functional outcomes can be achieved with early decompressive surgery. Therefore, identifying patients at risk for developing fatal edema is important and should be performed as early as possible. Sixty-four patients diagnosed with major MCA infarction with MCA occlusion within 8 hours of symptom onset were retrospectively reviewed. Early clinical, laboratory, and computed tomography angiography (CTA) parameters were analyzed for malignant brain edema (MBE). Twenty of the 64 patients (31%) had MBE, and the clinical outcome was poor (3month modified Rankin Scale >2) in 95% of them. The National Institutes of Health Stroke Scale (NIHSS) score, Alberta Stroke Program Early Computed Tomography Score, Clot Burden Score, and Collateral Score (CS) showed statically significant differences in both groups. Multivariable analyses adjusted for age and sex identified the independent predictors of MBE: NIHSS score >18 (odds ratio [OR]: 4.4, 95% confidence interval [CI]: 1.2-16.0, p=0.023) and CS on CTA <2 (OR: 7.28, 95% CI: 1.7-30.3,p=0.006). Our results provide useful information for selecting patients in need of aggressive treatment such as decompressive surgery.

  8. Serum Malondialdehyde Levels in Patients with Malignant Middle Cerebral Artery Infarction Are Associated with Mortality

    PubMed Central

    Lorente, Leonardo; Martín, María M.; Abreu-González, Pedro; Ramos, Luis; Argueso, Mónica; Solé-Violán, Jordi; Riaño-Ruiz, Marta; Jiménez, Alejandro

    2015-01-01

    Objective Malondialdehyde (MDA) is an end-product formed during lipid peroxidation, due to degradation of cellular membrane phospholipids. MDA is released into extracellular space and finally into the blood; it has been used as an effective biomarker of lipid oxidation. High circulating levels of MDA have been previously described in patients with ischemic stoke than in controls, and an association between circulating MDA levels and neurological functional outcome in patients with ischemic stoke. However, an association between serum MDA levels and mortality in patients with ischemic stroke has not been previously reported, and that was the objective of this study. Methods Observational, prospective and multicenter study performed in six Intensive Care Units. We included patients with severe malignant middle cerebral artery infarction (MMCAI) defined as Glasgow Coma Scale (GCS) lower than 9. We measured serum MDA levels in 50 patients with severe MMCAI at the time of diagnosis and in 100 healthy subjects. Mortality at 30 days was the end point of the study. Results We found that patients with severe MMCAI showed higher serum MDA levels than healthy subjects (p<0.001). We found higher serum MDA levels (p<0.001) in non-surviving MMCAI patients (n=26) than in survivors (n=24). The area under the curve for prediction of 30-day mortality for serum MDA levels was 0.77 (95% CI = 0.63-0.88; p<0.001). Serum MDA levels >2.27 nmol/mL were associated with 30-day mortality (OR=7.23; 95% CI=1.84-28.73; p=0.005) controlling for GCS and age on multiple binomial logistic regression analysis. Conclusions To our knowledge, this is the first study showing that serum malondialdehyde levels in patients with MMCAI are associated with early mortality. PMID:25933254

  9. Risk Factors for Hemorrhagic Transformation in Patients with Acute Middle Cerebral Artery Infarction

    PubMed Central

    ÖCEK, Levent; GÜNER, Derya; ULUDAĞ, İrem Fatma; TİFTİKÇİOĞLU, Bedile İrem; ZORLU, Yaşar

    2015-01-01

    Introduction Hemorrhagic transformation (HT) after acute ischemic stroke (AIS) can be seen at any time following ischemic stroke. Although HT usually occurs as a complication of antithrombotic, anticoagulant, or thrombolytic treatments, it can also occur spontaneously. We aimed to investigate the occurrence of early HT and its relevant risk factors in patients diagnosed with acute middle cerebral artery (MCA) infarction who were not treated with thrombolytic agents. Methods We recruited 171 patients with acute MCA infarction between January 2011 and July 2012 who were not treated with thrombolytic agents and were suitable to our inclusion criteria. Controlled neuroimaging was performed immediately in patients with deterioration, otherwise on day 7 following stroke. All patients were investigated for AIS risk factors and biochemical analyses were performed. Patients with HT in controlled neuroimaging were grouped both clinically (i.e., symptomatic or asymptomatic) and radiologically, according to “European Cooperative Acute Stroke Radiological Study” (ECASS), and risk factors were examined. Results We enrolled 171 patients [94 men (55%) and 77 women (45%)] in the study. HT developed in 37 patients (21.63%). In terms of risk factor analysis, the most frequent etiological factor was atherosclerosis in AIS patients (50.3%). National Institutes of Health Stroke Scale scores were significantly higher both in sHT patients according to asHT patients and in HT patients on day 7 compared with their initial scores. Serum low-density lipoprotein (LDL-C), triglycerides (TG), and total cholesterol (TC) levels were significantly lower in patients with HT (p<.001). Conclusion HT is a major complication in AIS that considerably increases the morbidity and mortality. To reduce the occurrence of HT, risk factors for each patient population should be determined. Acute thrombolytic therapy should be used cautiously in high-risk patients, and appropriate alternative therapies should

  10. Sesamin attenuates behavioral, biochemical and histological alterations induced by reversible middle cerebral artery occlusion in the rats.

    PubMed

    Khan, Mohd Moshahid; Ishrat, Tauheed; Ahmad, Ajmal; Hoda, Md Nasrul; Khan, M Badruzzaman; Khuwaja, Gulrana; Srivastava, Pallavi; Raza, Syed Shadab; Islam, Fakhrul; Ahmad, Saif

    2010-01-05

    Restoration of blood flow to an ischemic brain region is associated with generation of reactive oxygen species (ROS) with consequent reperfusion injury. ROS cause lipid peroxidation, protein oxidation, and DNA damage, all of which are deleterious to cells. So diminishing the production of free radicals and scavenging them may be a successful therapeutic strategy for the protection of brain tissue in cerebral stroke. The present study investigated the neuroprotective effect of sesamin (Sn) to reduce brain injury after middle cerebral artery occlusion (MCAO). The middle cerebral artery (MCA) of adult male Wistar rat was occluded for 2h and reperfused for 22h. Sesamin is the most abundant lignan in sesame seed oil is a potent antioxidant. Sesamin (30 mg/kg) was given orally twice, 30 min before the onset of ischemia and 12h after reperfusion. The initial investigations revealed that sesamin reduced the neurological deficits in terms of behavior and reduced the level of thiobarbituric acid reactive species (TBARS), and protein carbonyl (PC) in the different areas of the brain when compared with the MCAO group. A significantly depleted level of glutathione and its dependent enzymes (glutathione peroxidase [GPx] and glutathione reductase [GR]) in MCAO group were protected significantly in MCAO group treated with sesamin. The present study suggests that sesamin may be able to attenuate the ischemic cell death and plays a crucial role as a neuroprotectant in regulating levels of reactive oxygen species in the rat brain. Thus, sesamin may be a potential compound in stroke therapy.

  11. Determination of Vascular Reactivity of Middle Cerebral Arteries from Stroke and Spinal Cord Injury Animal Models Using Pressure Myography.

    PubMed

    Anwar, Mohammad A; Eid, Ali H

    2016-01-01

    Stroke and other neurovascular derangements are main causes of global death. They, along with spinal cord injuries, are responsible for being the principal cause of disability due to neurological and cognitive problems. These problems then lead to a burden on scarce financial resources and societal care facilities as well as have a profound effect on patients' families. The mechanism of action in these debilitating diseases is complex and unclear. An important component of these problems arises from derangement of blood vessels, such as blockage due to clotting/embolism, endothelial dysfunction, and overreactivity to contractile agents, as well as alteration in endothelial permeability. Moreover, the cerebro-vasculature (large vessels and arterioles) is involved in regulating blood flow by facilitating auto-regulatory processes. Moreover, the anterior (middle cerebral artery and the surrounding region) and posterior (basilar artery and its immediate locality) regions of the brain play a significant role in triggering the pathological progression of ischemic stroke particularly due to inflammatory activity and oxidative stress. Interestingly, modifiable and non-modifiable cardiovascular risk factors are responsible for driving ischemic and hemorrhagic stroke and spinal cord injury. There are different stroke animal models to examine the pathophysiology of middle cerebral and basilar arteries. In this context, arterial myography offers an opportunity to determine the etiology of vascular dysfunction in these diseases. Herein, we describe the technique of pressure myography to examine the reactivity of cerebral vessels to contractile and vasodilator agents and a prelude to stroke and spinal cord injury.

  12. [A Case of Ruptured Peripheral Cerebral Aneurysm at Abnormal Vessels Associated with Middle Cerebral Artery Stenosis:Similarity to Moyamoya Disease].

    PubMed

    Miyazaki, Hajime; Kohno, Kanehisa; Tanaka, Hideo; Fukumoto, Shinya; Ichikawa, Haruhisa; Onoue, Shinji; Fumoto, Noriyuki; Ozaki, Saya; Maeda, Toshiharu

    2016-04-01

    We report a case of ruptured peripheral cerebral aneurysm at abnormal vessels associated with severe stenosis at the middle cerebral artery (MCA). A 66-year-old woman was admitted at our hospital with headache on foot. Computed tomography (CT) showed intracerebral hemorrhage in the left fronto-basal area. Three-dimensional-CT and conventional angiogram revealed abnormal vessels, which were similar to those seen in moyamoya disease, with a small enhancement close to the hematoma. On day 11, subsequent cerebral angiogram demonstrated an aneurysm at the peripheral portion of an abnormal vessel arising from the left A2. On day 17, soon after the diagnosis of the ruptured aneurysm was made (while still at the subacute stage), we operated on the aneurysm. Superficial temporal artery (STA)-MCA anastomosis was also performed to preserve cerebral blood flow and reduce hemodynamic stress. Several days after the operation, she had transient aphasia due to hyperperfusion of the MCA territory, but eventually recovered with no neurological deficit at discharge. Follow-up study revealed revascularization from the branches of the external carotid artery as well as the STA. On admission, we initially thought that this patient had abnormal vessels associated with arteriosclerotic MCA stenosis. However, the postoperative clinical course as well as the histopathological specimens of both the abnormal artery with the aneurysm and the STA revealed similar findings to those of moyamoya disease. Although this case did not satisfy the criteria for moyamoya disease, it is conceivable that a single arterial occlusive lesion associated with moyamoya-like vessels might develop in the same mechanism with that of moyamoya disease.

  13. Revisiting Hemicraniectomy: Late Decompressive Hemicraniectomy for Malignant Middle Cerebral Artery Stroke and the Role of Infarct Growth Rate

    PubMed Central

    Akhtar, Naveed; Salam, Abdul; Alboudi, Ayman; Kamran, Kainat; Ahmed, Arsalan; Khan, Rabia A.; Mirza, Mohsin K.; Inshasi, Jihad

    2017-01-01

    Objective and Methods. The outcome in late decompressive hemicraniectomy in malignant middle cerebral artery stroke and the optimal timings of surgery has not been addressed by the randomized trials and pooled analysis. Retrospective, multicenter, cross-sectional study to measure outcome following DHC under 48 or over 48 hours using the modified Rankin scale [mRS] and dichotomized as favorable ≤4 or unfavorable >4 at three months. Results. In total, 137 patients underwent DHC. Functional outcome analyzed as mRS 0–4 versus mRS 5-6 showed no difference in this split between early and late operated on patients [P = 0.140] and mortality [P = 0.975]. Multivariate analysis showed that age ≥ 55 years, MCA with additional infarction, septum pellucidum deviation ≥1 cm, and uncal herniation were independent predictors of poor functional outcome at three months. In the “best” multivariate model, second infarct growth rate [IGR2] >7.5 ml/hr, MCA with additional infarction, and patients with temporal lobe involvement were independently associated with surgery under 48 hours. Both first infarct growth rate [IGR1] and second infarct growth rate [IGR2] were nearly double [P < 0.001] in patients with early surgery [under 48 hours]. Conclusions. The outcome and mortality in malignant middle cerebral artery stroke patients operated on over 48 hours of stroke onset were comparable to those of patients operated on less than 48 hours after stroke onset. Our data identifies IGR, temporal lobe involvement, and middle cerebral artery with additional infarct as independent predictors for early surgery.

  14. Evaluation of the middle cerebral artery occlusion techniques in the rat by in-vitro 3-dimensional micro- and nano computed tomography

    PubMed Central

    2010-01-01

    Background Animal models of focal cerebral ischemia are widely used in stroke research. The purpose of our study was to evaluate and compare the cerebral macro- and microvascular architecture of rats in two different models of permanent middle cerebral artery occlusion using an innovative quantitative micro- and nano-CT imaging technique. Methods 4h of middle cerebral artery occlusion was performed in rats using the macrosphere method or the suture technique. After contrast perfusion, brains were isolated and scanned en-bloc using micro-CT (8 μm)3 or nano-CT at 500 nm3 voxel size to generate 3D images of the cerebral vasculature. The arterial vascular volume fraction and gray scale attenuation was determined and the significance of differences in measurements was tested with analysis of variance [ANOVA]. Results Micro-CT provided quantitative information on vascular morphology. Micro- and nano-CT proved to visualize and differentiate vascular occlusion territories performed in both models of cerebral ischemia. The suture technique leads to a remarkable decrease in the intravascular volume fraction of the middle cerebral artery perfusion territory. Blocking the medial cerebral artery with macrospheres, the vascular volume fraction of the involved hemisphere decreased significantly (p < 0.001), independently of the number of macrospheres, and was comparable to the suture method. We established gray scale measurements by which focal cerebral ischemia could be radiographically categorized (p < 0.001). Nano-CT imaging demonstrates collateral perfusion related to different occluded vessel territories after macrosphere perfusion. Conclusion Micro- and Nano-CT imaging is feasible for analysis and differentiation of different models of focal cerebral ischemia in rats. PMID:20509884

  15. Giant serpentine aneurysm arising from the middle cerebral artery successfully treated with trapping and anastomosis: case report.

    PubMed

    Abiko, Masaru; Ikawa, Fusao; Ohbayashi, Naohiko; Mitsuhara, Takafumi; Nosaka, Ryo; Inagawa, Tetsuji

    2009-02-01

    A 56-year-old man presented with a giant serpentine aneurysm arising from the middle cerebral artery (MCA) manifesting as right hemiparesis and motor aphasia. Magnetic resonance imaging and digital subtraction angiography identified the giant serpentine aneurysm arising from the MCA. The patient was treated surgically. Temporary clipping of the distal channel induced thrombosis in the vascular channel, and the thrombosis was aspirated with an ultrasonic suction device after superficial temporal artery-MCA anastomosis. This case shows that initial occlusion of the distal channel is effective to treat giant serpentine aneurysm.

  16. [Foix-Chavany-Marie syndrome: anarthria and severe dyphagia after sequential bilateral infarction of the middle cerebral artery].

    PubMed

    Guhra, M; Poppenborg, M; Hagemeister, C

    2008-02-01

    Bilateral lesions of the opercula frontoparietalia are uncommon and cause a symptom cluster including anarthria, severe dysphagia, inability to chew and sometimes facial paresis. At the same time there is an automatic-voluntary dissociation, meaning that the affected muscles are functional within the scope of involuntary movements. This syndrome is known as Foix-Chavany-Marie syndrome (FCMS), (bilateral) anterior operculum syndrome or facio-pharyngo-glosso-masticatory diplegia. We report the case of a patient who suffered from FCMS after having infarctions in the territory of the middle cerebral artery on each side 4 years apart.

  17. Effects of age and sex on cerebrovascular function in the rat middle cerebral artery

    PubMed Central

    2014-01-01

    Background Although the mechanisms underlying the beneficial effects of estrogen on cerebrovascular function are well known, the age-dependent deleterious effects of estrogen are largely unstudied. It was hypothesized that age and sex interact in modulating cerebrovascular reactivity to vasopressin (VP) by altering the role of prostanoids in vascular function. Methods Female (F) Sprague–Dawley rats approximating key stages of “hormonal aging” in humans were studied: premenopausal (mature multigravid, MA, cyclic, 5–6 months) and postmenopausal (reproductively senescent, RS, acyclic, 10–12 months). Age-matched male (M) rats were also studied. Reactivity to VP (10−12–10−7 M) was measured in pressurized middle cerebral artery segments in the absence or presence of selective inhibitors of COX-1 (SC560, SC, 1 μM) or COX-2 (NS398, NS, 10 μM). VP-stimulated release of PGI2 and TXA2 were measured using radioimmunoassay of 6-keto-PGF1α and TXB2 (stable metabolites, pg/mg dry wt/45 min). Results In M, there were no changes in VP-induced vasoconstriction with age. Further, there were no significant differences in basal or in low- or high-VP-stimulated PGI2 or TXA2 production in younger or older M. In contrast, there were marked differences in cerebrovascular reactivity and prostanoid release with advancing age in F. Older RS F exhibited reduced maximal constrictor responses to VP, which can be attributed to enhanced COX-1 derived dilator prostanoids. VP-induced vasoconstriction in younger MA F utilized both COX-1 and COX-2 derived constrictor prostanoids. Further, VP-stimulated PGI2 and TXA2 production was enhanced by endogenous estrogen and decreased with advancing age in F, but not in M rats. Conclusions This is the first study to examine the effects of age and sex on the mechanisms underlying cerebrovascular reactivity to VP. Interestingly, VP-mediated constriction was reduced by age in F, but was unchanged in M rats. Additionally, it was observed

  18. Electroacupuncture Attenuates Cerebral Ischemia and Reperfusion Injury in Middle Cerebral Artery Occlusion of Rat via Modulation of Apoptosis, Inflammation, Oxidative Stress, and Excitotoxicity

    PubMed Central

    Shen, Mei-hong; Zhang, Chun-bing; Zhang, Jia-hui; Li, Peng-fei

    2016-01-01

    Electroacupuncture (EA) has several properties such as antioxidant, antiapoptosis, and anti-inflammatory properties. The current study was to investigate the effects of EA on the prevention and treatment of cerebral ischemia-reperfusion (I/R) injury and to elucidate possible molecular mechanisms. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h. EA stimulation was applied to both Baihui and Dazhui acupoints for 30 min in each rat per day for 5 successive days before MCAO (pretreatment) or when the reperfusion was initiated (treatment). Neurologic deficit scores, infarction volumes, brain water content, and neuronal apoptosis were evaluated. The expressions of related inflammatory cytokines, apoptotic molecules, antioxidant systems, and excitotoxic receptors in the brain were also investigated. Results showed that both EA pretreatment and treatment significantly reduced infarct volumes, decreased brain water content, and alleviated neuronal injury in MCAO rats. Notably, EA exerts neuroprotection against I/R injury through improving neurological function, attenuating the inflammation cytokines, upregulating antioxidant systems, and reducing the excitotoxicity. This study provides a better understanding of the molecular mechanism underlying the traditional use of EA. PMID:27123035

  19. Diabetic microangiopathy: impact of impaired cerebral vasoreactivity and delayed angiogenesis after permanent middle cerebral artery occlusion on stroke damage and cerebral repair in mice.

    PubMed

    Poittevin, Marine; Bonnin, Philippe; Pimpie, Cynthia; Rivière, Léa; Sebrié, Catherine; Dohan, Anthony; Pocard, Marc; Charriaut-Marlangue, Christiane; Kubis, Nathalie

    2015-03-01

    Diabetes increases the risk of stroke by three, increases related mortality, and delays recovery. We aimed to characterize functional and structural alterations in cerebral microvasculature before and after experimental cerebral ischemia in a mouse model of type 1 diabetes. We hypothesized that preexisting brain microvascular disease in patients with diabetes might partly explain increased stroke severity and impact on outcome. Diabetes was induced in 4-week-old C57Bl/6J mice by intraperitoneal injections of streptozotocin (60 mg/kg). After 8 weeks of diabetes, the vasoreactivity of the neurovascular network to CO2 was abolished and was not reversed by nitric oxide (NO) donor administration; endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) mRNA, phospho-eNOS protein, nNOS, and phospho-nNOS protein were significantly decreased; angiogenic and vessel maturation factors (vascular endothelial growth factor a [VEGFa], angiopoietin 1 (Ang1), Ang2, transforming growth factor-β [TGF-β], and platelet-derived growth factor-β [PDGF-β]) and blood-brain barrier (BBB) occludin and zona occludens 1 (ZO-1) expression were significantly decreased; and microvessel density was increased without changes in ultrastructural imaging. After permanent focal cerebral ischemia induction, infarct volume and neurological deficit were significantly increased at D1 and D7, and neuronal death (TUNEL+ / NeuN+ cells) and BBB permeability (extravasation of Evans blue) at D1. At D7, CD31+ / Ki67+ double-immunolabeled cells and VEGFa and Ang2 expression were significantly increased, indicating delayed angiogenesis. We show that cerebral microangiopathy thus partly explains stroke severity in diabetes.

  20. Apparent diffusion coefficient evaluation for secondary changes in the cerebellum of rats after middle cerebral artery occlusion.

    PubMed

    Yang, Yunjun; Gao, Lingyun; Fu, Jun; Zhang, Jun; Li, Yuxin; Yin, Bo; Chen, Weijian; Geng, Daoying

    2013-11-05

    Supratentorial cerebral infarction can cause functional inhibition of remote regions such as the cerebellum, which may be relevant to diaschisis. This phenomenon is often analyzed using positron emission tomography and single photon emission CT. However, these methods are expensive and radioactive. Thus, the present study quantified the changes of infarction core and remote regions after unilateral middle cerebral artery occlusion using apparent diffusion coefficient values. Diffusion-weighted imaging showed that the area of infarction core gradually increased to involve the cerebral cortex with increasing infarction time. Diffusion weighted imaging signals were initially increased and then stabilized by 24 hours. With increasing infarction time, the apparent diffusion coefficient value in the infarction core and remote bilateral cerebellum both gradually decreased, and then slightly increased 3-24 hours after infarction. Apparent diffusion coefficient values at remote regions (cerebellum) varied along with the change of supratentorial infarction core, suggesting that the phenomenon of diaschisis existed at the remote regions. Thus, apparent diffusion coefficient values and diffusion weighted imaging can be used to detect early diaschisis.

  1. Functional Outcome After Decompressive Craniectomy in Patients with Dominant or Non-Dominant Malignant Middle Cerebral Infarcts

    PubMed Central

    Kamal Alam, Bilal; Bukhari, Ahmed S; Muhammad Siddique, Pir; Ghazanfar, Haider; Niaz, Muhammad Junaid; Kundi, Maryam; Shah, Saima; Siddiqui, Maimoona

    2017-01-01

    Background: The use of decompressive craniectomy (DC) has been studied in the setting of different conditions, including traumatic brain injury, subarachnoid hemorrhage, and malignant middle cerebral artery (MCA) infarction. The rationale of this study is to determine the functional outcome after DC in patients with malignant MCA infarcts. Methods: A longitudinal cohort study was performed based on patients diagnosed with malignant MCA territory infarction admitted to the Neurosurgery Department of a tertiary care hospital in Islamabad, Pakistan between July 2015 and November 2016. All patients had a clinical diagnosis of stroke according to the World Health Organization (WHO) stroke criteria. Results: A total of 34 patients participated in this study, out of which 20/31 (64.5%) were males while 11/31 (35.5%) were females with a mean age of 51.61 ± 13.96 years. The mean time from diagnosis to surgery was 60.61 ± 49.83 hours. Out of 31 patients, 18 (58.1%) had a right middle cerebral artery infarct (RMCAI) and 13 (41.9%) had a left middle cerebral artery infarct (LCAI). Logistic regression was applied to assess the association between the type of MCA infarct with the National Institutes of Health Stroke Scale (NIHSS), modified Rankin Scale (mRS), modified Barthel Index (mBI) scores, and upper and lower limb motor power. However, the logistic regression model was not statistically significant χ2 (4) = 3.896, p = 0.866. There was a statistically significant mild improvement of neurological scores and upper and lower motor power over a course of six months, but the overall functional outcome was poor with mBI < 60 and mRS > 4 (p < 0.001) with total mortality of 8.7%. Conclusion: Decompressive craniectomy is a life-saving surgery that appears to benefit patients with malignant MCA infarcts of either the dominant or non-dominant cerebral hemisphere. Decompressive craniectomy results in mild improvements in neurological scores but still poor functional outcome

  2. Impaired fasting blood glucose is associated to cognitive impairment and cerebral atrophy in middle-aged non-human primates

    PubMed Central

    Djelti, Fathia; Dhenain, Marc; Terrien, Jérémy; Picq, Jean-Luc; Hardy, Isabelle; Champeval, Delphine; Perret, Martine; Schenker, Esther; Epelbaum, Jacques; Aujard, Fabienne

    2017-01-01

    Age-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy. Due to a close evolutional similarity to Man, non-human primates may be useful to investigate the relationships between glucose homeostasis, cognitive deficits and structural brain alterations. In the grey mouse lemur, Microcebus murinus, spatial memory deficits have been associated with age and cerebral atrophy but the origin of these alterations have not been clearly identified. Herein, we showed that, on 28 female grey mouse lemurs (age range 2.4-6.1 years-old), age correlated with impaired fasting blood glucose (rs=0.37) but not with impaired glucose tolerance or insulin resistance. In middle-aged animals (4.1-6.1 years-old), fasting blood glucose was inversely and closely linked with spatial memory performance (rs=0.56) and hippocampus (rs=−0.62) or septum (rs=−0.55) volumes. These findings corroborate observations in humans and further support the grey mouse lemur as a natural model to unravel mechanisms which link impaired glucose homeostasis, brain atrophy and cognitive processes. PMID:28039490

  3. Ischemic brain injury decreases dynamin-like protein 1 expression in a middle cerebral artery occlusion animal model and glutamate-exposed HT22 cells

    PubMed Central

    Jang, Ah-Ram

    2016-01-01

    Dynamin-like protein I (DLP-1) is an important mitochondrial fission and fusion protein that is associated with apoptotic cell death in neurodegenerative diseases. In this study, we investigated DLP-1 expression in a focal cerebral ischemia animal model and glutamate-exposed hippocampal-derived cell line. Middle cerebral artery occlusion (MCAO) was surgically induced in adult male rats to induce focal cerebral ischemic injury. Brain tissues were collected 24 hours after the onset of MCAO. MCAO induces an increase in infarct volume and histopathological changes in the cerebral cortex. We identified a decrease in DLP-1 in the cerebral cortices of MCAO-injured animals using a proteomic approach and Western blot analysis. Moreover, glutamate treatment significantly decreased DLP-1 expression in a hippocampal-derived cell line. The decrease in DLP-1 indicates mitochondrial dysfunction. Thus, these results suggest that neuronal cell injury induces a decrease in DLP-1 levels and consequently leads to neuronal cell death. PMID:28053612

  4. Multimodal Neuroprotection Induced by PACAP38 in Oxygen–Glucose Deprivation and Middle Cerebral Artery Occlusion Stroke Models

    PubMed Central

    Cohen, Gadi; Arien-Zakay, Hadar; Chen, Jieli; Zhang, Chunling; Chopp, Michael; Jiang, Hao

    2014-01-01

    Pituitary adenylate cyclase activating peptide (PACAP), a potent neuropeptide which crosses the blood–brain barrier, is known to provide neuroprotection in rat stroke models of middle cerebral artery occlusion (MCAO) by mechanism(s) which deserve clarification. We confirmed that following i.v. injection of 30 ng/kg of PACAP38 in rats exposed to 2 h of MCAO focal cerebral ischemia and 48 h reoxygenation, 50 % neuroprotection was measured by reduced caspase-3 activity and volume of cerebral infarction. Similar neuroprotective effects were measured upon PACAP38 treatment of oxygen–glucose deprivation and reoxygenation of brain cortical neurons. The neuroprotection was temporally associated with increased expression of brain-derived neurotrophic factor, phosphorylation of its receptor—tropomyosin-related kinase receptor type B (trkB), activation of phosphoinositide 3-kinase and Akt, and reduction of extracellular signal-regulated kinases 1/2 phosphorylation. PACAP38 increased expression of neuronal markers beta-tubulin III, microtubule-associated protein-2, and growth-associated protein-43. PACAP38 induced stimulation of Rac and suppression of Rho GTPase activities. PACAP38 down-regulated the nerve growth factor receptor (p75NTR) and associated Nogo-(Neurite outgrowth-A) receptor. Collectively, these in vitro and in vivo results propose that PACAP exhibits neuroprotective effects in cerebral ischemia by three mechanisms: a direct one, mediated by PACAP receptors, and two indirect, induced by neurotrophin release, activation of the trkB receptors and attenuation of neuronal growth inhibitory signaling molecules p75NTR and Nogo receptor. PMID:22678884

  5. Multimodal neuroprotection induced by PACAP38 in oxygen-glucose deprivation and middle cerebral artery occlusion stroke models.

    PubMed

    Lazarovici, Philip; Cohen, Gadi; Arien-Zakay, Hadar; Chen, Jieli; Zhang, Chunling; Chopp, Michael; Jiang, Hao

    2012-11-01

    Pituitary adenylate cyclase activating peptide (PACAP), a potent neuropeptide which crosses the blood-brain barrier, is known to provide neuroprotection in rat stroke models of middle cerebral artery occlusion (MCAO) by mechanism(s) which deserve clarification. We confirmed that following i.v. injection of 30 ng/kg of PACAP38 in rats exposed to 2 h of MCAO focal cerebral ischemia and 48 h reoxygenation, 50 % neuroprotection was measured by reduced caspase-3 activity and volume of cerebral infarction. Similar neuroprotective effects were measured upon PACAP38 treatment of oxygen-glucose deprivation and reoxygenation of brain cortical neurons. The neuroprotection was temporally associated with increased expression of brain-derived neurotrophic factor, phosphorylation of its receptor-tropomyosin-related kinase receptor type B (trkB), activation of phosphoinositide 3-kinase and Akt, and reduction of extracellular signal-regulated kinases 1/2 phosphorylation. PACAP38 increased expression of neuronal markers beta-tubulin III, microtubule-associated protein-2, and growth-associated protein-43. PACAP38 induced stimulation of Rac and suppression of Rho GTPase activities. PACAP38 downregulated the nerve growth factor receptor (p75(NTR)) and associated Nogo-(Neurite outgrowth-A) receptor. Collectively, these in vitro and in vivo results propose that PACAP exhibits neuroprotective effects in cerebral ischemia by three mechanisms: a direct one, mediated by PACAP receptors, and two indirect, induced by neurotrophin release, activation of the trkB receptors and attenuation of neuronal growth inhibitory signaling molecules p75(NTR) and Nogo receptor.

  6. Hyperexpressed Netrin-1 Promoted Neural Stem Cells Migration in Mice after Focal Cerebral Ischemia

    PubMed Central

    Lu, Haiyan; Song, Xiaoyan; Wang, Feng; Wang, Guodong; Wu, Yuncheng; Wang, Qiaoshu; Wang, Yongting; Yang, Guo-Yuan; Zhang, Zhijun

    2016-01-01

    Endogenous Netrin-1 (NT-1) protein was significantly increased after cerebral ischemia, which may participate in the repair after transient cerebral ischemic injury. In this work, we explored whether NT-1 can be steadily overexpressed by adeno-associated virus (AAV) and the exogenous NT-1 can promote neural stem cells migration from the subventricular zone (SVZ) region after cerebral ischemia. Adult CD-1 mice were injected stereotacticly with AAV carrying NT-1 gene (AAV-NT-1). Mice underwent 60 min of middle cerebral artery (MCA) occlusion 1 week after injection. We found that NT-1 mainly expressed in neuron and astrocyte, and the expression level of NT-1 significantly increased 1 week after AAV-NT-1 gene transfer and lasted for 28 days, even after transient middle cerebral artery occlusion (tMCAO) as well (p < 0.05). Immunohistochemistry results showed that the number of neural stem cells was greatly increased in the SVZ region of AAV-NT-1-transduced mice compared with control mice. Our study showed that overexpressed NT-1 promoted neural stem cells migration from SVZ. This result suggested that NT-1 is a promising factor for repairing and remodeling after focal cerebral ischemia. PMID:27746720

  7. Long-term beneficial effects of BW619C89 on neurological deficit, cognitive deficit and brain damage after middle cerebral artery occlusion in the rat.

    PubMed

    Smith, S E; Hodges, H; Sowinski, P; Man, C M; Leach, M J; Sinden, J D; Gray, J A; Meldrum, B S

    1997-04-01

    4-Amino-2-(4-methyl-1-piperazinyl)-5-(2,3,5-trichlorophenyl)pyrimidine (BW619C89) is a sodium channel antagonist which when administered parenterally reduces neurological deficit and infarct volume after middle cerebral artery occlusion in rats. We have investigated whether BW619C89 administered orally before middle cerebral artery occlusion is cerebroprotective when rats are assessed at one day after stroke, and whether cerebroprotection is long lasting and related to functional recovery. A cerebroprotective oral dose of BW619C89 (20 mg/kg) was used to determine whether reduction in infarct volume is long lasting and can be enhanced with continued therapy, and whether behavioural deficits occurring after middle cerebral artery occlusion such as disturbances in cognition and motor coordination are ameliorated by treatment with BW619C89. Rats received sham surgery or middle cerebral artery occlusion with a single treatment of BW619C89 (20 mg/kg) 1 h before middle cerebral artery occlusion, a double treatment group receiving 20 mg/kg BW619C89 1 h before and 10 mg/kg 5 h after middle cerebral artery occlusion, or continued treatment with BW619C89 for up to five days. Neurological deficit, assessed from days 1 to 21, and at 70 days after middle cerebral artery occlusion, was reduced to a similar extent in all three groups of rats treated with BW619C89, compared with vehicle-treated controls. At 70 days after middle cerebral artery occlusion, all groups performed at control level. Vehicle-treated rats were impaired in the Morris water maze and step-through passive avoidance paradigm five to eight weeks after middle cerebral artery occlusion, when neurological deficit was minimal. These deficits were partially alleviated, to a similar extent, by all of the three treatments with BW619C89. Total volumes of brain damage, assessed at 70 days after middle cerebral artery occlusion in Luxol Fast Blue- and Cresyl Violet-stained coronal sections, were reduced in all three groups

  8. Effect of ST36 Acupuncture on Hyperventilation-Induced CO2 Reactivity of the Basilar and Middle Cerebral Arteries and Heart Rate Variability in Normal Subjects

    PubMed Central

    Jung, Woo-Sang; Cho, Ki-Ho; Kim, Young-Suk; Ko, Chang-Nam; Park, Jung-Mi; Moon, Sang-Kwan

    2014-01-01

    This study was conducted to verify the effect of acupuncture on cerebral haemodynamics to provide evidence for the use of acupuncture treatment as a complementary therapy for the high-risk stroke population. The effect of ST36 acupuncture treatment on the hyperventilation-induced CO2 reactivity of the basilar and middle cerebral arteries was studied in 10 healthy male volunteers (mean age, 25.2 ± 1.5 years) using a transcranial Doppler sonography with an interval of 1 week between measurements, and a portable ECG monitoring system was used to obtain ECG data simultaneously. The CO2 reactivity of the basilar and middle cerebral arteries increased significantly after ST36 acupuncture treatment, whereas the mean arterial blood pressure and pulse rate did not change significantly. The high-frequency power significantly increased after ST36 acupuncture treatment, and the percentage increase of high-frequency power correlated significantly with the percentage increase in the CO2 reactivity of the contralateral middle cerebral artery. These data suggest that ST36 acupuncture treatment increases CO2 reactivity, indicating improvement of vasodilatory potential of the cerebral vasculature to compensate for fluctuations caused by changes in external conditions. The increase in parasympathetic tone by ST36 acupuncture treatment is responsible for this therapeutic effect. PMID:25132861

  9. Analysis of middle cerebral artery peak systolic velocity in monochorionic twin pregnancies as a method for identifying spontaneous twin anaemia-polycythaemia sequence.

    PubMed

    Sainz, José A; Romero, Cristina; García-Mejido, José; Soto, Fátima; Turmo, Enriqueta

    2014-07-01

    A regular Doppler control evaluation of middle cerebral artery peak systolic velocity is needed in order to identify twin anaemia polycythaemia sequence in monochorionic twin pregnancies. Here, we present a clinical case of spontaneous TAPS, and we review the diagnostic criteria and management strategies for this syndrome.

  10. Excessive closure of the right eye: a new sign of infarction in the territory of the ipsilateral right middle cerebral artery.

    PubMed Central

    Ohkawa, S; Yamadori, A; Maeda, K; Tabuchi, M; Ohsumi, Y; Mori, E; Yoshida, T; Yoneda, Y; Uehara, T

    1993-01-01

    In right middle cerebral territory infarction a new sign, excessive closure of the right eye ipsilateral to the lesion and mild closure of the left eye on command, was noted. The excessive ipsilateral eye closure was not observed on spontaneous eye closure. Images PMID:8350107

  11. Arbitrary visuomotor mapping in the grip-lift task: dissociation of performance deficits in right and left middle cerebral artery stroke.

    PubMed

    Bensmail, D; Sarfeld, A-S; Ameli, M; Fink, G R; Nowak, D A

    2012-05-17

    The ability to rapidly establish a memory link between arbitrary sensory cues and goal-directed movements is part of our daily motor repertoire. It is unknown if this ability is affected by middle cerebral artery stroke. Eighteen right-handed subjects with a first unilateral middle cerebral artery stroke were studied while performing a precision grip to lift objects of different weights. In a "no cue" condition, a noninformative neutral visual stimulus was presented before each lift, thereby not allowing any judgment about the object weight. In a "cue" condition arbitrary color cues provided advance information about the weight to be lifted in the subsequent trial. Subjects performed both conditions with either hand. During "no cue" trials subjects scaled their grip force according to the weight of the preceding lift, irrespective of the hand performing the lift or the hemisphere affected. The presentation of color cues allowed patients with right hemispheric stroke, but not those with left hemispheric stroke, to scale their grip force according to the weight in the upcoming lift when lifting the weight with the unaffected hand. Color cues did not allow for a predictive scaling of grip force according to the weight of the object to be lifted when lifting with the affected hand, irrespective of the affected hemisphere. These data imply that the ability of visuomotor mapping in the grip-lift task is selectively impaired in the affected hand after right middle cerebral artery stroke, but in both hands after left middle cerebral artery stroke.

  12. Middle cerebral artery territory infarct due to Cryptococcus infectionstitle: an uncommon indication for cerebrospinal fluid analysis in stroke patients.

    PubMed

    Cachia, David; Singh, Charanjeet; Tetzlaff, Michael T; Penas-Prado, Marta

    2015-08-01

    Cryptococcal meningitis is the most common manifestation of cryptococcosis and is caused by the encapsulated yeast organism Cryptococcus neoformans. It occurs most commonly in patients with impaired cell-mediated immunity such as in HIV infection; patients with hematological malignancies; patients post solid-organ transplantation; on chronic steroids or immunosuppressants. Clinically, stroke can arise as a complication of cryptococcal meningitis. While cerebrospinal fluid (CSF) examination is usually not indicated for evaluation of stroke patients, demonstration of cryptococcal yeast forms in CSF is valuable in guiding appropriate therapy in arterial stroke caused by Cryptococci. Herein, we describe the CSF and radiologic correlation in a female patient who presented with disseminated cryptococcosis, cryptococcal meninigitis and a middle cerebral artery infarct.

  13. Middle Cerebral Artery, Ophthalmic Artery, and Multibranch Retinal Vessel Occlusion After Cosmetic Autologous Fat Transfer to Forehead.

    PubMed

    Roshandel, Danial; Soheilian, Masoud; Pakravan, Mohammad; Aghayan, Sara; Peyman, Gholam A

    2015-05-01

    A 65-year-old woman with left hemiparesis and sudden loss of visual acuity in her right eye presented a few hours after cosmetic injection of autologous fat to her forehead. Right eye visual acuity was no light perception. Funduscopy revealed widespread retinal whitening and multibranch retinal vessel occlusion. Fluorescein angiography showed markedly delayed choroidal and retinal filling together with occlusion of multiple branches of retinal arteries and veins. On magnetic resonance imaging of the brain, multiple lesions compatible with recent infarction were detected. The authors diagnosed multibranch retinal artery and vein occlusion in the right ophthalmic and middle cerebral arteries due to fat emboli. This case emphasizes the need to reevaluate the safety of such aesthetic procedures, particularly in the facial zone to prevent devastating complications.

  14. Combined use of stent angioplasty and mechanical thrombectomy for acute tandem internal carotid and middle cerebral artery occlusion

    PubMed Central

    Gao, Feng; Joyce Lo, WaiTing; Sun, Xuan; Xu, XiaoTong

    2015-01-01

    Purpose Tandem internal carotid and middle cerebral artery occlusion carries a grave prognosis, with intravenous and intra-arterial thrombolytics having low efficacy. Currently, endovascular therapy is a promising means for treatment in which the proximal carotid lesion can be treated with angioplasty and stenting, whilst mechanical thrombectomy can be used for the treatment of the distal occlusion. Two approaches can be used – the antegrade (proximal-to-distal) approach or the retrograde (distal-to-proximal) approach, although there has not yet been any consensus on which is the better approach. Case report We present two patients with tandem occlusions, one treated using the antegrade and one using the retrograde approach, with different revascularization outcomes, despite having similar functional outcome on follow-up. Conclusion The combined use of stent angioplasty and mechanical thrombectomy can be used to treat tandem occlusions, and with procedural modifications, the antegrade approach may more easily achieve technical success. PMID:26246102

  15. Acute Middle Cerebral Artery Occlusion Treated by Thrombectomy in a Patient with Myelodysplastic Syndrome and Severe Thrombocytopenia

    PubMed Central

    Onder, Halil; Murat Arsava, E.; Arat, Anıl; Akif Topcuoglu, M.

    2015-01-01

    Objective Experience on thrombolysis and/or thrombectomy for acute major ischemic strokes in the setting of deep (less than 40,000/mm3) thrombocytopenia is limited. Methods Case report and review of the literature. Results A 63-year-old female with myelodysplastic syndrome presented with left middle cerebral artery stroke within 2 hours of symptom onset. Severe thrombocytopenia (10.000/mm3) precluded systemic thrombolysis. However, endovascular thrombectomy provided successful recanalization and dramatic clinical recovery with NIHSS score decreasing from 20 to 2 soon after the procedure. Her modified Rankin scale was 1 at the end of the third month. Conclusion This exceptional case highlights that neurothrombectomy could be feasible and of justifiable merit even in the setting of critically low thrombocytopenia if a meticulous procedure is followed in subjects with severe acute stroke. PMID:26576212

  16. Vascular function, cerebral cortical thickness, and cognitive performance in middle-aged Hispanic and non-Hispanic Caucasian adults.

    PubMed

    Pasha, Evan P; Kaur, Sonya S; Gonzales, Mitzi M; Machin, Daniel R; Kasischke, Kennon; Tanaka, Hirofumi; Haley, Andreana P

    2015-04-01

    Hispanics are at increased risk for acquiring cardiovascular risk factors that contribute to cognitive dysfunction. To compare indices of vascular health with measures of cerebral gray matter integrity, 60 middle-aged Hispanic and non-Hispanic Caucasian participants were matched across age, sex, years of education, and mental status. Arterial stiffness was characterized by β-stiffness index and carotid-femoral pulse wave velocity, and magnetic resonance imaging estimated cortical thickness in a priori regions of interest known to be susceptible to vascular risk factors. Measures of arterial stiffness were significantly higher in Hispanics than in non-Hispanic Caucasians. Hispanics exhibited thinner left inferior frontal gyrus (LIFG) cortical thickness (P=.04) with concurrently lower language (P=.02), memory (P=.03), and attention-executive functioning (P=.02). These results suggest that compromised vascular health may occur simultaneously with cortical thinning of the LIFG as an early neuropathological alteration in Hispanics.

  17. Original Research: Sickle cell anemia and pediatric strokes: Computational fluid dynamics analysis in the middle cerebral artery.

    PubMed

    Rivera, Christian P; Veneziani, Alessandro; Ware, Russell E; Platt, Manu O

    2016-04-01

    Children with sickle cell anemia (SCA) have a high incidence of strokes, and transcranial Doppler (TCD) identifies at-risk patients by measuring blood velocities in large intracerebral arteries; time-averaged mean velocities greater than 200 cm/s confer high stroke risk and warrant therapeutic intervention with blood transfusions. Our objective was to use computational fluid dynamics to alter fluid and artery wall properties, to simulate scenarios causative of significantly elevated arterial blood velocities. Two-dimensional simulations were created and increasing percent stenoses were created in silico, with their locations varied among middle cerebral artery (MCA), internal carotid artery (ICA), and anterior cerebral artery (ACA). Stenoses placed in the MCA, ICA, or ACA generated local increases in velocity, but not sufficient to reach magnitudes > 200 cm/s, even up to 75% stenosis. Three-dimensional reconstructions of the MCA, ICA, and ACA from children with SCA were generated from magnetic resonance angiograms. Using finite element method, blood flow was simulated with realistic velocity waveforms to the ICA inlet. Three-dimensional reconstructions revealed an uneven, internal arterial wall surface in children with SCA and higher mean velocities in the MCA up to 145 cm/s compared to non-SCA reconstructions. There were also greater areas of flow recirculation and larger regions of low wall shear stress. Taken together, these bumps on the internal wall of the cerebral arteries could create local flow disturbances that, in aggregate, could elevate blood velocities in SCA. Identifying cellular causes of these microstructures as adhered blood cells or luminal narrowing due to endothelial hyperplasia induced by disturbed flow would provide new targets to treat children with SCA. The preliminary qualitative results provided here point out the critical role of 3D reconstruction of patient-specific vascular geometries and provide qualitative insight to complex

  18. Low-speed treadmill running exercise improves memory function after transient middle cerebral artery occlusion in rats.

    PubMed

    Shimada, Haruka; Hamakawa, Michiru; Ishida, Akimasa; Tamakoshi, Keigo; Nakashima, Hiroki; Ishida, Kazuto

    2013-04-15

    Physical exercise may enhance the recovery of impaired memory function in stroke rats. However the appropriate conditions of exercise and the mechanisms underlying these beneficial effects are not yet known. Therefore, the purpose of this study was to investigate the effect exercise intensity on memory function after cerebral infarction in rats. The animals were subjected to middle cerebral artery occlusion (MCAO) for 90 min to induce stroke and were randomly assigned to four groups; Low-Ex, High-Ex, Non-Ex and Sham. On the fourth day after surgery, rats in the Low-Ex and High-Ex groups were forced to exercise using a treadmill for 30 min every day for four weeks. Memory functions were examined during the last 5 days of the experiment (27-32 days after MCAO) by three types of tests: an object recognition test, an object location test and a passive avoidance test. After the final memory test, the infarct volume, number of neurons and microtubule-associated protein 2 (MAP2) immunoreactivity in the hippocampus were analyzed by histochemistry. Memory functions in the Low-Ex group were improved in all tests. In the High-Ex group, only the passive avoidance test improved, but not the object recognition or object location tests. Both the Low-Ex and High-Ex groups had reduced infarct volumes. Although the number of neurons in the hippocampal dentate gyrus of the Low-Ex and High-Ex groups was increased, the number for the Low-Ex group increased more than that for the High-Ex group. Moreover hippocampal MAP2 immunoreactivity in the High-Ex group was reduced compared to that in the Low-Ex group. These data suggest that the effects of exercise on memory impairment after cerebral infarction depend on exercise intensity.

  19. Chronic methamphetamine exposure prior to middle cerebral artery occlusion increases infarct volume and worsens cognitive injury in Male mice.

    PubMed

    Zuloaga, Damian G; Wang, Jianming; Weber, Sydney; Mark, Gregory P; Murphy, Stephanie J; Raber, Jacob

    2016-08-01

    Emerging evidence indicates that methamphetamine (MA) abuse can impact cardiovascular disease. In humans, MA abuse is associated with an increased risk of stroke as well as an earlier age at which the stroke occurs. However, little is known about how chronic daily MA exposure can impact ischemic outcome in either humans or animal models. In the present study, mice were injected with MA (10 mg/kg, i.p.) or saline once daily for 10 consecutive days. Twenty-four hours after the final injection, mice were subjected to transient middle cerebral artery occlusion (tMCAO) for one hour followed by reperfusion. Mice were tested for novel object memory at 96 h post-reperfusion, just prior to removal of brains for quantification of infarct volume using 2,3,5-Triphenyltetrazolium Chloride (TTC) staining. Mice treated with MA prior to tMCAO showed decreased object memory recognition and increased infarct volume compared to saline-treated mice. These findings indicate that chronic MA exposure can worsen both cognitive and morphological outcomes following cerebral ischemia.

  20. Association of pulsatility index in the middle cerebral artery with intelligence quotient in children with sickle cell disease.

    PubMed

    Krejza, J; Arkuszewski, M; Radcliffe, J; Flynn, T B; Chen, R; Kwiatkowski, J L; Ichord, R; Zimmerman, R; Bilello, M; Ohene-Frempong, K; Melhem, E R

    2012-07-01

    The aim of this study was to explore whether intellectual performance in children with Sickle Cell Disease and with low risk of stroke as determined with conventional transcranial Doppler ultrasonography (TCD) criteria was associated with hemodynamic parameters in imaging TCD, when controlling for hematological and socio-economical variables and presence of silent infarcts. We performed neuropsychological testing with Kaufman Brief Intelligence Test (K-BIT-IQ) and imaging TCD examinations to measure blood flow velocities and pulsatility indexes (PI) in the middle cerebral arteries (MCA) In 46 children with homozygous HbSS (mean age 108±34 months, range limits: 47-166 months; 24 females), without a history of stroke or transient ischemic attack, with no stenosis on magnetic resonance angiography and with velocities below 170 cm/s in screening conventional TCD. Mean K-BIT IQ Composite and Vocabulary scores (91±13 and 86±14 respectively) were significantly below the average scores of 100 for the age-matched population (one sample t-test=5.21, p<0.001). Using univariate and multivariate regression models, we found that lower PI in the right MCA was associated with lower K-BIT-IQ Composite and Vocabulary scores. Furthermore, we found that interhemispheric differences in PIs were even more strongly associated with neuropsychological performance, whereas flow velocities were not associated with the K-BIT-IQ score. Using a model of chronic anemia, we found that cognitive functioning was associated with cerebral hemodynamics.

  1. Surgical treatment of poor grade middle cerebral artery aneurysms associated with large sylvian hematomas following prophylactic hinged craniectomy.

    PubMed

    Wang, Hai-Jun; Ye, You-Fan; Shen, Yin; Zhu, Rui; Yao, Dong-Xiao; Zhao, Hong-Yang

    2014-10-01

    The clinical characteristics of patients who presented in poor clinical grade due to ruptured middle cerebral artery aneurysms (MCAAs) associated with large sylvian hematomas (SylH) were analyzed and an ingenious designed prophylactic hinged craniectomy was introduced. Twenty-eight patients were graded into Hunt-Hess grades IV-V and emergency standard micro-neurosurgeries (aneurysm clipping, hematoma evacuation and prophylactic hinged craniectomy) were performed, and their clinical data were retrospectively analyzed. 46.43% of the patients reached encouraged favorable outcomes on discharge. The favorable outcome group and the poor outcome group significantly differed in terms of patients' anisocoria, Hunt-Hess grade before surgery, extent of the midline shift and time to the surgery after bleeding (P<0.05). There were no significant differences in age, sex, volume and location of the hematoma, size of aneurysm between the favorable and poor groups (P>0.05). However, ingenious designed prophylactic hinged craniectomy efficiently reduced the patients' intracranial pressure (ICP) after surgery. It was suggested that preoperative conditions such as Hunt-Hess grading, extent of the midline shift and the occurrence of cerebral hernia affect the prognosis of patients, but time to the surgery after bleeding and prophylactic hinged craniectomy are of significant importance for optimizing the prognosis of MCAA patients presenting with large SylH.

  2. False-negative indocyanine green videoangiography among complex unruptured middle cerebral artery aneurysms: the importance of further aneurysm inspection.

    PubMed

    Kulwin, Charles; Cohen-Gadol, Aaron A

    2014-10-01

    Successful surgical treatment of cerebral aneurysms requires complete occlusion of the aneurysm lumen while maintaining patency of the adjacent branching and perforating arteries. Intraoperative flow assessment allows aneurysm clip repositioning in the event these requirements are not met, avoiding the risk of postoperative rehemorrhage or infarction. A number of modalities have been proposed for primarily intraoperative qualitative blood flow assessment, including microdoppler ultrasonography, intraoperative digital subtraction angiography (DSA), and more recently noninvasive fluorescent angiography including indocyanine green (ICG) fluorescent imaging. Puncture of the aneurysm dome to exclude aneurysm sac filling may also assess the efficacy of clip placement. Although a high concordance between ICG and DSA has been reported, there remains an important subset of aneurysms for which negative ICG study may erroneously suggest aneurysm occlusion. A high-risk situation for such a false-negative study is an atherosclerotic middle cerebral artery (MCA) aneurysm in which vessel wall plaque interferes with the ICG signal. Furthermore, a decreased flow within the aneurysm may not allow enough emission light for detection under the current technology. In this report, we describe our experience with cases of MCA aneurysms with false-negative ICG-VA studies requiring clip adjustment for optimal surgical treatment and discuss two illustrative cases of MCA aneurysms with intraoperative fluorescence studies that were falsely negative, requiring puncture of the aneurysm to correctly identify incomplete aneurysm occlusion.

  3. A novel embolic middle cerebral artery occlusion model induced by thrombus formed in common carotid artery in rat.

    PubMed

    Ma, Yin-Zhong; Li, Li; Song, Jun-Ke; Niu, Zi-Ran; Liu, Hai-Feng; Zhou, Xiang-Shan; Xie, Fu-Sheng; Du, Guan-Hua

    2015-12-15

    Stroke is a major cause of death and disability worldwide. However, treatment options to date are very limited. To meet the need for validating the novel therapeutic approaches and understanding the physiopathology of the ischemic brain injury, experimental stroke models were critical for preclinical research. However, commonly used embolic stroke models are reluctant to mimic the clinical situation and not suitable for thrombolytic timing studies. In this paper, we established a standard method for producing a rat embolic stroke model with autologous thrombus formed within the common carotid artery (CCA) by constant galvanic stimulation. Then the thrombus was shattered and channeled into the origin of the MCA and small (lacunar) artery. To identify the success of MCA occlusion, regional cerebral blood flow was monitored, neurological deficits and infarct volumes were measured at 2, 4 and 6h postischemia. This model developed a predictable infarct volume (38.37 ± 2.88%) and gradually reduced blood flow (20% of preischemic baselines) within the middle cerebral artery (MCA) territory. The thrombus occluded in the MCA was able to be lysed by a tissue-type plasminogen activator (t-PA) within 4h postischemia. The techniques presented in this paper would help investigators to overcome technical problems for stroke research.

  4. Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat.

    PubMed Central

    Garcia, J. H.; Yoshida, Y.; Chen, H.; Li, Y.; Zhang, Z. G.; Lian, J.; Chen, S.; Chopp, M.

    1993-01-01

    Focal brain ischemia induced in rats by occlusion of an intracranial artery is a widely used paradigm of human brain infarct. Details of the structural changes that develop in either the human or the rat brain at various times after occlusion of an intracranial artery are incompletely characterized. We studied, in 48 adult Wistar rats, structural alterations involving the cerebral hemisphere ipsilateral to an arterial occlusion, at intervals ranging from 30 min to 7 days. Microscopic changes developed over time in separate areas of the corresponding cerebral hemisphere in a predictable pattern, appearing as small lesions in the preoptic area (30 minutes), enlarging to involve the striatum, and finally involving the cerebral cortex. Two types of neuronal responses were noted according to the time elapsed; acute changes (up to 6 hours) included scalloping, shrinkage, and swelling, whereas delayed changes (eosinophilia and karyolysis) appeared later (> or = 12 hours). Three types of astrocytic responses were noted. 1) Cytoplasmic disintegration occurred in the preoptic area at a time and in a place where neurons appeared minimally injured. 2) Nuclear and cytoplasmic swelling were prominent responses in the caudoputamen and cerebral cortex at a time when neurons showed minimal alterations. 3) Increased astrocytic glial fibrillary acidic protein reactivity was noted at the interface between the lesion and the surrounding brain tissue after 4 to 6 hours. The gross pattern of the brain lesion and the maturation of neuronal changes typical of a brain infarct have a predictable progression. Focal brain ischemia of up to 6-hour duration does not induce coagulation necrosis. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8434652

  5. [Cerebral artery infarction presented as an unusual complication of acute middle otitis].

    PubMed

    Moscote-Salazar, Luis Rafael; Alcalá-Cerra, Gabriel; Castellar-Leones, Sandra Milena; Gutiérrez-Paternina, Juan José

    2013-01-01

    Introducción: la otitis media aguda es una inflamación del oído medio frecuente en la edad pediátrica. Aproximadamente 2 % de todos los casos desarrolla complicaciones intracraneales, más específicamente meningitis; por lo general, los infartos cerebrales originados por esta última son venosos. Rara vez se ha descrito la ocurrencia de un infarto arterial cerebral como complicación directa de la otitis media aguda. Caso clínico: niña de 12 meses de edad quien fue llevada a un servicio de urgencias por síndrome febril secundario a otitis media aguda y alteración del estado de conciencia. A la exploración física se identificó que estaba somnolienta, con anisocoria, midriasis en el ojo derecho y hemiparesia izquierda. Con la tomografía axial computarizada de cerebro se apreció un infarto arterial cerebral extenso. Los padres no autorizaron la craniectomía descompresiva y la paciente falleció a las 48 horas de su ingreso hospitalario. Conclusiones: a pesar de los recursos tecnológicos con los que se dispone actualmente, el infarto cerebral relacionado con la otitis media aguda tiene una evolución tórpida. Los signos neurológicos focalizadores y el deterioro progresivo deben apuntar a la ineficacia del tratamiento antimicrobiano instaurado.

  6. Subdural and intracerebral hemorrhage caused by spontaneous bleeding in the middle meningeal artery after coil embolization of a cerebral aneurysm.

    PubMed

    Kohyama, Shinya; Kakehi, Yoshiaki; Yamane, Fumitaka; Ooigawa, Hidetoshi; Kurita, Hiroki; Ishihara, Shoichiro

    2014-10-01

    Nontraumatic acute subdural hemorrhage (SDH) with intracerebral hemorrhage (ICH) is rare and is usually caused by severe bleeding from aneurysms or arteriovenous fistulas. We encountered a very rare case of spontaneous bleeding from the middle meningeal artery (MMA), which caused hemorrhage in the temporal lobe and subdural space 2 weeks after coil embolization of an ipsilateral, unruptured internal cerebral artery aneurysm in the cavernous portion. At onset, the distribution of hematoma on a computed tomography scan led us to believe that the treated intracavernous aneurysm could bleed into the intradural space. Emergency craniotomy revealed that the dura of the middle fossa was intact except for the point at the foramen spinosum where the exposed MMA was bleeding. Retrospectively, angiography just before and after embolization of the aneurysm did not show any aberrations in the MMA. Although the MMA usually courses on the outer surface of the dura and is unlikely to rupture without an external force, physicians should be aware that the MMA may bleed spontaneously and cause SDH and ICH.

  7. Neuroprotective efficacy of poly-arginine R18 and NA-1 (TAT-NR2B9c) peptides following transient middle cerebral artery occlusion in the rat.

    PubMed

    Milani, Diego; Cross, Jane L; Anderton, Ryan S; Blacker, David J; Knuckey, Neville W; Meloni, Bruno P

    2017-01-01

    We examined the efficacy of R18 in a transient MCAO model and compared its effectiveness to the well-characterized neuroprotective NA-1 peptide. R18 and NA-1 peptides were administered intravenously (30, 100, 300, 1000nmol/kg), 60min after the onset of 90min of MCAO. Infarct volume, cerebral swelling and functional outcomes (neurological score, adhesive tape and rota-rod) were measured 24h after MCAO. R18 reduced total infarct volume by 35.1% (p=0.008), 24.8% (p=0.059), 12.2% and 9.6% for the respective 1000 to 30nmol/kg doses, while the corresponding doses of NA-1 reduced lesion volume by 26.1% (p=0.047), 16.6%, 16.5% and 7%, respectively. R18 also reduced hemisphere swelling by between 46.1% (1000 and 300nmol/kg; p=0.009) and 24.4% (100nmol/kg; p=0.066), while NA-1 reduced swelling by 25.7% (1000nmol/kg; p=0.054). In addition, several R18 and NA-1 treatment groups displayed a significant improvement in at least one parameter of the adhesive tape test. These results confirm the neuroprotective properties of R18, and suggest that the peptide is a more effective neuroprotective agent than NA-1. This provides strong justification for the continuing development of R18 as a neuroprotective treatment for stroke.

  8. Sub-Clinical Cognitive Decline and Resting Cerebral Blood Flow in Middle Aged Men

    PubMed Central

    Henriksen, Otto Mølby; Hansen, Naja Liv; Osler, Merete; Mortensen, Erik Lykke; Hallam, Dorte Merete; Pedersen, Esben Thade; Chappell, Michael; Lauritzen, Martin Johannes; Rostrup, Egill

    2017-01-01

    Background Although dementia is associated with both global and regional cerebral blood flow (CBF) changes, little is known about cerebral perfusion in the early pre-clinical stages of cognitive decline preceding overt cognitive dysfunction. The aim of this study was to investigate the association of early sub-clinical cognitive decline with CBF. Materials and Methods The study participants were recruited from a cohort of Danish men born in 1953. Based on a regression model we selected men who performed better (Group A, n = 94) and poorer (Group B, n = 95) on cognitive testing at age 57 than expected from testing at age 20. Participants underwent supplementary cognitive testing, blood sampling and MRI including measurements of regional and global CBF. Results Regional CBF was lower in group B than in group A in the posterior cingulate gyrus and the precuneus. The associations were attenuated when corrected for global atrophy, but remained significant in regions of interest based analysis adjusting for regional gray matter volume and vascular risk factors. No influence of group on global CBF was observed. Conclusions We conclude that early sub-clinical cognitive decline is associated with reduced perfusion in the precuneus and posterior cingulate gyrus independently of regional atrophy and vascular risk factors, but cannot be statistically separated from an association with global atrophy. PMID:28095458

  9. Sequential metabolic changes in rat brain following middle cerebral artery occlusion: A 2-deoxyglucose study

    SciTech Connect

    Shiraishi, K.; Sharp, F.R.; Simon, R.P. )

    1989-12-01

    The distribution and time course of altered cerebral metabolism following permanent focal ischemia was studied in rat using the 2-deoxyglucose (2DG) technique. Increased 2DG uptake preceded decreased 2DG uptake and infarction in the caudate putamen and cortex. Decreased 2DG uptake without infarction was observed for 72 h in thalamus and for 24 h in hippocampus (areas remote from the ischemic zones). This study supports the concept of cell excitation as a pathophysiologic process in permanent focal ischemia. The time course of increased metabolism may demarcate the time window of opportunity for the previously demonstrated attenuation of stroke size with inhibition of cell excitation by pharmacologic blockade of excitatory amino acid neurotransmission.

  10. Intra-carotid cold magnesium sulfate infusion induces selective cerebral hypothermia and neuroprotection in rats with transient middle cerebral artery occlusion.

    PubMed

    Song, Wei; Wu, Yong-Ming; Ji, Zhong; Ji, Ya-Bin; Wang, Sheng-Nan; Pan, Su-Yue

    2013-04-01

    Local hypothermia induced by intra-arterial infusion of cold saline reduces brain injury in ischemic stroke. Administration of magnesium sulfate through the internal carotid artery is also known to reduce ischemic brain damage. The neuroprotective effects of combination therapy with local endovascular hypothermia and intra-carotid magnesium sulfate infusion has not been evaluated. The aim of the study was to determine whether infusion of intra-carotid cold magnesium offers neuroprotective efficacy superior to cold saline infusion alone. Sixty-eight Sprague-Dawley rats were subjected to 3 h of middle cerebral artery occlusion and were randomly divided into six groups: sham-operated group; stroke control group; local cold magnesium infusion group; local cold saline infusion group; local normothermic magnesium infusion group; and local normothermic saline infusion group. Before reperfusion, ischemic rats received local infusion or no treatment. Infarct volume, neurological deficit, and brain water content were evaluated at 48 h after reperfusion. Selective brain hypothermia (33-34 °C) was successfully induced by intra-carotid cold infusion. Local cold saline infusion and local cold magnesium infusion reduced the infarct volumes by 48 % (p < 0.001) and 65 % (p < 0.001), respectively, compared with stroke controls. Brain water content was decreased significantly in animals treated with local cold magnesium infusion. Furthermore, the rats given a local cold magnesium infusion had the best neurological outcome. Local normothermic infusion failed to improve ischemic brain damage. These data suggest that local hypothermia induced by intra-carotid administration of cold magnesium is more effective in reducing acute ischemic damage than infusion of cold saline alone.

  11. Transcriptomics and proteomics analyses of the PACAP38 influenced ischemic brain in permanent middle cerebral artery occlusion model mice

    PubMed Central

    2012-01-01

    Introduction The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is considered to be a potential therapeutic agent for prevention of cerebral ischemia. Ischemia is a most common cause of death after heart attack and cancer causing major negative social and economic consequences. This study was designed to investigate the effect of PACAP38 injection intracerebroventrically in a mouse model of permanent middle cerebral artery occlusion (PMCAO) along with corresponding SHAM control that used 0.9% saline injection. Methods Ischemic and non-ischemic brain tissues were sampled at 6 and 24 hours post-treatment. Following behavioral analyses to confirm whether the ischemia has occurred, we investigated the genome-wide changes in gene and protein expression using DNA microarray chip (4x44K, Agilent) and two-dimensional gel electrophoresis (2-DGE) coupled with matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS), respectively. Western blotting and immunofluorescent staining were also used to further examine the identified protein factor. Results Our results revealed numerous changes in the transcriptome of ischemic hemisphere (ipsilateral) treated with PACAP38 compared to the saline-injected SHAM control hemisphere (contralateral). Previously known (such as the interleukin family) and novel (Gabra6, Crtam) genes were identified under PACAP influence. In parallel, 2-DGE analysis revealed a highly expressed protein spot in the ischemic hemisphere that was identified as dihydropyrimidinase-related protein 2 (DPYL2). The DPYL2, also known as Crmp2, is a marker for the axonal growth and nerve development. Interestingly, PACAP treatment slightly increased its abundance (by 2-DGE and immunostaining) at 6 h but not at 24 h in the ischemic hemisphere, suggesting PACAP activates neuronal defense mechanism early on. Conclusions This study provides a detailed inventory of PACAP influenced gene expressions and protein targets

  12. Bryostatin extends tPA time window to 6 hours following middle cerebral artery occlusion in aged female rats

    PubMed Central

    Tan, Zhenjun; Lucke-Wold, Brandon P.; Logsdon, Aric F.; Turner, Ryan C.; Tan, Cong; Li, Xinlan; Hongpaison, Jarin; Alkon, Daniel L.; Simpkins, James W.; Rosen, Charles L.; Huber, Jason D.

    2015-01-01

    Background and Purpose Blood-brain barrier (BBB) disruption and hemorrhagic transformation (HT) following ischemic/reperfusion injury contributes to post-stroke morbidity and mortality. Bryostatin, a potent protein kinase C (PKC) modulator, has shown promise in treating neurological injury. In the present study, we tested the hypothesis that administration of bryostatin would reduce BBB disruption and HT following acute ischemic stroke; thus, prolonging the time window for administering recombinant tissue plasminogen activator (r-tPA). Methods Acute cerebral ischemia was produced by reversible occlusion of the right middle cerebral artery (MCAO) in 18–20-month-old female rats using an autologous blood clot with delayed r-tPA reperfusion. Bryostatin (or vehicle) was administered at 2 hours post-MCAO and r-tPA was administered at 6 hours post-MCAO. Functional assessment, lesion volume, and hemispheric swelling measurements were performed at 24 hours post-MCAO. Assessment of BBB permeability, measurement of hemoglobin, assessment of matrix metalloproteinase (MMP) levels by gel zymography, and measurement of PKCε, PKCα, PKCδ expression by western blot were conducted at 24 hours post-MCAO. Results Rats treated with bryostatin prior to r-tPA administration had decreased mortality and hemispheric swelling when compared with rats treated with r-tPA alone. Administration of bryostatin also limited BBB disruption and HT and down-regulated MMP-9 expression while up-regulating PKCε expression at 24 hours post-MCAO. Conclusions Bryostatin administration ameliorates BBB disruption and reduces the risk of HT by down-regulating MMP-9 activation and up-regulating PKCε. In this proof-of-concept study, bryostatin treatment lengthened the time-to-treatment window and enhanced the efficacy and safety of thrombolytic therapy. PMID:26189021

  13. Increased pressure-induced tone in rat parenchymal arterioles vs. middle cerebral arteries: role of ion channels and calcium sensitivity.

    PubMed

    Cipolla, Marilyn J; Sweet, Julie; Chan, Siu-Lung; Tavares, Matthew J; Gokina, Natalia; Brayden, Joseph E

    2014-07-01

    Brain parenchymal arterioles (PAs) are high-resistance vessels that branch off pial arteries and perfuse the brain parenchyma. PAs are the target of cerebral small vessel disease and have been shown to have greater pressure-induced tone at lower pressures than pial arteries. We investigated mechanisms by which brain PAs have increased myogenic tone compared with middle cerebral arteries (MCAs), focusing on differences in vascular smooth muscle (VSM) calcium and ion channel function. The amount of myogenic tone and VSM calcium was measured using Fura 2 in isolated and pressurized PAs and MCAs. Increases in intraluminal pressure caused larger increases in tone and cytosolic calcium in PAs compared with MCAs. At 50 mmHg, myogenic tone was 37 ± 5% for PAs vs. 6.5 ± 4% for MCAs (P < 0.01), and VSM calcium was 200 ± 20 nmol/l in PAs vs. 104 ± 15 nmol/l in MCAs (P < 0.01). In vessels permeabilized with Staphylococcus aureus α-toxin, PAs were not more sensitive to calcium, suggesting calcium sensitization was not at the level of the contractile apparatus. PAs were 30-fold more sensitive to the voltage-dependent calcium channel (VDCC) inhibitor nifedipine than MCAs (EC50 for PAs was 3.5 ± 0.4 vs. 82.1 ± 2.1 nmol/l for MCAs;P < 0.01); however, electrophysiological properties of the VDCC were not different in VSM. PAs had little to no response to the calcium-activated potassium channel inhibitor iberiotoxin, whereas MCAs constricted ∼15%. Thus increased myogenic tone in PAs appears related to differences in ion channel activity that promotes VSM membrane depolarization but not to a direct sensitization of the contractile apparatus to calcium.

  14. Middle cerebral artery remodeling following transient brain ischemia is linked to early postischemic hyperemia: a target of uric acid treatment.

    PubMed

    Onetti, Yara; Dantas, Ana P; Pérez, Belén; Cugota, Roger; Chamorro, Angel; Planas, Anna M; Vila, Elisabet; Jiménez-Altayó, Francesc

    2015-04-15

    Ischemia impairs blood supply to the brain, and reperfusion is important to restore cerebral blood flow (CBF) and rescue neurons from cell death. However, reperfusion can induce CBF values exceeding the basal values before ischemia. This hyperemic effect has been associated with a worse ischemic brain damage, albeit the mechanisms that contribute to infarct expansion are not clear. In this study, we investigated the influence of early postischemic hyperemia on brain damage and middle cerebral artery (MCA) properties and the effect of treatment with the endogenous antioxidant uric acid (UA). The MCA was occluded for 90 min followed by 24 h reperfusion in adult male Sprague-Dawley rats. Cortical CBF increases at reperfusion beyond 20% of basal values were taken as indicative of hyperemia. UA (16 mg/kg) or vehicle (Locke's buffer) was administered intravenously 135 min after MCA occlusion. Hyperemic compared with nonhyperemic rats showed MCA wall thickening (sham: 22.4 ± 0.8 μm; nonhyperemic: 23.1 ± 1.2 μm; hyperemic: 27.8 ± 0.9 at 60 mmHg; P < 0.001, hyperemic vs. sham) involving adventitial cell proliferation, increased oxidative stress, and interleukin-18, and more severe brain damage. Thus MCA remodeling after ischemia-reperfusion takes place under vascular oxidative and inflammatory stress conditions linked to hyperemia. UA administration attenuated MCA wall thickening, induced passive lumen expansion, and reduced brain damage in hyperemic rats, although it did not increase brain UA concentration. We conclude that hyperemia at reperfusion following brain ischemia induces vascular damage that can be attenuated by administration of the endogenous antioxidant UA.

  15. Interleukin-1 receptor antagonist decreases the number of necrotic neurons in rats with middle cerebral artery occlusion.

    PubMed Central

    Garcia, J. H.; Liu, K. F.; Relton, J. K.

    1995-01-01

    Marked increases in the brain expression of interleukin (IL)-1 have been reported in rats after permanent occlusion of a large cerebral artery. Interactions between endothelial cells and leukocytes have been implicated in the pathogenesis of several types of ischemic injury to the myocardium and other organs. In this study we asked whether inhibiting the effects of IL-1 would affect the outcome of an experimental brain infarct. Adult male Wistar rats (n = 13) with permanent occlusion of the middle cerebral artery were given IL-1 receptor antagonist. A second group (n = 13) with the same type of brain injury was given a placebo. A third group, subjected to a sham operation, was given either IL-1 receptor antagonist (n = 2) or a placebo (n = 2). Experiments were terminated after either 24 hours or 7 days. Compared with the control group, animals treated with IL-1 receptor antagonist improved their neurological score (P < 0.05), experienced less pronounced changes in body weight (P < 0.05), and had fewer necrotic neurons (P < 0.001) and fewer leukocytes in the ischemic hemisphere (P < 0.001) as well as a smaller area of pallor (P < 0.05) in the ischemis hemisphere. The results suggest that inhibiting the proinflammatory effects of IL-1 with a receptor antagonist is an effective way of influencing the leukocyte responses elicited by an arterial occlusion. Such leukocyte inhibition seemingly attenuates the number of necrotic neurons resulting from the occlusion of a large brain artery. Images Figure 4 Figure 6 Figure 8 PMID:7485410

  16. Correlation of Acute M1 Middle Cerebral Artery Thrombus Location with Endovascular Treatment Success and Clinical Outcome

    PubMed Central

    Pavabvash, Seyedmehdi; Taleb, Shayandokht; Majidi, Shahram; Qureshi, Adnan I.

    2017-01-01

    Purpose The location of the arterial occlusion can help with prognostication and treatment triage of acute stroke patients. We aimed to determine the effects of M1 distance-to-thrombus on angiographic recanalization success rate and clinical outcome following endovascular treatment of acute M1 occlusion. Methods All acute ischemic stroke patients with M1 segment middle cerebral artery (MCA) occlusion on admission CT angiography (CTA) who underwent endovascular treatment were analyzed. The distance between thrombus origin and internal carotid artery (ICA) bifurcation was measured on admission CTA. The modified thrombolysis in cerebral infarction (mTICI) grades 2b (>50% of distal branch filling) and 3 (complete) were considered as successful recanalization. Favorable outcome was defined by 3-month follow-up modified Rankin scale (mRs) score ≤2. Results Successful recanalization was achieved in 24 (71%) of 34 consecutive patients included in this study. The M1 distance-to-thrombus was shorter among patients with successful recanalization (5.4 ± 5.4 mm) versus those without (11.3 ± 7.6 mm, p = 0.015). The successful recanalization rate was higher among patients with M1 distance-to-thrombus ≤6 mm (odds ratio: 8, 95% confidence interval: 1.37–46.81, p = 0.023) compared with those with distance-to-thrombus >6 mm. There was no significant correlation between M1 distance-to-thrombus and 3-month mRs (rho: 0.131, p = 0.461); however, the distance-to-thrombus negatively correlated with admission National Institutes of Health Stroke Scale (NIHSS) scores (rho: −0.350, p=0.043). On the other hand, successful recanalization and admission NIHSS score were the only independent predictors of favorable outcome. Conclusion Shorter distance of M1 thrombus from ICA bifurcation is associated with higher rate of successful recanalization following endovascular treatment. PMID:28243346

  17. The effects of Tanshinone IIA on blood-brain barrier and brain edema after transient middle cerebral artery occlusion in rats.

    PubMed

    Tang, Chao; Xue, Hongli; Bai, Changlin; Fu, Rong; Wu, Anhua

    2010-12-01

    Disruption of blood-brain barrier (BBB) and edema formation play a key role in the development of neurological dysfunction after cerebral ischemia. In this study, the effects of Tanshinone IIA (Tan IIA), one of the active ingredients of Salvia miltiorrhiza root, on the BBB and brain edema after transient middle cerebral artery occlusion in rats were examined. Our study demonstrated that Tan IIA reduced brain infarct area, water content in the ischemic hemisphere. Furthermore, Tan IIA significantly decreased BBB permeability to Evans blue, suppressed the expression of intercellular adhesion molecule-1 (ICAM-1), matrix metalloproteinase-9 (MMP-9), inhibited the degradation of tight junction proteins zonula occludens-1 (ZO-1) and Occludin. These results demonstrated that Tan IIA was effective for attenuating the extent of brain edema formation in response to ischemia injury in rats, partly by Tan IIA's protective effect on the BBB. Our results may have implications in the treatment of brain edema in cerebral ischemia.

  18. [Blood Flow and Regional Blood Flow Rate in the Middle Cerebral Artery during Surgical Leg Lengthening in Patients with Congenital and Acquired Limb Shortening].

    PubMed

    Schurov, V A; Popkov, A V

    2015-01-01

    This is a comparative study of changes in blood flow rate in the popliteal artery, the arteries of bone regenerate and cerebral arteries in 45 patients with congenital and acquired diseases of the limbs at different stages of surgical lengthening of 3-15 cm shortened shin by Ilizarov method. We observed an increase in regional blood flow rate in all patients during the periods of distraction and fixation. A 25% increase in blood flow rate in the middle cerebral artery on the contralateral side was found only in patients of the first adult age with acquired limb shortening. Basing on the analysis of the reaction of cerebral arteries during a functional test with additional muscle work, we suggested that the absence of reaction in congenital diseases is caused by relative excess of somatic afferentation which results from morphological and functional immaturity of brain regulatory systems.

  19. Endovascular treatment of an acute left middle cerebral artery >6 h post stroke in a patient presenting with dysphasia and dense right hemiplegia.

    PubMed

    Chan, Kenny; Cordato, Dennis J; Kehdi, Elias E; Schlaphoff, Glen; McDougall, Alan

    2008-02-01

    This paper describes the case of a 32-year-old man presenting with dense right hemiplegia and global aphasia caused by an acute left middle cerebral artery infarct that underwent successful endovascular therapy after being determined ineligible for intravenous tissue plasminogen activator. Clot transversion and balloon disruption followed by intra-arterial Alteplase resulted in successful re-canalization of his middle cerebral artery at 7 h 30 min. At 3 months post stroke, the patient had moderately severe expressive dysphasia but was mobilizing independently with normal right upper and lower limb strength. In conclusion, the 3 month outcome suggests that the therapeutic time window for endovascular therapy might exceed 6 h post stroke.

  20. Higher visceral fat is associated with lower cerebral N-acetyl-aspartate ratios in middle-aged adults.

    PubMed

    Kaur, Sonya; Birdsill, Alex C; Steward, Kayla; Pasha, Evan; Kruzliak, Peter; Tanaka, Hirofumi; Haley, Andreana P

    2017-01-31

    Excessive adipose tissue, particularly with a central distribution, consists of visceral fat, which is metabolically active and could impinge upon central nervous system functioning. The aim of the current study was to examine levels of visceral adiposity in relation to key cerebral metabolite ratios localized in the occipitoparietal grey matter. Seventy-three adults, aged between 40 and 60 years, underwent structural magnetic resonance imaging and single voxel (1)H Magnetic Resonance Spectroscopy ((1)H MRS). Visceral fat was assessed using Dual Energy X Ray Absorptiometry (DXA). Individuals with higher visceral fat mass and volume had significantly lower ratios of N-acetyl-aspartate to total creatine (phosphocreatine + creatine, PCr + Cr) (NAA/PCr + Cr) (β = -0.29, p = 0.03, β = -0.28, p = 0.04). They also had significantly higher ratios of myo-inositol to total creatine (mI/PCr + Cr ) (β = 0.36, p = 0.01, β = 0.36, p = 0.01). Visceral fat mass and volume were not significantly related to ratios of glutamate to total creatine (Glu/PCr + Cr). While future studies are necessary, these results indicate central adiposity is associated with metabolic changes that could impinge upon the central nervous system in middle age.

  1. Predicting Mortality in Patients With “Malignant” Middle Cerebral Artery Infarction Using Susceptibility-Weighted Magnetic Resonance Imaging

    PubMed Central

    Chao, Shu-Ping; Chen, Chia-Yuen; Tsai, Fong Y.; Chan, Wing P.; Chen, Chin-I

    2016-01-01

    Abstract To evaluate malignant middle cerebral artery (MCA) infarction (defined as space-occupying edema in more than 50% to 75% of the MCA territory) on magnetic resonance imaging (MRI) with susceptibility-weighted imaging (SWI) sequence and assess the usefulness of SWI findings, diffusion-weighted imaging (DWI) findings, and apparent diffusion coefficient (ADC) as predictors of clinical outcome. Data from 16 patients with large MCA infarction previously admitted to our institution between December 2009 and October 2012 were retrospectively collected and analyzed. Within 7 days after stroke onset, 1 neurologist and 1 neuroradiologist estimated the area of infarction on DWI/ADC and extent of prominent vessel sign (PVS) on SWI images using the Stroke Program Early MR Score (SPEMRS). The PVS on SWI was defined as a local prominence of hypointense vessels with either increased vessel number or diameter in the target area, when compared with the number or diameter of the contralateral MCA territory vessels. Six patients died and 10 survived. Although the DWI/ADC-SPEMRS and clinical profiles were similar between the nonsurvivor and survivor groups, SWI-SPEMRS was significantly lower in the nonsurvivor group (P < 0.001). The area of deoxygenation on SWI in patients with malignant MCA infarction can predict mortality. Lower SWI-SPEMRS is a potentially better predictor of poor outcome than lower DWI-SPEMRS. A larger prospective study is needed to clarify the role of SWI as a therapeutic guide in malignant MCA. PMID:26937906

  2. Middle cerebral artery blood flows by combining TCD velocities and MRA diameters: in vitro and in vivo validations.

    PubMed

    Yonan, K A; Greene, E R; Sharrar, J M; Caprihan, A; Qualls, C; Roldan, C A

    2014-11-01

    Non-invasive transcranial Doppler (TCD) is widely used for blood velocity (BV, cm/sec) measurements in the human middle cerebral artery (MCA). MCABV measurements are accepted as linear with MCA blood flow (MCABF). Magnetic resonance angiography (MRA) provides measurements of MCA lumen diameters that can be combined with TCD MCABV to calculate MCABF (mL/min). We tested the precision and accuracy of this method against a flow phantom and in vivo proximal internal carotid artery blood flow (ICABF). In vitro precision (repeated measures) and accuracy (vs. time collection) gave correlations coefficients of 0.97 and 0.98, respectively (both p < 0.05). In vivo precision (repeated measures) and accuracy (vs. ICABF) gave correlation coefficients of 0.90 (left and right), 0.94 (left) and 0.93 (right) (all p < 0.05). Bilateral MCABF in 35 adults were similar (left, 168 ± 72 mL/min; right, 180 ± 69 mL/min; p > 0.05). Results suggest that blood velocity by TCD and lumen diameter by MRA can be combined to estimate absolute values of MCABF.

  3. Long-term dynamics of somatosensory activity in a stroke model of distal middle cerebral artery oclussion

    PubMed Central

    Barios, Juan A; Pisarchyk, Liudmila; Fernandez-Garcia, Laura; Barrio, Luis C; Ramos, Milagros; Martinez-Murillo, Ricardo

    2015-01-01

    A constant challenge in experimental stroke is the use of appropriate tests to identify signs of recovery and adverse effects linked to a particular therapy. In this study, we used a long-term longitudinal approach to examine the functional brain changes associated with cortical infarction in a mouse model induced by permanent ligation of the middle cerebral artery (MCA). Sensorimotor function and somatosensory cortical activity were evaluated with fault-foot and forelimb asymmetry tests in combination with somatosensory evoked potentials. The stroke mice exhibited both long-term deficits in the functional tests and impaired responses in the infarcted and intact hemispheres after contralateral and ipsilateral forepaw stimulation. In the infarcted hemisphere, reductions in the amplitudes of evoked responses were detected after contralateral and ipsilateral stimulation. In the intact hemisphere, and similar to cortical stroke patients, a gradual hyperexcitability was observed after contralateral stimulation but no parallel evidence of a response was detected after ipsilateral stimulation. Our results suggest the existence of profound and persistent changes in the somatosensory cortex in this specific mouse cortical stroke model. The study of evoked potentials constitutes a feasible and excellent tool for evaluating the fitness of the somatosensory cortex in relation to functional recovery after preclinical therapeutic intervention. PMID:26661150

  4. Use of Three-Dimensional Curved-Multiplanar Reconstruction Images for Sylvian Dissection in Microsurgery of Middle Cerebral Artery Aneurysms

    PubMed Central

    Nam, Taek-Kyun; Byun, Jun-Soo; Park, Seung-Won; Kwon, Jeong-Taik

    2017-01-01

    Purpose The purpose of this study was to introduce a method of using three-dimensional (3D) curved-multiplanar reconstruction (MPR) images for sylvian dissection during microsurgical treatment of middle cerebral artery (MCA) aneurysms. Materials and Methods Forty-nine patients who had undergone surgery for MCA aneurysms were enrolled. We obtained the 3D curved-MPR images along the sphenoid ridge using OsiriX MD™ imaging software, compared sylvian dissection time according to several 3D MPR image factors, and investigated the correlations between these images and intraoperative findings. Results Utilizing preoperative information of the sylvian fissure (SF) and peri-aneurysmal space on 3D curved-MPR images, we could predict the feasibility of sylvian dissection for a safe surgery. 3D curved-MPR images showed several features: first, perpendicular images to the sylvian surface in the same orientation as the surgeon's view; second, simultaneous visualization of the brain cortex, vessels, and cisternal space; and third, more accurate measurement of various parameters, such as depth of the MCA from the sylvian surface and the location and width of the SFs. Conclusion In addition to conventional image studies, 3D curved-MPR images seem to provide useful information for Sylvian dissection in the microsurgical treatment of MCA aneurysms. PMID:27873519

  5. Monocytes are Essential for the Neuroprotective Effect of Human Cord Blood Cells Following Middle Cerebral Artery Occlusion in Rat

    PubMed Central

    Womble, T. A.; Green, S.; Shahaduzzaman, M.; Grieco, J.; Sanberg, P. R.; Pennypacker, K. R.; Willing, A. E.

    2014-01-01

    Systemic administration of human umbilical cord blood (HUCB) mononuclear cells (MNC) following middle cerebral artery occlusion (MCAO) in the rat reduces infarct size and, more importantly, restores motor function. The HUCB cell preparation is composed of immature T-cells, B-cells, monocytes and stem cells. In this study we examined whether the beneficial effects of HUCB injection were attributable to one of these cell types. Male Sprague Dawley rats underwent permanent MCAO followed 48 hours later by intravenous administration of HUCB MNC preparations depleted of either CD14+ monocytes, CD133+ stem cells, CD2+ T-cells or CD19+ B cells. Motor function was measured prior to MCAO and 30 days post-stroke. When CD14+ monocytes were depleted from the HUCB MNC, activity and motor asymmetry were similar to the MCAO only treated animals. Monocyte depletion prevented HUCB cell treatment from reducing infarct size while monocyte enrichment was sufficient to reduce infarct size. Administration of monocyte-depleted HUCB cells did not suppress Iba1 labeling of microglia in the infarcted area relative to treatment with the whole HUCB preparation. These data demonstrate that the HUCB monocytes provide the majority of the efficacy in reducing infarct volume and promoting functional recovery. PMID:24472845

  6. [A Case of Aphasia after Neck Clipping of a Ruptured Aneurysm at the Origin of the Duplicated Middle Cerebral Artery].

    PubMed

    Miyoshi, Hiroyuki; Migita, Keisuke; Kumano, Kiyoshi; Hashimoto, Naomi; Toyota, Akihiro

    2016-11-01

    We report a case of aphasia after neck clipping of a ruptured aneurysm at the origin of the duplicated middle cerebral artery(DMCA). A 60-year-old woman had a sudden onset of headache and nausea. A computed tomography(CT)scan revealed diffuse subarachnoid hemorrhage. Head three-dimensional CT angiography(3D-CTA)showed a left DMCA with a saccular aneurysm at the origin. She became aphasic on the third day after aneurysmal neck clipping. A CT scan revealed a low-density area in the anterior portion of the left temporal lobe, which is perfused by the DMCA. The DMCA was patent on 3D-CTA, but the angle between the ICA and the DMCA changed steep. It is suspected that the clip changed the branching angle at the DMCA origin, which may have led to decreased blood flow in the DMCA. She received linguistic rehabilitation for dysnomia and was discharged with slight difficulty in naming objects. Six months later, she recovered from the aphasia. One year later, the DMCA was patent on 3D-CTA. We should pay attention to ischemic complications in clipping because DMCAs are easily deformed.

  7. Middle cerebral artery blood flows by combining TCD velocities and MRA diameters: in vitro and in vivo validations

    PubMed Central

    KA, Yonan; ER, Greene; JM, Sharrar; A, Caprihan; C, Qualls; CA, Roldan

    2014-01-01

    Noninvasive transcranial Doppler (TCD) is widely used for blood velocity (BV, cm/sec) measurements in the human middle cerebral artery (MCA). MCABV measurements are accepted as linear with MCA blood flow (MCABF). Magnetic resonance angiography (MRA) provides measurements of MCA lumen diameters that can be combined with TCD MCABV to calculate MCABF (ml/min). We tested the precision and accuracy of this method against a flow phantom and in vivo proximal internal carotid artery blood flow (ICABF). In vitro precision (repeated measures) and accuracy (versus time collection) gave correlations coefficients of 0.97 and 0.98; respectfully (both p<0.05). In vivo precision (repeated measures) and accuracy (versus ICABF) gave correlation coefficients of 0.90 (left and right), and 0.94 (left) and 0.93 (right) (all p<0.05). Bilateral MCABF in 35 adults were similar (left, 168±72 ml/min; right, 180±69 ml/min; p>0.05). Results suggest that blood velocity by TCD and lumen diameter by MRA can be combined to estimate absolute values of MCABF. PMID:25218448

  8. Vascular Function, Cerebral Cortical Thickness, and Cognitive Performance in Middle-Aged Hispanic and Non-Hispanic Caucasian Adults

    PubMed Central

    Pasha, Evan; Kaur, Sonya S.; Gonzales, Mitzi M.; Machin, Daniel R.; Kasischke, Kennon; Tanaka, Hirofumi; Haley, Andreana P.

    2015-01-01

    Hispanics are at increased risk of acquiring cardiovascular risk factors that contribute to cognitive dysfunction. To compare indices of vascular health to measures of cerebral gray matter integrity, 60 middle-aged Hispanic and non-Hispanic Caucasian participants were matched across age, gender, years of education, and mental status. Arterial stiffness was characterized via β-stiffness index and carotid-femoral pulse-wave velocity, and magnetic resonance imaging estimated cortical thickness in a priori regions of interest known to be susceptible to vascular risk factors. Measures of arterial stiffness were significantly higher in Hispanics than in non-Hispanic Caucasians. Hispanics exhibited thinner left inferior frontal gyrus (LIFG) cortical thickness (p=0.04) with concurrently lower language (p=0.02), memory (p=0.03), and attention-executive functioning (p=0.02). These results suggest that compromised vascular health may occur simultaneously with cortical thinning of the LIFG as an early neuropathological alteration in Hispanics. PMID:25720950

  9. Tirofiban combined with urokinase selective intra-arterial thrombolysis for the treatment of middle cerebral artery occlusion

    PubMed Central

    FENG, LEI; LIU, JUN; LIU, YUNZHEN; CHEN, JIAN; SU, CHUNHAI; LV, CHUANFENG; WEI, YUZHEN

    2016-01-01

    The aims of the present study were to establish a model of embolic stroke in rabbits and to evaluate the efficacy and safety of intra-arterially administered tirofiban combined with urokinase thrombolysis. The middle cerebral artery occlusion model (MCAO) of embolic stroke was established in New Zealand rabbits via an autologous clot. The model rabbits were allocated at random into four groups: Tirofiban group (T group), urokinase group (UK group), tirofiban and urokinase group (T + UK group) and the control group (C group). The recanalization rate, relative-apparent diffusion coefficient (rADC) and neurological function deficit score (NFDS) values were compared among the four groups. The recanalization rate, rADC and NFDS values were improved in the T + UK group compared with the other groups. In summary, the intra-arterial administration of tirofiban combined with urokinase thrombolysis was a more effective intervention in an MCAO model compared with intra-arterial urokinase alone, and may promote reperfusion and reduce infarct volume. PMID:26998029

  10. Galectin-3 causes enteric neuronal loss in mice after left sided permanent middle cerebral artery occlusion, a model of stroke

    PubMed Central

    Cheng, Xiaowen; Boza-Serrano, Antonio; Turesson, Michelle Foldschak; Deierborg, Tomas; Ekblad, Eva; Voss, Ulrikke

    2016-01-01

    In addition to brain injury stroke patients often suffer gastrointestinal complications. Neuroimmune interactions involving galectin-3, released from microglia in the brain, mediates the post-stroke pro-inflammatory response. We investigated possible consequences of stroke on the enteric nervous system and the involvement of galectin-3. We show that permanent middle cerebral artery occlusion (pMCAO) induces loss of enteric neurons in ileum and colon in galectin-3+/+, but not in galectin-3−/−, mice. In vitro we show that serum from galectin-3+/+, but not from galectin-3−/−, mice subjected to pMCAO, caused loss of C57BL/6J myenteric neurons, while myenteric neurons derived from TLR4−/− mice were unaffected. Further purified galectin-3 (10−6 M) caused loss of cultured C57BL/6J myenteric neurons. Inhibitors of transforming growth factor β-activated kinase 1 (TAK1) or AMP activated kinase (AMPK) counteracted both the purified galectin-3 and the galectin-3+/+ pMCAO serum-induced loss in vitro. Combined we show that stroke (pMCAO) triggers central and peripheral galectin-3 release causing enteric neuronal loss through a TLR4 mediated mechanism involving TAK1 and AMPK. Galectin-3 is suggested a target for treatment of post-stroke complications. PMID:27612206

  11. Sonographic parenchymal and brain perfusion imaging: preliminary results in four patients following decompressive surgery for malignant middle cerebral artery infarct.

    PubMed

    Schlachetzki, F; Hoelscher, T; Dorenbeck, U; Greiffenberg, B; Marienhagen, J; Ullrich, O W; Bogdahn, U

    2001-01-01

    To investigate new methods of diagnostic transcranial sonography for brain parenchymal, vascular and perfusion imaging, we performed 3-D native tissue harmonic transcranial sonography (3D-nthTCS), 3-D transcranial color-coded duplex sonography (3D-TCCS), and "loss-of-correlation" imaging (LOC-TCCS) in four patients following early hemicraniectomy due to space-occupying "malignant" middle cerebral artery infarction (MMCAI). Three-dimensional datasets, utilizing 3D-nthTCS and 3D-TCCS, were created and up to 10 axial 2-D B-mode image planes, similar to CCT, reconstructed in each patient. Three-dimensional reconstructions of the circle of Willis documented one persistent carotid-T occlusion and three recanalizations of the MCA. LOC-TCCS, based on stimulated acoustic emission from an ultrasound (US) contrast agent, demonstrated a perfusion deficit in 2 of 3 patients, with regard to their infarcts. Concluding, 3D-nthTCS, 3D-TCCS and LOC-TCCS are promising tools for bedside monitoring, early prognosis and treatment evaluation for MMCAI in the postoperative period. Further studies should be performed to standardize these new methods and evaluate their applications through the intact calvarina.

  12. Effect of Donepezil on Wernicke Aphasia After Bilateral Middle Cerebral Artery Infarction: Subtraction Analysis of Brain F-18 Fluorodeoxyglucose Positron Emission Tomographic Images.

    PubMed

    Yoon, Seo Yeon; Kim, Je-Kyung; An, Young-Sil; Kim, Yong Wook

    2015-01-01

    Aphasia is one of the most common neurologic deficits occurring after stroke. Although the speech-language therapy is a mainstream option for poststroke aphasia, pharmacotherapy is recently being tried to modulate different neurotransmitter systems. However, the efficacy of those treatments is still controversial. We present a case of a 53-year-old female patient with Wernicke aphasia, after the old infarction in the territory of left middle cerebral artery for 8 years and the recent infarction in the right middle cerebral artery for 4 months. On the initial evaluation, the Aphasia Quotient in Korean version of the Western Aphasia Battery was 25.6 of 100. Baseline brain F-18 fluorodeoxyglucose positron emission tomographic images demonstrated a decreased cerebral metabolism in the left temporoparietal area and right temporal lobe. Donepezil hydrochloride, a reversible acetylcholinesterase inhibitor, was orally administered 5 mg/d for 6 weeks after the initial evaluation and was increased to 10 mg/d for the following 6 weeks. After the donepezil treatment, the patient showed improvement in language function, scoring 51.0 of 100 on Aphasia Quotient. A subtraction analysis of the brain F-18 fluorodeoxyglucose positron emission tomographic images after donepezil medication demonstrated increased uptake in both middle temporal gyri, extended to the occipital area and the left cerebellum. Thus, we suggest that donepezil can be an effective therapeutic choice for the treatment of Wernicke aphasia.

  13. Endothelin-1 overexpression leads to further water accumulation and brain edema after middle cerebral artery occlusion via aquaporin 4 expression in astrocytic end-feet.

    PubMed

    Lo, Amy C Y; Chen, Ann Y S; Hung, Victor K L; Yaw, Lai Ping; Fung, Maggie K L; Ho, Maggie C Y; Tsang, Margaret C S; Chung, Stephen S M; Chung, Sookja K

    2005-08-01

    Stroke patients have increased levels of endothelin-1 (ET-1), a strong vasoconstrictor, in their plasma or cerebrospinal fluid. Previously, we showed high level of ET-1 mRNA expression in astrocytes after hypoxia/ischemia. It is unclear whether the contribution of ET-1 induction in astrocytes is protective or destructive in cerebral ischemia. Here, we generated a transgenic mouse model that overexpress ET-1 in astrocytes (GET-1) using the glial fibrillary acidic protein promoter to examine the role of astrocytic ET-1 in ischemic stroke by challenging these mice with transient middle cerebral artery occlusion (MCAO). Under normal condition, GET-1 mice showed no abnormality in brain morphology, cerebrovasculature, absolute cerebral blood flow, blood-brain barrier (BBB) integrity, and mean arterial blood pressure. Yet, GET-1 mice subjected to transient MCAO showed more severe neurologic deficits and increased infarct, which were partially normalized by administration of ABT-627 (ET(A) antagonist) 5 mins after MCAO. In addition, GET-1 brains exhibited more Evans blue extravasation and showed decreased endothelial occludin expression after MCAO, correlating with higher brain water content and increased cerebral edema. Aquaporin 4 expression was also more pronounced in astrocytic end-feet on blood vessels in GET-1 ipsilateral brains. Our current data suggest that astrocytic ET-1 has deleterious effects on water homeostasis, cerebral edema and BBB integrity, which contribute to more severe ischemic brain injury.

  14. Parecoxib is neuroprotective in spontaneously hypertensive rats after transient middle cerebral artery occlusion: a divided treatment response?

    PubMed Central

    Kelsen, Jesper; Kjær, Katrine; Chen, Gang; Pedersen, Michael; Røhl, Lisbeth; Frøkiær, Jørgen; Nielsen, Søren; Nyengaard, Jens R; Rønn, Lars Christian B

    2006-01-01

    Background Anti-inflammatory treatment affects ischemic damage and neurogenesis in rodent models of cerebral ischemia. We investigated the potential benefit of COX-2 inhibition with parecoxib in spontaneously hypertensive rats (SHRs) subjected to transient middle cerebral artery occlusion (tMCAo). Methods Sixty-four male SHRs were randomized to 90 min of intraluminal tMCAo or sham surgery. Parecoxib (10 mg/kg) or isotonic saline was administered intraperitoneally (IP) during the procedure, and twice daily thereafter. Nineteen animals were euthanized after 24 hours, and each hemisphere was examined for mRNA expression of pro-inflammatory cytokines and COX enzymes by quantitative RT-PCR. Twenty-three tMCAo animals were studied with diffusion and T2 weighted MRI within the first 24 hours, and ten of the SHRs underwent follow-up MRI six days later. Thirty-three SHRs were given 5-bromo-2'-deoxy-uridine (BrdU) twice daily on Day 4 to 7 after tMCAo. Animals were euthanized on Day 8 and the brains were studied with free-floating immunohistochemistry for activated microglia (ED-1), hippocampal granule cell BrdU incorporation, and neuronal nuclei (NeuN). Infarct volume estimation was done using the 2D nucleator and Cavalieri principle on NeuN-stained coronal brain sections. The total number of BrdU+ cells in the dentate gyrus (DG) of the hippocampus was estimated using the optical fractionator. Results We found a significant reduction in infarct volume in parecoxib treated animals one week after tMCAo (p < 0.03). Cortical ADC values in the parecoxib group were markedly less increased on Day 8 (p < 0.01). Interestingly, the parecoxib treated rats were segregated into two subgroups, suggesting a responder vs. non-responder phenomenon. We found indications of mRNA up-regulation of IL-1β, IL-6, TNF-α and COX-2, whereas COX-1 remained unaffected. Hippocampal granule cell BrdU incorporation was not affected by parecoxib treatment. Presence of ED-1+ activated microglia in the

  15. Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage.

    PubMed

    Kokaia, Z; Zhao, Q; Kokaia, M; Elmér, E; Metsis, M; Smith, M L; Siesjö, B K; Lindvall, O

    1995-11-01

    Levels of mRNA for c-fos, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), TrkB, and TrkC were studied using in situ hybridization in the rat brain at different reperfusion times after unilateral middle cerebral artery occlusion (MCAO). Short-term (15 min) MCAO, which does not cause neuronal death, induced elevated BDNF mRNA expression confined to ipsilateral frontal and cingulate cortices outside the ischemic area. With a longer duration of MCAO (2 h), which leads to cortical infarction, the increase was more marked and elevated BDNF mRNA levels were also detected bilaterally in dentate granule cells and CA1 and CA3 pyramidal neurons. Maximum expression was found after 2 h of reperfusion. At 24 h BDNF mRNA expression had returned to control values. In the ischemic core of the parietal cortex only scattered neurons were expressing high levels of BDNF mRNA after 15 min and 2 h of MCAO. Analysis of different BDNF transcripts showed that MCAO induced a marked increase of exon III mRNA but only small increases of exon I and II mRNAs in cortex and hippocampus. In contrast to BDNF mRNA, elevated expression of c-fos mRNA was observed in the entire ipsilateral cerebral cortex, including the ischemic core, after both 15 min and 2 h of MCAO. Two hours of MCAO also induced transient, bilateral increases of NGF and TrkB mRNA levels and a decrease of NT-3 mRNA expression, confined to dentate granule cells. The upregulation of BDNF mRNA expression in cortical neurons after MCAO is probably triggered by glutamate through a spreading depression-like mechanism. The lack of response of the BDNF gene in the ischemic core may be due to suppression of signal transduction or transcription factor synthesis caused by the ischemia. The observed pattern of gene expression after MCAO agrees well with a neuroprotective role of BDNF in cortical neurons. However, elevated levels of NGF and BDNF protein could also increase synaptic efficacy in the

  16. Neurological impairment in rats after transient middle cerebral artery occlusion: a comparative study under various treatment paradigms.

    PubMed

    Zausinger, S; Hungerhuber, E; Baethmann, A; Reulen, H; Schmid-Elsaesser, R

    2000-04-28

    The assessment of the functional outcome - in addition to the conventional endpoints as histomorphometry of the ischemic brain damage - for the evaluation of cerebroprotective therapies is increasingly recommended, although there is little consensus on appropriate procedures. We evaluated a battery of sensorimotor tasks in rats after transient middle cerebral artery occlusion (MCAO) to select those with the highest potential to discriminate between various degrees of neuronal damage. A total of 40 Sprague-Dawley rats were subjected to 90 min of MCAO and assigned to one of four treatment arms: (1) sham-operated controls, (2) vehicle-treated controls, (3) moderately effective neuroprotection by 2x100 mg/kg alpha-phenyl-N-tert-butyl nitrone (PBN), (4) highly effective neuroprotection by mild hypothermia (33 degrees C). Functional deficits were daily quantified using the beam balance task (1.5 cm, 2.5 cm diameter rectangular and 2.5 cm diameter cylindrical beam), the prehensile traction task, the rotarod, and a six-point neuro-score. Infarction of cerebral cortex and basal ganglia was assessed one week after ischemia. Treatment with PBN significantly reduced cortical infarction (-31%), while treatment with hypothermia resulted in a significantly smaller infarct volume of cortex (-94%) and basal ganglia (-27%). Beam balance, prehensile traction and rotarod failed to demonstrate any difference in motor performance. The six-point neuro-score showed a significant correlation with cortical infarction from day 2 and with total infarct volume from day 3. The smaller the reduction of infarct volume, the later the corresponding difference in neuro-score became apparent. Functional outcome after MCAO in rats can be assessed by a relatively simple measurement of neurological deficit. The slope of functional recovery is closely related with the degree of the morphological, particularly cortical damage. If expected treatment effects are small, an observation period of at least 3

  17. Subarachnoid hemorrhage secondary to a ruptured middle cerebral aneurysm in a patient with osteogenesis imperfecta: a case report

    PubMed Central

    2014-01-01

    Background Osteogenesis imperfecta (OI) is a heterogeneous group of inherited disorders that occur owing to the abnormalities in type 1 collagen, and is characterized by increased bone fragility and other extraskeletal manifestations. We report the case of a patient who was diagnosed with OI following subarachnoid hemorrhage (SAH) secondary to a ruptured saccular intracranial aneurysm (IA). Case Presentation A 37-year-old woman was referred to our hospital because of sudden headache and vomiting. She was diagnosed with SAH (World Federation of Neurosurgical Society grade 2) owing to an aneurysm of the middle cerebral artery. She then underwent surgical clipping of the aneurysm successfully. She had blue sclerae, a history of several fractures of the extremities, and a family history of bone fragility and blue sclerae in her son. According to these findings, she was diagnosed with OI type 1. We performed genetic analysis for a single nucleotide G/C polymorphism (SNP) of exon 28 of the gene encoding for alpha-2 polypeptide of collagen 1, which is a potential risk factor for IA. However, this SNP was not detected in this patient or in five normal control subjects. Other genetic analyses did not reveal any mutations of the COL1A1 or COL1A2 gene. The cerebrovascular system is less frequently involved in OI. OI is associated with increased vascular weakness owing to collagen deficiency in and around the blood vessels. SAH secondary to a ruptured IA with OI has been reported in only six cases. Conclusion The patient followed a good clinical course after surgery. It remains controversial whether IAs are caused by OI or IAs are coincidentally complicated with OI. PMID:25056440

  18. ChAT-positive neurons participate in subventricular zone neurogenesis after middle cerebral artery occlusion in mice.

    PubMed

    Wang, Jianping; Fu, Xiaojie; Zhang, Di; Yu, Lie; Li, Nan; Lu, Zhengfang; Gao, Yufeng; Wang, Menghan; Liu, Xi; Zhou, Chenguang; Han, Wei; Yan, Bo; Wang, Jian

    2017-01-01

    The mechanisms of post-stroke neurogenesis in the subventricular zone (SVZ) are unclear. However, neural stem cell-intrinsic and neurogenic niche mechanisms, as well as neurotransmitters, have been shown to play important roles in SVZ neurogenesis. Recently, a previously unknown population of choline acetyltransferase (ChAT)(+) neurons residing in rodent SVZ were identified to have direct control over neural stem cell proliferation by indirectly activating fibroblast growth factor receptor (FGFR). This finding revealed possible neuronal control over SVZ neurogenesis. In this study, we assessed whether these ChAT(+) neurons also participate in stroke-induced neurogenesis. We used a permanent middle cerebral artery occlusion (MCAO) model produced by transcranial electrocoagulation in mice, atropine (muscarinic cholinergic receptor [mAchR] antagonist), and donepezil (acetylcholinesterase inhibitor) to investigate the role of ChAT(+) neurons in stroke-induced neurogenesis. We found that mAchRs, phosphorylated protein kinase C (p-PKC), and p-38 levels in the SVZ were upregulated in mice on day 7 after MCAO. MCAO also significantly increased the number of BrdU/doublecortin-positive cells and protein levels of phosphorylated-neural cell adhesion molecule and mammalian achaete scute homolog-1. FGFR was activated in the SVZ, and doublecortin-positive cells increased in the peri-infarction region. These post-stroke neurogenic effects were enhanced by donepezil and partially decreased by atropine. Neither atropine nor donepezil affected peri-infarct microglial activation or serum concentrations of TNF-α, IFN-γ, or TGF-β on day 7 after MCAO. We conclude that ChAT(+) neurons in the SVZ may participate in stroke-induced neurogenesis, suggesting a new mechanism for neurogenesis after stroke.

  19. Cerebrolysin adjuvant treatment in Broca's aphasics following first acute ischemic stroke of the left middle cerebral artery

    PubMed Central

    Muresanu, DF; Bajenaru, O; Popescu, BO; Deme, SM; Moessler, H; Meinzingen, SZ; Petrica, L; Serpe, M; Ursoniu, S

    2010-01-01

    Background: The aim of our study was to assess the efficacy of Cerebrolysin administration in Broca's aphasics with acute ischemic stroke. Methods: We registered 2,212 consecutive Broca's aphasics following an acute ischemic stroke admitted in four departments of neurology in Romania, between September 2005 and September 2009. Language was evaluated with the Romanian version of the Western Aphasia Battery (WAB). The following inclusion criteria were used for this study: age 20%75 years, admission in the hospital within 12 hours from the onset of the symptoms, diagnosis of first acute left middle cerebral artery (MCA) ischemic stroke, presence of large artery disease (LAD) stroke, a NIHSS score of 5%22 points, and a therapeutic time window within 72 h. Fifty two patients were treated with Cerebrolysin (Cerebrolysin group) as an adjunctive treatment. A placebo group, which received saline infusions (n=104 patients) were matched to the NIHSS and WAB scores, gender and age of the Cerebrolysin group at baseline. We assessed spontaneous speech (SS), comprehension (C), repetition (R), naming (N), and Aphasia Quotient (AQ) scores of the two groups in an open label design, over 90 days, the mRS scores and mortality. Results: The Cerebrolysin and the placebo groups had similar age (66+/%8 versus 65+/%8 years) and sex ratio (14/38 versus 30/74). The mean AQ scores and the mean subscores for 3 subtests of WAB (SS, R, N) were similar at baseline and improved in the Cerebrolysin group significantly (p<0.05) over placebo group at all study time points. The mRS score at 90 days was also lower in the Cerebrolysin group than in the placebo group. Cerebrolysin and placebo were both tolerated and safe, and no difference in the mortality rate was seen (3.8% in each group). Conclusion: Cerebrolysin is effective for the treatment of Broca's aphasics with a first acute ischemic stroke of the left MCA territory. PMID:20945821

  20. 3D-FIESTA Magnetic Resonance Angiography Fusion Imaging of Distal Segment of Occluded Middle Cerebral Artery.

    PubMed

    Kuribara, Tomoyoshi; Haraguchi, Koichi; Ogane, Kazumi; Matsuura, Nobuki; Ito, Takeo

    2015-01-01

    Middle cerebral artery (MCA) occlusion was examined with basi-parallel anatomical scanning (BPAS) using three-dimensional fast imaging employing steady-state acquisition (3D-FIESTA), and 3D-FIESTA and magnetic resonance angiography (MRA) fusion images were created. We expected that an incidence of hemorrhagic complications due to vessel perforations would be decreased by obtaining vascular information beyond the occlusion and thus acute endovascular revascularization could be performed using such techniques. We performed revascularization for acute MCA occlusion for five patients who were admitted in our hospital from October 2012 to October 2014. Patients consisted of 1 man and 4 women with a mean age of 76.2 years (range: 59-86 years). Fusion images were created from three-dimensional time of flight (3D-TOF) MRA and 3D-FIESTA with phase cycling (3D-FIESTA-C). Then thrombectomy was performed in all the 5 patients. Merci retriever to 1 patient, Penumbra system to 1, urokinase infusion to 2, and Solitaire to 1 using such techniques. In all cases, a 3D-FIESTA-MRA fusion imaging could depict approximately clear vascular information to at least the M3 segment beyond the occlusion. And each acute revascularization was able to perform smoothly using these imaging techniques. In all cases, there was no symptomatic hemorrhagic complication. It showed that 3D-FIESTA MRA fusion imaging technique could obtain vascular information beyond the MCA occlusion. In this study, no symptomatic hemorrhagic complications were detected. It could imply that such techniques were useful not only to improve treatment efficiency but also to reduce the risk of development of hemorrhagic complications caused by vessel perforations in acute revascularization.

  1. Reduction of ischemic brain injury by administration of palmitoylethanolamide after transient middle cerebral artery occlusion in rats.

    PubMed

    Ahmad, Akbar; Genovese, Tiziana; Impellizzeri, Daniela; Crupi, Rosalia; Velardi, Enrico; Marino, Angela; Esposito, Emanuela; Cuzzocrea, Salvatore

    2012-10-05

    Stroke is the third leading cause of death and the leading cause of long-term disability in adults. Current therapeutic strategies for stroke, including thrombolytic drugs, such as tissue plasminogen activator offer great promise for the treatment, but complimentary neuroprotective treatments are likely to provide a better outcome. To counteract the ischemic brain injury in mice, a new therapeutic approach has been employed by using palmitoylethanolamide (PEA). PEA is one of the members of N-acyl-ethanolamine family maintain not only redox balance but also inhibit the mechanisms of secondary injury on ischemic brain injury. Treatment of the middle cerebral artery occlusion (MCAo)-induced animals with PEA reduced edema and brain infractions as evidenced by decreased 2,3,5-triphenyltetrazolium chloride (TTC) staining across brain sections. PEA-mediated improvements in tissues histology shown by reduction of lesion size and improvement in apoptosis level (assayed by Bax and Bcl-2) further support the efficacy of PEA therapy. We demonstrated that PEA treatment blocked infiltration of astrocytes and restored MCAo-mediated reduced expression of PAR, nitrotyrosine, iNOS, chymase, tryptase, growth factors (BDNF and GDNF) and GFAP. PEA also inhibited the MCAo-mediated increased expression of pJNK, NF-κB, and degradation of IκB-α. PEA-treated injured animals improved neurobehavioral functions as evaluated by motor deficits. Based on these findings we propose that PEA would be useful in lowering the risk of damage or improving function in ischemia-reperfusion brain injury-related disorders.

  2. Transarterial regional hypothermia provides robust neuroprotection in a rat model of permanent middle cerebral artery occlusion with transient collateral hypoperfusion.

    PubMed

    Kurisu, Kota; Abumiya, Takeo; Ito, Masaki; Gekka, Masayuki; Osanai, Toshiya; Shichinohe, Hideo; Nakayama, Naoki; Kazumata, Ken; Houkin, Kiyohiro

    2016-11-15

    The robust neuroprotective effects of transarterial regional hypothermia have been demonstrated in the typical transient middle cerebral artery occlusion (tMCAO) model, but have not yet been tested in other ischemic stroke models, even though clinical ischemic conditions are diverse. In order to clarify these effects in a different ischemic stroke model, we employed a rat model of permanent MCAO (pMCAO) with transient collateral hypoperfusion (tCHP), which was achieved by direct MCA ligation through craniotomy and 1-h bilateral common carotid artery occlusion at the beginning of pMCAO. The infusion of 20ml/kg of 4°C cold saline (CS) or 37°C warm saline (WS) into the ipsilateral internal carotid artery (ICA) was performed for 15min in intra- or post-tCHP. Neurological scores, infarct/edema volumes, and neuronal apoptosis and reactive gliosis were compared between the CS and WS groups and a non-infusion control group after 48h of reperfusion. Although brain temperatures were only reduced by 2-3°C for 15min, the CS group had significantly better neurological scores, smaller infarct/edema volumes, and less penumbral neuronal apoptosis and reactive gliosis than the control and WS groups. The post-tCHP CS group exhibited prominent neuroprotective effects, even though infarct volumes and neuronal apoptosis were reduced less than those in the intra-tCHP CS group. In conclusion, we demonstrated the neuroprotective effects of transarterial regional hypothermia in an ischemic model of pMCAO with tCHP. Even though MCAO is persistent, cold infusion via the ICA is neuroprotective for the penumbra, suggesting the wider therapeutic application of this therapy.

  3. A modification of intraluminal middle cerebral artery occlusion/reperfusion model for ischemic stroke with laser Doppler flowmetry guidance in mice

    PubMed Central

    Cai, Qiang; Xu, Gang; Liu, Junhui; Wang, Long; Deng, Gang; Liu, Jun; Chen, Zhibiao

    2016-01-01

    Stroke is one of the common causes of death and disability in the world. The intraluminal middle cerebral artery occlusion/reperfusion (MCAO/R) model is a “gold standard” in surgical ischemic stroke models. Here, we optimized the procedure of this model by ligating on external carotid artery (ECA) stump and two ligatures prepared on internal carotid artery, which could improve the success and survival rate in mice. The results show that ECA approach was superior to common carotid artery approach. Meanwhile, we found that the exposure of pterygopalatine artery was not an essential step for MCAO/R model in mice. PMID:27843320

  4. Intradural Procedural Time to Assess Technical Difficulty of Superciliary Keyhole and Pterional Approaches for Unruptured Middle Cerebral Artery Aneurysms

    PubMed Central

    Choi, Yeon-Ju; Son, Wonsoo; Park, Ki-Su

    2016-01-01

    Objective This study used the intradural procedural time to assess the overall technical difficulty involved in surgically clipping an unruptured middle cerebral artery (MCA) aneurysm via a pterional or superciliary approach. The clinical and radiological variables affecting the intradural procedural time were investigated, and the intradural procedural time compared between a superciliary keyhole approach and a pterional approach. Methods During a 5.5-year period, patients with a single MCA aneurysm were enrolled in this retrospective study. The selection criteria for a superciliary keyhole approach included : 1) maximum diameter of the unruptured MCA aneurysm <15 mm, 2) neck diameter of the MCA aneurysm <10 mm, and 3) aneurysm location involving the sphenoidal or horizontal segment of MCA (M1) segment and MCA bifurcation, excluding aneurysms distal to the MCA genu. Meanwhile, the control comparison group included patients with the same selection criteria as for a superciliary approach, yet who preferred a pterional approach to avoid a postoperative facial wound or due to preoperative skin trouble in the supraorbital area. To determine the variables affecting the intradural procedural time, a multiple regression analysis was performed using such data as the patient age and gender, maximum aneurysm diameter, aneurysm neck diameter, and length of the pre-aneurysm M1 segment. In addition, the intradural procedural times were compared between the superciliary and pterional patient groups, along with the other variables. Results A total of 160 patients underwent a superciliary (n=124) or pterional (n=36) approach for an unruptured MCA aneurysm. In the multiple regression analysis, an increase in the diameter of the aneurysm neck (p<0.001) was identified as a statistically significant factor increasing the intradural procedural time. A Pearson correlation analysis also showed a positive correlation (r=0.340) between the neck diameter and the intradural procedural time

  5. The kunitz protease inhibitor domain of protease nexin-2 inhibits factor XIa and murine carotid artery and middle cerebral artery thrombosis

    PubMed Central

    Wu, Wenman; Li, Hongbo; Navaneetham, Duraiswamy; Reichenbach, Zachary W.; Tuma, Ronald F.

    2012-01-01

    Coagulation factor XI (FXI) plays an important part in both venous and arterial thrombosis, rendering FXIa a potential target for the development of antithrombotic therapy. The kunitz protease inhibitor (KPI) domain of protease nexin-2 (PN2) is a potent, highly specific inhibitor of FXIa, suggesting its possible role in the inhibition of FXI-dependent thrombosis in vivo. Therefore, we examined the effect of PN2KPI on thrombosis in the murine carotid artery and the middle cerebral artery. Intravenous administration of PN2KPI prolonged the clotting time of both human and murine plasma, and PN2KPI inhibited FXIa activity in both human and murine plasma in vitro. The intravenous administration of PN2KPI into WT mice dramatically decreased the progress of FeCl3-induced thrombus formation in the carotid artery. After a similar initial rate of thrombus formation with and without PN2KPI treatment, the propagation of thrombus formation after 10 minutes and the amount of thrombus formed were significantly decreased in mice treated with PN2KPI injection compared with untreated mice. In the middle cerebral artery occlusion model, the volume and fraction of ischemic brain tissue were significantly decreased in PN2KPI-treated compared with untreated mice. Thus, inhibition of FXIa by PN2KPI is a promising approach to antithrombotic therapy. PMID:22674803

  6. Estradiol reduces activity of the blood-brain barrier Na-K-Cl cotransporter and decreases edema formation in permanent middle cerebral artery occlusion.

    PubMed

    O'Donnell, Martha E; Lam, Tina I; Tran, Lien Q; Foroutan, Shahin; Anderson, Steven E

    2006-10-01

    Estrogen has been shown to protect against stroke-induced brain damage, yet the mechanism is unknown. During the early hours of stroke, cerebral edema forms as increased transport of Na and Cl from blood into brain occurs across an intact blood-brain barrier (BBB). We showed previously that a luminal BBB Na-K-Cl cotransporter is stimulated by hypoxia and arginine vasopressin (AVP), factors present during cerebral ischemia, and that inhibition of the cotransporter by intravenous bumetanide greatly reduces edema in rats subjected to permanent middle cerebral artery occlusion (MCAO). The present study was conducted to determine whether estrogen protects in stroke at least in part by reducing activity of the BBB cotransporter, thereby decreasing edema formation. Ovariectomized rats were subjected to 210 mins of permanent MCAO after 7-day or 30-min pretreatment with 17beta-estradiol and then brain swelling and 2,3,5-triphenyltetrazolium chloride staining were assessed as measures of brain edema and lesion volume, respectively. Diffusion-weighed imaging was used to monitor permanent MCAO-induced decreases in apparent diffusion coefficient (ADC) values, an index of changes in brain water distribution and mobility. Na-K-Cl cotransporter activity of cerebral microvascular endothelial cells (CMECs) was assessed as bumetanide-sensitive K influx and cotransporter abundance by Western blot analysis after estradiol treatment. Estradiol significantly decreased brain swelling and lesion volume and attenuated the decrease in ADC values during permanent MCAO. Estradiol also abolished CMEC cotransporter stimulation by chemical hypoxia or AVP and decreased cotransporter abundance. These findings support the hypothesis that estrogen attenuates stimulation of BBB Na-K-Cl cotransporter activity, reducing edema formation during stroke.

  7. The Influence of Tobacco Smoking on the Relationship between Pressure and Flow in the Middle Cerebral Artery in Humans

    PubMed Central

    Peebles, Karen C.; Horsman, Helen; Tzeng, Yu-Chieh

    2013-01-01

    Background Cigarette smoking is associated with an increased risk of stroke but the mechanism is unclear. The study examined whether acute and chronic cigarette smoking alters the dynamic relationship between blood pressure and cerebral blood flow. We hypothesised that acute and chronic smoking would result in a cerebral circulation that was less capable of buffering against dynamic fluctuations in blood pressure. Further, these changes would be accompanied by a reduction in baroreflex sensitivity, which is reduced after smoking (acute smoking). Methods We recruited 17 non-smokers and 15 habitual smokers (13 ± 5 pack years). Continuous measurements of mean cerebral blood flow velocity (transcranial Doppler ultrasound), blood pressure (finger photoplethysmography) and heart rate enabled transfer function analysis of the dynamic relationship between pressure and flow (gain, normalised gain, phase and coherence) and baroreflex sensitivity during supine rest before and after smoking a single cigarette (acute smoking). Results There were no between-group differences in gain, phase or coherence before acute smoking. However, both groups showed a reduction in gain and coherence, associated with a reduction in baroreflex sensitivity, and increase in phase after acute smoking. Conclusions Contrary to our hypothesis, these findings suggest that in the face of a reduction in baroreflex sensitivity acute smoking may potentially improve the ability of the cerebral circulation to buffer against changes in blood pressure. However, chronic smoking did not alter the dynamic relationship between blood pressure and cerebral blood flow velocity. These results have implications on understanding mechanisms for attenuating stroke risk. PMID:23977332

  8. A temporal MRI assessment of neuropathology after transient middle cerebral artery occlusion in the rat: correlations with behavior.

    PubMed

    Virley, D; Beech, J S; Smart, S C; Williams, S C; Hodges, H; Hunter, A J

    2000-03-01

    The purpose of this study was to evaluate the temporal and spatial pathological alterations within ischemic tissue using serial magnetic resonance imaging (MRI) and to determine the extent and duration of functional impairment using objective behavioral tests after transient middle cerebral artery occlusion (tMCAO) in the rat. MRI signatures derived from specific anatomical regions of interest (ROI) were then appropriately correlated to the behavioral measures over the time course of the study (up to 28 days post-tMCAO). Sprague-Dawley rats (n = 12) were initially trained on the following behavioral tasks before surgery: bilateral sticky label test (for contralateral neglect); beam walking (for hindlimb coordination); staircase test (for skilled forelimb paw-reaching). Rats were then randomly assigned to receive either tMCAO (90 minutes, n = 6), by means of the intraluminal thread technique, or sham-control surgery (n = 6). Proton density, T2- and T2-diffusion-weighted MR images were acquired at 1, 7, 14, and 28 days post-tMCAO that were then smoothed into respective proton density, T2 relaxation, and apparent diffusion coefficient (ADC) maps. Apparent percent total lesion volume was assessed using T2W imaging. MR signatures were evaluated using the tissue maps by defining ROI for MCAO and sham-control groups, which corresponded to the caudate-putamen, forelimb, hindlimb, and lower parietal cortices both ipsilateral and contralateral to the occlusion site. Behavioral tests were undertaken daily from 1 to 28 days post-tMCAO. Results demonstrate that apparent percent lesion volume reduced from 1 to 7 days (P < 0.05) but then remained constant up to 28 days for the MCAO group. Pathological changes in the temporal profile of T2 and ADC tissue signatures were significantly altered in specific ROI across the time course of the study (P < 0.05 to <0.001), reflecting the progression of edema to necrosis and cavitation. Both T2 and ADC measures of ischemic pathology

  9. Melatonin Counteracts at a Transcriptional Level the Inflammatory and Apoptotic Response Secondary to Ischemic Brain Injury Induced by Middle Cerebral Artery Blockade in Aging Rats.

    PubMed

    Paredes, Sergio D; Rancan, Lisa; Kireev, Roman; González, Alberto; Louzao, Pedro; González, Pablo; Rodríguez-Bobada, Cruz; García, Cruz; Vara, Elena; Tresguerres, Jesús A F

    2015-01-01

    Aging increases oxidative stress and inflammation. Melatonin counteracts inflammation and apoptosis. This study investigated the possible protective effect of melatonin on the inflammatory and apoptotic response secondary to ischemia induced by blockade of the right middle cerebral artery (MCA) in aging male Wistar rats. Animals were subjected to MCA obstruction. After 24 h or 7 days of procedure, 14-month-old nontreated and treated rats with a daily dose of 10 mg/kg melatonin were sacrificed and right and left hippocampus and cortex were collected. Rats aged 2 and 6 months, respectively, were subjected to the same brain injury protocol, but they were not treated with melatonin. mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), Bcl-2-associated death promoter (BAD), Bcl-2-associated X protein (BAX), glial fibrillary acidic protein (GFAP), B-cell lymphoma 2 (Bcl-2), and sirtuin 1 was measured by reverse transcription-polymerase chain reaction. In nontreated animals, a significant time-dependent increase in IL-1β, TNF-α, BAD, and BAX was observed in the ischemic area of both hippocampus and cortex, and to a lesser extent in the contralateral hemisphere. Hippocampal GFAP was also significantly elevated, while Bcl-2 and sirtuin 1 decreased significantly in response to ischemia. Aging aggravated these changes. Melatonin administration was able to reverse significantly these alterations. In conclusion, melatonin may ameliorate the age-dependent inflammatory and apoptotic response secondary to ischemic cerebral injury.

  10. Hyperforin attenuates brain damage induced by transient middle cerebral artery occlusion (MCAO) in rats via inhibition of TRPC6 channels degradation.

    PubMed

    Lin, Yun; Zhang, Jian-Cheng; Fu, Jun; Chen, Fang; Wang, Jie; Wu, Zhi-Lin; Yuan, Shi-Ying

    2013-02-01

    Hyperforin, a lipophilic constituent of medicinal herb St John's wort, has been identified as the main active ingredient of St John's wort extract for antidepressant action by experimental and clinical studies. Hyperforin is currently known to activate transient receptor potential canonical (subtype) 6 (TRPC6) channel, increase the phosphorylated CREB (p-CREB), and has N-methyl-D-aspartate receptor-antagonistic effect that convert potential neuroprotective effects in vitro. However, the protective effects of hyperforin on ischemic stroke in vivo remain controversial and its neuroprotective mechanisms are still unclear. This study was designed to examine the effects of intracerebroventricular (i.c.v.) injection of hyperforin on transient focal cerebral ischemia in rats. Hyperforin, when applied immediately after middle cerebral artery occlusion (MCAO) onset, significantly reduced infarct volumes and apoptotic cells, and also increased neurologic scores at 24 hours after reperfusion accompanied by elevated TRPC6 and p-CREB activity and decreased SBDP145 activity. When MEK or CaMKIV activity was specifically inhibited, the neuroprotective effect of hyperforin was attenuated, and we observed a correlated decrease in CREB activity. In conclusion, our results clearly showed that i.c.v. injection of hyperforin immediately after MCAO onset blocked calpain-mediated TRPC6 channels degradation, and then to stimulate the Ras/MEK/ERK and CaMKIV pathways that converge on CREB activation, contributed to neuroprotection.

  11. Transient middle cerebral artery occlusion and reperfusion alters inducible NOS expression within the ventrolateral medulla and modulates cardiovascular function during static exercise.

    PubMed

    Ally, Ahmmed; Maher, Timothy J

    2011-09-01

    A major cause of stroke is cerebral ischemia in regions supplied by the middle cerebral artery (MCA). In this study, we hypothesized that compromised cardiovascular function during static exercise may involve altered expression of inducible NOS (iNOS) protein within the rostral ventrolateral medulla (RVLM) and caudal ventrolateral medulla (CVLM). We compared cardiovascular responses and iNOS protein expression within the left and right sides of both RVLM and CVLM in sham-operated rats and in rats with a 90 min left-sided MCA occlusion (MCAO) followed by 24 h of reperfusion. Increases in blood pressure during a static muscle contraction were attenuated in MCAO rats compared with sham-operated rats. Also, iNOS expression within the left RVLM was augmented compared with the right RVLM in MCAO rats and compared with both RVLM quadrants in sham-operated rats. In contrast, compared with sham-operated rats and the right CVLM of MCAO rats, iNOS expression was attenuated in the left CVLM in left-sided MCAO rats. These data suggest that the attenuation of pressor responses during static exercise in MCAO rats involves overexpression of iNOS within the ipsilateral RVLM and attenuation in iNOS within the ipsilateral CVLM. Differential expression of iNOS within the medulla plays a role in mediating cardiovascular responses during static exercise following stroke.

  12. Rapid de novo aneurysm formation after clipping of a ruptured middle cerebral artery aneurysm in an infant with an MYH11 mutation.

    PubMed

    Ravindra, Vijay M; Karsy, Michael; Schmidt, Richard H; Taussky, Philipp; Park, Min S; Bollo, Robert J

    2016-10-01

    The authors report the case of a previously healthy 6-month-old girl who presented with right arm and leg stiffening consistent with seizure activity. An initial CT scan of the head demonstrated acute subarachnoid hemorrhage in the basal cisterns extending into the left sylvian fissure. Computed tomography angiography demonstrated a 7 × 6 × 5-mm saccular aneurysm of the inferior M2 division of the left middle cerebral artery. The patient underwent left craniotomy and microsurgical clip ligation with wrapping of the aneurysm neck because the vessel appeared circumferentially dysplastic in the region of the aneurysm. Postoperative angiography demonstrated a small remnant, sluggish distal flow, but no significant cerebral vasospasm. Fifty-five days after the initial aneurysm rupture, the patient presented again with an acute intraparenchymal hemorrhage of the left anterior temporal lobe. Angiogram revealed a circumferentially dysplastic superior division of the M2 branch, with a new 5 × 4-mm saccular aneurysm distinct from the first, with 2 smaller aneurysms distal to the new ruptured aneurysm. Endovascular parent vessel occlusion with Onyx was performed. Genetic testing revealed a mutation of the MYH11. To the authors' knowledge, this is the first report of rapid de novo aneurysm formation in an infant with an MYH11 mutation. The authors review the patient's clinical presentation and management and comprehensively review the literature on this topic.

  13. Obstructive Sleep Apnea as a Risk Factor for Cerebral White Matter Change in a Middle-Aged and Older General Population

    PubMed Central

    Kim, Hyun; Yun, Chang-Ho; Thomas, Robert Joseph; Lee, Seung Hoon; Seo, Hyung Suk; Cho, Eo Rin; Lee, Seung Ku; Yoon, Dae Wui; Suh, Sooyeon; Shin, Chol

    2013-01-01

    Study Objective: Obstructive sleep apnea (OSA) contributes to the development of systemic hypertension, and hypertension strongly predicts the development of white matter change (WMC). Thus, it is plausible that OSA mediates WMC. The goal of the current study is to determine whether a contextual relationship exists between OSA and cerebral WMC. Design: Cross-sectional analyses conducted in a population-based study. Setting: Korean community-based sample from the Korean Genome and Epidemiology Study (KoGES) who attended examinations in 2011 at a medical center. Participants: There were 503 individuals (mean ± SD, age 59.63 ± 7.48 y) who were free of previously diagnosed cardiovascular and neurologic diseases. Measurements and Results: Participants underwent 1-night polysomnography and were classified as no OSA (obstructive apnea-hypopnea index [AHI] < 5, n = 289), mild OSA (AHI 5-15, n = 161), and moderate to severe OSA (AHI ≥ 15, n = 53). WMC was identified with brain magnetic resonance imaging (MRI) and was found in 199 individuals (39.56%). Multivariate logistic regression analyses adjusted for covariates revealed that moderate to severe OSA was significantly associated with the presence of WMC (odds ratio [OR] 2.08, 95%, confidence interval [CI] 1.05-4.13) compared with no OSA. Additional adjustment of hypertension to the model did not alter the significance of the association (OR 2.03, 95% CI 1.02-4.05). Conclusions: Moderate to severe OSA is an independent risk factor for WMC in middle-aged and older individuals. Thus, early recognition and treatment of OSA could reduce the risk of stroke and vascular dementia. Citation: Kim H; Yun CH; Thomas RJ; Lee SH; Seo HS; Cho ER; Lee SK; Yoon DW; Suh S; Shin C. Obstructive sleep apnea as a risk factor for cerebral white matter change in a middle-aged and older general population. SLEEP 2013;36(5):709-715. PMID:23633753

  14. Overactivation of NR2B-containing NMDA receptors through entorhinal-hippocampal connection initiates accumulation of hyperphosphorylated tau in rat hippocampus after transient middle cerebral artery occlusion.

    PubMed

    Xu, Cheng-Shi; Liu, An-Chun; Chen, Juan; Pan, Zhi-Yong; Wan, Qi; Li, Zhi-Qiang; Wang, Ze-Fen

    2015-08-01

    Middle cerebral artery occlusion (MCAO) induces secondary damages in the hippocampus that is remote from primary ischemic regions. Tau hyperphosphorylation is an important risk for neurodegenerative diseases. Increased tau phosphorylation has been identified in ischemic cortex, but little is known regarding the changes in the hippocampus. We showed that unilateral transient MCAO induced accumulation of hyperphosphorylated tau and concurrent dephosphorylation of glycogen synthase kinase-3β at Ser 9 in the ipsilateral hippocampus. These MCAO-induced changes were not reproduced when glutamatergic inputs from the entorhinal cortex to the hippocampus were transected; however, the changes were mimicked by intrahippocampal N-methyl-d-aspartate (NMDA) administration. Inhibition of NMDA receptor (NMDAR) subunit NR2B, but not NR2A activity in the hippocampus attenuated the accumulation of hyperphosphorylated tau and spatial cognitive impairment in MCAO rats. Together, our data suggest that overactivation of NR2B-containing NMDARs through entorhinal-hippocampal connection plays an important role in the accumulation of hyperphosphorylated tau in the hippocampus following MCAO. Glycogen synthase kinase-3β is an important protein kinase involved in NMDARs-mediated tau hyperphosphorylation. This study indicates that early inhibition of NR2B-containing NMDARs may represent a potential strategy to prevent or delay the occurrence of post-stroke dementia. Middle cerebral artery occlusion induces secondary damage in the hippocampus that is remote from primary ischemic regions. We propose that excessive activation of NR2B-containing NMDA receptors through entorhinal-hippocampal connection initiated the accumulation of hyperphosphorylated tau in the hippocampus, which subsequently induced cognitive deficit. This study provides new insights into the prospects of NR2B inhibition in stoke therapy.

  15. Assessment of Blood-Brain Barrier Permeability by Dynamic Contrast-Enhanced MRI in Transient Middle Cerebral Artery Occlusion Model after Localized Brain Cooling in Rats

    PubMed Central

    Kim, Eun Soo; Kwon, Mi Jung; Lee, Phil Hye; Ju, Young-Su; Yoon, Dae Young; Kim, Hye Jeong; Lee, Kwan Seop

    2016-01-01

    Objective The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Materials and Methods Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20℃) infusion group, and localized warm-saline (37℃) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Results Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min-1 vs. 0.07 ± 0.02 min-1, p = 0.661 for Ktrans; 0.30 ± 0.05 min-1 vs. 0.37 ± 0.11 min-1, p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Conclusion Localized brain cooling (20℃) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37℃) infusion group. PMID:27587960

  16. Disruption of NMDAR-CRMP-2 signaling protects against focal cerebral ischemic damage in the rat middle cerebral artery occlusion model.

    PubMed

    Brittain, Joel M; Pan, Rui; You, Haitao; Brustovetsky, Tatiana; Brustovetsky, Nickolay; Zamponi, Gerald W; Lee, Wei-Hua; Khanna, Rajesh

    2012-01-01

    Collapsin response mediator protein 2 (CRMP-2), traditionally viewed as an axon/dendrite specification and axonal growth protein, has emerged as nidus in regulation of both pre- and post-synaptic Ca ( 2+) channels. Building on our discovery of the interaction and regulation of Ca ( 2+) channels by CRMP-2, we recently identified a short sequence in CRMP-2 which, when appended to the transduction domain of HIV TAT protein, suppressed acute, inflammatory and neuropathic pain in vivo by functionally uncoupling CRMP-2 from the Ca ( 2+) channel. Remarkably, we also found that this region attenuated Ca ( 2+) influx via N-methylD-Aspartate receptors (NMDARs) and reduced neuronal death in a moderate controlled cortical impact model of traumatic brain injury (TBI). Here, we sought to extend these findings by examining additional neuroprotective effects of this peptide (TAT-CBD3) and exploring the biochemical mechanisms by which TAT-CBD3 targets NMDARs. We observed that an intraperitoneal injection of TAT-CBD3 peptide significantly reduced infarct volume in an animal model of focal cerebral ischemia. Neuroprotection was observed when TAT-CBD3 peptide was given either prior to or after occlusion but just prior to reperfusion. Surprisingly, a direct biochemical complex was not resolvable between the NMDAR subunit NR2B and CRMP-2. Intracellular application of TAT-CBD3 failed to inhibit NMDAR current. NR2B interactions with the post synaptic density protein 95 (PSD-95) remained intact and were not disrupted by TAT-CBD3. Peptide tiling of intracellular regions of NR2B revealed two 15-mer sequences, in the carboxyl-terminus of NR2B, that may confer binding between NR2B and CRMP-2 which supports CRMP-2's role in excitotoxicity and neuroprotection.

  17. rLj-RGD3, a Novel Recombinant Toxin Protein from Lampetra japonica, Protects against Cerebral Reperfusion Injury Following Middle Cerebral Artery Occlusion Involving the Integrin-PI3K/Akt Pathway in Rats

    PubMed Central

    Jiang, Junshu; Wang, Shengnan; Jia, Qilan; Wang, Yue; Li, Weiping; Zhou, Qin; Lv, Li; Li, Qingwei

    2016-01-01

    Background The RGD-toxin protein Lj-RGD3 is a naturally occurring 118 amino acid peptide that can be obtained from the salivary gland of the Lampetra japonica fish. This unique peptide contains 3 RGD (Arg-Gly-Asp) motifs in its primary structure. Lj-RGD3 is available in recombinant form (rLj-RGD3) and can be produced in large quantities using DNA recombination techniques. The pharmacology of the three RGD motif-containing peptides has not been studied. This study investigated the protective effects of rLj-RGD3, a novel polypeptide, against ischemia/reperfusion-induced damage to the brain caused by middle cerebral artery occlusion (MCAO) in a rat stroke model. We also explored the mechanism by which rLj-RGD3 acts by measuring protein and mRNA expression levels, with an emphasis on the FAK and integrin-PI3K/Akt anti-apoptosis pathways. Methods rLj-RGD3 was obtained from the buccal secretions of Lampetra japonica using gene recombination technology. Sprague Dawley (SD) rats were randomly divided into the following seven groups: a sham group; a vehicle-treated (VT) group; 100.0 μg·kg-1, 50.0 μg·kg-1 and 25.0 μg·kg-1 dose rLj-RGD3 groups; and two positive controls, including 1.5 mg·kg-1 Edaravone (ED) and 100.0 μg·kg-1 Eptifibatide (EP). MCAO was induced using a model consisting of 2 h of ischemia and 24 h of reperfusion. Behavioral changes were observed in the normal and operation groups after focal cerebral ischemia/reperfusion was applied. In addition, behavioral scores were evaluated at 4 and 24 h after reperfusion. Brain infarct volumes were determined based on 2,3,5-triphenyltetrazolium chloride (TTC) staining. Pathological changes in brain tissues were observed using hematoxylin and eosin (H&E) staining. Moreover, neuronal apoptosis was detected using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) assays. We determined the expression levels of focal adhesion kinase (FAK), phosphatidyl inositol 3-kinase (PI3K

  18. Melatonin Counteracts at a Transcriptional Level the Inflammatory and Apoptotic Response Secondary to Ischemic Brain Injury Induced by Middle Cerebral Artery Blockade in Aging Rats

    PubMed Central

    Paredes, Sergio D.; Rancan, Lisa; Kireev, Roman; González, Alberto; Louzao, Pedro; González, Pablo; Rodríguez-Bobada, Cruz; García, Cruz; Vara, Elena; Tresguerres, Jesús A.F.

    2015-01-01

    Abstract Aging increases oxidative stress and inflammation. Melatonin counteracts inflammation and apoptosis. This study investigated the possible protective effect of melatonin on the inflammatory and apoptotic response secondary to ischemia induced by blockade of the right middle cerebral artery (MCA) in aging male Wistar rats. Animals were subjected to MCA obstruction. After 24 h or 7 days of procedure, 14-month-old nontreated and treated rats with a daily dose of 10 mg/kg melatonin were sacrificed and right and left hippocampus and cortex were collected. Rats aged 2 and 6 months, respectively, were subjected to the same brain injury protocol, but they were not treated with melatonin. mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), Bcl-2-associated death promoter (BAD), Bcl-2-associated X protein (BAX), glial fibrillary acidic protein (GFAP), B-cell lymphoma 2 (Bcl-2), and sirtuin 1 was measured by reverse transcription–polymerase chain reaction. In nontreated animals, a significant time-dependent increase in IL-1β, TNF-α, BAD, and BAX was observed in the ischemic area of both hippocampus and cortex, and to a lesser extent in the contralateral hemisphere. Hippocampal GFAP was also significantly elevated, while Bcl-2 and sirtuin 1 decreased significantly in response to ischemia. Aging aggravated these changes. Melatonin administration was able to reverse significantly these alterations. In conclusion, melatonin may ameliorate the age-dependent inflammatory and apoptotic response secondary to ischemic cerebral injury. PMID:26594596

  19. Certain forms of matrix metalloproteinase-9 accumulate in the extracellular space after microdialysis probe implantation and middle cerebral artery occlusion/reperfusion.

    PubMed

    Planas, Anna M; Justicia, Carles; Solé, Sònia; Friguls, Bibiana; Cervera, Alvaro; Adell, Albert; Chamorro, Angel

    2002-08-01

    Matrix metalloproteinases (MMPs) are activated in focal cerebral ischemia. The activation of MMP-9 is involved in blood-brain barrier breakdown and tissue remodeling. The MMPs are released to the extracellular space, but the form and fate of secreted enzymes in brain are unknown. Using microdialysis in vivo, the authors studied whether ischemia-induced MMP-9 in brain tissue was related to free MMP-9 in the extracellular fluid. A microdialysis probe was placed into the right striatum and microdialysis was initiated 24 hours later in controls (n = 7). One hour prior to microdialysis, a group of rats (n = 7) was subjected to 1-hour occlusion of the right middle cerebral artery, followed by reperfusion. Dialysates were collected at discrete time points up to 24 hours, and subjected to zymography and Western blot analysis. The MMP-9 was released after ischemia and accumulated in the extracellular space at 24 hours (P < 0.05). Free MMP-9 forms include mainly the 95-kd proform, and, to a lesser extent, dimers and cleaved active forms (70 kd), but not the 88-kd form found in tissue. Probe implantation and microdialysis increased free MMP-9 in the dialysate. This increase was concomitant with neutrophil infiltration after the mechanical lesion, as myeloperoxidase was found by means of Western blot analysis in the brain hemisphere subjected to microdialysis (P < 0.005), and immunohistochemistry revealed the presence of myeloperoxidase stain surrounding the site of probe implantation. The results suggest that certain forms of MMP-9 are released and accumulate in the extracellular space after brain injury, and that vascular alterations and neutrophil recruitment elicit MMP-9 activation in the brain after focal ischemia and trauma.

  20. The free radical spin-trap alpha-PBN attenuates periinfarct depolarizations following permanent middle cerebral artery occlusion in rats without reducing infarct volume.

    PubMed

    Christensen, Thomas; Bruhn, Torben; Diemer, Nils Henrik

    2003-11-14

    The effect of the free radical spin-trap alpha-phenyl-butyl-tert-nitrone (alpha-PBN) in permanent focal cerebral ischemia in rats was examined in two series of experiments. In the first, rats were subjected to permanent occlusion of the middle cerebral artery (MCAO) and treated 1 h after occlusion with a single dose of alpha-PBN (100 mg/kg) or saline. Body temperature was measured and controlled for the first 24 h to obtain identical temperature curves in the two groups. Cortical infarct volumes were determined on histological sections 7 days later. alpha-PBN did not significantly reduce infarct volume (control: 28.3+/-16.3 mm3 vs. alpha-PBN 23.7+/-7.4 mm3). In the second series of experiments, periinfarct depolarizations (PIDs) were recorded with an extracellular DC electrode at two locations in the ischemic penumbra for the initial 3 h following MCAO. alpha-PBN (100 mg/kg, single dose in conjunction with occlusion) significantly reduced the total number (median value of 3 PIDs in the control groups vs. 1 PID in alpha-PBN groups, p<0.001) and total duration of the PIDs (median value 662 s in the control groups vs. 162 s in the alpha-PBN groups, p<0.006). In spite of this, cortical infarct volumes determined 7 days later in the same rats were not smaller in alpha-PBN-treated rats. The study thus demonstrates that attenuation of PIDs does not always lead to smaller infarcts if permanent arterial occlusion is followed by long survival time and does not support the hypothesis that PIDs per se are critical determinants of infarct size in this situation.

  1. The Antiepileptic Drug Levetiracetam Suppresses Non-Convulsive Seizure Activity and Reduces Ischemic Brain Damage in Rats Subjected to Permanent Middle Cerebral Artery Occlusion

    PubMed Central

    Cuomo, Ornella; Rispoli, Vincenzo; Leo, Antonio; Politi, Giovanni Bosco; Vinciguerra, Antonio; di Renzo, Gianfranco; Cataldi, Mauro

    2013-01-01

    The antiepileptic drug Levetiracetam (Lev) has neuroprotective properties in experimental stroke, cerebral hemorrhage and neurotrauma. In these conditions, non-convulsive seizures (NCSs) propagate from the core of the focal lesion into perilesional tissue, enlarging the damaged area and promoting epileptogenesis. Here, we explore whether Lev neuroprotective effect is accompanied by changes in NCS generation or propagation. In particular, we performed continuous EEG recordings before and after the permanent occlusion of the middle cerebral artery (pMCAO) in rats that received Lev (100 mg/kg) or its vehicle immediately before surgery. Both in Lev-treated and in control rats, EEG activity was suppressed after pMCAO. In control but not in Lev-treated rats, EEG activity reappeared approximately 30-45 min after pMCAO. It initially consisted in single spikes and, then, evolved into spike-and-wave and polyspike-and-wave discharges. In Lev-treated rats, only rare spike events were observed and the EEG power was significantly smaller than in controls. Approximately 24 hours after pMCAO, EEG activity increased in Lev-treated rats because of the appearance of polyspike events whose power was, however, significantly smaller than in controls. In rats sacrificed 24 hours after pMCAO, the ischemic lesion was approximately 50% smaller in Lev-treated than in control rats. A similar neuroprotection was observed in rats sacrificed 72 hours after pMCAO. In conclusion, in rats subjected to pMCAO, a single Lev injection suppresses NCS occurrence for at least 24 hours. This electrophysiological effect could explain the long lasting reduction of ischemic brain damage caused by this drug. PMID:24236205

  2. Ginkgo biloba extract (EGb761) and FK506 preserve energy metabolites in the striatum during focal cerebral ischemia and reperfusion in gerbils monitored by microdialysis.

    PubMed

    Lin, Jing-Ying; Cheng, Fu-Chou; Chung, Shu-Ying; Lin, Ming-Cheng

    2004-01-01

    Cell death after cerebral ischemia is mediated by the accumulation of excitatory amino acids, calcium influx into cells and the generation of free radicals. The aim of this study was to evaluate changes in energy-related metabolites in the striatum of gerbils subjected to focal cerebral ischemia after pretreatment with Ginkgo biloba extract (EGb761), a well-known antioxidant, and FK506, a calcium-dependent phosphatase calcineurin inhibitor. Ischemia was induced by occlusion of the right common carotid artery and the right middle cerebral artery for 60 min. A microdialysis probe was inserted into the right striatum to monitor extracellular glucose, lactate and pyruvate levels. This study showed decreases in glucose (10% of the baseline), pyruvate (20% of the baseline) and lactate (60% of the baseline), and a 5-fold increase in the lactate to pyruvate ratio during ischemia in the control group. Both EGb761 treatment and the combination (EGb761 and FK506) therapy significantly preserved glucose (50% of the baseline) and pyruvate (60% of the baseline) levels during ischemia. The marked increase in the lactate to pyruvate ratio was not observed in the combination group. These results suggest that preservation of cellular energy metabolism during cerebral ischemia and after restoration with reperfusion may contribute to the neuroprotective effects of EGb761 and FK506.

  3. Multiple modes of action of tacrolimus (FK506) for neuroprotective action on ischemic damage after transient focal cerebral ischemia in rats.

    PubMed

    Furuichi, Yasuhisa; Noto, Takahisa; Li, Ji-Yao; Oku, Takuma; Ishiye, Masayuki; Moriguchi, Akira; Aramori, Ichiro; Matsuoka, Nobuya; Mutoh, Seitaro; Yanagihara, Takehiko

    2004-07-16

    While the immunosuppressant tacrolimus (FK506) is known to be neuroprotective following cerebral ischemia, the mechanisms underlying its neuroprotective properties are not fully understood. To determine the mode of action by which tacrolimus ameliorates neurodegeneration after transient focal ischemia, we therefore evaluated the effect of tacrolimus on DNA damage, release of cytochrome c, activation of microglia and infiltration of neutrophils following a 60-min occlusion of the middle cerebral artery (MCA) in rats. In this model, cortical brain damage gradually expanded until 24 h after reperfusion, whereas brain damage in the caudate putamen was fully developed within 5 h. Tacrolimus (1 mg/kg) administered immediately after MCA occlusion significantly reduced ischemic damage in the cerebral cortex, but not in the caudate putamen. Tacrolimus decreased both apoptotic and necrotic cell death at 24 h and reduced the number of cytochrome c immunoreactive cells at 8 h after reperfusion in the ischemic penumbra in the cerebral cortex. In contrast, tacrolimus did not show significant neuroprotection for necrotic cell death and reduction of cytochrome c immunoreactive cells in the caudate putamen. Tacrolimus also significantly decreased microglial activation at 8 h and inflammatory markers (cytokine-induced neutrophil chemoattractant and myeloperoxidase [MPO] activity) at 24 h after reperfusion in the ischemic cortex but not in the caudate putamen. These results collectively suggest that tacrolimus ameliorates the gradually expanded brain damage by inhibiting both apoptotic and necrotic cell death, as well as suppressing inflammatory reactions.

  4. Time course, distribution and cell types of induction of transforming growth factor betas following middle cerebral artery occlusion in the rat brain.

    PubMed

    Pál, Gabriella; Vincze, Csilla; Renner, Éva; Wappler, Edina A; Nagy, Zoltán; Lovas, Gábor; Dobolyi, Arpád

    2012-01-01

    Transforming growth factor-βs (TGF-β1-3) are cytokines that regulate the proliferation, differentiation, and survival of various cell types. The present study describes the induction of TGF-β1-3 in the rat after focal ischemia at 3 h, 24 h, 72 h and 1 month after transient (1 h) or permanent (24 h) middle cerebral artery occlusion (MCAO) using in situ hybridization histochemistry and quantitative analysis. Double labeling with different markers was used to identify the localization of TGF-β mRNA relative to the penumbra and glial scar, and the types of cells expressing TGF-βs. TGF-β1 expression increased 3 h after MCAO in the penumbra and was further elevated 24 h after MCAO. TGF-β1 was present mostly in microglial cells but also in some astrocytes. By 72 h and 1 month after the occlusion, TGF-β1 mRNA-expressing cells also appeared in microglia within the ischemic core and in the glial scar. In contrast, TGF-β2 mRNA level was increased in neurons but not in astrocytes or microglial cells in layers II, III, and V of the ipsilateral cerebral cortex 24 h after MCAO. TGF-β3 was not induced in cells around the penumbra. Its expression increased in only a few cells in layer II of the cerebral cortex 24 h after MCAO. The levels of TGF-β2 and -β3 decreased at subsequent time points. Permanent MCAO further elevated the levels of all 3 subtypes of TGF-βs suggesting that reperfusion is not a major factor in their induction. TGF-β1 did not co-localize with either Fos or ATF-3, while the co-localization of TGF-β2 with Fos but not with ATF-3 suggests that cortical spreading depolarization, but not damage to neural processes, might be the mechanism of induction for TGF-β2. The results imply that endogenous TGF-βs are induced by different mechanisms following an ischemic attack in the brain suggesting that they are involved in distinct spatially and temporally regulated inflammatory and neuroprotective processes.

  5. Combined use of spatial restraint stress and middle cerebral artery occlusion is a novel model of post-stroke depression in mice

    PubMed Central

    Zhang, Gaocai; Chen, Li; Yang, Lingli; Hua, Xiaodong; Zhou, Beiqun; Miao, Zhigang; Li, Jizhen; Hu, Hua; Namaka, Michael; Kong, Jiming; Xu, Xingshun

    2015-01-01

    Post stroke depression (PSD) is one of the most common complications of ischemic stroke. At present, the underlying mechanisms are unclear, largely because there are no reliable, valid and reproducible animal models of PSD. Here we report a novel animal model of PSD that displays consistent and reliable clinical features of hemiplegic stroke. The animal model encompasses a combination of the middle cerebral artery occlusion (MCAO) and spatial restraint stress. We found that a 60-minute MCAO followed by spatial restraint stress for 2 h daily for 2 to 4 weeks from the fourth day after MCAO induced PSD-like depressive phenotypes in mice. Importantly, the mice showed exacerbated deficits of neurological functions and decreased body weights, which were accompanied with reduced levels of brain derived neurotrophic factor and neurotransmitters including serotonin and dopamine. In addition, we identified increased levels of serum cortisol in our PSD mice. Finally, we found that mice with PSD were responsive to the tri-cyclic antidepressant imipramine as evidenced by their attenuated depressive behaviors, increased body weights, recovered brain serotonin levels, and decreased serum cortisol levels. This mouse model replicates multiple features of human post-stroke depression and thus provides a new model for the investigation of PSD. PMID:26572587

  6. PACAP38 Differentially Effects Genes and CRMP2 Protein Expression in Ischemic Core and Penumbra Regions of Permanent Middle Cerebral Artery Occlusion Model Mice Brain

    PubMed Central

    Hori, Motohide; Nakamachi, Tomoya; Shibato, Junko; Rakwal, Randeep; Tsuchida, Masachi; Shioda, Seiji; Numazawa, Satoshi

    2014-01-01

    Pituitary adenylate-cyclase activating polypeptide (PACAP) has neuroprotective and axonal guidance functions, but the mechanisms behind such actions remain unclear. Previously we examined effects of PACAP (PACAP38, 1 pmol) injection intracerebroventrically in a mouse model of permanent middle cerebral artery occlusion (PMCAO) along with control saline (0.9% NaCl) injection. Transcriptomic and proteomic approaches using ischemic (ipsilateral) brain hemisphere revealed differentially regulated genes and proteins by PACAP38 at 6 and 24 h post-treatment. However, as the ischemic hemisphere consisted of infarct core, penumbra, and non-ischemic regions, specificity of expression and localization of these identified molecular factors remained incomplete. This led us to devise a new experimental strategy wherein, ischemic core and penumbra were carefully sampled and compared to the corresponding contralateral (healthy) core and penumbra regions at 6 and 24 h post PACAP38 or saline injections. Both reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to examine targeted gene expressions and the collapsin response mediator protein 2 (CRMP2) protein profiles, respectively. Clear differences in expression of genes and CRMP2 protein abundance and degradation product/short isoform was observed between ischemic core and penumbra and also compared to the contralateral healthy tissues after PACAP38 or saline treatment. Results indicate the importance of region-specific analyses to further identify, localize and functionally analyse target molecular factors for clarifying the neuroprotective function of PACAP38. PMID:25257527

  7. Combined contrast-enhanced ultrasound and rt-PA treatment is safe and improves impaired microcirculation after reperfusion of middle cerebral artery occlusion

    PubMed Central

    Nedelmann, Max; Ritschel, Nouha; Doenges, Simone; Langheinrich, Alexander C; Acker, Till; Reuter, Peter; Yeniguen, Mesut; Pukropski, Jan; Kaps, Manfred; Mueller, Clemens; Bachmann, Georg; Gerriets, Tibo

    2010-01-01

    In monitoring of recanalization and in sonothrombolysis, contrast-enhanced ultrasound (CEUS) is applied in extended time protocols. As extended use may increase the probability of unwanted effects, careful safety evaluation is required. We investigated the safety profile and beneficial effects of CEUS in a reperfusion model. Wistar rats were subjected to filament occlusion of the right middle cerebral artery (MCA). Reperfusion was established after 90 minutes, followed by recombinant tissue-type plasminogen activator (rt-PA) treatment and randomization to additional CEUS (contrast agent: SonoVue; 60 minutes). Blinded outcome evaluation consisted of magnetic resonance imaging (MRI), neurologic assessment, and histology and, in separate experiments, quantitative 3D nano-computed tomography (CT) angiography (900 nm3 voxel size). Nano-CT revealed severely compromised microcirculation in untreated animals after MCA reperfusion. The rt-PA partially improved hemispheric perfusion. Impairment was completely reversed in animals receiving rt-PA and CEUS. This combination was more effective than treatment with either CEUS without rt-PA or rt-PA and ultrasound or ultrasound alone. In MRI experiments, CEUS and rt-PA treatment resulted in a significantly reduced ischemic lesion volume and edema formation. No unwanted effects were detected on MRI, histology, and intracranial temperature assessment. This study shows that CEUS and rt-PA is safe in the situation of reperfusion and displays beneficial effects on the level of the microvasculature. PMID:20531462

  8. Delayed recovery of adipsic diabetes insipidus (ADI) caused by elective clipping of anterior communicating artery and left middle cerebral artery aneurysms.

    PubMed

    Tan, Jeffrey; Ndoro, Samuel; Okafo, Uchenna; Garrahy, Aoife; Agha, Amar; Rawluk, Danny

    2016-12-16

    Adipsic diabetes insipidus (ADI) is an extremely rare complication following microsurgical clipping of anterior communicating artery aneurysm (ACoA) and left middle cerebral artery (MCA) aneurysm. It poses a significant challenge to manage due to an absent thirst response and the co-existence of cognitive impairment in our patient. Recovery from adipsic DI has hitherto been reported only once. A 52-year-old man with previous history of clipping of left posterior communicating artery aneurysm 20 years prior underwent microsurgical clipping of ACoA and left MCA aneurysms without any intraoperative complications. Shortly after surgery, he developed clear features of ADI with adipsic severe hypernatraemia and hypotonic polyuria, which was associated with cognitive impairment that was confirmed with biochemical investigations and cognitive assessments. He was treated with DDAVP along with a strict intake of oral fluids at scheduled times to maintain eunatremia. Repeat assessment at six months showed recovery of thirst and a normal water deprivation test. Management of ADI with cognitive impairment is complex and requires a multidisciplinary approach. Recovery from ADI is very rare, and this is only the second report of recovery in this particular clinical setting.

  9. Third trimester fetal heart rate and Doppler middle cerebral artery blood flow velocity characteristics during prenatal selective serotonin reuptake inhibitor exposure.

    PubMed

    Rurak, Dan; Lim, Ken; Sanders, Ari; Brain, Ursula; Riggs, Wayne; Oberlander, Tim F

    2011-07-01

    Prenatal selective serotonin reuptake inhibitor (SSRI) exposure increases the risk for adverse neonatal behavioral outcomes; although it is unknown whether altered brain function is present before birth. We investigated fetal vascular and heart rate changes at 36-wk gestation in SSRI-treated women with mood disorders (n = 29) [exposed (EXP)] and controls (n = 45) [non-EXP (NEXP)]. Fetal middle cerebral artery (MCA) flow parameters and heart rate characteristics were obtained during pre-SSRI dose morning and postdose afternoon sessions. Maternal mood and cord Hb and hematocrit were measured. Basal fetal heart rate (fHR) did not differ between groups or across the day. The fHR short- and long-term variations, accelerations, and duration of high variability episodes remained lower and did not change across the day in EXP, whereas all increased significantly in NEXP. In both groups, MCA flow velocity and volume flow increased significantly across the day. EXP MCA pulsatility index was significantly lower, as was MCA cross-sectional area. EXP cord Hb and hematocrit were significantly increased. Prenatal SSRI exposure reduced fetal MCA flow resistance and fHR variability, before and after an SSRI dose, controlling for maternal mood. These changes and the SSRI-related increased red cell indices suggest possible fetal hypoxia.

  10. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats.

    PubMed

    Justicia, Carles; Panés, Julián; Solé, Sònia; Cervera, Alvaro; Deulofeu, Ramon; Chamorro, Angel; Planas, Anna M

    2003-12-01

    Matrix metalloproteinase-9 (MMP-9) activity increases in the brain during the first day after focal ischemia and might be involved in the pathogenesis of tissue damage. We previously showed MMP-9 in the extracellular space of brain parenchyma along with neutrophil recruitment after ischemia. In the present study, we tested whether neutrophils were a direct source of enhanced MMP-9 in the ischemic brain. Neutrophil infiltration was prevented either by injecting an antibody against ICAM-1, which abrogates neutrophil adhesion to the endothelial vessel wall, or by inducing neutropenia. One-hour intraluminal middle cerebral artery occlusion with reperfusion was induced, and studies were performed at 24 hours. Circulating neutrophils expressed 95-kDa MMP-9 and dimers, and infiltrated neutrophils stained positive for MMP-9. The expression of MMP-9 (mainly 95-kDa proform and dimers and, to a lesser extent, 88-kDa form) increased in brain after ischemia/reperfusion. Treatments preventing neutrophil infiltration failed to preclude the ischemia-induced increase in 88-kDa MMP-9 form and gelatinase activity in neurons and blood vessels. However, these treatments prevented the major increase in 95-kDa MMP-9 form and dimers. We conclude that neutrophil infiltration highly contributes to enhanced MMP-9 in the ischemic brain by releasing MMP-9 proform, which might participate in the tissular inflammatory reaction.

  11. Fish oil supplementation associated with decreased cellular degeneration and increased cellular proliferation 6 weeks after middle cerebral artery occlusion in the rat.

    PubMed

    Pascoe, Michaela C; Howells, David W; Crewther, David P; Carey, Leeanne M; Crewther, Sheila G

    2015-01-01

    Anti-inflammatory long-chain omega-3 polyunsaturated fatty acids (n-3-LC-PUFAs) are both neuroprotective and have antidepressive effects. However the influence of dietary supplemented n-3-LC-PUFAs on inflammation-related cell death and proliferation after middle cerebral artery occlusion (MCAo)-induced stroke is unknown. We have previously demonstrated that anxiety-like and hyperactive locomotor behaviors are reduced in n-3-LC-PUFA-fed MCAo animals. Thus in the present study, male hooded Wistar rats were exposed to MCAo or sham surgeries and examined behaviorally 6 weeks later, prior to euthanasia and examination of lesion size, cell death and proliferation in the dentate gyrus, cornu ammonis region of the hippocampus of the ipsilesional hemispheres, and the thalamus of the ipsilesional and contralesional hemispheres. Markers of cell genesis and cell degeneration in the hippocampus or thalamus of the ipsilesional hemisphere did not differ between surgery and diet groups 6 weeks post MCAo. Dietary supplementation with n-3-LC-PUFA decreased cell degeneration and increased cell proliferation in the thalamic region of the contralesional hemisphere. MCAo-associated cell degeneration in the hippocampus and thalamus positively correlated with anxiety-like and hyperactive locomotor behaviors previously reported in these animals. These results suggest that anti-inflammatory n-3-LC-PUFA supplementation appears to have cellular protective effects after MCAo in the rat, which may affect behavioral outcomes.

  12. Carbonic anhydrase inhibitors modify intracellular pH transients and contractions of rat middle cerebral arteries during CO2/HCO3(-) fluctuations.

    PubMed

    Rasmussen, Jacob K; Boedtkjer, Ebbe

    2017-01-01

    The CO2/HCO3(-) buffer minimizes pH changes in response to acid-base loads, HCO3(-) provides substrate for Na(+),HCO3(-)-cotransporters and Cl(-)/HCO3(-)-exchangers, and H(+) and HCO3(-) modify vasomotor responses during acid-base disturbances. We show here that rat middle cerebral arteries express cytosolic, mitochondrial, extracellular, and secreted carbonic anhydrase isoforms that catalyze equilibration of the CO2/HCO3(-) buffer. Switching from CO2/HCO3(-)-free to CO2/HCO3(-)-containing extracellular solution results in initial intracellular acidification due to hydration of CO2 followed by gradual alkalinization due to cellular HCO3(-) uptake. Carbonic anhydrase inhibition decelerates the initial acidification and attenuates the associated transient vasoconstriction without affecting intracellular pH or artery tone at steady-state. Na(+),HCO3(-)-cotransport and Na(+)/H(+)-exchange activity after NH4(+)-prepulse-induced intracellular acidification are unaffected by carbonic anhydrase inhibition. Extracellular surface pH transients induced by transmembrane NH3 flux are evident under CO2/HCO3(-)-free conditions but absent when the buffer capacity and apparent H(+) mobility increase in the presence of CO2/HCO3(-) even after the inhibition of carbonic anhydrases. We conclude that (a) intracellular carbonic anhydrase activity accentuates pH transients and vasoconstriction in response to acute elevations of pCO2, (b) CO2/HCO3(-) minimizes extracellular surface pH transients without requiring carbonic anhydrase activity, and

  13. Differential Aging of Cerebral White Matter in Middle-Aged and Older Adults: A Seven-Year Follow-up

    PubMed Central

    Bender, Andrew R.; Völkle, Manuel C.; Raz, Naftali

    2015-01-01

    The few extant reports of longitudinal white matter (WM) changes in healthy aging, using diffusion tensor imaging (DTI), reveal substantial differences in change across brain regions and DTI indices. According to the last-in-first-out hypothesis of brain aging late-developing WM tracts may be particularly vulnerable to advanced age. To test this hypothesis we compared age-related changes in association, commissural and projection WM fiber regions using a skeletonized, region of interest DTI approach. Using linear mixed effects models, we evaluated the influences of age and vascular risk at baseline on seven-year changes in three indices of WM integrity and organization (axial diffusivity, AD, radial diffusivity, RD, and fractional anisotropy, FA) in healthy middle-aged and older adults (mean age = 65.4, SD = 9.0 years). Association fibers showed the most pronounced declines over time. Advanced age was associated with greater longitudinal changes in RD and FA, independent of fiber type. Furthermore, older age was associated with longitudinal RD increases in late-developing, but not early-developing projection fibers. These findings demonstrate the increased vulnerability of later developing WM regions and support the last-in-first-out hypothesis of brain aging. PMID:26481675

  14. Ischemic postconditioning may not influence early brain injury induced by focal cerebral ischemia/reperfusion in rats

    PubMed Central

    Kim, Yoo Kyung; Shin, Jin Woo; Joung, Kyoung Woon

    2010-01-01

    Background Experimental studies have shown that ischemic postconditioning can reduce neuronal injury in the setting of cerebral ischemia, but the mechanisms are not yet clearly elucidated. This study was conducted to determine whether ischemic postconditioning can alter expression of heat shock protein 70 and reduce acute phase neuronal injury in rats subjected to transient focal cerebral ischemia/reperfusion. Methods Focal cerebral ischemia was induced by intraluminal middle cerebral artery occlusion for 60 min in twenty male Sprague-Dawley rats (250-300 g). Rats were randomized into control group and an ischemic postconditioning group (10 rats per group). The animals of control group had no intervention either before or after MCA occlusion. Ischemic postconditioning was elicited by 3 cycles of 30 s reperfusion interspersed by 10 s ischemia immediately after onset of reperfusion. The infarct ratios, brain edema ratios and motor behavior deficits were analyzed 24 hrs after ischemic insult. Caspase-3 reactive cells and cells showing heat shock protein 70 activity were counted in the caudoputamen and frontoparietal cortex. Results Ischemic postconditiong did not reduce infarct size and brain edema ratios compared to control group. Neurologic scores were not significantly different between groups. The number of caspase-3 reactive cells in the ischemic postconditioning group was not significantly different than the value of the control group in the caudoputamen and frontoparietal cortex. The number of cells showing heat shock protein 70 activity was not significantly different than the control group, as well. Conclusions These results suggest that ischemic postconditioning may not influence the early brain damage induced by focal cerebral ischemia in rats. PMID:20498797

  15. Pentoxifylline attenuates TNF-α protein levels and brain edema following temporary focal cerebral ischemia in rats.

    PubMed

    Vakili, Abedin; Mojarrad, Somye; Akhavan, Maziar Mohammad; Rashidy-Pour, Ali

    2011-03-04

    Cerebral edema is the most common cause of neurological deterioration and mortality during acute ischemic stroke. Despite the clinical importance of cerebral ischemia, the underlying mechanisms remain poorly understood. Recent studies suggest a role for TNF-α in the brain edema formation. To further investigate whether TNF-α would play a role in brain edema formation, we examined the effects of pentoxifylline (PTX, an inhibitor of TNF-α synthesis) on the brain edema and TNF-α levels in a model of transient focal cerebral ischemia. The right middle cerebral artery (MCA) of rats was occluded for 60 min using the intraluminal filament method. The animals received PTX (60 mg/kg) immediately, 1, 3, or 6h post-ischemic induction. Twenty-four hours after induction of ischemic injury, permeability of the blood-brain barrier (BBB) and brain edema were determined by in situ brain perfusion of Evans Blue (EB) and wet-to-dry weight ratio, respectively. TNF-α protein levels in ischemic cortex were also measured at 1, 4, and 24h after the beginning of an ischemic stroke by using an enzyme-linked immunosorbent assay method. The administration of PTX up to 6h after occlusion of the MCA significantly reduced the brain edema. Moreover, PTX significantly reduced the concentration of TNF-α in ischemic brain cortex up to 4h post-transient focal stroke (P<0.002). Finally, treatment by PTX led to a significant decrease in EB extravasations (P<0.001). Our data demonstrate that PTX administration up to 6h after ischemia can reduce brain edema in a model of transient focal cerebral ischemia. The beneficial effects of PTX may be mediated, at least in part, through a decline in TNF-α production and BBB breakdown.

  16. Relationships between high oxygen extraction fraction in the acute stage and final infarction in reversible middle cerebral artery occlusion: an investigation in anesthetized baboons with positron emission tomography.

    PubMed

    Young, A R; Sette, G; Touzani, O; Rioux, P; Derlon, J M; MacKenzie, E T; Baron, J C

    1996-11-01

    Studies in humans suggest that regions that show maximal increases in brain oxygen extraction fraction (OEF) in the hours following an ischemic episode are those most vulnerable for infarction and are often, although not always, associated with the final site of infarction. To clarify this issue, we followed the hemodynamic and metabolic characteristics of regions with an initially maximally increased OEF and compared them with the ultimately infarcted region in an experimental stroke model. Positron emission tomography (PET) was used to obtain functional images of the brain prior to and following reversible unilateral middle cerebral artery occlusion (MCAO) in 11 anesthetized baboons. To model early reperfusion, the clips were removed 6 h after occlusion. Successive measurements of regional CBF (rCBF), regional CMRO2 (rCMRO2), regional cerebral blood volume, and regional OEF (rOEF) were performed during the acute (up to 2 days) and chronic (> 15 days) stage. Late magnetic resonance imaging (MRI) scans (co-registered with PET) were obtained to identify infarction. Reversible MCAO produced an MRI-measurable infarction in 6 of 11 baboons; the others had no evidence of ischemic damage. Histological analysis confirmed the results of the MRI investigation but failed to show any evidence of cortical ischemic damage. The lesion was restricted to the head of the caudate nucleus, internal capsule, and putamen. The infarct volume obtained was 0.58 +/- 0.31 cm3. The infarcts were situated in the deep MCA territory, while the area of initially maximally increased OEF was within the cortical mantle. The mean absolute rCBF value in the infarct region of interest (ROI) was not significantly lower than in the highest-OEF ROI until 1-2 days post-MCAO. Cerebral metabolism in the deep MCA territory was always significantly lower than that of the cortical mantle; decreases in CMRO2 in the former region were evident as early as 1 h post-MCAO. In the cortical mantle, the rOEF was

  17. Computed Tomography- and Magnetic Resonance Image-based Analysis of the Anatomical Variations of the Sylvian Fissure and Characteristics of the Middle Cerebral Artery

    PubMed Central

    Maslehaty, Homajoun; Deuschl, Cornelius; Kleist, Bernadette; Göricke, Sophia; Sure, Ulrich; Müller, Oliver

    2017-01-01

    The aim of this cross sectional anatomical study is to determine the distribution of the defined anatomical variations of the Sylvian fissure (SF) in a normal population and to analyze its bilateral superposable presentation. Furthermore, we examined the course of the middle cerebral artery (MCA) and the division of the MCA branches in relation to the SF types. A total of 300 cranial CT scans - 100 CT angiography datasets and 86 MRIs of patients without intracranial pathologies - were reviewed. The SF was categorized in five types based on Yasargils description and our previous publication. The length, diameter and branches of the MCA were measured and compared to the SF types. SPSS 23.0 for Windows® was used for statistical analysis. We analyzed data of 300 patients (171 male, 129 female; mean age 51.6years). Symmetric and mirror-imaged coherence of the SF was found in 266 patients (88.7%, χ2(8)=3.04, p=0.932). The distribution of the SF types showed significant differences in patients younger than 60 years compared to older patients. A bifurcation was observed in 72.0%. A trifurcation was observed in 12.0% and a false bifurcation in 16.0% of patients. There was no significant difference of the measured diameters or length of the M1 segments according to the SF types. In this CT and MRI based anatomical study we could show that a twisted and narrow SF occurred more frequently in patients younger than 60 years of age. The SF has a high congruence intra-individually. The anatomical condition might influence the size and configuration of the proximal MCA, which in turn might influence the surgeon’s choice of the approach to the SF. Preoperative evaluation on the basis of the presented data, may help to decide for an appropriate approach to the SF. PMID:28243427

  18. Main Trunk and Division Middle Cerebral Artery Occlusions: Differences in Recanalization Times, Number of Stent Retriever Passes and Clinical Outcomes: A Single-Center Experience

    PubMed Central

    Qureshi, Ihtesham A.; Maud, Alberto; Cruz-Flores, Salvador; Rodriguez, Gustavo J.

    2016-01-01

    Background and Purpose In this article, we present our experience with the recanalization of the middle cerebral artery (MCA), we hypothesize that there are higher rates of recanalization with fewer stent retriever passes and better clinical outcomes in patients with division MCA occlusions. A more complex anatomy at the bifurcation may prevent a faster recanalization in main trunk MCA occlusions. Methods We retrospectively identified consecutive patients admitted with MCA occlusions who underwent mechanical thrombectomy using stent retrievers. We categorized patients into division MCA and main trunk MCA occlusions based on angiography. Variables were compared between the groups. We further analyzed patients with trunk MCA occlusions to identify reasons for delays in recanalization. Results There were 32 MCA occlusions that underwent mechanical thrombectomy and eligible for the analysis during the study period. Of those, 11 were main trunk MCA occlusions. Univariate analysis disclosed a trend toward a lower GP-to-recanalization time (p = 0.05) and a lower number of passes required for recanalization in division MCA occlusions. However, there was a significantly better outcome in patients with division MCA occlusion after multivariate analysis. Analyzing main trunk MCA occlusion data, we found that the need for more than one pass to achieve recanalization led to a trend toward a longer GP-to-recanalization time and a worse outcome. When the stent was placed in the dominant division, the chances of recanalization were significantly higher. Conclusions Division MCA occlusions have higher recanalization rates with fewer stent retriever passes and better clinical outcomes than main trunk MCA occlusions, likely due to a more favorable anatomy. Measures like placing the stent retriever in the dominant division may decrease recanalization times and improve clinical outcomes in main trunk MCA occlusions. PMID:27051403

  19. Computed Tomography- and Magnetic Resonance Image-based Analysis of the Anatomical Variations of the Sylvian Fissure and Characteristics of the Middle Cerebral Artery.

    PubMed

    Maslehaty, Homajoun; Deuschl, Cornelius; Kleist, Bernadette; Göricke, Sophia; Sure, Ulrich; Müller, Oliver

    2017-01-11

    The aim of this cross sectional anatomical study is to determine the distribution of the defined anatomical variations of the Sylvian fissure (SF) in a normal population and to analyze its bilateral superposable presentation. Furthermore, we examined the course of the middle cerebral artery (MCA) and the division of the MCA branches in relation to the SF types. A total of 300 cranial CT scans - 100 CT angiography datasets and 86 MRIs of patients without intracranial pathologies - were reviewed. The SF was categorized in five types based on Yasargils description and our previous publication. The length, diameter and branches of the MCA were measured and compared to the SF types. SPSS 23.0 for Windows® was used for statistical analysis. We analyzed data of 300 patients (171 male, 129 female; mean age 51.6years). Symmetric and mirror-imaged coherence of the SF was found in 266 patients (88.7%, χ(2)(8)=3.04, p=0.932). The distribution of the SF types showed significant differences in patients younger than 60 years compared to older patients. A bifurcation was observed in 72.0%. A trifurcation was observed in 12.0% and a false bifurcation in 16.0% of patients. There was no significant difference of the measured diameters or length of the M1 segments according to the SF types. In this CT and MRI based anatomical study we could show that a twisted and narrow SF occurred more frequently in patients younger than 60 years of age. The SF has a high congruence intra-individually. The anatomical condition might influence the size and configuration of the proximal MCA, which in turn might influence the surgeon's choice of the approach to the SF. Preoperative evaluation on the basis of the presented data, may help to decide for an appropriate approach to the SF.

  20. Effect of the α(2)-adrenoceptor antagonist yohimbine on vascular regulation of the middle cerebral artery and the ophthalmic artery in healthy subjects.

    PubMed

    Kaya, S; Kolodjaschna, J; Berisha, F; Polska, E; Pemp, B; Garhöfer, G; Schmetterer, L

    2011-01-01

    There is evidence that vascular beds distal to the ophthalmic artery (OA) show vasoconstriction in response to a step decrease in systemic blood pressure (BP). The mediators of this response are mostly unidentified. The aim of the current study was to test the hypothesis that α2-adrenoreceptors may contribute to the regulatory process in response to a decrease in BP. In this randomized, double-masked, placebo-controlled study 14 healthy male volunteers received either 22mg yohimbine hydrochloride or placebo. Beat-to-beat BP was measured by analysis of arterial pressure waveform; blood flow velocities in the middle cerebral artery (MCA) and the OA were measured with Doppler ultrasound. Measurements were done before, during and after a step decrease in BP. The step decrease in BP was induced by bilateral thigh cuffs at a suprasystolic pressure followed by a rapid cuff deflation. After cuff deflation, BP returned to baseline after 7-8 pulse cycles (PC). Blood velocities in the MCA returned to baseline earlier (4 PC) than BP indicating peripheral vasodilatation. Blood velocities in the OA returned to baseline later (15-20 PC) indicating peripheral vasoconstriction. Yohimbine did not affect the blood velocity response in the MCA, but significantly shortened the time of OA blood velocities to return to baseline values (6-7 PC, p<0.05). In conclusion, our results indicate that yohimbine did not alter the regulatory response in the MCA, but modified the response of vascular beds distal to the OA. This suggests that α2-adrenoceptors play a role in the vasoconstrictor response of the vasculatures distal to the OA.

  1. In Vitro Differentiation of Bone Marrow Mesenchymal Stem Cells into Neuron-Like Cells by Cerebrospinal Fluid Improves Motor Function of Middle Cerebral Artery Occlusion Rats

    PubMed Central

    Ye, Ying; Peng, Yi-ran; Hu, Shu-qun; Yan, Xian-liang; Chen, Juan; Xu, Tie

    2016-01-01

    Bone marrow mesenchymal stem cells (BMSCs) represent a promising tool for stem cell-based therapies. However, the majority of BMSC transplants only allow for limited recovery of the lost functions. We previously found that human cerebrospinal fluid (hCSF) is more potent than growth factors in differentiating human BMSCs into neuron-like cells in vitro. In this study, we studied the effect of transplantation of rat BMSC-derived neuron-like cells (BMSC-Ns) induced by hCSF into rat brain with middle cerebral artery occlusion (MCAO). The survival and differentiation of the transplanted cells were determined using immunofluorescence staining of bromodeoxyuridine. The recovery of neurological function were observed by the modified neurological severity score (modified NSS) at 4, 15, and 32 days after cell transplantation, HE staining for determination of the infarct volume at day 32 after cell transplantation. Transplantation of BMSC-Ns or BMSCs significantly improved indexes of neurological function and reduced infarct size in rats previously subjected to MCAO compared with those in the control group. Remarkably, 32 days after transplantation, rats treated with BMSC-Ns presented a smaller infarct size, higher number of neuron-specific, enolase-positive, and BrdU-positive cells, and improved neurological function compared with BMSC group. Our results demonstrate that transplantation of hCSF-treated BMSC-Ns significantly improves neurological function and reduces infarct size in rats subjected to MCAO. This study may pave a new avenue for the treatment of MCAO. PMID:27833584

  2. TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion.

    PubMed

    Liu, Fudong; Schafer, Dorothy P; McCullough, Louise D

    2009-04-30

    Considerable debate exists in the literature on how best to measure infarct damage and at what point after middle cerebral artery occlusion (MCAO) infarct is histologically complete. As many researchers are focusing on more chronic endpoints in neuroprotection studies it is important to evaluate histological damage at later time points to ensure that standard methods of tissue injury measurement are accurate. To compare tissue viability at both acute and sub-acute time points, we used 2,3,5-triphenyltetrazolium chloride (TTC), Fluoro-Jade B, and NeuN staining to examine the evolving phases of infarction induced by a 90-min MCAO in mice. Stroke outcomes were examined at 1.5h, 6h, 12h, 24h, 3d, and 7d after MCAO. There was a time-dependent increase in infarct volume from 1.5h to 24h in the cortex, followed by a plateau from 24h to 7d after stroke. Striatal infarcts were complete by 12h. Fluoro-Jade B staining peaked at 24h and was minimal by 7d. Our results indicated that histological damage as measured by TTC and Fluoro-Jade B reaches its peak by 24h after stroke in a reperfusion model of MCAO in mice. TTC staining can be accurately performed as late as 7d after stroke. Neurological deficits do not correlate with the structural lesion but rather transient impairment of function. As the infarct is complete by 24h and even earlier in the striatum, even the most efficacious neuroprotective therapies are unlikely to show any efficacy if given after this point.

  3. Structural Changes Induced by Daily Music Listening in the Recovering Brain after Middle Cerebral Artery Stroke: A Voxel-Based Morphometry Study

    PubMed Central

    Särkämö, Teppo; Ripollés, Pablo; Vepsäläinen, Henna; Autti, Taina; Silvennoinen, Heli M.; Salli, Eero; Laitinen, Sari; Forsblom, Anita; Soinila, Seppo; Rodríguez-Fornells, Antoni

    2014-01-01

    Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery stroke. Extending this study, a voxel-based morphometry (VBM) analysis utilizing cost function masking was performed on the acute and 6-month post-stroke stage structural magnetic resonance imaging data of the patients (n = 49) who either listened to their favorite music [music group (MG), n = 16] or verbal material [audio book group (ABG), n = 18] or did not receive any listening material [control group (CG), n = 15] during the 6-month recovery period. Although all groups showed significant gray matter volume (GMV) increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG), right medial SFG] and limbic areas [left ventral/subgenual anterior cingulate cortex (SACC) and right ventral striatum (VS)] in patients with left hemisphere damage in which the GMV increases were larger in the MG than in the ABG and in the CG. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioral recovery, but also induces fine-grained neuroanatomical changes in the recovering brain. PMID:24860466

  4. Comparisons between Garcia, Modo, and Longa rodent stroke scales: Optimizing resource allocation in rat models of focal middle cerebral artery occlusion.

    PubMed

    Bachour, Salam P; Hevesi, Mario; Bachour, Ornina; Sweis, Brian M; Mahmoudi, Javad; Brekke, Julia A; Divani, Afshin A

    2016-05-15

    The use of rodent stroke models allow for the understanding of stroke pathophysiology. There is currently no gold standard neurological assessment to measure deficits and recovery from stroke in rodent models. Agreement on a universal preclinical stroke scale allows for comparison of the outcomes among conducted studies. The present study aimed to compare three routinely used neurological assessments in rodent studies (i.e., Garcia, Modo, and Longa) to determine which is most effective for accurately and consistently quantifying neurological deficits in the context of focal middle cerebral artery occlusion (MCAo) in rats. Focal MCAo was induced in 22 male Wistar rats using a novel transfemoral approach. Rodents were assessed for neurological deficit pre-injury as well as 3 and 24h post-injury. Data was analyzed to determine Pearson correlation coefficients in addition to McNemar's χ(2) values between each pair of neurological assessments. All three stroke scales, Garcia, Modo, and Longa, showed statistically significant changes between the baseline and the 3-hour neurological assessments. A trend towards neurological recovery was observed in all three stroke scales between the 3 and 24-hour endpoints. The three scales were highly correlated with each other, with Garcia and Modo having the strongest correlation. Of the three pairwise analyses, the comparison between the Garcia and Longa tests demonstrated the highest McNemar's χ(2) value, indicating least marginal homogeneity between these two tests. The combination of high correlation between Garcia and Modo tests along with greatest marginal heterogeneity observed between the Garcia and Longa test lead us to recommend the use of Garcia and Longa neurological scales when researchers are hoping to capture the broadest range of neurological factors using only two stroke scales.

  5. Near-infrared diffuse reflectance imaging of infarct core and peri-infarct depolarization in a rat middle cerebral artery occlusion model

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Nishidate, Izumi; Nawashiro, Hiroshi; Sato, Shunichi

    2014-03-01

    To understand the pathophysiology of ischemic stroke, in vivo imaging of the brain tissue viability and related spreading depolarization is crucial. In the infarct core, impairment of energy metabolism causes anoxic depolarization (AD), which considerably increases energy consumption, accelerating irreversible neuronal damage. In the peri-infarct penumbra region, where tissue is still reversible despite limited blood flow, peri-infarct depolarization (PID) occurs, exacerbating energy deficit and hence expanding the infarct area. We previously showed that light-scattering signal, which is sensitive to cellular/subcellular structural integrity, was correlated with AD and brain tissue viability in a rat hypoxia-reoxygenation model. In the present study, we performed transcranial NIR diffuse reflectance imaging of the rat brain during middle cerebral artery (MCA) occlusion and examined whether the infarct core and PIDs can be detected. Immediately after occluding the left MCA, light scattering started to increase focally in the occlusion site and a bright region was generated near the occlusion site and spread over the left entire cortex, which was followed by a dark region, showing the occurrence of PID. The PID was generated repetitively and the number of times of occurrence in a rat ranged from four to ten within 1 hour after occlusion (n=4). The scattering increase in the occlusion site was irreversible and the area with increased scattering expanded with increasing the number of PIDs, indicating an expansion of the infarct core. These results suggest the usefulness of NIR diffuse reflectance signal to visualize spatiotemporal changes in the infarct area and PIDs.

  6. Intravenous HOE-642 reduces brain edema and Na uptake in the rat permanent middle cerebral artery occlusion model of stroke: evidence for participation of the blood-brain barrier Na/H exchanger.

    PubMed

    O'Donnell, Martha E; Chen, Yi-Je; Lam, Tina I; Taylor, Kelleen C; Walton, Jeffrey H; Anderson, Steven E

    2013-02-01

    Cerebral edema forms in the early hours of ischemic stroke by processes involving increased transport of Na and Cl from blood into brain across an intact blood-brain barrier (BBB). Our previous studies provided evidence that the BBB Na-K-Cl cotransporter is stimulated by the ischemic factors hypoxia, aglycemia, and arginine vasopressin (AVP), and that inhibition of the cotransporter by intravenous bumetanide greatly reduces edema and infarct in rats subjected to permanent middle cerebral artery occlusion (pMCAO). More recently, we showed that BBB Na/H exchanger activity is also stimulated by hypoxia, aglycemia, and AVP. The present study was conducted to further investigate the possibility that a BBB Na/H exchanger also participates in edema formation during ischemic stroke. Sprague-Dawley rats were subjected to pMCAO and then brain edema and Na content assessed by magnetic resonance imaging diffusion-weighed imaging and magnetic resonance spectroscopy Na spectroscopy, respectively, for up to 210 minutes. We found that intravenous administration of the specific Na/H exchange inhibitor HOE-642 significantly decreased brain Na uptake and reduced cerebral edema, brain swelling, and infarct volume. These findings support the hypothesis that edema formation and brain Na uptake during the early hours of cerebral ischemia involve BBB Na/H exchanger activity as well as Na-K-Cl cotransporter activity.

  7. Comparison of Drug-eluting Coronary Stents, Bare Coronary Stents and Self-expanding Stents in Angioplasty of Middle Cerebral Artery Stenoses

    PubMed Central

    Lee, Jong-Hyeog; Jo, Sung-Min; Jo, Kwang-Deog; Kim, Moon-Kyu; Lee, Sang-Youl

    2013-01-01

    Objective The purpose of this study is to investigate the results of treatment using stent-angioplasty for symptomatic middle cerebral arterial (MCA) stenosis and comparison of in-stent restenosis between drug-eluting stents (DES), bare metal coronary stents (BMS) and self-expanding stents (SES). Materials and Methods From Jan. 2007 to June. 2012, 34 patients (mean age ± standard deviation: 62.9 ± 13.6 years) with MCA stenosis were treated. Inclusion criteria were acute infarction or transient ischemic attacks (TIAs) and angiographically proven symptom related severe stenosis. Stents used for treatment were DES (n = 8), BMS (n = 13) and SES (n = 13). National Institutes of Health Stroke Scale (NIHSS) at admission was 2.5 ± 3.1 and mean stenosis rate was 79.0 ± 8.2%. Assessment of clinical and angiographic results was performed retrospectively. Results Among 34 patients, periprocedural complications occurred in four cases (11.8%), however, only two cases (6.0%) were symptomatic. All patients were followed clinically (mean follow-up period; 40.7 ± 17.7 months) and 31 were followed angiographically (91.2%. 13.4 ± 8.5 months). There was no occurrence of repeat stroke in all patients; however, mild TIAs related to restenosis occurred in three of 34 patients (8.8%). The mean NIHSS after stent-angioplasty was 1.7 ± 2.9 and 0.8 ± 1.1 at discharge. The modified Rankin score (mRS) at discharge was 0.5 ± 0.9 and 0.3 ± 0.8 at the last clinical follow-up. In-stent restenosis over 50% occurred in five of 31 angiographically followed cases (16.1%), however, all of these events occurred only in patients who were treated with BMS or SES. Restenosis rate was 0.0% in the DES group and 20.8% in the other group (p = 0.562); it did not differ between BMS and SES (2/11 18.2%, 3/13 23.1%, p = 1.000). Conclusion Stent-angioplasty appears to be effective for symptomatic MCA stenosis. As for restenosis, in our study, DES was presumed to be more effective than BMS and SES; meanwhile

  8. Unraveling the Specific Ischemic Core and Penumbra Transcriptome in the Permanent Middle Cerebral Artery Occlusion Mouse Model Brain Treated with the Neuropeptide PACAP38

    PubMed Central

    Hori, Motohide; Nakamachi, Tomoya; Shibato, Junko; Rakwal, Randeep; Shioda, Seiji; Numazawa, Satoshi

    2015-01-01

    Our group has been systematically investigating the effects of the neuropeptide pituitary adenylate-cyclase activating polypeptide (PACAP) on the ischemic brain. To do so, we have established and utilized the permanent middle cerebral artery occlusion (PMCAO) mouse model, in which PACAP38 (1 pmol) injection is given intracerebroventrically and compared to a control saline (0.9% sodium chloride, NaCl) injection, to unravel genome-wide gene expression changes using a high-throughput DNA microarray analysis approach. In our previous studies, we have accumulated a large volume of data (gene inventory) from the whole brain (ipsilateral and contralateral hemispheres) after both PMCAO and post-PACAP38 injection. In our latest research, we have targeted specifically infarct or ischemic core (hereafter abbreviated IC) and penumbra (hereafter abbreviated P) post-PACAP38 injections in order to re-examine the transcriptome at 6 and 24 h post injection. The current study aims to delineate the specificity of expression and localization of differentially expressed molecular factors influenced by PACAP38 in the IC and P regions. Utilizing the mouse 4 × 44 K whole genome DNA chip we show numerous changes (≧/≦ 1.5/0.75-fold) at both 6 h (654 and 456, and 522 and 449 up- and down-regulated genes for IC and P, respectively) and 24 h (2568 and 2684, and 1947 and 1592 up- and down-regulated genes for IC and P, respectively) after PACAP38 treatment. Among the gene inventories obtained here, two genes, brain-derived neurotrophic factor (Bdnf) and transthyretin (Ttr) were found to be induced by PACAP38 treatment, which we had not been able to identify previously using the whole hemisphere transcriptome analysis. Using bioinformatics analysis by pathway- or specific-disease-state focused gene classifications and Ingenuity Pathway Analysis (IPA) the differentially expressed genes are functionally classified and discussed. Among these, we specifically discuss some novel and previously

  9. The active metabolite of prasugrel, R-138727, improves cerebral blood flow and reduces cerebral infarction and neurologic deficits in a non-human primate model of acute ischaemic stroke.

    PubMed

    Sugidachi, Atsuhiro; Mizuno, Makoto; Ohno, Kousaku; Jakubowski, Joseph A; Tomizawa, Atsuyuki

    2016-10-05

    Previously, we showed preventive effects of prasugrel, a P2Y12 antagonist, in a non-human primate model of thrombotic middle cerebral artery occlusion (MCAO); however, it remains unclear if P2Y12 inhibition after MCAO reduces cerebral injury and dysfunction. Here we investigated the effects of R-138727, the major active metabolite of prasugrel, on ex vivo platelet aggregation at 5min, 15min, 60min, and 24h after administration to non-human primates (n=3). A single intravenous dose of R-138727 (0.03-0.3mg/kg) resulted in significant and sustained dose-related effects on platelets for up to 24h. R-138727 was administered 1h after MCAO induction, and its effects on thrombosis, cerebral infarction, and neurological deficits were determined (n=8-10). R-138727 (0.3mg/kg) significantly increased total patency rate of the MCA (P=0.0211). Although there was no effect on the patency rate before R-138727 dosing (P=0.3975), it increased 1h after dosing (P=0.0114). R-138727 significantly reduced total ischaemic infarction volumes (P=0.0147), including those of basal ganglia (P=0.0028), white matter (P=0.0393), and haemorrhagic infarction (P=0.0235). Additionally, treatment with R-138727 reduced overall neurological deficits (P=0.0019), including the subcategories of consciousness (P=0.0042), sensory system (P=0.0045), motor system (P=0.0079) and musculoskeletal coordination (P=0.0082). These findings support the possible utility of P2Y12 inhibition during early-onset MCAO to limit the progression and degree of cerebral ischaemia and infarction and also associated neurological deficits.

  10. The Neuroprotective Effect of Rosemary (Rosmarinus officinalis L.) Hydro-alcoholic Extract on Cerebral Ischemic Tolerance in Experimental Stroke

    PubMed Central

    Seyedemadi, Parisa; Rahnema, Mehdi; Bigdeli, Mohammad Reza; Oryan, Shahrebano; Rafati, Hassan

    2016-01-01

    The prevention of BBB breakdown and the subsequent vasogenic edema are important parts of the medical management of ischemic stroke. The purpose of this study was to investigate the ischemic tolerance effect of Rosmarinus officinalis leaf hydro-alcoholic extract (RHE). Five groups of animals were designed: sham (underwent surgery without MCAO) and MCAO groups, the MCAO groups were pretreated orally by gavages with RHE (50, 75, and 100 mg/Kg/day), daily for 30 days. Two hours after the last dose, serum lipid levels were determined and then the rats were subjected to 60 min of middle cerebral artery occlusion followed by 24 h of reperfusion. Subsequently, brain infarct size, brain edema and Evans Blue dye extravasations were measured and neurological deficits were scored. Dietary RHE could significantly reduce cortical and sub-cortical infarct volumes (211.55 ± 24.88 mm3 vs. 40.59 ± 10.04 mm3 vs. 29.96 ± 12.19 mm3vs. 6.58 ± 3.2 mm3), neurologic deficit scores, cerebral edema (82.34 ± 0.42% vs. 79.92 ± 0.49% vs. 79.45 ± 0.26% vs. 79.30 ± 0.19%), blood–brain barrier (BBB) permeability (7.73 ± 0.4 μg/g tissue vs. 4.1 ± 0.23 μg/g tissue vs. 3.58 ± 0.3 μg/g tissue vs. 3.38 ± 0.25 μg/g tissue) in doses of 50, 75 and 100 mg/Kg/day as compared with the control group in the transient model of focal cerebral ischemia. Although pretreatment with RHE plays an important role in the generation of tolerance against cerebral I/R injury, further studies are needed to clarify the mechanism of the ischemic tolerance. PMID:28243285

  11. Effects of Neural Stem Cell and Olfactory Ensheathing Cell Co-transplants on Tissue Remodelling After Transient Focal Cerebral Ischemia in the Adult Rat.

    PubMed

    Augestad, Ingrid Lovise; Nyman, Axel Karl Gottfrid; Costa, Alex Ignatius; Barnett, Susan Carol; Sandvig, Axel; Håberg, Asta Kristine; Sandvig, Ioanna

    2017-01-24

    Effective transplant-mediated repair of ischemic brain lesions entails extensive tissue remodeling, especially in the ischemic core. Neural stem cells (NSCs) are promising reparative candidates for stroke induced lesions, however, their survival and integration with the host-tissue post-transplantation is poor. In this study, we address this challenge by testing whether co-grafting of NSCs with olfactory ensheathing cells (OECs), a special type of glia with proven neuroprotective, immunomodulatory, and angiogenic effects, can promote graft survival and host tissue remodelling. Transient focal cerebral ischemia was induced in adult rats by a 60-min middle cerebral artery occlusion (MCAo) followed by reperfusion. Ischemic lesions were verified by neurological testing and magnetic resonance imaging. Transplantation into the globus pallidus of NSCs alone or in combination with OECs was performed at two weeks post-MCAo, followed by histological analyses at three weeks post-transplantation. We found evidence of extensive vascular remodelling in the ischemic core as well as evidence of NSC motility away from the graft and into the infarct border in severely lesioned animals co-grafted with OECs. These findings support a possible role of OECs as part of an in situ tissue engineering paradigm for transplant mediated repair of ischemic brain lesions.

  12. The Protective Effect of Human Umbilical Cord Blood CD34+ Cells and Estradiol against Focal Cerebral Ischemia in Female Ovariectomized Rat: Cerebral MR Imaging and Immunohistochemical Study

    PubMed Central

    Liang, Ching-Chung; Liu, Ho-Ling; Chang, Shuenn-Dhy; Chen, Sheng-Hsien; Lee, Tsong-Hai

    2016-01-01

    Human umbilical cord blood derived CD34+ stem cells are reported to mediate therapeutic effects in stroke animal models. Estrogen was known to protect against ischemic injury. The present study wished to investigate whether the protective effect of CD34+ cells against ischemic injury can be reinforced with complemental estradiol treatment in female ovariectomized rat and its possible mechanism. Experiment 1 was to determine the best optimal timing of CD34+ cell treatment for the neuroprotective effect after 60-min middle cerebral artery occlusion (MCAO). Experiment 2 was to evaluate the adjuvant effect of 17β-estradiol on CD34+ cell neuroprotection after MCAO. Experiment 1 showed intravenous infusion with CD34+ cells before MCAO (pre-treatment) caused less infarction size than those infused after MCAO (post-treatment) on 7T magnetic resonance T2-weighted images. Experiment 2 revealed infarction size was most significantly reduced after CD34+ + estradiol pre-treatment. When compared with no treatment group, CD34+ + estradiol pre-treatment showed significantly less ADC reduction at 2 h and 2 d, less CBF reduction at 2 h and less hyperperfusion at 2 d. The immunoreactivity of c-Fos, c-Jun and GFAP was attenuated, and BDNF showed significant recovery from 2 h to 2 d after MCAO, especially after CD34+ + estradiol pre-treatment. The present study suggests pre-treatment with CD34+ cells with complemental estradiol can be most protective against ischemic injury, which may act through stabilization of cerebral hemodynamics and normalization of the expressions of immediate early genes and BDNF. PMID:26760774

  13. Anti-excitotoxic effects of cannabidiol are partly mediated by enhancement of NCX2 and NCX3 expression in animal model of cerebral ischemia.

    PubMed

    Khaksar, Sepideh; Bigdeli, Mohammad Reza

    2017-01-05

    Excitotoxicity and imbalance of sodium and calcium homeostasis trigger pathophysiologic processes in cerebral ischemia which can accelerate neuronal death. Neuroprotective role of cannabidiol (CBD), one of the main non-psychoactive phytocannabinoids of the cannabis plant, has attracted attention of many researchers in the neurodegenerative diseases studies. The present investigation was designed to determine whether cannabidiol can alleviate the severity of ischemic damages and if it is able to exert its anti-excitotoxic effects through sodium and calcium regulation. By using stereotaxic surgery, a guide cannula was implanted into the lateral ventricle. Cannabidiol (50, 100, and 200ng/rat; i.c.v.) was administrated for 5 consecutive days. After pretreatment, the rats were subjected to 60min of right middle cerebral artery occlusion (MCAO). After 24h, neurological deficits score, infarct volume, brain edema, and blood-brain barrier (BBB) permeability in total of hemisphere, cortex, piriform cortex-amygdala, and striatum were assessed. The expression of Na(+)/Ca(2+) exchangers (NCXs) protein as an endogenous target in these regions was also studied. The present results indicate that administration of cannabidiol (100 and 200ng/rat) in the MCAO-induced cerebral ischemia caused a remarkable reduction in neurological deficit, infarction, brain edema, and BBB permeability in comparison with the vehicle group. Up-regulation of NCX2 and NCX3 in cannabidiol-received groups was also observed. These findings support the view that the reduction of ischemic injuries elicited by cannabidiol can be at least partly due to the enhancement of NCX protein expression and its cerebro-protective role in those cerebral territories supplied by MCA.

  14. Expressions of hypoxic stress sensor proteins after transient cerebral ischemia in mice.

    PubMed

    Shang, Jingwei; Liu, Ning; Tanaka, Nobuhito; Abe, Koji

    2012-03-01

    The role of hypoxia sensor proteins is important in responding and protecting cells against hypoxic/ischemic injury in brain. Seven in absentia homolog 1 (Siah1) regulates primarily the downstream sensor proteins factor inhibiting alpha subunit of hypoxia-inducible factor-1 (FIH) under normoxic conditions and prolyl hydroxylases domain 3 (PHD3) under hypoxic conditions. In the present study, we investigated the temporal and spatial changes of these hypoxia sensor proteins, Siah1, FIH, and PHD3, after 60 min of transient middle cerebral artery occlusion (tMCAO) up to 72 hr after reperfusion in ICR mice. Immunohistochemistry and Western blot analyses showed that Siah1 was quickly and strongly induced in neuronal cells of the ischemic penumbra, with a peak at 2 hr, and gradually returned toward the sham control (SC) level until 72 hr. In contrast, the expressions of FIH and PHD3 were strongly visualized in the SC brains, and significantly reduced in a time-dependent manner with reperfusion until 72 hr. In the ischemic core region, Siah1, FIH, and PHD3 showed a similar change of strong and progressive decrease until 72 hr. Double-immunofluorescence analyses showed a cytoplasmic localization of Siah1 and both cytoplasmic and nuclear localizations of FIH and PHD3 and that Siah1 plus FIH or PHD3 were well colocalized in same neuron at 2 hr after tMCAO. The present study suggests that hypoxia sensor proteins (Siah1, FIH, and PHD3) showed temporally and spatially different expressions after tMCAO, which could provide an effective neuroprotective reaction through their further downstream proteins after cerebral ischemia.

  15. Cerebral Palsy

    MedlinePlus

    Cerebral palsy is a group of disorders that affect a person's ability to move and to maintain balance ... do not get worse over time. People with cerebral palsy may have difficulty walking. They may also have ...

  16. Postradiation regional cerebral blood flow in primates

    SciTech Connect

    Cockerham, L.G.; Cerveny, T.J.; Hampton, J.D.

    1986-06-01

    Early transient incapacitation (ETI) is the complete cessation of performance during the first 30 min after radiation exposure and performance decrement (PD) is a reduction in performance at the same time. Supralethal doses of radiation have been shown to produce a marked decrease in regional cerebral blood flow in primates concurrent with hypotension and a dramatic release of mast cell histamine. In an attempt to elucidate mechanisms underlying the radiation-induced ETI/PD phenomenon and the postradiation decrease in cerebral blood flow, primates were exposed to 100 Gy (1 Gy = 100 rads), whole-body, gamma radiation. Pontine and cortical blood flows were measured by hydrogen clearance, before and after radiation exposure. Systemic blood pressures were determined simultaneously. Systemic arterial histamine levels were determined preradiation and postradiation. Data obtained indicated that radiated animals showed a decrease in blood flow of 63% in the motor cortex and 51% in the pons by 10 min postradiation. Regional cerebral blood flow of radiated animals showed a slight recovery 20 min postradiation, followed by a fall to the 10 min nadir by 60 min postradiation. Immediately, postradiation systemic blood pressure fell 67% and remained at that level for the remainder of the experiment. Histamine levels in the radiated animals increased a hundredfold 2 min postradiation. This study indicates that regional cerebral blood flow decreases postradiation with the development of hypotension and may be associated temporally with the postradiation release of histamine.

  17. Variation of pathways and network profiles reveals the differential pharmacological mechanisms of each effective component to treat middle cerebral artery ischemia-reperfusion mice

    PubMed Central

    Dang, HaiXia; Li, KangNing; Yu, YaNan; Zhang, YingYing; Liu, Jun; Wang, PengQian; Li, Bing; Wang, HaiNan; Li, Haixia; Wang, YongYan

    2015-01-01

    Using a system pharmacology strategy, this study evaluated the unique pharmacological characteristics of three different neuroprotective compounds for the treatment of cerebral ischemia-reperfusion. A microarray including 374 brain ischemia-related genes was used to identify the differentially expressed genes among five treatment groups: baicalin, jasminoidin, ursodeoxycholic acid, sham, and vehicle, and MetaCore analysis software was applied to identify the significantly altered pathways, processes and interaction network parameters. At pathway level, 46, 25, and 31 pathways were activated in the baicalin, jasminoidin, and ursodeoxycholic acid groups, respectively. Thirteen pathways mainly related with apoptosis and development were commonly altered in the three groups. Additionally, baicalin also targeted pathways related with development, neurophysiologic process and cytoskeleton remodeling, while jasminoidin targeted pathways related with cell cycle and ursodeoxycholic acid targeted those related with apoptosis and development. At process level, three processes were commonly regulated by the three groups in the top 10 processes. Further interaction network analysis revealed that baicalin, jasminoidin, and ursodeoxycholic acid displayed unique features either on network topological parameters or network structure. Additional overlapping analysis demonstrated that compared with ursodeoxycholic acid, the pharmacological mechanism of baicalin was more similar with that of jasminoidin in treating brain ischemia. The data presented in this study may contribute toward the understanding of the common and differential pharmacological mechanisms of these three compounds. PMID:26168995

  18. Voluntary suppression of hyperthermia-induced hyperventilation mitigates the reduction in cerebral blood flow velocity during exercise in the heat.

    PubMed

    Tsuji, Bun; Honda, Yasushi; Ikebe, Yusuke; Fujii, Naoto; Kondo, Narihiko; Nishiyasu, Takeshi

    2015-04-15

    Hyperthermia during prolonged exercise leads to hyperventilation, which can reduce arterial CO2 pressure (PaCO2 ) and, in turn, cerebral blood flow (CBF) and thermoregulatory response. We investigated 1) whether humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise and 2) the effects of voluntary breathing control on PaCO2 , CBF, sweating, and skin blood flow. Twelve male subjects performed two exercise trials at 50% of peak oxygen uptake in the heat (37°C, 50% relative humidity) for up to 60 min. Throughout the exercise, subjects breathed normally (normal-breathing trial) or they tried to control their minute ventilation (respiratory frequency was timed with a metronome, and target tidal volumes were displayed on a monitor) to the level reached after 5 min of exercise (controlled-breathing trial). Plotting ventilatory and cerebrovascular responses against esophageal temperature (Tes) showed that minute ventilation increased linearly with rising Tes during normal breathing, whereas controlled breathing attenuated the increased ventilation (increase in minute ventilation from the onset of controlled breathing: 7.4 vs. 1.6 l/min at +1.1°C Tes; P < 0.001). Normal breathing led to decreases in estimated PaCO2 and middle cerebral artery blood flow velocity (MCAV) with rising Tes, but controlled breathing attenuated those reductions (estimated PaCO2 -3.4 vs. -0.8 mmHg; MCAV -10.4 vs. -3.9 cm/s at +1.1°C Tes; P = 0.002 and 0.011, respectively). Controlled breathing had no significant effect on chest sweating or forearm vascular conductance (P = 0.67 and 0.91, respectively). Our results indicate that humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise, and this suppression mitigates changes in PaCO2 and CBF.

  19. Dissecting aneurysm of the middle cerebral artery treated with heparin infusion in a 6-year-old child; neurological recovery with delayed spontaneous thrombosis: case illustration and literature review.

    PubMed

    Anichini, G; Passacantilli, E; Lenzi, J; Guidetti, G; Santoro, A

    2012-04-01

    Aneurysms in the pediatric population are a rare pathology with specific features which requires a deep knowledge of their pathogenesis for the best therapeutic choice; the authors report their experience with a patient presenting aneurysm of the middle cerebral artery (MCA) associated with proximal stenosis of the vessel. A six-year-old girl came to our observation after sudden onset of headache and left hemiparesis. Angio-MRI and angio-CT scan showed a right MCA dissecting aneurysms associated with proximal stenosis of the vessel. Patient started a therapy with low molecular weight heparin (LMWH), replaced, 15 days later, with acetyl-salicylic acid (ASA). Patient showed a rapid and almost complete neurological recovery, despite several radiological exams confirmed a complete occlusion of the right MCA. As many other authors noted, dissecting aneurysms in the pediatric population are probably due to a defect of the entire arterial wall. Combination of stenosis, turbulence and partial thrombosis of the aneurysm led to a complete occlusion of artery involved, leading to the formation of collateral circles. In our case, complete thrombosis was probably delayed with anticoagulant therapy and the progressive reinforcement of collateral circles lead to the patient's neurological recovery.

  20. Not only the Sugar, Early infarct sign, hyperDense middle cerebral artery, Age, Neurologic deficit score but also atrial fibrillation is predictive for symptomatic intracranial hemorrhage after intravenous recombinant tissue plasminogen activator

    PubMed Central

    Muengtaweepongsa, Sombat; Prapa-Anantachai, Pornpoj; Dharmasaroja, Pornpat A.

    2017-01-01

    Background: Symptomatic intracranial hemorrhage (sICH) is the most unwanted adverse event in patients with acute ischemic stroke who received intravenous recombinant tissue plasminogen activator (i.v. rt-PA). Many tool scores are available to predict the probability of sICH. Among those scores, the Sugar, Early infarct sign, hyperDense middle cerebral artery, Age, Neurologic deficit (SEDAN) gives the highest area under the curve-receiver operating characteristic value. Objective: We aimed to examine any factors other than the SEDAN score to predict the probability of sICH. Methods: Patients with acute ischemic stroke treated with i.v. rt-PA within 4.5 h time window from January 2010 to July 2012 were evaluated. Compiling demographic data, risk factors, and comorbidity (hypertension, diabetes mellitus, dyslipidemia, atrial fibrillation (AF), ischemic heart disease, valvular heart disease, previous stroke, gout, smoking cigarette, drinking alcoholic beverage, family history of stroke, and family history of ischemic heart disease), computed tomography scan of patients prior to treatment with rt-PA, and assessing the National Institutes of Health Stroke Scale (NIHSS) score for the purpose of calculating SEDAN score were analyzed. Results: Of 314 patients treated with i.v. rt-PA, there were 46 ICH cases (14.6%) with 14 sICH (4.4%) and 32 asymptomatic intracranial hemorrhage cases (10.2%). The rate of sICH occurrence was increased in accordance with the increase in the SEDAN score and AF. Age over 75 years, early infarction, hyperdense cerebral artery, baseline blood sugar more than 12 mmol/l, NIHSS as 10 or more, and AF were the risk factors to develop sICH after treated with rt-PA at 1.535, 2.501, 1.093, 1.276, 1.253, and 2.492 times, respectively. Conclusions: Rather than the SEDAN score, AF should be a predictor of sICH in patients with acute ischemic stroke after i.v. rt-PA treatment in Thai population. PMID:28149081

  1. Somatostatin binding to dissociated cells from rat cerebral cortex

    SciTech Connect

    Colas, B.; Prieto, J.C.; Arilla, E. )

    1990-11-01

    A method has been developed for the study of somatostatin (SS) binding to dissociated cells from rat cerebral cortex. Binding of {sup 125}I (Tyr11)SS to cells obtained by mechanical dissociation of rat cerebral cortex was dependent on time and temperature, saturable, reversible and highly specific. Under conditions of equilibrium, i.e., 60 min at 25 degrees C, native SS inhibited tracer binding in a dose-dependent manner. The Scatchard analysis of binding data was linear and yielded a dissociation constant of 0.60 +/- 0.08 nM with a maximal binding capacity of 160 +/- 16 fmol/mg protein. The binding of {sup 125}I (Tyr11)SS was specific as shown in experiments on tracer displacement by the native peptides, SS analogues, and unrelated peptides.

  2. Validity of Acute Stroke Lesion Volume Estimation by Diffusion-Weighted Imaging–Alberta Stroke Program Early Computed Tomographic Score Depends on Lesion Location in 496 Patients With Middle Cerebral Artery Stroke

    PubMed Central

    Schröder, Julian; Cheng, Bastian; Ebinger, Martin; Köhrmann, Martin; Wu, Ona; Kang, Dong-Wha; Liebeskind, David S.; Tourdias, Thomas; Singer, Oliver C.; Christensen, Soren; Campbell, Bruce; Luby, Marie; Warach, Steven; Fiehler, Jens; Fiebach, Jochen B.; Gerloff, Christian; Thomalla, Götz

    2016-01-01

    Background and Purpose Alberta Stroke Program Early Computed Tomographic Score (ASPECTS) has been used to estimate diffusion-weighted imaging (DWI) lesion volume in acute stroke. We aimed to assess correlations of DWI-ASPECTS with lesion volume in different middle cerebral artery (MCA) subregions and reproduce existing ASPECTS thresholds of a malignant profile defined by lesion volume ≥100 mL. Methods We analyzed data of patients with MCA stroke from a prospective observational study of DWI and fluid-attenuated inversion recovery in acute stroke. DWI-ASPECTS and lesion volume were calculated. The population was divided into subgroups based on lesion localization (superficial MCA territory, deep MCA territory, or both). Correlation of ASPECTS and infarct volume was calculated, and receiver-operating characteristics curve analysis was performed to identify the optimal ASPECTS threshold for ≥100-mL lesion volume. Results A total of 496 patients were included. There was a significant negative correlation between ASPECTS and DWI lesion volume (r=−0.78; P<0.0001). With regards to lesion localization, correlation was weaker in deep MCA region (r=−0.19; P=0.038) when compared with superficial (r=−0.72; P<0.001) or combined superficial and deep MCA lesions (r=−0.72; P<0.001). Receiver-operating characteristics analysis revealed ASPECTS≤6 as best cutoff to identify ≥100-mL DWI lesion volume; however, positive predictive value was low (0.35). Conclusions ASPECTS has limitations when lesion location is not considered. Identification of patients with malignant profile by DWI-ASPECTS may be unreliable. ASPECTS may be a useful tool for the evaluation of noncontrast computed tomography. However, if MRI is used, ASPECTS seems dispensable because lesion volume can easily be quantified on DWI maps. PMID:25316278

  3. Two pore domain potassium channels in cerebral ischemia: a focus on K2P9.1 (TASK3, KCNK9)

    PubMed Central

    2010-01-01

    Background Recently, members of the two-pore domain potassium channel family (K2P channels) could be shown to be involved in mechanisms contributing to neuronal damage after cerebral ischemia. K2P3.1-/- animals showed larger infarct volumes and a worse functional outcome following experimentally induced ischemic stroke. Here, we question the role of the closely related K2P channel K2P9.1. Methods We combine electrophysiological recordings in brain-slice preparations of wildtype and K2P9.1-/- mice with an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of K2P9.1 in stroke formation. Results Patch-clamp recordings reveal that currents mediated through K2P9.1 can be obtained in slice preparations of the dorsal lateral geniculate nucleus (dLGN) as a model of central nervous relay neurons. Current characteristics are indicative of K2P9.1 as they display an increase upon removal of extracellular divalent cations, an outward rectification and a reversal potential close to the potassium equilibrium potential. Lowering extracellular pH values from 7.35 to 6.0 showed comparable current reductions in neurons from wildtype and K2P9.1-/- mice (68.31 ± 9.80% and 69.92 ± 11.65%, respectively). These results could be translated in an in vivo model of cerebral ischemia where infarct volumes and functional outcomes showed a none significant tendency towards smaller infarct volumes in K2P9.1-/- animals compared to wildtype mice 24 hours after 60 min of tMCAO induction (60.50 ± 17.31 mm3 and 47.10 ± 19.26 mm3, respectively). Conclusions Together with findings from earlier studies on K2P2.1-/- and K2P3.1-/- mice, the results of the present study on K2P9.1-/- mice indicate a differential contribution of K2P channel subtypes to the diverse and complex in vivo effects in rodent models of cerebral ischemia. PMID:20646278

  4. Exenatide Regulates Cerebral Glucose Metabolism in Brain Areas Associated With Glucose Homeostasis and Reward System.

    PubMed

    Daniele, Giuseppe; Iozzo, Patricia; Molina-Carrion, Marjorie; Lancaster, Jack; Ciociaro, Demetrio; Cersosimo, Eugenio; Tripathy, Devjit; Triplitt, Curtis; Fox, Peter; Musi, Nicolas; DeFronzo, Ralph; Gastaldelli, Amalia

    2015-10-01

    Glucagon-like peptide 1 receptors (GLP-1Rs) have been found in the brain, but whether GLP-1R agonists (GLP-1RAs) influence brain glucose metabolism is currently unknown. The study aim was to evaluate the effects of a single injection of the GLP-1RA exenatide on cerebral and peripheral glucose metabolism in response to a glucose load. In 15 male subjects with HbA1c of 5.7 ± 0.1%, fasting glucose of 114 ± 3 mg/dL, and 2-h glucose of 177 ± 11 mg/dL, exenatide (5 μg) or placebo was injected in double-blind, randomized fashion subcutaneously 30 min before an oral glucose tolerance test (OGTT). The cerebral glucose metabolic rate (CMRglu) was measured by positron emission tomography after an injection of [(18)F]2-fluoro-2-deoxy-d-glucose before the OGTT, and the rate of glucose absorption (RaO) and disposal was assessed using stable isotope tracers. Exenatide reduced RaO0-60 min (4.6 ± 1.4 vs. 13.1 ± 1.7 μmol/min ⋅ kg) and decreased the rise in mean glucose0-60 min (107 ± 6 vs. 138 ± 8 mg/dL) and insulin0-60 min (17.3 ± 3.1 vs. 24.7 ± 3.8 mU/L). Exenatide increased CMRglu in areas of the brain related to glucose homeostasis, appetite, and food reward, despite lower plasma insulin concentrations, but reduced glucose uptake in the hypothalamus. Decreased RaO0-60 min after exenatide was inversely correlated to CMRglu. In conclusion, these results demonstrate, for the first time in man, a major effect of a GLP-1RA on regulation of brain glucose metabolism in the absorptive state.

  5. Cerebral Paragonimiasis.

    PubMed

    Miyazaki, I

    1975-01-01

    The first case of cerebral paragonimiasis was reported by Otani in Japan in 1887. This was nine years after Kerbert's discovery of the fluke in the lungs of Bengal tigers and seven years after a human pulmonary infection by the fluke was demonstrated by Baelz and Manson. The first case was a 26-year-old man who had been suffering from cough and hemosputum for one year. The patient developed convulsive seizures with subsequent coma and died. The postmortem examination showed cystic lesions in the right frontal and occipital lobes. An adult fluke was found in the occipital lesion and another was seen in a gross specimen of normal brain tissue around the affected occipital lobe. Two years after Otani's discovery, at autopsy a 29-year-old man with a history of Jacksonian seizure was reported as having cerebral paragonimiasis. Some time later, however, it was confirmed that the case was actually cerebral schistosomiasis japonica. Subsequently, cases of cerebral paragonimiasis were reported. However, the majority of these cases were not confirmed histologically. It was pointed out that some of these early cases were probably not Paragonimus infection. After World War II, reviews as well as case reports were published. Recently, investigations have been reported from Korea, with a clinicla study on 62 cases of cerebral paragonimiasis seen at the Neurology Department of the National Medical Center, Seoul, between 1958 and 1964. In 1971 Higashi described a statistical study on 105 cases of cerebral paragonimiasis that had been treated surgically in Japan.

  6. Cerebral Palsy (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Cerebral Palsy KidsHealth > For Parents > Cerebral Palsy A A A ... kids who are living with the condition. About Cerebral Palsy Cerebral palsy is one of the most common ...

  7. Cerebral palsy - resources

    MedlinePlus

    Resources - cerebral palsy ... The following organizations are good resources for information on cerebral palsy : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/disorders/cerebral_palsy/cerebral_palsy. ...

  8. [Differential effects of isoflurane and nitrous oxide on cerebral blood flow, metabolism and electrocorticogram after incomplete cerebral ischemia in the rat].

    PubMed

    Ishikawa, T; Maekawa, T; Shinohara, K; Sakabe, T; Takeshita, H

    1989-07-01

    Differential effects of isoflurane (ISOF) and N2O on cerebral blood flow, metabolism and electrocorticogram (ECoG) were examined in rats subjected to 15 min-incomplete cerebral ischemia. In the first study, regional cerebral blood flow (rCBF) and ECoG were measured during and after ischemia. In the second study, local cerebral blood flow (LCBF) and glucose utilization (LCGU) were determined at 60 min after reperfusion. In the N2O group, rCBF in both the cerebral cortex and hippocampus decreased significantly to less than 10% of the pre-ischemic value during ischemia, and it increased to 170% at 10 min after reperfusion. The ECoG became flat during ischemia and reappeared at 21 min after reperfusion. In the ISOF group, rCBF decreased significantly to 25% during ischemia and returned to the preischemic value after reperfusion. The ECoG became flat during ischemia and reappeared at 14 min. In the N2O group, LCBFs decreased significantly to 40-50% of the pre-ischemic values in the forebrain. LCGUs decreased significantly to 30-50% in all structures of the forebrain. In the ISOF group, LCBFs decreased significantly to 60-80% in the forebrain, but were not different in other structures. LCGUs did not differ from pre-ischemic values in all structures except for in the thalamus and habenula. These results may indicate cerebral protective effects of ISOF on incomplete cerebral ischemia in rats.

  9. Cerebral palsy.

    PubMed

    Colver, Allan; Fairhurst, Charles; Pharoah, Peter O D

    2014-04-05

    The syndrome of cerebral palsy encompasses a large group of childhood movement and posture disorders. Severity, patterns of motor involvement, and associated impairments such as those of communication, intellectual ability, and epilepsy vary widely. Overall prevalence has remained stable in the past 40 years at 2-3·5 cases per 1000 livebirths, despite changes in antenatal and perinatal care. The few studies available from developing countries suggest prevalence of comparable magnitude. Cerebral palsy is a lifelong disorder; approaches to intervention, whether at an individual or environmental level, should recognise that quality of life and social participation throughout life are what individuals with cerebral palsy seek, not improved physical function for its own sake. In the past few years, the cerebral palsy community has learned that the evidence of benefit for the numerous drugs, surgery, and therapies used over previous decades is weak. Improved understanding of the role of multiple gestation in pathogenesis, of gene environment interaction, and how to influence brain plasticity could yield significant advances in treatment of the disorder. Reduction in the prevalence of post-neonatal cerebral palsy, especially in developing countries, should be possible through improved nutrition, infection control, and accident prevention.

  10. The neuroprotective effect of olive leaf extract is related to improved blood-brain barrier permeability and brain edema in rat with experimental focal cerebral ischemia.

    PubMed

    Mohagheghi, Fatemeh; Bigdeli, Mohammad Reza; Rasoulian, Bahram; Hashemi, Payman; Pour, Marzyeh Rashidi

    2011-01-15

    Recent studies suggest that olive extracts suppress inflammation and reduce stress oxidative injury. We sought to extend these observations in an in vivo study of rat cerebral ischemia-reperfusion injury. Four groups, each of 18 Wister rats, were studied. One (control) group received distilled water, while three treatment groups received oral olive leaf extract (50, 75 and 100mg/kg/day respectively). After 30 days, blood lipid profiles were determined, before a 60 min period of middle cerebral artery occlusion (MCAO). After 24h reperfusion, neurological deficit scores, infarct volume, brain edema, and blood-brain barrier permeability were each assessed in subgroups of six animals drawn from each main group. Olive leaf extract reduced the LDL/HDL ratio in doses 50, 75, and 100mg/kg/day in comparison to the control group (P<0.001), and offered cerebroprotection from ischemia-reperfusion. For controls vs. doses of 50mg/kg/day vs. 75 mg/kg/day vs. 100mg/kg/day, attenuated corrected infarct volumes were 209.79 ± 33.05 mm(3) vs. 164.36 ± 13.44 mm(3) vs. 123.06 ± 28.83 mm(3) vs. 94.71 ± 33.03 mm(3); brain water content of the infarcted hemisphere 82.33 ± 0.33% vs. 81.33 ± 0.66% vs. 80.75 ± 0.6% vs. 80.16 ± 0.47%, and blood-brain barrier permeability of the infarcted hemisphere 11.22 ± 2.19 μg/g vs. 9.56 ± 1.74 μg/g vs. 6.99 ± 1.48 μg/g vs. 5.94 ± 1.73 μg/g tissue (P<0.05 and P<0.01 for measures in doses 75 and 100mg/kg/day vs. controls respectively). Oral administration of olive leaf extract reduces infarct volume, brain edema, blood-brain barrier permeability, and improves neurologic deficit scores after transient middle cerebral artery occlusion in rats.

  11. [Cerebral artery thrombosis in pregnancy].

    PubMed

    Charco Roca, L M; Ortiz Sanchez, V E; Hernandez Gutierrez-Manchon, O; Quesada Villar, J; Bonmatí García, L; Rubio Postigo, G

    2015-11-01

    A 28 year old woman, ASA I, who, in the final stages of her pregnancy presented with signs of neural deficit that consisted of distortion of the oral commissure, dysphagia, dysarthria, and weakness on the left side of the body. She was diagnosed with thrombosis in a segment of the right middle cerebral artery which led to an ischemic area in the right frontal lobe. Termination of pregnancy and conservative treatment was decided, with good resolution of the symptoms.

  12. Reduplication after right middle cerebral artery infarction.

    PubMed

    Jocic, Z; Staton, R D

    1993-11-01

    Reduplication and misidentification syndromes are similar and peculiar phenomena of disorientation and beliefs with delusional qualities. They are more frequent among neurologic and psychiatric patients than previously thought. Organic factors play a definitive role in their occurrence. A case is presented which exemplifies reduplication of place and person, following a right hemisphere focal lesion. Current theories are briefly reviewed and possible roles of nortriptyline therapy and psychological factors are discussed in the pathogenesis of reduplicative phenomena in this patient.

  13. Encephaloduroarteriosynangiosis for cerebral proliferative angiopathy with cerebral ischemia.

    PubMed

    Kono, Kenichi; Terada, Tomoaki

    2014-12-01

    Cerebral proliferative angiopathy (CPA) is a rare clinical entity. This disorder is characterized by diffuse vascular abnormalities with intermingled normal brain parenchyma, and is differentiated from classic arteriovenous malformations. The management of CPA in patients presenting with nonhemorrhagic neurological deficits due to cerebral ischemia is challenging and controversial. The authors report a case of adult CPA with cerebral ischemia in which neurological deficits were improved after encephaloduroarteriosynangiosis (EDAS). A 28-year-old man presented with epilepsy. Magnetic resonance imaging and angiography showed a diffuse vascular network (CPA) in the right hemisphere. Antiepileptic medications were administered. Four years after the initial onset of epilepsy, the patient's left-hand grip strength gradually decreased over the course of 1 year. The MRI studies showed no infarcts, but technetium-99m-labeled ethyl cysteinate dimer ((99m)Tc-ECD) SPECT studies obtained with acetazolamide challenge demonstrated hypoperfusion and severely impaired cerebrovascular reactivity over the affected hemisphere. This suggested that the patient's neurological deficits were associated with cerebral ischemia. The authors performed EDAS for cerebral ischemia, and the patient's hand grip strength gradually improved after the operation. Follow-up angiography studies obtained 7 months after the operation showed profound neovascularization through the superficial temporal artery and the middle meningeal artery. A SPECT study showed slight improvement of hypoperfusion at the focal region around the right motor area, indicating clinical improvement from the operation. The authors conclude that EDAS may be a treatment option for CPA-related hypoperfusion.

  14. Stenting for a symptomatic posterior cerebral artery stenosis.

    PubMed

    Xu, Gelin; Zheng, Ling; Zhou, Zhiming; Liu, Xinfeng

    2009-05-01

    Evolvement of endovascular devices and increase of operator expertise have made angioplasty and stenting in intracranial vessels technically possible. Stenting has been reported in treating stenosis in middle and anterior cerebral arteries with favorable outcomes. However, the feasibility of stenting for stenosis in posterior cerebral artery (PCA) has not been established. We report a patient with progressive focal cerebral ischemic symptoms, which were arrested after reconstruction of the associated PCA stenosis with stenting.

  15. Cerebral Malaria.

    PubMed

    Marsden, P D; Bruce-Chwatt, L J

    1975-01-01

    Cerebral malaria is an acute diffuse encephalopathy associated only with Plasmodium falciparum. It is probably a consequence of the rapid proliferation of the parasites in the body of man in relation to red cell invasion, and results in stagnation of blood flow in cerebralcapillaries with thromobotic occlusion of large numbers of cerebral capillaries. The subsequent cerebral pathology is cerebral infarction with haemorrhage and cerebral oedema. The wide prevalence of P. falciparum in highly endemic areas results in daily challenges to patients from several infected mosquitoes. It is thus important to understand the characteristics of P. falciparum, since this is one of the most important protozoan parasites of man and severe infection from it constitutes one of the few real clinical emergencies in tropical medicine. One of the more important aspects of the practice of medicine in the tropics is to establish a good understanding of the pattern of medical practice in that area. This applies to malaria as well as to other diseases. The neophyte might be somewhat surprised to learn, for example that an experienced colleague who lives in a holoendemic malarious area such as West Africa, sees no cerebral malaria. But the explanation is simple when the doctor concerned has a practice which involves treating adults only. Cerebral malaria is rare in adults, because in highly endemic areas, by the age of 1 year most of the infants in a group under study have already experienced their first falciparum infection. By the time they reach adult life, they have a solid immunity against severe falciparum infections. In fact, "clinical malaria" could occur in such a group under only two circumstances: 1) in pregnancy, a patent infection with P. falciparum might develop, probably due to an IgG drain across the placenta to the foetus;2) in an individual who has constantly taken antimalarials and who may have an immunity at such a low level that when antimalarial therapy is interrupted

  16. Effect of disodium cromoglycate (DSCG) and antihistamines on post-irradiation cerebral blood flow and plasma levels of histamine and neurotensin

    SciTech Connect

    Cockerham, L.G.; Pautler, E.L.; Carraway, R.E.; Cochrane, D.E.; Hampton, J.D.

    1988-01-01

    In an attempt to elucidate mechanisms underlying the irradiation-induced decrease in regional cerebral blood flow (rCBF) in primates, hippocampal and visual cortical blood flows of rhesus monkeys were measured by hydrogen clearance, before and after exposure to 100-Gy, whole-body, gamma irradiation. Systemic blood pressures were monitored simultaneously. Systemic arterial plasma histamine and neurotensin levels were determined preirradiation and postirradiation. Compared to control animals, the irradiated monkeys exhibited an abrupt decline in systemic blood pressure to 23% of the preirradiation level within 10-min postirradiation, falling to 12% by 60 min. A decrease in hippocampal blood flow to 32% of the preirradiation level was noted at 10-min postirradiation, followed by a slight recovery to 43% at 30 min and a decline to 23% by 60 min. The cortical blood flow for the same animals showed a steady decrease to 29% of the preirradiation levels by 60-min postirradiation. Animals given the mast-cell stabilizer disodium cromoglycate and the antihistamines mepyramine and cimetidine before irradiation did not exhibit an abrupt decline in blood pressure but displayed a gradual decrease to a level 33% below preirradiation levels by 60 min postirradiation. Also, the treated, irradiated monkeys displayed rCBF values that were not significantly different from the nonirradiated controls. The plasma neurotensin levels in the irradiated animals, treated and untreated, indicated a nonsignificant postirradiation increase above control levels.

  17. Cerebral malaria

    PubMed Central

    Newton, C.; Hien, T. T.; White, N.

    2000-01-01

    Cerebral malaria may be the most common non-traumatic encephalopathy in the world. The pathogenesis is heterogenous and the neurological complications are often part of a multisystem dysfunction. The clinical presentation and pathophysiology differs between adults and children. Recent studies have elucidated the molecular mechanisms of pathogenesis and raised possible interventions. Antimalarial drugs, however, remain the only intervention that unequivocally affects outcome, although increasing resistance to the established antimalarial drugs is of grave concern. Artemisinin derivatives have made an impact on treatment, but other drugs may be required. With appropriate antimalarial drugs, the prognosis of cerebral malaria often depends on the management of other complications—for example, renal failure and acidosis. Neurological sequelae are increasingly recognised, but further research on the pathogenesis of coma and neurological damage is required to develop other ancillary treatments.

 PMID:10990500

  18. Perfusion of a cerebral protective solution enhances neuroprotection in a rabbit model of occlusion-reperfusion: prolonged cerebral dormancy time.

    PubMed

    Ye, Libin; Hua, Aiyuan; Dai, Bo; Lu, Tingting; Zhang, Zhaolin; Ye, Meilin; Weintraub, Michael; Li, Qingdi Quentin

    2014-01-01

    In the present study, we investigated the effect of a cerebral protective solution on prolongation of cerebral dormancy time in a rabbit model of occlusion-reperfusion. In a control group, rabbits were anesthetized and the four cerebral arteries (the left and right common carotid arteries and vertebral arteries) were occluded for 7.5 min followed by reperfusion. All six rabbits in the control group died. In contrast, a second group underwent perfusion of a cerebral protective solution for 15 min between artery occlusion and reperfusion. All six rabbits in this group survived. However, when the perfusion solution was changed to 5% glucose solution or rabbit plasma in two other groups, the rabbits in both the latter two groups also died. Neuroprotection was also observed when the protective solution was administered for 30-60 min after the onset of artery occlusion and before the return of blood flow (reperfusion). To understand the high rate of thrombotic stroke in the clinic, we assessed the influence of different organ tissue infusions on blood coagulation in vitro and found that blood clotting occurred faster in the presence of brain tissue infusion compared to liver, kidney, and heart tissue infusions. These results indicate a higher rate of thrombosis in brain tissue compared to any of the other tissues tested. The current study shows that perfusion of a cerebral protective solution produced a significant neuroprotective benefit in our rabbit model of occlusion-reperfusion, suggesting that administration of a cerebral protective solution may be an effective approach for the treatment of ischemic stroke.

  19. [Intraoperative monitoring of cerebral blood-flow and condition of cerebral at open and endovascular interventions in carotid system].

    PubMed

    Kuntsevich, G I; Tanashian, M M; Skrylev, S I; Krotenkova, M V; Shchipakin, V L; Koshcheev, A Iu; Lagoda, O V; Gemdzhian, E G; Medvedev, R B; Kulikova, S N

    2011-01-01

    The aim of our research is to study hemodynamic and embolic situation during the carotid endarterectomy (CEA), carotid angioplastic and stenting (CAS), and to reveal the prognostic significance of the data provided by intraoperative monitoring of the brain blood flow in exposing acute ischemic lesions in brain. Intraoperative monitoring of blood flow in artery ophthalmic vas carried out with 60% of patients, in the middle cerebral artery-with 40% during the main stages of CEA, and with 64 patients in the middle cerebral artery during CAS. The comparison of the data of intraoperative monitoring of blood flow in middle cerebral artery with the result of brain diffusion-weighted magnetic resonance imaging (DW-MRI) 24 hours after the operation shows, that solid microembolic signals and vasospasm are prognostic signals (sensibility and specifics make up 95%) in the development of acute ischemic cerebral lesions. The monitoring of blood flow in artery ophthalmic is of the greatest diagnostic value in estimation of the hemodynamic situation, but it is of the lowest practical value in detecting microembolic signals. According to the data of the intraoperative blood flow monitoring in middle cerebral artery in group CEA the development of acute ischemic cerebral lesions were predicted with 11,1% of patients and the cause of postoperative stroke, developed by 2,9% of the patients, was specified. According to the result of DW-MRI, acute ischemic cerebral lesions were diagnosed with 21% of patients, that is, 18% of ischemic cerebral lesions were asymptomatic. In group CAS ischemic cerebral lesions were prognosed with 30% of patients, actually they were later detected with 40,6% of cases by means of DW-MRI. According to the data of intraoperative of blood flow monitoring the cause of the development of postoperative stroke was specified in 6,2% of cause; in 34,4% of cause the acute ischemic cerebral lesions were asymptomatic.

  20. Cerebral Hypoperfusion Precedes Nausea During Centrifugation

    NASA Technical Reports Server (NTRS)

    Serrador, Jorge M.; Schlegel, Todd T.; Black, F. Owen; Wood, Scott J.

    2004-01-01

    Nausea and motion sickness are important operational concerns for aviators and astronauts. Understanding underlying mechanisms associated with motion sickness may lead to new treatments. The goal of this work was to determine if cerebral blood flow changes precede the development of nausea in motion sick susceptible subjects. Cerebral flow velocity in the middle cerebral artery (transcranial Doppler), blood pressure (Finapres) and end-tidal CO2 were measured while subjects were rotated on a centrifuge (250 degrees/sec). Following 5 min of rotation, subjects were translated 0.504 m off-center, creating a +lGx centripetal acceleration in the nasal-occipital plane. Ten subjects completed the protocol without symptoms while 5 developed nausea (4 while 6ff-center and 1 while rotating on-center). Prior to nausea, subjects had significant increases in blood pressure (+13plus or minus 3 mmHg, P less than 0.05) and cerebrovascular resistance (+46 plus or minus 17%, P less than 0.05) and decreases in cerebral flow velocity both in the second (-13 plus or minus 4%) and last minute (-22 plus or minus 5%) before symptoms (P less than 0.05). In comparison, controls demonstrated no change in blood pressure or cerebrovascular resistance in the last minute of off-center rotation and only a 7 plus or minus 2% decrease in cerebral flow velocity. All subjects had significant hypocapnia (-3.8 plus or minus 0.4 mmHg, P less than 0.05), however this hypocapnia could not fully explain the cerebral hypoperfusion associated with the development of nausea. These data indicate that reductions in cerebral blood flow precede the development of nausea. Further work is necessary to determine what role cerebral hypoperfusion plays in motion sickness and whether cerebral hypoperfusion can be used to predict the development of nausea in susceptible individuals.

  1. Postischemic cerebral blood flow and neuroeffector mechanisms.

    PubMed

    Macfarlane, R; Moskowitz, M A; Tasdemiroglu, E; Wei, E P; Kontos, H A

    1991-01-01

    The influence of neuroeffector mechanisms in the regulation of postischemic cerebral blood flow was investigated by microsphere determination in 8 cats after chronic unilateral vascular deafferentation by trigeminal ganglionectomy. The animals were subjected to 90 min of reperfusion following 10 min of global ischemia induced by 4-vessel occlusion and systemic hypotension. Cortical hyperemia 30 min after reperfusion was attenuated by up to 48% in cortical gray matter ipsilateral to the side of trigeminal ganglionectomy (p less than 0.01). Axon reflex mechanisms involving the release of neuropeptides from peripheral sensory nerve fibers, such as substance P (SP), calcitonin gene-related peptide (CGRP) and neurokinin A (NKA), mediate this response. SP and NKA cause vasodilation by endothelium-dependent mechanisms (endothelium-dependent relaxing factor), whereas CGRP relaxes vascular smooth muscle by direct receptor interactions. Studies were therefore undertaken to determine the extent to which endothelium-dependent mechanisms mediate the hyperemia following global cerebral ischemia. In 7 intact cats, the postischemic response of pial arterioles to the topical application of acetylcholine (ACh; 10(-7) M), an endothelial-dependent vasodilator, was measured using a closed cranial window technique. Although ACh increased pial arteriolar caliber by 17% under resting conditions, the same dose elicited a vasoconstrictor response (87% of pre-ACh diameter 30 min after reperfusion) for the first 60 min of reperfusion after 10 min of ischemia. ACh-induced vasodilation was restored by 75 min (105%), but was less than control even at 120 min (109 vs. 117%; p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Effect of disodium cromoglycate (DSCG) and antihistamines on postirradiation cerebral blood flow and plasma levels of histamine and neurotensin

    SciTech Connect

    Cockerham, L.G.; Pautler, E.L.; Carraway, R.E.; Cochrane, D.E.; Hampton, J.D.

    1988-02-01

    In an attempt to elucidate mechanisms underlying the irradiation-induced decrease in regional cerebral blood flow (rCBF) in primates, hippocampal and visual cortical blood flows of rhesus monkeys were measured by hydrogen clearance, before and after exposure to 100 Gy, whole-body, gamma irradiation. Systemic blood pressures were monitored simultaneously. Systemic arterial plasma histamine and neurotensin levels were determined preirradiation and postirradiation. Compared to control animals, the irradiated monkeys exhibited an abrupt decline in systemic blood pressure to 23% of the preirradiation level within 10 min postirradiation, falling to 12% by 60 min. A decrease in hippocampal blood flow to 32% of the preirradiation level was noted at 10 min postirradiation, followed by a slight recovery to 43% at 30 min and a decline to 23% by 60 min. The cortical blood flow for the same animals showed a steady decrease to 29% of the preirradiation levels by 60 min postirradiation. Animals given the mast cell stabilizer disodium cromoglycate and the antihistamines mepyramine and cimetidine before irradiation did not exhibit an abrupt decline in blood pressure but displayed a gradual decrease to a level 33% below preirradiation levels by 60 min postirradiation. Also, the treated, irradiated monkeys displayed rCBF values that were not significantly different from the nonirradiated controls. The plasma neurotensin levels in the irradiated animals, treated and untreated, indicated a nonsignificant postirradiation increase above control levels. However, the postirradiation plasma histamine levels in both irradiated groups showed an increase of approximately 1600% above the preirradiation levels and the postirradiation control levels.

  3. [Cerebral hydatid disease: imaging features].

    PubMed

    Tlili-Graiess, K; El-Ouni, F; Gharbi-Jemni, H; Arifa, N; Moulahi, H; Mrad-Dali, K; Guesmi, H; Abroug, S; Yacoub, M; Krifa, H

    2006-12-01

    Cerebral hytatid cysts (HC) are extremely rare, forming 2% of all intra cranial space occupying lesions even in counties where the disease is endemic. HC diagnosis is usually based on a pathognomonic computed tomography (CT) pattern. In order to assess the value of MR we reviewed the CT (n=25) and magnetic resonance (MR, n=4 including diffusion and proton magnetic resonance spectroscopy in 1) imaging of 25 patients with pathologically confirmed cerebral hydatid disease. 19 HC were seen in children under 16 years. All were supra tentorial with 22 in the middle cerebral artery territory. HC was solitary in 18 cases, unilocular in 23 and multi-vesicular in 2 with heavily calcified pericyst in 1. 2 cysts were intra ventricular and 1 intra aqueducal. The most typical features were well defined, smooth thin walled spherical or oval cystic lesions of CSF density and/or signal with considerable mass effect (20/25). Surrounding oedema with complete or incomplete rim enhancement was seen in 3 cases which were labelled as complicated and/or infected cysts. Although CT is diagnostic of hydatid disease in almost all cases (22/25), MRI including diffusion and spectroscopy precisely demonstrate location, number, cyst capsule, type of signal and enhancement and allows diagnosis of atypical or complicated HC and appears more helpful in surgical planning.

  4. Dragon's blood dropping pills have protective effects on focal cerebral ischemia rats model.

    PubMed

    Xin, Nian; Yang, Fang-Ju; Li, Yan; Li, Yu-Juan; Dai, Rong-Ji; Meng, Wei-Wei; Chen, Yan; Deng, Yu-Lin

    2013-12-15

    Dragon's blood is a bright red resin obtained from Dracaena cochinchinensis (Lour.) S.C.Chen (Yunnan, China). As a traditional Chinese medicinal herb, it has great traditional medicinal value and is used for wound healing and to stop bleeding. Its main biological activity comes from phenolic compounds. In this study, phenolic compounds were made into dropping pills and their protective effects were examined by establishing focal cerebral ischemia rats model used method of Middle Cerebral Artery Occlusion (MCAO), and by investigating indexes of neurological scores, infarct volume, cerebral index, cerebral water content and oxidation stress. Compared to model group, high, middle and low groups of Dragon's blood dropping pills could improve the neurological function significantly (p<0.01) and reduce cerebral infarct volume of focal cerebral ischemia rats remarkably (p<0.05-0.01). Meanwhile, each group could alleviate cerebral water content and cerebral index (p<0.05-0.01) and regulate oxidative stress of focal cerebral ischemia rats obviously (p<0.05-0.01). Activities of middle group corresponded with that treated with positive control drug. The results obtained here showed that Dragon's blood dropping pills had protective effects on focal cerebral ischemia rats.

  5. Wearable wireless cerebral oximeter (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Jiang, Tianzi

    2016-03-01

    Cerebral oximeters measure continuous cerebral oxygen saturation using near-infrared spectroscopy (NIRS) technology noninvasively. It has been involved into operating room setting to monitor oxygenation within patient's brain when surgeons are concerned that a patient's levels might drop. Recently, cerebral oxygen saturation has also been related with chronic cerebral vascular insufficiency (CCVI). Patients with CCVI would be benefited if there would be a wearable system to measure their cerebral oxygen saturation in need. However, there has yet to be a wearable wireless cerebral oximeter to measure the saturation in 24 hours. So we proposed to develop the wearable wireless cerebral oximeter. The mechanism of the system follows the NIRS technology. Emitted light at wavelengths of 740nm and 860nm are sent from the light source penetrating the skull and cerebrum, and the light detector(s) receives the light not absorbed during the light pathway through the skull and cerebrum. The amount of oxygen absorbed within the brain is the difference between the amount of light sent out and received by the probe, which can be used to calculate the percentage of oxygen saturation. In the system, it has one source and four detectors. The source, located in the middle of forehead, can emit two near infrared light, 740nm and 860nm. Two detectors are arranged in one side in 2 centimeters and 3 centimeters from the source. Their measurements are used to calculate the saturation in the cerebral cortex. The system has included the rechargeable lithium battery and Bluetooth smart wireless micro-computer unit.

  6. Middle Schools.

    ERIC Educational Resources Information Center

    Educational Facility Planner, 2002

    2002-01-01

    Describes the building designs of 10 middle schools, including their educational contexts and design goals. Includes information on size, construction costs, architects, and contractors. Also includes floor plans and photographs. (EV)

  7. Cerebral Palsy (For Kids)

    MedlinePlus

    ... de los dientes Video: Getting an X-ray Cerebral Palsy KidsHealth > For Kids > Cerebral Palsy Print A A ... the things that kids do every day. What's CP? Some kids with CP use wheelchairs and others ...

  8. Cerebral Palsy (For Kids)

    MedlinePlus

    ... Emergency Room? What Happens in the Operating Room? Cerebral Palsy KidsHealth > For Kids > Cerebral Palsy A A A ... the things that kids do every day. What's CP? Some kids with CP use wheelchairs and others ...

  9. Aging and Cerebral Palsy.

    ERIC Educational Resources Information Center

    Networker, 1993

    1993-01-01

    This special edition of "The Networker" contains several articles focusing on aging and cerebral palsy (CP). "Aging and Cerebral Palsy: Pathways to Successful Aging" (Jenny C. Overeynder) reports on the National Invitational Colloquium on Aging and Cerebral Palsy held in April 1993. "Observations from an Observer" (Kathleen K. Barrett) describes…

  10. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats

    PubMed Central

    Li, Xin-juan; Li, Chao-kun; Wei, Lin-yu; Lu, Na; Wang, Guo-hong; Zhao, Hong-gang; Li, Dong-liang

    2015-01-01

    The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X7 receptors. PMID:26199610

  11. Clinical Analysis of Traumatic Cerebral Pseudoaneurysms

    PubMed Central

    Moon, Tae Hun; Kim, Sung Han; Huh, Seung Kon

    2015-01-01

    Objective Traumatic pseudoaneurysms are rare but life-threatening lesions. We investigated the patients with these lesions to clarify their clinical characteristics and therapeutic strategies and we also reviewed the literatures on the treatment principles, possible options, and outcomes. Methods There were a total of 8 patients who were treated with traumatic intracranial pseudoaneurysms between April 1980 and January 2009. Medical charts and the imaging studies were reviewed for analysis. The outcome was measured with modified Rankin Scale (mRS) score at 6 months after treatment. Results All 8 patients were male and the mean age was 25 years old. Six of those were located at the cavernous segment of the internal carotid artery (ICA) and the other 2 was located at the M2 segment of middle cerebral artery. The causes of trauma were car accidents in 6, penetrating injury through the orbit in 1, and slip down injury in 1 patient. Massive epistaxis or hematemesis occurred in all patients with a pseudoaneurysm at the cavernous and ophthalmic segment of the ICA. All 6 patients of the cavernous and ophthalmic ICA group showed favorable outcome of mRS 0 to 1. The outcome of patients with middle cerebral artery pseudoaneurysm was mRS 2 to 3. Conclusion Upon prompt diagnosis and proper treatment planning, it is possible to achieve favorable outcome in these patients. Lesions located at the cavernous segment of the ICA favored endovascular treatment while those at the middle cerebral artery favored surgical treatment. PMID:27169077

  12. Pyruvate dehydrogenase activity in the rat cerebral cortex following cerebral ischemia.

    PubMed

    Cardell, M; Koide, T; Wieloch, T

    1989-06-01

    The effect of cerebral ischemia on the activity of pyruvate dehydrogenase (PDH) enzyme complex (PDHC) was investigated in homogenates of frozen rat cerebral cortex following 15 min of bilateral common carotid occlusion ischemia and following 15 min, 60 min, and 6 h of recirculation after 15 min of ischemia. In frozen cortical tissue from the same animals, the levels of labile phosphate compounds, glucose, glycogen, lactate, and pyruvate was determined. In cortex from control animals, the rate of [1(-14)C]pyruvate decarboxylation was 9.6 +/- 0.5 nmol CO2/(min-mg protein) or 40% of the total PDHC activity. This fraction increased to 89% at the end of 15 min of ischemia. At 15 min of recirculation following 15 min of ischemia, the PDHC activity decreased to 50% of control levels and was depressed for up to 6 h post ischemia. This decrease in activity was not due to a decrease in total PDHC activity. Apart from a reduction in ATP levels, the acute changes in the levels of energy metabolites were essentially normalized at 6 h of recovery. Dichloroacetate (DCA), an inhibitor of PDH kinase, given to rats at 250 mg/kg i.p. four times over 2 h, significantly decreased blood glucose levels from 7.4 +/- 0.6 to 5.1 +/- 0.3 mmol/L and fully activated PDHC. In animals in which the plasma glucose level was maintained at control levels of 8.3 +/- 0.5 mumol/g by intravenous infusion of glucose, the active portion of PDHC increased to 95 +/- 4%. In contrast, the depressed PDHC activity at 15 min following ischemia was not affected by the DCA treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Cerebral Lateralization and General Intelligence: Gender Differences in a Transcranial Doppler Study

    ERIC Educational Resources Information Center

    Njemanze, P.C.

    2005-01-01

    The present study evaluated cerebral lateralization during Raven's progressive matrices (RPM) paradigm in female and male subjects. Bilateral simultaneous transcranial Doppler (TCD) ultrasound was used to measure mean blood flow velocities (MBFV) in the right and left middle cerebral arteries (MCAs) in 24 (15 females and 9 males) right-handed…

  14. Cerebral Dominance for Language Function in Adults with Specific Language Impairment or Autism

    ERIC Educational Resources Information Center

    Whitehouse, Andrew J. O.; Bishop, Dorothy V. M.

    2008-01-01

    A link between developmental language disorders and atypical cerebral lateralization has been postulated since the 1920s, but evidence has been indirect and inconsistent. The current study investigated this proposal using functional transcranial Doppler ultrasonography (fTCD), which assesses blood flow through the middle cerebral arteries serving…

  15. Cerebral arterial occlusion and intracranial venous thrombosis in a woman taking oral contraceptives.

    PubMed Central

    Montón, F.; Rebollo, M.; Quintana, F.; Berciano, J.

    1984-01-01

    Occlusion of the middle cerebral artery and thrombosis of the superior sagittal sinus are reported in a 30-year-old woman taking oral contraceptives (OC). The coexistence of arterial and venous cerebral pathology as a complication of OC use has only been previously reported in one case. The pathogenesis of this rare association is briefly discussed. Images Fig. 1 Fig. 2 PMID:6462985

  16. Atypical Cerebral Lateralisation in Adults with Compensated Developmental Dyslexia Demonstrated Using Functional Transcranial Doppler Ultrasound

    ERIC Educational Resources Information Center

    Illingworth, Sarah; Bishop, Dorothy V. M.

    2009-01-01

    Functional transcranial Doppler ultrasound (fTCD) is a relatively new and non-invasive technique that assesses cerebral lateralisation through measurements of blood flow velocity in the middle cerebral arteries. In this study fTCD was used to compare functional asymmetry during a word generation task between a group of 30 dyslexic adults and a…

  17. Cerebral air embolism from angioinvasive cavitary aspergillosis.

    PubMed

    Lin, Chen; Barrio, George A; Hurwitz, Lynne M; Kranz, Peter G

    2014-01-01

    Background. Nontraumatic cerebral air embolism cases are rare. We report a case of an air embolism resulting in cerebral infarction related to angioinvasive cavitary aspergillosis. To our knowledge, there have been no previous reports associating these two conditions together. Case Presentation. A 32-year-old female was admitted for treatment of acute lymphoblastic leukemia (ALL). Her hospital course was complicated by pulmonary aspergillosis. On hospital day 55, she acutely developed severe global aphasia with right hemiplegia. A CT and CT-angiogram of her head and neck were obtained demonstrating intravascular air emboli within the left middle cerebral artery (MCA) branches. She was emergently taken for hyperbaric oxygen therapy (HBOT). Evaluation for origin of the air embolus revealed an air focus along the left lower pulmonary vein. Over the course of 48 hours, her symptoms significantly improved. Conclusion. This unique case details an immunocompromised patient with pulmonary aspergillosis cavitary lesions that invaded into a pulmonary vein and caused a cerebral air embolism. With cerebral air embolisms, the acute treatment option differs from the typical ischemic stroke pathway and the provider should consider emergent HBOT. This case highlights the importance of considering atypical causes of acute ischemic stroke.

  18. Effects of desflurane on cerebral autoregulation.

    PubMed

    Bedforth, N M; Girling, K J; Skinner, H J; Mahajan, R P

    2001-08-01

    The aim of this study was to determine the effects of desflurane, at 1 and 1.5 MAC, on cerebral autoregulation. Data were analysed from eight patients undergoing non-neurosurgical procedure. The blood flow velocity in the middle cerebral artery was measured by transcranial Doppler ultrasound and cerebral autoregulation was assessed by the transient hyperaemic response test. Partial pressure of the end-tidal carbon dioxide (PE'(CO(2))) and mean arterial pressure were measured throughout the study. Anaesthesia was induced with propofol and was maintained with desflurane at end-tidal concentrations of 7.4% (1 MAC) or 10.8% (1.5 MAC). The order of administration of the desflurane concentrations was determined randomly and a period of 15 min was allowed for equilibration at each concentration. The transient hyperaemic response tests were performed before induction of anaesthesia and after equilibration with each concentration of desflurane. An infusion of phenylephrine was used to maintain pre-induction mean arterial pressure and ventilation was adjusted to maintain the pre-induction value of PE'(CO(2)) throughout the study. Two indices derived from the transient hyperaemic response test (the transient hyperaemic response ratio and the strength of autoregulation) were used to assess cerebral autoregulation. Desflurane resulted in a marked and significant impairment in cerebral autoregulation; at concentrations of 1.5 MAC, autoregulation was almost abolished.

  19. Accumulation of intimal platelets in cerebral arteries following experimental subarachnoid hemorrhage in cats

    SciTech Connect

    Haining, J.L.; Clower, B.R.; Honma, Y.; Smith, R.R.

    1988-07-01

    From 2 hours to 23 days following experimental subarachnoid hemorrhage, the accumulation of indium-111-labeled platelets on the intimal surface of the middle cerebral artery was studied in 23 cats. Subarachnoid hemorrhage was produced by transorbital rupture of the right middle cerebral artery. Of the 23 cats, 17 exhibited right middle cerebral artery/left middle cerebral artery radioactivity ratios of greater than 1.25. When these results were compared with those of 12 control cats, 0.001 less than p less than 0.005 (chi2 test). Thus, the results from the control and experimental groups are significantly different and indicate early (after 2 hours) preferential accumulation of intimal platelets in the ruptured right middle cerebral artery compared with the unruptured left middle cerebral artery and new platelet deposition continuing for up to 23 days. However, the experimental group did not reveal a clear pattern for platelet accumulation following subarachnoid hemorrhage. There was no simple correlation between the magnitude of the radioactivity ratios and the time after hemorrhage when the cats were killed although the ratios for 2 hours to 7 days seemed greater than those for 8 to 23 days. Assuming the pivotal role of platelets in the angiopathy of subarachnoid hemorrhage, the administration of antiplatelet agents as soon as possible following its occurrence may be of value.

  20. Paradoxical cerebral air embolism causing large vessel occlusion treated with endovascular aspiration.

    PubMed

    Belton, Patrick J; Nanda, Ashish; Alqadri, Syeda L; Khakh, Gurpreet S; Chandrasekaran, Premkumar Nattanmai; Newey, Christopher; Humphries, William E

    2017-04-01

    Cerebral air embolism is a dreaded complication of invasive medical procedures. The mainstay of therapy for patients with cerebral air embolism has been hyperbaric oxygen therapy, high flow oxygen therapy, and anticonvulsants. We present a novel therapeutic approach for treatment of cerebral air embolism causing large vessel occlusion, using endovascular aspiration. Our patient developed a cerebral air embolism following sclerotherapy for varicose veins. This caused near total occlusion of the superior division of the M2 segment of the right middle cerebral artery. Symptoms included unilateral paralysis, unintelligible speech, and hemianopia; National Institutes of Health Stroke Scale (NIHSS) on presentation was 16. The air embolism was treated using a distal aspiration technique. Angiography following aspiration showed Thrombolysis in Cerebral Infarction 2B reperfusion. Following aspiration, the patient was re-examined; NIHSS at that time was 4. At 1 month follow-up, the modified Rankin Scale score was 1 and NIHSS was 1. Treatment of cerebral air embolism is discussed.

  1. Hemorrhagic transformation and cerebral edema in acute ischemic stroke: Link to cerebral autoregulation

    PubMed Central

    Castro, Pedro; Azevedo, Elsa; Serrador, Jorge; Rocha, Isabel; Sorond, Farzaneh

    2017-01-01

    Background Hemorrhagic transformation and cerebral edema are feared complications of acute ischemic stroke but mechanisms are poorly understood and reliable early markers are lacking. Early assessment of cerebrovascular hemodynamics may advance our knowledge in both areas. We examined the relationship between dynamic cerebral autoregulation (CA) in the early hours post ischemia, and the risk of developing hemorrhagic transformation and cerebral edema at 24 h post stroke Methods We prospectively enrolled 46 patients from our center with acute ischemic stroke in the middle cerebral artery territory. Cerebrovascular resistance index was calculated. Dynamic CA was assessed by transfer function analysis (coherence, phase and gain) of the spontaneous blood flow velocity and blood pressure oscillations. Infarct volume, hemorrhagic transformation, cerebral edema, and white matter changes were collected from computed tomography performed at presentation and 24 h. Results At admission, phase was lower (worse CA) in patients with hemorrhagic transformation [6.6 ± 30 versus 45 ± 38°; adjusted odds ratio 0.95 (95% confidence internal 0.94–0.98), p = 0.023] and with cerebral edema [6.6 ± 30 versus 45 ± 38°, adjusted odds ratio 0.96 (0.92–0.999), p = 0.044]. Progression to edema was associated with lower cerebrovascular resistance (1.4 ± 0.2 versus 2.3 ± 1.5 mm Hg/cm/s, p = 0.033) and increased cerebral blood flow velocity (51 ± 25 versus 42 ± 17 cm/s, p = 0.033) at presentation. All hemodynamic differences resolved at 3 months Conclusions Less effective CA in the early hour post ischemic stroke is associated with increased risk of hemorrhagic transformation and cerebral edema, possibly reflecting breakthrough hyperperfusion and microvascular injury. Early assessment of dynamic CA could be useful in identifying individuals at risk for these complications. PMID:28017224

  2. The effects of horseback riding participation on the muscle tone and range of motion for children with spastic cerebral palsy

    PubMed Central

    Baik, Kwang; Byeun, Jung-Kyun; Baek, Jae-Keun

    2014-01-01

    The objective of this research is to verify the effects of horseback riding participation on the muscle tone of pelvic limbs and articular range of motion for children with spastic cerebral palsy. The research target is 16 children with spastic cerebral palsy, 8 children for the experimental group and 8 children for the control group. As a tool to measure the muscle tone, Modified Ashworth Scale (MAS), was used and a goniometer was used to measure the range of motion (ROM). A therapeutic horseback riding program was conducted to an experimental group of 8 children with spastic cerebral palsy in the therapeutic horseback riding for 60 min a day, 2 days a week and a total of 12 weeks. The results are as follows: First, the participation in the therapeutic horseback riding program showed a statistically significant difference in the muscle tone for the knee of children with spastic cerebral palsy (P< 0.01). Second, though the difference in knee muscle tone between the experimental group and the control group was statistically insignificant, the average was improved by the participation. Third, the participation in the therapeutic horseback riding program showed a statistically significant difference in the hip-joint motion range for the knee of children with spastic cerebral palsy (P< 0.01). Fourth, though the difference in the hip joint motion range between the experimental group and the control group was statistically insignificant, the average was improved by the participation. PMID:25426462

  3. Middle East

    SciTech Connect

    Hemer, D.O.; Mason, J.F.; Hatch, G.C.

    1981-10-01

    Petroleum production in Middle East countries during 1980 totaled 6,747,719,000 bbl or an average rate of 18,436,390,000 bbl/d, down 13.9% from 1979. Increases were in Saudi Arabia and Syria. Significant decreases occurred in Iraq, Iran, Kuwait, and Turkey. New discoveries were made in Abu Dhabi, Iran, Saudi Arabia, Sharjah, and Oman. New areas were explored in Bahrain, Oman, Syria, and Yemen. 9 figures, 16 tables.

  4. Statins and cerebral hemodynamics

    PubMed Central

    Giannopoulos, Sotirios; Katsanos, Aristeidis H; Tsivgoulis, Georgios; Marshall, Randolph S

    2012-01-01

    HMG-CoA reductase inhibitors (statins) are associated with improved stroke outcome. This observation has been attributed in part to the palliative effect of statins on cerebral hemodynamics and cerebral autoregulation (CA), which are mediated mainly through the upregulation of endothelium nitric oxide synthase (eNOS). Several animal studies indicate that statin pretreatment enhances cerebral blood flow after ischemic stroke, although this finding is not further supported in clinical settings. Cerebral vasomotor reactivity, however, is significantly improved after long-term statin administration in most patients with severe small vessel disease, aneurysmal subarachnoid hemorrhage, or impaired baseline CA. PMID:22929438

  5. Neurobehavioral and Life-Quality Changes after Cerebral Revascularization.

    ERIC Educational Resources Information Center

    Baird, Anne Dull; And Others

    1988-01-01

    Studied neuropsychological and life-quality changes six months after carotid endarterectomy, superficial temporal artery to middle cerebral artery bypass, multiple revascularization, and vertebrobasilar revascularization procedures. Compared changes with those in patients with recent severe spinal complaints and in patients for whom…

  6. Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury.

    PubMed

    Yan, Xiao-Ge; Cheng, Bao-Hua; Wang, Xin; Ding, Liang-Cai; Liu, Hai-Qing; Chen, Jing; Bai, Bo

    2015-05-01

    Apelin-13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 μg/g) was injected into the lateral ventricle of middle cerebral artery occlusion model rats. TTC, TUNEL, and immunohistochemical staining showed that compared with the cerebral ischemia/reperfusion group, infarct volume and apoptotic cell number at the ischemic penumbra region were decreased in the Apelin-13 treatment group. Additionally, Apelin-13 treatment increased Bcl-2 immunoreactivity and decreased caspase-3 immunoreactivity. Our findings suggest that Apelin-13 is neuroprotective against cerebral ischemia/reperfusion injury through inhibition of neuronal apoptosis.

  7. [Effects of xenon anesthesia on cerebral blood flow in neurosurgical patients without intracranial hypertension].

    PubMed

    Rylova, A V; Beliaev, A Iu; Lubnin, A Iu

    2013-01-01

    Among anesthetic agents used in neurosurgery xenon appears to be the most advantageous. It preserves arterial blood pressure, assures rapid recovery and neuroprotection. But the data is lacking on xenon effect upon cerebral blood flow under anesthetic conditions. We measured flow velocity in middle cerebral artery in neurosurgical patients without intracranial hypertension during closed circuit xenon anesthesia comparing propofol and xenon effect in the same patients. In our study xenon didn't seem to induce clinically relevant changes in cerebral blood flow and preserved cerebral vascular reactivity thus proving its safety in patients without intracranial hypertension.

  8. Regional cerebral blood flow in essential hypertension: data evaluation by a mapping system

    SciTech Connect

    Rodriguez, G.; Arvigo, F.; Marenco, S.; Nobili, F.; Romano, P.; Sandini, G.; Rosadini, G.

    1987-01-01

    Regional cerebral blood flow was studied by means of the 133Xe inhalation method in 26 untreated and 10 treated patients with essential hypertension. The untreated subjects were divided into newly and previously diagnosed groups to assess the relation between regional cerebral blood flow and the duration of hypertension. The overall flow reduction was more marked in the frontal and temporal regions in the previously diagnosed group, and this was attributed to pathological changes in the district served by the middle cerebral artery. Regional temporal lobe impairment was also noted in the newly diagnosed and treated subjects. A significant correlation was found between regional cerebral blood flow and mean arterial blood pressure.

  9. Cerebral Asymmetries and Reading Acquisition

    ERIC Educational Resources Information Center

    Pirozzolo, Francis J.

    1978-01-01

    Reviewed are historical developments regarding the concepts of cerebral localization, and analyzed are implications of current research on the role of the cerebral hemispheres in reading disorders. (CL)

  10. [A case of spectacular shrinking deficit caused by paradoxical cerebral embolism secondary to pulmonary arteriovenous fistula].

    PubMed

    Ito, Ai; Ii, Yuichiro; Higashigawa, Takatoshi; Murashima, Shuichi; Tomimoto, Hidekazu

    2013-12-01

    We report a case of spectacular shrinking deficit caused by paradoxical cerebral embolism through pulmonary arteriovenous fistula (AVF). A 79-year-old female suddenly developed right hemiplegia, paresthesia, and speech disturbance symptoms that were improved within 20 min, indicating a diagnosis of spectacular shrinking deficit. Brain magnetic resonance imaging revealed acute cerebral infarcts in the left parietal cortex of the left middle cerebral arterial territory. A contrast-enhanced chest computed tomography scan revealed a pulmonary AVF in the middle lobe of the right lung. The patient had deep venous thrombosis in her left lower leg. She had no clinical signs of telangiectasia, did not exhibit recurrent epistaxis, and had no family history of hereditary hemorrhagic telangiectasia (HHT). Therefore, she was diagnosed with paradoxical cerebral embolism secondary to the pulmonary AVF without HHT. Pulmonary AVF should be considered in patients with cerebral embolism, even when presenting with spectacular shrinking deficit.

  11. [Two Cases of Ruptured Cerebral Aneurysm Complicated with Delayed Coil Protrusion after Coil Embolization].

    PubMed

    Furukawa, Takashi; Ogata, Atsushi; Ebashi, Ryo; Takase, Yukinori; Masuoka, Jun; Kawashima, Masatou; Abe, Tatsuya

    2016-07-01

    We report two cases of delayed coil protrusion after coil embolization for ruptured cerebral aneurysms. Case 1:An 82-year-old woman with a subarachnoid hemorrhage due to a ruptured small anterior communicating artery aneurysm underwent successful coil embolization. Eighteen days after the procedure, coil protrusion from the aneurysm into the right anterior cerebral artery was observed without any symptoms. Further coil protrusion did not develop after 28 days. Case 2:A 78-year-old woman with a subarachnoid hemorrhage due to a ruptured small left middle cerebral artery aneurysm underwent successful coil embolization. Twenty days after the procedure, coil protrusion from the aneurysm into the left middle cerebral artery was observed, with a transient ischemic attack. Further coil protrusion did not develop. Both patients recovered with antithrombotic treatment. Even though delayed coil protrusion after coil embolization is rare, it should be recognized as a long-term complication of coil embolization for cerebral aneurysms.

  12. Disordered cholinergic neurotransmission and dysautoregulation after acute cerebral infarction.

    PubMed

    Ott, E O; Abraham, J; Meyer, J S; Achari, A N; Chee, A N; Mathew, N T

    1975-01-01

    The possible role of displaced neurotransmitter acetylcholine (ACHh) in dysautoregulation was examined after experimental regional cerebral infarction was produced by occluding the middle cerebral artery (MCA) in babons. Regional cerebral blood flow (rCBF) was measured after intracarotid injection of 133Xenon using the gamma camera. Autoregulation was tested with metaraminol or angiotensin infusion and the autoregulation index (A.I.) was calculated. Acetylcholinesterase (ACHhE) was measured in brain tissue of noninfarcted and infarcted hemispheres. Cerebral arteriovenous (A-V) differences for cholinesterase (ChE) were also measured. Regional dysautoregulation was found in infarcted gray matter and correlated with increased AChE levels in the same zones of cortex and basal ganglia. The time course of onset of dysautoregulation correlated with increased ChE uptake by the brain. Intravenous infusion of the cholinergic neurotransmitter blocker, scopolamine, restored autoregulation to the ischemic zones. Autoregulation appears to be a myogenic reflex, influenced by neurogenic and metabolic mechanisms.

  13. EFFECTS OF RAPAMYCIN ON CEREBRAL OXYGEN SUPPLY AND CONSUMPTION DURING REPERFUSION AFTER CEREBRAL ISCHEMIA

    PubMed Central

    CHI, O. Z.; BARSOUM, S.; VEGA-COTTO, N. M.; JACINTO, E.; LIU, X.; MELLENDER, S. J.; WEISS, H. R.

    2016-01-01

    Abstract—Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia–reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1 h and reperfusion for 2 h with and without rapamycin (20 mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C14-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5 ± 0.8% control vs. 21.5 ± 0.9% rapamycin). We also found that ischemia–reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia–reperfusion. PMID:26742793

  14. Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia.

    PubMed

    Chi, O Z; Barsoum, S; Vega-Cotto, N M; Jacinto, E; Liu, X; Mellender, S J; Weiss, H R

    2016-03-01

    Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1h and reperfusion for 2h with and without rapamycin (20mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C(14)-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5±0.8% control vs. 21.5±0.9% rapamycin). We also found that ischemia-reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia-reperfusion.

  15. Cerebral Palsy (CP) Quiz

    MedlinePlus

    ... Submit Button Past Emails CDC Features Pop Quiz: Cerebral Palsy Language: English Español (Spanish) Recommend on Facebook Tweet ... Sandy is the parent of a child with cerebral palsy and the Board President of Gio’s Garden , a ...

  16. Cerebral monitoring during carotid endarterectomy by transcranial Doppler ultrasonography

    PubMed Central

    2017-01-01

    Purpose To evaluate the efficacy and safety of cerebral monitoring by transcranial Doppler ultrasonography (TCD) for the detection of cerebral ischemia during carotid endarterectomy (CEA). Methods From August 2004 to December 2013, 159 CEAs were performed in a tertiary hospital. All procedures were performed under general anesthesia. Intraoperative TCD was routinely used to detect cerebral ischemia. Of the 159 patients, 102 patients were included in this study, excluding 27 patients who had a poor transtemporal isonation window and 30 patients who used additional cerebral monitoring systems such as electroencephalography or somatosensory evoked potentials. When mean flow velocity in the ipsilateral middle cerebral artery decreased by >50% versus baseline during carotid clamping carotid shunting was selectively performed. The carotid shunt rate and incidence of perioperative (<30 days) stroke or death were investigated by reviewing medical records. Results Carotid shunting was performed in 31 of the 102 patients (30%). Perioperative stroke occurred in 2 patients (2%); a minor ischemic stroke caused by embolism in one and an intracerebral hemorrhage in the other. Perioperative death developed in the latter patient. Conclusion TCD is a safe cerebral monitoring tool to detect cerebral ischemia during CEA. It can reduce use of carotid shunt. PMID:28203558

  17. Intraoperative cerebral blood flow imaging of rodents

    NASA Astrophysics Data System (ADS)

    Li, Hangdao; Li, Yao; Yuan, Lu; Wu, Caihong; Lu, Hongyang; Tong, Shanbao

    2014-09-01

    Intraoperative monitoring of cerebral blood flow (CBF) is of interest to neuroscience researchers, which offers the assessment of hemodynamic responses throughout the process of neurosurgery and provides an early biomarker for surgical guidance. However, intraoperative CBF imaging has been challenging due to animal's motion and position change during the surgery. In this paper, we presented a design of an operation bench integrated with laser speckle contrast imager which enables monitoring of the CBF intraoperatively. With a specially designed stereotaxic frame and imager, we were able to monitor the CBF changes in both hemispheres during the rodent surgery. The rotatable design of the operation plate and implementation of online image registration allow the technician to move the animal without disturbing the CBF imaging during surgery. The performance of the system was tested by middle cerebral artery occlusion model of rats.

  18. Cerebral hemovelocity reveals differential resource allocation strategies for extraverts and introverts during vigilance.

    PubMed

    Shaw, Tyler H; Nguyen, Cynthia; Satterfield, Kelly; Ramirez, Raul; McKnight, Patrick E

    2016-02-01

    Extraversion--one of the Big 5 personality factors--correlates negatively with vigilance, but most studies focus on performance outcomes and not the performance process. Previous research has shown that transcranial Doppler sonography (TCD), which measures cerebral blood flow velocity (CBFV), can be used to examine resource allocation strategies during vigilance performance. Hence, this study was designed to assess the attentional resource allocation strategies of introverts and extraverts using the CBFV measure. Twelve extroverts and 13 introverts monitored a 60-min vigilance task for a critical signal--the absence of a line on a five-circle array. The results revealed an overall performance decrement that was not modulated by extraversion. We observed an interaction between extraversion and time; CBFV declined in the introversion group, but not in the extraversion group. Additionally, an interaction between cerebral hemisphere and personality revealed that extraverts were recruiting resources from both the left and right cerebral hemispheres, while introverts only recruited resources from the right hemisphere. The results suggest that extraverts can allocate compensatory effort to mask performance differences. We discuss the theoretical and practical implications of these findings and offer future research directions that may help us understand these effects.

  19. Changes of c-fos, malondialdehyde and lactate in brain tissue after global cerebral ischemia under different brain temperatures.

    PubMed

    Zhang, Hong; Li, Li; Xu, Guo-ying; Mei, Yuan-wu; Zhang, Jun-jian; Murong, Shen-xing; Sun, Sheng-gang; Tong, E-tang

    2014-06-01

    Under global cerebral ischemia, the effect of different brain temperature on cerebral ischemic injury was studied. Male Sprague-Dawley rats were divided into normothermic (37-38°C) ischemia, mild hypothermic (31-32°C) ischemia, hyperthermic (41-42°C) ischemia and sham-operated groups. Global cerebral ischemia was established using the Pulsinelli four-vessel occlusion model and brain temperature was maintained at defined level for 60 min after 20-min ischemia. The expression of c-fos protein and the levels of malondialdehyde (MDA) and lactate in brain regions were detected by immunochemistry and spectrophotometrical methods, respectively. C-fos positive neurons were found in the hippocampus and cerebral cortex after cerebral ischemia reperfusion. Mild hypothermia increased the expression of c-fos protein in both areas, whereas hyperthermia decreased the expression of c-fos protein in the hippocampus at 24 h reperfusion, and the cerebral cortex at 48 h reperfusion when compared to normothermic conditions. In normothermic, mild hypothermic and hyperthermic ischemia groups, the levels of MDA and lactate in brain tissue were increased at 24, 48 and 72 h reperfusion following 20-min ischemia as compared with the sham-operated group (P<0.01). The levels of MDA and lactate in mild hypothermic group were significantly lower than those in normothermic group (P<0.01). It is suggested that brain temperature influences the translation of the immunoreactive protein product of c-fos after global cerebral ischemia, and MDA and lactate are also affected by hypothermia and hyperthermia.

  20. Ozone Therapy on Cerebral Blood Flow: A Preliminary Report.

    PubMed

    Clavo, Bernardino; Catalá, Luis; Pérez, Juan L; Rodríguez, Victor; Robaina, Francisco

    2004-12-01

    Ozone therapy is currently being used in the treatment of ischemic disorders, but the underlying mechanisms that result in successful treatment are not well known. This study assesses the effect of ozone therapy on the blood flow in the middle cerebral and common carotid arteries. Seven subjects were recruited for the therapy that was performed by transfusing ozone-enriched autologous blood on 3 alternate days over 1 week. Blood flow quantification in the common carotid artery (n = 14) was performed using color Doppler. Systolic and diastolic velocities in the middle cerebral artery (n = 14) were estimated using transcranial Doppler. Ultrasound assessments were conducted at the following three time points: 1) basal (before ozone therapy), 2) after session #3 and 3) 1 week after session #3. The common carotid blood flow had increased by 75% in relation to the baseline after session #3 (P < 0.001) and by 29% 1 week later (P = 0.039). In the middle cerebral artery, the systolic velocity had increased by 22% after session #3 (P = 0.001) and by 15% 1 week later (P = 0.035), whereas the diastolic velocity had increased by 33% after session #3 (P < 0.001) and by 18% 1 week later (P = 0.023). This preliminary Doppler study supports the clinical experience of achieving improvement by using ozone therapy in peripheral ischemic syndromes. Its potential use as a complementary treatment in cerebral low perfusion syndromes merits further clinical evaluation.

  1. Ozone Therapy on Cerebral Blood Flow: A Preliminary Report

    PubMed Central

    2004-01-01

    Ozone therapy is currently being used in the treatment of ischemic disorders, but the underlying mechanisms that result in successful treatment are not well known. This study assesses the effect of ozone therapy on the blood flow in the middle cerebral and common carotid arteries. Seven subjects were recruited for the therapy that was performed by transfusing ozone-enriched autologous blood on 3 alternate days over 1 week. Blood flow quantification in the common carotid artery (n = 14) was performed using color Doppler. Systolic and diastolic velocities in the middle cerebral artery (n = 14) were estimated using transcranial Doppler. Ultrasound assessments were conducted at the following three time points: 1) basal (before ozone therapy), 2) after session #3 and 3) 1 week after session #3. The common carotid blood flow had increased by 75% in relation to the baseline after session #3 (P < 0.001) and by 29% 1 week later (P = 0.039). In the middle cerebral artery, the systolic velocity had increased by 22% after session #3 (P = 0.001) and by 15% 1 week later (P = 0.035), whereas the diastolic velocity had increased by 33% after session #3 (P < 0.001) and by 18% 1 week later (P = 0.023). This preliminary Doppler study supports the clinical experience of achieving improvement by using ozone therapy in peripheral ischemic syndromes. Its potential use as a complementary treatment in cerebral low perfusion syndromes merits further clinical evaluation. PMID:15841265

  2. Human cerebral autoregulation before, during and after spaceflight.

    PubMed

    Iwasaki, Ken-ichi; Levine, Benjamin D; Zhang, Rong; Zuckerman, Julie H; Pawelczyk, James A; Diedrich, André; Ertl, Andrew C; Cox, James F; Cooke, William H; Giller, Cole A; Ray, Chester A; Lane, Lynda D; Buckey, Jay C; Baisch, Friedhelm J; Eckberg, Dwain L; Robertson, David; Biaggioni, Italo; Blomqvist, C Gunnar

    2007-03-15

    Exposure to microgravity alters the distribution of body fluids and the degree of distension of cranial blood vessels, and these changes in turn may provoke structural remodelling and altered cerebral autoregulation. Impaired cerebral autoregulation has been documented following weightlessness simulated by head-down bed rest in humans, and is proposed as a mechanism responsible for postspaceflight orthostatic intolerance. In this study, we tested the hypothesis that spaceflight impairs cerebral autoregulation. We studied six astronauts approximately 72 and 23 days before, after 1 and 2 weeks in space (n = 4), on landing day, and 1 day after the 16 day Neurolab space shuttle mission. Beat-by-beat changes of photoplethysmographic mean arterial pressure and transcranial Doppler middle cerebral artery blood flow velocity were measured during 5 min of spontaneous breathing, 30 mmHg lower body suction to simulate standing in space, and 10 min of 60 deg passive upright tilt on Earth. Dynamic cerebral autoregulation was quantified by analysis of the transfer function between spontaneous changes of mean arterial pressure and cerebral artery blood flow velocity, in the very low- (0.02-0.07 Hz), low- (0.07-0.20 Hz) and high-frequency (0.20-0.35 Hz) ranges. Resting middle cerebral artery blood flow velocity did not change significantly from preflight values during or after spaceflight. Reductions of cerebral blood flow velocity during lower body suction were significant before spaceflight (P < 0.05, repeated measures ANOVA), but not during or after spaceflight. Absolute and percentage reductions of mean (+/- s.e.m.) cerebral blood flow velocity after 10 min upright tilt were smaller after than before spaceflight (absolute, -4 +/- 3 cm s(-1) after versus -14 +/- 3 cm s(-1) before, P = 0.001; and percentage, -8.0 +/- 4.8% after versus -24.8 +/- 4.4% before, P < 0.05), consistent with improved rather than impaired cerebral blood flow regulation. Low-frequency gain decreased

  3. Cerebral hemodynamics during graded Valsalva maneuvers

    PubMed Central

    Perry, Blake G.; Cotter, James D.; Mejuto, Gaizka; Mündel, Toby; Lucas, Samuel J. E.

    2014-01-01

    The Valsalva maneuver (VM) produces large and abrupt changes in mean arterial pressure (MAP) that challenge cerebral blood flow and oxygenation. We examined the effect of VM intensity on middle cerebral artery blood velocity (MCAv) and cortical oxygenation responses during (phases I–III) and following (phase IV) a VM. Healthy participants (n = 20 mean ± SD: 27 ± 7 years) completed 30 and 90% of their maximal VM mouth pressure for 10 s (order randomized) whilst standing. Beat-to-beat MCAv, cerebral oxygenation (NIRS) and MAP across the different phases of the VM are reported as the difference from standing baseline. There were significant interaction (phase * intensity) effects for MCAv, total oxygenation index (TOI) and MAP (all P < 0.01). MCAv decreased during phases II and III (P < 0.01), with the greatest decrease during phase III (−5 ± 8 and −19 ± 15 cm·s−1 for 30 and 90% VM, respectively). This pattern was also evident in TOI (phase III: −1 ± 1 and −5 ± 4%, both P < 0.05). Phase IV increased MCAv (22 ± 15 and 34 ± 23 cm·s−1), MAP (15 ± 14 and 24 ± 17 mm Hg) and TOI (5 ± 6 and 7 ± 5%) relative to baseline (all P < 0.05). Cerebral autoregulation, indexed, as the %MCAv/%MAP ratio, showed a phase effect only (P < 0.001), with the least regulation during phase IV (2.4 ± 3.0 and 3.2 ± 2.9). These data illustrate that an intense VM profoundly affects cerebral hemodynamics, with a reactive hyperemia occurring during phase IV following modest ischemia during phases II and III. PMID:25309449

  4. Role of Large Arteries in Regulation of Cerebral Blood Flow in Dogs

    PubMed Central

    Heistad, Donald D.; Marcus, Melvin L.; Abboud, Francois M.

    1978-01-01

    Previous studies have demonstrated a significant pressure gradient from carotid artery to pial or middle cerebral arteries. This pressure gradient suggests that large cerebral arteries contribute to cerebral resistance. We have tested the hypothesis that large cerebral arteries contribute to regulation of cerebral blood flow during changes in blood gases and arterial pressure. Microspheres were used to measure brain blood flow in anesthetized dogs. Resistance of large cerebral arteries was estimated by determining the pressure gradient between common carotid and wedged vertebral artery catheters. Systemic hypercapnia and hypoxia dilated large cerebral arteries, and hypocapnia constricted large cerebral arteries. Resistance of large arteries was 0.6±0.1 (mean ± SE) mm Hg per ml/min per 100 g during normocapnia. During hypercapnia and hypoxia, large artery resistance decreased significantly to 0.2 ± 0.03 and 0.3 ± 0.05, respectively. During hypocapnia large artery resistance increased significantly to 1.0 ± 0.1. In other experiments, we found that large cerebral arteries participate in auto-regulatory responses to hemorrhagic hypotension. When arterial pressure was reduced from 110 to 58 mm Hg, autoregulation maintained cerebral blood flow constant, and resistance of large cerebral arteries decreased significantly from 1.0 ± 0.2 to 0.6 ± 0.1 mm Hg per ml/min per 100 g. In absolute terms, we calculated that 20-45% of the change in total cerebral resistance during these interventions was accounted for by changes in large artery resistance. These studies indicate that large cerebral arteries, as well as arterioles, participate actively in regulation of cerebral blood flow during changes in arterial blood gases and during autoregulatory responses to hemorrhagic hypotension. PMID:701475

  5. The effects of oxiracetam (CT-848) on local cerebral glucose utilization after focal cerebral ischemia in rats.

    PubMed

    Hokonohara, T; Sako, K; Shinoda, Y; Tomabechi, M; Yonemasu, Y

    1992-02-01

    The effects of oxiracetam on the reduction of brain metabolism induced by focal cerebral ischemia were investigated by measuring local cerebral glucose utilization (LCGU) in rats 24 hr after left middle cerebral artery occlusion. Focal cerebral ischemia reduced LCGU in the entire ipsilateral cortex, the greatest reduction being in the lateral parts of the frontoparietal cortex. LCGU was slightly reduced in the contralateral cortex; this reduction was considered to be caused by diaschisis. Oxiracetam was administered intraperitoneally for 3 days prior to middle cerebral artery occlusion. In the ipsilateral cortex, LCGU reduction was minimized in the ischemic center areas by oxiracetam at a dose of 400 mg/kg and in more extensive areas, by a dose of 800 mg/kg. Moreover, oxiracetam at a dose of 800 mg/kg enhanced metabolism impaired by diaschisis in the caudal areas of the contralateral cortex. These findings suggest that oxiracetam minimizes the reduction of brain function induced by ischemia and may therefore be useful in the treatment of cerebrovascular disease.

  6. Cerebral Palsy (For Parents)

    MedlinePlus

    ... palsy — causes a problem with balance and depth perception Since cerebral palsy affects muscle control and coordination, ... fluid into the lungs) gastroesophageal reflux (spitting up) speech problems drooling tooth decay sleep disorders osteoporosis (weak, ...

  7. Cerebral Contusions and Lacerations

    MedlinePlus

    ... Sports-Related Concussion Diffuse Axonal Injury Intracranial Hematomas Skull Fracture Cerebral contusions are bruises of the brain, ... object or pushed-in bone fragment from a skull fracture. Motor vehicle crashes and blows to the ...

  8. Cerebral amyloid angiopathy

    MedlinePlus

    ... 911) if you have sudden loss of movement , sensation, vision, or speech. Alternative Names Amyloidosis - cerebral; CAA; Congophilic angiopathy Images Amyloidosis on the fingers Arteries of the brain References Kase CS, Shoamanesh A. Intracerebral hemorrhage. In: Daroff ...

  9. Brain abscess after endosaccular embolisation of a cerebral aneurysm.

    PubMed

    Chen, Guangzhong; Zhan, Shengquan; Chen, Wei; Li, Zhaojie; Zhou, Dong; Zeng, Shaojian; Lin, Xiaofeng; Tang, Kai; Zhou, Dexiang; Shu, Hang

    2014-01-01

    Endovascular embolization has become an important treatment option for cerebral aneurysms, along with surgical clipping. But few literatures mentioned infectious complications after coiling of aneurysms. We present a patient with a brain abscess that developed after endosaccular embolization of a left middle cerebral artery aneurysm. The brain abscess was located adjacent to the aneurysm and discovered more than 2 months after embolization. We discuss the clinical implications of this rare complication and review the literature for infections related to the coils used for embolization of aneurysms.

  10. Association of pulsatile and mean cerebral blood flow velocity with age and neuropsychological performance.

    PubMed

    Pase, Matthew P; Grima, Natalie A; Stough, Con; Scholey, Andrew; Pipingas, Andrew

    2014-05-10

    Low cerebral blood flow velocity is associated with cognitive decline. However, the association between pulsatile brain blood flow velocity and cognition has not been investigated. High pulsatile hemodynamic stress in the brain may impair cognitive function through damage to small cerebral vessels. The current objective was to examine the cross-sectional association of pulsatile and mean cerebral blood flow velocity with age and neuropsychological performance. We also examined whether cerebral blood flow velocity was associated with aortic pulse pressure, a measure of arterial ageing and aortic stiffness. Cerebral blood flow velocity was measured in the middle cerebral artery using Transcranial Doppler Ultrasonography (TDU) while neuropsychological performance was measured using a computerized cognitive test battery. Aortic pulse pressure was non-invasively derived from applanation tonometry of the radial artery. The sample comprised 160 healthy adults aged 50-70 years. Results indicated that increasing age correlated with lower mean (r=-0.23, p<0.01) and higher pulsatile (r=0.27, p<0.01) brain blood flow velocity. In multivariate adjusted models, both peripheral (β=0.28, p<0.05) and aortic (β=0.24, p<0.05) pulse pressure were associated with higher pulsatile flow velocity through the middle cerebral artery. In adjusted models, neither mean nor pulsatile cerebral blood flow velocity was associated with performance on any cognitive task. In conclusion, arterial ageing was associated with increased pulsatile hemodynamic stress in the brain. However, this was not associated with impaired neuropsychological performance.

  11. [A case of cerebral embolism caused by atrial myxoma--superselective fibrinolytic therapy].

    PubMed

    Sugawara, T; Takahashi, A; So, K; Yoshimoto, T; Suzuki, J; Suzuki, Y; Horiuchi, T

    1987-12-01

    A 37-year-old man was admitted to our clinic 3 hours after the onset of cerebrovascular accident with right hemiparesis and total aphasia. On admission, we started combined administration of mannitol, vitamin E, phenytoin (Sendai Cocktail) and perfluorochemicals to protect ischemic brain. Left cerebral angiography revealed occlusion of the left middle cerebral artery involving its perforating arteries. Following the performance of angiography, vascular balloon catheter was introduced into the embolus, and fibrinolytic agent (urokinase) was continuously injected. Soon after the injection of 240,000 unit urokinase, recanalization of left middle cerebral artery was shown by repeated cerebral angiography performed 5.5 hours after the onset. On his clinical course, left hemiparesis and aphasia were improved step by step, and 1 week later, he could walk by himself with minor neurological deficits. Further examination revealed that myxoma was located on left atrium by echocardiography. Within 1 week, the patient was transferred to cardio-surgical unit, and myxoma was successfully removed. Now he is in good health and has returned to his job. Usually cerebral embolisms result from atrial myxoma cause severe cerebral infarction. Here we reported a case of cerebral embolism by myxoma and recanalized using fibrinolytic agent by balloon catheter injection. The damage will be reduced if the duration of occlusion is limited, so this method will be helpful to treat cerebral embolism.

  12. Nanomedicine in cerebral palsy.

    PubMed

    Balakrishnan, Bindu; Nance, Elizabeth; Johnston, Michael V; Kannan, Rangaramanujam; Kannan, Sujatha

    2013-01-01

    Cerebral palsy is a chronic childhood disorder that can have diverse etiologies. Injury to the developing brain that occurs either in utero or soon after birth can result in the motor, sensory, and cognitive deficits seen in cerebral palsy. Although the etiologies for cerebral palsy are variable, neuroinflammation plays a key role in the pathophysiology of the brain injury irrespective of the etiology. Currently, there is no effective cure for cerebral palsy. Nanomedicine offers a new frontier in the development of therapies for prevention and treatment of brain injury resulting in cerebral palsy. Nanomaterials such as dendrimers provide opportunities for the targeted delivery of multiple drugs that can mitigate several pathways involved in injury and can be delivered specifically to the cells that are responsible for neuroinflammation and injury. These materials also offer the opportunity to deliver agents that would promote repair and regeneration in the brain, resulting not only in attenuation of injury, but also enabling normal growth. In this review, the current advances in nanotechnology for treatment of brain injury are discussed with specific relevance to cerebral palsy. Future directions that would facilitate clinical translation in neonates and children are also addressed.

  13. [Brain abscess following cerebral infarction: a case report].

    PubMed

    Ichimi, K; Ishiguri, H; Kida, Y; Kinomoto, T

    1989-04-01

    The authors report a case of brain abscess following cerebral infarction. A 73-year-old man was admitted to our clinic with symptoms of right hemiparesis and total aphasia. CT scan revealed abnormal low density area in the left fronto-temporo-parietal region. Cerebral angiography demonstrated occlusion of the left middle cerebral artery at the M1 portion. On the 16th hospital day, an episode of generalized seizure with high fever appeared, and intermittent high fever persisted thereafter. Two months after admission, CT scan revealed several cystic lesions with marked ring enhancement at the site of cerebral infarction, suggesting multiple abscesses. Aspirations of left frontal and parietal abscesses were accomplished and the cultures of the pus disclosed Proteus vulgaris. Due to progressive hydrocephalus, a ventriculoperitoneal shunt was constructed one month later. Repeated CT scans showed a gradual diminution of the abscesses. It is considered that the blood-brain barrier is broken and the local immunological system against bacteria may be weakened when the brain is damaged by ischemia. Brain abscess seems to be developed in such circumstances even under the influence of transient bacteremia which originates in other parts of the body. Therefore the possibility of cerebral abscess should be suspected if patients with cerebral infarction suffer from the symptoms such as fever, neck stiffness or disturbance of consciousness.

  14. Rat model of focal cerebral ischemia in the dominant hemisphere

    PubMed Central

    Zhang, Hua; Shen, Yan; Wang, Wei; Gao, Huanmin

    2015-01-01

    In the human brain, the dominant hemisphere is more complex than the non-dominant hemisphere. Hence, cerebral ischemia of the dominant hemisphere often leads to serious consequences. This study aims to establish a rodent model of focal cerebral ischemia in the dominant hemisphere. The quadruped feeding test was used to screen 70 male Sprague Dawley rats. From this test, 48 rats with right paw preference were selected and randomly assigned numbers. Half were assigned to the dominant hemisphere ischemia (DHI) group, and the other half were assigned to the non-dominant hemisphere ischemia (NDHI) group. The middle cerebral artery was occluded 2 h before reperfusion. Neurological functions were tested. TTC and HE staining were performed. The volume of cerebral infarction was calculated. Rats in the DHI group had significantly worse neurological scores than rats in the NDHI group (P < 0.05). TTC staining indicated ischemia had more severe consequences in the dominant hemisphere than in the non-dominant hemisphere. The dominant hippocampus indicated severe neuronal loss and disorderly cellular arrangement. The volume of cerebral infarction was also greater in the DHI group compared to the NDHI group (P < 0.05). Compared to MCA occlusion in the non-dominant hemisphere, MCA occlusion in the dominant hemisphere caused greater impairment in neurological functions. The proposed rodent model is reliable and has high levels of reproducibility. Therefore, his model can be reliably for investigating the mechanism of focal cerebral ischemia in the dominant hemisphere of human brains. PMID:25785023

  15. Autonomic neural control of dynamic cerebral autoregulation in humans

    NASA Technical Reports Server (NTRS)

    Zhang, Rong; Zuckerman, Julie H.; Iwasaki, Kenichi; Wilson, Thad E.; Crandall, Craig G.; Levine, Benjamin D.

    2002-01-01

    BACKGROUND: The purpose of the present study was to determine the role of autonomic neural control of dynamic cerebral autoregulation in humans. METHODS AND RESULTS: We measured arterial pressure and cerebral blood flow (CBF) velocity in 12 healthy subjects (aged 29+/-6 years) before and after ganglion blockade with trimethaphan. CBF velocity was measured in the middle cerebral artery using transcranial Doppler. The magnitude of spontaneous changes in mean blood pressure and CBF velocity were quantified by spectral analysis. The transfer function gain, phase, and coherence between these variables were estimated to quantify dynamic cerebral autoregulation. After ganglion blockade, systolic and pulse pressure decreased significantly by 13% and 26%, respectively. CBF velocity decreased by 6% (P<0.05). In the very low frequency range (0.02 to 0.07 Hz), mean blood pressure variability decreased significantly (by 82%), while CBF velocity variability persisted. Thus, transfer function gain increased by 81%. In addition, the phase lead of CBF velocity to arterial pressure diminished. These changes in transfer function gain and phase persisted despite restoration of arterial pressure by infusion of phenylephrine and normalization of mean blood pressure variability by oscillatory lower body negative pressure. CONCLUSIONS: These data suggest that dynamic cerebral autoregulation is altered by ganglion blockade. We speculate that autonomic neural control of the cerebral circulation is tonically active and likely plays a significant role in the regulation of beat-to-beat CBF in humans.

  16. Coexistence of intracranial epidermoid tumor and multiple cerebral aneurysms

    PubMed Central

    Yao, Pei-Sen; Lin, Zhang-Ya; Zheng, Shu-Fa; Lin, Yuan-Xiang; Yu, Liang-Hong; Jiang, Chang-Zhen; Kang, De-Zhi

    2017-01-01

    Abstract Rationale: There were a few case reports concerning epidermoid tumor coexisted with multiple cerebral aneurysms. Here, we present one case of coexistence of intracranial epidermoid tumor and multiple cerebral aneurysms and performed a literature review. Patient concerns: A 42 years old male patient was admitted to our institution with complaints of headache and dizziness. Interventions: The radiological examinations showed a hypointense lesion in the right parasellar and petrous apex region and an ipsilateral saccular aneurysm originated from the M2–M3 junction of the right middle cerebral artery (MCA) and a saccular aneurysm of the clinoid segment of right internal carotid artery (ICA). Interventions: The patients underwent a right frontotemporal approach for removal of the epidermoid tumor and clipping of the MCA aneurysm in one stage. The aneurysm located at the clinoid segment of ICA was invisible and untreated during operation. Outcomes: No postoperative complications were found in the patient. The patient's follow up after 5 years of surgical treatment was uneventful, and the untreated aneurysm remains stable. Lessons: The coexistence of intracranial epidermoid tumor and cerebral aneurysm is a rare event. The secondly inflammation in cerebral arterial wall may be responsible for the aneurysm formation. Surgical treatment of the intracranial epidermoid tumor and cerebral aneurysm repair may be an optimal scheme in one stage. PMID:28151901

  17. Differential impact of serum total bilirubin level on cerebral atherosclerosis and cerebral small vessel disease

    PubMed Central

    Kim, Jonguk; Yoon, Seung-Jae; Woo, Min-Hee; Kim, Sang-Heum; Kim, Nam-Keun; Kim, Jinkwon; Kim, OK-Joon; Oh, Seung-Hun

    2017-01-01

    Background A low serum total bilirubin (T-bil) level is associated with an increased risk of atherosclerosis. However, the differential impact of the serum T-bil level on cerebral atherosclerosis and cerebral small vessel disease (SVD) is still unclear. Methods We evaluated serum T-bil levels from 1,128 neurologically healthy subjects. Indices of cerebral atherosclerosis (extracranial arterial stenosis [ECAS] and intracranial arterial stenosis [ICAS]), and indices of SVD (silent lacunar infarct [SLI], and moderate-to-severe white matter hyperintensities [msWMH]) were evaluated by the use of brain magnetic resonance imaging (MRI) and MR angiography. Results In logistic regression analysis after adjusting for confounding variables, subjects within middle T-bil (odds ratio [OR]: 0.63; 95% CI: 0.41–0.97) and high T-bil tertiles (OR: 0.54; 95% CI: 0.33–0.86) showed a lower prevalence of ECAS than those in a low T-bil tertile. Although subjects with a high T-bil tertile had a lower prevalence of ICAS than those with a low T-bil tertile, the statistical significance was marginal after adjusting for confounding variables. There were no significant differences in the proportions of subjects with SLI and msWMH across serum T-bil tertile groups. Conclusions The serum T-bil level is negatively associated with cerebral atherosclerosis, especially extracranial atherosclerosis, but not with SVD. PMID:28319156

  18. Focal embolic cerebral ischemia in the rat

    PubMed Central

    Zhang, Li; Zhang, Rui Lan; Jiang, Quan; Ding, Guangliang; Chopp, Michael; Zhang, Zheng Gang

    2015-01-01

    Animal models of focal cerebral ischemia are well accepted for investigating the pathogenesis and potential treatment strategies for human stroke. Occlusion of the middle cerebral artery (MCA) with an endovascular filament is a widely used model to induce focal cerebral ischemia. However, this model is not amenable to thrombolytic therapies. As thrombolysis with recombinant tissue plasminogen activator (rtPA) is a standard of care within 4.5 hours of human stroke onset, suitable animal models that mimic cellular and molecular mechanisms of thrombosis and thrombolysis of stroke are required. By occluding the MCA with a fibrin-rich allogeneic clot, we have developed an embolic model of MCA occlusion in the rat, which recapitulates the key components of thrombotic development and of thrombolytic therapy of rtPA observed from human ischemic stroke. The surgical procedures of our model can be typically completed within approximately 30 min and are highly adaptable to other strains of rats as well as mice for both genders. Thus, this model provides a powerful tool for translational stroke research. PMID:25741989

  19. Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice

    SciTech Connect

    Cao Canxiang; Yang Qingwu . E-mail: yangqwmlys@hotmail.com; Lv Fenglin; Cui Jie; Fu Huabin; Wang Jingzhou

    2007-02-09

    Inflammatory reaction plays an important role in cerebral ischemia-reperfusion injury, however, its mechanism is still unclear. Our study aims to explore the function of Toll-like receptor 4 (TLR4) in the process of cerebral ischemia-reperfusion. We made middle cerebral artery ischemia-reperfusion model in mice with line embolism method. Compared with C3H/OuJ mice, scores of cerebral water content, cerebral infarct size and neurologic impairment in C3H/Hej mice were obviously lower after 6 h ischemia and 24 h reperfusion. Light microscopic and electron microscopic results showed that cerebral ischemia-reperfusion injury in C3H/Hej mice was less serious than that in C3H/OuJ mice. TNF-{alpha} and IL-6 contents in C3H/HeJ mice were obviously lower than that in C3H/OuJ mice with ELISA. The results showed that TLR4 participates in the process of cerebral ischemia-reperfusion injury probably through decrease of inflammatory cytokines. TLR4 may become a new target for prevention of cerebral ischemia-reperfusion injury. Our study suggests that TLR4 is one of the mechanisms of cerebral ischemia-reperfusion injury besides its important role in innate immunity.

  20. Cerebral blood flow velocity declines before arterial pressure in patients with orthostatic vasovagal presyncope

    NASA Technical Reports Server (NTRS)

    Dan, Dan; Hoag, Jeffrey B.; Ellenbogen, Kenneth A.; Wood, Mark A.; Eckberg, Dwain L.; Gilligan, David M.

    2002-01-01

    OBJECTIVES: We studied hemodynamic changes leading to orthostatic vasovagal presyncope to determine whether changes of cerebral artery blood flow velocity precede or follow reductions of arterial pressure. BACKGROUND: Some evidence suggests that disordered cerebral autoregulation contributes to the occurrence of orthostatic vasovagal syncope. We studied cerebral hemodynamics with transcranial Doppler recordings, and we closely examined the temporal sequence of changes of cerebral artery blood flow velocity and systemic arterial pressure in 15 patients who did or did not faint during passive 70 degrees head-up tilt. METHODS: We recorded photoplethysmographic arterial pressure, RR intervals (electrocardiogram) and middle cerebral artery blood flow velocities (mean, total, mean/RR interval; Gosling's pulsatility index; and cerebrovascular resistance [mean cerebral velocity/mean arterial pressure, MAP]). RESULTS: Eight men developed presyncope, and six men and one woman did not. Presyncopal patients reported light-headedness, diaphoresis, or a sensation of fatigue 155 s (range: 25 to 414 s) before any cerebral or systemic hemodynamic change. Average cerebral blood flow velocity (CBFV) changes (defined by an iterative linear regression algorithm) began 67 s (range: 9 to 198 s) before reductions of MAP. Cerebral and systemic hemodynamic measurements remained constant in nonsyncopal patients. CONCLUSIONS: Presyncopal symptoms and CBFV changes precede arterial pressure reductions in patients with orthostatic vasovagal syncope. Therefore, changes of cerebrovascular regulation may contribute to the occurrence of vasovagal reactions.

  1. Impact of Short-Term Treatment with Telmisartan on Cerebral Arterial Remodeling in SHR

    PubMed Central

    Foulquier, Sébastien; Lartaud, Isabelle; Dupuis, François

    2014-01-01

    Background and Purpose Chronic hypertension decreases internal diameter of cerebral arteries and arterioles. We recently showed that short-term treatment with the angiotensin II receptor blocker telmisartan restored baseline internal diameter of small cerebral arterioles in spontaneously hypertensive rats (SHR), via reversal of structural remodeling and inhibition of the angiotensin II vasoconstrictor response. As larger arteries also participate in the regulation of cerebral circulation, we evaluated whether similar short-term treatment affects middle cerebral arteries of SHR. Methods Baseline internal diameters of pressurised middle cerebral arteries from SHR and their respective controls, Wistar Kyoto rats (WKY) and responses to angiotensin II were studied in a small vessel arteriograph. Pressure myogenic curves and passive internal diameters were measured following EDTA deactivation, and elastic modulus from stress-strain relationships. Results Active baseline internal diameter was 23% lower in SHR compared to WKY, passive internal diameter (EDTA) 28% lower and elastic modulus unchanged. Pressure myogenic curves were shifted to higher pressure values in SHR. Telmisartan lowered blood pressure but had no effect on baseline internal diameter nor on structural remodeling (passive internal diameter and elastic modulus remained unchanged compared to SHR). Telmisartan shifted the pressure myogenic curve to lower pressure values than SHR. Conclusion In the middle cerebral arteries of SHR, short-term treatment with telmisartan had no effect on structural remodeling and did not restore baseline internal diameter, but allowed myogenic tone to adapt towards lower pressure values. PMID:25333878

  2. Hypernatraemia in cerebral disorders

    PubMed Central

    Taylor, W. H.

    1962-01-01

    Six patients are described in whom cerebral damage was associated with raised plasma sodium and chloride concentrations and with extremely low urinary outputs of sodium and chloride. The patients were not clinically dehydrated and direct determinations showed that the blood and plasma volumes, the endogenous creatinine clearance, and the urinary output of antidiuretic hormone were normal. For these and other reasons it is concluded that the metabolic picture results not from diminished circulatory volume, water deficiency, sodium deficiency, undetected diabetes insipidus or osmotic diuresis, but from the cerebral damage itself. In these and other cited cases, the cerebral damage was localized chiefly in the frontal lobes, hypothalamus or lower brain-stem, thus suggesting a descending pathway, the relationship of which to the pineal area controlling aldosterone secretion requires clarification. Images PMID:13920001

  3. [Cerebral ischemia and histamine].

    PubMed

    Adachi, Naoto

    2002-10-01

    Cerebral ischemia induces excess release of glutamate and an increase in the intracellular Ca2+ concentration, which provoke catastrophic enzymatic processes leading to irreversible neuronal injury. Histamine plays the role of neurotransmitter in the central nervous system, and histaminergic fibers are widely distributed in the brain. In cerebral ischemia, release of histamine from nerve endings has been shown to be enhanced by facilitation of its activity. An inhibition of the histaminergic activity in ischemia aggravates the histologic outcome. In contrast, intracerebroventricular administration of histamine improves the aggravation, whereas blockade of histamine H2 receptors aggravates ischemic injury. Furthermore, H2 blockade enhances ischemic release of glutamate and dopamine. These findings suggest that central histamine provides beneficial effects against ischemic neuronal damage by suppressing release of excitatory neurotransmitters. However, histaminergic H2 action facilitates the permeability of the blood-brain barrier and shows deleterious effects on cerebral edema.

  4. Methodological study investigating long term laser Doppler measured cerebral blood flow changes in a permanently occluded rat stroke model.

    PubMed

    Eve, David J; Musso, James; Park, Dong-Hyuk; Oliveira, Cathy; Pollock, Kenny; Hope, Andrew; Baradez, Marc-Olivier; Sinden, John D; Sanberg, Paul R

    2009-05-30

    Cerebral blood flow is impaired during middle cerebral artery occlusion in the rat model of stroke. However, the long term effects on cerebral blood flow following occlusion have received little attention. We examined cerebral blood flow in both sides at multiple time points following middle cerebral artery occlusion of the rat. The bilateral cerebral blood flow in young male Sprague Dawley rats was measured at the time of occlusion, as well as 4, 10 and 16 weeks after occlusion. Under the present experimental conditions, the difference between the left and right side's cerebral blood flow was observed to appear to switch in direction in a visual oscillatory fashion over time in the sham-treated group, whereas the occluded animals consistently showed left side dominance. One group of rats was intraparenchymally transplanted with a human neural stem cell line (CTX0E03 cells) known to have benefit in stroke models. Cerebral blood flow in the lesioned side of the cell-treated group was observed to be improved compared to the untreated rats and to demonstrate a similar oscillatory nature as that observed in sham-treated animals. These findings suggest that multiple bilateral monitoring of cerebral blood flow over time can show effects of stem cell transplantation efficiently as well as functional tests in an animal stroke model.

  5. Cerebral venous sinus thrombosis with cerebral hemorrhage during early pregnancy

    PubMed Central

    Nie, Quanmin; Guo, Pin; Ge, Jianwei; Qiu, Yongming

    2015-01-01

    Cerebral venous sinus thrombosis (CVST) rarely induces cerebral hemorrhage, and CVST with cerebral hemorrhage during early pregnancy is extremely rare. Upon literature review, we are able to find only one case of CVST with cerebral hemorrhage in early pregnancy. In this paper, we report another case of a 27-year-old patient who developed CVST with cerebral hemorrhage in her fifth week of pregnancy. Although the optimal treatment for this infrequent condition remains controversial, we adopted anticoagulation as the first choice of treatment and obtained favorable results. PMID:25630781

  6. Effect of naloxone on regional cerebral blood flow during endotoxin shock in conscious rats

    SciTech Connect

    Law, W.R.; Ferguson, J.L. )

    1987-09-01

    Maintenance of cerebral blood flow (CBF) is vital during cardiovascular shock. Since opioids have been implicated in the pathophysiology of endotoxin shock and have been shown to alter cerebral perfusion patterns, the authors determined whether opioids were responsible for any of the changes in regional CBF observed during endotoxin shock and whether the use of naloxone might impair or aid in the maintenance of CBF. When blood flow (BF) is studied with radioactively-labeled microspheres in rats, the left ventricle of the heart is often cannulated via the right carotid artery. Questions have arisen concerning the potential adverse effects of this method on CBF in the hemisphere ipsilateral to the ligated artery. They measured right and left regional CBF by use of this route of cannulation. Twenty-four hours after cannulations were performed, flow measurements were made using radiolabeled microspheres in conscious unrestrained male Sprague-Dawley rats (300-400 g) before and 10, 30, and 60 min after challenging with 10 mg/kg Escherichia coli endotoxin (etx) or saline. Naloxone (2 mg/kg) or saline was given as a treatment 25 min post-etx. They found no significant differences between right and left cortical, midbrain, or cerebellar BF at any time in any treatment group. Therefore naloxone treatment of endotoxin shock may be beneficial in preventing decreases in regional CBF.

  7. Cerebral infarction on 99mTc-MDP SPECT/CT imaging.

    PubMed

    Guo, Jia; Hu, Shuang; Wang, Haitao; Kuang, Anren

    2013-11-01

    A 70-year-old man with lung cancer underwent whole-body MDP bone scintigraphy to evaluate bone metastases that showed marked tracer uptake in the right side of the head, suggestive of skull metastasis. SPECT/CT imaging was performed for further evaluation. The SPECT images demonstrated increased MDP activity in the region of the brain perfused by the right middle cerebral artery. On CT images, there was a large hypoattenuation area corresponding to elevated MDP accumulation. At the same day, magnetic resonance angiography of the brain revealed occlusion of the right middle cerebral artery.

  8. Extremely low frequency magnetic field induced changes in motor behaviour of gerbils submitted to global cerebral ischemia.

    PubMed

    Rauš, Snežana; Selaković, Vesna; Radenović, Lidija; Prolić, Zlatko; Janać, Branka

    2012-03-17

    The purpose of this study was to evaluate behavioural effects of an extremely low frequency magnetic field (ELF-MF) in 3-month-old Mongolian gerbils submitted to global cerebral ischemia. After 10-min occlusion of both common carotid arteries, the gerbils were placed in the vicinity of an electromagnet and continuously exposed to ELF-MF (50Hz, 0.5mT) for 7 days. Their behaviour (locomotion, stereotypy, rotations, and immobility) was monitored on days 1, 2, 4, 7, and 14 after reperfusion for 60min in the open field. It was shown that the 10-min global cerebral ischemia per se induced a significant motor activity increase (locomotion, stereotypy and rotations), and consequently immobility decrease until day 4 after reperfusion, compared to control gerbils. Exposure to ELF-MF inhibited development of ischemia-induced motor hyperactivity during the whole period of registration, but significantly in the first 2 days after reperfusion, when the postischemic hyperactivity was most evident. Motor activity of these gerbils was still significantly increased compared to control ones, but only on day 1 after reperfusion. Our results revealed that the applied ELF-MF (50Hz, 0.5mT) decreased motor hyperactivity induced by the 10-min global cerebral ischemia, via modulation of the processes that underlie this behavioural response.

  9. Electroacupuncture stimulation of the brachial plexus trunk on the healthy side promotes brain-derived neurotrophic factor mRNA expression in the ischemic cerebral cortex of a rat model of cerebral ischemia/reperfusion injury.

    PubMed

    Guo, Zongjun; Wang, Lumin

    2012-07-25

    A rat model of cerebral ischemia/reperfusion was established by suture occlusion of the left middle cerebral artery. In situ hybridization results showed that the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic rat cerebral cortex increased after cerebral ischemia/ reperfusion injury. Low frequency continuous wave electroacupuncture (frequency 2-6 Hz, current intensity 2 mA) stimulation of the brachial plexus trunk on the healthy (right) side increased the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic cerebral cortex 14 days after cerebral ischemia/reperfusion injury. At the same time, electroacupuncture stimulation of the healthy brachial plexus truck significantly decreased neurological function scores and alleviated neurological function deficits. These findings suggest that electroacupuncture stimulation of the brachial plexus trunk on the healthy (right) side can greatly increase brain-derived neurotrophic factor mRNA expression and improve neurological function.

  10. Quantifying regional cerebral blood flow by N-isopropyl-P-[I-123]iodoamphetamine (IMP) using a ring type single-photon emission computed tomography system

    SciTech Connect

    Takahashi, N.; Odano, I.; Ohkubo, M.

    1994-05-01

    We developed a more accurate quantitative measurement of regional cerebral blood flow (rCBF) with the microsphere model using N-isopropyl-p-[I-123] iodoamphetamine (IMP) and a ring type single photon emission computed tomography (SPECT) system. SPECT studies were performed in 17 patients with brain diseases. A dose of 222 MBq (6 mCi) of [I-123]IMP was injected i.v., at the same time a 5 min period of arterial blood withdrawal was begun. SPECT data were acquired from 25 min to 60 min after tracer injection. For obtaining the brain activity concentration at 5 min after IMP injection, total brain counts collections and one minute period short time SPECT studies were performed at 5, 20, and 60 min. Measurement of the values of rCBF was calculated using short time SPECT images at 5 min (rCBF), static SPECT images corrected with total cerebral counts (rCBF{sub Ct}.) and those corrected with reconstructed counts on short time SPECT images (rCBF{sub Cb}). There was a good relationship (r=0.69) between rCBF and rCBF{sub Ct}, however, rCBF{sub Ct} tends to be underestimated in high flow areas and overestimated in low flow areas. There was better relationship between rCBF and rCBF{sub Cb}(r=0.92). The overestimation and underestimation shown in rCBF{sub Ct} was considered to be due to the correction of reconstructed counts using a total cerebral time activity curve, because of the kinetic behavior of [I-123]IMP was different in each region. We concluded that more accurate rCBF values could be obtained using the regional time activity curves.

  11. Anti-inflammatory properties of lipoxin A4 protect against diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury

    PubMed Central

    Han, Jiang-quan; Liu, Cheng-ling; Wang, Zheng-yuan; Liu, Ling; Cheng, Ling; Fan, Ya-dan

    2016-01-01

    Lipoxin A4 can alleviate cerebral ischemia/reperfusion injury by reducing the inflammatory reaction, but it is currently unclear whether it has a protective effect on diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury. In this study, we established rat models of diabetes mellitus using an intraperitoneal injection of streptozotocin. We then induced focal cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery for 2 hours and reperfusion for 24 hours. After administration of lipoxin A4 via the lateral ventricle, infarction volume was reduced, the expression levels of pro-inflammatory factors tumor necrosis factor alpha and nuclear factor-kappa B in the cerebral cortex were decreased, and neurological functioning was improved. These findings suggest that lipoxin A4 has strong neuroprotective effects in diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury and that the underlying mechanism is related to the anti-inflammatory action of lipoxin A4. PMID:27212926

  12. Cerebral Folate Deficiency

    ERIC Educational Resources Information Center

    Gordon, Neil

    2009-01-01

    Cerebral folate deficiency (CFD) is associated with low levels of 5-methyltetrahydrofolate in the cerebrospinal fluid (CSF) with normal folate levels in the plasma and red blood cells. The onset of symptoms caused by the deficiency of folates in the brain is at around 4 to 6 months of age. This is followed by delayed development, with deceleration…

  13. United Cerebral Palsy

    MedlinePlus

    ... be sure to follow us on Twitter ! Affiliate Network UCP affiliates provide services and support on a community-by-community basis, serving the unique needs of people with disabilities in their region. Find your ... and their networks. Individuals with cerebral palsy and other disabilities deserve ...

  14. Cerebral Palsy (For Teens)

    MedlinePlus

    ... brain is affected and which parts of the body that section of the brain controls. If CP affects both arms and both legs, ... the case of spastic CP) or to help control seizures. And some might have special surgeries to keep their arms or legs straighter and more ... Coping With Cerebral Palsy Puberty can ...

  15. Cerebral Palsy Litigation

    PubMed Central

    Sartwelle, Thomas P.

    2015-01-01

    The cardinal driver of cerebral palsy litigation is electronic fetal monitoring, which has continued unabated for 40 years. Electronic fetal monitoring, however, is based on 19th-century childbirth myths, a virtually nonexistent scientific foundation, and has a false positive rate exceeding 99%. It has not affected the incidence of cerebral palsy. Electronic fetal monitoring has, however, increased the cesarian section rate, with the expected increase in mortality and morbidity risks to mothers and babies alike. This article explains why electronic fetal monitoring remains endorsed as efficacious in the worlds’ labor rooms and courtrooms despite being such a feeble medical modality. It also reviews the reasons professional organizations have failed to condemn the use of electronic fetal monitoring in courtrooms. The failures of tort reform, special cerebral palsy courts, and damage limits to stem the escalating litigation are discussed. Finally, the authors propose using a currently available evidence rule—the Daubert doctrine that excludes “junk science” from the courtroom—as the beginning of the end to cerebral palsy litigation and electronic fetal monitoring’s 40-year masquerade as science. PMID:25183322

  16. Cerebral infarction in a 24-year-old pilot.

    PubMed

    Ohashi, Koichiro; Nakanishi, Kuniaki; Miyajima, Daijiro; Fukushima, Koji; Shirotani, Toshiki; Kuwamura, Keiichi; Tong, Andrew

    2003-10-01

    Ischemic stroke is a rare event in young adults. We report on a 24-yr-old pilot with cerebral infarction of undetermined etiology, temporally associated with chain smoking. The patient exhibited dysphasia, stupor (confused consciousness), and right facial-nerve palsy. Computed-tomography revealed a low-density area in the left insular cortex. Cerebroangiography showed severe stenosis in a branch of the left middle cerebral artery. After admission, the patient made a rapid and uneventful recovery within 72 h. MRI showed an area of hyperintensity on T2-weighted images 2 mo after the attack. Based on the hyperintense area on FLAIR (fluid attenuated inversion recovery sequence) images obtained in MRI performed 10 mo after the attack, we diagnosed a cerebral infarction. In the Japan Air Self-Defense Force, cerebral infarction is an aeromedically disqualifying condition. However, in the evaluation 2 mo after the attack, differentiation from reversible ischemic neurological deficit was difficult. We discuss the criteria used for diagnosis and the risk factors for cerebral infarction in young adults, as well as the aeromedical disposition of young pilots.

  17. Middle ear infection (image)

    MedlinePlus

    A middle ear infection is also known as otitis media. It is one of the most common of childhood infections. With this illness, the middle ear becomes red, swollen, and inflamed because of bacteria ...

  18. Ear Infection (Middle Ear)

    MedlinePlus

    Ear infection (middle ear) Overview By Mayo Clinic Staff An ear infection (acute otitis media) is most often a bacterial or viral infection that affects the middle ear, the air-filled space behind the eardrum that ...

  19. Effect of propofol post-treatment on blood-brain barrier integrity and cerebral edema after transient cerebral ischemia in rats.

    PubMed

    Lee, Jae Hoon; Cui, Hui Song; Shin, Seo Kyung; Kim, Jeong Min; Kim, So Yeon; Lee, Jong Eun; Koo, Bon-Nyeo

    2013-11-01

    Although propofol has been reported to offer neuroprotection against cerebral ischemia injury, its impact on cerebral edema following ischemia is not clear. The objective of this investigation is to evaluate the effects of propofol post-treatment on blood-brain barrier (BBB) integrity and cerebral edema after transient cerebral ischemia and its mechanism of action, focusing on modulation of aquaporins (AQPs), matrix metalloproteinases (MMPs), and hypoxia inducible factor (HIF)-1α. Cerebral ischemia was induced in male Sprague-Dawley rats (n = 78) by occlusion of the right middle cerebral artery for 1 h. For post-treatment with propofol, 1 mg kg(-1) min(-1) of propofol was administered for 1 h from the start of reperfusion. Nineteen rats undergoing sham surgery were also included in the investigation. Edema and BBB integrity were assessed by quantification of cerebral water content and extravasation of Evans blue, respectively, following 24 h of reperfusion. In addition, the expression of AQP-1, AQP-4, MMP-2, and MMP-9 was determined 24 h after reperfusion and the expression of HIF-1α was determined 8 h after reperfusion. Propofol post-treatment significantly reduced cerebral edema (P < 0.05) and BBB disruption (P < 0.05) compared with the saline-treated control. The expression of AQP-1, AQP-4, MMP-2, and MMP-9 at 24 h and of HIF-1α at 8 h following ischemia/reperfusion was significantly suppressed in the propofol post-treatment group (P < 0.05). Propofol post-treatment attenuated cerebral edema after transient cerebral ischemia, in association with reduced expression of AQP-1, AQP-4, MMP-2, and MMP-9. The decreased expression of AQPs and MMPs after propofol post-treatment might result from suppression of HIF-1α expression.

  20. Chronic nicotine exposure exacerbates transient focal cerebral ischemia-induced brain injury.

    PubMed

    Li, Chun; Sun, Hong; Arrick, Denise M; Mayhan, William G

    2016-02-01

    Tobacco smoking is a risk factor contributing to the development and progression of ischemic stroke. Among many chemicals in tobacco, nicotine may be a key contributor. We hypothesized that nicotine alters the balance between oxidant and antioxidant networks leading to an increase in brain injury following transient focal cerebral ischemia. Male Sprague-Dawley were treated with nicotine (2 or 4 mg·kg(-1)·day(-1)) for 4 wk via an implanted subcutaneous osmotic minipump and subjected to a 2-h middle cerebral artery occlusion (MCAO). Infarct size and neurological deficits were evaluated at 24 h of reperfusion. Superoxide levels were determined by lucigenin-enhanced chemiluminescence. Expression of oxidant and antioxidant proteins was measured using Western blot analysis. We found that chronic nicotine exposure significantly increased infarct size and worsened neurological deficits. In addition, nicotine significantly elevated superoxide levels of cerebral cortex under basal conditions. Transient focal cerebral ischemia produced an increase in superoxide levels of cerebral cortex in control group, but no further increase was found in the nicotine group. Furthermore, chronic nicotine exposure did not alter protein expression of NADPH oxidase but significantly decreased MnSOD and uncoupling protein-2 (UCP-2) in the cerebral cortex and cerebral arteries. Our findings suggest that nicotine-induced exacerbation in brain damage following transient focal cerebral ischemia may be related to a preexisting oxidative stress via decreasing of MnSOD and UCP-2.

  1. Aquaporin-4 gene silencing protects injured neurons after early cerebral infarction

    PubMed Central

    He, Zhan-ping; Lu, Hong

    2015-01-01

    Aquaporin-4 regulates water molecule channels and is important in tissue regulation and water transportation in the brain. Upregulation of aquaporin-4 expression is closely related to cellular edema after early cerebral infarction. Cellular edema and aquaporin-4 expression can be determined by measuring cerebral infarct area and apparent diffusion coefficient using diffusion-weighted imaging (DWI). We examined the effects of silencing aquaporin-4 on cerebral infarction. Rat models of cerebral infarction were established by occlusion of the right middle cerebral artery and siRNA-aquaporin-4 was immediately injected via the right basal ganglia. In control animals, the area of high signal intensity and relative apparent diffusion coefficient value on T2-weighted imaging (T2WI) and DWI gradually increased within 0.5–6 hours after cerebral infarction. After aquaporin-4 gene silencing, the area of high signal intensity on T2WI and DWI reduced, relative apparent diffusion coefficient value was increased, and cellular edema was obviously alleviated. At 6 hours after cerebral infarction, the apparent diffusion coefficient value was similar between treatment and model groups, but angioedema was still obvious in the treatment group. These results indicate that aquaporin-4 gene silencing can effectively relieve cellular edema after early cerebral infarction; and when conducted accurately and on time, the diffusion coefficient value and the area of high signal intensity on T2WI and DWI can reflect therapeutic effects of aquaporin-4 gene silencing on cellular edema. PMID:26330830

  2. Cerebral microvascular architecture in the common tree shrew (Tupaia glis) revealed by plastic corrosion casts.

    PubMed

    Poonkhum, R; Pongmayteegul, S; Meeratana, W; Pradidarcheep, W; Thongpila, S; Mingsakul, T; Somana, R

    2000-09-01

    The vascularization of the cerebrum (cerebral cortex and basal ganglia) in the common tree shrew (Tupaia glis) has been studied in detail using vinyl injection and vascular corrosion cast/SEM techniques. It is found that the arterial supply of the cerebral cortex are from cortical branches of the middle cerebral artery (MCA) and of the anterior cerebral artery (ACA). These arteries are in turn branches of the internal carotid artery (ICA). In addition, the cerebral cortex receives the blood from the cortical branches of the posterior cerebral artery (PCA) that originates from the basilar artery (BA). These cortical arteries gives rise to rectilinear orientated intracortical arteries that are divided into dense capillary networks to supply the cerebral cortex. The capillary networks drain the blood into intracortical veins and then into the tributaries of major superficial cerebral veins. The basal ganglia (caudate and lentiform nuclei) are supplied by central or perforating branches of the ACA and MCA. These central or medullary arteries give rise to arterioles that ramify into dense capillary plexuses. The venous blood from both nuclei drains into venules and finally into the tributaries of internal cerebral veins. It is obvious that on the ventral aspect, the diameter of the lateral striate artery (LSA) and of the penetrating arterioles from the MCA are much smaller than that of the MCA. These arterioles have few side branches while the peripheral branches of the superficial cerebral arteries exhibit several series of branches that are gradually reduced in diameter before branching into intracortical arteries. This could be one of the reasons why the rupture of cerebral arteries in man mostly occurs in the those originating from the ventral surface rather than from the dorsolateral surface.

  3. Magnetic Resonance investigation into the mechanisms involved in the development of high-altitude cerebral edema

    PubMed Central

    Sagoo, Ravjit S; Hutchinson, Charles E; Wright, Alex; Handford, Charles; Parsons, Helen; Sherwood, Victoria; Wayte, Sarah; Nagaraja, Sanjoy; Ng’Andwe, Eddie; Wilson, Mark H

    2016-01-01

    Rapid ascent to high altitude commonly results in acute mountain sickness, and on occasion potentially fatal high-altitude cerebral edema. The exact pathophysiological mechanisms behind these syndromes remain to be determined. We report a study in which 12 subjects were exposed to a FiO2 = 0.12 for 22 h and underwent serial magnetic resonance imaging sequences to enable measurement of middle cerebral artery velocity, flow and diameter, and brain parenchymal, cerebrospinal fluid and cerebral venous volumes. Ten subjects completed 22 h and most developed symptoms of acute mountain sickness (mean Lake Louise Score 5.4; p < 0.001 vs. baseline). Cerebral oxygen delivery was maintained by an increase in middle cerebral artery velocity and diameter (first 6 h). There appeared to be venocompression at the level of the small, deep cerebral veins (116 cm3 at 2 h to 97 cm3 at 22 h; p < 0.05). Brain white matter volume increased over the 22-h period (574 ml to 587 ml; p < 0.001) and correlated with cumulative Lake Louise scores at 22 h (p < 0.05). We conclude that cerebral oxygen delivery was maintained by increased arterial inflow and this preceded the development of cerebral edema. Venous outflow restriction appeared to play a contributory role in the formation of cerebral edema, a novel feature that has not been observed previously. PMID:26746867

  4. Managing Malignant Cerebral Infarction

    PubMed Central

    Sahuquillo, Juan; Sheth, Kevin N.; Kahle, Kristopher T.; Walcott, Brian P.

    2011-01-01

    Opinion statement Managing patients with malignant cerebral infarction remains one of the foremost challenges in medicine. These patients are at high risk for progressive neurologic deterioration and death due to malignant cerebral edema, and they are best cared for in the intensive care unit of a comprehensive stroke center. Careful initial assessment of neurologic function and of findings on MRI, coupled with frequent reassessment of clinical and radiologic findings using CT or MRI are mandatory to promote the prompt initiation of treatments that will ensure the best outcome in these patients. Significant deterioration in either neurologic function or radiologic findings or both demand timely treatment using the best medical management, which may include osmotherapy (mannitol or hypertonic saline), endotracheal intubation, and mechanical ventilation. Under appropriate circumstances, decompressive craniectomy may be warranted to improve outcome or to prevent death. PMID:21190097

  5. Evaluation of Neuroprotective Effect of Thymoquinone Nanoformulation in the Rodent Cerebral Ischemia-Reperfusion Model

    PubMed Central

    Xiao, Xiao-Yu; Zhu, Ying-Xian; Bu, Ju-Yuan; Li, Guo-Wei; Zhou, Jian-Hui

    2016-01-01

    The purpose of the present study was to evaluate the neuroprotective efficacy of optimized thymoquinone loaded PLGA-chitosan nanoparticles delivered via nose to brain route in the rodent cerebral ischemia-reperfusion model. The neuroprotective efficacy of the optimized thymoquinone loaded PLGA-chitosan nanoparticles was evaluated in middle cerebral artery occluded rats by various pharmacodynamic and biochemical studies. The pharmacokinetics of thymoquinone loaded PLGA-chitosan nanoparticles in the brain and blood plasma together with qualitative localization of florescent labelled PLGA-chitosan nanoparticles in brain tissues were also determined. Intranasal delivery of optimized thymoquinone loaded PLGA-chitosan nanoparticles (183.5 ± 8.2 nm, 33.63 ± 2.25 mV) to brain significantly reduced the ischemia infarct volume and enhanced the locomotor activity and grip strength in the middle cerebral artery occluded rats. Biochemical studies showed that intranasal delivery of thymoquinone loaded PLGA-chitosan nanoparticles significantly reduced the lipid peroxidation but elevated the glutathione, catalase, and superoxide dismutase in the brain of middle cerebral artery occluded rats. The pharmacokinetic and localization studies showed that thymoquinone loaded PLGA-chitosan nanoparticles facilitated the delivery of thymoquinone to brain by intranasal nose to brain transport pathways and enhanced their pharmacokinetic profile in brain tissues. Thus, intranasal delivery of thymoquinone loaded PLGA-chitosan nanoparticles to brain could be potentially used for the neuroprotection and treatment of cerebral ischemia. PMID:27725936

  6. Evaluation of Neuroprotective Effect of Thymoquinone Nanoformulation in the Rodent Cerebral Ischemia-Reperfusion Model.

    PubMed

    Xiao, Xiao-Yu; Zhu, Ying-Xian; Bu, Ju-Yuan; Li, Guo-Wei; Zhou, Jian-Hui; Zhou, Shao-Peng

    2016-01-01

    The purpose of the present study was to evaluate the neuroprotective efficacy of optimized thymoquinone loaded PLGA-chitosan nanoparticles delivered via nose to brain route in the rodent cerebral ischemia-reperfusion model. The neuroprotective efficacy of the optimized thymoquinone loaded PLGA-chitosan nanoparticles was evaluated in middle cerebral artery occluded rats by various pharmacodynamic and biochemical studies. The pharmacokinetics of thymoquinone loaded PLGA-chitosan nanoparticles in the brain and blood plasma together with qualitative localization of florescent labelled PLGA-chitosan nanoparticles in brain tissues were also determined. Intranasal delivery of optimized thymoquinone loaded PLGA-chitosan nanoparticles (183.5 ± 8.2 nm, 33.63 ± 2.25 mV) to brain significantly reduced the ischemia infarct volume and enhanced the locomotor activity and grip strength in the middle cerebral artery occluded rats. Biochemical studies showed that intranasal delivery of thymoquinone loaded PLGA-chitosan nanoparticles significantly reduced the lipid peroxidation but elevated the glutathione, catalase, and superoxide dismutase in the brain of middle cerebral artery occluded rats. The pharmacokinetic and localization studies showed that thymoquinone loaded PLGA-chitosan nanoparticles facilitated the delivery of thymoquinone to brain by intranasal nose to brain transport pathways and enhanced their pharmacokinetic profile in brain tissues. Thus, intranasal delivery of thymoquinone loaded PLGA-chitosan nanoparticles to brain could be potentially used for the neuroprotection and treatment of cerebral ischemia.

  7. High Altitude Cerebral Edema

    DTIC Science & Technology

    1986-03-01

    English literature and Hultgren et al (3.1) described four more cases of HAPE within the next year. In 1960, Chiodi (5) first reported on a Peruvian...altitude and treatment with steroids and diuretics, CSF pressure was 85 mm H 0. In 1960, Chiodi .(5) described a patient 2 suffering with HACE who...Biol. Chem., 157, 297-302, 1945. 5. Chiodi H: "Mal de montana a forma cerebral; possible mecanismo etiopathogenico," An. Fac. Med. Lima., 43, 437

  8. Primary cerebral malignant melanoma

    PubMed Central

    Tang, Kai; Kong, Xiangyi; Mao, Gengsheng; Qiu, Ming; Zhu, Haibo; Zhou, Lei; Nie, Qingbin; Xu, Yi; Du, Shiwei

    2017-01-01

    Abstract Primary intracranial melanomas are uncommon and constitute approximately 1% of all melanoma cases and 0.07% of all brain tumors. In nature, these primary melanomas are very aggressive and can spread to other organs. We report an uncommon case of primary cerebral malignant melanoma—a challenging diagnosis guided by clinical presentations, radiological features, and surgical biopsy results, aiming to emphasize the importance of considering primary melanoma when making differential diagnoses of intracranial lesions. We present a rare case of a primary cerebral melanoma in the left temporal lobe. The mass appeared iso-hypodense on brain computed tomography (CT), short signal on T1-weighted magnetic resonance images (T1WI) and long signal on T2WI. It was not easy to make an accurate diagnosis before surgery. We showed the patient's disease course and reviewed related literatures, for readers’ reference. Written informed consent was obtained from the patient for publication of this case report and any accompanying images. Because of this, there is no need to conduct special ethic review and the ethical approval is not necessary. After surgery, the pathological examination confirmed the diagnosis of melanoma. The patient was discharged without any complications and went on to receive adjuvant radiochemotherapy. It is difficult to diagnose primary cerebral melanoma in the absence of any cutaneous melanosis. A high index of clinical suspicion along with good pathology reporting is the key in diagnosing these extremely rare tumors. PMID:28121927

  9. A histological study of cerebral aqueduct.

    PubMed

    Stanković, Gordana; Nikolić, Valentina; Puskas, Laslo; Filipović, Branislav; Stojsić-Dzunja, Ljubica; Krivokuća, Dragan

    2005-01-01

    Cerebral (sylvian) aqueduct is a narrow channel in the mesencephalon. It lies between the tectum and the tegmentum of the mesencephalon and is surrounded by the periaqueductal gray matter. The aim of this study was to determine the shape of the aqueduct of sylvius and the structure of its walls in a series of transverse histological sections. Serial transverse sections of the mesencephalon were examined in twenty adult brains of both sexes. Six sections were stained by the hematoxylin-eosin method. The rostral part of the the aqueduct has a triangular shape with dorsal concavity caused by retrocommissural fossae. In the middle, its shape is oval to irregular, the rostral part has a T shape due to isthmic recess on the floor. Walls of the aqueduct are coated with a layer of prismatic cells. Determination of the morphological and histological features of the mesencephalic aqueduct is important for differentiation between physiological and pathological processes in this region.

  10. [Tomographic analysis of CBF in cerebral infarction].

    PubMed

    Segawa, H; Kimura, K; Ueda, Y; Nagai, M; Yoshimasu, N; Nakagomi, T; Tamura, A; Sano, K; Takakura, K

    1983-06-01

    Cerebral perfusion was examined in various types of occlusive disease by computed tomographic CBF method. The method utilized has several advantages over conventional studies using isotope, providing high resolution images in a direct relation to CT anatomy. Ten representative cases were presented from 25 consecutive cases of occlusive disease studied by this method. The method included inhalation of 40 to 60% xenon with serial CT scanning for 25 min. K (build-up rate), lambda (partition coefficient) and CBF values were calculated from HU for each pixel and Xe in expired air, based on Fick's principle, and displayed on CRT as K-, lambda- and CBF-map separately. CBF for gray matter of normal control was 82 +/- 11 ml/100 gm/min and that for white matter was 24 +/- 5 ml/100 gm/min. The ischemic threshold for gray matter appeared to be approximately 20 ml/100 gm/min, as blood flow in focus of complete infarction was below this level. Blood flow between 20-30 ml/100 gm/min caused some change on CT, such as localized atrophy, cortical thinning, loss of distinction between gray and white matter and decreased or increased density, which were considered to be compatible with pathological changes of laminar necrosis or gliosis with neuronal loss. In a case with occlusion of middle cerebral artery with subsequent recanalization, causing hemorrhagic infarct, hyperemia was observed in the infarcted cortex that was enhanced by iodine. Periventricular lucency observed in two cases, where blood flow was decreased below threshold, could be classified as "watershed infarction" mainly involving white matter. In moyamoya disease, blood flow in the anterior circulation was decreased near ischemic level, whereas that in basal ganglia and territory of posterior cerebral artery was fairly preserved, which was compatible with general angiographic finding of this disease.

  11. Alcohol, the cerebral circulation and strokes.

    PubMed

    Altura, B M; Altura, B T

    1984-01-01

    Inasmuch as ethanol is thought to exert its major effects on the CNS, it is important to determine whether this abused substance can exert any direct action on cerebral blood vessels. Since chronic ingestion of alcohol: (1) can produce a loss (and degeneration) of neurons and glial cells in the brain, and (2) is associated, often, with hallucinations in human subjects particularly those undergoing withdrawal, it is possible that ethanol could produce hypoxia in select regions of the brain. The available indirect evidence in man and animals, albeit equivocal, does indicate that ethanol in certain concentrations might produce deficits in cerebral blood flow in select regions of the brain. Direct in-situ observations on the rat brain, using high-resolution, quantitative TV image-intensification microscopy, indicates that administration of ethanol, irrespective of the route of administration (e.g., perivascularly, intraarterially or systemically), produces graded concentration-dependent spasms of arterioles and venules. Concentrations of ethanol approximately greater than 250 mg/dl produce intense spasms resulting in rupture of these vessels. Recent in-situ studies in conscious dogs, using radiolabelled microspheres, also indicate that ethanol can produce deficits in regional brain blood flow. Studies with isolated canine middle cerebral and basilar arteries clearly demonstrate that low concentrations of ethanol (e.g., (less than 10 mM) can produce concentration-dependent spasms by a direct vascular action. Collectively, these new findings could be used to support the concept that heavy use of alcohol or binge-drinking can produce stroke-like effects. Specific calcium antagonists prevented or reversed the alcohol-induced cerebrovasospasms in rats and may prove valuable in treating the hypertension and strokes observed in heavy users of alcohol.

  12. Molecular pathophysiology of cerebral edema

    PubMed Central

    Gerzanich, Volodymyr; Simard, J Marc

    2015-01-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema. PMID:26661240

  13. Molecular pathophysiology of cerebral edema.

    PubMed

    Stokum, Jesse A; Gerzanich, Volodymyr; Simard, J Marc

    2016-03-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema.

  14. Chronic photoperiod disruption does not increase vulnerability to focal cerebral ischemia in young normotensive rats.

    PubMed

    Ku Mohd Noor, Ku Mastura; Wyse, Cathy; Roy, Lisa A; Biello, Stephany M; McCabe, Christopher; Dewar, Deborah

    2016-01-01

    Photoperiod disruption, which occurs during shift work, is associated with changes in metabolism or physiology (e.g. hypertension and hyperglycaemia) that have the potential to adversely affect stroke outcome. We sought to investigate if photoperiod disruption affects vulnerability to stroke by determining the impact of photoperiod disruption on infarct size following permanent middle cerebral artery occlusion. Adult male Wistar rats (210-290 g) were housed singly under two different light/dark cycle conditions ( n = 12 each). Controls were maintained on a standard 12:12 light/dark cycle for nine weeks. For rats exposed to photoperiod disruption, every three days for nine weeks, the lights were switched on 6 h earlier than in the previous photoperiod. T2-weighted magnetic resonance imaging was performed at 48 h after middle cerebral artery occlusion. Disruption of photoperiod in young healthy rats for nine weeks did not alter key physiological variables that can impact on ischaemic damage, e.g. blood pressure and blood glucose immediately prior to middle cerebral artery occlusion. There was no effect of photoperiod disruption on infarct size after middle cerebral artery occlusion. We conclude that any potentially adverse effect of photoperiod disruption on stroke outcome may require additional factors such as high fat/high sugar diet or pre-existing co-morbidities.

  15. Puerarin protects brain tissue against cerebral ischemia/reperfusion injury by inhibiting the inflammatory response

    PubMed Central

    Zhou, Feng; Wang, Liang; Liu, Panpan; Hu, Weiwei; Zhu, Xiangdong; Shen, Hong; Yao, Yuanyuan

    2014-01-01

    Puerarin, a traditional Chinese medicine, exerts a powerful neuroprotective effect in cerebral ischemia/reperfusion injury, but its mechanism is unknown. Here, we established rat models of middle cerebral artery ischemia/reperfusion injury using the suture method. Puerarin (100 mg/kg) was administered intraperitoneally 30 minutes before middle cerebral artery occlusion and 8 hours after reperfusion. Twenty-four hours after reperfusion, we found that puerarin significantly improved neurological deficit, reduced infarct size and brain water content, and notably diminished the expression of Toll-like receptor-4, myeloid differentiation factor 88, nuclear factor kappa B and tumor necrosis factor-α in the ischemic region. These data indicate that puerarin exerts an anti-inflammatory protective effect on brain tissue with ischemia/reperfusion damage by downregulating the expression of multiple inflammatory factors. PMID:25657724

  16. Reversal of focal "misery-perfusion syndrome" by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with 15O positron emission tomography.

    PubMed

    Baron, J C; Bousser, M G; Rey, A; Guillard, A; Comar, D; Castaigne, P

    1981-01-01

    Tomographic images of cerebral blood flow (CBF) and oxygen extraction fraction (OEF) using the 15O continuous inhalation technique, and positron emission tomography, were obtained from a patient with cerebral ischemia distal to an occluded left internal carotid artery. There was a focal mismatch between CBF and oxygen metabolism in the brain supplied by the middle cerebral artery where CBF was decreased and OEF increased ("misery-perfusion syndrome" as opposed to "luxury-perfusion syndrome"). These abnormalities were most marked in the parieto-occipital watershed area. After left superficial temporal to middle cerebral artery anastomosis, the clinical attacks ceased and a repeat study did not demonstrate the previous CBF and OEF abnormalities. This suggests that this pattern of abnormalities indicates potential viable tissue. The concept of "misery-perfusion" may be of some importance in the pathophysiological mechanisms of hemodynamic cerebral ischemia and serve as a rational basis for revascularization procedures.

  17. Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury

    PubMed Central

    Yan, Xiao-ge; Cheng, Bao-hua; Wang, Xin; Ding, Liang-cai; Liu, Hai-qing; Chen, Jing; Bai, Bo

    2015-01-01

    Apelin-13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 μg/g) was injected into the lateral ventricle of middle cerebral artery occlusion model rats. TTC, TUNEL, and immunohistochemical staining showed that compared with the cerebral ischemia/reperfusion group, infarct volume and apoptotic cell number at the ischemic penumbra region were decreased in the Apelin-13 treatment group. Additionally, Apelin-13 treatment increased Bcl-2 immunoreactivity and decreased caspase-3 immunoreactivity. Our findings suggest that Apelin-13 is neuroprotective against cerebral ischemia/reperfusion injury through inhibition of neuronal apoptosis. PMID:26109951

  18. Call-fleming syndrome (reversible cerebral artery vasoconstriction) and aneurysm associated with multiple recreational drug use.

    PubMed

    Drazin, Doniel; Alexander, Michael J

    2013-01-01

    Drug abuse represents a significant health issue. Evidence suggests that recreational drug use has a direct effect on the cerebral vasculature and is of greater concern in those with undiagnosed aneurysms or vascular malformations. The authors report a case of thunderclap headache with a negative head CT and equivocal lumbar puncture after a drug-fueled weekend. The patient underwent diagnostic cerebral angiogram which demonstrated multisegmental, distal areas of focal narrowing of the middle, anterior, posterior, and posterior inferior cerebral artery and an incidental aneurysm. It is often difficult to determine the exact origin of symptoms; thus we were left with a bit of a chicken or the egg debate, trying to decipher which part came first. Either the aneurysm ruptured with associated concomitant vasospasm or it is a case of Call-Fleming syndrome (reversible cerebral artery vasoconstriction) with an incidental aneurysm. The authors proposed their management and rationale of this complex case.

  19. X-Chromosome Dosage and the Response to Cerebral Ischemia

    PubMed Central

    Turtzo, L. Christine; Siegel, Chad; McCullough, Louise D.

    2011-01-01

    Gonadal hormones contribute to ischemic neuroprotection, but cannot fully explain the observed sexual dimorphism in stroke outcomes seen during life stages with low sex steroid hormones. Sex chromosomal complement (XX in females; XY in males) may also contribute to ischemic sexual dimorphism. A transient middle cerebral artery occlusion model was used to investigate the role of X chromosome dosage in female XX and XO littermates of two mouse strains (Paf and EdaTa). Cohorts of XX and XO gonadally intact, ovariectomized, and ovariectomized females supplemented with estrogen were examined. Infarct sizes were equivalent between ovariectomized XX and XO mice, between intact XX and XO mice, and between estrogen-supplemented ovariectomized XX and XO mice. This is the first study to investigate the role of sex chromosome dosage in the response to cerebral ischemia. Neither the number of X chromosomes, nor the parent of origin of the remaining X chromosome, had a significant effect on the degree of cerebral infarction after experimental stroke in adult female mice. Estrogen was protective against cerebral ischemia in both XX and XO mice. PMID:21917808

  20. Nicotinamide restores the reduction of parvalbumin in cerebral ischemic injury.

    PubMed

    Koh, Phil-Ok

    2013-02-01

    The aim of this study investigated whether nicotinamide affects parvalbumin expression in focal cerebral ischemic injury. Rats were treated with vehicle or nicotinamide (500 mg/kg) 2 hr after middle cerebral artery occlusion (MCAO), and cerebral cortex tissues were collected 24 hr after MCAO. Nicotinamide significantly decreases the volume of infarct areas in the cerebral cortex. A proteomic approach revealed that MCAO induces decreases of parvalbumin levels, while nicotinamide treatment prevents injury-induced decreases in parvalbumin. RT-PCR and Western blot analyses demonstrated that nicotinamide restores injury-induced decreases in parvalbumin. Moreover, immunohistochemical staining confirmed that the numbers of parvalbumin-positive cells were decreased in vehicle-treated animals with MCAO, and that nicotinamide averted this decrease. In cultured hippocampal cells, nicotinamide treatment prevents the glutamate exposure-induced increase in intracellular Ca(2+) concentration and decrease in parvalbumin expression. These results suggest the fact that the maintenance of parvalbumin expression is mediated to the neuroprotective function of nicotinamide against ischemic brain injury.

  1. Cerebral correlates of motor imagery of normal and precision gait.

    PubMed

    Bakker, M; De Lange, F P; Helmich, R C; Scheeringa, R; Bloem, B R; Toni, I

    2008-07-01

    We have examined the cerebral structures involved in motor imagery of normal and precision gait (i.e., gait requiring precise foot placement and increased postural control). We recorded cerebral activity with functional magnetic resonance imaging while subjects imagined walking along paths of two different widths (broad, narrow) that required either normal gait, or exact foot placement and increased postural control. We used a matched visual imagery (VI) task to assess the motor specificity of the effects, and monitored task performance by recording imagery times, eye movements, and electromyography during scanning. In addition, we assessed the effector specificity of MI of gait by comparing our results with those of a previous study on MI of hand movements. We found that imagery times were longer for the narrow path during MI, but not during VI, suggesting that MI was sensitive to the constraints imposed by a narrow walking path. Moreover, MI of precision gait resulted in increased cerebral activity and effective connectivity within a network involving the superior parietal lobules, the dorsal precentral gyri, and the right middle occipital gyrus. Finally, the cerebral responses to MI of gait were contiguous to but spatially distinct from regions involved in MI of hand movements. These results emphasize the role of cortical structures outside primary motor regions in imagining locomotion movements when accurate foot positioning and increased postural control is required.

  2. Development of Mechanical and Failure Properties in Sheep Cerebral Arteries.

    PubMed

    Nye, Kevin S; Converse, Matthew I; Dahl, Mar Janna; Albertine, Kurt H; Monson, Kenneth L

    2017-04-01

    Traumatic brain injury (TBI) is a devastating problem for people of all ages, but the nature of the response to such injury is often different in children than in adults. Cerebral vessel damage and dysfunction are common following TBI, but age-dependent, large-deformation vessel response has not been characterized. Our objective was to investigate the mechanical properties of cerebral arteries as a function of development. Sheep middle cerebral arteries from four age groups (fetal, newborn, juvenile, and adult) were subjected to biaxial loading around physiological conditions and then to failure in the axial direction. Results show little difference among age groups under physiological loading conditions, but response varied significantly with age in response to large axial deformation. Vessels from all age groups reached the same ultimate stretch level, but the amount of stress carried at a given level of stretch increased significantly with age through the developmental period (fetal to juvenile). Our results are the first to identify changes in cerebral vessel response to large deformations with age and may lead to new insights regarding differences in response to TBI with age.

  3. [A case of infected subdural hematoma accompanied by cerebral infarction].

    PubMed

    Fujii, Norio; Naito, Yuichiro; Takanashi, Shigehiko; Ueno, Toshiaki; Nakagomi, Tadayoshi

    2013-05-01

    Infected subdural hematoma(ISH)is a rare disease caused by hematogenous infection of a preexisting subdural hematoma. We report a rare case of ISH accompanied by cerebral infarction. A 76-year-old man who had suffered a closed head injury 3 months before presented fever, headache and left hemiparesis during the medical treatment of acute cholangitis and obstructive jaundice with pancreatic cancer at the department of surgical gastroenterology. At the consultation, computed tomography(CT)scan indicated right chronic subdural hematoma. We performed a burr hole opening surgery on the same day. Abscess and hematoma was aspirated from the subdural space, and methicillin-resistant Staphylococcus aureus(MRSA)was detected in this specimen. Thus the diagnosis of the infected subdural hematoma was confirmed. However, despite the antibiotics therapy, follow-up CT showed a low-density area close to the residual abscess, which suggested cerebral infarction. Cerebral angiography showed a vasospasm at the cortical segment of the right middle cerebral artery near the residual abscess. Eventually we carried out a small craniotomy to evacuate the abscess. Our case showed that prompt surgical treatment is required in case of ISH and the whole hematoma and abscess should be removed as soon as possible with an image diagnosis and an additional surgical operation.

  4. Nitroxyl exacerbates ischemic cerebral injury and oxidative neurotoxicity.

    PubMed

    Choe, Chi-un; Lewerenz, Jan; Fischer, Gerry; Uliasz, Tracy F; Espey, Michael Graham; Hummel, Friedhelm C; King, Stephen Bruce; Schwedhelm, Edzard; Böger, Rainer H; Gerloff, Christian; Hewett, Sandra J; Magnus, Tim; Donzelli, Sonia

    2009-09-01

    Nitroxyl (HNO) donor compounds function as potent vasorelaxants, improve myocardial contractility and reduce ischemia-reperfusion injury in the cardiovascular system. With respect to the nervous system, HNO donors have been shown to attenuate NMDA receptor activity and neuronal injury, suggesting that its production may be protective against cerebral ischemic damage. Hence, we studied the effect of the classical HNO-donor, Angeli's salt (AS), on a cerebral ischemia/reperfusion injury in a mouse model of experimental stroke and on related in vitro paradigms of neurotoxicity. I.p. injection of AS (40 mumol/kg) in mice prior to middle cerebral artery occlusion exacerbated cortical infarct size and worsened the persistent neurological deficit. AS not only decreased systolic blood pressure, but also induced systemic oxidative stress in vivo indicated by increased isoprostane levels in urine and serum. In vitro, neuronal damage induced by oxygen-glucose-deprivation of mature neuronal cultures was exacerbated by AS, although there was no direct effect on glutamate excitotoxicity. Finally, AS exacerbated oxidative glutamate toxicity - that is, cell death propagated via oxidative stress in immature neurons devoid of ionotropic glutamate receptors. Taken together, our data indicate that HNO might worsen cerebral ischemia-reperfusion injury by increasing oxidative stress and decreasing brain perfusion at concentrations shown to be cardioprotective in vivo.

  5. Transient cerebral ischemia. Association of apoptosis induction with hypoperfusion.

    PubMed Central

    Vexler, Z S; Roberts, T P; Bollen, A W; Derugin, N; Arieff, A I

    1997-01-01

    Apoptosis is thought to be important in the pathogenesis of cerebral ischemia. The mechanism of apoptosis induction remains unclear but several studies suggest that it is preferentially triggered by mild/moderate microcirculatory disturbances. We examined in cats whether induction of apoptosis after 2.5 h of unilateral middle cerebral artery occlusion plus 10 h of reperfusion is influenced by the degree of cerebral microcirculatory disturbance. Quantitative monitoring over time of the disturbances of cerebral microcirculation in ischemic brain areas and evaluation of cytotoxic edema associated with perfusion deficits was achieved by using two noninvasive magnetic resonance imaging techniques: (a) high-speed echo planar imaging combined with a bolus of magnetic susceptibility contrast agent; and (b) diffusion-weighted imaging. Apoptosis-positive cells were counted in anatomic areas with different severity of ischemic injury characterized by magnetic resonance imaging, triphenyltetrazolium chloride, and hemotoxylin and eosin staining. The number of apoptosis-positive cells was significantly higher in anatomic areas with severe perfusion deficits during occlusion and detectable histologic changes 10 h after reperfusion. In contrast, in areas where perfusion was reduced but maintained during occlusion there were no detectable histological changes and significantly fewer apoptosis-positive cells. A similar number of cells that undergo apoptosis were shown in regions with transient or prolonged subtotal perfusion deficits. These results suggest that the apoptotic process is induced in the ischemic core and contributes significantly in the degeneration of neurons associated with transient ischemia. PMID:9077555

  6. Resting cerebral blood flow

    PubMed Central

    Ances, B M.; Sisti, D; Vaida, F; Liang, C L.; Leontiev, O; Perthen, J E.; Buxton, R B.; Benson, D; Smith, D M.; Little, S J.; Richman, D D.; Moore, D J.; Ellis, R J.

    2009-01-01

    Objective: HIV enters the brain soon after infection causing neuronal damage and microglial/astrocyte dysfunction leading to neuropsychological impairment. We examined the impact of HIV on resting cerebral blood flow (rCBF) within the lenticular nuclei (LN) and visual cortex (VC). Methods: This cross-sectional study used arterial spin labeling MRI (ASL-MRI) to measure rCBF within 33 HIV+ and 26 HIV− subjects. Nonparametric Wilcoxon rank sum test assessed rCBF differences due to HIV serostatus. Classification and regression tree (CART) analysis determined optimal rCBF cutoffs for differentiating HIV serostatus. The effects of neuropsychological impairment and infection duration on rCBF were evaluated. Results: rCBF within the LN and VC were significantly reduced for HIV+ compared to HIV− subjects. A 2-tiered CART approach using either LN rCBF ≤50.09 mL/100 mL/min or LN rCBF >50.09 mL/100 mL/min but VC rCBF ≤37.05 mL/100 mL/min yielded an 88% (29/33) sensitivity and an 88% (23/26) specificity for differentiating by HIV serostatus. HIV+ subjects, including neuropsychologically unimpaired, had reduced rCBF within the LN (p = 0.02) and VC (p = 0.001) compared to HIV− controls. A temporal progression of brain involvement occurred with LN rCBF significantly reduced for both acute/early (<1 year of seroconversion) and chronic HIV-infected subjects, whereas rCBF in the VC was diminished for only chronic HIV-infected subjects. Conclusion: Resting cerebral blood flow (rCBF) using arterial spin labeling MRI has the potential to be a noninvasive neuroimaging biomarker for assessing HIV in the brain. rCBF reductions that occur soon after seroconversion possibly reflect neuronal or vascular injury among HIV+ individuals not yet expressing neuropsychological impairment. GLOSSARY AEH = acute/early HIV infection; ANOVA = analysis of variance; ASL-MRI = arterial spin labeling MRI; CART = classification and regression tree; CBF = cerebral blood flow; CH = chronic HIV

  7. Oligodendrogenesis after cerebral ischemia

    PubMed Central

    Zhang, Ruilan; Chopp, Michael; Zhang, Zheng Gang

    2013-01-01

    Neural stem cells in the subventricular zone (SVZ) of the lateral ventricle of adult rodent brain generate oligodendrocyte progenitor cells (OPCs) that disperse throughout the corpus callosum and striatum where some of OPCs differentiate into mature oligodendrocytes. Studies in animal models of stroke demonstrate that cerebral ischemia induces oligodendrogenesis during brain repair processes. This article will review evidence of stroke-induced proliferation and differentiation of OPCs that are either resident in white matter or are derived from SVZ neural progenitor cells and of therapies that amplify endogenous oligodendrogenesis in ischemic brain. PMID:24194700

  8. Cerebral Disorders of Calves.

    PubMed

    Dore, Vincent; Smith, Geof

    2017-03-01

    Neurologic diseases of the cerebrum are relatively common in cattle. In calves, the primary cerebral disorders are polioencephalomalacia, meningitis, and sodium toxicity. Because diagnostic testing is not always readily available, the practitioner must often decide on a course of treatment based on knowledge of the likely disease, as well as his or her own clinical experience. This is particularly true with neurologic diseases in which the prognosis is often poor and euthanasia may be the most humane outcome. This article reviews the most common diseases affecting the cerebrum of calves with a focus on pathophysiology, diagnosis, and treatment.

  9. Complexity of cerebral blood flow velocity and arterial blood pressure in subarachnoid hemorrhage using time-frequency analysis.

    PubMed

    Placek, Michal M; Wachel, Pawel; Czosnyka, Marek; Soehle, Martin; Smielewski, Peter; Kasprowicz, Magdalena

    2015-01-01

    We investigated changes of time-frequency (TF) complexity, in terms of Rényi entropy and a measure of concentration, of middle cerebral blood flow velocity (CBFV) and arterial blood pressure in relation to the development of cerebral vasospasm in 15 patients after aneurysmal subarachnoid hemorrhage. Interhemispheric differences in the period of no vasospasm and vasospasm were also compared. Results show reduced complexity of TF representations of CBFV on the side of aneurysm before vasospasm was identified. This potentially can serve as an early-warning indicator of future derangement of cerebral circulation.

  10. Cerebral versus systemic hemodynamics during graded orthostatic stress in humans

    NASA Technical Reports Server (NTRS)

    Levine, B. D.; Giller, C. A.; Lane, L. D.; Buckey, J. C.; Blomqvist, C. G.

    1994-01-01

    estimated from changes in the blood flow velocity in the middle cerebral artery (VMCA) using transcranial Doppler. Pulsatility (systolic minus diastolic/mean velocity) normalized for systemic arterial pressure pulsatility was used as an index of distal cerebral vascular resistance. End-tidal PACO2 was closely monitored during LBNP. From rest to maximal LBNP before the onset of symptoms or systemic hypotension, Qc and FBF decreased by 29.9% and 34.4%, respectively. VMCA decreased less, by 15.5% consistent with a smaller decrease in CBF. Similarly, SVR and FVR increased by 62.8% and 69.8%, respectively, whereas pulsatility increased by 17.2%, suggestive of a mild degree of small-vessel cerebral vasoconstriction. Seven of 13 subjects had presyncope during LBNP, all associated with a sudden drop in BP (29 +/- 9%). By comparison, hyperventilation alone caused greater changes in VMCA (42 +/- 2%) and pulsatility but never caused presyncope. In a separate group of 3 subjects, superimposition of hyperventilation during highlevel LBNP caused a further decrease in VMCA (31 +/- 7%) but no change in BP or level of consciousness. CONCLUSIONS: We conclude that cerebral vasoconstriction occurs in healthy humans during graded reductions in central blood volume caused by LBNP. However, the magnitude of this response is small compared with changes in SVR or FVR during LBNP or other stimuli known to induce cerebral vasoconstriction (hypocapnia). We speculate that this degree of cerebral vasoconstriction is not by itself sufficient to cause syncope during orthostatic stress. However, it may exacerbate the decrease in CBF associated with hypotension if hemodynamic instability develops.

  11. Hypocapnia and cerebral hypoperfusion in orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    Novak, V.; Spies, J. M.; Novak, P.; McPhee, B. R.; Rummans, T. A.; Low, P. A.

    1998-01-01

    BACKGROUND AND PURPOSE: Orthostatic and other stresses trigger tachycardia associated with symptoms of tremulousness, shortness of breath, dizziness, blurred vision, and, often, syncope. It has been suggested that paradoxical cerebral vasoconstriction during head-up tilt might be present in patients with orthostatic intolerance. We chose to study middle cerebral artery (MCA) blood flow velocity (BFV) and cerebral vasoregulation during tilt in patients with orthostatic intolerance (OI). METHODS: Beat-to-beat BFV from the MCA, heart rate, CO2, blood pressure (BP), and respiration were measured in 30 patients with OI (25 women and 5 men; age range, 21 to 44 years; mean age, 31.3+/-1.2 years) and 17 control subjects (13 women and 4 men; age range, 20 to 41 years; mean age, 30+/-1.6 years); ages were not statistically different. These indices were monitored during supine rest and head-up tilt (HUT). We compared spontaneous breathing and hyperventilation and evaluated the effect of CO2 rebreathing in these 2 positions. RESULTS: The OI group had higher supine heart rates (P<0.001) and cardiac outputs (P<0.01) than the control group. In response to HUT, OI patients underwent a greater heart rate increment (P<0.001) and greater reductions in pulse pressure (P<0.01) and CO2 (P<0.001), but total systemic resistance failed to show an increment. Among the cerebrovascular indices, all BFVs (systolic, diastolic, and mean) decreased significantly more, and cerebrovascular resistance (CVR) was increased in OI patients (P<0.01) compared with control subjects. In both groups, hyperventilation induced mild tachycardia (P<0.001), a significant reduction of BFV, and a significant increase of CVR associated with a fall in CO2. Hyperventilation during HUT reproduced hypocapnia, BFV reduction, and tachycardia and worsened symptoms of OI; these symptoms and indices were improved within 2 minutes of CO2 rebreathing. The relationships between CO2 and BFV and heart rate were well described by

  12. Coupling between resting cerebral perfusion and EEG.

    PubMed

    O'Gorman, R L; Poil, S-S; Brandeis, D; Klaver, P; Bollmann, S; Ghisleni, C; Lüchinger, R; Martin, E; Shankaranarayanan, A; Alsop, D C; Michels, L

    2013-07-01

    While several studies have investigated interactions between the electroencephalography (EEG) and functional magnetic resonance imaging BOLD signal fluctuations, less is known about the associations between EEG oscillations and baseline brain haemodynamics, and few studies have examined the link between EEG power outside the alpha band and baseline perfusion. Here we compare whole-brain arterial spin labelling perfusion MRI and EEG in a group of healthy adults (n = 16, ten females, median age: 27 years, range 21-48) during an eyes closed rest condition. Correlations emerged between perfusion and global average EEG power in low (delta: 2-4 Hz and theta: 4-7 Hz), middle (alpha: 8-13 Hz), and high (beta: 13-30 Hz and gamma: 30-45 Hz) frequency bands in both cortical and sub-cortical regions. The correlations were predominately positive in middle and high-frequency bands, and negative in delta. In addition, central alpha frequency positively correlated with perfusion in a network of brain regions associated with the modulation of attention and preparedness for external input, and central theta frequency correlated negatively with a widespread network of cortical regions. These results indicate that the coupling between average EEG power/frequency and local cerebral blood flow varies in a frequency specific manner. Our results are consistent with longstanding concepts that decreasing EEG frequencies which in general map onto decreasing levels of activation.

  13. Disassociation of static and dynamic cerebral autoregulatory performance in healthy volunteers after lipopolysaccharide infusion and in patients with sepsis.

    PubMed

    Berg, Ronan M G; Plovsing, Ronni R; Ronit, Andreas; Bailey, Damian M; Holstein-Rathlou, Niels-Henrik; Møller, Kirsten

    2012-12-01

    Sepsis is frequently complicated by brain dysfunction, which may be associated with disturbances in cerebral autoregulation, rendering the brain susceptible to hypoperfusion and hyperperfusion. The purpose of the present study was to assess static and dynamic cerebral autoregulation 1) in a human experimental model of the systemic inflammatory response during early sepsis and 2) in patients with advanced sepsis. Cerebral autoregulation was tested using transcranial Doppler ultrasound in healthy volunteers (n = 9) before and after LPS infusion and in patients with sepsis (n = 16). Static autoregulation was tested by norepinephrine infusion and dynamic autoregulation by transfer function analysis (TFA) of spontaneous oscillations between mean arterial blood pressure and middle cerebral artery blood flow velocity in the low frequency range (0.07-0.20 Hz). Static autoregulatory performance after LPS infusion and in patients with sepsis was similar to values in healthy volunteers at baseline. In contrast, TFA showed decreased gain and an increased phase difference between blood pressure and middle cerebral artery blood flow velocity after LPS (both P < 0.01 vs. baseline); patients exhibited similar gain but lower phase difference values (P < 0.01 vs. baseline and LPS), indicating a slower dynamic autoregulatory response. Our findings imply that static and dynamic cerebral autoregulatory performance may disassociate in sepsis; thus static autoregulation was maintained both after LPS and in patients with sepsis, whereas dynamic autoregulation was enhanced after LPS and impaired with a prolonged response time in patients. Hence, acute surges in blood pressure may adversely affect cerebral perfusion in patients with sepsis.

  14. Cerebral Gluconeogenesis and Diseases

    PubMed Central

    Yip, James; Geng, Xiaokun; Shen, Jiamei; Ding, Yuchuan

    2017-01-01

    The gluconeogenesis pathway, which has been known to normally present in the liver, kidney, intestine, or muscle, has four irreversible steps catalyzed by the enzymes: pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose 1,6-bisphosphatase, and glucose 6-phosphatase. Studies have also demonstrated evidence that gluconeogenesis exists in brain astrocytes but no convincing data have yet been found in neurons. Astrocytes exhibit significant 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 activity, a key mechanism for regulating glycolysis and gluconeogenesis. Astrocytes are unique in that they use glycolysis to produce lactate, which is then shuttled into neurons and used as gluconeogenic precursors for reduction. This gluconeogenesis pathway found in astrocytes is becoming more recognized as an important alternative glucose source for neurons, specifically in ischemic stroke and brain tumor. Further studies are needed to discover how the gluconeogenesis pathway is controlled in the brain, which may lead to the development of therapeutic targets to control energy levels and cellular survival in ischemic stroke patients, or inhibit gluconeogenesis in brain tumors to promote malignant cell death and tumor regression. While there are extensive studies on the mechanisms of cerebral glycolysis in ischemic stroke and brain tumors, studies on cerebral gluconeogenesis are limited. Here, we review studies done to date regarding gluconeogenesis to evaluate whether this metabolic pathway is beneficial or detrimental to the brain under these pathological conditions. PMID:28101056

  15. Cerebral cartography and connectomics

    PubMed Central

    Sporns, Olaf

    2015-01-01

    Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics. PMID:25823870

  16. Cerebral hyperperfusion syndrome.

    PubMed

    van Mook, Walther N K A; Rennenberg, Roger J M W; Schurink, Geert Willem; van Oostenbrugge, Robert Jan; Mess, Werner H; Hofman, Paul A M; de Leeuw, Peter W

    2005-12-01

    Cerebral hyperperfusion syndrome (CHS) after carotid endarterectomy is characterised by ipsilateral headache, hypertension, seizures, and focal neurological deficits. If not treated properly it can result in severe brain oedema, intracerebral or subarachnoid haemorrhage, and death. Knowledge of CHS among physicians is limited. Most studies report incidences of CHS of 0-3% after carotid endarterectomy. CHS is most common in patients with increases of more than 100% in perfusion compared with baseline after carotid endarterectomy and is rare in patients with increases in perfusion less than 100% compared with baseline. The most important risk factors in CHS are diminished cerebrovascular reserve, postoperative hypertension, and hyperperfusion lasting more than several hours after carotid endarterectomy. Impaired autoregulation as a result of endothelial dysfunction mediated by generation of free oxygen radicals is implicated in the pathogenesis of CHS. Treatment strategies are directed towards regulation of blood pressure and limitation of rises in cerebral perfusion. Complete recovery happens in mild cases, but disability and death can occur in more severe cases. More information about CHS and early institution of adequate treatment are of paramount importance in order to prevent these potentially severe complications.

  17. Cerebral cartography and connectomics.

    PubMed

    Sporns, Olaf

    2015-05-19

    Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics.

  18. Monitoring of cerebral autoregulation.

    PubMed

    Czosnyka, Marek; Miller, Chad

    2014-12-01

    Pressure autoregulation is an important hemodynamic mechanism that protects the brain against inappropriate fluctuations in cerebral blood flow in the face of changing cerebral perfusion pressure (CPP). Static autoregulation represents how far cerebrovascular resistance changes when CPP varies, and dynamic autoregulation represents how fast these changes happen. Both have been monitored in the setting of neurocritical care to aid prognostication and contribute to individualizing CPP targets in patients. Failure of autoregulation is associated with a worse outcome in various acute neurological diseases. Several studies have used transcranial Doppler ultrasound, intracranial pressure (ICP with vascular reactivity as surrogate measure of autoregulation), and near-infrared spectroscopy to continuously monitor the impact of spontaneous fluctuations in CPP on cerebrovascular physiology and to calculate derived variables of autoregulatory efficiency. Many patients who undergo such monitoring demonstrate a range of CPP in which autoregulatory efficiency is optimal. Management of patients at or near this optimal level of CPP is associated with better outcomes in traumatic brain injury. Many of these studies have utilized the concept of the pressure reactivity index, a correlation coefficient between ICP and mean arterial pressure. While further studies are needed, these data suggest that monitoring of autoregulation could aid prognostication and may help identify optimal CPP levels in individual patients.

  19. Cerebral sinus venous thrombosis

    PubMed Central

    Alvis-Miranda, Hernando Raphael; Milena Castellar-Leones, Sandra; Alcala-Cerra, Gabriel; Rafael Moscote-Salazar, Luis

    2013-01-01

    Cerebral sinus venous thrombosis (CSVT) is a rare phenomenon that can be seen with some frequency in young patients. CSVT is a multifactorial condition with gender-related specific causes, with a wide clinical presentation, the leading causes differ between developed and developing countries, converting CSVT in a condition characterized by a highly variable clinical spectra, difficult diagnosis, variable etiologies and prognosis that requires fine medical skills and a high suspicious index. Patients who presents with CSVT should underwent to CT-scan venography (CVT) and to the proper inquiry of the generating cause. This disease can affect the cerebral venous drainage and related anatomical structure. The symptoms may appear in relation to increased intracranial pressure imitating a pseudotumorcerebri. Prognosis depends on the early detection. Correcting the cause, generally the complications can be prevented. Mortality trends have diminished, and with the new technologies, surely it will continue. This work aims to review current knowledge about CSVT including its pathogenesis, etiology, clinical manifestations, diagnosis, and treatment. PMID:24347950

  20. [Noradrenaline and cerebral aging].

    PubMed

    Jouvet, M; Albarede, J L; Lubin, S; Meyrignac, C

    1991-01-01

    The central functions of norepinephrine (NE) are a recent discovery: regulation of alertness and of the wakefulness-sleep cycle, maintenance of attention, memory and learning, cerebral plasticity and neuro-protection. The anatomical, histological, biochemical and physiological properties of the central noradrenergic system: extreme capacity for ramification and arborization; slow conduction, non-myelinized axons with extrasynaptic varicosities producing and releasing NE; frequency of co-transmission phenomena, and; neuromodulation with fiber effect responsible for improvement in the signal over background noise ratio and selection of significant stimuli form a true interface between the outside world and the central nervous system, notably for the neocortex in the context of the cognitive treatment of information. This central noradrenergic system is involved in the neurophysiology and the clinical features of cerebral aging (ideation-motor and cognitive function slowing down, loss of behavioral adjustment), neuro-degenerative disorders (SDAT, Parkinson's disease), certain aspects of depression and less obvious conditions (head injuries, sequelae of cerebrovascular accidents, sub-cortical dementia). The recent development of medications improving alertness (adrafinil, modafinil) with a pure central action and specifically noradrenergic, may contribute to an improvement in these multifactorial disorders.

  1. The TRIF-dependent signaling pathway is not required for acute cerebral ischemia/reperfusion injury in mice

    SciTech Connect

    Hua, Fang; Wang, Jun; Sayeed, Iqbal; Ishrat, Tauheed; Atif, Fahim; Stein, Donald G.

    2009-12-18

    TIR domain-containing adaptor protein (TRIF) is an adaptor protein in Toll-like receptor (TLR) signaling pathways. Activation of TRIF leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-{kappa}B). While studies have shown that TLRs are implicated in cerebral ischemia/reperfusion (I/R) injury and in neuroprotection against ischemia afforded by preconditioning, little is known about TRIF's role in the pathological process following cerebral I/R. The present study investigated the role that TRIF may play in acute cerebral I/R injury. In a mouse model of cerebral I/R induced by transient middle cerebral artery occlusion, we examined the activation of NF-{kappa}B and IRF3 signaling in ischemic cerebral tissue using ELISA and Western blots. Neurological function and cerebral infarct size were also evaluated 24 h after cerebral I/R. NF-{kappa}B activity and phosphorylation of the inhibitor of kappa B (I{kappa}B{alpha}) increased in ischemic brains, but IRF3, inhibitor of {kappa}B kinase complex-{epsilon} (IKK{epsilon}), and TANK-binding kinase1 (TBK1) were not activated after cerebral I/R in wild-type (WT) mice. Interestingly, TRIF deficit did not inhibit NF-{kappa}B activity or p-I{kappa}B{alpha} induced by cerebral I/R. Moreover, although cerebral I/R induced neurological and functional impairments and brain infarction in WT mice, the deficits were not improved and brain infarct size was not reduced in TRIF knockout mice compared to WT mice. Our results demonstrate that the TRIF-dependent signaling pathway is not required for the activation of NF-{kappa}B signaling and brain injury after acute cerebral I/R.

  2. Mathematics in the Middle.

    ERIC Educational Resources Information Center

    Leutzinger, Larry, Ed.

    This book contains articles that help to further the process of reform in the middle grades, recognizing that the knowledge acquired during these years greatly affects how well the secondary school curriculum will attain its goals. Critical issues facing middle grade classes in particular and all mathematics classrooms in general are discussed.…

  3. Teaching Middle Grades Science.

    ERIC Educational Resources Information Center

    Georgia State Dept. of Education, Atlanta. Office of Instructional Services.

    Background information and exemplary units for teaching science in Georgia's middle school grades are provided. Discussed in the first section are: (1) the rationale for including science in middle school grades, focusing on science/society/technology, science/social issues, scientific reasoning, and scientific literacy; (2) role of science…

  4. The Middle East.

    ERIC Educational Resources Information Center

    Blouin, Virginia; And Others

    This sixth grade resource unit focuses on Middle East culture as seen through five areas of the social sciences: anthropology-sociology, geography, history, economics, and political science. Among objectives that the student is expected to achieve are the following: 1) given general information on the Middle East through the use of film, visuals,…

  5. Generativity in Middle Adulthood.

    ERIC Educational Resources Information Center

    Hardin, Paula

    The study described in this paper was conducted to delineate the phenomenon of generativity in middle-aged adults in an attempt to identify its major characteristics, attributes, determinants, and situational or circumstantial variables. Three themes emerged from a literature survey of materials on middle adulthood: the theme of the entry…

  6. [A case of multiple cerebral aneurysm which showed rapid growth caused by left atrial myxoma].

    PubMed

    Hayashi, S; Takahashi, H; Shimura, T; Nakazawa, S

    1995-11-01

    A 24-year-old woman was admitted complaining of right hemiparesis and episodes of syncope. Computed tomography demonstrated a low density area in the left putaminal region. Intravenous digital subtraction angiography (IVDSA) showed two aneurysms in the distal segment of the right middle cerebral artery. Cerebral emboli from a cardiac source was suspected, and cardioechography was performed. Myxoma was located in the left atrium. The patient was transferred to a cardio surgical unit, and the myxoma was successfully removed. After removal by operation of the cardiac tumor, follow-up third IVDSA was performed. One aneurysm of the distal segment of the right middle cerebral artery had grown larger. On the other hand, the other aneurysm had disappeared. Clipping of the enlarged aneurysm was performed. After the clipping operation of the enlarged aneurysm, a follow-up 4th IVDSA was performed. A new aneurysm of the proximal segment of the left cerebral artery was observed. A follow-up 5th IVDSA was performed, revealing that the new aneurysm was enlarging. No operation was performed, because the aneurysm was the fusiform type. At present, the patient is complaining of slight right hemiparesis and has returned to her job. Here we reported a case of cerebral aneurysm caused by left atrial myxoma.

  7. Flutamide Enhances Neuroprotective Effects of Testosterone during Experimental Cerebral Ischemia in Male Rats

    PubMed Central

    Fanaei, Hamed; Sadeghipour, Hamid Reza; Karimian, Seyed Morteza; Hassanzade, Gholamreza

    2013-01-01

    Testosterone has been shown to worsen histological and neurological impairment during cerebral ischemia in animal models. Cell culture studies revealed that testosterone is implicated in protecting neural and glial cells against insults, and they started to elucidate testosterone pathways that underlie these protective effects. These studies support the hypothesis that testosterone can be neuroprotective throughout an episode of cerebral ischemia. Therefore, we evaluated the mechanisms underlying the shift between testosterone protective and deleterious effects via block testosterone aromatization and androgen receptors in rats subjected to 60-minute middle cerebral artery occlusion. Fifty rats were divided into five equal groups: gonadally intact male; castrated male; intact male + flutamide; intact male + letrozole; intact male + combination flutamide and letrozole. Our results indicated that castration has the ability to reduce histological damage and to improve neurological score 24 hours after middle cerebral artery occlusion. Moreover, flutamide improved histologic and neurological impairment better than castration. Letrozole induced increases in striatal infarct volume and seizures in gonadally intact rats. Combination of flutamide and letrozole showed that letrozole can reverse beneficial effects of flutamide. In conclusion, it seems that the beneficial effects of flutamide are the prevention of the deleterious effects and enhancement of neuroprotective effects of testosterone during cerebral ischemia. PMID:23401794

  8. The differential effects of prolonged exercise upon executive function and cerebral oxygenation.

    PubMed

    Tempest, Gavin D; Davranche, Karen; Brisswalter, Jeanick; Perrey, Stephane; Radel, Rémi

    2017-04-01

    The acute-exercise effects upon cognitive functions are varied and dependent upon exercise duration and intensity, and the type of cognitive tasks assessed. The hypofrontality hypothesis assumes that prolonged exercise, at physiologically challenging intensities, is detrimental to executive functions due to cerebral perturbations (indicated by reduced prefrontal activity). The present study aimed to test this hypothesis by measuring oxygenation in prefrontal and motor regions using near-infrared spectroscopy during two executive tasks (flanker task and 2-back task) performed while cycling for 60min at a very low intensity and an intensity above the ventilatory threshold. Findings revealed that, compared to very low intensity, physiologically challenging exercise (i) shortened reaction time in the flanker task, (ii) impaired performance in the 2-back task, and (iii) initially increased oxygenation in prefrontal, but not motor regions, which then became stable in both regions over time. Therefore, during prolonged exercise, not only is the intensity of exercise assessed important, but also the nature of the cognitive processes involved in the task. In contrast to the hypofrontality hypothesis, no inverse pattern of oxygenation between prefrontal and motor regions was observed, and prefrontal oxygenation was maintained over time. The present results go against the hypofrontality hypothesis.

  9. Evaluation of MR derived cerebral oxygen metabolic index in experimental hyperoxic hypercapnia, hypoxia and ischemia

    PubMed Central

    An, Hongyu; Liu, Qingwei; Chen, Yasheng; Lin, Weili

    2009-01-01

    Background and Purpose A non-invasive MRI method to measure cerebral oxygen metabolism has the potential to assess tissue viability during cerebral ischemia. The purposes of this study were 1) to validate MR oxygenation measurements across a wide range of global cerebral oxygenation; and 2) to examine the spatiotemporal evolution of oxygen metabolism during focal middle cerebral artery occlusion (MCAO) in rats. Methods A group of rats (n=28) under normal, hyperoxic hypercapnia and hypoxia were studied to compare MR measured cerebral oxygen saturation (O2SatMRv) with blood gas oximetry measurements in the jugular vein (O2SatJV) and superior sagittal sinus (O2SatSSS). In a separate group of rats (n=31), MR measured cerebral oxygen metabolic index (MR_COMI) was acquired at multiple time-points during MCAO. Histogram analysis was performed on the normalized MR_COMI (rMR_COMI) to examine evolution of oxygen metabolism during acute ischemia. Results Highly linear relationships were obtained between O2SatMRv and O2SatJV/O2SatSSS in rats under global cerebral oxygenation alterations. In the focal ischemia study, rMR_COMI values were significantly lower within the areas of eventual infarction than other regions. Moreover, the rMR_COMI values within the ischemic territory decreased with time, concomitant with an increase in the number of voxels with severely impaired oxygen metabolism. Conclusion Accurate estimates of O2SatMRv can be obtained across a broad and physiologically relevant range of cerebral oxygenation. Furthermore, this method demonstrates a dynamic alteration of cerebral oxygen metabolism during acute ischemia in rats. PMID:19359642

  10. Michigan Middle Start Studies of Middle Start School Improvement, Lake Middle School: A Case Study.

    ERIC Educational Resources Information Center

    Gopalan, Pritha

    This case study documented the collaboration of Lake Middle School (pseudonym for a school in Michigan) with Middle Start, a middle-grades reform model and its progress and struggles implementing the model. Middle Start was coordinated by the Michigan Middle Start Partnership, and alliance that provided technical assistance, professional…

  11. Effect of generalised sympathetic activation by cold pressor test on cerebral haemodynamics in healthy humans.

    PubMed

    Roatta, S; Micieli, G; Bosone, D; Losano, G; Bini, R; Cavallini, A; Passatore, M

    1998-07-15

    There is no general agreement regarding several aspects of the role of the sympathetic system on cerebral haemodynamics such as extent of effectiveness, operational range and site of action. This study was planned to identify the effect of a generalised sympathetic activation on the cerebral haemodynamics in healthy humans before it is masked by secondary corrections, metabolic or myogenic in nature. A total of 35 healthy volunteers aged 20-35 underwent a 5 min lasting cold pressor test (CPT) performed on their left hand. The cerebral blood flow (CBF) velocity in the middle cerebral arteries and arterial blood pressure were recorded with transcranial Doppler sonography and with a non-invasive finger-cuff method, respectively. The ratio of arterial blood pressure to mean blood velocity (ABP/Vm) and Pulsatility Index (PI) were calculated throughout each trial. CPT induced an increase in mean ABP (range 2-54 mmHg depending on the subject) and only a slight, though significant, increase in blood velocity in the middle cerebral artery (+2.4 and +4.4% on ipsi- and contralateral side, respectively). During CPT, the ratio ABP/Vm increased and PI decreased in all subjects on both sides. These changes began simultaneously with the increase in blood pressure. The increase in ABP/Vm ratio is attributed to an increase in the cerebrovascular resistance, while the concomitant reduction in PI is interpreted as due to the reduction in the compliance of the middle cerebral artery. The results suggest that generalised increases in the sympathetic discharge, causing increases in ABP, can prevent concomitant increases in CBF by acting on both small resistance and large compliant vessels. This effect is also present when a slight increase in blood pressure occurs, which suggests a moderate increase in the sympathetic discharge, i.e. when ABP remains far below the upper limit of CBF autoregulation.

  12. Cerebral Arterial Fenestrations

    PubMed Central

    Cooke, Daniel L; Stout, Charles E; Kim, Warren T; Kansagra, Akash P; Yu, John Paul; Gu, Amy; Jewell, Nicholas P; Hetts, Steven W; Higashida, Randall T; Dowd, Christopher F; Halbach, Van V

    2014-01-01

    Summary Arterial fenestrations are an anatomic variant with indeterminate significance. Given the controversy surrounding fenestrations we sought their prevalence within our practice along with their association with other cerebrovascular anomalies. We retrospectively reviewed 10,927 patients undergoing digital subtraction angiography between 1992 and 2011. Dictated reports were searched for the terms “fenestration” or “fenestrated” with images reviewed for relevance, yielding 228 unique cases. A Medline database search from February 1964 to January 2013 generated 304 citations, 127 cases of which were selected for analysis. Cerebral arterial fenestrations were identified in 228 patients (2.1%). At least one aneurysm was noted in 60.5% of patients, with an aneurysm arising from the fenestration in 19.6% of patients. Aneurysmal subarachnoid hemorrhage or non-aneurysmal subarachnoid hemorrhage were present in 60.1% and 15.8%, respectively. For the subset of patients with an aneurysm arising directly from a fenestration relative to those patients with an aneurysm not immediately associated with a fenestration, the prevalence of aneurysmal subarachnoid hemorrhage was 66.7% vs. 58.6% (p = 0.58). Fenestrations were more often within the posterior circulation (73.2%) than the anterior circulation (24.6%), though there was no difference in the prevalence of aneurysms within these groups (61.1% vs. 60.7%, p = 1.0). Cerebral arterial fenestrations are an anatomic variant more often manifesting at the anterior communicating arterial complex and basilar artery and with no definite pathological relationship with aneurysms. PMID:24976087

  13. Middle latency auditory evoked potentials during total intravenous anesthesia with droperidol, ketamine and fentanyl.

    PubMed

    Kudoh, A; Matsuki, A

    1999-04-01

    We investigated whether total intravenous anesthesia with ketamine, fentanyl and droperidol would affect middle latency auditory evoked potentials and explicit memory, and whether dreams during the anesthesia are related to plasma concentrations of fentanyl and the infusion technique. A total number of 40 patients were the subjects for this study. Twenty patients (group A) were maintained with intravenous ketamine 2 mg kg-1 hr-1 and fentanyl 5 micrograms kg-1 hr-1 for the first 60 min and 3 micrograms kg-1 hr-1 for the next 90 min, and droperidol 0.1 mg kg-1. The remaining 20 patients (group B) were maintained with intravenous ketamine 2 mg kg-1 hr-1, droperidol 0.1 mg kg-1 and fentanyl 50-100 micrograms in a bolus intermittently as needed by vital signs such as increases in heart rate and arterial blood pressure. Middle latency auditory evoked potentials, plasma fentanyl and ketamine levels were measured; explicit memory and dreams were also estimated. There were no patients who recollected explicit memories of intraoperative events in both groups. The middle latency auditory evoked potentials were not significantly changed during the anesthesia in both groups. We could find no significant differences in latencies and amplitudes of the middle latency auditory evoked potentials between the both groups. Plasma fentanyl levels of group B patients were significantly lower than those of group A patients and the incidence of the dreams was significantly higher in group B patients. We conclude that the anesthesia with ketamine, fentanyl and droperidol is not associated with the explicit memories, though the middle latency auditory evoked potentials were not significantly changed as compared with those in the waking state. In addition, dreams during the anesthesia may correlate with plasma fentanyl concentrations or the infusion technique.

  14. Temperature modulation of cerebral depolarization during focal cerebral ischemia in rats: correlation with ischemic injury.

    PubMed

    Chen, Q; Chopp, M; Bodzin, G; Chen, H

    1993-05-01

    The role of cerebral depolarizations in focal cerebral ischemia is unknown. We therefore measured the direct current (DC) electrical activity in the cortex of Wistar rats subjected to transient occlusion of the middle cerebral artery (MCA). Focal ischemia was induced for 90 min by insertion of an intraluminal filament to occlude the MCA. To modulate cell damage, we subjected the rats to hypothermic (30 degrees C, n = 4), normothermic (37 degrees C, n = 4), and hyperthermic (40 degrees C, n = 6) ischemia. Controlled temperatures were also maintained during 1 h of reperfusion. Continuous cortical DC potential changes were measured using two active Ag-AgCl electrodes placed in the cortical lesion. Animals were killed 1 week after ischemia. The brains were sectioned and stained with hematoxylin and eosin, for evaluation of neuronal damage, and calculation of infarct volume. All animals exhibited an initial depolarization within 30 min of ischemia, followed by a single depolarization event in hypothermic animals, and multiple periodic depolarization events in both normothermic and hyperthermic animals. Hyperthermic animals exhibited significantly more (p < 0.05) DC potential deflections (n = 6.17 +/- 0.67) than normothermic animals (n = 2.75 +/- 0.96). The ischemic infarct volume (% of hemisphere) was significantly different for the various groups; hypothermic animals exhibited no measurable infarct volume, while the ischemic infarct volume was 10.2 +/- 12.3% in normothermic animals and 36.5 +/- 3.4% in hyperthermic animals (p < 0.05). A significant correlation was detected between the volume of infarct and number of depolarization events (r = 0.90, p < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Inhibition of cerebral ischemia/reperfusion injury-induced apoptosis: nicotiflorin and JAK2/STAT3 pathway

    PubMed Central

    Hu, Guang-qiang; Du, Xi; Li, Yong-jie; Gao, Xiao-qing; Chen, Bi-qiong; Yu, Lu

    2017-01-01

    Nicotiflorin is a flavonoid extracted from Carthamus tinctorius. Previous studies have shown its cerebral protective effect, but the mechanism is undefined. In this study, we aimed to determine whether nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis through the JAK2/STAT3 pathway. The cerebral ischemia/reperfusion injury model was established by middle cerebral artery occlusion/reperfusion. Nicotiflorin (10 mg/kg) was administered by tail vein injection. Cell apoptosis in the ischemic cerebral cortex was examined by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Bcl-2 and Bax expression levels in ischemic cerebral cortex were examined by immunohistochemial staining. Additionally, p-JAK2, p-STAT3, Bcl-2, Bax, and caspase-3 levels in ischemic cerebral cortex were examined by western blot assay. Nicotiflorin altered the shape and structure of injured neurons, decreased the number of apoptotic cells, down-regulates expression of p-JAK2, p-STAT3, caspase-3, and Bax, decreased Bax immunoredactivity, and increased Bcl-2 protein expression and immunoreactivity. These results suggest that nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis via the JAK2/STAT3 pathway. PMID:28250754

  16. Cerebral hydatid disease in Britain

    PubMed Central

    Anderson, Milne; Bickerstaff, Edwin R.; Hamilton, J. G.

    1975-01-01

    Two cases of cerebral hydatid disease are described. This condition, acquired by Britons in Britain, is extremely rare as only two similar cases have been reported before. Details of clinical presentation, investigation and treatment are described. Images PMID:1206419

  17. Cerebral emboli of paradoxical origin.

    PubMed

    Jones, H R; Caplan, L R; Come, P C; Swinton, N W; Breslin, D J

    1983-03-01

    A diagnosis of paradoxical cerebral embolus (PCE) was made in five patients aged 31 to 62 years who sustained eight cerebral ischemic events. No patient had evidence of primary carotid system or left heart disease. A probe-patent foramen ovale was the presumed mechanism in four patients, and an unsuspected congenital atrial septal defect was found in the fifth patient. Clinically apparent pulmonary emboli or venous thrombosis preceded the cerebral event in only one instance. Review of the literature reveals a high mortality with PCE. However, careful clinical search for this lesion may be rewarding: four of our five patients survived. One should consider PCE in any patient with cerebral embolus in whom there is no demonstrable left-sided circulatory source. This principle applies particularly if there is concomitant venous thrombosis, pulmonary embolism, or enhanced potential for venous thrombosis due to, for example, morbid obesity, use of hormonal birth control pills, prolonged bed rest (especially postoperatively), or systemic carcinoma.

  18. Cerebral Blood Flow Heterogeneity in Preterm Sheep: Lack of Physiological Support for Vascular Boundary Zones in Fetal Cerebral White Matter

    PubMed Central

    McClure, Melissa; Riddle, Art; Manese, Mario; Luo, Ning Ling; Rorvik, Dawn A.; Kelly, Katherine A.; Barlow, Clyde H.; Kelly, Jeffrey J.; Vinecore, Kevin; Roberts, Colin; Hohimer, A. Roger; Back, Stephen A.

    2011-01-01

    Periventricular white matter (PVWM) injury is the leading cause of chronic neurological disability in survivors of prematurity. To address the role of cerebral ischemia in the pathogenesis of this injury, we tested the hypothesis that immaturity of spatially distal vascular “end” or “border” zones predisposes the PVWM to be more susceptible to falls in cerebral blood flow (CBF) than more proximal regions, such as the cerebral cortex. We used fluorescently-labeled microspheres to quantify regional CBF in situ in the 0.65 gestation fetal sheep in histopathologically-defined 3-dimensional regions by means of post hoc digital dissection and co-registration algorithms. Basal flow in PVWM was significantly lower than gyral white matter and cerebral cortex, but was equivalent in superficial, middle and deep PVWM. Absolute and relative CBF (expressed as percentage of basal) CBF did not differ during ischemia or reperfusion between the PVWM and more superficial gyral white matter or cortex. Moreover, CBF during ischemia and reperfusion was equivalent at three distinct levels of the PVWM. Absolute and relative CBF during ischemia and reperfusion was not predictive of the severity of PVWM injury, as defined by TUNEL staining. However, the magnitude of ischemia to the cerebral cortex directly correlated with lesion severity (r= −0.48, p<.05). Hence, the PVWM did not display unique CBF disturbances that accounted for the distribution of injury. These results suggest that previously-defined cellular-maturational factors have a greater influence on the vulnerability of PVWM to ischemic injury than the presence of immature vascular-boundary zones. PMID:18091757

  19. Cerebral ganglioglioma. A Golgi study.

    PubMed

    Ferrer, I; Ribalta, T; Digon, E; Acebes, J

    1983-01-01

    The morphological characteristics of neurons revealed by Golgi's method are reported in a case of cerebral ganglioglioma. Spindle-shaped (leptodendritic) neurons and radiated type I neurons form the bulk of this tumour. According to Ramon-Moliner (1968) isodendritic neurons (both leptodendritic and radiate type I) are philogenetically primitive cells and differ greatly from those observed in most of the deep cerebral nuclei of the mammalian's brain.

  20. Resource Allocation in Cerebral Specialization.

    DTIC Science & Technology

    1980-01-01

    of this multiple-resources view. EXTENSION OF THE THEORY TO THE TWO CEREBRAL HEMISPHERES Since the anatomical division of the brain invites...performance differences between the hemispheres (e.g., right-handed males with no familial history of left- handedness who use a normal rather than an...G. Beaumont (Eds.), Hemisphere function in the human rain.. New York: Halstead Press, 1974. Kinsbourne, M. The cerebral basis of lateral asymmetries

  1. Middle School Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Describes activities, demonstrations, and materials suitable for middle school science, including investigations on solar energy, surface tension, exploding cottages, worms and light, airplanes, depolarizing simple cells, and the thermal expansion of metals. (JN)

  2. Middle School Expressions.

    ERIC Educational Resources Information Center

    Oliver, Teddy J.; Clements, Robert D.

    1983-01-01

    After viewing and discussing slides of Van Gogh's and Munch's paintings and studying the principles of color, middle school students had to execute two drawings, one showing any emotion and the second depicting an expressionistic self-portrait. (RM)

  3. Wirth Middle School.

    ERIC Educational Resources Information Center

    Design Cost Data, 2001

    2001-01-01

    Describes the architectural design, costs, general description, and square footage data for the Wirth Middle School, Cahokia, Illinois. A floor plan and photos are included along with a list of manufacturers and suppliers used for the project. (GR)

  4. Middle atmospheric electrodynamics

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    1983-01-01

    A review is presented of the advances made during the last few years with respect to the study of the electrodynamics in the earth's middle atmosphere. In a report of the experimental work conducted, attention is given to large middle atmospheric electric fields, the downward coupling of high altitude processes into the middle atmosphere, and upward coupling of tropospheric processes into the middle atmosphere. It is pointed out that new developments in tethered balloons and superpressure balloons should greatly increase the measurement duration of earth-ionospheric potential measurements and of stratospheric electric field measurements in the next few years. Theoretical work considered provides an excellent starting point for study of upward coupling of transient and dc electric fields. Hays and Roble (1979) were the first to construct a model which included orographic features as well as the classical thunderstorm generator.

  5. Middle School Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Provides science activities and teaching hints appropriate for the middle school sciences including making a domino "gunpowder fuse" that detonates a mousetrap "bomb," using fishing rods and bicycles as teaching aids, constructing lead holders, and teaching chromatography. (DC)

  6. Middle School Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, demonstrations, activities, and teaching suggestions on topics appropriate for middle school science including a simple electrolysis cell, conversion factors, energy, solubilities of salts, condensers, and a worksheet for studying coppice woodlands. (DC)

  7. Therapeutic implications of melatonin in cerebral edema.

    PubMed

    Rathnasamy, Gurugirijha; Ling, Eng-Ang; Kaur, Charanjit

    2014-12-01

    Cerebral edema/brain edema refers to the accumulation of fluid in the brain and is one of the fatal conditions that require immediate medical attention. Cerebral edema develops as a consequence of cerebral trauma, cerebral infarction, hemorrhages, abscess, tumor, hypoxia, and other toxic or metabolic factors. Based on the causative factors cerebral edema is differentiated into cytotoxic cerebral edema, vasogenic cerebral edema, osmotic and interstitial cerebral edema. Treatment of cerebral edema depends on timely diagnosis and medical assistance. Pragmatic treatment strategies such as antihypertensive medications, nonsteroidal anti-inflammatory drugs, barbiturates, steroids, glutamate and N-methyl-D-aspartate receptor antagonists and trometamol are used in clinical practice. Although the above mentioned treatment approaches are being used, owing to the complexity of the mechanisms involved in cerebral edema, a single therapeutic strategy which could ameliorate cerebral edema is yet to be identified. However, recent experimental studies have suggested that melatonin, a neurohormone produced by the pineal gland, could be an effective alternative for treating cerebral edema. In animal models of stroke, melatonin was not only shown to reduce cerebral edema but also preserved the blood brain barrier. Melatonin's beneficial effects were attributed to its properties, such as being a potent anti-oxidant, and its ability to cross the blood brain barrier within minutes after its administration. This review summarizes the beneficial effects of melatonin when used for treating cerebral edema.

  8. Mosquitoes of Middle America.

    DTIC Science & Technology

    1976-09-30

    survey of mosquitoes in Costa Rica, 197 1. Walsh , Robert D., Aedes aegypti Eradication Program, Public Health Service.—Collections in St. Croix...At least a start has been made in nearly every major group of medical importance in Middle America: Aedes , Anopheles, Culex. Deinocerites, Haemago~us...fauna in the area covered by the project. At least a start has been made in nearl y every major group of medical importance in Middle America: Aedes

  9. Non-Invasive Respiratory Impedance Enhances Cerebral Perfusion in Healthy Adults

    PubMed Central

    Favilla, Christopher G.; Parthasarathy, Ashwin B.; Detre, John A.; Yodh, Arjun G.; Mullen, Michael T.; Kasner, Scott E.; Gannon, Kimberly; Messé, Steven R.

    2017-01-01

    Optimization of cerebral blood flow (CBF) is the cornerstone of clinical management in a number of neurologic diseases, most notably ischemic stroke. Intrathoracic pressure influences cardiac output and has the potential to impact CBF. Here, we aim to quantify cerebral hemodynamic changes in response to increased respiratory impedance (RI) using a non-invasive respiratory device. We measured cerebral perfusion under varying levels of RI (6 cm H2O, 9 cm H2O, and 12 cm H2O) in 20 healthy volunteers. Simultaneous measurements of microvascular CBF and middle cerebral artery mean flow velocity (MFV), respectively, were performed with optical diffuse correlation spectroscopy and transcranial Doppler ultrasound. At a high level of RI, MFV increased by 6.4% compared to baseline (p = 0.004), but changes in cortical CBF were non-significant. In a multivariable linear regression model accounting for end-tidal CO2, RI was associated with increases in both MFV (coefficient: 0.49, p < 0.001) and cortical CBF (coefficient: 0.13, p < 0.001), although the magnitude of the effect was small. Manipulating intrathoracic pressure via non-invasive RI was well tolerated and produced a small but measurable increase in cerebral perfusion in healthy individuals. Future studies in acute ischemic stroke patients with impaired cerebral autoregulation are warranted in order to assess whether RI is feasible as a novel non-invasive therapy for stroke. PMID:28261153

  10. Neuroprotective effect of penehyclidine hydrochloride on focal cerebral ischemia-reperfusion injury★

    PubMed Central

    Yu, Cuicui; Wang, Junke

    2013-01-01

    Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochloride in cerebral ischemia-reperfusion injury remains unclear. In this study, in vivo middle cerebral artery occlusion models were established in experimental rats, and penehyclidine hydrochloride pretreatment was given via intravenous injection prior to model establishment. Tetrazolium chloride, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and immunohistochemical staining showed that, penehyclidine hydrochloride pretreatment markedly attenuated neuronal histopathological changes in the cortex, hippocampus and striatum, reduced infarction size, increased the expression level of Bcl-2, decreased the expression level of caspase-3, and inhibited neuronal apoptosis in rats with cerebral ischemia-reperfusion injury. Xanthine oxidase and thiobarbituric acid chromogenic results showed that penehyclidine hydrochloride upregulated the activity of superoxide dismutase and downregulated the concentration of malondialdehyde in the ischemic cerebral cortex and hippocampus, as well as reduced the concentration of extracellular excitatory amino acids in rats with cerebral ischemia-reperfusion injury. In addition, penehyclidine hydrochloride inhibited the expression level of the NR1 subunit in hippocampal nerve cells in vitro following oxygen-glucose deprivation, as detected by PCR. Experimental findings indicate that penehyclidine hydrochloride attenuates neuronal apoptosis and oxidative stress injury after focal cerebral ischemia-reperfusion, thus exerting a neuroprotective effect. PMID:25206707

  11. Cerebral blood flow and oxygen metabolism during mild hypothermia in patients with subarachnoid haemorrhage.

    PubMed

    Kawamura, S; Suzuki, A; Hadeishi, H; Yasui, N; Hatazawa, J

    2000-01-01

    Cerebral blood flow and O2 metabolism during hypothermia (33-34 degrees C) was evaluated in 5 patients with aneurysmal subarachnoid haemorrhage by positron emission tomography (PET). Their preoperative clinical condition was WFNS scale IV or V. The patients received surface cooling postoperatively, and were maintained in a hypothermic state during transfer for radiological examination. Positron emission tomography revealed a decrease in cerebral blood flow and O2 metabolic rate. Cerebral blood flow was 34.8+/-15.1 ml/100 ml/min and the O2 metabolic rate was 1.85+/-0.61 ml/100 ml/min in areas of the middle cerebral artery ipsilateral to the ruptured aneurysms, whereas these values were 30.8+/-7.1 and 2.21+/-0.45 ml/100 ml/min, respectively, on the contralateral side. This represents a decrease of 37+/-27% compared to normal cerebral blood flow and 52+/-16% compared to normal O2 metabolic rate (p < 0.02) in the ipsilateral areas, and decreases of 44+/-13% and 43+/-12%, respectively, on the contralateral side. The present results reflected the luxury perfusion state in almost all cases and provide the first PET evidence of decreased cerebral blood flow and metabolic rate of O2 during hypothermia in humans.

  12. Cerebral collateral therapeutics in acute ischemic stroke: A randomized preclinical trial of four modulation strategies.

    PubMed

    Beretta, Simone; Versace, Alessandro; Carone, Davide; Riva, Matteo; Dell'Era, Valentina; Cuccione, Elisa; Cai, Ruiyao; Monza, Laura; Pirovano, Silvia; Padovano, Giada; Stiro, Fabio; Presotto, Luca; Paternò, Giovanni; Rossi, Emanuela; Giussani, Carlo; Sganzerla, Erik P; Ferrarese, Carlo

    2017-01-01

    Cerebral collaterals are dynamically recruited after arterial occlusion and highly affect tissue outcome in acute ischemic stroke. We investigated the efficacy and safety of four pathophysiologically distinct strategies for acute modulation of collateral flow (collateral therapeutics) in the rat stroke model of transient middle cerebral artery (MCA) occlusion. A composed randomization design was used to assign rats (n = 118) to receive phenylephrine (induced hypertension), polygeline (intravascular volume load), acetazolamide (cerebral arteriolar vasodilation), head down tilt (HDT) 15° (cerebral blood flow diversion), or no treatment, starting 30 min after MCA occlusion. Compared to untreated animals, treatment with collateral therapeutics was associated with lower infarct volumes (62% relative mean difference; 51.57 mm(3) absolute mean difference; p < 0.001) and higher chance of good functional outcome (OR 4.58, p < 0.001). Collateral therapeutics acutely increased cerebral perfusion in the medial (+40.8%; p < 0.001) and lateral (+19.2%; p = 0.016) MCA territory compared to pretreatment during MCA occlusion. Safety indicators were treatment-related mortality and cardiorespiratory effects. The highest efficacy and safety profile was observed for HDT. Our findings suggest that acute modulation of cerebral collaterals is feasible and provides a tissue-saving effect in the hyperacute phase of ischemic stroke prior to recanalization therapy.

  13. Upregulation of cellular prion protein (PrPc) after focal cerebral ischemia and influence of lesion severity.

    PubMed

    Weise, Jens; Crome, Olaf; Sandau, Raoul; Schulz-Schaeffer, Walter; Bähr, Mathias; Zerr, Inga

    2004-11-30

    The pathological isoform of the prion protein (PrP(Sc)) has been identified to mediate transmissible spongiform encephalopathies like Creutzfeldt-Jakob disease (CJD). In contrast, the physiological function of the normal cellular prion protein (PrP(c)) is not yet understood. Recent findings suggest that PrP(c) may have neuroprotective properties and that its absence increases susceptibility to oxidative stress and neuronal injury. To determine whether PrP(c) is part of the cellular response to neuronal injury in vivo, we investigated PrP(c) regulation after severe and mild focal ischemic brain injury in mice using the thread occlusion stroke model. Western Blot and ELISA analysis showed a significant upregulation of PrP(c) in the ischemic hemisphere at 4 and 8h after onset of permanent focal ischemia, which was no longer detectable at 24h after lesion induction when compared to control animals. In contrast, transient focal ischemia (60 min) did only lead to slightly but not significantly elevated PrP(c) levels in the ischemic hemisphere when compared to controls. These results demonstrate that cerebral PrP(c) is upregulated early in response to focal cerebral ischemia. The extent of upregulation, however, seems to depend on the severity of ischemia and may therefore reflect the extent of ischemia induced neuronal damage. Given the known neuroprotective effects of PrP(c) in vitro, ischemia-induced upregulation of cerebral PrP(c) supports the hypothesis that, as part of an early adaptive cellular response to ischemic brain injury, PrP(c) may be involved in the regulation of ischemia-induced neuronal cell death in vivo.

  14. Rescuing Middle School Astronomy

    NASA Astrophysics Data System (ADS)

    Mayo, L. A.; Janney, D.

    2010-12-01

    There is a crisis in education at the middle school level (Spellings, 2006). Recent studies point to large disparities in middle school performance in schools with high minority populations. The largest disparities exist in areas of math and science. Astronomy has a universal appeal for K-12 students but is rarely taught at the middle school level. When it is taught at all it is usually taught in isolation with few references in other classes such as other sciences (e.g. physics, biology, and chemistry), math, history, geography, music, art, or English. The problem is greatest in our most challenged school districts. With scores in reading and math below national averages in these schools and with most state achievement tests ignoring subjects like astronomy, there is little room in the school day to teach about the world outside our atmosphere. Add to this the exceedingly minimal training and education in astronomy that most middle school teachers have and it is a rare school that includes any astronomy teaching at all. In this presentation, we show how to develop and offer an astronomy education training program for middle school teachers encompassing a wide range of educational disciplines that are frequently taught at the middle school level. The prototype for this program was developed and launched in two of the most challenged and diverse school systems in the country; D.C. Public Schools, and Montgomery County (MD) Public Schools.

  15. Monitoring Cerebral Oxygenation in Neonates: An Update

    PubMed Central

    Dix, Laura Marie Louise; van Bel, Frank; Lemmers, Petra Maria Anna

    2017-01-01

    Cerebral oxygenation is not always reflected by systemic arterial oxygenation. Therefore, regional cerebral oxygen saturation (rScO2) monitoring with near-infrared spectroscopy (NIRS) is of added value in neonatal intensive care. rScO2 represents oxygen supply to the brain, while cerebral fractional tissue oxygen extraction, which is the ratio between rScO2 and systemic arterial oxygen saturation, reflects cerebral oxygen utilization. The balance between oxygen supply and utilization provides insight in neonatal cerebral (patho-)physiology. This review highlights the potential and limitations of cerebral oxygenation monitoring with NIRS in the neonatal intensive care unit. PMID:28352624

  16. [Plasma osmolarity and cerebral volume].

    PubMed

    Boulard, G

    2001-02-01

    Under normal physiological conditions, the osmolarity of extracellular fluids (ECFs) and natremia are controlled by two regulatory mechanisms modulating the water balance and sodium outflow from information collected by the osmoreceptors and baroreceptors, respectively. As well, under normal physiological conditions, water and electrolytes of brain ECFs are secreted by the endothelial cells of brain capillaries. Furthermore, isotonicity is present on both sides of the blood-brain barrier. In the event of systemic osmolarity disorders, water transport subject to osmosis laws occurs at the level of the blood-brain barrier. In the case of plasmatic hyperosmolarity cerebral dehydration is observed, while cerebral edema occurs in the contrary case. However, plasmatic osmolarity disorders have less effect on the cerebral volume when their introduction is slow. Experimentation in acute conditions shows that measured variations of the cerebral water content are lower than calculated variations, thus suggesting the existence of an adaptive mechanism, that is, the cerebral osmoregulation which limits the variation of the volume of brain cells by modulating their osmoactive molecule content. These osmoactive molecules are, on the one hand, the electrolytes, which are early and rapidly mobilized, and, on the other hand, the organic osmoles (amino acids, etc.), whose secretion is slower and delayed. This phenomenon should be taken into account in the treatment of osmolarity disorders. Thus, the related-risk of treatment for natremia disorders is therapeutic reversal of the osmotic gradient at the level of the blood-brain barrier. This reversal, which corresponds to a second osmotic stress, requires the implementation of a new procedure of cerebral osmoregulation in the opposite direction of the preceding one. As successive osmotic stresses decrease the effectiveness of brain osmoregulation, the risk for cerebral dehydration and pontine myelinolysis increases when the treatment

  17. 13-Methyltetradecanoic acid mitigates cerebral ischemia/reperfusion injury

    PubMed Central

    Yu, Juan; Yang, Li-nan; Wu, Yan-yun; Li, Bao-hua; Weng, Sheng-mei; Hu, Chun-lan; Han, Yong-ling

    2016-01-01

    13-Methyltetradecanoic acid can stabilize cell membrane and have anti-inflammatory, antioxidant and anti-apoptotic effects. Previous studies mainly focused on peripheral nerve injury, but seldom on the central nervous system. We investigated whether these properties of 13-methyltetradecanoic acid have a neuroprotective effect on focal cerebral ischemia/reperfusion injury, and detected the expression of basic fibroblast growth factor and vascular endothelial growth factor. This study established rat models of middle cerebral artery occlusion/reperfusion injury by ischemia for 2 hours and reperfusion for 24 hours. At the beginning of reperfusion, 13-methyltetradecanoic acid 10, 40 or 80 mg/kg was injected into the tail vein. Results found that various doses of 13-methyltetradecanoic acid effectively reduced infarct volume, mitigate cerebral edema, and increased the mRNA and protein expression of basic fibroblast growth factor and vascular endothelial growth factor at 24 hours of reperfusion. The effect was most significant in the 13-methyltetradecanoic acid 40 and 80 mg/kg groups. The findings suggest that 13-methyltetradecanoic acid can relieve focal ischemia/reperfusion injury immediately after reperfusion, stimulate the upregulation of basic fibroblast growth factor and vascular endothelial growth factor to exert neuroprotective effects. PMID:27857745

  18. Thrombolytic therapy in acute cerebral infarction complicating diagnostic cardiac catheterization.

    PubMed

    Chen, Yu-Wei; Sim, Ming-Ming; Smith, Eric E

    2006-10-01

    Diagnostic and interventional percutaneous coronary catheterization is associated with stroke. Many of such strokes are asymptomatic, but some are devastating. Once the diagnosis of acute cerebral infarction is confirmed, thrombolytic therapy should be administrated within the time window of 3 hours. We report a 61-year-old woman who suffered from an acute cerebral infarction during diagnostic cardiac catheterization for unstable angina, which manifested as sudden onset of global aphasia, right hemiplegia and gaze preponderance to the left side. Computed tomography of the head performed immediately after recognition of the symptoms showed a hyperdense middle cerebral artery (MCA) sign. Following prompt recognition and diagnosis, intravenous thrombolytic therapy was administered 2 hours after symptom onset. The patient had a favorable outcome. Initially, National Institutes of Health Stroke Scale score was 21, and 24 hours later it improved to 9. The hyperdense MCA lesion had resolved on the 24-hour follow-up scan. This case illustrates the clinical benefit of thrombolytic therapy in the setting of acute stroke associated with cardiac catheterization.

  19. History of International Society for Cerebral Blood Flow and Metabolism.

    PubMed

    Paulson, Olaf B; Kanno, Iwao; Reivich, Martin; Sokoloff, Louis

    2012-07-01

    Interest in the brain's circulation dates back more than a century and has been steadily growing. Quantitative methods for measurements of cerebral blood flow (CBF) and energy metabolism became available in the middle of the 20th century and gave a new boost to the research. Scientific meetings dealing with CBF and metabolism were arranged, and the fast growing research led to a demand for a specialized journal. In this scientific environment, the International Society for Cerebral Blood Flow and Metabolism (ISCBFM) and its official Journal of Cerebral Metabolism were established in 1981 and has since then been a major success. The development of new brain imaging methods has had a major impact. Regulation of CBF and ischemia has been the main topics at the meetings. A new field of brain mapping research emerged and has now its own society and meetings. Brain emission tomography research has grown within the society and is now an integrated part. The ISCBFM is a sound society, and support of young scientists is among its goals. Several awards have been established. Other activities including summer schools, courses, satellite meetings, and Gordon conferences have contributed to the success of the society and strengthened the research.

  20. History of International Society for Cerebral Blood Flow and Metabolism

    PubMed Central

    Paulson, Olaf B; Kanno, Iwao; Reivich, Martin; Sokoloff, Louis

    2012-01-01

    Interest in the brain's circulation dates back more than a century and has been steadily growing. Quantitative methods for measurements of cerebral blood flow (CBF) and energy metabolism became available in the middle of the 20th century and gave a new boost to the research. Scientific meetings dealing with CBF and metabolism were arranged, and the fast growing research led to a demand for a specialized journal. In this scientific environment, the International Society for Cerebral Blood Flow and Metabolism (ISCBFM) and its official Journal of Cerebral Metabolism were established in 1981 and has since then been a major success. The development of new brain imaging methods has had a major impact. Regulation of CBF and ischemia has been the main topics at the meetings. A new field of brain mapping research emerged and has now its own society and meetings. Brain emission tomography research has grown within the society and is now an integrated part. The ISCBFM is a sound society, and support of young scientists is among its goals. Several awards have been established. Other activities including summer schools, courses, satellite meetings, and Gordon conferences have contributed to the success of the society and strengthened the research. PMID:22186671

  1. Ventricular Volume Load Reveals the Mechanoelastic Impact of Communicating Hydrocephalus on Dynamic Cerebral Autoregulation

    PubMed Central

    Haubrich, Christina; Czosnyka, Marek; Diehl, Rolf; Smielewski, Peter; Czosnyka, Zofia

    2016-01-01

    Several studies have shown that the progression of communicating hydrocephalus is associated with diminished cerebral perfusion and microangiopathy. If communicating hydrocephalus similarly alters the cerebrospinal fluid circulation and cerebral blood flow, both may be related to intracranial mechanoelastic properties as, for instance, the volume pressure compliance. Twenty-three shunted patients with communicating hydrocephalus underwent intraventricular constant-flow infusion with Hartmann’s solution. The monitoring included transcranial Doppler (TCD) flow velocities (FV) in the middle (MCA) and posterior cerebral arteries (PCA), intracranial pressure (ICP), and systemic arterial blood pressure (ABP). The analysis covered cerebral perfusion pressure (CPP), the index of pressure-volume compensatory reserve (RAP), and phase shift angles between Mayer waves (3 to 9 cpm) in ABP and MCA-FV or PCA-FV. Due to intraventricular infusion, the pressure-volume reserve was exhausted (RAP) 0.84+/-0.1 and ICP was increased from baseline 11.5+/-5.6 to plateau levels of 20.7+/-6.4 mmHg. The ratio dRAP/dICP distinguished patients with large 0.1+/-0.01, medium 0.05+/-0.02, and small 0.02+/-0.01 intracranial volume compliances. Both M wave phase shift angles (r = 0.64; p<0.01) and CPP (r = 0.36; p<0.05) displayed a gradual decline with decreasing dRAP/dICP gradients. This study showed that in communicating hydrocephalus, CPP and dynamic cerebral autoregulation in particular, depend on the volume-pressure compliance. The results suggested that the alteration of mechanoelastic characteristics contributes to a reduced cerebral perfusion and a loss of autonomy of cerebral blood flow regulation. Results warrant a prospective TCD follow-up to verify whether the alteration of dynamic cerebral autoregulation may indicate a progression of communicating hydrocephalus. PMID:27415784

  2. Effect of retinoic acid on expression of LINGO-1 and neural regeneration after cerebral ischemia.

    PubMed

    Xing, Hong-yi; Meng, Er-yan; Xia, Yuan-peng; Peng, Hai

    2015-02-01

    The purpose of this study was to observe the expression of LINGO-1 after cerebral ischemia, investigate the effects of retinoic acid (RA) on the expression of LINGO-1 and GAP-43, and the number of synapses, and to emplore the repressive effect of LINGO-1 on neural regeneration after cerebral ischemia. The model of permanent focal cerebral ischemia was established by the modified suture method of middle cerebral artery occlusion (MCAO) in Sprague-Dawley (SD) rats. The expression of LINGO-1 was detected by Western blotting and that of GAP-43 by immunohistochemistry. The number of synapses was observed by transmission electron microscopy. The SD rats were divided into three groups: sham operation (sham) group, cerebral ischemia (CI) group and RA treatment (RA) group. The results showed that the expression level of LINGO-1 at 7th day after MCAO in sham, CI and RA groups was 0.266 ± 0.019, 1.215 ± 0.063 and 0.702 ± 0.081, respectively (P<0.01). The number of Gap-43-positive nerve cells at 7th day after MCAO in sham, CI and RA group was 0, 59.08 ± 1.76 and 76.20 ± 3.12 per high power field, respectively (P<0.05). The number of synapses at 7th day after MCAO was 8.42 ± 0.13, 1.74 ± 0.37 and 5.39 ± 0.26 per μm², respectively (P<0.05). It is concluded that LINGO-1 expression is up-regulated after cerebral ischemia, and RA inhibits the expression of LINGO-1, promotes the expression of GAP-43 and increases the number of synapses. It suggests that LINGO-1 may be involved in the pathogenesis of cerebral ischemia, which may provide an experimenal basis for LINGO-1 antogonist, RA, for the treatment of cerebral ischemia.

  3. Glycopyrrolate abolishes the exercise-induced increase in cerebral perfusion in humans.

    PubMed

    Seifert, Thomas; Fisher, James P; Young, Colin N; Hartwich, Doreen; Ogoh, Shigehiko; Raven, Peter B; Fadel, Paul J; Secher, Niels H

    2010-10-01

    Brain blood vessels contain muscarinic receptors that are important for cerebral blood flow (CBF) regulation, but whether a cholinergic receptor mechanism is involved in the exercise-induced increase in cerebral perfusion or affects cerebral metabolism remains unknown. We evaluated CBF and cerebral metabolism (from arterial and internal jugular venous O(2), glucose and lactate differences), as well as the middle cerebral artery mean blood velocity (MCA V(mean); transcranial Doppler ultrasound) during a sustained static handgrip contraction at 40% of maximal voluntary contraction (n = 9) and the MCA V(mean) during ergometer cycling (n = 8). Separate, randomized and counterbalanced trials were performed in control (no drug) conditions and following muscarinic cholinergic receptor blockade by glycopyrrolate. Glycopyrrolate increased resting heart rate from approximately 60 to approximately 110 beats min(-1) (P < 0.01) and cardiac output by approximately 40% (P < 0.05), but did not affect mean arterial pressure. The central cardiovascular responses to exercise with glycopyrrolate were similar to the control responses, except that cardiac output did not increase during static handgrip with glycopyrrolate. Glycopyrrolate did not significantly affect cerebral metabolism during static handgrip, but a parallel increase in MCA V(mean) (approximately 16%; P < 0.01) and CBF (approximately 12%; P < 0.01) during static handgrip, as well as the increase in MCA V(mean) during cycling (approximately 15%; P < 0.01), were abolished by glycopyrrolate (P < 0.05). Thus, during both cycling and static handgrip, a cholinergic receptor mechanism is important for the exercise-induced increase in cerebral perfusion without affecting the cerebral metabolic rate for oxygen.

  4. The influence of gender on 'tissue at risk' in acute stroke: A diffusion-weighted magnetic resonance imaging study in a rat model of focal cerebral ischaemia.

    PubMed

    Baskerville, Tracey A; Macrae, I Mhairi; Holmes, William M; McCabe, Christopher

    2016-02-01

    This is the first study to assess the influence of sex on the evolution of ischaemic injury and penumbra. Permanent middle cerebral artery occlusion was induced in male (n = 9) and female (n = 10) Sprague-Dawley rats. Diffusion-weighted imaging was acquired over 4 h and infarct determined from T2 images at 24 h post-permanent middle cerebral artery occlusion. Penumbra was determined retrospectively from serial apparent diffusion coefficient lesions and T2-defined infarct. Apparent diffusion coefficient lesion volume was significantly smaller in females from 0.5 to 4 h post permanent middle cerebral artery occlusion as was infarct volume. Penumbral volume, and its loss over time, was not significantly different despite the sex difference in acute and final lesion volumes.

  5. Optical coherence tomography reveals in vivo cortical structures of adult rats in response to cerebral ischemia injury

    NASA Astrophysics Data System (ADS)

    Ni, Yi-rong; Guo, Zhou-yi; Shu, So-yun; Bao, Xin-min

    2008-12-01

    Optical coherence tomography(OCT) is a high resolution imaging technique which uses light to directly image living tissue. we investigate the potential use of OCT for structural imaging of the ischemia injury mammalian cerebral cortex. And we examine models of middle cerebral artery occlusion (MCAO) in rats in vivo using OCT. In particular, we show that OCT can perform in vivo detection of cortex and differentiate normal and abnormal cortical anatomy. This OCT system in this study provided an axial resolution of 10~15μ m, the transverse resolution of the system is about 25 μm. OCT can provide cross-sectional images of cortical of adult rats in response to cerebral ischemia injury.We conclude that OCT represents an exciting new approach to visualize, in real-time, pathological changes in the cerebral cortex structures and may offer a new tool for Possible neuroscience clinical applications.

  6. Retrospective study of factors affecting employability of individuals with cerebral palsy in Japan.

    PubMed

    Tobimatsu, Y; Nakamura, R

    2000-12-01

    The purpose of this study was to investigate the characteristics of individuals with cerebral palsy that affected their ability to find a job in Japan. A retrospective nonrandomized descriptive study was performed. Subjects were 99 individuals with cerebral palsy who were eligible to have a vocational training at the National Rehabilitation Center for the Disabled after graduation from high school. All of them were able to perform ADL unassistedly. The mean age of the subjects was 19.9 years (range, 18 to 33) and the mean intelligence quotient measured by WAIS-R was 78.5 (range, 46 to 110). Walking ability, being female and experience of learning in a regular middle high school were significant explanatory variables in the multiple regression equation. The ability of individuals with cerebral palsy to get a job in Japan in the 1990's was largely determined by being able to walk and having an education in a regular school.

  7. The cerebral hemodynamics of normotensive hypovolemia during lower-body negative pressure

    NASA Technical Reports Server (NTRS)

    Giller, C. A.; Levine, B. D.; Meyer, Y.; Buckey, J. C.; Lane, L. D.; Borchers, D. J.

    1992-01-01

    Although severe hypovolemia can lead to hypotension and neurological decline, many patients with neurosurgical disorders experience a significant hypovolemia while autonomic compensatory mechanisms maintain a normal blood pressure. To assess the effects of normotensive hypovolemia upon cerebral hemodynamics, transcranial Doppler ultrasound monitoring of 13 healthy volunteers was performed during graded lower-body negative pressure of up to -50 mm Hg, an accepted laboratory model for reproducing the physiological effects of hypovolemia. Middle cerebral artery flow velocity declined by 16% +/- 4% (mean +/- standard error of the mean) and the ratio between transcranial Doppler ultrasound pulsatility and systemic pulsatility rose 22% +/- 8%, suggesting cerebral small-vessel vasoconstriction in response to the sympathetic activation unmasked by lower-body negative pressure. This vasoconstriction may interfere with the autoregulatory response to a sudden fall in blood pressure, and may explain the common observation of neurological deficit during hypovolemia even with a normal blood pressure.

  8. Optical measurement of mouse strain differences in cerebral blood flow using indocyanine green

    PubMed Central

    Kang, Hye-Min; Sohn, Inkyung; Kim, Seunggyu; Kim, Daehwan; Jung, Junyang; Jeong, Joo-Won; Park, Chan

    2015-01-01

    C57BL/6 mice have more cerebral arterial branches and collaterals than BALB/c mice. We measured and compared blood flow dynamics of the middle cerebral artery (MCA) in these two strains, using noninvasive optical imaging with indocyanine green (ICG). Relative maximum fluorescence intensity (Imax) and the time needed for ICG to reach Imax in the MCA of C57BL/c were lower than that in BALB/c mice. Moreover, the mean transit time was significantly lower in C57BL/6 than in BALB/c mice. These data suggest that the higher number of arterial branches and collaterals in C57BL/6 mice yields a lower blood flow per cerebral artery. PMID:25833343

  9. Arterial pulsatility as an index of cerebral microangiopathy in diabetes type 2.

    PubMed

    Agha, M S; Alboudi, A

    2014-01-09

    Transcranial doppler is an inexpensive, non-invasive investigation. This study assessed its validity in determining cerebral small vessel disease in patients with type 2 diabetes mellitus. Flow velocity and pulsatility index were measured in the middle cerebral, basilar and intracranial internal carotid arteries of a sample of 141 diabetic patients with no other risk factors, and 132 age- and sex-matched healthy controls. The patients were divided into 2 groups: 73 with complicated and 68 with uncomplicated diabetes. There was a statistically significant difference between the complicated diabetes and control groups for the 3 arteries and most indices. The differences between the uncomplicated diabetes patients and the controls were also statistically significant but less strongly. Transcranial doppler may be useful in early diagnosis of cerebral small vessel disease in patients with type 2 diabetes mellitus.

  10. Extracranial to intracranial bypass for the treatment of cerebral aneurysms in the pediatric population.

    PubMed

    Strickland, Ben A; Attenello, Frank; Russin, Jonathan J

    2016-12-01

    Cerebral aneurysms are rare in the pediatric population, making a definitive treatment algorithm difficult. Microsurgical clipping is the first choice for treatment but is not always feasible, while high recurrence rates and radiation exposure make endovascular options less favorable. Extracranial-intracranial (EC-IC) bypass, though not commonly performed in the pediatric aneurysm population, has been reported in a small number of studies to be both safe and effective for the management of cerebral aneurysms. The authors present the case of a child with a distal middle cerebral artery (MCA) aneurysm in eloquent territory, successfully treated with a superficial temporal artery (STA) to MCA bypass and trapping. A review of the current literature on pediatric EC-IC bypass in the treatment of intracranial aneurysms is presented.

  11. Functional Recovery after Scutellarin Treatment in Transient Cerebral Ischemic Rats: A Pilot Study with 18F-Fluorodeoxyglucose MicroPET

    PubMed Central

    Li, Jin-hui; Lu, Jing; Zhang, Hong

    2013-01-01

    Objective. To investigate neuroprotective effects of scutellarin (Scu) in a rat model of cerebral ischemia with use of 18F-fluorodeoxyglucose (18F-FDG) micro positron emission tomography (microPET). Method. Middle cerebral artery occlusion was used to establish cerebral ischemia. Rats were divided into 5 groups: sham operation, cerebral ischemia-reperfusion untreated (CIRU) group, Scu-25 group (Scu 25 mg/kg/d), Scu-50 group (Scu 50 mg/kg/d), and nimodipine (10 mg/Kg/d). The treatment groups were given for 2 weeks. The therapeutic effects in terms of cerebral infarct volume, neurological deficit scores, and cerebral glucose metabolism were evaluated. Levels of vascular density factor (vWF), glial marker (GFAP), and mature neuronal marker (NeuN) were assessed by immunohistochemistry. Results. The neurological deficit scores were significantly decreased in the Scu-50 group compared to the CIRU group (P < 0.001). 18F-FDG accumulation in the ipsilateral cerebral infarction increased steadily over time in Scu-50 group compared with CIRU group (P < 0.01) and Scu-25 group (P < 0.01). Immunohistochemical analysis demonstrated Scu-50 enhanced neuronal maturation. Conclusion. 18F-FDG microPET imaging demonstrated metabolic recovery after Scu-50 treatment in the rat model of cerebral ischemia. The neuroprotective effects of Scu on cerebral ischemic injury might be associated with increased regional glucose activity and neuronal maturation. PMID:23737833

  12. Influence of medial collagen organization and axial in situ stretch on saccular cerebral aneurysm growth.

    PubMed

    Eriksson, Thomas; Kroon, Martin; Holzapfel, Gerhard A

    2009-10-01

    A model for saccular cerebral aneurysm growth, proposed by Kroon and Holzapfel (2007, "A Model for Saccular Cerebral Aneurysm Growth in a Human Middle Cerebral Artery," J. Theor. Biol., 247, pp. 775-787; 2008, "Modeling of Saccular Aneurysm Growth in a Human Middle Cerebral Artery," ASME J. Biomech. Eng., 130, p. 051012), is further investigated. A human middle cerebral artery is modeled as a two-layer cylinder where the layers correspond to the media and the adventitia. The immediate loss of media in the location of the aneurysm is taken to be responsible for the initiation of the aneurysm growth. The aneurysm is regarded as a development of the adventitia, which is composed of several distinct layers of collagen fibers perfectly aligned in specified directions. The collagen fibers are the only load-bearing constituent in the aneurysm wall; their production and degradation depend on the stretch of the wall and are responsible for the aneurysm growth. The anisotropy of the surrounding media was modeled using the strain-energy function proposed by Holzapfel et al. (2000, "A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models," J. Elast., 61, pp. 1-48), which is valid for an elastic material with two families of fibers. It was shown that the inclusion of fibers in the media reduced the maximum principal Cauchy stress and the maximum shear stress in the aneurysm wall. The thickness increase in the aneurysm wall due to material growth was also decreased. Varying the fiber angle in the media from a circumferential direction to a deviation of 10 deg from the circumferential direction did, however, only show a little effect. Altering the axial in situ stretch of the artery had a much larger effect in terms of the steady-state shape of the aneurysm and the resulting stresses in the aneurysm wall. The peak values of the maximum principal stress and the thickness increase both became significantly higher for larger axial

  13. [Middle ear physiology].

    PubMed

    Ayerbe, I; Négrevergne, M; Ucelay, R; Sanchez Fernandez, J M

    1999-01-01

    The middle ear forms part of the sound transformer mechanism, together with the outer ear and the conducting system of the inner ear. An intermediate sensory organ, sensitive to acoustic vibration, and linked to the inner ear, the middle ear made its appearance during the period of adaptation of marine creatures to a terrestrial habitat; its presence is therefore a phylogenetic requirement. It is classical to ascribe three functions to the middle ear: the transmission of acoustic vibrations from the tympanic membrane to the cochlea, impedance matching between the air in the external auditary meatus and the labyrinthine fluids, and protection of the inner ear by means of the acoustic reflex. If the classical mechanical explanation has been able to explain its function, the conceptualization of its physiology in terms of energy allows an even better understanding, as well as providing and explanation for the paradoxes which arise in clinical practice when the classical model is used.

  14. Down-regulation of Bcl-2 in rat substantia nigra after focal cerebral ischemia.

    PubMed

    Arango-Dávila, Cesar A; Cardona-Gomez, Gloria P; Gallego-Gomez, Juan C; Garcia-Segura, Luis M; Pimienta, Hernán J

    2004-06-28

    After occlusion of the middle cerebral artery in rats, a robust neuronal loss occurs in the ipsilateral substantia nigra reticulata. In this study we have assessed whether degeneration of the substantia nigra is accompanied by changes in the expression of the anti-apoptotic protein Bcl-2. Neuronal loss was assessed by neuronal nuclei (NeuN) immunoreactivity. A significant decrease of Bcl-2 expression was observed in the substantia nigra 12, 24 and 72 h after middle cerebral artery occlusion. These results suggest that the secondary neuronal loss in the substantia nigra could be related with the modification of proteins regulating programmed cell death. Exo-focal cell death may explain the appearance of neuropsychiatric symptoms that are not correlated with the primary site of lesion.

  15. Anti-inflammatory and neuroprotective effects of sanguinarine following cerebral ischemia in rats

    PubMed Central

    Wang, Qin; Dai, Peng; Bao, Han; Liang, Ping; Wang, Wei; Xing, An; Sun, Jianbin

    2017-01-01

    Stroke is one of the leading causes of mortality worldwide. Protective agents that can diminish injuries caused by cerebral ischemia-reperfusion (I/R) are important in alleviating the harmful outcomes of stroke. The aim of the present study was to investigate the protective role of sanguinarine in cerebral I/R injury. A rat middle cerebral artery occlusion model was used to assess the clinical effect of sanguinarine, and inflammatory cytokines in the serum were detected by ELISA. Western blotting was performed to examine the change in levels of apoptosis-associated proteins in the injured brains. The results suggested that sanguinarine, an anti-inflammatory agent derived from the roots of Sanguinaria canadensis, improved the state of cerebral ischemia in a rat model. The data demonstrated that when rats were treated with sanguinarine prior to middle cerebral artery occlusion, the infarct volume was reduced significantly. The inflammatory factors tumor necrosis factor-α, interleukin (IL)-6 and IL-1β were measured in sanguinarine and vehicle-treated groups using an enzyme-linked immunosorbent assay, and the expression levels of the three factors were significantly reduced following treatment with sanguinarine (P<0.05). In addition, western blot analysis demonstrated that the ratio of B-cell lymphoma 2/Bcl-2-associated X protein was significantly increased following treatment with sanguinarine (P<0.05). The study demonstrated that sanguinarine exerts a protective effect in cerebral ischemia, and that this effect is associated with the anti-inflammatory and anti-apoptotic properties of sanguinarine. PMID:28123499

  16. Argon does not affect cerebral circulation or metabolism in male humans

    PubMed Central

    Kazmaier, Stephan; Hoeks, Sanne Elisabeth; Stolker, Robert Jan; Coburn, Marc; Weyland, Andreas

    2017-01-01

    Objective Accumulating data have recently underlined argon´s neuroprotective potential. However, to the best of our knowledge, no data are available on the cerebrovascular effects of argon (Ar) in humans. We hypothesized that argon inhalation does not affect mean blood flow velocity of the middle cerebral artery (Vmca), cerebral flow index (FI), zero flow pressure (ZFP), effective cerebral perfusion pressure (CPPe), resistance area product (RAP) and the arterio-jugular venous content differences of oxygen (AJVDO2), glucose (AJVDG), and lactate (AJVDL) in anesthetized patients. Materials and methods In a secondary analysis of an earlier controlled cross-over trial we compared parameters of the cerebral circulation under 15 minutes exposure to 70%Ar/30%O2 versus 70%N2/30%O2 in 29 male patients under fentanyl-midazolam anaesthesia before coronary surgery. Vmca was measured by transcranial Doppler sonography. ZFP and RAP were estimated by linear regression analysis of pressure-flow velocity relationships of the middle cerebral artery. CPPe was calculated as the difference between mean arterial pressure and ZFP. AJVDO2, AJVDG and AJVDL were calculated as the differences in contents between arterial and jugular-venous blood of oxygen, glucose, and lactate. Statistical analysis was done by t-tests and ANOVA. Results Mechanical ventilation with 70% Ar did not cause any significant changes in mean arterial pressure, Vmca, FI, ZFP, CPPe, RAP, AJVDO2, AJVDG, and AJVDL. Discussion Short-term inhalation of 70% Ar does not affect global cerebral circulation or metabolism in male humans under general anaesthesia. PMID:28207907

  17. Transfer function analysis of dynamic cerebral autoregulation in humans

    NASA Technical Reports Server (NTRS)

    Zhang, R.; Zuckerman, J. H.; Giller, C. A.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    To test the hypothesis that spontaneous changes in cerebral blood flow are primarily induced by changes in arterial pressure and that cerebral autoregulation is a frequency-dependent phenomenon, we measured mean arterial pressure in the finger and mean blood flow velocity in the middle cerebral artery (VMCA) during supine rest and acute hypotension induced by thigh cuff deflation in 10 healthy subjects. Transfer function gain, phase, and coherence function between changes in arterial pressure and VMCA were estimated using the Welch method. The impulse response function, calculated as the inverse Fourier transform of this transfer function, enabled the calculation of transient changes in VMCA during acute hypotension, which was compared with the directly measured change in VMCA during thigh cuff deflation. Beat-to-beat changes in VMCA occurred simultaneously with changes in arterial pressure, and the autospectrum of VMCA showed characteristics similar to arterial pressure. Transfer gain increased substantially with increasing frequency from 0.07 to 0.20 Hz in association with a gradual decrease in phase. The coherence function was > 0.5 in the frequency range of 0.07-0.30 Hz and < 0.5 at < 0.07 Hz. Furthermore, the predicted change in VMCA was similar to the measured VMCA during thigh cuff deflation. These data suggest that spontaneous changes in VMCA that occur at the frequency range of 0.07-0.30 Hz are related strongly to changes in arterial pressure and, furthermore, that short-term regulation of cerebral blood flow in response to changes in arterial pressure can be modeled by a transfer function with the quality of a high-pass filter in the frequency range of 0.07-0.30 Hz.

  18. Online electrochemical monitoring of dynamic change of hippocampal ascorbate: toward a platform for in vivo evaluation of antioxidant neuroprotective efficiency against cerebral ischemia injury.

    PubMed

    Liu, Kun; Yu, Ping; Lin, Yuqing; Wang, Yuexiang; Ohsaka, Takeo; Mao, Lanqun

    2013-10-15

    Effective monitoring of cerebral ascorbate following intravenous antioxidant treatment is of great importance in evaluating the antioxidant efficiency for neuroprotection because ascorbate is closely related to a series of ischemia-induced neuropathological processes. This study demonstrates the validity of an online electrochemical system (OECS) for ascorbate detection as a platform for in vivo evaluation of neuroprotective efficiency of antioxidants by studying the dynamic change of hippocampal ascorbate during the acute period of cerebral ischemia and its responses to intravenous administration of antioxidants including ascorbate and glutathione (GSH). The OECS consists of a selective electrochemical detector made of a thin-layer electrochemical flow cell integrated with in vivo microdialysis. With such a system, the basal level of hippocampal ascorbate is determined to be 5.18 ± 0.60 μM (n = 20). This level is increased by 10 min of two-vessel occlusion (2-VO) ischemia treatment and reaches 11.51 ± 3.43 μM (n = 5) at the time point of 60 min after the ischemia. The 2-VO ischemia-induced hippocampal ascorbate increase is obviously attenuated by immediate intravenous administration of ascorbate (2.94 g/kg) or glutathione (5.12 g/kg) within 10 min after ischemia and the ascorbate level remains to be 3.75 ± 1.66 μM (n = 4) and 5.30 ± 0.79 μM (n = 5), respectively, at the time point of 60 min after ischemia. To confirm if the attenuated hippocampal ascorbate increase is attributed to the antioxidant-induced oxidative stress alleviation, we further study the immunoreactivity of 8-hydroxy-2-deoxyguanosine (8-OHdG) in the ischemic hippocampus and find that the 8-OHdG immunoreactivity is decreased by the administration of ascorbate or GSH as compared to the ischemic brain without antioxidant treatment. These results substantially demonstrate that the OECS for ascorbate detection could be potentially used as a platform for evaluating the efficiency of antioxidant

  19. Amelioration of cerebral ischemia-reperfusion injury based on liposomal drug delivery system with asialo-erythropoietin.

    PubMed

    Ishii, Takayuki; Asai, Tomohiro; Oyama, Dai; Fukuta, Tatsuya; Yasuda, Nodoka; Shimizu, Kosuke; Minamino, Tetsuo; Oku, Naoto

    2012-05-30

    Cerebral ischemia-reperfusion (I/R) injury induces secondary cerebral damage. As drugs for treating this type of injury have shown poor efficacy and adverse side effects in clinical trials, a novel therapeutic strategy has been long awaited. In this study, we focused on the disruption of the blood-brain barrier after stroke, and applied a liposomal drug delivery system (DDS) designed to enhance the pharmacological effect of the neuroprotectant and to avoid side effects. PEGylated liposomes were injected at varying time after the start of reperfusion in transient middle cerebral artery occlusion (t-MCAO) model rats. The results showed PEGylated liposomes accumulated in the ischemic hemisphere at an early stage after reperfusion and were retained in the lesion for at least 24h after injection. We also investigated the effectiveness of asialo-erythropoietin (AEPO)-modified PEGylated liposomes (AEPO-liposomes) in treating the cerebral I/R injury. AEPO-liposome treatment significantly reduced TTC-defined cerebral legion following cerebral I/R injury, and ameliorated motor function compared with vehicle and AEPO treatment. In conclusion, these results indicate that AEPO-liposomes are a promising liposomal formulation for protecting the brain from I/R injury, and that this liposomal DDS has potential as a novel strategy for the treatment of cerebral I/R injury.

  20. Neuroevolutional Approach to Cerebral Palsy and Speech.

    ERIC Educational Resources Information Center

    Mysak, Edward D.

    Intended for cerebral palsy specialists, the book emphasizes the contribution that a neuroevolutional approach to therapy can make to habilitation goals of the child with cerebral palsy and applies the basic principles of the Bobath approach to therapy. The first section discusses cerebral palsy as a reflection of disturbed neuro-ontogenisis and…

  1. Cerebral vasculitis associated with cocaine abuse

    SciTech Connect

    Kaye, B.R.; Fainstat, M.

    1987-10-16

    A case of cerebral vasculitis in a previously healthy 22-year-old man with a history of cocaine abuse is described. Cerebral angiograms showed evidence of vasculitis. A search for possible causes other than cocaine produced no results. The authors include cocaine with methamphetamines, heroin, and ephedrine as illicit drugs that can cause cerebral vasculitis.

  2. Behaviour Problems Amongst Children With Cerebral Palsy.

    ERIC Educational Resources Information Center

    Oswin, Maureen

    Based on 6 years of work with cerebral palsied children, the thesis considers types and causes of cerebral palsy, the life pattern of the child with cerebral palsy from early years to adolescence, and the effect of the handicapped child on his parents and family. Literature on behavior disorders is reviewed, and kinds of behavior problems are…

  3. Cerebral Ischemia/Reperfusion Injury in the Hyperthyroid Rat

    PubMed Central

    Keshavarz, Somaye; Dehghani, Gholam Abbas

    2017-01-01

    Background: Hyperthyroidism as a risk factor for stroke is not conclusive. There are no definite data on the relationship between ischemic cerebrovascular injury and hyperthyroidism. This study was designed to define whether the outcomes of post-ischemic stroke injury are influenced by chronic hyperthyroidism. Methods: Two groups of hyperthyroid (HT) and control euthyroid rats of equal numbers (n=22) were included in the study. Hyperthyroidism was induced for 4 weeks by adding L-thyroxine (300 μg/kg) to drinking water. The middle cerebral artery occlusion technique was used to induce focal cerebral ischemia. Neurological disability (neurological deficit score [NDS]) was evaluated after 24 hours, and the rats were sacrificed to obtain their brain. Triphenyl Tetrazolium Chloride (TTC) staining and Evans Blue (EB) extravasation were used to quantify cerebral infarct volume and cerebrovascular integrity disruption. Data analysis was done using SPSS, version 21. Results: Thyroid hormones levels, T3 (314±7 vs. 198±3 ng/dL;P=0.001) and T4 (9.8±0.3 vs. 3.08±0.07 μg/dL;P=0.001), were significantly higher in the HT group than in the controls. Furthermore, most clinical signs seen in hyperthyroid patients were also present in the HT group. Comparison of the data on cerebral ischemia between the HT and control groups showed significant increases in the NDS (2.76±0.16 vs. 2.23±0.09;P=0.03), cerebral infarct volume (479±12 vs. 266±17 mm3;P=0.001), and EB extravasation (50.08±2.4 vs. 32.6±1.2 μg/g;P=0.001) in the former group. Conclusion: The intensified cerebral infarct size and cerebrovascular integrity disruption suggested that chronic hyperthyroidism aggravated post-stroke injury in the rats. More investigation is required to analyze the pathological mechanisms underlying the association between cerebrovascular disease and hyperthyroidism. PMID:28293050

  4. Effects of hyperglycemia and effects of ketosis on cerebral perfusion, cerebral water distribution, and cerebral metabolism.

    PubMed

    Glaser, Nicole; Ngo, Catherine; Anderson, Steven; Yuen, Natalie; Trifu, Alexandra; O'Donnell, Martha

    2012-07-01

    Diabetic ketoacidosis (DKA) may cause brain injuries in children. The mechanisms responsible are difficult to elucidate because DKA involves multiple metabolic derangements. We aimed to determine the independent effects of hyperglycemia and ketosis on cerebral metabolism, blood flow, and water distribution. We used magnetic resonance spectroscopy to measure ratios of cerebral metabolites (ATP to inorganic phosphate [Pi], phosphocreatine [PCr] to Pi, N-acetyl aspartate [NAA] to creatine [Cr], and lactate to Cr) and diffusion-weighted imaging and perfusion-weighted imaging to assess cerebral water distribution (apparent diffusion coefficient [ADC] values) and cerebral blood flow (CBF) in three groups of juvenile rats (hyperglycemic, ketotic, and normal control). ATP-to-Pi ratio was reduced in both hyperglycemic and ketotic rats in comparison with controls. PCr-to-Pi ratio was reduced in the ketotic group, and there was a trend toward reduction in the hyperglycemic group. No significant differences were observed in NAA-to-Cr or lactate-to-Cr ratio. Cortical ADC was reduced in both groups (indicating brain cell swelling). Cortical CBF was also reduced in both groups. We conclude that both hyperglycemia and ketosis independently cause reductions in cerebral high-energy phosphates, CBF, and cortical ADC values. These effects may play a role in the pathophysiology of DKA-related brain injury.

  5. Erythropoietin Pretreatment of Transplanted Endothelial Colony-Forming Cells Enhances Recovery in a Cerebral Ischemia Model by Increasing Their Homing Ability: A SPECT/CT Study.

    PubMed

    Garrigue, Philippe; Hache, Guillaume; Bennis, Youssef; Brige, Pauline; Stalin, Jimmy; Pellegrini, Lionel; Velly, Lionel; Orlandi, Francesca; Castaldi, Elena; Dignat-George, Françoise; Sabatier, Florence; Guillet, Benjamin

    2016-11-01

    Endothelial colony-forming cells (ECFCs) are promising candidates for cell therapy of ischemic diseases, as less than 10% of patients with an ischemic stroke are eligible for thrombolysis. We previously reported that erythropoietin priming of ECFCs increased their in vitro and in vivo angiogenic properties in mice with hindlimb ischemia. The present study used SPECT/CT to evaluate whether priming of ECFCs with erythropoietin could enhance their homing to the ischemic site after transient middle cerebral artery occlusion (MCAO) followed by reperfusion in rats and potentiate their protective or regenerative effect on blood-brain barrier (BBB) disruption, cerebral apoptosis, and cerebral blood flow (CBF).

  6. Arctigenin protects focal cerebral ischemia-reperfusion rats through inhibiting neuroinflammation.

    PubMed

    Fan, Tao; Jiang, Wei Long; Zhu, Jian; Feng Zhang, Yu

    2012-01-01

    Stroke is the third leading cause of death in industrialized countries and the most important cause of acquired adult disability. Many evidences suggest that inflammation accounts for the progression of cerebral ischemic injury. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignin isolated from certain plants, has shown anti-inflammatory activity against diabetes and Alzheimer's disease. In this study, we tested whether arctigenin can protect middle cerebral artery occluded (MCAO) rats. Male Sprague-Dawley rats were pretreated with arctigenin or vehicle for 7 d before being subjected to transient occlusion of middle cerebral artery and reperfusion. Rats were evaluated at 24 h after MCAO for neurological deficit scoring. Furthermore, the mechanism of the anti-inflammatory effect of arctigenin was investigated with a focus on inflammatory cells, proinflammatory cytokines, and transcriptional factors. Arctigenin significantly reduced cerebral infarction and improved neurological outcome. Arctigenin suppressed the activation of microglia and decreased the expression of interleukin (IL)- 1β and tumor necrosis factor (TNF)-α. These results revealed that arctigenin has a promising therapeutic effect in ischemic stroke treatment through an anti-inflammatory mechanism.

  7. Cerebral Palsy: A Dental Update

    PubMed Central

    Sehrawat, Nidhi; Bansal, Kalpana; Chopra, Radhika

    2014-01-01

    ABSTRACT Special and medically compromised patients present a unique population that challenges the dentist’s skill and knowledge. Providing oral care to people with cerebral palsy (CP) requires adaptation of the skills we use everyday. In fact, most people with mild or moderate forms of CP can be treated successfully in the general practice setting. This article is to review various dental considerations and management of a CP patient. How to cite this article: Sehrawat N, Marwaha M, Bansal K, Chopra R. Cerebral Palsy: A Dental Update. Int J Clin Pediatr Dent 2014;7(2):109-118. PMID:25356010

  8. Therapeutic imaging window of cerebral infarction revealed by multisequence magnetic resonance imaging: An animal and clinical study.

    PubMed

    Lu, Hong; Hu, Hui; He, Zhanping; Han, Xiangjun; Chen, Jing; Tu, Rong

    2012-11-05

    In this study, we established a Wistar rat model of right middle cerebral artery occlusion and observed pathological imaging changes (T2-weighted imaging [T2WI], T2FLAIR, and diffusion-weighted imaging [DWI]) following cerebral infarction. The pathological changes were divided into three phases: early cerebral infarction, middle cerebral infarction, and late cerebral infarction. In the early cerebral infarction phase (less than 2 hours post-infarction), there was evidence of intracellular edema, which improved after reperfusion. This improvement was defined as the ischemic penumbra. In this phase, a high DWI signal and a low apparent diffusion coefficient were observed in the right basal ganglia region. By contrast, there were no abnormal T2WI and T2FLAIR signals. For the middle cerebral infarction phase (2-4 hours post-infarction), a mixed edema was observed. After reperfusion, there was a mild improvement in cell edema, while the angioedema became more serious. A high DWI signal and a low apparent diffusion coefficient signal were observed, and some rats showed high T2WI and T2FLAIR signals. For the late cerebral infarction phase (4-6 hours post-infarction), significant angioedema was visible in the infarction site. After reperfusion, there was a significant increase in angioedema, while there was evidence of hemorrhage and necrosis. A mixed signal was observed on DWI, while a high apparent diffusion coefficient signal, a high T2WI signal, and a high T2FLAIR signal were also observed. All 86 cerebral infarction patients were subjected to T2WI, T2FLAIR, and DWI. MRI results of clinic data similar to the early infarction phase of animal experiments were found in 51 patients, for which 10 patients (10/51) had an onset time greater than 6 hours. A total of 35 patients had MRI results similar to the middle and late infarction phase of animal experiments, of which eight patients (8/35) had an onset time less than 6 hours. These data suggest that defining the

  9. Middle School Review.

    ERIC Educational Resources Information Center

    Cook-Kallio, Cheryl

    1991-01-01

    Discusses the use of primary resources in the teaching of middle school social studies. Describes a lesson in which students were given a copy of the Declaration of Independence, written in everyday language, and were asked to discuss and evaluate it. Suggests another activity based on Thomas Jefferson's writings. (SG)

  10. The Forgotten Middle

    ERIC Educational Resources Information Center

    Education Digest: Essential Readings Condensed for Quick Review, 2009

    2009-01-01

    In recent years, there has been heightened awareness of the importance of early childhood education and high school as intervention points in the educational lives of America's children. Less attention has been paid to the importance of the upper elementary grades and middle school and the role they must play in the preparation of students for…

  11. Middle School Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Demonstrations, experiments, and classroom activities/materials for middle school science are presented. These include: additive color mixing demonstration; electricity activity and worksheet; atmospheric pressure "magic" demonstration; homemade microbalance; energy from soap bubbles; and a model used to demonstrate muscle pairs and how…

  12. Utopia Middle School

    ERIC Educational Resources Information Center

    Cloud, Michelle

    2006-01-01

    The following excerpt allows the reader to briefly peer into an ideal school setting: For the purposes of this paper, the fictitious school will be named Utopia Middle School or U.M.S. U.M.S embodies and exemplifies the perfect school. At U.M.S., the campus administrators perform at a level of excellence that motivates, empowers and supports all…

  13. The Middle Income Squeeze

    ERIC Educational Resources Information Center

    Glover, Steve

    1978-01-01

    Complaints about a middle income family's hardships in sending their children to private colleges and universities are examined. The difficulty may be attributable to a progressive College Scholarship Service (CSS) taxation rate schedule that causes larger proportionate reductions in the standard of living for some families than others.…

  14. Middle Grades Ideas.

    ERIC Educational Resources Information Center

    Classroom Computer Learning, 1985

    1985-01-01

    Presents a collection of computer-oriented teaching activities for the middle grades. They focus on Logo activities to sharpen visualization skills, use of spreadsheets, various uses of Apple microcomputer paddles, and writing a program from program output. All activities may be adapted for lower or higher grade levels. (JN)

  15. Middle Grades Ideas.

    ERIC Educational Resources Information Center

    Classroom Computer Learning, 1983

    1983-01-01

    Activities for middle/junior high school students are presented, including use of string variables, science lesson ideas, computer scavenger hunt, and guidelines for interviewing people who own/use computers. Includes "I'll Write...Just Lead Me to My Computer" by Robert Engberg, discussing word processing instruction. (JN)

  16. Middle School Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Explains some middle school science demonstrations and experiments: included are a simplified circuit board, a scheme for the identification of plastics, a soot-free bunsen burner, science in a packet of cornflakes, and perceptual ambiguities with a "Chinese Compass." (GA)

  17. Middle School Projects.

    ERIC Educational Resources Information Center

    Learning By Design, 2002

    2002-01-01

    Describes the buildings of 22 middle schools, including the educational context and design goals. Includes information on the architects and design team, a general building description, and general construction costs and specifications. Also provides a rough site plan and photographs. (EV)

  18. Understanding the Middle East.

    ERIC Educational Resources Information Center

    Owen, Evelyn C.

    This nine-week unit on the Middle East for sixth graders was developed as part of a series by the Public Education Religion Studies Center at Wright State University. A major objective is to help students understand and appreciate sacred times and sacred places within this cultural setting. They learn how beliefs and practices cause the people to…

  19. Middle Grades Ideas.

    ERIC Educational Resources Information Center

    Classroom Computer Learning, 1984

    1984-01-01

    Presents five activities suitable for middle grades. These include listings for a car race (BASIC) and poetry (Pilot) programs, and activities on graphics without programing, new meanings (related to computers) of old words, and developing a list of historical events. (JN)

  20. Middle School Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Describes equipment, experiments, and activities useful in middle school science instruction, including demonstrating how strong paper can be, the inclined plane illusion, a simplified diet calculation, a magnetic levitator, science with soap bubbles, a model motor and dynamo, and a pocketed sorter for safety glasses. (SK)

  1. Caffeine induced changes in cerebral circulation

    SciTech Connect

    Mathew, R.J.; Wilson, W.H.

    1985-09-01

    While the caffeine induced cerebral vasoconstriction is well documented, the effects of oral ingestion of the drug in a dose range comparable to the quantities in which it is usually consumed and the intensity and duration of the associated reduction in cerebral circulation are unknown. Cerebral blood flow was measured via the TTXenon inhalation technique before and thirty and ninety minutes after the oral administration of 250 mg of caffeine or a placebo, under double-blind conditions. Caffeine ingestion was found to be associated with significant reductions in cerebral perfusion thirty and ninety minutes later. The placebo group showed no differences between the three sets of cerebral blood flow values.

  2. Cerebral ventricular volume during hyponatraemia.

    PubMed Central

    Decaux, G; Szyper, M; Grivegnée, A

    1983-01-01

    In order to determine if the neurologic manifestations in chronic hyponatraemia result partly from brain oedema, we measured the cerebral ventricular volume before and after correction of hyponatraemia in eight patients with central nervous system manifestations. Only the three patients with seizures showed a clear change in the ventricular size and probably had brain oedema. PMID:6101182

  3. Investigating cerebral oedema using poroelasticity.

    PubMed

    Vardakis, John C; Chou, Dean; Tully, Brett J; Hung, Chang C; Lee, Tsong H; Tsui, Po-Hsiang; Ventikos, Yiannis

    2016-01-01

    Cerebral oedema can be classified as the tangible swelling produced by expansion of the interstitial fluid volume. Hydrocephalus can be succinctly described as the abnormal accumulation of cerebrospinal fluid (CSF) within the brain which ultimately leads to oedema within specific sites of parenchymal tissue. Using hydrocephalus as a test bed, one is able to account for the necessary mechanisms involved in the interaction between oedema formation and cerebral fluid production, transport and drainage. The current state of knowledge about integrative cerebral dynamics and transport phenomena indicates that poroelastic theory may provide a suitable framework to better understand various diseases. In this work, Multiple-Network Poroelastic Theory (MPET) is used to develop a novel spatio-temporal model of fluid regulation and tissue displacement within the various scales of the cerebral environment. The model is applied through two formats, a one-dimensional finite difference - Computational Fluid Dynamics (CFD) coupling framework, as well as a two-dimensional Finite Element Method (FEM) formulation. These are used to investigate the role of endoscopic fourth ventriculostomy in alleviating oedema formation due to fourth ventricle outlet obstruction (1D coupled model) in addition to observing the capability of the FEM template in capturing important characteristics allied to oedema formation, like for instance in the periventricular region (2D model).

  4. Graft selection in cerebral revascularization.

    PubMed

    Baaj, Ali A; Agazzi, Siviero; van Loveren, Harry

    2009-05-01

    Cerebral revascularization constitutes an important treatment modality in the management of complex aneurysms, carotid occlusion, tumor, and moyamoya disease. Graft selection is a critical step in the planning of revascularization surgery, and depends on an understanding of graft and regional hemodynamics, accessibility, and patency rates. The goal of this review is to highlight some of these properties.

  5. Neuropathology of Acquired Cerebral Trauma.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1987-01-01

    To help educators understand the cognitive and behavioral sequelae of cerebral injury, the neuropathology of traumatic brain injury and the main neuropathological features resulting from trauma-related brain damage are reviewed. A glossary with definitions of 37 neurological terms is appended. (Author/DB)

  6. Anxiety and Lateral Cerebral Function

    ERIC Educational Resources Information Center

    Tucker, Don M.; And Others

    1978-01-01

    Examines the effect of stressful and nonstressful experimental situations upon the processing capacity of each cerebral hemisphere, through observing the differential performance tasks presented to right and left visual half-fields (VHFs). Also examines attentional bias and lateral eye movements. (Author/RK)

  7. Sirt1 in cerebral ischemia

    PubMed Central

    Koronowski, Kevin B.; Perez-Pinzon, Miguel A.

    2015-01-01

    Cerebral ischemia is among the leading causes of death worldwide. It is characterized by a lack of blood flow to the brain that results in cell death and damage, ultimately causing motor, sensory, and cognitive impairments. Today, clinical treatment of cerebral ischemia, mostly stroke and cardiac arrest, is limited and new neuroprotective therapies are desperately needed. The Sirtuin family of oxidized nicotinamide adenine dinucleotide (NAD+)-dependent deacylases has been shown to govern several processes within the central nervous system as well as to possess neuroprotective properties in a variety of pathological conditions such as Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease, among others. Recently, Sirt1 in particular has been identified as a mediator of cerebral ischemia, with potential as a possible therapeutic target. To gather studies relevant to this topic, we used PubMed and previous reviews to locate, select, and resynthesize the lines of evidence presented here. In this review, we will first describe some functions of Sirt1 in the brain, mainly neurodevelopment, learning and memory, and metabolic regulation. Second, we will discuss the experimental evidence that has implicated Sirt1 as a key protein in the regulation of cerebral ischemia as well as a potential target for the induction of ischemic tolerance. PMID:26819971

  8. Confusional state and cerebral infarcts.

    PubMed Central

    García-Albea, E.

    1989-01-01

    Thirteen patients with confusional state and cerebral infarction were studied. Seven patients had optic pathway alterations. On computed tomographic scan, 2 patients had multiple infarctions and 10 had single infarctions, predominantly located in the temporo-occipital associative cortex. One patient had a normal scan. Reduction of 'selective attention', 'release' hallucinations, amnesic syndrome and secondary individual adjustment could explain the confusional state. PMID:2608563

  9. Cerebral gigantism with West syndrome.

    PubMed

    Ray, Munni; Malhi, P; Bhalla, A K; Singhi, P D

    2003-07-01

    A case of cerebral gigantism (Sotos syndrome) with West syndrome in a one-year-old male child is reported. The case had a large stature, typical facies and neurodevelopmental delay along with infantile spasms, which were refractory to treatment with valproate and clonazepam.

  10. A Coupled Lumped-Parameter and Distributed Network Model for Cerebral Pulse-Wave Hemodynamics

    PubMed Central

    Ryu, Jaiyoung; Hu, Xiao; Shadden, Shawn C.

    2015-01-01

    The cerebral circulation is unique in its ability to maintain blood flow to the brain under widely varying physiologic conditions. Incorporating this autoregulatory response is necessary for cerebral blood flow (CBF) modeling, as well as investigations into pathological conditions. We discuss a one-dimensional (1D) nonlinear model of blood flow in the cerebral arteries coupled to autoregulatory lumped-parameter (LP) networks. The LP networks incorporate intracranial pressure (ICP), cerebrospinal fluid (CSF), and cortical collateral blood flow models. The overall model is used to evaluate changes in CBF due to occlusions in the middle cerebral artery (MCA) and common carotid artery (CCA). Velocity waveforms at the CCA and internal carotid artery (ICA) were examined prior and post MCA occlusion. Evident waveform changes due to the occlusion were observed, providing insight into cerebral vasospasm monitoring by morphological changes of the velocity or pressure waveforms. The role of modeling of collateral blood flows through cortical pathways and communicating arteries was also studied. When the MCA was occluded, the cortical collateral flow had an important compensatory role, whereas the communicating arteries in the circle of Willis (CoW) became more important when the CCA was occluded. To validate the model, simulations were conducted to reproduce a clinical test to assess dynamic autoregulatory function, and results demonstrated agreement with published measurements. PMID:26287937

  11. Amyloid deposition after cerebral hypoperfusion: evidenced on [(18)F]AV-45 positron emission tomography.

    PubMed

    Huang, Kuo-Lun; Lin, Kun-Ju; Ho, Meng-Yang; Chang, Yeu-Jhy; Chang, Chien-Hung; Wey, Shiaw-Pyng; Hsieh, Chia-Ju; Yen, Tzu-Chen; Hsiao, Ing-Tsung; Lee, Tsong-Hai

    2012-08-15

    Animal studies have shown that cerebral hypoperfusion may be associated with amyloid plaque accumulation. Amyloid plaque is known to be associated with dementia and [(18)F]AV-45 is a positron emission tomography (PET) ligand that binds to extracelluar plaques. We hypothesized that demented patients with cerebral hypoperfusion may have increased [(18)F]AV-45 uptake. Five demented patients with cerebral hypoperfusion due to unilateral carotid artery stenosis (CAS) were examined with [(18)F]AV-45 PET, and the results were compared with six elderly controls. The standard uptake value ratio (SUVR) of each region of interest (ROI) was created using whole cerebellum as the reference region. All subjects underwent magnetic resonance imaging (MRI) for obtaining structural information. Patients with dementia and unilateral CAS had a higher global [(18)F]AV-45 SUVR (1.34 ± 0.06) as compared with controls (1.10 ± 0.04, p=0.0043), especially over the frontal, temporal, precuneus, anterior cingulate and occipital regions. The statistical distribution maps revealed a significantly increased [(18)F]AV-45 SUVR in the medial frontal, caudate, thalamus, posterior cingulate, occipital and middle and superior temporal regions ipsilateral to the side of CAS (p<0.01). The present study found that cerebral [(18)F]AV-45 binding is increased in demented patients with CAS, and its distribution is lateralized to the CAS side, suggesting that amyloid-related dementia may occur under cerebral hypoperfusion.

  12. Chrysophanol Inhibits NALP3 Inflammasome Activation and Ameliorates Cerebral Ischemia/Reperfusion in Mice

    PubMed Central

    Zhang, Nan; Liu, Xiaoxia; Wang, Hong; Xue, Jing; Yu, Jingying; Kang, Ning; Wang, Xiaolu

    2014-01-01

    The most effective way to contain cerebral ischemic injury is reperfusion; however, reperfusion itself may result in tissue injury, for which inflammatory damage is one of the main causative factors. NALP3 inflammasome is a multiprotein complex. It consists of NALP3, ASC, and caspase-1, whose function is to switch on the inflammatory process. Chrysophanol is an extract from plants of Rheum genus and it possesses many pharmacological effects including its anti-inflammation activity. In this study, the effects of chrysophanol in cerebral ischemia/reperfusion and the potential mechanisms were investigated. Male CD1 mice were subject to transient middle cerebral artery occlusion (tMCAO). The NALP3 inflammasome activation status and its dynamic expression during the natural inflammatory response induced by tMCAO were first profiled. The neuroprotective effects of chrysophanol were then assessed and the potential mechanisms mediating the observed neuroprotection were then explored. Physical parameters including neurological deficit, infarct size, brain edema, and BBB permeability were measured at 24 h after tMCAO. Confocal microscopy, Western blotting, immunohistochemistry, and qRT-PCR techniques were utilized to analyze the expression of NALP3 inflammasome and IL-1β. Our results indicated that the brain tissue damage during cerebral ischemia/reperfusion is accompanied by NALP3 inflammasome activation. Chrysophanol could inhibit the activation of NALP3 inflammasome and protect cerebral ischemic stroke. PMID:24876671

  13. Semaphorin3A elevates vascular permeability and contributes to cerebral ischemia-induced brain damage.

    PubMed

    Hou, Sheng Tao; Nilchi, Ladan; Li, Xuesheng; Gangaraju, Sandhya; Jiang, Susan X; Aylsworth, Amy; Monette, Robert; Slinn, Jacqueline

    2015-01-20

    Semaphorin 3A (Sema3A) increased significantly in mouse brain following cerebral ischemia. However, the role of Sema3A in stroke brain remains unknown. Our aim was to determine wether Sema3A functions as a vascular permeability factor and contributes to ischemic brain damage. Recombinant Sema3A injected intradermally to mouse skin, or stereotactically into the cerebral cortex, caused dose- and time-dependent increases in vascular permeability, with a degree comparable to that caused by injection of a known vascular permeability factor vascular endothelial growth factor receptors (VEGF). Application of Sema3A to cultured endothelial cells caused disorganization of F-actin stress fibre bundles and increased endothelial monolayer permeability, confirming Sema3A as a permeability factor. Sema3A-mediated F-actin changes in endothelial cells were through binding to the neuropilin2/VEGFR1 receptor complex, which in turn directly activates Mical2, a F-actin modulator. Down-regulation of Mical2, using specific siRNA, alleviated Sema3A-induced F-actin disorganization, cellular morphology changes and endothelial permeability. Importantly, ablation of Sema3A expression, cerebrovascular permeability and brain damage were significantly reduced in response to transient middle cerebral artery occlusion (tMCAO) and in a mouse model of cerebral ischemia/haemorrhagic transformation. Together, these studies demonstrated that Sema3A is a key mediator of cerebrovascular permeability and contributes to brain damage caused by cerebral ischemia.

  14. What are the Best Animal Models for Testing Early Intervention in Cerebral Palsy?

    PubMed Central

    Clowry, Gavin John; Basuodan, Reem; Chan, Felix

    2014-01-01

    Interventions to treat cerebral palsy should be initiated as soon as possible in order to restore the nervous system to the correct developmental trajectory. One drawback to this approach is that interventions have to undergo exceptionally rigorous assessment for both safety and efficacy prior to use in infants. Part of this process should involve research using animals but how good are our animal models? Part of the problem is that cerebral palsy is an umbrella term that covers a number of conditions. There are also many causal pathways to cerebral palsy, such as periventricular white matter injury in premature babies, perinatal infarcts of the middle cerebral artery, or generalized anoxia at the time of birth, indeed multiple causes, including intra-uterine infection or a genetic predisposition to infarction, may need to interact to produce a clinically significant injury. In this review, we consider which animal models best reproduce certain aspects of the condition, and the extent to which the multifactorial nature of cerebral palsy has been modeled. The degree to which the corticospinal system of various animal models human cor