Science.gov

Sample records for 60-minute quadrangle washington

  1. Geologic map of the Snoqualmie Pass 30 x 60 minute quadrangle, Washington

    USGS Publications Warehouse

    Tabor, R.W.; Frizzell, V.A., Jr.; Booth, D.B.; Waitt, R.B.

    2000-01-01

    The Snoqualmie Pass quadrangle lies at the north edge of a Tertiary volcanic and sedimentary cover, where the regional structural uplift to the north elevated the older rocks to erosional levels. Much of the quadrangle is underlain by folded Eocene volcanic rocks and fluvial deposts of an extensional event, and these rocks are overlain by Cascade arc volcanic rocks: mildly deformed Oligocene-Miocene rocks and undeformed younger volcanic rocks. Melanges of Paleozoic and Mesozoic rocks are exposed in structural highs in the northern part of the quadrangle. The quadrangle is traversed north to south by the Straight Creek Fault, and the probably partially coincident Darringon-Devils Mountain Fault. A rich Quaternary stratigraphy reveals events of the Frazer glaciation.

  2. Geologic map of the Sauk River 30- by 60-minute quadrangle, Washington

    USGS Publications Warehouse

    Tabor, R.W.; Booth, D.B.; Vance, J.A.; Ford, A.B.

    2002-01-01

    Summary -- The north-south-trending regionally significant Straight Creek Fault roughly bisects the Sauk River quadrangle and defines the fundamental geologic framework of it. Within the quadrangle, the Fault mostly separates low-grade metamorphic rocks on the west from medium- to high-grade metamorphic rocks of the Cascade metamorphic core. On the west, the Helena-Haystack melange and roughly coincident Darrington-Devils Mountain Fault Zone separate the western and eastern melange belts to the southwest from the Easton Metamorphic Suite, the Bell Pass melange, and rocks of the Chilliwack Group, to the northeast. The tectonic melanges have mostly Mesozoic marine components whereas the Chilliwack is mostly composed of Late Paleozoic arc rocks. Unconformably overlying the melanges and associated rocks are Eocene volcanic and sedimentary rocks, mostly infaulted along the Darrington-Devils Mountain Fault Zone. These younger rocks and a few small Eocene granitic plutons represent an extensional tectonic episode. East of the Straight Creek Fault, medium to high-grade regional metamorphic rocks of the Nason, Chelan Mountains, and Swakane terranes have been intruded by deep seated, Late Cretaceous granodioritic to tonalitic plutons, mostly now orthogneisses. Unmetamorphosed mostly tonalitic intrusions on both sides of the Straight Creek fault range from 35 to 4 million years old and represent the roots of volcanoes of the Cascade Magmatic Arc. Arc volcanic rocks are sparsely preserved east of the Straight Creek fault, but dormant Glacier Peak volcano on the eastern margin of the quadrangle is the youngest member of the Arc. Deposits of the Canadian Ice Sheet are well represented on the west side of the quadrangle, whereas alpine glacial deposits are common to the east. Roughly 5000 years ago lahars from Glacier Peak flowed westward filling major valleys across the quadrangle.

  3. Database for the geologic map of the Mount Baker 30- by 60-minute quadrangle, Washington (I-2660)

    USGS Publications Warehouse

    Tabor, R.W.; Haugerud, R.A.; Hildreth, Wes; Brown, E.H.

    2006-01-01

    This digital map database has been prepared by R.W. Tabor from the published Geologic map of the Mount Baker 30- by 60-Minute Quadrangle, Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the geology at 1:100,000. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  4. Database for the geologic map of the Sauk River 30-minute by 60-minute quadrangle, Washington (I-2592)

    USGS Publications Warehouse

    Tabor, R.W.; Booth, D.B.; Vance, J.A.; Ford, A.B.

    2006-01-01

    This digital map database has been prepared by R.W. Tabor from the published Geologic map of the Sauk River 30- by 60 Minute Quadrangle, Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled most Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  5. Database for the Geologic Map of the Skykomish River 30-Minute by 60-Minute Quadrangle, Washington (I-1963)

    USGS Publications Warehouse

    Tabor, R.W.; Frizzell, V.A., Jr.; Booth, D.B.; Waitt, R.B.; Whetten, J.T.; Zartman, R.E.

    2006-01-01

    This digital map database has been prepared from the published geologic map of the Skykomish River 30- by 60-minute quadrangle by the senior author. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. From the eastern-most edges of suburban Seattle, the Skykomish River quadrangle stretches east across the low rolling hills and broad river valleys of the Puget Lowland, across the forested foothills of the North Cascades, and across high meadowlands to the bare rock peaks of the Cascade crest. The Straight Creek Fault, a major Pacific Northwest structure which almost bisects the quadrangle, mostly separates unmetamorphosed and low-grade metamorphic Paleozoic and Mesozoic oceanic rocks on the west from medium- to high-grade metamorphic rocks on the east. Within the quadrangle the lower grade rocks are mostly Mesozoic melange units. To the east, the higher-grade terrane is mostly the Chiwaukum Schist and related gneisses of the Nason terrane and invading mid-Cretaceous stitching plutons. The Early Cretaceous Easton Metamorphic Suite crops out on both sides of the Straight Creek fault and records it's dextral displacement. On the south margin of the quadrangle, the fault separates the lower Eocene Swauk Formation on the east from the upper Eocene and Oligocene(?) Naches Formation and, farther north, its correlative Barlow Pass Volcanics the west. Stratigraphically equivalent rocks of the Puget Group crop out farther to the west. Rocks of

  6. Database for the geologic map of the Chelan 30-minute by 60-minute quadrangle, Washington (I-1661)

    USGS Publications Warehouse

    Tabor, R.W.; Frizzell, V.A., Jr.; Whetten, J.T.; Waitt, R.B.; Swanson, D.A.; Byerly, G.R.; Booth, D.B.; Hetherington, M.J.; Zartman, R.E.

    2006-01-01

    This digital map database has been prepared by R. W. Tabor from the published Geologic map of the Chelan 30-Minute Quadrangle, Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  7. Database for the geologic map of the Snoqualmie Pass 30-minute by 60-minute quadrangle, Washington (I-2538)

    USGS Publications Warehouse

    Tabor, R.W.; Frizzell, V.A., Jr.; Booth, D.B.; Waitt, R.B.

    2006-01-01

    This digital map database has been prepared by R.W. Tabor from the published Geologic map of the Snoqualmie Pass 30' X 60' Quadrangle, Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  8. Isostatic Gravity Map of the Battle Mountain 30 x 60 Minute Quadrangle, North Central Nevada

    USGS Publications Warehouse

    Ponce, D.A.; Morin, R.L.

    2000-01-01

    Introduction Gravity investigations of the Battle Mountain 30 x 60 minute quadrangle were begun as part of an interagency effort by the U.S. Geological Survey (USGS) and the Bureau of Land Management to help characterize the geology, mineral resources, hydrology, and ecology of the Humboldt River Basin in north-central Nevada. The Battle Mountain quadrangle is located between 40?30' and 41?N. lat. and 116? and 117?W. long. This isostatic gravity map of the Battle Mountain quadrangle was prepared from data from about 1,180 gravity stations. Most of these data are publicly available on a CD-ROM of gravity data of Nevada (Ponce, 1997) and in a published report (Jewel and others, 1997). Data from about 780 gravity stations were collected by the U.S. Geological Survey since 1996; data from about 245 of these are unpublished (USGS, unpub. data, 1998). Data collected from the 400 gravity stations prior to 1996 are a subset of a gravity data compilation of the Winnemucca 1:250,000-scale quadrangle described in great detail by Wagini (1985) and Sikora (1991). This detailed information includes gravity meters used, dates of collection, sources, descriptions of base stations, plots of data, and a list of principal facts. A digital version of the entire data set for the Battle Mountain quadrangle is available on the World Wide Web at: http://wrgis.wr.usgs.gov/docs/gump/gump.html

  9. Isostatic gravity map with simplified geology of the Los Angeles 30 x 60 minute quadrangle

    USGS Publications Warehouse

    Wooley, R.J.; Yerkes, R.F.; Langenheim, V.E.; Chuang, F.C.

    2003-01-01

    This isostatic residual gravity map is part of the Southern California Areal Mapping Project (SCAMP) and is intended to promote further understanding of the geology in the Los Angeles 30 x 60 minute quadrangle, California, by serving as a basis for geophysical interpretations and by supporting both geological mapping and topical (especially earthquake) studies. Local spatial variations in the Earth's gravity field (after various corrections for elevation, terrain, and deep crustal structure explained below) reflect the lateral variation in density in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic boundaries. The map shows contours of isostatic gravity overlain on a simplified geology including faults and rock types. The map is draped over shaded-relief topography to show landforms.

  10. Aeromagnetic Map with Geology of the Los Angeles 30 x 60 Minute Quadrangle, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Hildenbrand, T.G.; Jachens, R.C.; Campbell, R.H.; Yerkes, R.F.

    2006-01-01

    Introduction: An important objective of geologic mapping is to project surficial structures and stratigraphy into the subsurface. Geophysical data and analysis are useful tools for achieving this objective. This aeromagnetic anomaly map provides a three-dimensional perspective to the geologic mapping of the Los Angeles 30 by 60 minute quadrangle. Aeromagnetic maps show the distribution of magnetic rocks, primarily those containing magnetite (Blakely, 1995). In the Los Angeles quadrangle, the magnetic sources are Tertiary and Mesozoic igneous rocks and Precambrian crystalline rocks. Aeromagnetic anomalies mark abrupt spatial contrasts in magnetization that can be attributed to lithologic boundaries, perhaps caused by faulting of these rocks or by intrusive contacts. This aeromagnetic map overlain on geology, with information from wells and other geophysical data, provides constraints on the subsurface geology by allowing us to trace faults beneath surficial cover and estimate fault dip and offset. This map supersedes Langenheim and Jachens (1997) because of its digital form and the added value of overlaying the magnetic data on a geologic base. The geologic base for this map is from Yerkes and Campbell (2005); some of their subunits have been merged into one on this map.

  11. Preliminary surficial geologic map database of the Amboy 30 x 60 minute quadrangle, California

    USGS Publications Warehouse

    Bedford, David R.; Miller, David M.; Phelps, Geoffrey A.

    2006-01-01

    The surficial geologic map database of the Amboy 30x60 minute quadrangle presents characteristics of surficial materials for an area approximately 5,000 km2 in the eastern Mojave Desert of California. This map consists of new surficial mapping conducted between 2000 and 2005, as well as compilations of previous surficial mapping. Surficial geology units are mapped and described based on depositional process and age categories that reflect the mode of deposition, pedogenic effects occurring post-deposition, and, where appropriate, the lithologic nature of the material. The physical properties recorded in the database focus on those that drive hydrologic, biologic, and physical processes such as particle size distribution (PSD) and bulk density. This version of the database is distributed with point data representing locations of samples for both laboratory determined physical properties and semi-quantitative field-based information. Future publications will include the field and laboratory data as well as maps of distributed physical properties across the landscape tied to physical process models where appropriate. The database is distributed in three parts: documentation, spatial map-based data, and printable map graphics of the database. Documentation includes this file, which provides a discussion of the surficial geology and describes the format and content of the map data, a database 'readme' file, which describes the database contents, and FGDC metadata for the spatial map information. Spatial data are distributed as Arc/Info coverage in ESRI interchange (e00) format, or as tabular data in the form of DBF3-file (.DBF) file formats. Map graphics files are distributed as Postscript and Adobe Portable Document Format (PDF) files, and are appropriate for representing a view of the spatial database at the mapped scale.

  12. Database for the geologic map of the Bend 30- x 60-minute quadrangle, central Oregon

    USGS Publications Warehouse

    Koch, Richard D.; Ramsey, David W.; Sherrod, David R.; Taylor, Edward M.; Ferns, Mark L.; Scott, William E.; Conrey, Richard M.; Smith, Gary A.

    2010-01-01

    The Bend 30- x 60-minute quadrangle has been the locus of volcanism, faulting, and sedimentation for the past 35 million years. It encompasses parts of the Cascade Range and Blue Mountain geomorphic provinces, stretching from snowclad Quaternary stratovolcanoes on the west to bare rocky hills and sparsely forested juniper plains on the east. The Deschutes River and its large tributaries, the Metolius and Crooked Rivers, drain the area. Topographic relief ranges from 3,157 m (10,358 ft) at the top of South Sister to 590 m (1,940 ft) at the floor of the Deschutes and Crooked Rivers where they exit the area at the north-central edge of the map area. The map encompasses a part of rapidly growing Deschutes County. The city of Bend, which has over 70,000 people living in its urban growth boundary, lies at the south-central edge of the map. Redmond, Sisters, and a few smaller villages lie scattered along the major transportation routes of U.S. Highways 97 and 20. This geologic map depicts the geologic setting as a basis for structural and stratigraphic analysis of the Deschutes basin, a major hydrologic discharge area on the east flank of the Cascade Range. The map also provides a framework for studying potentially active faults of the Sisters fault zone, which trends northwest across the map area from Bend to beyond Sisters. This digital release contains all of the information used to produce the geologic map published as U.S. Geological Survey Geologic Investigations Series I-2683 (Sherrod and others, 2004). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains files to view or print the geologic map and accompanying descriptive pamphlet from I-2683.

  13. Preliminary isostatic residual gravity anomaly map of Paso Robles 30 x 60 minute quadrangle, California

    USGS Publications Warehouse

    McPhee, D.K.; Langenheim, V.E.; Watt, J.T.

    2011-01-01

    This isostatic residual gravity map is part of an effort to map the three-dimensional distribution of rocks in the central California Coast Ranges and will serve as a basis for modeling the shape of basins and for determining the location and geometry of faults within the Paso Robles quadrangle. Local spatial variations in the Earth\\'s gravity field, after accounting for variations caused by elevation, terrain, and deep crustal structure reflect the distribution of densities in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithological or structural boundaries. High-density rocks exposed within the central Coast Ranges include Mesozoic granitic rocks (exposed northwest of Paso Robles), Jurassic to Cretaceous marine strata of the Great Valley Sequence (exposed primarily northeast of the San Andreas fault), and Mesozoic sedimentary and volcanic rocks of the Franciscan Complex [exposed in the Santa Lucia Range and northeast of the San Andreas fault (SAF) near Parkfield, California]. Alluvial sediments and Tertiary sedimentary rocks are characterized by low densities; however, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of older basement rocks.

  14. Geology of the Moses Lake North quadrangle, Washington

    USGS Publications Warehouse

    Grolier, Maurice J.; Foxworthy, Bruce L.

    1961-01-01

    The geology of the Moses Lake North quadrangle was mapped in 1954 and 1958 by the U.S. Geological Survey. Some of the basic hydrologic data has been collected by the Geological Survey during the early investigations of ground-water conditions in the Quincy Basin (Henshaw, written communication, 1917; Schwennesen and Meinzer, 1918). Most of the data, however, were obtained by the Geological Survey since 1941, in cooperation with the U.S. Bureau of Reclamation and the Washington State Department of Conservation under continuing programs in the area of the Columbia Basin Project of the Bureau of Reclamation. Some preliminary geologic field work in the Moses Lake North quadrangle was done by the Geological Survey in 1954 in cooperation with the Washington State Department of Conservation.

  15. Geologic map of the Richland 1:100,000 quadrangle, Washington

    SciTech Connect

    Reidel, S.P.; Fecht, K.R.

    1993-09-01

    This map of the Richland 1:100,000-scale quadrangle, Washington, shows the geology of one of fifteen complete or partial 1:100,000-scale quadrangles that cover the southeast quadrant of Washington. Geologic maps of these quadrangles have been compiled by geologists with the Washington Division of Geology and Earth Resources (DGER) and Washington State University and are the principal data sources for a 1:250,000-scale geologic map of the southeast quadrant of Washington, which is in preparation. Eleven of these quadrangles are being released as DGER open-file reports. The map of the Wenatchee quadrangle has been published by the US Geological Survey, and the Moses Lake, Ritzville quadrangles have already been released.

  16. Geologic map of the Priest Rapids 1:100,000 quadrangle, Washington

    SciTech Connect

    Reidel, S.P.; Fecht, K.R.

    1993-09-01

    This map of the Priest Rapids 1:100,000-scale quadrangle, Washington, shows the geology of one of fifteen complete or partial 1:100,000-scale quadrangles that cover the southeast quadrant of Washington. Geologic maps of these quadrangles have been compiled by geologists with the Washington Division of Geology and Earth Resources (DGER) and Washington State University and are the principal data sources for a 1:250,000scale geologic map of the southeast quadrant of Washington, which is in preparation. Eleven of those quadrangles are being released as DGER open-file reports (listed below). The map of the Wenatchee quadrangle has been published by the US Geological Survey (Tabor and others, 1982), and the Moses Lake (Gulick, 1990a), Ritzville (Gulick, 1990b), and Rosalia (Waggoner, 1990) quadrangles have already been released. The geology of the Priest Rapids quadrangle has not previously been compiled at 1:100,000 scale. Furthermore, this is the first 1:100,000 or smaller scale geologic map of the area to incorporate both bedrock and surficial geology. This map was compiled in 1992, using published and unpublished geologic maps as sources of data.

  17. Digital geologic map of the Sandpoint 1- by 2-degree quadrangle, Washington, Idaho, and Montana

    USGS Publications Warehouse

    Miller, F.K.; Burmester, R.F.; Powell, R.E.; Miller, D.M.; Derkey, P.D.

    1999-01-01

    The geology of the Sandpoint 1:250,000 quadrangle, Washington, Idaho, and Montana was mapped by F.K. Miller, R.F. Burmester, D.M. Miller, and R.E. Powell between 1963 and 1995 onto a scale-stable 1:250,000 topographic map base and subsequently input into an Arc/Info geographic information system (GIS) by P.D. Derkey. The digital geologic map database can be queried in many ways to produce a variety of derivative geologic maps.

  18. Geologic Map of the Camas Quadrangle, Clark County, Washington, and Multnomah County, Oregon

    USGS Publications Warehouse

    Evarts, Russell C.; O'Connor, Jim E.

    2008-01-01

    The Camas 7.5' quadrangle is in southwestern Washington and northwestern Oregon approximately 20 km east of Portland. The map area, bisected by the Columbia River, lies on the eastern margin of the Portland Basin, which is part of the Puget-Willamette Lowland that separates the Cascade Range from the Oregon Coast Range. Since late Eocene time, the Cascade Range has been the locus of an episodically active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. Bedrock consists largely of basalt and basaltic andesite flows that erupted during late Oligocene time from one or more vents located outside the map area. These rocks crop out only north of the Columbia River: at the base of Prune Hill in Camas, where they dip southward at about 5?; and east of Lacamas Creek, where they dip to the southeast at 15 to 30?. The volcanic bedrock is unconformably overlain by Neogene sediments that accumulated as the Portland Basin subsided. In the Camas quadrangle, most of these sediments consist of basaltic hyaloclastic debris generated in the volcanic arc to the east and carried into the Portland Basin by the ancestral Columbia River. The dominant structures in the map area are northwest-striking dextral strike-slip faults that offset the Paleogene basin floor as well as the lower part of the basin fill. The Oligocene rocks at Prune Hill and to the east were uplifted in late Pliocene to early Pleistocene time within a restraining bend along one of these dextral faults. In Pleistocene time, basaltic andesite flows issued from a volcano centered on the west side of Prune Hill; another flow entered the map area from the east. These flows are part of the Boring volcanic field, which comprises several dozen late Pliocene and younger monogenetic volcanoes scattered throughout the greater Portland region. In latest Pleistocene time, the Missoula floods of glacial-outburst origin inundated the Portland

  19. Geologic Map of the Woodland Quadrangle, Clark and Cowlitz Counties, Washington

    USGS Publications Warehouse

    Evarts, Russell C.

    2004-01-01

    The Woodland 7.5' quadrangle is situated in the Puget-Willamette Lowland approximately 50 km north of Portland, Oregon (fig. 1). The lowland, which extends from Puget Sound into west-central Oregon, is a complex structural and topographic trough that lies between the Coast Range and the Cascade Range. Since late Eocene time, the Cascade Range has been the locus of an active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. The Coast Range occupies the forearc position within the Cascadia arc-trench system and consists of a complex assemblage of Eocene to Miocene volcanic and marine sedimentary rocks. The Woodland quadrangle lies at the northern edge of the Portland Basin, a roughly 2000-km2 topographic and structural depression that is the northernmost of several sediment-filled structural basins, which collectively constitute the Willamette Valley segment of the Puget-Willamette Lowland (Beeson and others, 1989; Swanson and others, 1993; Yeats and others, 1996). The Portland Basin is approximately 70 km long and 30 km wide; its long dimension is oriented northwest. Its northern boundary coincides, in part, with the lower Lewis River, which flows westward through the center of the quadrangle. The Lewis drains a large area in the southern Washington Cascade Range, including the southern flank of Mount St. Helens approximately 25 km upstream from the quadrangle, and joins the Columbia River about 6 km south of Woodland (fig. 1). Northwest of Woodland, the Columbia River exits the broad floodplain of the Portland Basin and flows northward through a relatively narrow bedrock valley at an elevation near sea level. The flanks of the Portland Basin consist of Eocene through Miocene volcanic and sedimentary rocks that rise to elevations exceeding 2000 ft (610 m). Seismic-reflection profiles (L.M. Liberty, written commun., 2003) and lithologic logs of water wells (Swanson and others

  20. Geologic Map of the Poverty Bay 7.5' quadrangle, King and Pierce counties, Washington

    USGS Publications Warehouse

    Booth, Derek B.; Waldron, H.H.; Troost, K.G.

    2004-01-01

    The Poverty Bay quadrangle lies near the center of the region?s intensively developing urban core. Less than 20 km north lies the city of Seattle; downtown Tacoma lies just southwest of the quadrangle. The map area expresses much of the tremendous range of Quaternary environments and deposits found throughout the central Puget Lowland. Much of the ground surface is mantled by a rolling surface of glacial till deposited during the last occupation of the Puget Lowland by a great continental ice sheet about 14,000 years ago. A complex sequence of older unconsolidated sediments extends far below sea level across most of the quadrangle, with no bedrock exposures at all.

  1. Lidar-revised geologic map of the Wildcat Lake 7.5' quadrangle, Kitsap and Mason Counties, Washington

    USGS Publications Warehouse

    Tabor, Rowland W.; Haugerud, Ralph A.; Haeussler, Peter J.; Clark, Kenneth P.

    2011-01-01

    This map is an interpretation of a 6-ft-resolution (2-m-resolution) lidar (light detection and ranging) digital elevation model combined with the geology depicted on the Geologic Map of the Wildcat Lake 7.5' quadrangle, Kitsap and Mason Counties, Washington (Haeussler and Clark, 2000). Haeussler and Clark described, interpreted, and located the geology on the 1:24,000-scale topographic map of the Wildcat Lake 7.5' quadrangle. This map, derived from 1951 aerial photographs, has 20-ft contours, nominal horizontal resolution of approximately 40 ft (12 m), and nominal mean vertical accuracy of approximately 10 ft (3 m). Similar to many geologic maps, much of the geology in the Haeussler and Clark (2000) map-especially the distribution of surficial deposits-was interpreted from landforms portrayed on the topographic map. In 2001, the Puget Sound lidar Consortium obtained a lidar-derived digital elevation model (DEM) for Kitsap Peninsula including all of the Wildcat Lake 7.5' quadrangle. This new DEM has a horizontal resolution of 6 ft (2 m) and a mean vertical accuracy of about 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM compared to topography constructed from air photo stereo models have much improved the interpretation of geology in this heavily vegetated landscape, especially the distribution and relative age of some surficial deposits. Many contacts of surficial deposits are adapted unmodified or slightly modified from Haugerud (2009).

  2. Lidar-revised geologic map of the Uncas 7.5' quadrangle, Clallam and Jefferson Counties, Washington

    USGS Publications Warehouse

    Tabor, Rowland W.; Haeussler, Peter J.; Haugerud, Ralph A.; Wells, Ray E.

    2011-01-01

    In 2000 and 2001, the Puget Sound Lidar Consortium obtained 1 pulse/m2 lidar data for about 65 percent of the Uncas 7.5' quadrangle. For a brief description of LIDAR (LIght Detection And Ranging) and this data acquisition program, see Haugerud and others (2003). This map combines geologic interpretation (mostly by Haugerud and Tabor) of the 6-ft (2-m) lidar-derived digital elevation model (DEM) with the geology depicted on the Preliminary Geologic Map of the Uncas 7.5' Quadrangle, Clallam and Jefferson Counties, Washington, by Peter J. Haeussler and others (1999). The Uncas quadrangle in the northeastern Olympic Peninsula covers the transition from the accreted terranes of the Olympic Mountains on the west to the Tertiary and Quaternary basin fills of the Puget Lowland to the east. Elevations in the map area range from sea level at Port Discovery to 4,116 ft (1,255 m) on the flank of the Olympic Mountains to the southwest. Previous geologic mapping within and marginal to the Uncas quadrangle includes reports by Cady and others (1972), Brown and others (1960), Tabor and Cady (1978a), Yount and Gower (1991), and Yount and others (1993). Paleontologic and stratigraphic investigations by University of Washington graduate students (Allison, 1959; Thoms, 1959; Sherman, 1960; Hamlin, 1962; Spencer, 1984) also encompass parts of the Uncas quadrangle. Haeussler and Wells mapped in February 1998, following preliminary mapping by Yount and Gower in 1976 and 1979. The description of surficial map units follows Yount and others (1993) and Booth and Waldron (2004). Bedrock map units are modified from Yount and Gower (1991) and Spencer (1984). We used the geologic time scale of Gradstein and others (2005). The Uncas quadrangle lies in the forearc of the Cascadia subduction zone, about 6.25 mi (10 km) east of the Cascadia accretionary complex exposed in the core of the Olympic Mountains (Tabor and Cady, 1978b). Underthrusting of the accretionary complex beneath the forearc

  3. Geologic map of the Wildcat Lake 7.5' quadrangle: Kitsap and Mason counties, Washington

    USGS Publications Warehouse

    Haeussler, Peter J.; Clark, Kenneth P.

    2000-01-01

    The Wildcat Lake quadrangle lies in the forearc of the Cascadia subduction zone, about 20-km east of the Cascadia accretionary complex exposed in the Olympic Mountains (Tabor and Cady, 1978),and about 100-km west of the axis of the Cascades volcanic arc. The quadrangle lies near the middle of the Puget Lowland, which typically has elevations less than 600 feet (183 m), but on Gold Mountain, in the center of the quadrangle, the elevation rises to 1761 feet (537 m). This anomalously high topography also provides a glimpse of the deeper crust beneath the Lowland. Exposed on Green and Gold Mountains are rocks related to the Coast Range basalt terrane. This terrane consists of Eocene submarine and subaerial tholeiitic basalt of the Crescent Formation, which probably accreted to the continental margin in Eocene time (Snavely and others, 1968). The Coast Range basalt terrane may have originated as an oceanic plateau or by oblique marginal rifting (Babcock and others, 1992), but its subsequent emplacement history is complex (Wells and others, 1984). In southern Oregon, onlapping strata constrain the suturing to have occured by 50 Ma; but on southern Vancouver Island where the terrane-bounding Leech River fault is exposed, Brandon and Vance (1992) concluded suturing to North America occurred in the broad interval between 42 and 24 Ma. After emplacement of the Coast Range basalt terrane, the Cascadia accretionary complex,exposed in the Olympic Mountains west of the quadrangle,developed by frontal accretion and underplating (e.g., Clowes and others, 1987). The Seattle basin, part of which lies to the north of Green Mountain, also began to develop in late Eocene time due to forced flexural subsidence along the Seattle fault zone (Johnson and others, 1994). Domal uplift of the accretionary complex beneath the Olympic Mountains occurred after approximately 18 million years ago (Brandon and others, 1998). Ice-sheet glaciation during Quaternary time reshaped the topography of the

  4. Isostatic gravity map of the Monterey 30 x 60 minute quadrangle and adjacent areas, California

    USGS Publications Warehouse

    Langenheim, V.E.; Stiles, S.R.; Jachens, R.C.

    2002-01-01

    The digital dataset consists of one file (monterey_100k.iso) containing 2,385 gravity stations. The file, monterey_100k.iso, contains the principal facts of the gravity stations, with one point coded per line. The format of the data is described below. Each gravity station has a station name, location (latitude and longitude, NAD27 projection), elevation, and an observed gravity reading. The data are on the IGSN71 datum and the reference ellipsoid is the Geodetic Reference System 1967 (GRS67). The free-air gravity anomalies were calculated using standard formulas (Telford and others, 1976). The Bouguer, curvature, and terrain corrections were applied to the free-air anomaly at each station to determine the complete Bouguer gravity anomalies at a reduction density of 2.67 g/cc. An isostatic correction was then applied to remove the long-wavelength effect of deep crustal and/or upper mantle masses that isostatically support regional topography.

  5. Geologic map of the Bend 30- x 60-minute quadrangle, central Oregon

    USGS Publications Warehouse

    Sherrod, David R.; Taylor, Edward M.; Ferns, Mark L.; Scott, William E.; Conrey, Richard M.; Smith, Gary A.

    2004-01-01

    This map presents the stratigraphic and structural setting of volcanic and sedimentary strata deposited during the past 35 million years across 4,430 km2 in central Oregon. Snowfall in the Cascade Range (west part of map area) recharges important aquifers in the Deschutes basin (central part of map). The area includes the majestic peaks of the Three Sisters volcanoes, where continued eruptions of basalt and rhyolite in the past 3,000 years indicate an ongoing volcanic hazard. The Sisters fault zone, with several potentially active faults, traverses the map from southeast to northwest.

  6. Geology of the Palo Alto 30 x 60 minute quadrangle, California: a digital database

    USGS Publications Warehouse

    Brabb, Earl E.; Graymer, R.W.; Jones, David Lawrence

    1998-01-01

    This map database represents the integration of previously published and unpublished maps by several workers (see Sources of Data index map on Sheet 2 and the corresponding table below) and new geologic mapping and field checking by the authors with the previously published geologic map of San Mateo County (Brabb and Pampeyan, 1983) and Santa Cruz County (Brabb, 1989, Brabb and others, 1997), and various sources in a small part of Santa Clara County. These new data are released in digital form to provide an opportunity for regional planners, local, state, and federal agencies, teachers, consultants, and others interested in geologic data to have the new data long before a traditional paper map is published. The new data include a new depiction of Quaternary units in the San Francisco Bay plain emphasizing depositional environment, important new observations between the San Andreas and Pilarcitos faults, and a new interpretation of structural and stratigraphic relationships of rock packages (Assemblages).

  7. Multiple 60-Minute Massages per Week Offer Relief for Chronic Neck Pain

    MedlinePlus

    ... X Y Z Multiple 60-Minute Massages per Week Offer Relief for Chronic Neck Pain Share: © Bob ... study found that multiple 60-minute massages per week were more effective than fewer or shorter sessions ...

  8. Availability of coal in the Hackett 7.5-minute quadrangle, Washington County, Pennsylvania

    SciTech Connect

    Lentz, L.J.; Neubaum, J.C.

    1996-09-01

    Coal has been extensively mined in Pennsylvania and elsewhere in the Appalachian Basin over the last 100 years. In an attempt to better define what coal is left, a new approach to quantifying resources, rooted in modern environmental and technological constraints, was needed. The Bureau of Topographic and Geologic Survey in cooperation with the United States Geological Survey, embarked in 1993 upon a series of six quadrangle studies for Pennsylvania to provide information about coal resources still accessible to mining. Using our data residing on the United States Geological Survey`s National Coal Resources Data System computer to compute resources for the Hackett 7.5-minute quadrangle, the available coal for the four principally mined seams in the area (the Pittsburgh, Redstone, Waynesburg, and Waynesburg A coals) could be determined by subtracting out mined-out areas from in-place coal to give remaining coal, and then subtracting land-use and technological restrictions to mining, such as wetlands, and subsidence waivers, respectively, from the remaining coal. Results of the study found that the amount of coal available for mining varied from 26 to 70 percent. it is felt by the authors that this quadrangle is typical of the mature nature of this mining region for this part of the geologic section, and that similar results might be expected for the other quadrangles to be studied in southwestern Pennsylvania.

  9. Bedrock geologic map of the Montpelier and Barre West quadrangles, Washington and Orange Counties, Vermont

    USGS Publications Warehouse

    Walsh, Gregory J.; Kim, Jonathan; Gale, Marjorie H.; King, Sarah M.

    2010-01-01

    The bedrock geology of the Montpelier and Barre West quadrangles consists of Silurian and Devonian metasedimentary rocks of the Connecticut Valley-Gaspe synclinorium (CVGS) and metasedimentary, metavolcanic, and metaintrusive rocks of the Cambrian and Ordovician Moretown and Cram Hill Formations. Devonian granite dikes occur throughout the two quadrangles but are more abundant in the Silurian and Devonian rocks. The pre-Silurian rocks are separated from the rocks of the CVGS by the informally named 'Richardson Memorial Contact,' historically interpreted as either an unconformity or a fault. The results of this report represent mapping by G.J. Walsh, Jonathan Kim, and M.H. Gale from 2002 to 2005. S.M. King assisted Kim and Gale from 2002 to 2003. A.M. Satkoski (Indiana University) assisted Walsh, and L.R. Pascale (University of Vermont) and C.M. Orsi (Middlebury College) assisted Kim and Gale as summer interns in 2003. This study was designed to map the bedrock geology in the area. This map supersedes a preliminary map of the Montpelier quadrangle (Kim, Gale, and others, 2003). A companion study in the Barre West quadrangle (Walsh and Satkoski, 2005) determined the levels of naturally occurring radioactivity in the bedrock from surface measurements at outcrops during the course of 1:24,000-scale geologic mapping to identify which rock types were potential sources of radionuclides. Results of that study indicate that the carbonaceous phyllites in the CVGS have the highest levels of natural radioactivity.

  10. Geologic map of the Battle Ground 7.5-minute quadrangle, Clark County, Washington

    USGS Publications Warehouse

    Howard, Keith A.

    2002-01-01

    This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits of the Battle Ground 7.5 minute quadrangle. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:24,000 or smaller.

  11. Airborne gamma-ray spectrometer and magnetometer survey, Copalis Beach quadrangle (Washington). Final report

    SciTech Connect

    Not Available

    1981-01-01

    No uranium anomalies meet the minimum statistical requirements as defined. There is no Uranium Anomaly Interpretation Map for the Copalis Beach quadrangle. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (ppM eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented in Appendix E. Stacked Profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented in Appendix F. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation.

  12. Lidar-revised geologic map of the Olalla 7.5' quadrangle, King, Kitsap, and Pierce Counties, Washington

    USGS Publications Warehouse

    Tabor, Rowland W.; Haugerud, Ralph A.; Booth, Derek B.; Troost, Kathy Goetz

    2013-01-01

    The Olalla 7.5' quadrangle, which lies almost in the center of the Puget Lowland, displays the broad range of geologic environments typical of the region. The upland plain is fluted by the passage of the great continental ice sheet that last covered the area about 17,000 (14,000 radiocarbon) years ago. The plain is cut by channel deposits, both late glacial and postglacial in age, and it is cleaved even more deeply by one of the major arms of Puget Sound, Colvos Passage, which here separates the west coast of Vashon Island from the Kitsap Peninsula. Beneath the deposits of the last ice sheet is a complex sequence of older Quaternary-age sediments that extends about 400 m below the modern ground surface. These older sediments are best exposed along the shorelines and beach cliffs of Puget Sound, where wave action and landslides maintain relatively fresh exposures. The older sediments typically are compact, having been loaded by ice during one or more episodes of glaciation subsequent to their deposition. Locally these sediments are also cemented by iron and manganese oxides and hydroxides, a consequence of many tens or hundreds of thousands of years of weathering and groundwater movement. Our map is an interpretation of a 6-ft resolution lidar-derived digital elevation model combined with the geology depicted on the "Geologic map of the Olalla 7.5' quadrangle, King, Kitsap, and Pierce Counties, Washington," by Booth and Troost (2005), which was described, interpreted, and located on the 1953 1:24,000-scale topographic map of the Olalla 7.5-minute quadrangle. The original topographic base map, derived from 1951 aerial photographs, has 20-ft contours, nominal horizontal resolution of circa 40 ft (12 m), and nominal mean vertical accuracy of circa 13 ft (4 m). This new DEM has a horizontal resolution of 6 ft (2 m) and mean vertical accuracy circa 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM facilitated a much-improved interpretation of many

  13. Geologic Map of Northeastern Seattle (Part of the Seattle North 7.5' x 15' Quadrangle), King County, Washington

    USGS Publications Warehouse

    Booth, Derek B.; Troost, Kathy Goetz; Shimel, Scott A.

    2009-01-01

    This geologic map, approximately coincident with the east half of the Seattle North 7.5 x 15' quadrangle (herein, informally called the 'Seattle NE map'), covers nearly half of the City of Seattle and reaches from Lake Washington across to the Puget Sound shoreline. Land uses are mainly residential, but extensive commercial districts are located in the Northgate neighborhood, adjacent to the University of Washington, and along the corridors of Aurora Avenue North and Lake City Way. Industrial activity is concentrated along the Lake Washington Ship Canal and around Lake Union. One small piece of land outside of the quadrangle boundaries, at the west edge of the Bellevue North quadrangle, is included on this map for geographic continuity. Conversely, a small area in the northeast corner of the Seattle North quadrangle, on the eastside of Lake Washington, is excluded from this map. Within the boundaries of the map area are two large urban lakes, including the most heavily visited park in the State of Washington (Green Lake Park); a stream (Thornton Creek) that still hosts anadromous salmon despite having its headwaters in a golfcourse and a shopping center; parts of three cities, with a combined residential population of about 300,000 people; and the region's premier research institution, the University of Washington. The north boundary of the map is roughly NE 168th Street in the cities of Shoreline and Lake Forest Park, and the south boundary corresponds to Mercer Street in Seattle. The west boundary is 15th Avenue W (and NW), and the east boundary is formed by Lake Washington. Elevations range from sea level to a maximum of 165 m (541 ft), the latter on a broad till-covered knob in the city of Shoreline near the northwest corner of the map. Previous geologic maps of this area include those of Waldron and others (1962), Galster and Laprade (1991), and Yount and others (1993). Seattle lies within the Puget Lowland, an elongate structural and topographic basin between

  14. Intrusive rocks of the Holden and Lucerne quadrangles, Washington; the relation of depth zones, composition, textures, and emplacement of plutons

    USGS Publications Warehouse

    Cater, Fred W.

    1982-01-01

    The core of the northern Cascade Range in Washington consists of Precambrian and upper Paleozoic metamorphic rocks cut by numerous plutons, ranging in age from early Triassic to Miocene. The older plutons have been eroded to catazonal depths, whereas subvolcanic rocks are exposed in the youngest plutons. The Holden and Lucerne quadrangles span a -sizeable and representative part of this core. The oldest of the formations mapped in these quadrangles is the Swakane Biotite Gneiss, which was shown on the quadrangle maps as Cretaceous and older in age. The Swakane has yielded a middle Paleozoic metamorphic age, and also contains evidence of zircon inherited from some parent material more than 1,650 m.y. old. In this report, the Swakane is assigned an early Paleozoic or older age. It consists mostly of biotite gneiss, but interlayered with it are scattered layers and lenses of hornblende schist and gneiss, clinozoisite-epidote gneiss, and quartzite. Thickness of the Swakane is many thousands of meters, and the base is not exposed. The biotite gneiss is probably derived from a pile of siliceous volcanic rocks containing scattered sedimentary beds and basalt flows. Overlying the Swakane is a thick sequence of eugeosynclinal upper Paleozoic rocks metamorphosed to amphibolite grade. The sequence includes quartzite and thin layers of marble, hornblende schist and gneiss, graphitic schist, and smaller amounts of schist and gneiss of widely varying compositions. The layers have been tightly and complexly folded, and, in places, probably had been thrust over the overlying Swakane prior to metamorphism. Youngest of the supracrustal rocks in the area are shale, arkosic sandstone, and conglomerate of the Paleocene Swauk Formation. These rocks are preserved in the Chiwaukum graben, a major structural element of the region. Of uncertain age, but possibly as old as any of the intrusive rocks in the area, are small masses of ultramafic rocks, now almost completely altered to

  15. "60 Minutes" as Pseudo-Event: The Social Deflection of Reality.

    ERIC Educational Resources Information Center

    Bryski, Bruce G.

    The formal and substantive traits of the television program, "60 Minutes" reflect characteristics manifest in Daniel Boorstin's conception of the "pseudo-event." Through both the verbal and visual imagery presented in the context of a narrative format, this television news magazine illustrates the significance of mass media artifacts as…

  16. Digital data for preliminary geologic map of the Mount Hood 30- by 60-minute quadrangle, northern Cascade Range, Oregon

    USGS Publications Warehouse

    Lina Ma; Sherrod, David R.; Scott, William E.

    2014-01-01

    This geodatabase contains information derived from legacy mapping that was published in 1995 as U.S. Geological Survey Open-File Report 95-219. The main component of this publication is a geologic map database prepared using geographic information system (GIS) applications. Included are pdf files to view or print the map sheet, the accompanying pamphlet from Open-File Report 95-219, and links to the original publication, which is available as scanned files in pdf format.

  17. Lidar-revised geologic map of the Poverty Bay 7.5' quadrangle, King and Pierce Counties, Washington

    USGS Publications Warehouse

    Tabor, Rowland W.; Booth, Derek B.; Troost, Kathy Goetz

    2014-01-01

    In 2003, the Puget Sound Lidar Consortium obtained a lidar-derived digital elevation model (DEM) for the Puget Sound region including all of the Poverty Bay 7.5' quadrangle. For a brief description of lidar (LIght Detection And Ranging) and this data acquisition program, see Haugerud and others (2003). This new DEM has a horizontal resolution and accuracy of 6 ft (2 m) and vertical accuracy of approximately 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM have facilitated a new interpretation of the geology, especially the distribution and relative age of some surficial deposits.

  18. Digital Geologic Map of the Rosalia 1:100,000 Quadrangle, Washington and Idaho: A Digital Database for the 1990 S.Z. Waggoner Map

    USGS Publications Warehouse

    Derkey, Pamela D.; Johnson, Bruce R.; Lackaff, Beatrice B.; Derkey, Robert E.

    1998-01-01

    The geologic map of the Rosalia 1:100,000-scale quadrangle was compiled in 1990 by S.Z. Waggoner of the Washington state Division of Geology and Earth Resources. This data was entered into a geographic information system (GIS) as part of a larger effort to create regional digital geology for the Pacific Northwest. The intent was to provide a digital geospatial database for a previously published black and white paper geologic map. This database can be queried in many ways to produce a variety of geologic maps. Digital base map data files are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000) as it has been somewhat generalized to fit the 1:100,000 scale map. The map area is located in eastern Washington and extends across the state border into western Idaho. This open-file report describes the methods used to convert the geologic map data into a digital format, documents the file structures, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. We wish to thank J. Eric Schuster of the Washington Division of Geology and Earth Resources for providing the original stable-base mylar and the funding for it to be scanned. We also thank Dick Blank and Barry Moring of the U.S. Geological Survey for reviewing the manuscript and digital files, respectively.

  19. Map showing depth to bedrock of the Tacoma and part of the Centralia 30' x 60' quadrangles, Washington

    USGS Publications Warehouse

    Buchanan-Banks, Jane M.; Collins, Donley S.

    1994-01-01

    The heavily populated Puget Sound region in the State of Washington has experienced moderate to large earthquakes in the recent past (Nuttli, 1952; Mullineaux and others, 1967). Maps showing thickness of unconsolidated sedimentary deposits are useful aids in delineating areas where damage to engineered structures can result from increased shaking resulting from these earthquakes. Basins containing thick deposits of unconsolidated materials can amplify earthquakes waves and cause far more damage to structures than the same waves passing through bedrock (Singh and others, 1988; Algermissen and others, 1985). Configurations of deep sedimentary basins can also cause reflection and magnification of earthquake waves in ways still not fully understood and presently under investigation (Frankel and Vidale, 1992).

  20. Geology of the Cape Mendocino, Eureka, Garberville, and Southwestern Part of the Hayfork 30 x 60 Minute Quadrangles and Adjacent Offshore Area, Northern California

    USGS Publications Warehouse

    McLaughlin, Robert J.; Ellen, S.D.; Blake, M.C., Jr.; Jayko, Angela S.; Irwin, W.P.; Aalto, K.R.; Carver, G.A.; Clarke, S.H., Jr.; Barnes, J.B.; Cecil, J.D.; Cyr, K.A.

    2000-01-01

    Introduction These geologic maps and accompanying structure sections depict the geology and structure of much of northwestern California and the adjacent continental margin. The map area includes the Mendocino triple junction, which is the juncture of the North American continental plate with two plates of the Pacific ocean basin. The map area also encompasses major geographic and geologic provinces of northwestern California. The maps incorporate much previously unpublished geologic mapping done between 1980 and 1995, as well as published mapping done between about 1950 and 1978. To construct structure sections to mid-crustal depths, we integrate the surface geology with interpretations of crustal structure based on seismicity, gravity and aeromagnetic data, offshore structure, and seismic reflection and refraction data. In addition to describing major geologic and structural features of northwestern California, the geologic maps have the potential to address a number of societally relevant issues, including hazards from earthquakes, landslides, and floods and problems related to timber harvest, wildlife habitat, and changing land use. All of these topics will continue to be of interest in the region, as changing land uses and population density interact with natural conditions. In these interactions, it is critical that the policies and practices affecting man and the environment integrate an adequate understanding of the geology. This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (ceghmf.ps, ceghmf.pdf, ceghmf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:100,000 or smaller.

  1. Emergy in 60 Minutes

    EPA Science Inventory

    This web presentation answers basic questions about the relatively new scientific concept, emergy. It dispels some of the confusion surrounding this idea in a PowerPoint presentation. The presentation is written in common language and uses straightforward examples. Emergy indic...

  2. Geologic map and digital database of the Apache Canyon 7.5' quadrangle, Ventura and Kern counties, California

    USGS Publications Warehouse

    Stone, Paul; Cossette, P.M.

    2000-01-01

    The Apache Canyon 7.5-minute quadrangle is located in southwestern California about 55 km northeast of Santa Barbara and 65 km southwest of Bakersfield. This report presents the results of a geologic mapping investigation of the Apache Canyon quadrangle that was carried out in 1997-1999 as part of the U.S. Geological Survey's Southern California Areal Mapping Project. This quadrangle was chosen for study because it is in an area of complex, incompletely understood Cenozoic stratigraphy and structure of potential importance for regional tectonic interpretations, particularly those involving the San Andreas fault located just northwest of the quadrangle and the Big Pine fault about 10 km to the south. In addition, the quadrangle is notable for its well-exposed sequences of folded Neogene nonmarine strata including the Caliente Formation of Miocene age from which previous workers have collected and described several biostratigraphically significant land-mammal fossil assemblages. During the present study, these strata were mapped in detail throughout the quadrangle to provide an improved framework for possible future paleontologic investigations. The Apache Canyon quadrangle is in the eastern part of the Cuyama 30-minute by 60-minute quadrangle and is largely part of an erosionally dissected terrain known as the Cuyama badlands at the east end of Cuyama Valley. Most of the Apache Canyon quadrangle consists of public lands in the Los Padres National Forest.

  3. Prehospital 12-Lead Electrocardiogram within 60 Minutes Differentiates Proximal versus Nonproximal Left Anterior Descending Artery Myocardial Infarction

    PubMed Central

    Aertker, Robert A; Barker, Colin M; Anderson, H. Vernon; Denktas, Ali E; Giesler, Gregory M; Julapalli, Vinay R; Ledoux, John F; Persse, David E; Sdringola, Stefano; Vooletich, Mary T; McCarthy, James J; Smalling, Richard W

    2011-01-01

    Introduction Acute anterior myocardial infarctions caused by proximal left anterior descending (LAD) artery occlusions are associated with a higher morbidity and mortality. Early identification of high-risk patients via the 12-lead electrocardiogram (ECG) could assist physicians and emergency response teams in providing early and aggressive care for patients with anterior ST-elevation myocardial infarctions (STEMI). Approximately 25% of US hospitals have primary percutaneous coronary intervention (PCI) capability for the treatment of acute myocardial infarctions. Given the paucity of hospitals capable of PCI, early identification of more severe myocardial infarction may prompt emergency medical service routing of these patients to PCI-capable hospitals. We sought to determine if the 12 lead ECG is capable of predicting proximal LAD artery occlusions. Methods In a retrospective, post-hoc analysis of the Pre-Hospital Administration of Thrombolytic Therapy with Urgent Culprit Artery Revascularization pilot trial, we compared the ECG findings of proximal and nonproximal LAD occlusions for patients who had undergone an ECG within 180 minutes of symptom onset. Results In this study, 72 patients had anterior STEMIs, with ECGs performed within 180 minutes of symptom onset. In patients who had undergone ECGs within 60 minutes (n = 35), the mean sum of ST elevation (STE) in leads V1 through V6 plus ST depression (STD) in leads II, III, and aVF was 19.2 mm for proximal LAD occlusions and 11.7 mm for nonproximal LAD occlusions (P = 0.007). A sum STE in V1 through V6 plus STD in II, III, and aVF of at least 17.5 mm had a sensitivity of 52.3%, specificity of 92.9%, positive predictive value of 91.7%, and negative predictive value of 56.5% for proximal LAD occlusions. When the ECG was performed more than 60 minutes after symptom onset (n = 37), there was no significant difference in ST-segment deviation between the 2 groups. Conclusion The sum STE (V1-V6) and STD (II, III, a

  4. Geologic map of the east half of the Bellevue South 7.5' x 15' quadrangle, Issaquah area, King County, Washington

    USGS Publications Warehouse

    Booth, Derek B.; Walsh, Timothy J.; Goetz-Troost, Kathy; Shimel, Scott A.

    2012-01-01

    The Issaquah area includes several of the most outstanding geologic features of the eastern Puget Lowland region. Folds have warped thousands of meters of Tertiary sedimentary and volcanic rocks. Several hundred meters of both glacial and postglacial sediment have accumulated in a deep glacial trough, which is now partly occupied by Lake Sammamish but which was previously the conduit for massive volumes of meltwater during ice-sheet occupation and retreat. The eastern projection of an east-west-oriented crustal structure, which reflects Tertiary through Holocene fault displacement, extends across the eastern part of the map area. In addition to these geologic features, some of the most rapid human alteration of the landscape in the entire Puget Lowland has occurred here. Since the 19th century, coal was extensively mined and, since the early 1980s, the region has been overtaken by urbanization. In places, this alteration has dramatically accelerated the rate of geomorphic processes. For example, the hillsides have been regraded as a result of mining and quarries throughout the southern one-third of the quadrangle; stream channels have recently incised above the eastern shores of Lake Sammamish; and sediments have deposited on the lakeshore and into the lake itself.

  5. The Golden Hour and Acute Brain Ischemia: Presenting Features and Lytic Therapy in Over 30,000 Patients Arriving Within 60 Minutes of Onset

    PubMed Central

    Saver, Jeffrey L.; Smith, Eric E.; Fonarow, Gregg C.; Reeves, Mathew J.; Zhao, Xin; Olson, DaiWai M.; Schwamm, Lee H

    2010-01-01

    Background The benefit of intravenous thrombolytic therapy in acute brain ischemia is strongly time dependent. Methods The Get with the Guidelines-Stroke (GWTG-Stroke) database was analyzed to characterize ischemic stroke patients arriving to hospital Emergency Departments (EDs) within 60 minutes of last known well time from 4/1/2003-12/30/2007. Results During the 4.75 year study period, among 253,148 ischemic stroke patients arriving directly by ambulance or private vehicle to 905 hospital EDs, 106,924 (42.2%) had documented exact last known well times. Onset to door time was ≤ 60 minutes in 30,220 (28.3%), 61-180 minutes in 33,858 (31.7%), and >180 minutes in 42,846 (40.1%). Features most strongly distinguishing ≤ 60, 61-180, and > 180 minutes arriving patients were: greater stroke severity (median NIHSS 8.0 vs 6.0 vs 4.0, p <.0001) and more frequent arrival by ambulance (79.0%. vs 72.2% vs 55.0%, p <.0001). Compared with 61-180 minute arrivers, golden hour patients received IV thrombolytic therapy more frequently (27.1% vs 12.9%, OR 2.51, 95% CI 2.41-2.61, p <.0001), but door to needle time (DTN) was longer (mean 90.6 vs 76.7 minutes, p <.0001). DTN ≤ 60 minutes was achieved in 18.3% of golden hour patients. Conclusions At GWTG-Stroke hospital EDs, more than one quarter of patients with documented onset time, and at least one eighth of all ischemic stroke patients, arrive within 1 hour of onset, where they receive thrombolytic therapy more frequently but more slowly than late arrivers. These findings support public health initiates to increase early presentation and shorten door to needle times in patients arriving within the “golden hour.” PMID:20522809

  6. Isostatic Gravity Map with Geology of the Santa Ana 30' x 60' Quadrangle, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Lee, Tien-Chang; Biehler, Shawn; Jachens, R.C.; Morton, D.M.

    2006-01-01

    This report presents an updated isostatic gravity map, with an accompanying discussion of the geologic significance of gravity anomalies in the Santa Ana 30 by 60 minute quadrangle, southern California. Comparison and analysis of the gravity field with mapped geology indicates the configuration of structures bounding the Los Angeles Basin, geometry of basins developed within the Elsinore and San Jacinto Fault zones, and a probable Pliocene drainage network carved into the bedrock of the Perris block. Total cumulative horizontal displacement on the Elsinore Fault derived from analysis of the length of strike-slip basins within the fault zone is about 5-12 km and is consistent with previously published estimates derived from other sources of information. This report also presents a map of density variations within pre-Cenozoic metamorphic and igneous basement rocks. Analysis of basement gravity patterns across the Elsinore Fault zone suggests 6-10 km of right-lateral displacement. A high-amplitude basement gravity high is present over the San Joaquin Hills and is most likely caused by Peninsular Ranges gabbro and/or Tertiary mafic intrusion. A major basement gravity gradient coincides with the San Jacinto Fault zone and marked magnetic, seismic-velocity, and isotopic gradients that reflect a discontinuity within the Peninsular Ranges batholith in the northeast corner of the quadrangle.

  7. Geologic Map of the Craters of the Moon 30' x 60' Quadrangle, Idaho

    USGS Publications Warehouse

    Kuntz, Mel A.; Skipp, Betty; Champion, Duane E.; Gans, Philip B.; VanSistine, D. Paco; Snyders, Scott R.

    2007-01-01

    The Craters of the Moon 30 x 60 minute quadrangle shows the geology of the northern two-thirds of the Craters of the Moon (COM) lava field and volcanic structures of the northern and central parts of the Great Rift volcanic rift zone. The COM lava field is the largest, predominantly Holocene lava field in the conterminous United States. The northwest corner of the map shows older sedimentary, intrusive, and volcanic rocks that range in age from Ordovician to Miocene. These rocks provide evidence of compressional fold and thrust events of the Antler and Sevier orogenies. Compression was followed by voluminous volcanism represented by the Challis Volcanic Group. Basin-and-Range faulting followed in Neogene time. The COM lava field covers about 1,600 square kilometers and contains about 30 cubic kilometers of lava flows and associated vent deposits. Stratigraphic relationships, paleomagnetic studies, and radiocarbon ages indicate that the field formed during eight eruptive periods designated as H, the oldest, to A, the youngest. Each eruptive period was several hundred years or less in duration and separated from other eruptive periods by non-eruptive recurrence intervals of several hundred to about 3,000 years. The first eruptive period began about 15,000 carbon-14 years ago and the latest one ended about 2,100 carbon-14 years ago. All available field, paleomagnetic, radiocarbon, and argon-40/argon-39 data are incorporated in this map and they quantitatively refine the volcanic and paleomagnetic history of the pre-Holocene lava fields and the COM lava field. In a sense, these data determine the 'pulse rate' for Pleistocene and Holocene basaltic volcanism in the area of this map. Twenty-three new argon-40/argon-39 geochronologic data reveal a fairly complete and continuous record of basaltic volcanism in the Craters of the Moon 30 x 60 minute quadrangle for the last 500 ka. The ages cluster into age groupings at ~30 ka, 50-70 ka, 100-125 ka, 260-290 ka, 320-340 ka

  8. Geologic map of the Hood River Quadrangle, Washington and Oregon

    SciTech Connect

    Korosec, M.A.

    1987-01-01

    The report is comprised of a 1:100,000 scale geologic map and accompanying text. The text consists of unit descriptions, a table of age dates, a table of major element geochemistry, correlation diagram, and a source of mapping diagram. (ACR)

  9. Geologic map of the Mount Adams Quadrangle, Washington

    SciTech Connect

    Korosec, M.A.

    1987-01-01

    This report is comprised of a 1:100,000 scale geologic map and accompanying text. The text consists of unit descriptions, a table of age dates, a table of major element geochemistry, correlation diagram, and a source of mapping diagram. (ACR)

  10. Mercury: Photomosaic of the Michelangelo Quadrangle H-12

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Michelangelo Quadrangle, which lies in Mercury's southern polar region, was named in memory of the famous Italian artist. The Mercurian surface is heavily marred by numerous impact craters. Ejecta deposits, seen as bright lines or rays, radiate outward from the point of impact, along the planet's surface indicating the source craters are young topographical features. The rays found on Mercury are similar to ones found on the surface of Earth's moon.

    Several large lobate scarps, steep and long escarpments which usually show a largely lobate outline on a scale of a few to tens of kilometers, are clearly visible in the lower left side of the image slicing through a variety of terrains including several large impact craters.

    The Image Processing Lab at NASA's Jet Propulsion Laboratory produced this photomosaic using computer software and techniques developed for use in processing planetary data. The images used to construct the Michelangelo Quadrangle were taken during Mariner 10's second flyby of Mercury.

    The Mariner 10 spacecraft was launched in 1974. The spacecraft took images of Venus in February 1974 on the way to three encounters with Mercury in March and September 1974 and March 1975. The spacecraft took more than 7,000 images of Mercury, Venus, the Earth and the Moon during its mission.

    The Mariner 10 Mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science in Washington, D.C.

  11. Alaska Resource Data File, Noatak Quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.; Dumoulin, Julie A.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Noatak 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  12. The R18 Polyarginine Peptide Is More Effective Than the TAT-NR2B9c (NA-1) Peptide When Administered 60 Minutes after Permanent Middle Cerebral Artery Occlusion in the Rat

    PubMed Central

    Milani, D.; Knuckey, N. W.; Anderton, R. S.; Cross, J. L.; Meloni, B. P.

    2016-01-01

    We examined the dose responsiveness of polyarginine R18 (100, 300, and 1000 nmol/kg) when administered 60 minutes after permanent middle cerebral artery occlusion (MCAO). The TAT-NR2B9c peptide, which is known to be neuroprotective in rodent and nonhuman primate stroke models, served as a positive control. At 24 hours after MCAO, there was reduced total infarct volume in R18 treated animals at all doses, but this reduction only reached statistical significance at doses of 100 and 1000 nmol/kg. The TAT-NR2B9c peptide reduced infarct volume at doses of 300 and 1000 nmol/kg, but not to a statistically significant extent, while the 100 nmol/kg dose was ineffective. The reduction in infarct volume with R18 and TAT-NR2B9c peptide treatments was mirrored by improvements in one or more functional outcomes (namely, neurological score, adhesive tape removal, and rota-rod), but not to a statistically significant extent. These findings further confirm the neuroprotective properties of polyarginine peptides and for R18 extend its therapeutic time window and dose range, as well as demonstrating its greater efficacy compared to TAT-NR2B9c in a severe stroke model. The superior neuroprotective efficacy of R18 over TAT-NR2B9c highlights the potential of this polyarginine peptide as a lead candidate for studies in human stroke. PMID:27247825

  13. FACILITY 846, TOILET AND SHOWER WINGS, QUADRANGLE J, OBLIQUE VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 846, TOILET AND SHOWER WINGS, QUADRANGLE J, OBLIQUE VIEW FACING WEST. - Schofield Barracks Military Reservation, Quadrangles I & J Barracks Type, Between Wright-Smith & Capron Avenues near Williston Avenue, Wahiawa, Honolulu County, HI

  14. Washington Correlator

    NASA Technical Reports Server (NTRS)

    Hall, David M.; Boboltz, David

    2013-01-01

    This report summarizes the activities of the Washington Correlator for 2012. The Washington Correlator provides up to 80 hours of attended processing per week plus up to 40 hours of unattended operation, primarily supporting Earth Orientation and astrometric observations. In 2012, the major programs supported include the IVS-R4, IVS-INT, APSG, and CRF observing sessions.

  15. Geologic Map of the Estes Park 30' x 60' Quadrangle, North-Central Colorado

    USGS Publications Warehouse

    Cole, James C.; Braddock, William A.

    2009-01-01

    The rocks and landforms of the Estes Park 30 x 60 minute quadrangle display an exceptionally complete record of geologic history in the northern Front Range of Colorado. The Proterozoic basement rocks exposed in the core of the range preserve evidence of Paleoproterozoic marine sedimentation, volcanism, and regional soft-sediment deformation, followed by regional folding and gradational metamorphism. The metasedimentary rocks of the Estes Park quadrangle are distinct within northern Colorado for preserving the complete metamorphic zonation from low-grade chlorite-muscovite phyllites, through middle greenschist-grade rocks with sequential aluminous porphyroblasts, to partially melted gneisses that contain high-grade cordierite and garnet in the non-melted residues. Regional and textural evidence shows that the widespread metamorphism was essentially concurrent with intrusion of the Boulder Creek Granodiorite and related magmas and with the peak of deformation in the partially melted high-grade rocks. The metamorphic thermal pulse arrived later following the peak of deformation in the physically higher, cooler, low-grade terrane. Mesoproterozoic time was marked by intrusion of biotite granite in the Longs Peak-St Vrain batholith, a complex, irregular body that occupies nearly half of the core of the Front Range in this quadrangle. The magma was dry and viscous as it invaded the metamorphic rocks and caused wholesale plastic folding of the wall rock structure. Steep metamorphic foliation that resulted from the Paleoproterozoic deformations was bowed upward and re-oriented into flat-lying attitudes as the crystal-rich magma rose buoyantly and spread out in the middle crust. Magma invaded the schists and gneisses along weak foliation planes and produced a characteristic sill-upon-sill intrusive fabric, particularly in the higher parts of the batholith. Broad, open arches and swales that are defined by the flow-aligned feldspar foliation of the granite, as well as by

  16. National uranium resource evaluation, Marble Canyon Quadrangle, Arizona and Utah

    SciTech Connect

    Field, M T; Blauvelt, R P

    1982-05-01

    The Marble Canyon Quadrangle (2/sup 0/), northeast Arizona, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Known mines and prospects were examined; field reconnaissance was done in selected areas of the quadrangle; and a ground-water geochemical survey was made in the southeast third of the quadrangle. The Shinarump and Petrified Forest Members of the Triassic Chinle Formation, which is exposed in the western and northeastern parts of the quadrangle and is present beneath the surface of much of the quadrangle, were found favorable for channel-sandstone uranium deposits. A portion of the Cretaceous Toreva Formation in the southeast part of the quadrangle was found favorable for peneconcordant-sandstone uranium deposits. The western part of the quadrangle was found favorable for uranium concentrations in breccia pipes.

  17. Geologic Map of the Frederick 30' x 60' Quadrangle, Maryland, Virginia, and West Virginia

    USGS Publications Warehouse

    Southworth, Scott; Brezinski, David K.; Drake, Avery Ala, Jr.; Burton, William C.; Orndorff, Randall C.; Froelich, Albert J.; Reddy, James E.; Denenny, Danielle; Daniels, David L.

    2007-01-01

    The Frederick 30? ? 60? quadrangle lies within the Potomac River watershed of the Chesapeake Bay drainage basin. The map area covers parts of Montgomery, Howard, Carroll, Frederick, and Washington Counties in Maryland; Loudoun, Clarke, and Fairfax Counties in Virginia; and Jefferson and Berkeley Counties in West Virginia. Many geologic features (such as faults and folds) are named for geographic features that may or may not be shown on the 1:100,000-scale base map. The geology of the Frederick 30? ? 60? quadrangle, Maryland, Virginia, and West Virginia, was first mapped on the 32 1:24,000-scale 7.5-minute quadrangle base maps between 1989 and 1994. The geologic data were compiled manually at 1:100,000 scale in 1997 and were digitized between 1998 and 1999. The geologic map and database may be used to support activities such as land-use planning, soil mapping, groundwater availability and quality studies, identifying aggregate resources, and conducting engineering and environmental studies. The map area covers distinct geologic provinces and sections of the central Appalachian region that are defined by unique bedrock and resulting landforms. From west to east, the provinces include the Great Valley section of the Valley and Ridge province, the Blue Ridge province, and the Piedmont province; in the extreme southeastern corner, a small part of the Coastal Plain province is present. The Piedmont province is divided into several sections; from west to east, hey are the Frederick Valley synclinorium, the Culpeper and Gettysburg basins, the Sugarloaf Mountain anticlinorium, the Westminster terrane, and the Potomac terrane. The geology of the Frederick quadrangle is discussed by geologic province and sections; the geologic units within each province are discussed from oldest to youngest. Where applicable, the discussion includes information on tectonic origins. For more information concerning the report, please contact the author.

  18. Geology of the Gypsum Gap quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W., Jr.

    1953-01-01

    The Gypsum Gap quadrangle is one eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comparative study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through a arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The core consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  19. Geologic Map of the Arctic Quadrangle, Alaska

    USGS Publications Warehouse

    Brosge, W.P.; Reiser, H.N.; Dutro, J.T., Jr.; Detterman, R.L.; Tailleur, I.L.

    2001-01-01

    Introduction The Arctic quadrangle is well located to shed light on the basic geologic relations of northern Alaska. The rocks represent all of the stratigraphic systems from Cambrian to Cretaceous and all but one of the tectono-stratigraphic subterranes of the Brooks Range, from the autochthonous subterrane in the north to the allochthonous subterranes farther south. Among the distinctive geologic features displayed in the Arctic quadrangle are voluminous volcanic rocks of probable Devonian age, a wide array of Carboniferous carbonate facies in the Lisburne Group (which here extends up into the Middle Pennsylvanian), the southward transition of Upper Devonian (Famennian) clastic facies from fluvial conglomerate to marine sandstone, a full display of Upper Devonian (Frasnian) reef-related strata, and fossiliferous Ordovician rocks in both carbonate and chert terranes. Most of the quadrangle is in the Arctic National Wildlife Refuge (ANWR) and Arctic Wildlife Refuge Wilderness. The quadrangle also includes Arctic Village, the only village in the region and a potential destination or transfer point for visitors to the wildlife refuge.

  20. RHODE ISLAND DIGITAL ORTHOPHOTO QUADRANGLE MOSAIC

    EPA Science Inventory

    Orthophotos combine the image characteristics of a photograph with the geometric qualities of a map. The primary digital orthophotoquad (DOQ) is a 1-meter ground resolution, quarter-quadrangle (3.75-minutes of latitude by 3.75-minutes of longitude) image cast on the Universal Tra...

  1. National Uranium Resource Evaluation: Beaumont Quadrangle, Texas

    SciTech Connect

    Henke, J.S.; Joyner, T.M.; Levy, S.S.

    1982-07-01

    The Beaumont Quadrangle, Texas, was evaluated to a depth of 1500 m to identify environments and define areas favorable for the occurrence of uranium deposits. These favorable areas were delineated according to criteria established for the National Uranium Resource Evaluation project funded by the US Department of Energy. Study of the surface geology included interpretation and field followup of hydrogeochemical and stream-sediment reconnaissance data and interpretation and field followup of airborne radiometric data available in the quadrangle area. The surface study was concluded with a carborne scintillometer survey in which scintillometer readings were recorded and outcrop samples were taken, described, and analyzed for uranium content. Subsurface units were evaluated by construction and interpretation of contour structure, isopach, and net-sandstone maps. One environment is identified in this quadrangle as favorable for Texas roll-type uranium deposits in fluvial sandstones of the Oakville-Fleming Formation, Catahoula Formation, and Yegua Formation and in deltaic sediments of the Jackson Group. All other geologic units in the quadrangle are evaluated as unfavorable except the Queen City Formation, which remains unevaluated due to the lack of data.

  2. Workforce: Washington

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2006

    2006-01-01

    In Washington, the demand for well-educated employees will only increase over the next several years. In the decade leading up to 2012, healthcare occupations will see growth of 20 percent. Teachers will be in demand: nearly 9,000 new elementary and middle-school educators will need to be hired. Computer fields will undergo growth of 24 percent,…

  3. Geologic Map of the Izzenhood Spring Quadrangle, Lander County, Nevada

    USGS Publications Warehouse

    John, David A.; Wrucke, Chester T.

    2002-01-01

    The Izzenhood Spring quadrangle covers about 145 km2 of the southwestern part of the Sheep Creek Range in northern Lander County, Nevada. The quadrangle is underlain by Lower Paleozoic rocks that are unconformably overlain and intruded by thick sequences of Miocene igneous rocks related to the northern Nevada rift (Stewart and McKee, 1977; Wallace and John, 1998; John and others, 2000). Much of the eastern part of the quadrangle is covered by thin Quaternary surficial deposits.

  4. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  5. Dike rocks of the Apishapa Quadrangle, Colorado

    USGS Publications Warehouse

    Cross, Whitman

    1915-01-01

    The Apishapa quadrangle, the geographic relations of which are shown by Plate IV, is situated on the plains south of Arkansas River, in Colorado, about 24 miles east of the mountain front. The geology of the Pueblo, Walsenburg, Spanish Peaks, and Elmoro quadrangles, adjoining it on the northwest, west, southwest, and south, respectively, has been described in folios of the Geologic Atlas. G. K. Gilbert, assisted by F. P. Gulliver and G. W. Stose, took up the survey of the Apishapa area in 1894. The Apishapa folio was completed by Stose and was issued in 1913. The rocks to be described in this paper were collected by Gilbert and his assistants, the present writer never having visited the area. The following description of the occurrence of the has been kindly furnished by Mr. Stose.

  6. National Uranium Resource Evaluation: Craig Quadrangle, Colorado

    SciTech Connect

    Craig, L.C.; Hail, W.J. Jr.; Luft, S.J.; Boudette, E.L.; Snyder, G.L.

    1982-09-01

    The Craig Quadrangle in northwestern Colorado contains five areas that are considered favorable for uranium deposits that could contain at least 100 tons U/sub 3/O/sub 8/ at an average grade not less than 100 ppM U/sub 3/O/sub 8/ and less than 1500 m deep. Three of the areas (A, B, and C) are in the Browns Park Formation (Miocene) in the west-central part of the quadrangle and are classed as favorable for nonchannel-controlled and channel-controlled peneconcordant sandstone-type deposits (Subclasses 244 and 243). Area A also contains fault-controlled vein deposits in sandstone (Class 730). Area A contains most of the Maybell-Lay uranium mining district. Area B differs from Area A mainly in that large uranium deposits have not been discovered and developed. The Browns Park of Area C is poorly exposed and contains only a few uranium occurrences. The area is considered favorable mainly on the likely projection of the same geologic characteristics that are favorable in Area A. Area D is in the Salt Wash Member of the Morrison Formation (Upper Jurassic) in the southwest part of the Craig Quadrangle and uranium deposits are classed as nonchannel-controlled peneconcordant sandstone-type deposits (Subclass 244). The favorable Area is essentially a projection of the Meeker mining district based on the regional stratigraphy of the Salt Wash Member, and the presence of relatively thick, high-energy sandstone beds containing carbonaceous trash. Area E is in the Troublesome Formation (Miocene) in the southeastern part of the Craig Quadrangle and most uranium deposits are classed as channel-controlled peneconcordant sandstone-type deposits (Subclass 243).

  7. Geology of the V28 Quadrangle: Hecate Chasma, Venus

    NASA Technical Reports Server (NTRS)

    Stofan, E. R.; Guest, J. E.; Brian, A. W.

    2000-01-01

    The Hecate Chasma Quadrangle (V28), mapped at 1:5,000,000 scale, extends from 0-25 N and 240-270 Longitude. The quadrangle has thirteen impact craters, several large volcanoes, many coronae, three chasmata, and northern Hinemoa Planitia.

  8. USGS 1:24,000 TOPOGRAPHIC QUADRANGLE SERIES INDEXES

    EPA Science Inventory

    USGS 1:24,000 Topographic Quadrangle Series Indexes represents the geographic extent of USGS 1:24,000 topographic maps (7.5- by 7.5-minute quadrangles) for the coterminous U.S. forty-eight states and District of Columbia.

  9. Washington, DC

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Citizens of the United States vote today (November 7, 2000) to determine who will be the next president and vice president of the country, as well as who will fill a number of congressional and senate seats that are up for election. This image of the U.S. capital city-Washington, D.C.-was acquired on June 1 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a Japanese sensor flying aboard NASA's Terra spacecraft. The scene encompasses an area 14 km wide by 13.7 km tall, and was made using a combination of ASTER's visible and near-infrared channels. In this image, vegetation appears red, buildings and paved areas appear light blue, and the waters of the Anacostia and Potomac Rivers are dark grey. ASTER's 15-meter spatial resolution allows us to see individual buildings, including the White House, the Jefferson Memorial, and the Washington Monument with its shadow. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

  10. Geologic map of the Hecate Chasma quadrangle (V-28), Venus

    USGS Publications Warehouse

    Stofan, Ellen R.; Guest, John E.; Brian, Antony W.

    2012-01-01

    The overall topography of V–28 consists of plains located slightly below mean planetary radius (MPR, 6051.84). The lowest regions are found in the rift trough (3.3 m below MPR), and the highest along the rift rim (4.3 km above MPR). The regions that are the roughest at Magellan radar wavelengths in the quadrangle occur along Hecate Chasma (root mean square [rms] slopes >10°), with most regions being relatively smooth (roughnesses comparable to the average Venus surface value of 2.84°). Emissivity values in the quadrangle are typical of most venusian plains regions, with a range in values for the quadrangle of 0.68–0.91. The highest emissivity values in the quadrangle lie at the highest elevations in the quadrangle (corona rims and interiors).

  11. Surficial geology map of the Great Heath, Washington County, Maine

    USGS Publications Warehouse

    Cameron, Cornelia Clermont; Mullen, Michael K.

    1983-01-01

    The major portion of the Great Heath, comprising 2,645 acres in the Cherryfield quadrangle, Washington County, Maine, generally averaging 13 feet in thickness, but with as great an average as 15 feet, contain an estimated 6,953 ,000 short tons air-dried peat. The peat #s chiefly sphagnum moss with some reed-sedge of high quality according to ASTM standards for agricultural and horticultural use. This same volume of peat may be considered for use as fuel because BTO per pound ranges from 8,600 to 10,500 with low sulfur and high hydrogen contents.

  12. Geologic quadrangle maps of the United States: geology of the Casa Diablo Mountain quadrangle, California

    USGS Publications Warehouse

    Rinehart, C. Dean; Ross, Donald Clarence

    1957-01-01

    The Casa Diablo Mountain quadrangle was mapped in the summers of 1952 and 1953 by the U.S. Geological Survey in cooperation with the California State Division of Mines as part of a study of potential tungsten-bearing areas.

  13. National Uranium Resource Evaluation: Marfa Quadrangle, Texas

    SciTech Connect

    Henry, C D; Duex, T W; Wilbert, W P

    1982-09-01

    The uranium favorability of the Marfa 1/sup 0/ by 2/sup 0/ Quadrangle, Texas, was evaluated in accordance with criteria established for the National Uranium Resource Evaluation. Surface and subsurface studies, to a 1500 m (5000 ft) depth, and chemical, petrologic, hydrogeochemical, and airborne radiometric data were employed. The entire quadrangle is in the Basin and Range Province and is characterized by Tertiary silicic volcanic rocks overlying mainly Cretaceous carbonate rocks and sandstones. Strand-plain sandstones of the Upper Cretaceous San Carlos Formation and El Picacho Formation possess many favorable characteristics and are tentatively judged as favorable for sandstone-type deposits. The Tertiary Buckshot Ignimbrite contains uranium mineralization at the Mammoth Mine. This deposit may be an example of the hydroauthigenic class; alternatively, it may have formed by reduction of uranium-bearing ground water produced during diagenesis of tuffaceous sediments of the Vieja Group. Although the presence of the deposit indicates favorability, the uncertainty in the process that formed the mineralization makes delineation of a favorable environment or area difficult. The Allen intrusions are favorable for authigenic deposits. Basin fill in several bolsons possesses characteristics that suggest favorability but which are classified as unevaluated because of insufficient data. All Precambrian, Paleozoic, other Mesozoic, and other Cenozoic environments are unfavorable.

  14. Airborne gamma-ray spectrometer and magnetometer survey: Forsyth quadrangle, Round Up quadrangle, Hardin quadrangle (Montana), Sheridan quadrangle, (Wyoming). Final report

    SciTech Connect

    Not Available

    1981-01-01

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the area covered by the Forsyth, Hardin, and Sheridan, and Roundup, 1:250,000 National Topographic Map Series (NTMS), quadrangle maps. The survey was part of DOE's National Uranium Resource Evaluation (NURE) program. Data were collected by a helicopter equipped with a gamma-ray spectrometer with a large crystal volume, and with a high sensitivity proton precession magnetometer. The radiometric system was calibrated at the Walker Field Calibration Pads and the Lake Mead Dynamic Test Range. Data quality was ensured during the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. The anomalies were interpreted and an interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data collection procedures, the data processing procedures, the data presentation, the interpretation rationale, and the interpretation methodology. A separate Volume II for each quadrangle contains the data displays and the interpretation results.

  15. Alaska Resource Data File, Point Lay quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Point Lay 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  16. South side, entire, looking north across the quadrangle from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South side, entire, looking north across the quadrangle from the courtyard between the library and the life sciences building. - San Bernardino Valley College, Auditorium, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  17. Digital geologic map of Lawton quadrangle, southwestern Oklahoma

    USGS Publications Warehouse

    Cederstrand, Joel R.

    1996-01-01

    This data set consists of digital data and accompanying documentation for the surficial geology of the 1:250,000-scale Lawton quadrangle, Oklahoma. The original data are from the Geologic Map, sheet 1 of 4, included in the Oklahoma Geological Survey publication, 'Reconnaissance of the water resources of the Lawton quadrangle, southwestern Oklahoma', Hydrologic Atlas 6, Havens, 1977. The geology was compiled by R.O. Fay, in 1967-68 and J.S. Havens, in 1973.

  18. Bedrock geologic map of the Westhampton Quadrangle, Hampshire County, Massachusetts

    SciTech Connect

    Clark, S.F. Jr.

    1987-01-01

    The Westhampton Quadrangle lies on the east flank of the Precambrian Berkshire Massif between the Goshen Dome to the north, the Woronoco Dome to the south, and the Mesozoic Hartford Basin to the east. The area is underlain almost entirely by metasedimentary rocks of Early Devonian age. The quadrangle offers a comparison of strikingly different map patterns of the Goshen and Waits River formations and contains several excellent exposures that straddle the contact between them.

  19. Geologic map of the Lada Terra quadrangle (V-56), Venus

    USGS Publications Warehouse

    Kumar, P. Senthil; Head, James W.

    2013-01-01

    This publication provides a geological map of Lada Terra quadrangle (V–56), a portion of the southern hemisphere of Venus that extends from lat 50° S. to 70° S. and from long 0° E. to 60° E. V–56 is bordered by Kaiwan Fluctus (V–44) and Agnesi (V–45) quadrangles in the north and by Mylitta Fluctus (V–61), Fredegonde (V–57), and Hurston (V–62) quadrangles in the west, east, and south, respectively. The geological map of V–56 quadrangle reveals evidence for tectonic, volcanic, and impact processes in Lada Terra in the form of tesserae, regional extensional belts, coronae, and volcanic plains. In addition, the map also shows relative age relations such as overlapping or cross-cutting relations between the mapped geologic units. The geology observed within this quadrangle addresses (1) how coronae evolved in association with regional extensional belts and (2) how tesserae, regional plains, and impact craters, which are also significant geological units observed in Lada Terra quadrangle, were formed.

  20. Topographic Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  1. Topographic Map of Quadrangle 3466, Lal-Sarjangal (507) and Bamyan (508) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  2. Topographic Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  3. Topographic Map of Quadrangle 3670, Jam-Kashem (223) and Zebak (224) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  4. Algae to Bio-Crude in Less Than 60 Minutes

    ScienceCinema

    Elliott, Doug

    2014-06-02

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  5. Algae to Bio-Crude in Less Than 60 Minutes

    SciTech Connect

    Elliott, Doug

    2013-12-17

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  6. National Uranium Resource Evaluation, Tonopah quadrangle, Nevada

    SciTech Connect

    Hurley, B W; Parker, D P

    1982-04-01

    The Tonopah Quadrangle, Nevada, was evaluated using National Uranium Resource Evaluation criteria to identify and delineate areas favorable for uranium deposits. Investigations included reconnaissance and detailed surface geologic and radiometric studies, geochemical sampling and evaluation, analysis and ground-truth followup of aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data, and subsurface data evaluation. The results of these investigations indicate environments favorable for hydroallogenic uranium deposits in Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah. The northern portion of the Toquima granitic pluton is favorable for authigenic uranium deposits. Environments considered unfavorable for uranium deposits include Quaternary sediments; intermediate and mafic volcanic and metavolcanic rocks; Mesozoic, Paleozoic, and Precambrian sedimentary and metasedimentary rocks; those plutonic rocks not included within favorable areas; and those felsic volcanic rocks not within the Northumberland and Mount Jefferson calderas.

  7. Geologic Map of the Umiat Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2004-01-01

    This geologic map of the Umiat quadrangle is a compilation of previously published USGS geologic maps and unpublished mapping done for the Richfield Oil Corporation. Geologic mapping from these three primary sources was augmented with additional unpublished map data from British Petroleum Company. This report incorporates recent revisions in stratigraphic nomenclature. Stratigraphic and structural interpretations were revised with the aid of modern high-resolution color infrared aerial photographs. The revised geologic map was checked in the field during the summers of 2001 and 2002. The geologic unit descriptions on this map give detailed information on thicknesses, regional distributions, age determinations, and depositional environments. The paper version of this map is available for purchase from the USGS Store.

  8. National Uranium Resource Evaluation: Denver Quadrangle, Colorado

    SciTech Connect

    Hills, F.A.; Dickinson, K.A.; Nash, J.T.; Otton, J.K.; Dodge, H.W.; Granger, H.C.; Robinson, K.; McDonnell, J.R.; Yancey, C.L.

    1982-09-01

    Nine areas in the Denver 1/sup 0/ x 2/sup 0/ Quadrangle, Colorado have been identified as favorable for the occurrence of uranium deposits containing a minimum of 100 tons U/sub 3/O/sub 8/ at grades of 0.01% or better. Six of these areas are in metamorphic and igneous rocks of the Front Range, one is in sedimentary rocks of South Park, and two are in sedimentary rocks of the Great Plains. Favorable areas and the classes of deposits for which they are thought to be favorable are: Area A, The Foothills Favorable Environment (700 km/sup 2/ to a depth of 1500 m); Areas B-D, The Silver Plume Granite Favorable Environment; Area E, Southern Elkhorn Upthrust Favorable Environment; Area F, South Park Favorable Environments (27 km/sup 2/ in units of variable thickness); Area G, Dawson Arkose Favorable Environment (3600 km/sup 2/ with an estimated thickness of 50 m); and Area H, Fox Hills Formation Favorable Environment (700 km/sup 2/ with an estimated thickness of 38 m). Other areas and environments in the Denver Quadrangle have uranium occurences and some have yielded small amounts of uranium ore in the past (for example the Central City district). These areas are ranked as unfavorable because in our judgment the evidence does not suggest favorability for deposits of the minimum size. However, neither empirical data nor genetic models for uranium deposits are adequate presently to make determinations of favorability with confidence, and changes of rank are to be expected in the future.

  9. Southwest Washington, Urban Renewal Area, Bounded by Independence Avenue, Washington ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Southwest Washington, Urban Renewal Area, Bounded by Independence Avenue, Washington Avenue, South Capitol Street, Canal Street, P Street, Maine Avenue & Washington Channel, Fourteenth Street, D Street, & Twelfth Street, Washington, District of Columbia, DC

  10. Photogeologic maps of the Miles Ranch and Love Ranch quadrangles, Fremont and Natrona Counties, Wyoming

    USGS Publications Warehouse

    Minard, James Pierson

    1957-01-01

    Love Ranch and Miles Ranch quadrangles are in the Wind River Basin, Wyoming (fig. 1). The rocks exposed in the quadrangles are sedimentary, and range in age from Late Cretaceous to early Tertiary. The youngest formation in the quadrangles, the Wind River formation of Eocene age, is uranium bearing in adjacent areas. Within the two quadrangles the Wind River formation unconformably overlies all the older rocks. In Miles Ranch quadrangle the Wind River formation is divided, on the basis of photointerpretation, into an upper and lower unit; the relationship of these units to units of the Wind River formation, as mapped in adjoining areas, has not been determined.

  11. Geologic map of the Sappho Patera Quadrangle (V-20), Venus

    USGS Publications Warehouse

    McGill, George E.

    2000-01-01

    The Sappho Patera quadrangle (V–20) of Venus is bounded by 0° and 30° East longitude, 0° and 25° North latitude. It is one of 62 quadrangles covering the entire planet at a scale of 1:5,000,000. The quadrangle derives its name from Sappho Patera, a large rimmed depression (diameter about 225 km) lying on top of a shield-shaped mountain named Irnini Mons. Sappho, a noted Greek poet born about 612 B.C., spent most of her life on the island of Lesbos. All of her works were burned in 1073 by order of ecclesiastical authorities in Rome and Constantinople. What little survives was discovered in 1897 as parts of papier mâché coffins in the Fayum (Durant, 1939). The Sappho Patera quadrangle includes the central portion of Eistla Regio, an elongated, moderately elevated (relief ~1 km) region extending for about 7,500 km west-northwestward from the west end of Aphrodite Terra. It is generally interpreted to be the surface manifestation of one or more mantle plumes (Phillips and Malin, 1983; Stofan and Saunders, 1990; Kiefer and Hager, 1991; Senske and others, 1992; Grimm and Phillips, 1992; Solomon and others, 1992). Eistla Regio is dominated by several large volcanic features. All or parts of four of these occur within the Sappho Patera quadrangle: the eastern flank of Gula Mons, Irnini Mons, Anala Mons, and Kali Mons. The quadrangle also includes eight named coronae: Nehalennia, Sunrta, Libera, Belet-Ili, Gaia, Asomama, Rabzhima, and Changko. A major rift extends from Gula Mons in the northwestern corner of the quadrangle to Libera Corona near the east border. East of Irnini and Anala Montes this rift is named Guor Linea; west of the montes it is named Virtus Linea. In addition to these major features, the Sappho Patera quadrangle includes numerous smaller volcanic flows and constructs, several unnamed coronae and corona-like features, a complex array of faults, fractures, and wrinkle ridges, and extensive plains that are continuous with the regional plains that

  12. National Uranium Resource Evaluation: Jordan Valley Quadrangle, Oregon and Idaho

    SciTech Connect

    Berry, M R; Castor, S B; Robins, J W

    1982-04-01

    The Jordan Valley Quadrangle, Oregon and Idaho, was evaluated to identify and delineate areas favorable for uranium deposits in accordance with criteria developed for the National Uranium Resource Evaluation. Surface radiometric reconnaissance and geochemical sampling were used for overall evaluation of the quadrangle. Detailed rock sampling, geologic mapping, and examination of uranium deposits and occurrences were performed in areas suspected to be favorable. The northeast part of the McDermitt caldera within the quadrangle is favorable for volcanogenic deposits associated with the ring-fracture zone. The favorable area contains the Aurora uranium deposit, the Bretz mercury mine, and the Cottonwood Creek occurrence. The Triangle Ranch area and the Snake River Plain, both in the northeast part of the quadrangle, have environments that may be favorable for uranium deposits in sandstone but are considered unevaluated due to lack of subsurface data and lack of detailed investigations. Rocks in the remainder of the quadrangle are considered unfavorable for uranium deposits because of low uranium contents, basic to intermediate compositions, or lack of favorable structures.

  13. Geologic map of the Mead quadrangle (V-21), Venus

    USGS Publications Warehouse

    Campbell, Bruce A.; Clark, David A.

    2006-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Mead quadrangle (V-21) of Venus is bounded by lat 0 deg and 25 deg N., long 30 deg and 60 deg E. This quadrangle is one of 62 covering Venus at 1:5,000,000 scale. Named for the largest crater on Venus, the quadrangle is dominated by effusive volcanic deposits associated with five major coronae in eastern Eistla Regio (Didilia, Pavlova, Calakomana, Isong, and Ninmah), corona-like tectonic features, and Disani Corona. The southern extremity of Bell Regio, marked by lava flows from Nyx Mons, north of the map area, forms the north-central part of the quadrangle. The shield volcanoes Kali, Dzalarhons, and Ptesanwi Montes lie south and southwest of the large corona-related flow field. Lava flows from sources east of Mead crater flood low-lying areas along the east edge of the quadrangle.

  14. Geologic Map of the Meskhent Tessera Quadrangle (V-3), Venus

    USGS Publications Warehouse

    Ivanov, Mikhail A.; Head, James W., III

    2008-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Meskhent Tessera quadrangle is in the northern hemisphere of Venus and extends from lat 50 degrees to 75 degrees N. and from long 60 degrees to 120 degrees E. In regional context, the Meskhent Tessera quadrangle is surrounded by extensive tessera regions to the west (Fortuna and Laima Tesserae) and to the south (Tellus Tessera) and by a large basinlike lowland (Atalanta Planitia) on the east. The northern third of the quadrangle covers the easternmost portion of the large topographic province of Ishtar Terra (northwestern map area) and the more localized upland of Tethus Regio (northeastern map area).

  15. Geologic and geophysical maps of the Las Vegas 30' x 60' quadrangle, Clark and Nye counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Page, William R.; Lundstrom, Scott C.; Harris, Anita G.; Langenheim, V.E.; Workman, Jeremiah B.; Mahan, Shannon; Paces, James B.; Dixon, Gary L.; Rowley, Peter D.; Burchfiel, B.C.; Bell, John W.; Smith, Eugene I.

    2005-01-01

    Las Vegas and Pahrump are two of the fastest growing cities in the US, and the shortage of water looms as among the greatest future problems for these cities. These new maps of the Las Vegas 30 x 60-minute quadrangle provide a geologic and geophysical framework and fundamental earth science database needed to address societal issues such as ground water supply and contamination, surface flood, landslide, and seismic hazards, and soil properties and their changing impact by and on urbanization. The mountain ranges surrounding Las Vegas and Pahrump consist of Mesozoic, Paleozoic and Proterozoic rocks. A majority of these rocks are Paleozoic carbonate rocks that are part of Nevada's carbonate rock aquifer province. The Spring Mountains represent a major recharge site in the province, where maximum altitude is 3,632 m (Charleston Peak) above sea level. Rocks in the Sheep and Las Vegas Ranges and Spring Mountains contain correlative, northeast-striking, southeast-verging thrust faults that are part of the Cretaceous, Sevier orogenic belt. These thrusts were offset during the Miocene by the Las Vegas Valley shear system (LVVSZ). We conducted new mapping in the Blue Diamond area, highlighting refined work on the Bird Spring thrust, newly studied ancient landslides, and gravity-slide blocks. We conducted new mapping in the Las Vegas Range and mapped previously unrecognized structures such as the Valley thrust and fold belt; recognition of these structures has led to a refined correlation of Mesozoic thrust faults across the LVVSZ. New contributions in the quadrangle also include a greatly refined stratigraphy of Paleozoic bedrock units based on conodont biostragraphy. We collected over 200 conodont samples in the quadrangle and established stratigraphic reference sections used to correlate units across the major Mesozoic thrust faults. Quaternary deposits cover about half of the map area and underlie most of the present urbanized area. Deposits consist of large coalescing

  16. Geology of the Lachesis Tessera Quadrangle (V-18), Venus

    NASA Technical Reports Server (NTRS)

    McGowan, Eileen M.; McGill, George G.

    2010-01-01

    The Lachesis Tessera Quadrangle (V-18) lies between 25deg and 50deg north, 300deg and 330deg east. Most of the quadrangle consists of "regional plains" (1) of Sedna and Guinevere Planitiae. A first draft of the geology has been completed, and the tentative number of mapped units by terrain type is: tesserae - 2; plains - 4; ridge belts - 1; fracture belts - 1 (plus embayed fragments of possible additional belts); coronae - 5; central volcanoes - 2; shield flows - 2; paterae - 1; impact craters - 13; undifferentiated flows - 1; bright materials - 1.

  17. Areal geology of the Little Cone quadrangle, Colorado

    USGS Publications Warehouse

    Bush, Alfred Lerner; Marsh, O.T.; Taylor, Richard Bartlett

    1958-01-01

    The Little Cone quadrangle includes an area of about 59 square miles in eastern San Miguel County in southwestern Colorado. It lies within and adjacent to the northeastern boundary of the Colorado Plateau physiographic province. The precipitous front of the San Juan Mountains lies a few miles to the east and northeast, and an outlier of the San Juans, the San Miguel Mountains, lies about a mile to the south. The quadrangle contains features characteristic of both the plateaus and the mountains, and has been affected by geologic events and processes of two different geologic environments.

  18. National Uranium Resource Evaluation: Laredo Quadrangle, Texas

    SciTech Connect

    Cherepon, A.J.; Stauber, A.J.

    1982-08-01

    The Laredo Quadrangle, Texas, was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for the occurrence of uranium deposits. The areas were delineated in accordance with criteria established by the National Uranium Resource Evaluation program sponsored by the US Department of Energy. Surface studies included investigations of uranium occurrences described in the literature, location of aerial radiometric anomalies, outcrop studies, and followup of hydrogeochemical and stream-sediment reconnaissance data. Subsurface evaluation of selected geologic units was accomplished by using electric and gamma-ray well logs to construct maps and cross sections. An environment favorable for Texas roll-type sandstone uranium deposits is identified in 62 areas in the Goliad, Oakville, Catahoula, Frio, and Whitsett Formations. The Midway Group; the Reklaw, Weches, Cook Mountain, Caddell, Wellborn, Manning, Vicksburg, and Anahuac Formations; the Chusa Member of the Catahoula Formation; the Fleming, Uvalde, Lissie, and Beaumont Formations; and river-terrace deposits and deposits of recent age are considered unfavorable. The Yegua, Sparta, Laredo, and Queen City Formations; the El Pico Clay; the Bigford and Carrizo Formations; the Wilcox Group; and the Escondido, Olmos, and San Miguel Formations were examined but not evaluated.

  19. National Uranium Resource Evaluation: Escalante Quadrangle, Utah

    SciTech Connect

    Peterson, F.; Campbell, J.A.; Franczyk, K.J.; Lupe, R.D.

    1982-09-01

    Seven areas favorable for the occurrence of uranium deposits meet the minimum size and grade requirements of the National Uranium Resource Evaluation of the US Department of Energy in the Escalante 1/sup 0/ x 2/sup 0/ Quadrangle, South-Central Utah. Five areas identified in the Late Jurassic Salt Wash Member of the Morrison Formation are: the Henry Mountains mineral belt, and the Bitter Creek, Cat Pasture, Carcass Canyon, and Fiftymile Point areas. The evaluation of these areas was based on the presence of the following features: fluvial sandstones deposited by low-energy streams; actively subsiding synclines; paleostream transport directions approximately perpendicular to the trend of the paleofolds; presence of favorable gray lacustrine mudstone; and known uranium occurrences associated with the favorable gray mudstones. Four favorable areas identified in the Late Triassic Chinle Formation are the White Canyon-Elk Ridge, Dirty Devil-Orange Cliffs, Monument Valley, and the Greater Circle Cliffs subareas. These areas were identified as favorable on the basis of the sandstone-to-shale ratio for the Chinle Formation, and the geographic distribution of the Petrified Forest Member of the Chinle.

  20. Geologic map of the Ganiki Planitia quadrangle (V-14), Venus

    USGS Publications Warehouse

    Grosfils, Eric B.; Long, Sylvan M.; Venechuk, Elizabeth M.; Hurwitz, Debra M.; Richards, Joseph W.; Drury, Dorothy E.; Hardin, Johanna

    2011-01-01

    The Ganiki Planitia (V-14) quadrangle on Venus, which extends from 25° N. to 50° N. and from 180° E. to 210° E., derives its name from the extensive suite of plains that dominates the geology of the northern part of the region. With a surface area of nearly 6.5 x 106 km2 (roughly two-thirds that of the United States), the quadrangle is located northwest of the Beta-Atla-Themis volcanic zone and southeast of the Atalanta Planitia lowlands, areas proposed to be the result of large scale mantle upwelling and downwelling, respectively. The region immediately south of Ganiki Planitia is dominated by Atla Regio, a major volcanic rise beneath which localized upwelling appears to be ongoing, whereas the area just to the north is dominated by the orderly system of north-trending deformation belts that characterize Vinmara Planitia. The Ganiki Planitia quadrangle thus lies at the intersection between several physiographic regions where extensive mantle flow-induced tectonic and volcanic processes are thought to have occurred. The geology of the V-14 quadrangle is characterized by a complex array of volcanic, tectonic, and impact-derived features. There are eleven impact craters with diameters from 4 to 64 km, as well as four diffuse 'splotch' features interpreted to be the product of near-surface bolide explosions. Tectonic activity has produced heavily deformed tesserae, belts of complex deformation and rifts as well as a distributed system of fractures and wrinkle ridges. Volcanic activity has produced extensive regional plains deposits, and in the northwest corner of the quadrangle these plains host the initial (or terminal) 700 km of the Baltis Vallis canali, an enigmatic volcanic feature with a net length of ~7,000 km that is the longest channel on Venus. Major volcanic centers in V-14 include eight large volcanoes and eight coronae; all but one of these sixteen features was noted during a previous global survey. The V-14 quadrangle contains an abundance of minor

  1. Geology of the Atkinson Creek quadrangle, Montrose county, Colorado

    USGS Publications Warehouse

    McKay, E.J.

    1953-01-01

    The Atkinson Creek quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of the quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that rangein age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confines to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Bath". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstone of favorable composition.

  2. Geology of the Gateway quadrangle, Mesa county Colorado

    USGS Publications Warehouse

    Cater, Fred W., Jr.

    1953-01-01

    The Gateway quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  3. A mineral reconnaissance of the Jabal Khida quadrangle, Saudi Arabia

    USGS Publications Warehouse

    Whitlow, Jesse William

    1968-01-01

    Reconnaissance of the Jabal Khida quadrangle shows that granite and granodiorite (unit gg), biotite and hornblende granite (unit gr) and alkalic and paralkalic granit (unit gp) divisions for granites seems valid, but that two ages of metamorphic and extrusive rocks are mapped as the Halaben formation (unit ha/hc). Semiquantitative analyses of 113 samples collected in the quadrangle were made spectrographically on minus 30 plus 80 mesh wadi sand for 27 elements, and chemically on concentrates of heavy minerals and magnetite from wadi sand. Anomalous amounts of silver, beryllium, molybdenum, niobium, tin, cobalt, chromium, copper, lead, nickel, titanium, and vanadium are found in the sand samples, but the anomalies are low. Anomalous tungsten is present in some concentrates from wadi sand. A small alkalic and paralkalic granite (gp) at the west side of the quadrangle contains tin, niobium, and a low anomaly of lead. The area should be studied for commercial tin and niobium. Beryllium is in the granite and granodiorite (gg) adjacent to the alkalic granite. Concentrates from wadi sand derived from two alkalic granite (gp) bodies in the north-central part of the quadrangle contain 330 ppm tungsten.

  4. National Uranium Resource Evaluation, Klamath Falls Quadrangle, Oregon and California

    SciTech Connect

    Castor, S.B.; Berry, M.R.; Robins, J.W.

    1982-07-01

    The Klamath Falls Quadrangle, Oregon, was evaluated to identify and delineate areas favorable for uranium deposits according to criteria developed for the National Uranium Resource Evaluation. Surface radiometric reconnaissance and geochemical sampling were used for overall evaluation of the quadrangle. Detailed rock sampling, geologic mapping, and examinations of uranium mines and occurrences were performed in suspected favorable areas. Results of the work indicate good potential for shallow hydrothermal volcanogenic uranium deposits in the Lakeview favorable area, which comprises a northwest-trending belt of rhyolite intrusions in the eastern half of the quadrangle. The young age, peraluminous chemistry, and low thorium-to-uranium ratios of the rhyolite intrusions, as well as low uranium content of groundwater samples, indicate that uranium has not been leached from the intrusions by ground water. Therefore, supergene uranium deposits are not likely in the area. Scattered occurrences of ash-flow tuff in the east half of the quadrangle that contain high uranium and (or) thorium contents, and four occurrences of secondary uranium minerals in ash-flow tuff, indicate possible uranium deposits in ash flows in a poorly defined area that is partially coextensive with the Lakeview favorable area. Small granitic plutons with associated quartz-tourmaline breccia veins and base-metal occurrences may also be favorable for uranium deposits but were not examined during this study.

  5. Geology of the Red Canyon quadrangle, Montrose county, Colorado

    USGS Publications Warehouse

    McKay, E.J.; Jobin, D.A.

    1953-01-01

    The Red Canyon quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium, minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  6. Geologic map of the New Windsor Quadrangle, Carroll County, Maryland

    USGS Publications Warehouse

    Fisher, G.W.

    1978-01-01

    The pattern of rock units in the geologic map of the New Windsor quadrangle has been affected by three distinguishable generations of folds; following the usage of Tobisch and Fleuty (1969) and Higgins (1973), the fold generations are named for localities where they are well displayed.

  7. Geology of the Paradox quadrangle, Montrose county, Colorado

    USGS Publications Warehouse

    Withington, C.F.

    1954-01-01

    The Paradox quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation, Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  8. Geologic Map of the Sulphur Mountain Quadrangle, Park County, Colorado

    USGS Publications Warehouse

    Bohannon, Robert G.; Ruleman, Chester A.

    2009-01-01

    The main structural element in the Sulphur Mountain quadrangle is the Elkhorn thrust. This northwest-trending fault is the southernmost structure that bounds the west side of the Late Cretaceous and early Tertiary Front Range basement-rock uplift. The Elkhorn thrust and the Williams Range thrust that occurs in the Dillon area north of the quadrangle bound the west flank of the Williams Range and the Front Range uplift in the South Park area. Kellogg (2004) described widespread, intense fracturing, landsliding, and deep-rooted scarps in the crystalline rocks that comprise the upper plate of the Williams Range thrust. The latter thrust is also demonstrably a low-angle structure upon which the fractured bedrock of the upper plate was translated west above Cretaceous shales. Westward thrusting along the border of the Front Range uplift is probably best developed in that area. By contrast, the Elkhorn in the Sulphur Mountain quadrangle is poorly exposed and occurs in an area of relatively low relief. The thrust also apparently ends in the central part of the quadrangle, dying out into a broad area of open, upright folds with northwest axes in the Sulphur Mountain area.

  9. Geology of the Horse Range Mesa quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W., Jr.; Bush, A.L.; Bell, Henry, III; Withington, C.F.

    1953-01-01

    The Horse Range Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of the quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary strictures in sandstones of favorable composition.

  10. Modern shelf ice, equatorial Aeolis Quadrangle, Mars

    NASA Technical Reports Server (NTRS)

    Brakenridge, G. R.

    1993-01-01

    As part of a detailed study of the geological and geomorphological evolution of Aeolis Quadrangle, I have encountered evidence suggesting that near surface ice exists at low latitudes and was formed by partial or complete freezing of an inland sea. The area of interest is centered at approximately -2 deg, 196 deg. As seen in a suite of Viking Orbiter frames obtained at a range of approximately 600 km, the plains surface at this location is very lightly cratered or uncratered, and it is thus of late Amazonian age. Extant topographic data indicate that the Amazonian plains at this location occupy a trough whose surface lies at least 1000 m below the Mars datum. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. In either case, the thin (a few meters at most) high albedo, low thermal inertia cover of aeolian materials was instrumental in allowing ice preservation, and at least the lower portions of this dust cover may be cemented by water ice. Detailed mapping using Viking stereopairs and quantitative comparisons to terrestrial shelf ice geometries are underway.

  11. USGS standard quadrangle maps for emergency response

    USGS Publications Warehouse

    Moore, Laurence R.

    2009-01-01

    The 1:24,000-scale topographic quadrangle was the primary product of the U.S. Geological Survey's (USGS) National Mapping Program from 1947-1992. This map series includes about 54,000 map sheets for the conterminous United States, and is the only uniform map series ever produced that covers this area at such a large scale. This map series partially was revised under several programs, starting as early as 1968, but these programs were not adequate to keep the series current. Through the 1990s the emphasis of the USGS mapping program shifted away from topographic maps and toward more specialized digital data products. Topographic map revision dropped off rapidly after 1999, and stopped completely by 2004. Since 2001, emergency-response and homeland security requirement have revived the question of whether a standard national topographic series is needed. Emergencies such as Hurricane Katrina in 2005 and California wildfires in 2007-08 demonstrated that familiar maps are important to first responders. Maps that have a standard scale, extent, and grids help reduce confusion and save time in emergencies. Traditional maps are designed to allow the human brain to quickly process large amounts of information, and depend on artistic layout and design that cannot be fully automated. In spite of technical advances, creating a traditional, general-purpose topographic map is still expensive. Although the content and layout of traditional topographic maps probably is still desirable, the preferred packaging and delivery of maps has changed. Digital image files are now desired by most users, but to be useful to the emergency-response community, these files must be easy to view and easy to print without specialized geographic information system expertise or software.

  12. False-Color-Image Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. False-Color-Image Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  14. False-Color-Image Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  15. False-Color-Image Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  16. False-Color-Image Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  17. False-Color-Image Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  18. Natural-Color-Image Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  19. False-Color-Image Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  20. Natural-Color-Image Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  1. Booker T. Washington Rediscovered

    ERIC Educational Resources Information Center

    Bieze, Michael Scott, Ed.; Gasman, Marybeth, Ed.

    2012-01-01

    Booker T. Washington, a founding father of African American education in the United States, has long been studied, revered, and reviled by scholars and students. Born into slavery, freed and raised in the Reconstruction South, and active in educational reform through the late nineteenth and early twentieth centuries, Washington sought to use…

  2. Airborne gamma-ray spectrometer and magnetometer survey, Wenatchee quadrangle (Washington). Final report

    SciTech Connect

    Not Available

    1981-01-01

    Four uranium anomalies meet the minimum statistical requirements as defined. These anomalies are tabulated and are shown on the Uranium Anomaly Interpretation Map. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (ppM eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented in Appendix E. Stacked Profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented in Appendix F. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation. Anomalies number 1 and number 2 are over areas underlain by Tertiary Yakima basalt flows (Ty). Anomaly number 3 is over an area underlain by Tertiary nonmarine shales (Tsh) and Recent alluvium (Qal). Anomaly number 4 is over an area underlain by pre-Jurassic gneiss (pJgn).

  3. Airborne gamma-ray spectrometer and magnetometer survey: Concrete quadrangle (Washington). Final report

    SciTech Connect

    Not Available

    1981-01-01

    Twenty-five uranium anomalies meet the minimum statistical requirements as defined. These anomalies are tabulated and are shown on the Uranium Anomaly Interpretation Map. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (ppM eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented. Stacked Profiles showing geologic strips maps along each flight-line, together with sensor data, and ancillary data are presented. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation.

  4. Airborne gamma-ray spectrometer and magnetometer survey: Weed quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    Volume II contains the flight path, radiometric multi-parameter stacked profiles, magnetic and ancillary parameter stacked profiles, histograms, and anomaly maps for the Weed Quadrangle in California.

  5. Maps showing metallic mineral resources of the Bendeleben and Solomon quadrangles, western Alaska

    USGS Publications Warehouse

    Gamble, Bruce M.; Till, Alison B.

    1993-01-01

    This report summarizes the potential for metallic mineral resources in the Bendeleben and Solomon quadrangles, central Seward Peninsul, Alaska (fig. 1), and was prepared as part of the AMRAP (Alaska Mineral Resources Appraisal Program) studies for these quadrangles, which were begun in 1981.  Geologic mapping during this study (TILL and others, 1986) included the southern part of the Kotzebue quadrangle.  However, stream-sediment and panned-concentrate samples were not collected in that area, and the mineral resources of the southern part of the Kotzebue quadrangle are not assessed in this report.

  6. Airborne gamma-ray spectrometer and magnetometer survey: Ukiah quadrangle, California

    SciTech Connect

    Not Available

    1981-04-01

    Volume II contains the flight path, radiometric multi-parameter stacked profiles, magnetic and ancillary parameter stacked profiles, histograms, and anomaly maps for the Ukiah Quadrangle in California.

  7. Geologic Map of the Greenaway Quadrangle (V-24), Venus

    USGS Publications Warehouse

    Lang, Nicholas P.; Hansen, Vicki L.

    2010-01-01

    The Greenaway quadrangle (V-24; lat 0 degrees -25 degrees N., long 120 degrees -150 degrees E.), Venus, derives its name from the impact crater Greenaway, centered at lat 22.9 degrees N., long 145.1 degrees E., in the northeastern part of the quadrangle. Greenaway was a well-noted writer and illustrator of children`s books in Britain during the nineteenth century. In Greenaway`s honor, the Library Association of Great Britain presents the annual Kate Greenaway Medal to an illustrator living and publishing in Britain who has produced the most distinguished children`s book illustrations for that year. The Greenaway quadrangle occupies an 8,400,000 km2 equatorial swath of lowlands and highlands. The map area is bounded by the crustal plateau, Thetis Regio, to the south and Gegute Tessera to the west. The rest of the quadrangle consists of part of Llorona Planitia, which is part of the vast lowlands that cover about 80 percent of Venus` surface. The southern map area marks the north edge of Aphrodite Terra, including Thetis Regio, that includes the highest topography in the quadrangle with elevations reaching >1 km above the Mean Planetary Radius (MPR; 6,051.84 km). Northern Aphrodite Terra abruptly slopes north to Llorona Planitia. A broad northeast-trending topographic arch pocked with coronae separates two northeast-trending elongate basins, Llorona Planitia on the east, that form depositional centers for shield and coronae-sourced materials; both basins drop to elevations of <-1 km. In addition to these major features, the map area hosts thousands of small volcanic constructs (shields); seven coronae; ribbon-tessera terrain; suites of faults, fractures, and wrinkle ridges; 23 impact craters; and one craterless splotch. Our goal for mapping the geology of the Greenaway quadrangle was to determine the geologic history for this region, which in turn provides insights into volcanic and tectonic processes that shaped the Venusian surface. Map relations illustrate that

  8. The Washington Report.

    ERIC Educational Resources Information Center

    American Indian Journal, 1978

    1978-01-01

    The Washington Report identifies legislation of interest to Indian people, namely the Indian Child Welfare Act of 1977, Navajo/Hopi Relocation Amendments, HR 12860, Supreme Court summaries, and bills which failed in the Congress. (RTS)

  9. Geologic Map of Quadrangle 3462, Herat (409) and Chesht-Sharif (410) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Lindsay, Charles R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  10. Geologic Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    USGS Publications Warehouse

    McKinney, Kevin C.; Sawyer, David A.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  11. Geologic Map of Quadrangle 3468, Chak Wardak-Syahgerd (509) and Kabul (510) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  12. Geologic Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Lindsay, Charles R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  13. Geologic Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Sawyer, David A.; Stoeser, Douglas B.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  14. Geologic Map of Quadrangle 3264, Nawzad-Musa-Qala (423) and Dehrawat (424) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Lindsay, Charles R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  15. Geologic Map of Quadrangle 3364, Pasa-Band (417) and Kejran (418) Quadrangles, Afghanistan

    USGS Publications Warehouse

    McKinney, Kevin C.; Sawyer, David A.; Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  16. Geologic Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Yount, James

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  17. Geologic Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    USGS Publications Warehouse

    O'Leary, Dennis W.; Whitney, John W.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  18. Geologic Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Lidke, David J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  19. Geologic Map of Quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  20. Geologic Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Lindsay, Charles R., (compiler); Snee, Lawrence W.; Bohannon, Robert G.; Wahl, Ronald R.; Sawyer, David A.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  1. Geologic Map of Quadrangle 3466, Lal-Sarjangal (507) and Bamyan (508) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Yount, James C., (compiler)

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  2. Geologic Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  3. Geologic Map of Quadrangle 3670, Jarm-Keshem (223) and Zebak (224) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Stoeser, Douglas B.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  4. Geologic Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Maldonado, Florian

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  5. Geologic Map of the Weaverville 15' Quadrangle, Trinity County, California

    USGS Publications Warehouse

    Irwin, William P.

    2009-01-01

    The Weaverville 15' quadrangle spans parts of five generally north-northwest-trending accreted terranes. From east to west, these are the Eastern Klamath, Central Metamorphic, North Fork, Eastern Hayfork, and Western Hayfork terranes. The Eastern Klamath terrane was thrust westward over the Central Metamorphic terrane during early Paleozoic (Devonian?) time and, in Early Cretaceous time (approx. 136 Ma), was intruded along its length by the massive Shasta Bally batholith. Remnants of overlap assemblages of the Early Cretaceous (Hauterivian) Great Valley sequence and the Tertiary Weaverville Formation cover nearly 10 percent of the quadrangle. The base of the Eastern Klamath terrane in the Weaverville quadrangle is a peridotite-gabbro complex that probably is correlative to the Trinity ophiolite (Ordovician), which is widely exposed farther north beyond the quadrangle. In the northeast part of the Weaverville quadrangle, the peridotite-gabbro complex is overlain by the Devonian Copley Greenstone and the Mississippian Bragdon Formation. Where these formations were intruded by the Shasta Bally batholith, they formed an aureole of gneissic and other metamorphic rocks around the batholith. Westward thrusting of the Eastern Klamath terrane over an adjacent body of mafic volcanic and overlying quartzose sedimentary rocks during Devonian time formed the Salmon Hornblende Schist and the Abrams Mica Schist of the Central Metamorphic terrane. Substantial beds of limestone in the quartzose sedimentary unit, generally found near the underlying volcanic rock, are too metamorphosed for fossils to have survived. Rb-Sr analysis of the Abrams Mica Schist indicates a metamorphic age of approx. 380 Ma. West of Weavervillle, the Oregon Mountain outlier of the Eastern Klamath terrane consists mainly of Bragdon Formation(?) and is largely separated from the underlying Central Metamorphic terrane by serpentinized peridotite that may be a remnant of the Trinity ophiolite. The North Fork

  6. National uranium resource evaluation: San Antonio Quadrangle, Texas

    SciTech Connect

    Greimel, T.C.; Ambrose, M.L.

    1982-04-01

    The San Antonio Quadrangle, Texas, was evaluated to a depth of 1500 m to identify environments and define areas favorable for the occurrence of uranium deposits. The areas were delineated according to criteria established by the National Uranium Resource Evaluation program funded by the United States Department of Energy. Surface studies included investigations of uranium occurrences described in the literature, location of aerial radiometric anomalies, outcrop investigation, and followup of hydrogeochemical and stream-sediment reconnaissance data. Selected geologic units were evaluated in the subsurface using electric and gamma-ray well logs that were used to construct subsurface maps and cross sections. The environment favorable for Texas roll-type sandstone deposits is present in eleven areas in the Queen City and Carrizo Formations and the Wilcox Group. Six geologic units remain unevaluated. All other geologic units in this quadrangle are considered unfavorable.

  7. National Uranium Resource Evaluation: Ashton Quadrangle, Idaho, Montana, and Wyoming

    SciTech Connect

    Suekawa, H.S.; Merrick, D.; Clayton, J.; Rumba, S.

    1982-07-01

    The Ashton Quadrangle, Idaho, Montana, and Wyoming, was evaluated to identify and delineate areas containing environments favorable for uranium deposits, using criteria developed for the National Uranium Resource Evaluation program. General surface reconnaissance, radiometric traverses, and geochemical sampling were carried out in all geologic environments within the quadrangle. Aerial radiometric data were evaluated, and anomalies were examined in the field. Fourteen uranium occurrences were noted in the study area. Only one environment, the phosphorites of the Permian Phosphoria Formation, is considered favorable for uranium deposition. The unfavorable environments include: limestones, sandstones, coal and carbonaceous shales, volcanics, Precambrian metamorphics, and Tertiary basins. Unevaluated areas include the John D. Rockefeller Jr. Memorial Parkway and Yellowstone and Grand Teton National Parks, where park service regulations prohibit detailed investigations.

  8. National Uranium Resource Evaluation: Baker Quadrangle, Oregon and Idaho

    SciTech Connect

    Bernardi, M L; Robins, J W

    1982-05-01

    The Baker Quadrangle, Oregon, and Idaho, was evaluated to identify areas containing geologic environments favorable for uranium deposits. The criteria used was developed for the National Uranium Resource Evaluation program. Stream-sediment reconnaissance and detailed surface studies were augmented by subsurface-data interpretion and an aerial radiometric survey. Results indicate that lower Pliocene sedimentary rocks in the Lower Powder River Valley-Virtue Flat basin are favorable characteristics, they remain unevaluated because of lack of subsurface data. Tertiary sandstones, possibly present at depth in the Long and Cascade Valleys, also remain unevaluated due to lack of subsurface data. All remaining environments in the Baker Quadrangle are unfavorable for all classes of uranium deposits.

  9. Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus

    NASA Technical Reports Server (NTRS)

    Kumar, P. Senthil; Head, James W., III

    2009-01-01

    Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationship) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.

  10. National uranium resource evaluation, Charlottesville quadrangle, Virginia and West Virginia

    SciTech Connect

    Baillieul, T.A.; Daddazio, P.L.

    1982-04-01

    The Charlottesville 1/sup 0/ x 2/sup 0/ quadrangle, Virginia and West Virginia, was evaluated to identify environments and delineate areas favorable for the occurrence of uranium deposits. This was done using criteria developed for the National Uranium Resource Evaluation. General surface reconnaissance and geochemical sampling were carried out in all geologic environments within the quadrangle. Aerial radiometric and hydrogeochemical and stream-sediment reconnaissance surveys were performed. Limited core drilling was carried out at one site to aid the evaluation. The results of this investigation indicate environments favorable for vein-type deposits in metamorphic rocks within highly sheared portions of the Precambrian Lovingston Formation. Cambrian metasediments along the margins of the Green Springs and Ellisville intrusives in the southeastern part of the area are favorable for allogenic uranium deposits. All other rock units examined are considered unfavorable for uranium deposits.

  11. Geology and ore deposits of the Philipsburg quadrangle, Montana

    USGS Publications Warehouse

    Emmons, William Harvey; Calkins, Frank Cathcart

    1913-01-01

    Philipsburg lies about midway between the eastern and western limits of the Rocky Mountain system, if the term be used in the broad sense prevailing in the United States. In the general latitude of Montana the system as defined by American usage is bounded on the west by the Columbia River basalt plain and on the east by the Great Plains. The western limit is fairly definite, but on the east there is no very definite line between the plains and mountains; the mountains are fairly continuous west and north of the Philipsburg quadrangle, but to the east and southeast mountains alternate with broad stretches of semiarid lowland. The quadrangle therefore overlaps the line between two physiographic provinces, one characterized by isolated mountain groups, of which the Flint Creek Range is the most westerly, and the other by more continuous elevations, of which the Sapphire Mountains are an example.

  12. Geologic Map of the Point Lay Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2008-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  13. Asbestos occurrence in the Eagle C-4 quadrangle, Alaska

    USGS Publications Warehouse

    Foster, Helen Laura

    1969-01-01

    An asbestos occurrence was discovered in a remote part of the Eagle quadrangle, Alaska, in the summer of 1968 during geologic reconnaissance in connection with the U.S. Geological Survey's Heavy Metals program. The exposed part of the deposit consists of large joint blocks of serpentine which are cut by closely spaced subparallel veins. Most of the veins are about ? inch thick, and they consist of cross-fiber chrysotile asbestos. The asbestos appears to be of commercial quality, but the total quantity is unknown. The asbestos occurs in a serpentinized ultramafic mass which appears to intrude metamorphic rocks. Many other serpentinized ultramafic masses are known in the Eagle quadrangle, but this is the first one in which considerable asbestos has been found. The deposit is of importance because it shows that geologic conditions are locally favorable for the formation of asbestos in the Yukon-Tanana Upland, and hope of finding commercial asbestos deposits thus seems possible.

  14. National uranium resource evaluation: Clifton Quadrangle, Arizona and New Mexico

    SciTech Connect

    White, D L; Foster, M

    1982-05-01

    The Clifton Quadrangle, Arizona and New Mexico, was evaluated to identify environments and delineate areas favorable for uranium deposits. The evaluation used criteria formulated for the National Uranium Resource Evaluation program. Evidence for the evaluation was based on surface studies, hydrogeochemical and stream-sediment reconnaissance, and aerial radiometric surveys. The quadrangle encompasses parts of three physiographic provinces: the Colorado Plateau, the transition zone, and the Basin and Range. The one environment determined, during the present study, to be favorable for uranium deposits is the Whitewater Creek member of the Cooney tuff, which is favorable for magmatic-hydrothermal uranium deposits on the west side of the Bursum caldera. No other areas were favorable for uranium deposits in sandstone, limestone, volcanogenic, igneous, or metamorphic environments. The subsurface is unevaluated because of lack of information, as are areas where access is a constraint.

  15. Geologic Mapping of the Devana Chasma (V-29) Quadrangle, Venus

    NASA Technical Reports Server (NTRS)

    Tandberg, E. R.; Bleamaster, L. F., III

    2010-01-01

    The Devana Chasma quadrangle (V-29; 0-25degN/270-300degE) is situated over the northeastern apex of the Beta-Atla-Themis (BAT) province and includes the southern half of Beta Regio, the northern and transitional segments of the Devana Chasma complex, the northern reaches of Phoebe Regio, Hyndla Regio, and Nedolya Tesserae, and several smaller volcano-tectonic centers and impact craters.

  16. Geological Map of the Fredegonde (V-57) Quadrangle, Venus

    NASA Technical Reports Server (NTRS)

    Ivanov, M. A.; Head, J. W.

    2009-01-01

    The area of V-57, the Fredegonde quadrangle (50-75degS, 60-120degE, Fig.1), is located within the eastern portion of Lada Terra within the topographic province of midlands (0-2 km above MPR [1,2]). Midlands form the most abundant portion of the surface of Venus and are characterized by diverse sets of units and structures [3-11]. The area of the Fredegonde quadrangle is in contact with the elevated portion of Lada Terra to the W and with the lowland of Aino Planitia to the NE. The transitions of the mid-lands to the lowlands and highlands are, thus, one of the main themes of the geology within the V-57 quadrangle. The character of the transitions and distribution and sequence of units/structures in the midlands are crucially important in understanding the time and modes of formation of this topographic province. The most prominent features in the map area are linear deformational zones consisting of swarms of grooves and graben and large coronae. The zones characterize the central and NW portions of the map area and represent regionally important, broad (up to 100s km wide) ridges that are 100s m high. Relatively small (100s km across, 100s m deep) equidimensional basins occur between the corona-groove-chains in the west and border the central chain from the east. Here we describe units that make up the surface within the V-57 quadrangle and present a summary of our geological map that shows the areal distribution of the major groups of units.

  17. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    SciTech Connect

    Campbell, J A

    1982-09-01

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1/sup 0/ x 2/sup 0/ Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains.

  18. Geologic Mapping of the Guinevere Planitia Quadrangle of Venus

    NASA Technical Reports Server (NTRS)

    Crown, David A.; Stofan, Ellen R.; Bleamaster, Leslie F., III

    2008-01-01

    The Guinevere Planitia quadrangle of Venus (0-25degN, 300-330deg) covers a lowland region east of Beta Regio and west of Eistla Regio, including parts of Guinevere and Undine Planitiae. The V-30 quadrangle is dominated by low-lying plains interpreted to be of volcanic origin and exhibiting numerous wrinkle ridges. Using Pioneer Venus, Goldstone, and Arecibo data, previous investigators have described radar bright, dark, and mottled plains units in the Guinevere Planitia region, as well as arcuate fracture zones and lineament belt segments that define the Beta-Eistla deformation zone [1-5]. Magellan SAR images show that volcanic landforms compose the majority of the surface units in V-30 [6-7]. The quadrangle contains parts of four major volcanoes: Atanua (9degN, 307deg), Rhpisunt (3degN, 302deg), Tuli (13degN, 314deg), and Var (3degN, 316deg) Montes, and three coronae: Hulda (12degN, 308deg), Madderakka (9degN, 316deg), and Poloznitsa (1degN, 303deg). Seymour crater, located at 18degN, 327deg, is associated with extensive crater outflow deposits.

  19. National Uranium Resource Evaluation, Grand Canyon Quadrangle, Arizona

    SciTech Connect

    Baillieul, T.A.; Zollinger, R.C.

    1982-06-01

    The Grand Canyon Quadrangle (2/sup 0/), northwestern Arizona, was evaluated to identify environments and delineate areas favorable for the occurrence of uranium deposits. This was done using criteria developed for the National Uranium Resource Evaluation. General surface reconnaissance and geochemical sampling were carried out in all geologic environments within the quadrangle. Aerial radiometric and hydrochemical and stream-sediment reconnaissance surveys were performed, although results were not available in time for field checking. The results of this investigation indicate environments favorable for: channel-controlled, peneconcordant sandstone deposits in the Petrified Forest Member of the Chinle Formation in the north-central part of the quadrangle, vein-type deposits in collapse breccias in all areas underlain by the Redwall Limestone, and unconformity-related deposits in the metasediments of the Vishnu Group within the Grand Canyon. All other rock units examined are considered unfavorable for hosting uranium deposits. Younger Precambrian rocks of the Grand Canyon Supergroup, exposed only within the Grand Canyon National Park, remain unevaluated.

  20. Geologic Map of the Tower Peak Quadrangle, Central Sierra Nevada, California

    USGS Publications Warehouse

    Wahrhaftig, Clyde

    2000-01-01

    Introduction The Tower Peak quadrangle, which includes northernmost Yosemite National Park, is located astride the glaciated crest of the central Sierra Nevada and covers an exceptionally well-exposed part of the Sierra Nevada batholith. Granitic plutonic rocks of the batholith dominate the geology of the Tower Peak quadrangle, and at least 18 separate pre-Tertiary intrusive events have been identified. Pre-Cretaceous metamorphic rocks crop out in the quadrangle in isolated roof pendants and septa. Tertiary volcanic rocks cover granitic rocks in the northern part of the quadrangle, but are not considered in this brief summary. Potassium-argon (K-Ar) age determinations for plutonic rocks in the quadrangle range from 83 to 96 million years (Ma), including one of 86 Ma for the granodiorite of Lake Harriet (Robinson and Kistler, 1986). However, a rubidium-strontium whole-rock isochron age of 129 Ma has been obtained for the Lake Harriet pluton (Robinson and Kistler, 1986), which field evidence indicates is the oldest plutonic body within the quadrangle. This suggests that some of the K-Ar ages record an episode of resetting during later thermal events and are too young. The evidence indicates that all the plutonic rocks are of Cretaceous age, with the youngest being the Cathedral Peak Granodiorite at about 83 Ma. The pre-Tertiary rocks of the Tower Peak quadrangle fall into two groups: (1) an L-shaped area of older plutonic and metamorphic rocks, 3 to 10 km wide, that extends diagonally both northeast and southeast from near the center of the quadrangle; and (2) a younger group of large, probably composite intrusions that cover large areas in adjacent quadrangles and extend into the Tower Peak quadrangle from the east, north, and southwest.

  1. Topographic Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  2. Topographic Map of Quadrangle 3566, Sang-Charak (501) and Sayghan-O-Kamard (502) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  3. Geological Map of the Fredegonade (V-57) Quadrangle, Venus: Status Report

    NASA Technical Reports Server (NTRS)

    Ivanov, M. A.; Head, J. W.

    2010-01-01

    The Fredegonde quadrangle (V-57; 50-75degS, 60-120degE, Fig. 1) corresponds to the northeastern edge of Lada Terra and covers a broad area of the topographic province of midlands (0-2 km above MPR [1,2]). This province is most abundant on Venus and displays a wide variety of units and structures [3-11]. The sequence of events that formed the characteristic features of the midlands is crucially important in understanding of the timing and modes of evolution of this topographic province. Topographically, the Fredegonde quadrangle is within a transition zone between the elevated portion of Lada Terra to the west (Quetzalpetlatl-Boala Coronae rise, approx.3.5 km) and the lowland of Aino Planitia to the north and northeast (approx.-0.5 km). This transition is one of the key features of the V-57 quadrangle. In this respect the quadrangle resembles the region of V-4 quadrangle [12] that shows transition between the midlands and the lowlands of Atalanta Planitia. One of the main goals of our mapping within the V-57 quadrangle is comparison of this region with the other transitional topographic zones such as quadrangles V-4 and V-3 [13]. The most prominent features in the V-57 quadrangle are linear deformational zones of grooves and large coronae. The zones characterize the central and NW portions of the map area and represent broad (up to 100s of km wide) ridges that are 100s of m high. Morphologically and topographically, these zones are almost identical to the groove belt/corona complexes at the western edge of Atalanta Planitia [12]. Within the Fredegonde area, however, the zones are oriented at high angles to the general trend of elongated Aino Planitia, whereas within the V-4 quadrangle they are parallel to the edge of Atalanta Planitia. Relatively small (100s of km across, 100s of m deep) equidimensional basins occur between the corona-groove-chains in the area of V-57 quadrangle. These basins are similar to those that populate the area of the V-3 quadrangle [13

  4. Washington Community Colleges Factbook.

    ERIC Educational Resources Information Center

    Meier, Terre; Story, Sherie

    Detailed information on the 27 state-supported community colleges in Washington is presented in six sections. The first section, containing general information, describes the state system organization, lists the individual colleges, and reviews the roles of state agencies and presents a history of the system. A section on student information…

  5. Washington Community Colleges Factbook.

    ERIC Educational Resources Information Center

    Meier, Terre

    The 109 tables and graphs in this six-chapter factbook present a statistical profile of the Washington Community College System for Fall 1979. Chapter I presents background information on the history and organization of the 27 state-supported colleges. Chapter II outlines data on annual and quarterly enrollments from 1969 through 1979; student…

  6. GIARDIASIS IN WASHINGTON STATE

    EPA Science Inventory

    The objective was to determine the potential for transmission of giardiasis through approved drinking water supplies in Washington State. The project consisted of five studies: the first was conducted during trapping seasons (1976-1979) and resulted in examining of 656 beaver sto...

  7. Washington: Hanford Nuclear Reservation

    Atmospheric Science Data Center

    2014-05-15

    ... clouds in the May 15 image with the same area imaged on August 3. The darkened burn scar measures approximately 35 kilometers across. ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  8. Washington School Finance Primer.

    ERIC Educational Resources Information Center

    Washington Office of the State Superintendent of Public Instruction, Olympia.

    The proportion of state funding for public schools in Washington is among the highest in the nation: about 75 percent of school-district General Fund revenue comes from the state. Almost 60 percent of all state General Fund expenditures are for education (about 46 percent for grades K-12 and 12 percent for higher education). The state…

  9. Washington Community College Study.

    ERIC Educational Resources Information Center

    Washington State Board for Community Coll. Education, Olympia.

    The history, administration, and governance of the Washington Community College System (WCCS) are analyzed in this seven-part report prepared for the state legislature. Part I presents background information on the WCCS's role and mission, history, students, programs, personnel, facilities, finances, student costs, and future. Part II discusses…

  10. Washington's Can Do Kids.

    ERIC Educational Resources Information Center

    Washington State Office of Community Development, Olympia.

    Conceived as a state-supported community-sponsored program for families, strengthened by business and service organization support, and designed to work with local educational, child care, and social service agencies, Washington State's Early Childhood Education and Assistance Program (ECEAP, pronounced e-cap) provides a "whole child" preventative…

  11. Washington's Bold Reformer

    ERIC Educational Resources Information Center

    Schachter, Ron

    2008-01-01

    For more than a year, the debate, press coverage, and buzz in Washington, D.C., have swirled over whether someone so different--and so relatively inexperienced--can deliver sweeping change. And presidential hopeful Barack Obama hasn't been the only one receiving that kind of unrelenting scrutiny. This article describes Michelle Rhee who became…

  12. Indians of Washington State.

    ERIC Educational Resources Information Center

    Washington Office of the State Superintendent of Public Instruction, Olympia.

    Maps, photographs, and illustrations are included in this introductory history of Indians in Washington state. The tribal groups of the area are classified by geographic and cultural region as Coastal, Puget Sound, and Plateau tribes, and the majority of the resource booklet provides information about the history and culture of each group.…

  13. Geology of the Lachesis Tessera Quadrangle (V-18), Venus

    NASA Technical Reports Server (NTRS)

    McGill, George E.

    2008-01-01

    The Lachesis Tessera Quadrangle (V-18) lies between 25deg and 50deg north, 300deg and 330deg east. Most of the quadrangle consists of "regional plains" (1) of Sedna and Guinevere Planitiae. A first draft of the geology has been completed, and the tentative number of mapped units by terrain type is: Tesserae - 2; plains - 4; ridge belts - 1; fracture belts - 1 (plus embayed fragments of possible additional belts); coronae - 3; central volcanoes - 1; shield flows - 2; paterae - 1; impact craters - 1; undifferentiated flows - 1; bright materials - 1. By far the areally most extensive materials are regional plains. These are mapped as two units, based on radar backscatter ("radar brightness"). The brighter unit appears to be younger than the darker unit. This inference is based on the common presence within the lighter unit of circular or nearly circular inliers of material with radar backscatter characteristic of the darker unit. The circular inliers are most likely low shield volcanoes, which are commonly present on the darker unit, that were only partially covered by the brighter unit. Clear cut examples of wrinkle ridges and fractures superposed on the darker unit but truncated by the brighter unit have not been found to date. These relationships indicate that the brighter unit is superposed on the darker unit, but that the difference in age between them is very small. Because they are so widespread, the regional plains are a convenient relative age time "marker." The number of impact craters superposed on these plains is too small to measure age differences (2), and thus we cannot estimate how much time elapsed between the emplacement of the darker and brighter regional plains units. More local plains units are defined by significantly lower radar backscatter or by a texture that is mottled at scores to hundreds of kilometers scale. A plains-like unit with a homogenous, bright diffuse backscatter is present as scattered exposures in the eastern part of the

  14. Geologic map of the Rusalka Planitia Quadrangle (V-25), Venus

    USGS Publications Warehouse

    Young, Duncan A.; Hansen, Vicki L.

    2003-01-01

    The Rusalka Planitia quadrangle (herein referred to as V-25) occupies an 8.1 million square kilometer swath of lowlands nestled within the eastern highlands of Aphrodite Terra on Venus. The region (25?-0? N., 150?-180? E.) is framed by the crustal plateau Thetis Regio to the southwest, the coronae of the Diana-Dali chasmata complex to the south, and volcanic rise Atla Regio to the west. Regions to the north, and the quadrangle itself, are part of the vast lowlands, which cover four-fifths of the surface of Venus. The often-unspectacular lowlands of Venus are typically lumped together as ridged or regional plains. However, detailed mapping reveals the mode of resurfacing in V-25's lowlands: a mix of corona-related flow fields and local edifice clusters within planitia superimposed on a background of less clearly interpretable extended flow fields, large volcanoes, probable corona fragments, and edifice-flow complexes. The history detailed within the Rusalka Planitia quadrangle is that of the extended evolution of long-wavelength topographic basins in the presence of episodes of extensive corona-related volcanism, pervasive low-intensity small-scale eruptions, and an early phase of regional circumferential shortening centered on central Aphrodite Terra. Structural reactivation both obscures and illuminates the tectonic development of the region. The data are consistent with progressive lithospheric thickening, although the critical lack of an independent temporal marker on Venus severely hampers our ability to test this claim and correlate between localities. Two broad circular basins dominate V-25 geology: northern Rusalka Planitia lies in the southern half of the quadrangle, whereas the smaller Llorona Planitia sits along the northwestern corner of V-25. Similar large topographic basins occur throughout the lowlands of Venus, and gravity data suggest that some basins may represent dynamic topography over mantle downwellings. Both planitiae include coronae and

  15. Geologic map of the Lakshmi Planum quadrangle (V-7), Venus

    USGS Publications Warehouse

    Ivanov, Mikhail A.; Head, James W., III

    2010-01-01

    The Lakshmi Planum quadrangle is in the northern hemisphere of Venus and extends from lat 50 degrees to 75 degrees N., and from long 300 degrees to 360 degrees E. The elevated volcanic plateau of Lakshmi Planum, which represents a very specific and unique class of highlands on Venus, dominates the northern half of the quadrangle. The surface of the planum stands 3-4 km above mean planetary radius and the plateau is surrounded by the highest Venusian mountain ranges, 7-10 km high. Before the Magellan mission, the geology of the Lakshmi Planum quadrangle was known on the basis of topographic data acquired by the Pioneer-Venus and Venera-15/16 altimeter and radar images received by the Arecibo telescope and Venera-15/16 spacecraft. These data showed unique topographic and morphologic structures of the mountain belts, which have no counterparts elsewhere on Venus, and the interior volcanic plateau with two large and low volcanic centers and large blocks of tessera-like terrain. From the outside, Lakshmi Planum is outlined by a zone of complexly deformed terrains that occur on the regional outer slope of Lakshmi. Vast low-lying plains surround this zone. After acquisition of the Venera-15/16 data, two classes of hypotheses were formulated to explain the unique structure of Lakshmi Planum and its surrounding. The first proposed that the western portion of Ishtar Terra, dominated by Lakshmi Planum, was a site of large-scale upwelling while the alternative hypothesis considered this region as a site of large-scale downwelling and underthrusting. Early Magellan results showed important details of the general geology of this area displayed in the Venera-15/16 images. Swarms of extensional structures and massifs of tesserae populate the southern slope of Lakshmi. The zone of fractures and grabens form a giant arc thousands of kilometers long and hundreds of kilometers wide around the southern flank of Lakshmi Planum. From the north, the deformational zones consist mostly of

  16. Lower Paleozoic carbonate rocks of Baird Mountains Quadrangle, Alaska

    SciTech Connect

    Dumoulin, J.A.; Harris, A.G.

    1985-04-01

    Lower Paleozoic carbonate rocks in the Baird Mountains quadrangle form a relatively thin (about 550 m), chiefly shallow-water succession that has been imbricately thrust and metamorphosed to lower greenschist facies. Middle and Upper Cambrian rocks - the first reported from the western Brooks Range - occur in the northeastern quarter of the quadrangle, south of Angayukaqsraq (formerly Hub) Mountain. They consist of marble grading upward into thin-bedded marble/dolostone couplets and contain pelagiellid mollusks, acetretid brachiopods, and agnostid trilobites. Sedimentologic features and the Pelagiellas indicate a shallow-water depositional environment. Overlying these rocks are Lower and Middle Ordovician marble and phyllite containing graptolites and conodonts of midshelf to basinal aspect. Upper Ordovician rocks in this area are bioturbated to laminated dolostone containing warm, shallow-water conodonts. In the Omar and Squirrel Rivers areas to the west, the Lower Ordovician carbonate rocks show striking differences in lithofacies, biofacies, and thickness. Here they are mainly dolostone with locally well-developed fenestral fabric and evaporite molds, and bioturbated to laminated orange- and gray-weathering dolomitic marble. Upper Silurian dolostone, found near Angayukaqsraq Mountain and on the central Squirrel River, contains locally abundant corals and stronmatoporoids. Devonian carbonate rocks are widely distributed in the Baird Mountains quadrangle; at least two distinct sequences have been identified. In the Omar area, Lower and Middle Devonian dolostone and marble are locally cherty and rich in megafossils. In the north-central (Nakolik River) area, Middle and Upper Devonian marble is interlayered with planar to cross-laminated quartz-carbonate metasandstone and phyllite.

  17. Color variations on Victoria quadrangle: support for the geological mapping

    NASA Astrophysics Data System (ADS)

    Zambon, F.; Galluzzi, V.; Carli, C.; Giacomini, L.; Massironi, M.; Palumbo, P.; Guzzetta, L.; Mancinelli, P.; Vivaldi, V.; Ferranti, L.; Pauselli, C.; Frigeri, A.; Zusi, M.; Pozzobon, R.; Cremonese, G.; Ferrari, S.; Capaccioni, F.

    2015-10-01

    Mercury is the closest planet to the Sun. Its extreme thermal environment makes it difficult to explore onsite. In 1974, Mariner 10, the first mission dedicated to Mercury, covered 45% of the surface during of the three Hermean flybys [1]. For about 30 years after Mariner 10, no other mission has flownto Mercury. Many unresolved issues need an answer, and in recent years the interest about Mercury has increased. MESSENGER mission contributed to understand Mercury's origin, its surface structure, and the nature of its magnetic field, exosphere, and magnetosphere [1]. The Mercury Dual Imaging System (MDIS) provided a global coverage of Mercury surface with variable spatial resolution. MDIS is equipped with a narrow angle camera (NAC), dedicated to the study of the geology and a wide angle camera (WAC) with 12 filters useful to investigate the surface composition[2]. Mercury has been divided into 15 quadrangles for mapping purposes [3]. The mapping process permits integration of different geological surface information to better understand the planet crust formation and evolution. Merging spectroscopically data is a poorly followed approach in planetary mapping, but it gives additional information about lithological composition, contributing to the construction of a more complete geological map [e.g. 4]. Recently, [5] proposed a first detailed map of all the Victoria quadrangle (H2). Victoria quadrangle is located in a longitude range between 270°E and 360°E and a latitude range of 22.5°N and 65°N,and itwas only partially mapped by Mariner 10 data[3]. Here we investigate the lithological variation by using the MDIS-WAC data to produce a set of color map products which could be asupport to the geological mapping [5]. The future ESA-JAXA mission to Mercury, BepiColombo, will soon contribute to improve the knowledge of Mercury surface composition and geology thanks to the Spectrometer and Imagers for MPO BepiColombo-Integrated Observatory SYStem (SIMBIO-SYS)[6].

  18. Geologic Map of the Niobe Planitia Quadrangle (V-23), Venus

    USGS Publications Warehouse

    Hansen, Vicki L.

    2009-01-01

    The Niobe Planitia quadrangle (V-23) encompasses approximately 8,000,000 km2 of the Venusian equatorial region extending from lat 0 deg to 25 deg N. and from long 90 deg to 120 deg E. (approximately 9,500 15-minute quadrangles on Earth). The map area lies along the north margin of the equatorial highland, Aphrodite Terra (V-35), and extends into the lowland region to the north, preserving a transition from southern highlands to northern lowlands (figs. 1, 2, map sheet). The northern parts of the crustal plateau, Ovda Regio and Haasttse-baad Tessera, mark the south margin of the map area; Niobe and Sogolon Planitiae make up the lowland region. The division between Niobe and Sogolon Planitiae is generally topographic, and Sogolon Planitia forms a relatively small elongate basin. Mesolands, the intermediate topographic level of Venus, are essentially absent or represented only by Gegute Tessera, which forms a slightly elevated region that separates Niobe Planitia from Llorona Planitia to the east (V-24). Lowlands within the map area host five features currently classified as coronae: Maya Corona (lat 23 deg N., long 97 deg E.) resides to the northwest and Dhisana, Allatu, Omeciuatl, and Bhumiya Coronae cluster loosely in the east-central area. Lowlands extend north, east, and west of the map area. Mapping the Niobe Planitia quadrangle (V-23) provides an excellent opportunity to examine a large tract of lowlands and the adjacent highlands with the express goal of clarifying the processes responsible for resurfacing this part of Venus and the resulting implications for Venus evolution. Although Venus lowlands are widely considered to have a volcanic origin, lowlands in the map area lack adjacent coronae or other obvious volcanic sources.

  19. Geologic map of the Murray Quadrangle, Newton County, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Turner, Kenzie J.

    2016-01-01

    This map summarizes the geology of the Murray quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area is on the southern flank of the Ozark dome, an uplift that has the oldest rocks exposed at its center, in Missouri. Physiographically, the Murray quadrangle is within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and Little Buffalo River and their tributaries expose an approximately 1,600-ft-thick (488-meter-thick) sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The Buffalo National River, a park that encompasses the Buffalo River and adjacent land that is administered by the National Park Service is present at the northwestern edge of the quadrangle.Mapping for this study was carried out by field inspection of numerous sites and was compiled as a 1:24,000 geographic information system (GIS) database. Locations and elevation of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade relief and slope maps derived from a U.S. Geological Survey 10-meter digital elevation model as well as orthophotographs were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours, constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation, were drawn based on the elevations of field sites on these contacts well as other limiting information for their minimum elevations above hilltops or their maximum elevations below valley bottoms.

  20. Stratigraphy and Observations of Nepthys Mons Quadrangle (V54), Venus

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.

    2001-01-01

    Initial mapping has begun in Venus' Nepthys Mons Quadrangle (V54, 300-330 deg. E, 25-50 deg. S). Major research areas addressed are how the styles of volcanism and tectonism have changed with time, the evolution of shield volcanoes, the evolution of coronae, the characteristics of plains volcanism, and what these observations tell us about the general geologic history of Venus. Reported here is a preliminary general stratigraphy and several intriguing findings. Additional information is contained in the original extended abstract.

  1. Geologic Map of the Elkhorn Quadrangle, Park County, Colorado

    USGS Publications Warehouse

    Ruleman, Chester A.; Bohannon, Robert G.

    2008-01-01

    The Elkhorn thrust is defined by the juxtaposition of Early and Middle Proterozoic metamorphic and igneous rocks against Mesozoic and Tertiary rocks. Within the mapped area, an imbricate frontal thrust system juxtaposes Upper Cretaceous rocks against Paleocene rocks of the South Park Formation. In the southeastern section of the quadrangle, Middle Proterozoic igneous rocks are thrust over the South Park Formation. Syntectonic conglomerates (Txc) are preserved both on the hanging wall and footwall of the Elkhorn thrust. North of the map area we have identified normal faulting of probable Quaternary age.

  2. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The mapping of generalized land use (level 1) from ERTS 1 images was shown to be feasible with better than 95% accuracy in the Phoenix quadrangle. The accuracy of level 2 mapping in urban areas is still a problem. Updating existing maps also proved to be feasible, especially in water categories and agricultural uses; however, expanding urban growth has presented with accuracy. ERTS 1 film images indicated where areas of change were occurring, thus aiding focusing-in for more detailed investigation. ERTS color composite transparencies provided a cost effective source of information for land use mapping of very large regions at small map scales.

  3. Mineralogic mapping of the Av-9 Numisia quadrangle of Vesta

    NASA Astrophysics Data System (ADS)

    Frigeri, A.; De Sanctis, M. C.; Ammannito, E.; Buczkowski, D.; Combe, J. P.; Tosi, F.; Zambon, F.; Rocchini, D.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2015-10-01

    In this manuscript we present the mineralogic mapping of the Av-9 Numisia quadrangle of Vesta using the most up-to-date data from the NASA-Dawn mission. This quadrangle is located in Vesta's equatorial zone (22° south to 22° north, 218° to 288° east, in Claudia coordinate system) and takes its name from the impact crater Numisia. The main feature, which dominates the quadrangle, is the Vestalia Terra plateau, a topographic high about 10 km above the surrounding areas. To the south, this region fades into the Rheasilvia basin, while to the north it is bounded by the steep scarp of Postumia basin. The Visible and Infrared mapping spectrometer (VIR) onboard NASA/Dawn provided the main data source for this work, at an unprecedented level of spatial and spectral resolution. In particular we are using spectral parameters to synthesize characteristics of the whole spectra into a single value. Pyroxene-related spectral parameters allow for the detection of lower crust or mantle material (diogenites) and upper crust material (eucrites) in the study area. The combined analysis of albedo from the Framing Camera, the geologic map and the spectroscopic data offer an interesting opportunity to understand better the surface features of this region of Vesta, and their evolution. Numisia, Cornelia, Fabia, Teia and Drusilla are the main craters in the study area, rich in bright and dark material outcrops, pitted terrains and OH-rich materials. Using the spectral parameters we demonstrate that the internal composition of Vestalia Terra is mainly diogenite-rich howardite, as shown by materials excavated by Cornelia and Fabia, and the composition of the slope north of Vestalia Terra. This agrees with the strong positive Bouguer Anomaly observed in the area, indicating a higher density of these features in relation to the surrounding areas. Besides the recently published works based on gravimetric modeling and geologic interpretation, the mineralogic mapping presented herein gives

  4. National Uranium Resource Evaluation: Joplin Quadrangle, Missouri and Kansas

    SciTech Connect

    Derby, J.R.; Upshaw, L.P.; Carter, E.O.; Roach, L.F.; Roach, D.G.

    1982-08-01

    Reconnaissance and detailed geologic and radiometric investigations were conducted throughout the Joplin Quadrangle, Missouri and Kansas, to evaluate the uranium favorability using National Uranium Resource Evaluation criteria. Surface and subsurface studies were augmented by aerial radiometric surveys and hydrogeochemical and stream-sediment reconnaissance studies. Results of the investigations indicate that black shales of Desmoinesian and Missourian (Pennsylvanian) age are environments favorable for the deposition of uranium. The uranium is concentrated in phosphate nodules within these black shales. Environments considered unfavorable for uranium deposits are fluvial placers, coals, limestones, all sandstones, peridotite, granites, the Pennsylvanian-Mississippian unconformity, and vein-type deposits in sedimentary rocks.

  5. False-Color-Image Map of Quadrangle 3368 and Part of Quadrangle 3370, Ghazni (515), Gardez (516), and Part of Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  6. Recent developments: Washington focus

    SciTech Connect

    1990-12-01

    November was a quiet month in Washington. Although Congress has recessed until 1991, the Senate filled vacancies in party leadership positions created by November`s elections. The House is expected to proceed with its changes in early December. The Nuclear Energy Forum was held in Washington, DC on November 11-14 to discuss the status of the nuclear industry in the USA. The Forum, held in conjunction with the American Nuclear Society`s annual meeting, assembled a large number of CEO`s from US, European, and Far Eastern utilities and vendors. The meeting concluded with an announcement by Philip Bayne, President of NYPA and chairman of the Nuclear Power Oversight Committee (NPOC), of the results of a year-long NPOC study entitled a {open_quotes}Strategic Plan for Building New Nuclear Power Plants.{close_quotes}

  7. Topographic Map of Quadrangle 3768 and 3668, Imam-Saheb (215), Rustaq (216), Baghlan (221), and Taloqan (222) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the

  8. Podiatrists Licensed in Washington.

    ERIC Educational Resources Information Center

    Washington State Dept. of Social and Health Services, Olympia. Health Manpower Project.

    This survey, based on a 95 0/0 response rate, determined that of all the podiatrists licensed in the state of Washington, 69 0/0 live within the state, 95 0/0 were actively employed in that profession, and almost all were in private practice. The primary work function of 83 0/0 was direct patient care, and over half of the respondents worked 40 to…

  9. TATOOSH ROADLESS AREA, WASHINGTON.

    USGS Publications Warehouse

    Evarts, Russell C.

    1984-01-01

    Geologic and geochemical surveys of the Tatoosh Roadless Area in Washington were conducted. The results indicate that none of the four parts comprising the roadless area are likely to contain mineral or energy resources. The geology of this part of the Cascade Range is poorly known, and a regionally focussed program of geologic mapping and geochemical sampling might discover areas of promising mineralization perhaps extending into the roadless area beneath the surface.

  10. Libby South Fire, Washington

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On July 9, 2001, a fire burned about 15 miles south of Twisp, Washington, that officials believe was caused by human error. NASA's Moderate-resolution Imaging Spectroradiometer on the Terra satellite observed the fire, indicated with a red dot in this image, on July 10, after the fire had already consumed about 1,240 acres. On July 10, another fire-called the Thirty Mile Fire-trapped 21 firefighters and 2 civilians in a narrow canyon in the Chewuch River Valley, north of Winthrop, WA. (That fire did not erupt until later in the day after this image was acquired and is therefore not visible.) Tragically, four firefighters were killed and six people were injured, including the two civilians. Rolling debris, rugged and steep terrain, and limited access are impeding efforts to contain the now 8,200-acre fire, which according to current fire incident reports, is completely uncontained. Nearly all the areas in the full-size image, including Washington (center), Idaho (right), Oregon (bottom) are in a state of severe drought, which means the region could be in for another devastating fire season. Another fire is visible in Idaho in the full-size image just east of where Idaho borders with Washington and Oregon. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team

  11. Geologic map of the Themis Regio quadrangle (V-53), Venus

    USGS Publications Warehouse

    Stofan, Ellen R.; Brian, Antony W.

    2012-01-01

    The Themis Regio quadrangle (V-53), Venus, has been geologically mapped at 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program. The quadrangle extends from lat 25° to 50° S. and from long 270° to 300° E. and encompasses the Themis Regio highland, the surrounding plains, and the southernmost extension of Parga Chasmata. Themis Regio is a broad regional topographic high with a diameter of about 2,000 km and a height of about 0.5 km that has been interpreted previously as a hotspot underlain by a mantle plume. The Themis rise is dominated by coronae and lies at the terminus of the Parga Chasmata corona chain. Themis Regio is the only one of the three corona-dominated rises that contains significant extensional deformation. Fractures and grabens are much less common than along the rest of Parga Chasmata and are embayed by corona-related flows in places. Rift and corona formation has overlapped in time at Themis Regio.

  12. Bedrock Geologic Map of the New Milford Quadrangle, Litchfield and Fairfield Counties, Connecticut

    USGS Publications Warehouse

    Walsh, Gregory J.

    2004-01-01

    The bedrock geology of the New Milford quadrangle, Litchfield and Fairfield Counties, Connecticut is described in this report. The database includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, and photos.

  13. National uranium resource evaluation program: hydrogeochemical and stream sediment reconnaissance basic data for Sacramento quadrangle, California

    SciTech Connect

    Not Available

    1981-10-15

    Field and laboratory data are presented for 1890 sediment samples from the Sacramento Quadrangle, California. The samples were collected by Savannah River Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  14. Geology of the Wadi Ash Shu'bah Quadrangle, Sheet 26 E, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Quick, James E.; Doebrich, Jeff L.

    1987-01-01

    The magnesite deposit near the village of Zarghat is the most significant mineral deposit in the quadrangle. However, the Hulayfah group has the most potential for metallic deposits in the area as it contains numerous gossans and ancient mine workings.

  15. 25. FOLSOM, CALIFORNIA, 15 MINUTE QUADRANGLE. 1941. Scale 1:62,500. United ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. FOLSOM, CALIFORNIA, 15 MINUTE QUADRANGLE. 1941. Scale 1:62,500. United States Geological Survey. - Natomas Ditch System, Rhodes Ditch, West of Bidwell Street, north of U.S. Highway 50, Folsom, Sacramento County, CA

  16. National uranium resource evaluation program: hydrogeochemical and stream sediment reconnaissance basic data for Fresno quadrangle, California

    SciTech Connect

    Not Available

    1981-10-15

    Field and laboratory data are presented for 1038 sediment samples from the Fresno Quadrangle, California. The samples were collected by Savannah River Laboratory; laboratory analysis and data reporting were perfomed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  17. Geologic map and structural analysis of the Victoria quadrangle, Mercury

    NASA Astrophysics Data System (ADS)

    Galluzzi, Valentina; Di Achille, Gaetano; Ferranti, Luigi; Rothery, David A.; Palumbo, Pasquale

    2015-04-01

    In this work we present a new geologic map and structural analysis of the Victoria quadrangle (H2) of Mercury, along with a reconnaissance study of the geometry and kinematics of lobate scarps in this area. To this end, we produced a 1:3,000,000 geologic map of the area using the images provided by the NASA spacecraft MESSENGER, which has been orbiting the planet since March, 2011. The geologic map shows the distribution of smooth plains, intermediate plains, intercrater plains units and a classification of crater materials based on an empirical distinction among three stages of degradation. Structural mapping shows that the H2 quadrangle is dominated by N-S faults (here grouped into the Victoria system) to the east and NE-SW faults (Larrocha system) to the west, with the secondary existence of NW-SE-trending faults (Carnegie system) in the north-western area of the quadrangle. A systematic analysis of these systems has led to the following results. 1) the Victoria system is characterized by a main array of faults located along Victoria Rupes - Endeavour Rupes - Antoniadi Dorsum. The segmentation of this array into three different sectors changes from north to south and is spatially linked to the presence of three volcanic vents located at the boundaries between each sector and at the northern end of the Victoria Rupes sector , suggesting that volcanism and faulting are interrelated 2) The main array of Carnegie system is kinematically linked and antithetical to the Victoria system. Both systems have arguably controlled the growth of a longitudinal, fault-free, crustal and gravimetric bulge in the central area of the Victoria quadrangle, which is interpreted as a regional contractional pop-up. 3) The Larrocha system is interrupted against the central bulge and thus is probably older than the Victoria and Carnegie systems. Buffered crater counting performed on the Victoria system confirms the young relative age of its fault segments with respect to the map units

  18. Vesta Compositional Diversity in Quadrangle Av-13 Tuccia

    NASA Astrophysics Data System (ADS)

    Pieters, C.; De Sanctis, M. C.; Ammanito, E.; Li, J. Y.; Nathues, A.; Kneissl, T.; Jaumann, R.; Reddy, V.; Le Corre, L.; Stephan, K.; Prusker, F.; Capaccioni, F.; Palomba, E.; Tosi, F.; Zambon, F.; Palmer, E.,; Raymond, C. A.; Russell, C. T.

    2012-04-01

    The Dawn spacecraft is currently orbiting the main belt asteroid 4 Vesta to evaluate the character of this small protoplanet and its role in early solar system evolution. Compositional data from the Gamma Ray and Neutron Detector (GRaND) are being acquired and will be available soon. Spectral data acquired with the Visible and Infrared Mapping Spectrometer (VIR) and the Framing Camera (FC) instruments provide compositional information in a spatial context. Available VIR data provide the high spectral resolution necessary for mineral identification and characterization while FC data provide selected spectral channels, but at a higher spatial resolution that enable geologic relations to be better discerned. As these different data are integrated and analyzed, broad compositional variations are observed in the mineralogy across Vesta. The diversity seen on a global scale and direct associations with HED mineralogy is discussed in DeSanctis et al. and Ammannito et al. [this meeting]. Geologic mapping of Vesta has been initiated for 15 well-defined quadrangles and coordinated mineralogical mapping has commenced at that higher scale. We discuss the mineralogical diversity observed in quadrangle Av-13 Tuccia, which spans a region between 21° -66°S latitude and 180° -270° E longitude on Vesta. The Av-13 Tuccia quadrangle includes three major geologic terrains [see Kneissl et al., this meeting]: Vestalia Terra located in the north of the quadrangle, the Equatorial Cratered Terrain, and the Ridge-and-Groove Terrain which is part of the Rheasilvia Formation. As such, the Tuccia quadrangle includes regions which transition from the equatorial terrain to the giant impact basin of Rheasilvia. Prominent spectral variations are mapped across the surface by FC and VIR, largely associated with relatively fresh impact craters. Diagnostic absorption bands of pyroxene are readily detected. The relative strength of these absorptions is seen to vary in a regular spatial context

  19. Photogeologic maps of the Iris SE and Doyleville SW quadrangles, Saguache County, Colorado

    USGS Publications Warehouse

    McQueen, Kathleen

    1957-01-01

    The Iris SE and Doyleville SW quadrangles, Saguache County, Colorado include part ot the Cochetopa mining district. Photogeologic maps of these quadrangles show the distribution of sedimentary rocks of Jurassic and Cretaceous age; precambrian granite, schist, and gneiss; and igneous rocks of Tertiary age. Sedimentary rocks lie on an essentially flat erosion surface on Precambrian rocks. Folds appear to be absent but faults present an extremely complex structural terrane. Uraniferous deposits occur at fault intersections in Precambriam and Mesozoic rocks.

  20. Maps showing selected geology and phosphate resources of the Stewart Flat quadrangle, Caribou County, Idaho

    USGS Publications Warehouse

    Derkey, Pamela Dunlap; Paul, Ken; Palmer, Pamela; Fakourbayat, Mahasti; Wotruba, Nancy J.; Hovland, R. David

    1984-01-01

    This report summarizes information on the thickness, grade, lateral continuity, phosphate resources, and ownership of phosplate-bearing units in the Meade Peak Phosphatic Shale Member of the Phosphoria Formation in the Stewart Flat quadrangle. This report is one of a series of quadrangle reports prepared by the Idaho Bureau of Mines and Geology under U.S. Geological Survey cost sharing contract # 14-08-0001-17925 to calculate phosphate resources in southeastern Idaho (fig. 1).

  1. Washington v. Glucksberg.

    PubMed

    1997-06-26

    The U.S. Supreme Court upheld Washington's ban against assisted suicide "as applied to competent, terminally ill adults who wish to hasten their deaths by obtaining medication prescribed by their doctors." The Court refused to expand the liberty interest under the Due Process Clause of the U.S. constitution to include a right to commit suicide under it, a right to assisted suicide. The state has prevailing interests in the preservation of human life, the prevention of suicide, the integrity of the medical profession, the protection of vulnerable groups, and avoidance of a slippery slope into euthanasia. PMID:12041284

  2. Geologic Map of the Sif Mons Quadrangle (V-31), Venus

    USGS Publications Warehouse

    Copp, Duncan L.; Guest, John E.

    2007-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Sif Mons quadrangle of Venus includes lat 0? to 25? N. and long 330? to 0? E.; it covers an area of about 8.10 x 106 km2 (fig. 1). The data used to construct the geologic map were from the National Aeronautics and Space Administration (NASA) Magellan Mission. The area is also covered by Arecibo images, which were also consulted (Campbell and Campbell, 1990; Campbell and others, 1989). Data from the Soviet Venera orbiters do not cover this area. All of the SAR products were employed for geologic mapping. C1-MIDRs were used for general recognition of units and structures; F-MIDRs and F-MAPs were used for more specific examination of surface characteristics and structures. Where the highest resolution was required or some image processing was necessary to solve a particular mapping problem, the images were examined using the digital data on CD-ROMs. In cycle 1, the SAR incidence angles for images obtained for the Sif Mons quadrangle ranged from 44? to 46?; in cycle 3, they were between 25? and 26?. We use the term 'high backscatter' of a material unit to imply a rough surface texture at the wavelength scale used by Magellan SAR. Conversely, 'low backscatter' implies a smooth surface. In addition, altimetric, radiometric, and rms slope data were superposed on SAR images. Figure 2 shows altimetry data; figure 3 shows images of ancillary data for the quadrangle; and figure 4 shows backscatter coefficient for selected units. The interpretation of these data was discussed by Ford and others (1989, 1993). For corrected backscatter and

  3. Geologic Map of Quadrangle 3470 and the Northern Edge of Quadrangle 3370, Jalal-Abad (511), Chaghasaray (512), and Northernmost Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  4. Geologic Map of Quadrangle 3368 and Part of Quadrangle 3370, Ghazni (515), Gardez (516), and Part of Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Maldonado, Florian; Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  5. Teton Dam flood of June 1976, Pingree quadrangle, Idaho

    USGS Publications Warehouse

    Hubbard, Larry L.; Bartells, John H.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Pingree quadrangle. (Woodard-USGS)

  6. Teton Dam flood of June 1976, Newdale quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Matthai, Howard F.; Thomas, Cecil A.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Newdale quadrangle. (Woodard-USGS)

  7. Teton Dam flood of June 1976, Moody quadrangle, Idaho

    USGS Publications Warehouse

    Harenberg, William A.; Bigelow, Bruce B.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Moody quadrangle. (Woodard-USGS)

  8. Teton Dam flood of June 1976, St. Anthony quadrangle, Idaho

    USGS Publications Warehouse

    Thomas, Cecil A.; Ray, Herman A.; Matthai, Howard F.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the St. Anthony quadrangle. (Woodard-USGS)

  9. Teton Dam flood of June 1976, Firth quadrangle, Idaho

    USGS Publications Warehouse

    Hubbard, Larry L.; Bartells, John H.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Firth quadrangle. (Woodard-USGS)

  10. Teton Dam flood of June 1976, Rose quadrangle, Idaho

    USGS Publications Warehouse

    Bartells, John H.; Hubbard, Larry L.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Rose quadrangle. (Woodard-USGS)

  11. Teton Dam flood of June 1976, Parker quadrangle, Idaho

    USGS Publications Warehouse

    Thomas, Cecil Albert; Ray, Herman A.

    1976-01-01

    The failure of Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls, Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Parker quadrangle. (Woodard-USGS)

  12. Teton Dam flood of June 1976, Rigby quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Bigelow, Bruce B.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Rigby quadrangle. (Woodard-USGS)

  13. Teton Dam flood of June 1976, Menan Buttes quadrangle, Idaho

    USGS Publications Warehouse

    Thomas, Cecil A.; Ray, Herman A.; Harenberg, William A.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Menan Buttes quadrangle. (Woodard-USGS)

  14. Teton Dam flood of June 1976, Deer Parks quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Bennett, C. Michael; Records, Andrew W.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Deer Parks quadrangle. (Woodard-USGS)

  15. Teton Dam flood of June 1976, Rexburg quadrangle, Idaho

    USGS Publications Warehouse

    Harenberg, W.A.; Bigelow, B.B.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification on these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Rexburg quadrangle. (Woodard-USGS)

  16. Teton Dam flood of June 1976, Woodville quadrangle, Idaho

    USGS Publications Warehouse

    Matthai, Howard F.; Ray, Herman A.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Woodville quadrangle. (Woodard-USGS)

  17. Teton Dam flood of June 1976, Lewisville quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Bigelow, Bruce B.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Lewisville quadrangle. (Woodard-USGS)

  18. Teton Dam flood of June 1976, Moreland quadrangle, Idaho

    USGS Publications Warehouse

    Hubbard, Larry L.; Bartells, John H.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The aea covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Moreland quadrangle. (Woodard-USGS)

  19. National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana

    SciTech Connect

    Damp, J N; Jennings, M D

    1982-04-01

    The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated.

  20. National Uranium Resource Evaluation: Wells Quadrangle, Nevada, Idaho, and Utah

    SciTech Connect

    Proffitt, J.L.; Mayerson, D.L.; Parker, D.P.; Wolverson, N.; Antrim, D.; Berg, J.; Witzel, F.

    1982-08-01

    The Wells 2/sup 0/ Quadrangle, Nevada, Idaho, and Utah, was evaluated using National Uranium Resource Evaluation criteria to delineate areas favorable for uranium deposits. Our investigation has resulted in the delineation of areas that contain Tertiary sedimentary rocks favorable for hydroallogenic deposits in the Mountain City area (Favorable Area A) and in the Oxley Peak area north of Wells (Favorable Area B). Environments considered to be unfavorable for uranium deposits include Tertiary felsic volcanic, felsic plutonic, intermediate to mafic volcanic, Paleozoic and Mesozoic sedimentary rocks, Precambrian rocks, and most Tertiary sedimentary rocks located outside the favorable areas. Present-day basins are unevaluated environments because of a paucity of adequate outcrop and subsurface data. However, the scarce data indicate that some characteristics favorable for uranium deposits are present in the Susie Creek-Tule Valley-Wild Horse basin, the Contact-Granite Range-Tijuana John stocks area, the Charleston Reservoir area, and the Wells-Marys River basin.

  1. National uranium resource evaluation, Rapid City Quadrangle, South Dakota

    SciTech Connect

    Nanna, R.F.; Milton, E.J.

    1982-04-01

    The Rapid City (1/sup 0/ x 2/sup 0/) Quadrangle, South Dakota, was evaluated for environments favorble for uranium deposits to a depth of 1500 m. Criteria used were those of the National Uranium Resource Evaluation. Field reconnaissance involved the use of hand-held scintillometers to investigate uranium occurrences reported in the literature and anomalies in aerial radiometric surveys, and geochemical samples of stream sediments and well waters. Gamma-ray logs were used to define the favorable environments in the subsurface. Environments favorable for sandstone-type uranium deposits occur in the Inyan Kara Group, the Fox Hills Sandstone, and the Hell Creek Formation. Environments considered unfavorable for uranium deposits include all Precambrian, Paleozoic, Mesozoic, and Tertiary rocks other than those identified as favorable.

  2. Geologic map of the Metis Mons quadrangle (V–6), Venus

    USGS Publications Warehouse

    Dohm, James M.; Tanaka, Kenneth L.; Skinner, James A.

    2011-01-01

    The Metis Mons quadrangle (V–6) in the northern hemisphere of Venus (lat 50° to 75° N., long 240° to 300° E.) includes a variety of coronae, large volcanoes, ridge and fracture (structure) belts, tesserae, impact craters, and other volcanic and structural features distributed within a plains setting, affording study of their detailed age relations and evolutionary development. Coronae in particular have magmatic, tectonic, and topographic signatures that indicate complex evolutionary histories. Previously, the geology of the map region has been described either in general or narrowly focused investigations. Based on Venera radar mapping, a 1:15,000,000-scale geologic map of part of the northern hemisphere of Venus included the V–6 map region and identified larger features such as tesserae, smooth and hummocky plains materials, ridge belts, coronae, volcanoes, and impact craters but proposed little relative-age information. Global-scale mapping from Magellan data identified similar features and also determined their mean global ages with crater counts. However, the density of craters on Venus is too low for meaningful relative-age determinations at local to regional scales. Several of the coronae in the map area have been described using Venera data (Stofan and Head, 1990), while Crumpler and others (1992) compiled detailed identification and description of volcanic and tectonic features from Magellan data. The main purpose of this map is to reconstruct the geologic history of the Metis Mons quadrangle at a level of detail commensurate with a scale of 1:5,000,000 using Magellan data. We interpret four partly overlapping stages of geologic activity, which collectively resulted in the formation of tesserae, coronae (oriented along structure belts), plains materials of varying ages, and four large volcanic constructs. Scattered impact craters, small shields and pancake-shaped domes, and isolated flows superpose the tectonically deformed materials and appear to

  3. Geologic map of the Alligator Ridge area, including the Buck Mountain East and Mooney Basin Summit quadrangles and parts of the Sunshine Well NE and Long Valley Slough quadrangles, White Pine County, Nevada

    USGS Publications Warehouse

    Nutt, Constance J.

    2000-01-01

    Data set describes the geology of Paleozoic through Quaternary units in the Alligator Ridge area, which hosts disseminated gold deposits. These digital files were used to create the 1:24,000-scale geologic map of the Buck Mountain East and Mooney Basin Summit Quadrangles and parts of the Sunshine Well NE and Long Valley Slough Quadrangles, White Pine County, east-central Nevada.

  4. Geologic Map of the Aino Planitia (V46) Quadrangle, Venus 1:5,000,000

    USGS Publications Warehouse

    Stofan, Ellen R.; Guest, John E.

    2003-01-01

    The Aino Planitia quadrangle (V-46) extends from 25?-50? S. latitude, 60?-90? E. longitude. The quadrangle was mapped at 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program. Aino Planitia is a lowland region in the southern hemisphere of Venus and is southwest of Thetis Regio in western Aphrodite Terra. It is dominated by low-lying plains units that are characterized by northeast-trending wrinkle ridges and numerous small volcanic edifices, including shields, domes, and cones. The quadrangle contains a major volcano, Kunapipi Mons, and portions of Juno Chasma. A northern extension of the Lada Terra highland is in the southwestern portion of the map. Eight coronae are mapped in the quadrangle, the largest of which is the 500-km-diameter Copia Corona. The region is dominated by plains that are interpreted to be of volcanic origin. Most of the plains units are composites of flow units of differing ages. The overall topography of V-46 consists of low-lying plains slightly below Mean Planetary Radius (MPR, 6051.84 km). The summit of Kunapipi Mons is the highest point in the quadrangle, at about 2.2 km above MPR; the lowest points in rifts and troughs are at about 1.7 km below MPR. The regions that are the roughest at Magellan radar wavelengths in the quadrangle occur along the rim of Copia Corona, with most regions being relatively smooth (roughness comparable to the average Venus surface. Emissivity values in the quadrangle vary from 0.82-0.90.

  5. Geologic map of the Fraser 7.5-minute quadrangle, Grand County, Colorado

    USGS Publications Warehouse

    Shroba, Ralph R.; Bryant, Bruce; Kellogg, Karl S.; Theobald, Paul K.; Brandt, Theodore R.

    2010-01-01

    The geologic map of the Fraser quadrangle, Grand County, Colo., portrays the geology along the western boundary of the Front Range and the eastern part of the Fraser basin near the towns of Fraser and Winter Park. The oldest rocks in the quadrangle include gneiss, schist, and plutonic rocks of Paleoproterozoic age that are intruded by younger plutonic rocks of Mesoproterozoic age. These basement rocks are exposed along the southern, eastern, and northern margins of the quadrangle. Fluvial claystone, mudstone, and sandstone of the Upper Jurassic Morrison Formation, and fluvial sandstone and conglomeratic sandstone of the Lower Cretaceous Dakota Group, overlie Proterozoic rocks in a small area near the southwest corner of the quadrangle. Oligocene rhyolite tuff is preserved in deep paleovalleys cut into Proterozoic rocks near the southeast corner of the quadrangle. Generally, weakly consolidated siltstone and minor unconsolidated sediments of the upper Oligocene to upper Miocene Troublesome Formation are preserved in the post-Laramide Fraser basin. Massive bedding and abundant silt suggest that loess or loess-rich alluvium is a major component of the siltstone in the Troublesome Formation. A small unnamed fault about one kilometer northeast of the town of Winter Park has the youngest known displacement in the quadrangle, displacing beds of the Troublesome Formation. Surficial deposits of Pleistocene and Holocene age are widespread in the Fraser quadrangle, particularly in major valleys and on slopes underlain by the Troublesome Formation. Deposits include glacial outwash and alluvium of non-glacial origin; mass-movement deposits transported by creep, debris flow, landsliding, and rockfall; pediment deposits; tills deposited during the Pinedale and Bull Lake glaciations; and sparse diamictons that may be pre-Bull Lake till or debris-flow deposits. Some of the oldest surficial deposits may be as old as Pliocene.

  6. Preliminary geologic map of the eastern Willapa Hills, Cowlitz, Lewis, and Wahkiakum Counties, Washington

    USGS Publications Warehouse

    Wells, Ray E.; Sawlan, Michael G.

    2014-01-01

    This digital map database and the PDF derived from the database were created from the analog geologic map: Wells, R.E. (1981), “Geologic map of the eastern Willapa Hills, Cowlitz, Lewis, and Wahkiakum Counties, Washington.” The geodatabase replicates the geologic mapping of the 1981 report with minor exceptions along water boundaries and also along the north and south map boundaries. Slight adjustments to contacts along water boundaries were made to correct differences between the topographic base map used in the 1981 compilation (analog USGS 15-minute series quadrangle maps at 1:62,500 scale) and the base map used for this digital compilation (scanned USGS 7.5-minute series quadrangle maps at 1:24,000 scale). These minor adjustments, however, did not materially alter the geologic map. No new field mapping was performed to create this digital map database, and no attempt was made to fit geologic contacts to the new 1:24,000 topographic base, except as noted above. We corrected typographical errors, formatting errors, and attribution errors (for example, the name change of Goble Volcanics to Grays River Volcanics following current State of Washington usage; Walsh and others, 1987). We also updated selected references, substituted published papers for abstracts, and cited published radiometric ages for the volcanic and plutonic rocks. The reader is referred to Magill and others (1982), Wells and Coe (1985), Walsh and others (1987), Moothart (1993), Payne (1998), Kleibacker (2001), McCutcheon (2003), Wells and others (2009), Chan and others (2012), and Wells and others (in press) for subsequent interpretations of the Willapa Hills geology.

  7. Geologic map and digital database of the Pinto Mountain 7.5 minute quadrangle, Riverside County, California

    USGS Publications Warehouse

    Powell, Robert E.

    2002-01-01

    The geologic map and digital database of the Pinto Mountain quadrangle are products of a regional geologic mapping effort undertaken in the eastern Transverse Ranges in and around Joshua Tree National Park. This investigation, part of the Southern California Areal Mapping Project (SCAMP), is conducted in cooperation with the California Geologic Survey and the National Park Service. In line with the goals of the National Cooperative Geologic Mapping Program (NCGMP), mapping of the Pinto Mountain and other quadrangles has been directed toward generating a multipurpose digital geologic map database that is applicable to land-related investigations in the earth and biological sciences. This mapping is conducted to further understanding of bedrock geology and surficial processes in the region and to document evidence for seismotectonic activity in the eastern Transverse Ranges. It is also intended to serve as a base layer suitable for ecosystem and mineral resource assessment and for building a hydrogeologic framework for Pinto Basin. Initial investigations span Pinto Basin from the Hexie and Eagle Mountains northward into the Pinto Mountains. Quadrangles mapped include the Conejo Well 7.5-minute quadrangle (Powell, 2001a), the Porcupine Wash 7.5-minute quadrangle (Powell, 2001b), the Pinto Mountain 7.5-minute quadrangle, and the San Bernardino Wash 7.5-minute quadrangle (Powell, 2002). Parts of the Pinto Mountain quadrangle had been mapped previously at a variety of scales (Weir, and Bader, 1963; Hope, 1966, 1969; Jennings, 1967; Powell, 1981, 1993).

  8. Geologic map and digital database of the San Bernardino Wash 7.5 minute quadrangle, Riverside County, California

    USGS Publications Warehouse

    Powell, Robert E.; digital preparation by Cossette, Pamela M.

    2002-01-01

    The geologic map and digital database of the San Bernardino Wash quadrangle are products of a regional geologic mapping effort undertaken in the eastern Transverse Ranges in and around Joshua Tree National Park. This investigation, part of the Southern California Areal Mapping Project (SCAMP), is conducted in cooperation with the California Geologic Survey and the National Park Service. In line with the goals of the National Cooperative Geologic Mapping Program (NCGMP), mapping of the San Bernardino Wash and other quadrangles has been directed toward generating a multipurpose digital geologic map database that is applicable to land-related investigations in the earth and biological sciences. This mapping is conducted to further understanding of bedrock geology and surficial processes in the region and to document evidence for seismotectonic activity in the eastern Transverse Ranges. It is also intended to serve as a base layer suitable for ecosystem and mineral resource assessment and for building a hydrogeologic framework for Pinto Basin. Initial investigations span Pinto Basin from the Hexie and Eagle Mountains northward into the Pinto Mountains (see fig. 1). Quadrangles mapped include the Conejo Well 7.5-minute quadrangle (Powell, 2001a), the Porcupine Wash 7.5-minute quadrangle (Powell, 2001b), the Pinto Mountain 7.5-minute quadrangle (Powell, 2002), and the San Bernardino Wash 7.5-minute quadrangle. Parts of the San Bernardino Wash quadrangle had been mapped previously at a variety of scales (Weir, and Bader, 1963; Hope, 1966, 1969; Jennings, 1967; Powell, 1981, 1993).

  9. The University Quadrangle of the University of Pennsylvania: A Successful Experiment in the Revitalization of Residential Living.

    ERIC Educational Resources Information Center

    Wertz, Richard D.

    This speech describes the residence hall program at the University Quadrangle at the University of Pennsylvania. Most of the structures comprising the quadrangle are one-half to three quarters of a century old, hence, they had become increasingly unpopular as a choice of campus residences. However, without major renovation, and with only minor…

  10. Early Learning in Washington State

    ERIC Educational Resources Information Center

    Bill & Melinda Gates Foundation, 2011

    2011-01-01

    About 80,000 children enter kindergarten in Washington each year, and many lack basic language and behavioral skills--such as knowing letters and colors, following directions, getting along with others, and exhibiting impulse-control. In 2006, based on the recommendation of the Washington Learns Commission, Governor Christine Gregoire created the…

  11. False-Color-Image Map of Quadrangle 3566, Sang-Charak (501) and Sayghan-O-Kamard (502) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  12. False-Color-Image Map of Quadrangle 3364, Pasa-Band (417) and Kejran (418) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. False-Color-Image Map of Quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  14. False-Color-Image Map of Quadrangle 3462, Herat (409) and Chesht-Sharif (410) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  15. False-Color-Image Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  16. False-Color-Image Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  17. False-Color-Image Map of Quadrangle 3264, Nawzad-Musa-Qala (423) and Dehrawat (424) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  18. False-Color-Image Map of Quadrangle 3468, Chak Wardak-Syahgerd (509) and Kabul (510) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  19. Natural-Color-Image Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  20. False-Color-Image Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  1. False-Color-Image Map of Quadrangle 3466, Lal-Sarjangal (507) and Bamyan (508) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  2. Natural-Color-Image Map of Quadrangle 3466, Lal-Sarjangal (507) and Bamyan (508) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  3. False-Color-Image Map of Quadrangle 3670, Jarm-Keshem (223) and Zebak (224) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  4. Natural-Color-Image Map of Quadrangle 3670, Jarm-Keshem (223) and Zebak (224) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  5. Geologic map of the Glen Canyon Dam 30’ x 60’ quadrangle, Coconino County, northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Priest, Susan S.

    2013-01-01

    The Glen Canyon Dam 30’ x 60’ quadrangle is characterized by nearly flat lying to gently dipping Paleozoic and Mesozoic sedimentary strata that overlie tilted Proterozoic strata or metasedimentary and igneous rocks similar to those exposed at the bottom of Grand Canyon southwest of the quadrangle. Mississippian to Permian rocks are exposed in the walls of Marble Canyon; Permian strata and minor outcrops of Triassic strata form the surface bedrock of House Rock Valley and Marble Plateau, southwestern quarter of the quadrangle. The Paleozoic strata exposed in Marble Canyon and Grand Canyon south of the map are likely present in the subsurface of the entire quadrangle but with unknown facies and thickness changes. The Mesozoic sedimentary rocks exposed along the Vermilion and Echo Cliffs once covered the entire quadrangle, but Cenozoic erosion has removed most of these rocks from House Rock Valley and Marble Plateau areas. Mesozoic strata remain over much of the northern and eastern portions of the quadrangle where resistant Jurassic sandstone units form prominent cliffs, escarpments, mesas, buttes, and much of the surface bedrock of the Paria, Kaibito, and Rainbow Plateaus. Jurassic rocks in the northeastern part of quadrangle are cut by a sub-Cretaceous regional unconformity that bevels the Entrada Sandstone and Morrison Formation from Cummings Mesa southward to White Mesa near Kaibito. Quaternary deposits, mainly eolian, mantle much of the Paria, Kaibito, and Rainbow Plateaus in the northern and northeastern portion of the quadrangle. Alluvial deposits are widely distributed over parts of House Rock Valley and Marble Plateau in the southwest quarter of the quadrangle. The east-dipping strata of the Echo Cliffs Monocline forms a general north-south structural boundary through the central part of the quadrangle, separating Marble and Paria Plateaus west of the monocline from the Kaibito Plateau east of the monocline. The Echo Cliffs Monocline continues north of

  6. Geologic Map of the Eaton Reservoir Quadrangle, Larimer County, Colorado and Albany County, Wyoming

    USGS Publications Warehouse

    Workman, Jeremiah B.

    2008-01-01

    New geologic mapping of the Eaton Reservoir 7.5' quadrangle defines geologic relationships in the northern Front Range along the Colorado/Wyoming border approximately 35 km south of Laramie, Wyo. Previous mapping within the quadrangle was limited to regional reconnaissance mapping (Tweto, 1979; Camp, 1979; Burch, 1983) and some minor site-specific studies (Carlson and Marsh, 1986; W. Braddock, unpub. mapping, 1982). Braddock and others (1989) mapped the Diamond Peak 7.5' quadrangle to the east, Burch (1983) mapped rocks of the Rawah batholith to the south, W. Braddock (unpub. mapping, 1981) mapped the Sand Creek Pass 7.5' quadrangle to the west, and Ver Ploeg and Boyd (2000) mapped the Laramie 30' x 60' quadrangle to the north. Field work was completed during 2005 and 2006 and the mapping was compiled at a scale of 1:24,000. Minimal petrographic work and isotope dating was done in connection with the present mapping, but detailed petrographic and isotope studies were carried out on correlative map units in surrounding areas as part of a related regional study of the northern Front Range. Classification of Proterozoic rocks is primarily based upon field observation of bulk mineral composition, macroscopic textural features, and field relationships that allow for correlation with rocks studied in greater detail outside of the map area.

  7. Geologic map of the Sand Creek Pass quadrangle, Larimer County, Colorado, and Albany County, Wyoming

    USGS Publications Warehouse

    Workman, Jeremiah B.; Braddock, William A.

    2010-01-01

    New geologic mapping within the Sand Creek Pass 7.5 minute quadrangle defines geologic relationships within the northern Front Range of Colorado along the Wyoming border approximately 35 km south of Laramie, Wyo. Previous mapping within the quadrangle was limited to regional reconnaissance mapping; Eaton Reservoir 7.5 minute quadrangle to the east (2008), granite of the Rawah batholith to the south (1983), Laramie River valley to the west (1979), and the Laramie 30' x 60' quadrangle to the north (2007). Fieldwork was completed during 1981 and 1982 and during 2007 and 2008. Mapping was compiled at 1:24,000-scale. Minimal petrographic work was done and no isotope work was done in the quadrangle area, but detailed petrographic and isotope studies were performed on correlative map units in surrounding areas as part of a related regional study of the northern Front Range. Stratigraphy of Proterozoic rocks is primarily based upon field observation of bulk mineral composition, macroscopic textural features, and field relationships that allow for correlation with rocks studied in greater detail outside of the map area. Stratigraphy of Phanerozoic rocks is primarily based upon correlation with similar rocks to the north in the Laramie Basin of Wyoming and to the east in the Front Range of Colorado.

  8. Geologic map of the White Hall quadrangle, Frederick County, Virginia, and Berkeley County, West Virginia

    USGS Publications Warehouse

    Doctor, Daniel H.; Orndorff, Randall C.; Parker, Ronald A.; Weary, David J.; Repetski, John E.

    2010-01-01

    The White Hall 7.5-minute quadrangle is located within the Valley and Ridge province of northern Virginia and the eastern panhandle of West Virginia. The quadrangle is one of several being mapped to investigate the geologic framework and groundwater resources of Frederick County, Va., as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia. All exposed bedrock outcrops are clastic and carbonate strata of Paleozoic age ranging from Middle Cambrian to Late Devonian. Surficial materials include unconsolidated alluvium, colluvium, and terrace deposits of Quaternary age, and local paleo-terrace deposits possibly of Tertiary age. The quadrangle lies across the northeast plunge of the Great North Mountain anticlinorium and includes several other regional folds. The North Mountain fault zone cuts through the eastern part of the quadrangle; it is a series of thrust faults generally oriented northeast-southwest that separate the Silurian and Devonian clastic rocks from the Cambrian and Ordovician carbonate rocks and shales. Karst development in the quadrangle occurs in all of the carbonate rocks. Springs occur mainly near or on faults. Sinkholes occur within all of the carbonate rock units, especially where the rocks have undergone locally intensified deformation through folding, faulting, or some combination.

  9. Geologic Map of the Needles 7.5' Quadrangle, California and Arizona

    USGS Publications Warehouse

    Malmon, Daniel V.; Howard, Keith A.; Priest, Susan S.

    2009-01-01

    The Needles 7.5' quadrangle straddles the Colorado River in the southern part of the Mohave Valley, in Mohave County, Arizona, and San Bernardino County, California. The quadrangle contains part of the Havasu National Wildlife Refuge, sections of the Fort Mojave Indian Reservation, most of the city of Needles, and several major interstate highways and railroads. The quadrangle is underlain by structurally undeformed sediments of Pliocene and younger age that were deposited by the Colorado River, as well as alluvial fan deposits on the piedmonts that flank the Black Mountains (in Arizona) and the Sacramento Mountains (in California). Multiple cycles of aggradation of the Colorado River, each followed by episodes of downcutting, are recorded by Pliocene through historic deposits on the piedmonts that border the floodplain. Regionally, the complex stratigraphy related to the Colorado River has been the subject of geologic interest for over 150 years. The California and Arizona piedmont portions of the Needles quadrangle expose a subset of this incompletely understood stratigraphic record. Thus, the stratigraphic sequence presented on this map is a version of the stratigraphy of the Colorado River as interpreted locally. The deposits in the recently active Colorado River valley floor support riparian habitat and irrigated agriculture. The distributions of sand-rich channel deposits and mud-rich floodplain deposits in the valley are mapped on the basis of the history of the movement of the Colorado River in the quadrangle, which has been documented in sequential aerial photographs since 1937 and maps dating to 1857.

  10. Geologic map of the Mound Spring quadrangle, Nye and Clark Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Lundstrom, Scott C.; Mahan, Shannon; Blakely, Richard J.; Paces, James B.; Young, Owen D.; Workman, Jeremiah B.; Dixon, Gary L.

    2003-01-01

    The Mound Spring quadrangle, the southwestern-most 7.5' quadrangle of the area of the Las Vegas 1:100,000-scale quadrangle, is entirely within the Pahrump Valley, spanning the Nevada/California State line. New geologic mapping of the predominantly Quaternary materials is combined with new studies of gravity and geochronology in this quadrangle. Eleven predominantly fine-grained units are delineated, including playa sediment, dune sand, and deposits associated with several cycles of past groundwater discharge and distal fan sedimentation. These units are intercalated with 5 predominantly coarse-grained alluvial-fan and wash gravel units mainly derived from the Spring Mountains. The gravel units are distinguished on the basis of soil development and associated surficial characteristics. Thermoluminescence and U-series geochronology constrain most of the units to the Holocene and late and middle Pleistocene. Deposits of late Pleistocene groundwater discharge in the northeast part of the quadrangle are associated with a down-to-the-southwest fault zone that is expressed by surface fault scarps and a steep gravity gradient. The gravity field also defines a northwest-trending uplift along the State line, in which the oldest sediments are poorly exposed. About 2 km to the northeast a prominent southwest-facing erosional escarpment is formed by resistant beds in middle Pleistocene fine-grained sediments that dip northeast away from the uplift. These sediments include cycles of groundwater discharge that were probably caused by upwelling of southwesterly groundwater flow that encountered the horst.

  11. Digital Geologic Map of the Wallace 1:100,000 Quadrangle, Idaho

    USGS Publications Warehouse

    Lewis, Reed S.; Burmester, Russell F.; McFaddan, Mark D.; Derkey, Pamela D.; Oblad, Jon R.

    1999-01-01

    The geology of the Wallace 1:100,000 quadrangle, Idaho was compiled by Reed S. Lewis in 1997 primarily from published materials including 1983 data from Foster, Harrison's unpublished mapping done from 1975 to 1985, Hietenan's 1963, 1967, 1968, and 1984 mapping, Hobbs and others 1965 mapping, and Vance's 1981 mapping, supplemented by eight weeks of field mapping by Reed S. Lewis, Russell F. Burmester, and Mark D. McFaddan in 1997 and 1998. This geologic map information was inked onto a 1:100,000-scale greenline mylar of the topographic base map for input into a geographic information system (GIS). The resulting digital geologic map GIS can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000). The map area is located in north Idaho. The primary sources of map data are shown in figure 2 and additional sources are shown in figure 3. This open-file report describes the geologic map units, the methods used to convert the geologic map data into a digital format, the Arc/Info GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. Mapping and compilation was completed by the Idaho Geological Survey under contract with the U.S. Geological Survey (USGS) office in Spokane, Washington. The authors would like to acknowledge the help of the following field assistants: Josh Goodman, Yvonne Issak, Jeremy Johnson and Kevin Myer. Don Winston provided help with our ongoing study of Belt stratigraphy, and Tom Frost assisted with logistical problems and sample collection. Manuscript reviews by Steve Box, Tom Frost, and Brian White are greatly appreciated. We wish to thank Karen S

  12. Geologic map of the Horse Mountain Quadrangle, Garfield County, Colorado

    USGS Publications Warehouse

    Perry, W.J.; Shroba, R.R.; Scott, R.B.; Maldonado, Florian

    2003-01-01

    New 1:24,000-scale geologic map of the Horse Mountain 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, summarizes available geologic information for the quadrangle. It provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift. Bedrock strata include the Paleocene and early Eocene Wasatch Formation down through Ordovician and Cambrian units into Precambrian hornblende tonalite. The Wasatch Formation includes the Shire, Molina and Atwell Gulch Members which are mapped separately. The underlying Upper Cretaceous Mesaverde Group is subdivided into the Willams Fork and Iles Formations. The Cameo-Fairfield clinker zone within the Williams Fork Formation is mapped separately. The Iles Formation includes the Rollins Sandstone Member at the top, mapped separately, and the Cozzette Sandstone and Corcoran Sandstone Members, which are undivided. The Mancos Shale consists of four members, an upper member, the Niobrara Member, the Juana Lopez Member, and a lower member, undivided. The Lower Cretaceous Dakota Sandstone, the Upper Jurassic Morrison Formation, and Jurassic Entrada Sandstone are mapped separately. The Lower Jurassic and Upper Triassic Glen Canyon Sandstone is mapped with the Entrada in the Horse Mountain Quadrangle. The upper Triassic Chinle Formation and the Lower Permian and Triassic(?) State Bridge Formation are present. The Pennsylvanian and Permian Maroon Formation is undivided. All the exposures of the Middle Pennsylvanian Eagle Valley Evaporite are diapiric, intruded into the Middle Pennsylvanian Eagle Valley Formation, which includes locally mappable limestone beds. The Lower and Middle Pennsylvanian Belden Formation and the Lower Mississippian Leadville Limestone are present. The Upper Devonian Chaffee Group consists of the Dyer Dolomite and the underlying Parting Quartzite, undivided. Locally, the Lower Ordovician

  13. National uranium resource evaluation: McAllen and Brownsville Quadrangles, Texas

    SciTech Connect

    Charepon, A J; Stauber, A J

    1982-06-01

    The McAllen and Brownsville Quadrangles, Texas, were evaluated to a depth of 1500 m to identify geologic environments and delineate areas favorable for uranium deposits. The environments were selected according to criteria established for the National Uranium Resource Evaluation program. Surface studies included investigations of uranium occurrences described in the literature, of locations of aerial radiometric anomalies, of surface exposures, and of locations of anomalous hydrogeochemical and stream-sediment reconnaissance data and collation of information on uranium exploration. Subsurface evaluation of selected geologic units was accomplished by using electric and gamma-ray well logs to construct maps and construct maps and cross sections. In the McAllen Quadrangle, an environment favorable for Texas roll-type sandstone uranium deposits is identified in 36 areas in the Goliad, Fleming-Oakville, Catahoula-Frio, and Whitsett Formations. All other units in both quadrangles are considered unfavorable.

  14. Geologic map of the Morena Reservoir 7.5-minute quadrangle, San Diego County, California

    USGS Publications Warehouse

    Todd, Victoria R.

    2016-01-01

    IntroductionMapping in the Morena Reservoir 7.5-minute quadrangle began in 1980, when the Hauser Wilderness Area, which straddles the Morena Reservoir and Barrett Lake quadrangles, was mapped for the U.S. Forest Service. Mapping was completed in 1993–1994. The Morena Reservoir quadrangle contains part of a regional-scale Late Jurassic(?) to Early Cretaceous tectonic suture that coincides with the western limit of Jurassic metagranites in this part of the Peninsular Ranges batholith (PRB). This suture, and a nearly coincident map unit consisting of metamorphosed Cretaceous and Jurassic back-arc basinal volcanic and sedimentary rocks (unit KJvs), mark the boundary between western, predominantly metavolcanic rocks, and eastern, mainly metasedimentary, rocks. The suture is intruded and truncated by the western margin of middle to Late Cretaceous Granite Mountain and La Posta plutons of the eastern zone of the batholith.

  15. Geologic map of the Hasty Quadrangle, Boone and Newton Counties, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Murray, Kyle E.

    2004-01-01

    This digital geologic map compilation presents new polygon (for example, geologic map unit contacts), line (for example, fault, fold axis, and structure contour), and point (for example, structural attitude, contact elevations) vector data for the Hasty 7.5-minute quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Hasty quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Hasty quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  16. Preliminary Geologic Map of the Hemet 7.5' Quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Matti, Jon C.

    2005-01-01

    The Hemet 7.5' quadrangle is located near the eastern edge of the Perris block of the Peninsular Ranges batholith. The northeastern corner of the quadrangle extends across the San Jacinto Fault Zone onto the edge of the San Jacinto Mountains block. The Perris block is a relatively stable area located between the Elsinore Fault Zone on the west and the San Jacinto Fault Zone on the east. Both of the fault zones are active; the San Jacinto being the seismically most active in southern California. The fault zone is obscured by very young alluvial deposits. The concealed location of the San Jacinto Fault Zone shown on this quadrangle is after Sharp, 1967. The geology of the quadrangle is dominated by Cretaceous tonalite formerly included in the Coahuila Valley pluton of Sharp (1967). The northern part of Sharp's Coahuila Valley pluton is separated out as the Hemet pluton. Tonalite of the Hemet pluton is more heterogeneous than the tonalite of the Coahuila Valley pluton and has a different sturctural pattern. The Coahuila Valley pluton consists of relatively homogeneous hornblende-biotite tonalite, commonly with readily visible large euhedral honey-colored sphene crystals. Only the tip of the adjacent Tucalota Valley pluton, another large tonalite pluton, extends into the quadrangle. Tonalite of the Tucalota Valley pluton is very similar to the tonalite of the Coahuila Valley pluton except it generally lacks readily visible sphene. In the western part of the quadrangle a variety of amphibolite grade metasedimentary rocks are informally referred to as the rocks of Menifee Valley; named for exposures around Menifee Valley west of the Hemet quadrangle. In the southwestern corner of the quadrangle a mixture of schist and gneiss marks a suture that separated low metamorphic grade metasedimentary rocks to the west from high metamorphic grade rocks to the east. The age of these rocks is interpreted to be Triassic and the age of the suturing is about 100 Ma, essentially the

  17. Geologic map of the Jasper Quadrangle, Newton and Boone counties, Arkansas

    USGS Publications Warehouse

    Hudson, M.R.; Murray, K.E.; Pezzutti, Deborah

    2001-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Jasper 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Jasper quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Jasper quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  18. Geologic map of the Galaxias quadrangle (MTM 35217) of Mars

    USGS Publications Warehouse

    De Hon, Rene A.; Mouginis-Mark, Peter J.; Brick, Eugene E.

    1999-01-01

    The Galaxias region (MTM 35217) is one of a series of 1:500,000-scale science study areas on Mars sponsored by NASA's Planetary Geology and Geophysics Program. Situated near the northern limit of lava flows associated with Elysium Mons, this region includes a mixture of volcanic and nonvolcanic terrains. The region is also of interest for the fluvial systems that originate along the distal margins of the Elysium lava flows. Resolution of Viking Orbiter images used to prepare the base map ranges from 40 to 160 m/pixel. High-resolution frames (40 to 80 m/pixel) are found in the southeastern part of the map area and along the north edge of the quadrangle, but over half the quadrangle is included in medium-resolution frames (150 m/pixel). Two 8 m/pixel, very high resolution scenes are available (see fig. 1). Interpretation is complicated by variable resolution and sun angles that vary from east to west illumination on different images. Mapping methods and principles are adapted from those developed for lunar photogeologic mapping by Shoemaker and Hackman (1962), refined by Wilhelms (1972), and successfully applied by many workers to a variety of planetary surfaces. Mapping units are distinguished by topography and texture and are ranked by relative age on the basis of superposition and transection relations. Material units are assigned to time-stratigraphic systems defined by Scott and Carr (1978) and Tanaka (1986). This area is included within earlier maps that used Mariner 9 images at 1:5,000,000 scale (Elston, 1979) and globally at 1:25,000,000 scale (Scott and Carr, 1978). Regional maps based on the much higher resolutions of Viking Orbiter allowed more detailed discrimination of materials by Greeley and Guest (1987) at 1:15,000,000 scale and Tanaka and others (1992) at 1:5,000,000 scale. Some map units on this 1:500,000-scale map correspond to, or are partially equivalent to, units on the larger scale maps of Greeley and Guest (1987) and Tanaka and others (1992

  19. Geologic map of the Masters 7.5' Quadrangle, Weld and Morgan Counties, Colorado

    USGS Publications Warehouse

    Berry, Margaret E.; Slate, Janet L.; Paces, James B.; Hanson, Paul R.; Brandt, Theodore R.

    2015-01-01

    The Masters 7.5' quadrangle is located along the South Platte River corridor on the semiarid plains of eastern Colorado and contains surficial deposits that record alluvial, eolian, and hillslope processes that have operated in concert with environmental changes from Pleistocene to present time. The South Platte River, originating high in the Colorado Front Range, has played a major role in shaping the surficial geology of the quadrangle, which is situated downstream of where the last of the major headwater tributaries (St. Vrain, Big Thompson, and Cache la Poudre) join the river. Recurrent glaciation (and deglaciation) of basin headwaters affected river discharge and sediment supply far downstream, influencing deposition of alluvium and terrace formation in the Masters quadrangle. Kiowa and Bijou Creeks, unglaciated tributaries originating in the Colorado Piedmont east of the Front Range and joining the South Platte River just downstream of the Masters quadrangle, also have played a major role by periodically delivering large volumes of sediment to the river during flood events, which may have temporarily dammed the river. Eolian sand deposits of the Greeley (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of prolonged drought. With the onset of irrigation and damming during historical times, the South Platte River has changed from a broad, shallow sandy braided river with highly seasonal discharge to a much narrower, deeper river with braided-meandering transition morphology and more uniform discharge. Along the reach of river in the Masters quadrangle, the river has incised into Upper Cretaceous Pierre Shale, which, although buried by alluvial deposits here, is locally exposed downstream along the South Platte River bluff near the Bijou Creek confluence, in some of the larger draws, and along Wildcat Creek.

  20. National Uranium Resource Evaluation: Albany Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire

    SciTech Connect

    Field, M T; Truesdell, D B

    1982-09-01

    The Albany 1/sup 0/ x 2/sup 0/ Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Areas of favorable geology and aeroradioactivity anomalies were examined and sampled. Most Triassic and Jurassic sediments in the Connecticut Basin, in the central part of the quadrangle, were found to be favorable for sandstone uranium deposits. Some Precambrian units in the southern Green Mountains of Vermont were found favorable for uranium deposits in veins in metamorphic rocks.

  1. Scalable network of quadrangle entanglements via multiple phase-dependent electromagnetically induced transparency

    SciTech Connect

    Hu Xiangming; Sun Hong; Wang Fei

    2010-10-15

    One important class of multipartite continuous variable entanglement is described by a closed polygon, where every vertex represents one optical field and every side corresponds to the entanglement between the two connected vertices. Here we show that it is possible to obtain a scalable network of quadrangle entanglements by using multiple phase-dependent electromagnetically induced transparency. For 4,6,8,...,2n (n{>=}2) mode cases the network consists of 1,9,36,...,(1/4)n{sup 2} (n-1){sup 2} quadrangles, respectively. This suggests an efficient way of creating complex quantum networks and has great potentials for quantum information and computation.

  2. Geology of the Southeast Durham and Southwest Durham 7. 5-minute Quadrangles, North Carolina

    SciTech Connect

    Hoffman, C.W.; Gallagher, P.E.

    1989-01-01

    The Southeast Durham and Southwest Durham 7.5-minute Quadrangles include a 26 kilometer transect of the Durham Triassic basin from the Jonesboro fault on the southeastern side of this half-graben structure to a bounding unconformity on the northwestern side. The basin is filled with non-marine, primarily fluvial, clastic deposits of the Late Triassic Chatham Group. The Chatham Group rocks are intruded by Early Jurassic diabase as dikes and sheets. Bordering rocks are pre-Mesozoic intrusive, metavolcanic and metasedimentary rocks of the Carolina slate belt. This paper discusses the geology of the Southeast Durham and Southwest Durham Quadrangles. 37 refs., 17 figs.

  3. Coal reserves of the Boltsfork quadrangle, Kentucky: A coal recoverability study. Information circular/1994

    SciTech Connect

    Rohrbacher, T.J.; Teeters, D.D.; Sullivan, G.L.; Osmonson, L.M.

    1994-01-01

    The report presents a U.S. Bureau of Mines study that incorporates coal mining factors, coal recovery factors, and economic factors into the definition of an economically recoverable coal resource. The relationship between these factors to the Energy Information Administration's estimate of U.S. coal resources-the 'Demonstrated Reserve Base'--is discussed. The Boltsfork 7 1/2-minute quadrangle in eastern Kentucky was selected as the study area. Results indicate that of the original 280.2 M tons of resource in the quadrangle, only 99.8 M tons (35.6%) is recoverable at a mining cost of $25 per ton or less.

  4. Conodont and Radiolarian Data from the De Long Mountains Quadrangle and Adjacent Areas, Northern Alaska

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Anita G.; Blome, Charles D.; Young, Lorne E.

    2006-01-01

    INTRODUCTION This report presents biostratigraphic data from 289 collections at 189 localities in the De Long Mountains, Misheguk Mountain, and Noatak quadrangles (fig. 1); most of these data have never been previously published. The collections were made during studies of the Red Dog massive sulfide deposit in 1998?2004 and in support of regional mapping projects in 1979, 1981, 1983, and 1997?98. The collections?mostly conodonts and some radiolarians?tightly constrain the age of many stratigraphic units of Devonian through Triassic age exposed within the study area, and provide additional data on the depositional environments and thermal history of these rocks. The data are presented in a series of tables, organized by fossil type, stratigraphic unit, and location. Tables 1?12 contain conodont data, mostly from the De Long Mountains quadrangle. All of these collections were initially examined, or were reevaluated, from 1997 through 2004, and complete faunal lists are given for all samples. Table 13 lists ages and conodont color alteration indices (CAIs) of 27 collections from 24 localities in the Noatak quadrangle; updated faunal lists were not prepared for these samples. Radiolarian data?all from the De Long Mountains quadrangle?are given in table 14; these collections were analyzed between 1998 and 2003. Collection localities are shown in four maps (sheets 1, 2). Map 1 (sheet 1) shows all outcrop samples from the De Long Mountains and western Misheguk Mountain quadrangle (locs. 1-121). Maps 2?4 (sheets 1, 2) show all drill hole sample localities; samples come from the Su-Lik deposit and in and around the Anarraaq deposit (map 2, locs. 122?135), in and adjacent to the Red Dog deposits (Paalaaq, Aqqaluk, Main, and Qanaiyaq) (map 3, locs. 136?158), and from drill holes along the Port Road in the Noatak quadrangle (map 4, locs. 159?160). Map 4 (sheet 2) also shows all outcrop samples from the Noatak quadrangle (locs. 161?189). The text summarizes the lithofacies

  5. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Russellville quadrangle, Arkansas

    SciTech Connect

    Not Available

    1980-09-01

    The Russellville quadrangle in north central Arkansas overlies thick Paleozoic sediments of the Arkoma Basin. These Paleozoics dominate surface exposure except where covered by Quaternary alluvial materials. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. Eighty-eight groups of uranium samples were defined as anomalies and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data show character that suggest structural and/or lithologic complexity, but imply relatively deep-seated sources.

  6. Washington: A DC Circuit Tour

    NASA Astrophysics Data System (ADS)

    Halpern, Paul

    2010-12-01

    I explore the history of physics in Washington, D.C., and its environs through a tour of notable sites and personalities. Highlights include visits to the Smithsonian and Carnegie Institutions, stops at the Einstein Memorial, George Washington University, the University of Maryland, and the American Center for Physics, and biographical sketches of physicists Joseph Henry, George Gamow, Edward Teller, and others who worked in the District of Columbia.

  7. Geologic Map of Quadrangle 3566, Sang-Charak (501) and Sayghan-O-Kamard (502) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  8. Geologic Map of Quadrangles 3062 and 2962, Charburjak (609), Khanneshin (610), Gawdezereh (615), and Galachah (616) Quadrangles, Afghanistan

    USGS Publications Warehouse

    O'Leary, Dennis W.; Whitney, John W.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  9. Geologic Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Lindsay, Charles R., (compiler); Snee, Lawrence W.; Bohannon, Robert G.; Wahl, Ronald R.; Sawyer, David A.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  10. Geologic Map of Quadrangles 3768 and 3668, Imam-Saheb (215), Rustaq (216), Baghlan (221), and Taloqan (222) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Fridrich, Chris J., (compiler); Lindsay, Charles R.; Snee, Lawrence W.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  11. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    SciTech Connect

    Santos, E S; Robinson, K; Geer, K A; Blattspieler, J G

    1982-09-01

    Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.

  12. National Uranium Resource Evaluation: Lawton Quadrangle, Oklahoma and Texas

    SciTech Connect

    Al-Shaieb, Z.; Thomas, R.G.; Stewart, G.F.

    1982-04-01

    Uranium resources of the Lawton Quadrangle, Oklahoma and Texas, were evaluated to a depth of 1500 m using National Uranium Resource Evaluation criteria. Five areas of uranium favorability were delineated. Diagenetically altered, quartzose and sublithic, eolian and marginal-marine sandstones of the Permian Rush Springs Formation overlying the Cement Anticline are favorable for joint-controlled deposits in sandstone, non-channel-controlled peneconcordant deposits, and Texas roll-front deposits. Three areas contain lithologies favorable for channel-controlled peneconcordant deposits: arkosic sandstones and granule conglomerates of the Permian Post Oak Conglomerate south of the Wichita Mountains; subarkosic and sublithic Lower Permian fluvio-deltaic and coastal-plain sandstones of the eastern Red River Valley; and subsurface arkosic, subarkosic, and sublithic alluvial-fan and fan-delta sandstones of the Upper Pennsylvanian-Lower Permian sequence in the eastern Hollis Basin. The coarse-grained facies of the Cambrian Quanah Granite and genetically related aplite and pegmatite dikes in the Wichita Mountains are favorable for orthomagmatic and autometasomatic deposits, respectively.

  13. Renewed Mapping of the Nepthys Mons Quadrangle (V-54), Venus

    NASA Technical Reports Server (NTRS)

    Bridges, Nathan T.

    2008-01-01

    After a long hiatus due to competing tasks with the PI, mapping of Venus' Nepthys Mons Quadrangle (V-54, 300-330degE, 25-50degS) has been resumed, with planned submission late in 2008 or early 2009. Major goals are to determine the style of volcanism and tectonism over time, the evolution of shield volcanoes, the evolution of coronae, the characteristics of plains volcanism, and what these observations tell us about the general geologic history of Venus. This abstract largely repeats earlier progress reports, with some updates to show GEMS that the PI intends to complete this task in the near future. Methods: Geologic units and structures have been mapped onto hardcopy FMAPs and then transferred to the 1:5 million-scale map base (Figure 1). Pseudostereo anaglyphs have proved an indispensable tool and have resulted in a virtual complete revision of previously mapped areas [1,2]. At FMAP scale, structural trends and inferred ages are broken out using different symbols and colors. These are in the process of being transferred to a 1:5 million-scale structure map separate from the geologic map. The geologic units, structures, impact craters, coronae, and volcanoes are being arranged in time-stratigraphic sequences as the mapping progresses.

  14. Geologic Mapping of the Lunar South Pole Quadrangle (LQ-30)

    NASA Technical Reports Server (NTRS)

    Mest, S. C.; Berman, D. C.; Petro, N. E.

    2010-01-01

    In this study we use recent image, spectral and topographic data to map the geology of the lunar South Pole quadrangle (LQ-30) at 1:2.5M scale [1-7]. The overall objective of this research is to constrain the geologic evolution of LQ-30 (60 -90 S, 0 - 180 ) with specific emphasis on evaluation of a) the regional effects of impact basin formation, and b) the spatial distribution of ejecta, in particular resulting from formation of the South Pole-Aitken (SPA) basin and other large basins. Key scientific objectives include: 1) Determining the geologic history of LQ-30 and examining the spatial and temporal variability of geologic processes within the map area. 2) Constraining the distribution of impact-generated materials, and determining the timing and effects of major basin-forming impacts on crustal structure and stratigraphy in the map area. And 3) assessing the distribution of potential resources (e.g., H, Fe, Th) and their relationships with surface materials.

  15. Analysis of Shublik Formation rocks from Mt. Michelson quadrangle, Alaska

    USGS Publications Warehouse

    Detterman, Robert L.

    1970-01-01

    Analysis of 88 samples from the Shublik formation on Fire Creek, Mt. Michelson Quadrangle, Alaska, are presented in tabular form. The results include the determination of elements by semiquantitative spectrographic analysis, phosphate by X-ray fluorescence, carbon dioxide by acid decomposable carbonate, total carbon by induction furnace, carbonate carbon by conversion using the conversion factor of 0.2727 for amount of carbon in carbon dioxide, and organic carbon by difference. A seven- cycle semilogarithmic chart presents the data graphically and illustrates the range, mode, and mean for some of the elements. The chart shows, also, the approximate concentration of the same elements in rocks similar to the black shale and limestone of the Shublik Formation. Each sample represents 5 feet of section and is composed of rock chips taken at 1 - foot intervals. The samples are keyed into a stratigraphic column of the formation. Rocks of the Shublik Formation contain anomalously high concentrations of some of the elements. These same elements might be expected to be high in some of the petroleum from northern Alaska if the Shublik Formation is a source for this petroleum. Several of the stratigraphic intervals may represent, also, a low-grade phosphate deposit.

  16. Hydrology of the Citrus Park Quadrangle, Hillsborough County, Florida

    USGS Publications Warehouse

    Corral, M.A., Jr.; Thompson, T.H.

    1988-01-01

    Rapid increases in population and development in the Citrus Park quadrangle northwest of Tampa have increased the demand for water from the surficial and Upper Floridan aquifers, while at the same time decreasing the amount of wetlands and agricultural or forested lands that formerly provided recharge to these aquifers. Because the study area is underlain by soluble deposits, sinkholes and small closed depressions are common surface features. Some of the lakes in the area are remnants of ancient sinkholes. Four streams drain the area. Two of the streams have been channelized to reduce the risk of local flooding. Pumping from three municipal well fields within the study area and from three nearby well fields has lowered the potentiometric surface of the Upper Floridan aquifer. The pumping also lowers the water table levels by inducing recharge from the surficial aquifer to the Upper Floridan aquifer. Heavy pumpage may prompt sinkhole activity, or in areas near the coast , induce saltwater intrusion. Water quality of streams and groundwater is generally good except in the vicinity of landfills and where saltwater encroachment into the principal water bearing unit has occurred along the coast. (USGS)

  17. Geologic Map of the Big Spring Quadrangle, Carter County, Missouri

    USGS Publications Warehouse

    Weary, David J.; McDowell, Robert C.

    2006-01-01

    The bedrock exposed in the Big Spring quadrangle of Missouri comprises Late Cambrian and Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat lying except where they are adjacent to faults. The carbonate rocks are karstified, and the area contains numerous sinkholes, springs, caves, and losing streams. This map is one of several being produced under the U.S. Geological Survey (USGS) National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. A national park in this region (Ozark National Scenic Riverways, Missouri) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the park to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for park management. For more information, see: http://geology.er.usgs.gov/eespteam/Karst/index.html

  18. Geologic Map of the Diana Chasma Quadrangle (V-37), Venus

    USGS Publications Warehouse

    Hansen, V.L.; DeShon, H.R.

    2002-01-01

    Diana Chasma quadrangle hosts some of the steepest topography on Venus. Altimetry measurements range from -2.5 to 4.7 km (0.0 = mean planetary radius), with a surface mean of 0.6 km. Fractures and faults within the central fracture/rift zone create large blocks of down-dropped material, especially along the east-central edge of the map area. The Dali and Diana chasmata display slopes of >30°, the steepest and deepest trenches on Venus. Both chasmata host landslide deposits presumably sourced from the steep chasmata walls. The tessera inlier, coronae, and ridge belts sit topographically above Rusalka and Zhibek planitiae. Rusalka Planitia topography describes broad undulations having northwest-trending ridges spaced ~200 km apart. The most distinctive ridge, Vetsorgo Dorsum, centered at 6.5° S., 163° E., is a Class I ridge belt owing to its simple arch morphology. The central interior of Markham crater sits topographically lower than the surrounding region, which slopes downward to the east.

  19. Geologic Map of the Helen Planitia Quadrangle (V-52), Venus

    USGS Publications Warehouse

    Lopez, Ivan; Hansen, Vicki L.

    2008-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Helen Planitia quadrangle (V-52), located in the southern hemisphere of Venus between lat 25 deg S. and 50 deg S. and between long 240 deg E. and 270 deg E., covers approximately 8,000,000 km2. Regionally, the map area is located at the southern limit of an area of enhanced tectonomagmatic activity and extensional deformation, marked by a triangle that has highland apexes at Beta, Atla, and Themis Regiones (BAT anomaly) and is connected by the large extensional belts of Devana, Hecate, and Parga Chasmata. The BAT anomaly covers approximately 20 percent of the Venusian surface.

  20. Possible sub-glacial eruptions in the Galaxias Quadrangle, Mars

    NASA Astrophysics Data System (ADS)

    Mouginis-Mark, Peter J.; Wilson, Lionel

    2016-03-01

    We have identified several landforms in the Galaxias Quadrangle of Mars (MTM 35217), 33.0-35.5°N, 216.0-218.0°W which are consistent with this area having been covered by an ancient ice sheet concurrent with volcanic eruptions. Volcanic activity was initiated by the intrusion of several large dikes measuring ∼50-100 m wide and protruding up to ∼35 m above the present-day surface. These dikes appear to have originated from Elysium Planitia ∼600 km to the SE. In one instance, a dike (at an elevation of -3750 m) appears to have produced a subglacial mound (referred to here as "Galaxias Mons 2") that evolved into an extrusive eruption and produced copious volumes of melt water that carved an outflow channel that extends almost 300 km to the north. At a lower elevation (-3980 m), a second putative dike may have failed to break the surface of the ice sheet and formed Galaxias Mons as a laccolithic intrusion. We numerically model the formation of Galaxias Mons and find that at least 200 m of ice may once have existed at this latitude at the time of the dike intrusions. Such a conclusion supports the idea that enigmatic small domes in the area may be pingoes. Collectively, these observations suggest that the previous interpretations for the origin of near-by Hrad Vallis as a sub-aerial eruption may need to be revised.

  1. Helium concentrations in soil gas of the Ely and Delta 1 degree x 2 degrees quadrangles. Basin and Range Province

    USGS Publications Warehouse

    Reimer, G.M.; Bowles, C.G.

    1983-01-01

    A reconnaissance soil-gas helium survey was made of the Ely, Nevada and Delta, Utah 1? x 2? quadrangles in the Basin and Range Province. Helium concentrations in 510 samples ranged from -147 to 441 ppb He with respect to ambient air. The median helium value for the study area was 36 ppb. Concentrations of more than 100 ppb He, and less than -20 ppb He, occur more commonly in the Ely Quadrangle and are especially numerous in the western one-half of this quadrangle. The data are presented both in figures and tables, and some of the geologic factors that may affect the helium distribution are discussed.

  2. Geology of Mount Rainier National Park, Washington

    USGS Publications Warehouse

    Fiske, Richard S.; Hopson, Clifford Andrae; Waters, Aaron Clement

    1963-01-01

    Mount Rainier National Park includes 378 square miles of rugged terrain on the west slope of the Cascade Mountains in central Washington. Its mast imposing topographic and geologic feature is glacier-clad Mount Rainier. This volcano, composed chiefly of flows of pyroxene andesite, was built upon alt earlier mountainous surface, carved from altered volcanic and sedimentary rocks invaded by plutonic and hypabyssal igneous rocks of great complexity. The oldest rocks in the park area are those that make up the Olmnapecosh Formation of late Eocene age. This formation is more than 10,000 feet thick, and consists almost entirely of volcanic debris. It includes some lensoid accumulations of lava and coarse mudflows, heaped around volcanic centers., but these are surrounded by vastly greater volumes of volcanic clastic rocks, in which beds of unstratified coarse tuff-breccia, about 30 feet in average thickness, alternate with thin-bedded breccias, sandstones, and siltstones composed entirely of volcanic debris. The coarser tuff-breccias were probably deposited from subaqueous volcanic mudflows generated when eruption clouds were discharged directly into water, or when subaerial ash flows and mudflows entered bodies of water. The less mobile mudflows and viscous lavas built islands surrounded by this sea of thinner bedded water-laid clastics. In compostion the lava flows and coarse lava fragments of the Ohanapecosh Formation are mostly andesite, but they include less abundant dacite, basalt, and rhyolite. The Ohanapecosh Formation was folded, regionally altered to minerals characteristic of the zeolite facies of metamorphism, uplifted, and deeply eroded before the overlying Stevens Ridge Formation of Oligocene or early Miocene age was deposited upon it. The Stevens Ridge rocks, which are about 3,000 feet in maximum total thickness, consist mainly of massive ash flows. These are now devitrified and altered, but they originally consisted of rhyodacite pumice lapilli and glass

  3. Geodetic strain measurements in Washington.

    USGS Publications Warehouse

    Savage, J.C.; Lisowski, M.; Prescott, W.H.

    1981-01-01

    Two new geodetic measurements of strain accumulation in the state of Washington for the interval 1972-1979 are reported. Near Seattle the average principal strain rates are 0.07 + or - 0.03 mu strain/yr N19oW and -0.13 + or - 0.02 mu strain/yr N71oE, and near Richland (south central Washington) the average principal strain rates are -0.02 + or - 0.01 mu strain/yr N36oW and -0.04 + or - 0.01 mu strain/yr N54oE. Extension is taken as positive, and the uncertainties quoted are standard deviations. A measurement of shear strain accumulation (dilation not determined) in the epoch 1914- 1966 along the north coast of Vancouver Island by the Geodetic Survey of Canada indicates a marginally significant accumulation of right-lateral shear (0.06 + or - 0.03 mu rad/yr) across the plate boundary (N40oW strike). Although there are significant differences in detail, these strain measurements are roughly consistent with a crude dislocation model that represents subduction of the Juan de Fuca plate. The observed accumulation of strain implies that large, shallow, thrust earthquakes should be expected off the coast of Washington and British Columbia. However, this conclusion is not easily reconciled with either observations of elevation change along the Washington coast or the focal mechanism solutions for shallow earthquakes in Washington. -Authors

  4. Surficial geologic map of the southwest Memphis Quadrangle, Shelby County, Tennessee, and Crittenden County, Arkansas

    USGS Publications Warehouse

    Moore, David W.; Diehl, Sharon F.

    2004-01-01

    This map is one of seven 1:24,000-scale (7.5-minute) quadrangle maps of the surficial geology of the Memphis, Tennessee, area--part of a series of urban hazard maps. Wind-deposited silt and clayey silt (loess) is the predominant surficial deposit in this quadrangle. The loess was deposited as dust during the last major continental glaciation of the region and it covers the upland to depths of 4.5-16 m. River alluvium (unit Qal), which is chiefly a sandy and gravelly sand deposit about 30 m thick, underlies the Mississippi River floodplain. This unit supports extensive artificial fill and infrastructure used for shipping storage and petroleum processing and storage. Based on paleoliquefaction structures (sand boils) documented in Mississippi River alluvium elsewhere, this unit probably has the potential to liquefy during strong earthquake shaking. No paleoliquefaction structures were observed within the Southwest Memphis quadrangle. Another deposit in the quadrangle is silty alluvium of the Nonconnah Creek floodplain, and is 1-10 m thick. Sparse, unconsolidated pebbly sand deposits are 0.5-3 m thick and make up point bars and channel deposits of Nonconnah Creek.

  5. Hydrogeochemical and stream sediment reconnaissance basic data for Bakersfield quadrangle, California

    SciTech Connect

    Not Available

    1981-10-01

    Field and laboratory data are presented for 1780 sediment samples from the Bakersfield Quadrangle, California. The samples were collected by the Savannah River Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  6. Tectonic and Volcanic History of the Nepthys Mons Quadrangle (V54), Venus

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Mercer, C. N.

    2002-01-01

    Mapping of Venus Nepthys Mons Quadrangle (V54, 300-330 E, 25-50 S) has been proceeding for the last 21 months. Discussed here are several intriguing findings and a report on the use of the pseudostereo data set. Additional information is contained in the original extended abstract.

  7. Hydrogeochemical and stream sediment reconnaissance basic data for Goldfield quadrangle, California; Nevada

    SciTech Connect

    Not Available

    1981-10-01

    Field and laboratory data are presented for 790 sediment samples from the Goldfield Quadrangle, California; Nevada. The samples were collected by Savannah River Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  8. Evaluation of VICAR software capability for land information support system needs. [Elk River quadrangle, Idaho

    NASA Technical Reports Server (NTRS)

    Yao, S. S. (Principal Investigator)

    1981-01-01

    A preliminary evaluation of the processing capability of the VICAR software for land information support system needs is presented. The geometric and radiometric properties of four sets of LANDSAT data taken over the Elk River, Idaho quadrangle were compared. Storage of data sets, the means of location, pixel resolution, and radiometric and geometric characteristics are described. Recommended modifications of VICAR programs are presented.

  9. Preliminary Bedrock Geologic Map of the Old Lyme Quadrangle, New London and Middlesex Counties, Connecticut

    USGS Publications Warehouse

    Walsh, Gregory J.; Scott, Robert B.; Aleinikoff, John N.; Armstrong, Thomas R.

    2006-01-01

    This report presents a preliminary map of the bedrock geology of the Old Lyme quadrangle, New London and Middlesex Counties, Connecticut. The map depicts contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The map was published as part of a study of fractured bedrock aquifers and regional tectonics.

  10. Airborne gamma-ray spectrometer and magnetometer survey, New Rockford Quadrangle, North Dakota. Final report

    SciTech Connect

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2/sup 0/ x 1/sup 0/ NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2/sup 0/ x 1/sup 0/ NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the New Rockford map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1397 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  11. Geologic map and coal stratigraphy of the Blue Gap quadrangle, eastern Washakie Basin, Carbon County, Wyoming

    USGS Publications Warehouse

    Hettinger, R.D.; Honey, J.G.

    2005-01-01

    This report provides a geologic map of the Blue Gap 7.5-minute quadrangle, located along the eastern flank of the Washakie Basin, Wyo. Geologic formations and individual coal beds were mapped at a scale of 1:24,000; surface stratigraphic sections were measured and described; and well logs were examined to determine coal correlations and thicknesses in the subsurface.

  12. Hydrogeochemical and stream sediment reconnaissance basic data for Beaumont NTMS Quadrangle, Texas

    SciTech Connect

    Not Available

    1980-02-29

    Results of a reconnaissance geochemical survey of the Beaumont Quadrangle, Texas are reported. Statistical data and areal distributions for uranium and uranium-related variables are presented for 707 groundwater and 619 stream sediment samples. Also included is a discussion on geologic factors considered significant in evaluating the potential for uranium mineralization. Groundwater data indicate that uranium concentrations above the 85th percentile occur primarily in a trend through the west central section of the quadrangle. Waters in this area are produced feom the Jasper aquifer, units that are defined as being part of the Burkeville confining system, and the Evangeline aquifer and have high values for arsenic, calcium, magnesium, and strontium. A smaller trend of high uranium values is located in the south central section of the quadrangle where waters are mainly produced from the Chicot aquifer. Stream sediment data indicate that uranium concentrations above the 85th percentile occur in sediments from the northern third and southeastern section of the quadrangle. In the northern trend of high uranium values, the sediments are derived from the Jackson Group and the Fleming and Catahoula Formations. Uranium appears to be associated with resistate and/or heavy minerals. Sediments that compose the southeastern trend are derived from the Beaumont Formation.

  13. Hydrogeochemical and stream sediment reconnaissance basic data for Roswell quadrangle, New Mexico

    SciTech Connect

    Not Available

    1981-08-31

    Field and laboratory data are presented for 842 water samples and 1270 sediment samples from the Roswell Quadrangle, New Mexico. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  14. Airborne gamma-ray spectrometer and magnetometer survey, Mitchell Quadrangle, South Dakota. Final report

    SciTech Connect

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2/sup 0/ x 1/sup 0/ NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2/sup 0/ x 1/sup 0/ NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Mitchell map area. The purpose of this program is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1479 line miles are in this quadrangle.

  15. Airborne radioactivity Survey of part of Saratoga NW quadrangle, Carbon County, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 133 square miles of Saratoga NW quadrangle, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater Counties by the U. S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission.

  16. Geologic Map of the Denver West 30' x 60' Quadrangle, North-Central Colorado

    USGS Publications Warehouse

    Kellogg, Karl S.; Shroba, Ralph R.; Bryant, Bruce; Premo, Wayne R.

    2008-01-01

    The Denver West quadrangle extends east-west across the entire axis of the Front Range, one of numerous uplifts in the Rocky Mountain region in which Precambrian rocks are exposed. The history of the basement rocks in the Denver West quadrangle is as old as 1,790 Ma. Along the east side of the range, a sequence of sedimentary rocks as old as Pennsylvanian, but dominated by Cretaceous-age rocks, overlies these ancient basement rocks and was upturned and locally faulted during Laramide (Late Cretaceous to early Tertiary) uplift of the range. The increasingly coarser grained sediments up section in rocks of latest Cretaceous to early Tertiary age record in remarkable detail this Laramide period of mountain building. On the west side of the range, a major Laramide fault (Williams Range thrust) places Precambrian rocks over Cretaceous sedimentary rocks. The geologic history of the quadrangle, therefore, can be divided into four major periods: (1) Proterozoic history, (2) Pennsylvanian to pre-Laramide, Late Cretaceous history, (3) Late Cretaceous to early Tertiary Laramide mountain building, and (4) post-Laramide history. In particular, the Quaternary history of the Denver West quadrangle is described in detail, based largely on extensive new mapping.

  17. DIGITAL GEOLOGIC MAP OF SHERMAN QUADRANGLE, NORTH CENTRAL TEXAS (CD-ROM)

    EPA Science Inventory

    This compact disc contains digital data sets of the surficial geology and geologic faults for the 1:250,000-scale Sherman quadrangle, North Central Texas, and can be used to make geologic maps, and determine approximate areas and locations of various geologic units. The source d...

  18. Geologic map of the Valley Mountain 15’ quadrangle, San Bernardino and Riverside Counties, California

    USGS Publications Warehouse

    Howard, Keith A.; Bacheller, John; Fitzgibbon, Todd T.; Powell, Robert E.; Allen, Charlotte M.

    2013-01-01

    The Valley Mountain 15’ quadrangle straddles the Pinto Mountain Fault, which bounds the eastern Transverse Ranges in the south against the Mojave Desert province in the north. The Pinto Mountains, part of the eastern Transverse Ranges in the south part of the quadrangle expose a series of Paleoproterozoic gneisses and granite and the Proterozoic quartzite of Pinto Mountain. Early Triassic quartz monzonite intruded the gneisses and was ductiley deformed prior to voluminous Jurassic intrusion of diorite, granodiorite, quartz monzonite, and granite plutons. The Jurassic rocks include part of the Bullion Mountains Intrusive Suite, which crops out prominently at Valley Mountain and in the Bullion Mountains, as well as in the Pinto Mountains. Jurassic plutons in the southwest part of the quadrangle are deeply denuded from midcrustal emplacement levels in contrast to supracrustal Jurassic limestone and volcanic rocks exposed in the northeast. Dikes inferred to be part of the Jurassic Independence Dike Swarm intrude the Jurassic plutons and Proterozoic rocks. Late Cretaceous intrusion of the Cadiz Valley Batholith in the northeast caused contact metamorphism of adjacent Jurassic plutonic rocks. The Tertiary period saw emplacement of basanitoid basalt at about 23 Ma and deposition of Miocene and (or) Pliocene ridge-capping gravels. An undated east-dipping low-angle normal fault zone in the Pinto Mountains drops hanging-wall rocks eastward and may account for part of the contrast in uplift history across the quadrangle. The eastern Transverse Ranges are commonly interpreted as severely rotated clockwise tectonically in the Neogene relative to the Mojave Desert, but similar orientations of Jurassic dike swarms suggest that any differential rotation between the two provinces is small in this quadrangle. The late Cenozoic Pinto Mountain Fault and other strike-slip faults cut Quaternary deposits in the quadrangle, with two northwest-striking faults cutting Holocene deposits

  19. Geologic map of the Tuba City 30' x 60' quadrangle, Coconino County, northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Stoffer, Philip W.; Priest, Susan S.

    2012-01-01

    The Tuba City 30’ x 60’ quadrangle encompasses approximately 5,018 km² (1,920 mi²) within Coconino County, northern Arizona. It is characterized by nearly flat lying to gently dipping sequences of Paleozoic and Mesozoic strata that overly tilted Precambrian strata or metasedimentary and igneous rocks that are exposed at the bottom of Grand Canyon. The Paleozoic rock sequences from Cambrian to Permian age are exposed in the walls of Grand Canyon, Marble Canyon, and Little Colorado River Gorge. Mesozoic sedimentary rocks are exposed in the eastern half of the quadrangle where resistant sandstone units form cliffs, escarpments, mesas, and local plateaus. A few Miocene volcanic dikes intrude Mesozoic rocks southwest, northwest, and northeast of Tuba City, and Pleistocene volcanic rocks representing the northernmost extent of the San Francisco Volcanic Field are present at the south-central edge of the quadrangle. Quaternary deposits mantle much of the Mesozoic rocks in the eastern half of the quadrangle and are sparsely scattered in the western half. Principal folds are the north-south-trending, east-dipping Echo Cliffs Monocline and the East Kaibab Monocline. The East Kaibab Monocline elevates the Kaibab, Walhalla, and Coconino Plateaus and parts of Grand Canyon. Grand Canyon erosion has exposed the Butte Fault beneath the east Kaibab Monocline, providing a window into the structural complexity of monoclines in this part of the Colorado Plateau. Rocks of Permian and Triassic age form the surface bedrock of Marble Plateau and House Rock Valley between the East Kaibab and Echo Cliffs Monoclines. The Echo Cliffs Monocline forms a structural boundary between the Marble Plateau to the west and the Kaibito and Moenkopi Plateaus to the east. Jurassic rocks of the Kaibito and Moenkopi Plateaus are largely mantled by extensive eolian sand deposits. A small part of the northeast-dipping Red Lake Monocline is present in the northeast corner of the quadrangle. A broad and

  20. Bedrock geology of the Mount Carmel and Southington quadrangles, Connecticut

    USGS Publications Warehouse

    Fritts, Crawford Ellswroth

    1962-01-01

    New data concerning the geologic structure, stratigraphy, petrography, origin, and ages of bedrock formations in an area of approximately 111 square miles in south-central Connecticut were obtained in the course of detailed geologic mapping from 1957 to 1960. Mapping was done at a scale of 1:24,000 on topographic base maps having a 10-foot contour interval. Bedrock formations are classified in two principal categories. The first includes metasedimentary, meta-igneous, and igneous rocks of Precambrian to Devonian age, which crop out in the western parts of both quadrangles. The second includes sedimentary and igneous rocks of the Newark Group of Late Triassic age, which crop out in the eastern parts of the quadrangles. Diabase dikes, which are Late Triassic or younger in age, intruded rocks in both the western and eastern parts of the map area. Rocks in the western part of the area underwent progressive regional metamorphism in Middle to Late Devonian time. The arrangement of the chlorite, garnet, biotite, staurolite, and kyanite zones here is approximately the mirror-image of metamorphic zones in Dutchess County, New York. However, garnet appeared before biotite in politic rocks in the map area, because the ration MgO/FeO is low. Waterbury Gneiss and the intrusive Woodtick Gneiss are parts of a basement complex of Precambrian age, which forms the core of the Waterbury dome. This structure is near the southern end of a line of similar domes that lie along the crest of a geanticline east of the Green Mountain anticlinorium. The Waterbury Gneiss is believed to have been metamorphosed in Precambrian time as well as in Paleozoic time. The Woodtick Gneiss also may have been metamorphosed more than once. In Paleozoic time, sediments were deposited in geosynclines during two main cycles of sedimentation. The Straits, Southington Mountain, and Derby Hill Schists, which range in age from Cambrian to Ordovician, reflect a transition from relatively clean politic sediments to

  1. Geologic Map of the Lavinia Planitia Quadrangle (V-55), Venus

    USGS Publications Warehouse

    Ivanov, Mikhail A.; Head, James W., III

    2001-01-01

    Introduction The Lavinia Planitia quadrangle (V-55) is in the southern hemisphere of Venus and extends from 25 to 50 south latitude and from 330 to 360 longitude. It covers the central and northern part of Lavinia Planitia and parts of its margins. Lavinia Planitia consists of a centralized, deformed lowland flooded by volcanic deposits and surrounded by Dione Regio to the west (Keddie and Head, 1995), Alpha Regio tessera (Bindschadler and others, 1992a) and Eve Corona (Stofan and others, 1992) to the northeast, itself an extensive rift zone and coronae belt to the east and south (Baer and others, 1994; Magee and Head, 1995), Mylitta Fluctus to the south (Magee Roberts and others, 1992), and Helen Planitia to the southwest (Senske and others, 1991). In contrast to other areas on Venus, the Lavinia Planitia area is one of several large, relatively equidimensional lowlands (basins) and as such is an important region for the analysis of processes of basin formation and volcanic flooding. Before the Magellan mission, Lavinia Planitia was known on the basis of Pioneer-Venus altimetry to be a lowland area (Pettengill and others, 1980);. Arecibo radar images showed that Lavinia Plaitia was surrounded by several corona-like features and rift-like fractures parallel to the basin margin to the east and south (Senske and others, 1991; Campbell and others, 1990). Arecibo data further revealed that the interior contained complex patterns of deformational features in the form of belts and volcanic plains, and several regions along the margins were seen to be the sources of extensive outpourings of digitate lava flows into the interior (Senske and others, 1991; Campbell and others, 1990). Early Magellan results showed that the ridge belts are composed of complex structures of both extensional and contractional origin (Squyres and others, 1992; Solomon and others, 1992) and that the complex lava flows (fluctus) along the margins (Magee Roberts and others, 1992) emanated from a

  2. Surface geology of Williston 7. 5-minute quadrangle, Aiken and Barnwell Counties, South Carolina

    SciTech Connect

    Willoughby, R.H.; Nystrom, P.G. Jr. ); Denham, M.E.; Eddy, C.A. ); Price, L.K.

    1994-03-01

    Detailed geologic mapping has shown the distribution and lithologic character of stratigraphic units and sedimentary deposits in Williston quadrangle. A middle Eocene stratigraphic unit correlative with the restricted McBean Formation is the oldest unit at the surface. The McBean-equivalent unit occurs at low elevations along drainages in the north of the quadrangle but does not crop out. These beds are typically very fine- to fine-grained quartz sand, locally with abundant black organic matter and less commonly with calcium carbonate. The uppermost middle Eocene Orangeburg District bed, commonly composed of loose, clay-poor, very fine- to fine-grained quartz sand, occurs at the surface in the north and southwest of the quadrangle with sparse exposure. The upper Eocene Dry Branch Formation occurs on valley slopes throughout the quadrangle. The Dry Branch is composed of medium- to very coarse-grained quartz sand with varying amounts on interstitial clay and lesser bedded clay. The upper Eocene Tobacco road Sand occurs on upper valley slopes and some interfluves and consists of very fine-grained quartz sand to quartz granules. The upper Middle Miocene to lower Upper Miocene upland unit caps the interfluves and is dominantly coarse-grained quartz sand to quartz granules, with included granule-size particles of white clay that are weathered feldspars. Loose, incohesive quartzose sands of the eolian Pinehurst Formation, Upper Miocene to Lower Pliocene, occur on the eastern slopes of some interfluves in the north of the quadrangle. Quartz sand with varying included humic matter occurs in Carolina bays, and loose deposits of windblown sand occur on the rims of several Carolina bays. Quaternary alluvium fills the valley floors.

  3. Multisource data set integration and characterization of uranium mineralization for the Montrose Quadrangle, Colorado

    SciTech Connect

    Bolivar, S.L.; Balog, S.H.; Campbell, K.; Fugelso, L.E.; Weaver, T.A.; Wecksung, G.W.

    1981-04-01

    Several data-classification schemes were developed by the Los Alamos National Laboratory to detect potential uranium mineralization in the Montrose 1/sup 0/ x 2/sup 0/ quadrangle, Colorado. A first step was to develop and refine the techniques necessary to digitize, integrate, and register various large geological, geochemical, and geophysical data sets, including Landsat 2 imagery, for the Montrose quadrangle, Colorado, using a grid resolution of 1 km. All data sets for the Montrose quadrangle were registered to the Universal Transverse Mercator projection. The data sets include hydrogeochemical and stream sediment analyses for 23 elements, uranium-to-thorium ratios, airborne geophysical survey data, the locations of 90 uranium occurrences, a geologic map and Landsat 2 (bands 4 through 7) imagery. Geochemical samples were collected from 3965 locations in the 19 200 km/sup 2/ quadrangle; aerial data were collected on flight lines flown with 3 to 5 km spacings. These data sets were smoothed by universal kriging and interpolated to a 179 x 119 rectangular grid. A mylar transparency of the geologic map was prepared and digitized. Locations for the known uranium occurrences were also digitized. The Landsat 2 imagery was digitally manipulated and rubber-sheet transformed to quadrangle boundaries and bands 4 through 7 were resampled to both a 1-km and 100-m resolution. All possible combinations of three, for all data sets, were examined for general geologic correlations by utilizing a color microfilm output. Subsets of data were further examined for selected test areas. Two classification schemes for uranium mineralization, based on selected test areas in both the Cochetopa and Marshall Pass uranium districts, are presented. Areas favorable for uranium mineralization, based on these schemes, were identified and are discussed.

  4. Geologic map of the Orchard 7.5' quadrangle, Morgan County, Colorado

    USGS Publications Warehouse

    Berry, Margaret E.; Slate, Janet L.; Hanson, Paul R.; Brandt, Theodore R.

    2015-01-01

    The Orchard 7.5' quadrangle is located along the South Platte River corridor on the semi-arid plains of eastern Colorado, and contains surficial deposits that record alluvial, eolian, and hillslope processes that have operated through environmental changes from the Pleistocene to the present. The South Platte River, originating high in the Colorado Front Range, has played a major role in shaping the geology of the quadrangle, which is situated downstream of where the last of the major headwater tributaries (St. Vrain, Big Thompson, and Cache la Poudre) join the river. Recurrent glaciation (and deglaciation) of basin headwaters affected river discharge and sediment supply far downstream, influencing alluvium deposition and terrace formation in the Orchard quadrangle. Kiowa and Bijou Creeks, unglaciated tributaries originating east of the Front Range also have played a major role by periodically delivering large volumes of sediment to the river during flood events, which may have temporarily dammed the river. Eolian sand deposits of the Greeley (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of drought. With the onset of irrigation during historic times, the South Platte River has changed from a broad, shallow, and sandy braided river with highly seasonal discharge to a much narrower, deeper river with braided-meandering transition morphology and more uniform discharge. Along this reach, the river has incised into Upper Cretaceous Pierre Shale, which, although buried by alluvial deposits in Orchard quadrangle, is locally exposed downstream along the South Platte River bluff near the Bijou Creek confluence, in some of the larger draws, and along Wildcat Creek.

  5. Classification of Geological Material Units in the Ganiki Planitia Quadrangle (V14) of Venus Using Statistical Clustering Methods

    NASA Astrophysics Data System (ADS)

    Richards, J.; Hardin, J.; Grosfils, E. B.

    2005-03-01

    Using mixture models and the expectation-maximization (EM) algorithm, we perform statistical clustering with the numerical data of radar backscatter and four physical property data sets to analyze an existing geologic map of the V14 quadrangle of Venus.

  6. Geological map and digital database of the San Rafael Mtn. 7.5-minute quadrangle, Santa Barbara County, California

    USGS Publications Warehouse

    Vedder, John G.; Stanley, Richard G.; Graham, S.E.; Valin, Z.C.

    2001-01-01

    Geologic mapping of the San Rafael Primitive Area (now the San Rafael Wilderness) by Gower and others (1966) and Vedder and others (1967) did not include all of the San Rafael Mtn. quadrangle, and the part that was mapped was done in reconnaissance fashion. To help resolve some of the structural and stratigraphic ambiguities of the earlier mapping and to complete the mapping of the quadrangle, additional field work was done during short intervals in 1980 and 1981 and from 1996 to 1998. Contacts within the belt of Franciscan rocks at the southwestern corner of the quadrangle were generalized from the detailed map by Wahl (1998). Because extensive areas were inaccessible owing to impenetrable chaparral, observations from several helicopter overflights (1965, 1980, 1981) and interpretations from aerial photographs were used as compilation aids. Consequently, some of the depicted contacts and faults are highly inferential, particularly within the Upper Cretaceous rocks throughout the middle part of the quadrangle.

  7. Map, tables, and summary of fossil and isotopic age data, Mount Hayes Quadrangle, eastern Alaska range, Alaska

    USGS Publications Warehouse

    Nokleberg, Warren J.; Aleinikoff, John N.; Dutro, J. Thomas, Jr.; Lanphere, Marvin A.; Silberling, Norman J.; Silva, Steven R.; Smith, Thomas E.; Turner, Donald L.

    1992-01-01

    This report describes, summarizes, and interprets all known bedrock fossil and isotopic age studies for the Mount Hayes quadrangle, eastern Alaska Range, Alaska. The accompanying map shows the location of all known bedrock fossil and isotopic sample localities in the quadrangle on a generalized geologic base map. These fossil and isotopic age data are obtained from new studies, unpublished data of the U.S. Geological Survey, contributed unpublished data, and published data. This report is one result of a five-year mineral resource assessment of the quadrangle that was done during the summers of 1978 through 1982, with additional topical studiesin 1985 and 1986. This report is one part of a folio on the geological, geochemical, geophysical, and mineral-resource assessment studies of the quadrangle prepared as part of the Alaskan Mineral Resource Assessment Program (AMRAP) of the U.S. Geological Survey.

  8. State of Washington Population Trends, 1975. Washington State Information Report.

    ERIC Educational Resources Information Center

    Washington State Office of Program Planning and Fiscal Management, Olympia.

    As of April 1, 1975, Washington's population was estimated at 3,494,124--an increase of 80,874 since 1970. Prepared yearly, this report presents tabular data pertaining to: (1) current April 1 estimates for cities, towns, and counties; (2) current decline in household size; (3) the use of postal vacancy surveys in estimating vacancy rates; and (4)…

  9. State of Washington Population Trends, 1977. Washington State Information Report.

    ERIC Educational Resources Information Center

    Washington State Office of Program Planning and Fiscal Management, Olympia.

    As of April 1, 1977, Washington's population was estimated at 3,661,975--an increase of 248,725 since 1970. Prepared yearly, this report presents data on the official April 1 population estimates for cities, towns, and counties; components of population change; planned population forecasting activities; procedures which help make the housing unit…

  10. Topographic Map of Quadrangles 3770 and 3870, Maymayk (211), Jamarj-I-Bala (212), Faydz-Abad (217), and Parkhaw (218) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  11. Topographic Map of Quadrangles 3168 and 3268, Yahya-Wona (703), Wersek (704), Khayr-Kot (521), and Urgon (522) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  12. Topographic Map of Quadrangles 3666 and 3766, Balkh (219), Mazar-I-Sharif (220), Qarqin (213), and Hazara Toghai (214) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  13. Topographic Map of Quadrangles 3764 and 3664, Jalajin (117), Kham-Ab (118), Char Shangho (123), and Sheberghan (124) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  14. Topographic Map of Quadrangle 3470 and the Northern Edge of 3370, Jalal-Abad (511), Chaghasaray (512), and Northernmost Jaji-Maydan (517) Quadrangles, Afg

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  15. Spectrographic and chemical analyses of rock and soil samples from the Medford 1/sup 0/ x 2/sup 0/ quadrangle, Oregon-California

    SciTech Connect

    Whittington, C.L.; Grimes, D.J.; Peterson, J.A.

    1983-01-01

    The report presents analytical and location data on 3146 rock and 35 soil samples from the Medford 1/sup 0/ x 2/sup 0/ quadrangle, Oregon-California. These data are compiled from mineral resource and geochemical studies in the quadrangle and from similar studies of wilderness areas lying partly or entirely within the quadrangle: the Wild Rogue Wilderness, the Kalmiopsis Wilderness, and the Sky Lakes Roadless Area and Mountain Lakes Wilderness. 14 refs., 2 tabs.

  16. Map showing abundance and distribution of arsenic in oxide residues of stream-sediment samples, Medford 1 degree by 2 degrees Quadrangle, Oregon-California

    USGS Publications Warehouse

    Whittington, Charles L.; Leinz, Reinhard W.; Grimes, David J.

    1985-01-01

    Stream-sediment sampling in the Medford 1o x 2o quadrangle was undertaken to provide to aid in assessment of the mineral resource potential of the quadrangle. This map presents data on the abundance and distribution of copper in the oxide residues (oxalic-acid leachates) of stream sediments and in the minus-0.18-mm sieve fraction of selected stream sediments collected in the quadrangle

  17. Map showing abundance and distribution of copper in oxide residues of stream-sediment samples, Medford 1 degree by 2 degrees Quadrangle, Oregon-California

    USGS Publications Warehouse

    Whittington, Charles L.; Grimes, David J.; Leinz, Reinhard W.

    1985-01-01

    Stream-sediment sampling in the Medford 1o x 2o quadrangle was undertaken to provide to aid in assessment of the mineral resource potential of the quadrangle. This map presents data on the abundance and distribution of copper in the oxide residues (oxalic-acid leachates) of stream sediments and in the minus-0.18-mm sieve fraction of selected stream sediments collected in the quadrangle

  18. Maps showing distribution of tungsten in heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1985-01-01

    These maps are part of a folio of maps of the Richfield 1° x 2 ° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other publications in this folio are listed in the selected references. Located in west-central Utah, the Richfield quadrangle covers the eastern part of the Plioche-Marysvale igneous and mineral belt, which extends from the vicinity of Plioche in southeastern Nevada east-northeastward for 250 km (155 mi) into central Utah. The western two-thirds of the Richfield quadrangle is in the Basin and Range province and the eastern third is in the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of latest Precambrian and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrane into a series of north-trending fault blocks; the uplifted mountain areas were deeply eroded and the resulting debris deposited in the adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed during igneous activity in middle and late Cenozoic time. The regional sampling program was designed to define broad geochemical patterns and trends which can be utilized along with geologic and geophysical data to assess the mineral resource potential for this quadrangle. These maps of the Richfield 1° x 2° quadrangle show the regional distributions of copper in two fractions of heavy-mineral concentrates of drainage sediments.

  19. Maps showing distribution of bismuth in heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1985-01-01

    Located in west-central Utach, the Richfield quadrangle covers the eastern part of the Plioche-Marysvale ingeous and mineral belt, which extends from the vicinity of Plioche in southeastern Nevada east-northeastward for 250 km (155 mi) into central Utah. The western two-thirds of the Richfield quadrangle is in the Basin and Range province and the eastern third is in the High Plateaus of Utah, a subprovince of the Colorado Plateau. 

  20. Maps showing distribution of copper in heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1985-01-01

    These maps are part of a folio of maps of the Richfield 1° x 2 ° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other publications in this folio are listed in the selected references. Located in west-central Utah, the Richfield quadrangle covers the eastern part of the Plioche-Marysvale igneous and mineral belt, which extends from the vicinity of Plioche in southeastern Nevada east-northeastward for 250 km (155 mi) into central Utah. The western two-thirds of the Richfield quadrangle is in the Basin and Range province and the eastern third is in the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of latest Precambrian and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrane into a series of north-trending fault blocks; the uplifted mountain areas were deeply eroded and the resulting debris deposited in the adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed during igneous activity in middle and late Cenozoic time. The regional sampling program was designed to define broad geochemical patterns and trends which can be utilized along with geologic and geophysical data to assess the mineral resource potential for this quadrangle. These maps of the Richfield 1° x 2° quadrangle show the regional distributions of copper in two fractions of heavy-mineral concentrates of drainage sediments.

  1. Maps showing distribution of barium in heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1985-01-01

    Located in west-central Utach, the Richfield quadrangle covers the eastern part of the Plioche-Marysvale ingeous and mineral belt, which extends from the vicinity of Plioche in southeastern Nevada east-northeastward for 250 km (155 mi) into central Utah. The western two-thirds of the Richfield quadrangle is in the Basin and Range province and the eastern third is in the High Plateaus of Utah, a subprovince of the Colorado Plateau. 

  2. Maps showing distribution of thorium in heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1985-01-01

    These maps are part of a folio of maps of the Richfield 1° x 2 ° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other publications in this folio are listed in the selected references. Located in west-central Utah, the Richfield quadrangle covers the eastern part of the Plioche-Marysvale igneous and mineral belt, which extends from the vicinity of Plioche in southeastern Nevada east-northeastward for 250 km (155 mi) into central Utah. The western two-thirds of the Richfield quadrangle is in the Basin and Range province and the eastern third is in the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of latest Precambrian and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrane into a series of north-trending fault blocks; the uplifted mountain areas were deeply eroded and the resulting debris deposited in the adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed during igneous activity in middle and late Cenozoic time. The regional sampling program was designed to define broad geochemical patterns and trends which can be utilized along with geologic and geophysical data to assess the mineral resource potential for this quadrangle. These maps of the Richfield 1° x 2° quadrangle show the regional distributions of copper in two fractions of heavy-mineral concentrates of drainage sediments.

  3. Stratigraphic sections showing coal correlations within the lower coal zone of the Paleocene Fort Union Formation, Fillmore Ranch and Seaverson Reservoir quadrangles, Carbon County, Wyoming

    SciTech Connect

    Honey, J.G.; Hettinger, R.D.

    1989-01-01

    Stratigraphic sections showing coal correlations within the lower coal zone of the Paleocene Fort Union Formation, Fillmore Ranch and Seaverson Reservoir quadrangles, Carbon County, Wyoming are presented.

  4. Comprehensive School Physical Activity Programs: Helping All Students Achieve 60 Minutes of Physical Activity Each Day

    ERIC Educational Resources Information Center

    Elliot, Eloise; Erwin, Heather; Hall, Tina; Heidorn, Brent

    2013-01-01

    The American Alliance for Health, Physical Education, Recreation and Dance recommends that all schools implement a comprehensive school physical activity program. Physical activity is important to the overall health and well-being of everyone, including all school age children. The benefits of physical activity are well documented and include the…

  5. Successful Porcine Renal Transplantation After 60 Minutes of Donor Warm Ischemia: Extracorporeal Perfusion and Thrombolytics.

    PubMed

    Demos, David S; Iyengar, Amit; Bryner, Benjamin S; Gray, Brian W; Hoffman, Hayley R; Cornell, Marie S; Wilkinson, John E; Mazur, Daniel E; Bartlett, Robert H; Punch, Jeffrey D; Rojas-Peña, Alvaro

    2015-01-01

    Donation from uncontrolled circulatory determination of death donors (uDCD) is impractical in United States because of the time needed to organize procurement before irreversible organ damage. Salvaging organs after prolonged warm ischemic time (WIT) may address this limitation. We evaluated the combination of extracorporeal support (ECS) and thrombolytics in a porcine uDCD renal transplant model. Nonanticoagulated uDCD sustained 60 min of WIT, and two groups were studied. Rapid recovery (RR)-uDCD renal grafts procured using the standard quick topical cooling and renal flush, and ECS-assisted donation (E-uDCD), 4 hr ECS plus thrombolytics for in situ perfusion before procurement. All kidneys were flushed and cold stored, followed by transplantation into healthy nephrectomized recipients without immunosuppression. Delayed graft function (DGF) was defined as creatinine more than 5.0 mg/dl on any postoperative day. Twelve kidneys in E-uDCD and 6 in RR-uDCD group were transplanted. All 12 E-uDCD recipients had urine production and adequate function in the first 48 hr, but two grafts (16.7%) had DGF at 96 hr. All six recipients from RR-uDCD group had DGF at 48 hr and were killed. Creatinine and blood urea nitrogen (BUN) levels were significantly lower in E-uDCD compared with RR-uDCD group at 24 hr (2.9 ± 0.7 mg/dl vs. 5.2 ± 0.9 mg/dl) and 48 hr (3.2 ± 0.9 mg/dl vs. 7.2 ± 1.0 mg/dl); BUN levels at 24 and 48 hr were 28.3 ± 6.7 mg/dl vs. 39.5 ± 7.5 mg/dl and 23.9 ± 5.0 mg/dl vs. 46 ± 12.9 mg/dl, respectively. Thrombolytics plus ECS precondition organs in situ yielding functional kidneys in a porcine model of uDCD with 60 min of WIT. This procurement method addresses logistical limitations for uDCD use in the United States and could have a major impact on the organ donor pool. PMID:25851315

  6. Coccidioidomycosis acquired in Washington State.

    PubMed

    Marsden-Haug, Nicola; Goldoft, Marcia; Ralston, Cindy; Limaye, Ajit P; Chua, Jimmy; Hill, Heather; Jecha, Larry; Thompson, George R; Chiller, Tom

    2013-03-01

    Clinical, laboratory, and epidemiologic evidence suggest that 3 individuals with acute coccidioidomycosis were exposed in Washington State, significantly beyond previously identified endemic areas. Given the patients' lack of recent travel, coccidioidomycosis was not suspected, leading to delays in diagnosis and appropriate therapy. Clinicians should be aware of this possibility and consider the diagnosis. PMID:23223598

  7. Washington State's Student Achievement Initiative

    ERIC Educational Resources Information Center

    Pettitt, Maureen; Prince, David

    2010-01-01

    This article describes Washington State's Student Achievement Initiative, an accountability system implemented in 2005-06 that measures students' gains in college readiness, college credits earned, and degree or certificate completion. The goal of the initiative is to increase educational attainment by focusing on the critical momentum points…

  8. Teaching the March on Washington

    ERIC Educational Resources Information Center

    Jones, William P.; Euchner, Charles; Hill, Norman; Hill, Velma Murphy

    2013-01-01

    One of the most historical events in American history, the non-violent protest "March on Washington," August 28, 1963, is detailed in an article of remembrance by William P. Jones. His article is crowned by highlights from the "I Have a Dream" speech by Dr. Martin Luther King, Jr., but also highlights the lessor known role…

  9. Project IEP: Washington State Report.

    ERIC Educational Resources Information Center

    Lewis, Linda M.

    The document reports the Washington component of Project IEP (individualized education program), a project designed to identify and clarify perceptions related to roles in the IEP process as mandated by P.L. 94-142, the Education for All Handicapped Children Act. It is explained that under Project IEP approximately 200 persons (including state and…

  10. Washington State 1995 Data Book.

    ERIC Educational Resources Information Center

    Washington State Office of Financial Management, Olympia.

    This document is intended to present, in tables and graphs, a diversity of information on Washington State, its people, economy, and government. The information was obtained from state and federal agencies and from private businesses. The data are organized into 11 major chapters which cover the following topics (sample subtopics in parentheses):…

  11. Washington Education Association Directory, 2000.

    ERIC Educational Resources Information Center

    Council for Advancement and Support of Education, Washington, DC.

    This directory presents profiles of 73 higher education associations located in the Washington, DC (and northern Virginia) area. Preliminary information includes an alphabetical list of the associations by full name and an alphabetical list by organizational acronym. Each profile includes the organization's address, telephone numbers, e-mail and…

  12. Washington Tsunami Hazard Mitigation Program

    NASA Astrophysics Data System (ADS)

    Walsh, T. J.; Schelling, J.

    2012-12-01

    Washington State has participated in the National Tsunami Hazard Mitigation Program (NTHMP) since its inception in 1995. We have participated in the tsunami inundation hazard mapping, evacuation planning, education, and outreach efforts that generally characterize the NTHMP efforts. We have also investigated hazards of significant interest to the Pacific Northwest. The hazard from locally generated earthquakes on the Cascadia subduction zone, which threatens tsunami inundation in less than hour following a magnitude 9 earthquake, creates special problems for low-lying accretionary shoreforms in Washington, such as the spits of Long Beach and Ocean Shores, where high ground is not accessible within the limited time available for evacuation. To ameliorate this problem, we convened a panel of the Applied Technology Council to develop guidelines for construction of facilities for vertical evacuation from tsunamis, published as FEMA 646, now incorporated in the International Building Code as Appendix M. We followed this with a program called Project Safe Haven (http://www.facebook.com/ProjectSafeHaven) to site such facilities along the Washington coast in appropriate locations and appropriate designs to blend with the local communities, as chosen by the citizens. This has now been completed for the entire outer coast of Washington. In conjunction with this effort, we have evaluated the potential for earthquake-induced ground failures in and near tsunami hazard zones to help develop cost estimates for these structures and to establish appropriate tsunami evacuation routes and evacuation assembly areas that are likely to to be available after a major subduction zone earthquake. We intend to continue these geotechnical evaluations for all tsunami hazard zones in Washington.

  13. Geologic map of the Barrymore Quadrangle (V-59), Venus

    USGS Publications Warehouse

    Johnson, Jeffrey R.; Komatsu, Goro; Baker, Victor R.

    1999-01-01

    The Barrymore quadrangle (V–59) is a predominantly ridged plains region south of Imdr Regio, incorporating portions of Helen, Nuptadi, and Nsomeka Planitiae. The map area extends from lat 50°–75° S. and long 180°–240°, with nearly 70% coverage by cycle 1 synthetic aperture radar (SAR) images (left-look, incidence angles 16°–23°) and complete coverage by cycle 2 images (right-look, incidence angles 20°–25°) (fig. 1). The majority of the map area is covered by regional plains material that may either be smooth or deformed by wrinkle ridges or ridge belts of variable spacing. The difference in elevation between highest and lowest points in the map area is about 2.3 km. A north-south-oriented, 1,375-km linear ridge belt named “Saule Dorsa” is in the center of the region. The southern tip of this belt is intersected by a stratigraphically complicated, east-west-trending intermittent series of disrupted material, arcuate depressions and rises, regional plains, and volcanic centers. This region (hereafter referred to as the “east-west disrupted zone”) lies within a belt between 63°–67° S. extending from Kadlu Dorsa to Moombi Corona. A high concentration of canali-type channels (long sinuous lava channels that may contain subsidiary channels that branch off from the main channel [Baker and others, 1992; Komatsu and others, 1992]) occurs in Nsomeka Planitia. This includes Xulab Vallis and Citlalpul Valles, which form the eastern extent of a 3,000-km-long canali system (Komatsu and others, 1993). Three instances of canali bifurcation from north-south to east-west orientations occur in this region (fig. 2). Several large impact craters with fluidized ejecta blanket (FEB) outflows occur in the map area, along with some impact crater extended deposits (parabolas). The latter are mapped as surficial material using stipple patterns over the plains materials. These surficial deposits show variations in radar backscatter properties between cycle 1 and

  14. 33 CFR 117.1049 - Lake Washington.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lake Washington. 117.1049 Section 117.1049 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Washington § 117.1049 Lake Washington. The draw of...

  15. 33 CFR 117.1049 - Lake Washington.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lake Washington. 117.1049 Section 117.1049 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Washington § 117.1049 Lake Washington. The draw of...

  16. 12 CFR 4.4 - Washington office.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Washington office. 4.4 Section 4.4 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY ORGANIZATION AND FUNCTIONS, AVAILABILITY... EXAMINERS Organization and Functions § 4.4 Washington office. The Washington office of the OCC is the...

  17. 75 FR 20776 - Security Zone; Potomac River, Washington Channel, Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA87 Security Zone; Potomac River, Washington Channel... establishing a temporary security zone in certain waters of Washington Channel on the Potomac River. The... (NPRM) entitled ``Security Zone; Potomac River, Washington Channel, Washington, DC'' in the...

  18. INTERIOR VIEW, WATERSIDE MALL Southwest Washington, Urban Renewal Area, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, WATERSIDE MALL - Southwest Washington, Urban Renewal Area, Bounded by Independence Avenue, Washington Avenue, South Capitol Street, Canal Street, P Street, Maine Avenue & Washington Channel, Fourteenth Street, D Street, & Twelfth Street, Washington, District of Columbia, DC

  19. CLOSE VIEW ALONG WATERFRONT TO SHOW BULKHEAD Southwest Washington, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOSE VIEW ALONG WATERFRONT TO SHOW BULKHEAD - Southwest Washington, Urban Renewal Area, Bounded by Independence Avenue, Washington Avenue, South Capitol Street, Canal Street, P Street, Maine Avenue & Washington Channel, Fourteenth Street, D Street, & Twelfth Street, Washington, District of Columbia, DC

  20. VIEW OF THE REAR OF WATERSIDE MALL Southwest Washington, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE REAR OF WATERSIDE MALL - Southwest Washington, Urban Renewal Area, Bounded by Independence Avenue, Washington Avenue, South Capitol Street, Canal Street, P Street, Maine Avenue & Washington Channel, Fourteenth Street, D Street, & Twelfth Street, Washington, District of Columbia, DC

  1. Tsunami Preparedness in Washington (video)

    USGS Publications Warehouse

    2010-01-01

    Tsunamis are a constant threat to the coasts of our world. Although tsunamis are infrequent along the West coast of the United States, it is possible and necessary to prepare for potential tsunami hazards to minimize loss of life and property. Community awareness programs are important, as they strive to create an informed society by providing education and training. This video about tsunami preparedness in Washington distinguishes between a local tsunami and a distant event and focus on the specific needs of this region. It offers guidelines for correct tsunami response and community preparedness from local emergency managers, first-responders, and leading experts on tsunami hazards and warnings, who have been working on ways of making the tsunami affected regions safer for the people and communities on a long-term basis. This video was produced by the US Geological Survey (USGS) in cooperation with Washington Emergency Management Division (EMD) and with funding by the National Tsunami Hazard Mitigation Program.

  2. Geologic map and mineral-resources summary of the Baldwin Gap Quadrangle, North Carolina

    SciTech Connect

    Bartholomew, M.J.

    1983-01-01

    This summary accompanies the geologic map of the Baldwin Gap quadrangle, which is bounded by 36/sup 0/22'30'' and 36/sup 0/30' N. Latitude and by 81/sup 0/37'30'' and 81/sup 0/45' W. Longitude. Mineral resources that are known to have been mined are sand and gravel from floodplain deposits, mica and feldspar from several small pegmatite bodies, and marble from a small area in the south-central part of the quadrangle. Iron has been prospected at several places. Stone, likely suitable for various construction purposes, is present at many places as are saprolite deposits that may be used for earth fill. Several minor pyrite occurrences were noted. All the quarries, pits, and prospects discussed in this report were either abandoned or inactive.

  3. Structure of the Paleozoic rocks in the Tonkin Summit Quadrangle, Eureka County, Nevda

    NASA Astrophysics Data System (ADS)

    Arney, Eric

    Paleozoic rocks in the northern Simpson Park Range, Tonkin Summit Quadrangle, are comprised of the syn-orogenic Roberts Mountains allochthon, the postorogenic Permian Garden Valley Formation, and autochthonous Devonian carbonates. Complex deformation includes the Late Devonian-Early Mississippian, Antler Orogeny, post-Antler thrusting, and Cenozoic Basin and Range extension. The Roberts Mountains thrust caused eastward advancement of deep marine, mainly siliciclastic strata on top of the shelfal, mainly carbonate platform during the Antler Orogeny. This study shows that an east-vergent, post-Antler thrust, emplace the topographically higher carbonate outliers of the autochthon on top of the Roberts Mountains allochthon. These carbonate masses sit on top of the Henderson thrust in the Tonkin Summit Quadrangle and timing of this thrust is constrained to be post-Permian.

  4. Hydrogeochemical and stream sediment reconnaissance basic data for Corpus Christi NTMS quadrangle, Texas

    SciTech Connect

    Not Available

    1980-05-31

    Results of a reconnaissance geochemical survey of the Corpus Christi Quadrangle, Texas, are reported. Field and laboratory data are presented for 119 groundwater samples and 57 stream sediment samples. Also included is a brief discussion on the geology and hydrology of the quadrangle. Groundwater data indicate that uranium concentrations above the 85th percentile occur primarily in a trend in western Nueces County. With one exception, waters in the trend are produced from the Evangeline aquifer and have high values for selenium and strontium. Owing to urbanization, low topographic relief, and the presence of Recent-to-Pleistocene surface material, stream sediment data were found to be less than optimum for the determination of the potential for uranium mineralization, and variation in uranium concentrations between units may simply reflect lithologic differences.

  5. Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus: A Progress Report

    NASA Technical Reports Server (NTRS)

    Kumar, P. Senthil; Head, James W., III

    2008-01-01

    Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationships) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.

  6. Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle

    NASA Technical Reports Server (NTRS)

    Gregg, T. K. P.; Yingst, R. A.

    2009-01-01

    Since the first lunar mapping program ended in the 1970s, new topographical, multispectral, elemental and albedo imaging datasets have become available (e.g., Clementine, Lunar Prospector, Galileo). Lunar science has also advanced within the intervening time period. A new systematic lunar geologic mapping effort endeavors to build on the success of earlier mapping programs by fully integrating the many disparate datasets using GIS software and bringing to bear the most current understanding of lunar geologic history. As part of this program, we report on a 1:2,500,000-scale preliminary map of a subset of Lunar Quadrangle 10 ("LQ-10" or the "Marius Quadrangle," see Figures 1 and 2), and discuss the first-order science results. By generating a geologic map of this region, we can constrain the stratigraphic and geologic relationships between features, revealing information about the Moon s chemical and thermal evolution.

  7. Geological Evolution of the Ganiki Planitia Quadrangle (V14) on Venus

    NASA Technical Reports Server (NTRS)

    Grosfils, E. B.; Drury, D. E.; Hurwitz, D. M.; Kastl, B.; Long, s. M.; Richards, J. W.; Venechuk, E. M.

    2005-01-01

    The Ganiki Planitia quadrangle (25-50degN, 180-210degE) is located north of Atla Regio, south of Vinmara Planitia, and southeast of Atalanta Planitia. The region contains a diverse array of volcanic-, tectonic- and impact-derived features, and the objectives for the ongoing mapping effort are fivefold: 1) explore the formation and evolution of radiating dike swarms within the region, 2) use the diverse array of volcanic deposits to further test the neutral buoyancy hypothesis proposed to explain the origin of reservoir-derived features, 3&4) unravel the volcanic and tectonic evolution in this area, and 5) explore the implications of 1-4 for resurfacing mechanisms. Here we summarize our onging analysis of the material unit stratigraphy in the quadrangle, data central to meeting the aforementioned objectives successfully.

  8. Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region of Mars

    NASA Technical Reports Server (NTRS)

    Mest, S. C.; Crown, D. A.

    2008-01-01

    Geologic mapping and stratigraphic analyses of MTM -30247, -35247, and -40247 quadrangles are being used to characterize the Reull Vallis (RV) system and to determine the history of the eastern Hellas region of Mars. Studies of RV examine the roles and timing of volatile-driven erosional and depositional processes and provide constraints on potential associated climatic changes. This study complements earlier investigations of the eastern Hellas region, including regional analyses [1-6], mapping studies of circum-Hellas canyons [7-10], and volcanic studies of Hadriaca and Tyrrhena Paterae [11-13]. Key scientific objectives for these quadrangles include 1) characterization of RV in its "fluvial zone," 2) analysis of channels in the surrounding plains and potential connections to and interactions with RV, 3) examination of young (?), presumably sedimentary plains along RV that embay the surrounding highlands, and 4) determination of the nature of the connection between segments 1 and 2 of RV.

  9. Bedrock geologic map of the Uxbridge quadrangle, Worcester County, Massachusetts, and Providence County, Rhode Island

    USGS Publications Warehouse

    Walsh, Gregory J.

    2014-01-01

    The bedrock geology of the 7.5-minute Uxbridge quadrangle consists of Neoproterozoic metamorphic and igneous rocks of the Avalon zone. In this area, rocks of the Avalon zone lie within the core of the Milford antiform, south and east of the terrane-bounding Bloody Bluff fault zone. Permian pegmatite dikes and quartz veins occur throughout the quadrangle. The oldest metasedimentary rocks include the Blackstone Group, which represents a Neoproterozoic peri-Gondwanan marginal shelf sequence. The metasedimentary rocks are intruded by Neoproterozoic arc-related plutonic rocks of the Rhode Island batholith. This report presents mapping by G.J. Walsh. The complete report consists of a map, text pamphlet, and GIS database. The map and text pamphlet are available only as downloadable files (see frame at right). The GIS database is available for download in ESRI™ shapefile and Google Earth™ formats, and includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, geochemical data, and photographs.

  10. Geologic map of the Middletown quadrangle, Frederick, Shenandoah, and Warren Counties, Virginia

    USGS Publications Warehouse

    Orndorff, Randall C.; Epstein, Jack Burton; McDowell, Robert C.

    1999-01-01

    The Middletown 1:24,000-scale quadrangle is one of several quadrangles in Frederick County, Virginia mapped or being mapped by geologists from the U.S. Geological Survey in Reston, VA with funding from the National Cooperative Geologic Mapping Program. This map was originally published as a paper product in 1999. It has been converted to GIS-based digital form. This work is part of a project being lead by the U.S. Geological Survey Water Resources Discipline, Virginia District, to investigate the geologic framework and groundwater resources of Frederick County as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia. For more information about the Project see: http://geology.er.usgs.gov/eespteam/Karst/index.html for Geologic Discipline efforts and http://va.water.usgs.gov/va134/index.htm for Water Resources Discipline efforts.

  11. Geologic map of the Gulkana B-1 quadrangle, south-central Alaska

    SciTech Connect

    Richter, D.H.; Ratte, J.C.; Schmoll, H.R.; Leeman, W.P.; Smith, J.G.; Yehle, L.A.

    1989-01-01

    The quadrangle includes the Capital Mountain Volcano and the northern part of Mount Sanford Volcano in the Wrangell Mountains of south-central Alaska. The Capital Mountain volcano is a relatively small, andesitic shield volcano of Pleistocene age, which contains a 4-km-diameter summit caldera and a spectacular post-caldera radial dike swam. Lava flows from the younger Pleistocene Mount Sanford Volcano overlap the south side of the Capital Mountain Volcano. Copper-stained fractures in basaltic andesite related to a dike-filled rift of the North Sanford eruptive center are the only sign of mineralization in the quadrangle. Rock glaciers, deposits of Holocene and Pleistocene valley glaciers and Pleistocene Copper River basin glaciers mantle much of the volcanic bedrock below elevations of 5,500 ft.

  12. Stratigraphy of the Perrine and Nun Sulci quadrangles (Jg-2 and Jg-5), Ganymede

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.; Squyres, Steven W.

    1991-01-01

    Dark and light terrain materials in the Perrine and Nun Sulci quadrangles are divided into nine map units, four dark, and five light. These are placed in time-stratigraphic sequence primarily by means of embayment and cross-cutting relationships. Dark terrain is generally more heavily cratered and thus older that light terrain but, at least in these quadrangles, crater densities are not reliable indicators of relative ages among the four dark material units. The four mapped material units within dark terrain are: cratered dark materials (dc), grooved dark materials (dg), transitional dark materials (di), and dark materials, undivided (d). The five mapped units within light terrain are: intermediate light materials (li), grooved light materials (lg), irregularly grooved light materials (lgl), smooth light materials (ls), and light materials, undivided.

  13. Father Secchi Goes to Washington

    NASA Astrophysics Data System (ADS)

    McCarthy, M. F.

    1994-12-01

    In 1848 a small group of Jesuit refugees arrived at Georgetown College near Washington, D.C. Among them was a young priest, Angelo Secchi, who had finished theology studies in Rome, but had not been able to complete his final examinations. This done successfully, Secchi turned to astronomy and the new facilities of the Georgetown College Observatory, directed by its founder, Fr. James Curley. During his two years in Washington, Secchi studied physics, wrote an article on Electrical Rheometry for the Smithsonian Institution, and formed a friendship with Matthew Fontaine Maury of the U.S. Navy, who headed the Chart Service and in 1844 was named superintendent of the National Observatory. This was later named the U.S. Naval Observatory. Secchi's friendships formed during the Washington visit proved most helpful for relations between European astronomers and U.S. colleagues. Secchi, after his return to Rome constructed the Observatory of the Collegio Romano atop the baroque Church of St. Ignatius in Rome and began his work in spectral classification of stars.

  14. Geologic map of the Dillon 1 degree by 2 degrees Quadrangle, Idaho and Montana

    USGS Publications Warehouse

    Ruppel, E.T.; Lopez, D.A.; O'Neill, J. M.

    1993-01-01

    The digital ARC/INFO databases included in this website provide a GIS database for the geologic map of the Dillon 1 degree by 2 degree quadrangle of southwest Montana and east-central Idaho. The geologic map was originally published as U.S. Geological Survey Miscellaneous Investigations Series Map I-1803-H. This website directory contains ARC/INFO format files that can be used to query or display the geology of USGS Map I-1803-H with GIS software.

  15. Surficial Geologic Map of The Loop and Druid Arch Quadrangles, Canyonlands National Park, Utah

    USGS Publications Warehouse

    Billingsley, George H.; Block, Debra L.; Felger, Tracey J.

    2002-01-01

    This geologic map is a product of a cooperative project between the U.S. Geological Survey and the U.S. National Park Service to provide geologic information about this part of Canyonlands National Park, Utah. This digital map database contains bedrock data from previously published data that has been modified by the author. New mapping of the surficial deposits represents the general distribution of surficial deposits of the Druid Arch and The Loop 7.5-minute quadrangles.

  16. Geologic map of the Hart Peak Quadrangle, California and Nevada: a digital database

    USGS Publications Warehouse

    Nielson, Jane E.; Turner, Ryan D.; Bedford, David R.

    1999-01-01

    The Hart Peak 1:24,000-scale quadrangle is located about 12 km southwest of Searchlight, Nevada, comprehending the eastern part of the Castle Peaks, California, and most of the Castle Mountains and the northwestern part of the Piute Range, in California and Nevada. The Castle Peaks area constitutes the northeasternmost part of the northeast-trending New York Mountains. The Castle Mountains straddle the California-Nevada State line between the Castle Peaks and north-trending Piute Range. The southern part of the Piute Range, near Civil War-era Fort Piute, adjoins Homer Mountain mapped by Spencer and Turner (1985). Adjacent and nearby 1:24,000-scale quadrangles include Castle Peaks, East of Grotto Hills, Homer Mountain, and Signal Hill, Calif.; also Tenmile Well and West of Juniper Mine, Calif. and Nev. The oldest rocks in the Hart Peak quadrangle are Early Proterozoic gneiss and foliated granite that crop out in the northern part of the quadrangle on the eastern flank of the Castle Peaks and in the central Castle Mountains (Wooden and Miller, 1990). Paleozoic rocks are uncommon and Mesozoic granitic rocks are not found in the map area. The older rocks are overlain nonconformably by several km of Miocene volcanic deposits, which accumulated in local basins. Local dikes and domes are sources of most Miocene eruptive units; younger Miocene intrusions cut all the older rocks. Upper Miocene to Quaternary gravel deposits interfinger with the uppermost volcanic flows; the contact between volcanic rocks and the gravel deposits is unconformable locally. Canyons and intermontane valleys contain dissected Quaternary alluvialfan deposits that are mantled by active drainage and alluvial fan detritus.

  17. Airborne radioactivity surveys of parts of Savery SW and Savery SE quadrangles, Carbon County, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 222 square miles of Savery SW and Savery SE quadrangles, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater Counties by the U. S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission.

  18. Airborne radioactivity survey of parts of Savery NW and Savery NE quadrangles, Carbon County, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 266 square miles of Savery NW and Savery NE quadrangles, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater Counties by the U. S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission.

  19. Geologic and Geophysical Framework of the Santa Rosa 7.5' Quadrangle, Sonoma County, California

    USGS Publications Warehouse

    McLaughlin, R.J.; Langenheim, V.E.; Sarna-Wojcicki, A. M.; Fleck, R.J.; McPhee, D.K.; Roberts, C.W.; McCabe, C.A.; Wan, Elmira

    2008-01-01

    The geologic and geophysical maps of Santa Rosa 7.5? quadrangle and accompanying structure sections portray the sedimentary and volcanic stratigraphy and crustal structure of the Santa Rosa 7.5? quadrangle and provide a context for interpreting the evolution of volcanism and active faulting in this region. The quadrangle is located in the California Coast Ranges north of San Francisco Bay and is traversed by the active Rodgers Creek, Healdsburg and Maacama Fault Zones. The geologic and geophysical data presented in this report, are substantial improvements over previous geologic and geophysical maps of the Santa Rosa area, allowing us to address important geologic issues. First, the geologic mapping is integrated with gravity and magnetic data, allowing us to depict the thicknesses of Cenozoic deposits, the depth and configuration of the Mesozoic basement surface, and the geometry of fault structures beneath this region to depths of several kilometers. This information has important implications for constraining the geometries of major active faults and for understanding and predicting the distribution and intensity of damage from ground shaking during earthquakes. Secondly, the geologic map and the accompanying description of the area describe in detail the distribution, geometry and complexity of faulting associated with the Rodgers Creek, Healdsburg and Bennett Valley Fault Zones and associated faults in the Santa Rosa quadrangle. The timing of fault movements is constrained by new 40Ar/39Ar ages and tephrochronologic correlations. These new data provide a better understanding of the stratigraphy of the extensive sedimentary and volcanic cover in the area and, in particular, clarify the formational affinities of Pliocene and Pleistocene nonmarine sedimentary units in the map area. Thirdly, the geophysics, particularly gravity data, indicate the locations of thick sections of sedimentary and volcanic fill within ground water basins of the Santa Rosa plain and

  20. 27 CFR 9.188 - Horse Heaven Hills.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Junction Quadrangle, Oregon—Washington, 1962, photo revised, 1970; (9) Wood Gulch Quadrangle, Washington—Oregon, 1962, photo revised 1970, photo inspected 1975; (10) Crider Valley Quadrangle, Washington, 1962...) Prosser SW Quadrangle, Washington, 1965, photo inspected 1975; (14) Mabton West Quadrangle,...

  1. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Green Valley Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  2. Preliminary Image Map of the 2007 Harris Fire Perimeter, Tecate Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  3. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Agua Dulce Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  4. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Mint Canyon Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  5. Preliminary Image Map of the 2007 Ranch Fire Perimeter, Piru Quadrangle, Ventura County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  6. Preliminary Image Map of the 2007 Santiago Fire Perimeter, Tustin Quadrangle, Orange County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  7. Preliminary Image Map of the 2007 Canyon Fire Perimeter, Malibu Beach Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  8. Preliminary Image Map of the 2007 Witch Fire Perimeter, Santa Ysabel Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  9. Preliminary Image Map of the 2007 Poomacha Fire Perimeter, Palomar Observatory Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  10. Preliminary Image Map of the 2007 Slide Fire Perimeter, Butler Peak Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  11. Preliminary Image Map of the 2007 Ammo Fire Perimeter, Margarita Peak Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  12. Preliminary Image Map of the 2007 Harris Fire Perimeter, Barrett Lake Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  13. Preliminary Image Map of the 2007 Witch Fire Perimeter, Escondido Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  14. Preliminary Image Map of the 2007 Ranch Fire Perimeter, Fillmore Quadrangle, Ventura County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  15. Preliminary Image Map of the 2007 Poomacha Fire Perimeter, Boucher Hill Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  16. Preliminary Image Map of the 2007 Harris Fire Perimeter, Dulzura Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  17. Preliminary Image Map of the 2007 Cajon Fire Perimeter, Devore Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  18. Preliminary Image Map of the 2007 Harris Fire Perimeter, Morena Reservoir Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  19. Preliminary Image Map of the 2007 Poomacha Fire Perimeter, Pala Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  20. Preliminary Image Map of the 2007 Witch Fire Perimeter, San Pasqual Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  1. Preliminary Image Map of the 2007 Santiago Fire Perimeter, Lake Forest Quadrangle, Orange County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  2. Preliminary Image Map of the 2007 Harris Fire Perimeter, Potrero Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  3. Preliminary Image Map of the 2007 Slide Fire Perimeter, Harrison Mountain Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  4. Preliminary Image Map of the 2007 Harris Fire Perimeter, Otay Mountain Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  5. Preliminary Image Map of the 2007 Santiago Fire Perimeter, Orange Quadrangle, Orange County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  6. Preliminary Image Map of the 2007 Witch Fire Perimeter, Warners Ranch Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  7. Preliminary Image Map of the 2007 Harris Fire Perimeter, Otay Mesa Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  8. Geologic map of the Ponca quadrangle, Newton, Boone, and Carroll Counties, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Murray, Kyle E.

    2003-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Ponca 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Ponca quadrangle is located in Newton, Boone, and Carroll Counties about 20 km southwest of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Ponca quadrangle map provides new geologic information for better understanding groundwater flow paths and development of karst features in and adjacent to the Buffalo River watershed.

  9. Preliminary Image Map of the 2007 Harris Fire Perimeter, Jamul Mountains Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  10. The Fredegonde (V-57) Quadrangle, Venus: Characterization of the Venus Midlands

    NASA Technical Reports Server (NTRS)

    Ivanov, M. A.; Head, James W.

    2008-01-01

    The Fredegonde quadrangle (V-57, 50-75degS, 60-120degE) in the southern hemisphere of Venus represents a typical region of midlands (0-2 km above MPR). Midlands are the most widespread topographic province on Venus (approx.80%) and display the richest variety of features. Geological mapping in the V-57 quadrangle provides the possibility of defining and characterizing units that make up a region of midlands and to establish the general sequence of events there and thus address questions about the modes of formation and chronology of midlands on Venus. The map area is in contact with the uplands in the central portion of Lada Terra to the west and the lowlands of Aino Planitia to the northeast. This position also provides a transitional zone between the other two major topographic provinces, similar to that of the Meskhent Tessera (V-3) area. Here we report on the results of our mapping in the V-57 quadrangle, describe the major features, units, and structural assemblages exposed there, and outline the main episodes of geologic history.

  11. Preliminary Image Map of the 2007 Witch Fire Perimeter, Tule Springs Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  12. Airborne gamma-ray spectrometer and magnetometer survey, Medford Quadrangle Oregon. Final report

    SciTech Connect

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Medford, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of three miles. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 2925 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  13. Airborne gamma-ray spectrometer and magnetometer survey, Roseburg Quadrangle, Oregon. Final report

    SciTech Connect

    Not Available

    1981-03-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Roseburg, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1596 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  14. Geologic Map of the Pahranagat Range 30' x 60' Quadrangle, Lincoln and Nye Counties, Nevada

    USGS Publications Warehouse

    Jayko, A.S.

    2007-01-01

    Introduction The Pahranagat Range 30' x 60' quadrangle lies within an arid, sparsely populated part of Lincoln and Nye Counties, southeastern Nevada. Much of the area is public land that includes the Desert National Wildlife Range, the Pahranagat National Wildlife Refuge, and the Nellis Air Force Base. The topography, typical of much of the Basin and Range Province, consists of north-south-trending ranges and intervening broad alluvial valleys. Elevations range from about 1,000 to 2,900 m. At the regional scale, the Pahranagat Range quadrangle lies within the Mesozoic and early Tertiary Sevier Fold-and-Thrust Belt and the Cenozoic Basin and Range Province. The quadrangle is underlain by a Proterozoic to Permian miogeoclinal section, a nonmarine clastic and volcanic section of middle Oligocene or older to late Miocene age, and alluvial deposits of late Cenozoic age. The structural features that are exposed reflect relatively shallow crustal deformation. Mesozoic deformation is dominated by thrust faults and asymmetric or open folds. Cenozoic deformation is dominated by faults that dip more than 45i and dominostyle tilted blocks. At least three major tectonic events have affected the area: Mesozoic (Sevier) folding and thrust faulting, pre-middle Oligocene extensional deformation, and late Cenozoic (mainly late Miocene to Holocene) extensional deformation. Continued tectonic activity is expressed in the Pahranagat Range area by seismicity and faults having scarps that cut alluvial deposits.

  15. Airborne gamma-ray spectrometer and magnetometer survey: Susanville quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Susanville, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1642.8 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  16. Airborne gamma-ray spectrometer and magnetometer survey: Ukiah quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Ukiah, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1517 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  17. Airborne gamma-ray spectrometer and magnetometer survey: Chico quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Chico, California, map area. Traverse lines were flown in an east-west direction at a line spacing of three. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 3026.4 line miles are in the quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  18. Airborne gamma-ray spectrometer and magnetometer survey: Alturas quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Alturas, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1631.6 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  19. Preliminary Image Map of the 2007 Rice Fire Perimeter, Bonsall Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  20. Preliminary Image Map of the 2007 Witch Fire Perimeter, Valley Center Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  1. Preliminary Image Map of the 2007 Slide Fire Perimeter, Keller Peak Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  2. Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus

    NASA Technical Reports Server (NTRS)

    Ivanov, M. A.; Head, J. W.

    2009-01-01

    The Fortuna Tessera quadrangle (50-75 N, 0-60 E) is a large region of tessera [1] that includes the major portion of Fortuna and Laima Tesserae [2]. Near the western edge of the map area, Fortuna Tessera is in contact with the highest moun-tain belt on Venus, Maxwell Montes. Deformational belts of Sigrun-Manto Fossae (extensional structures) and Au ra Dorsa (contractional structures) separate the tessera regions. Highly deformed terrains correspond to elevated regions and mildly deformed units are with low-lying areas. The sets of features within the V-2 quadrangle permit us to address the following important questions: (1) the timing and processes of crustal thickening/thinning, (2) the nature and origin of tesserae and deformation belts and their relation to crustal thickening processes, (3) the existence or absence of major evolutionary trends of volcanism and tectonics. The key feature in all of these problems is the regional sequence of events. Here we present description of units that occur in the V-2 quadrangle, their regional correlation chart (Fig. 1), and preliminary geological map of the region (Fig. 2).

  3. Hydrogeochemical and stream sediment reconnaissance basic data for Watertown NTMS Quadrangle, South Dakota; Minnesota

    SciTech Connect

    Not Available

    1981-05-29

    Results of a reconnaissance geochemical survey of the Watertown Quadrangle are reported. Field and laboratory data are presented for 711 groundwater and 603 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that high uranium concentrations are derived predominantly from glacial aquifers of variable water composition located on the Coteau des Prairies. Elements associated with high uranium values in these waters include barium, calcium, copper, iron, magnesium, selenium, sulfate, and total alkalinity. Low uranium values were observed in waters originating from the Cretaceous Dakota sandstone whose water chemistry is characterized by high concentrations of boron, sodium, and chloride. Stream sediment data indicate that high uranium concentrations are scattered across the glacial deposits of the Coteau des Prairies. A major clustering of high uranium values occurs in the eastern portion of the glaciated quadrangle and is associated with high concentrations of selenium, lithium, iron, arsenic, chromium, and vanadium. The sediment data suggest that the drift covering the Watertown Quadrangle is compositionally homogeneous, although subtle geochemical differences were observed as a result of localized contrasts in drift source-rock mineralogy and modification of elemental distributions by contemporaneous and postglacial hydrologic processes.

  4. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Sleepy Valley Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  5. Preliminary Image Map of the 2007 Witch Fire Perimeter, Ramona Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  6. Preliminary Image Map of the 2007 Witch Fire Perimeter, Poway Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  7. The systematic geologic mapping program and a quadrangle-by-quadrangle analysis of time-stratigraphic relations within oil shale-bearing rocks of the Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.

    2012-01-01

    During the 1960s, 1970s, and 1980s, the U.S. Geological Survey mapped the entire area underlain by oil shale of the Eocene Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin contains the largest known oil shale deposit in the world, with an estimated 1.53 trillion barrels of oil in place and as much as 400,000 barrels of oil per acre. This report places the sixty-nine 7½-minute geologic quadrangle maps and one 15-minute quadrangle map published during this period into a comprehensive time-stratigraphic framework based on the alternating rich and lean oil shale zones. The quadrangles are placed in their respective regional positions on one large stratigraphic chart so that tracking the various stratigraphic unit names that have been applied can be followed between adjacent quadrangles. Members of the Green River Formation were defined prior to the detailed mapping, and many inconsistencies and correlation problems had to be addressed as mapping progressed. As a result, some of the geologic units that were defined prior to mapping were modified or discarded. The extensive body of geologic data provided by the detailed quadrangle maps contributes to a better understanding of the distribution and characteristics of the oil shale-bearing rocks across the Piceance Basin.

  8. Geologic map of the Rifle Falls quadrangle, Garfield County, Colorado

    USGS Publications Warehouse

    Scott, Robert B.; Shroba, Ralph R.; Egger, Anne

    2001-01-01

    New 1:24,000-scale geologic map of the Rifle Falls 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift. Bedrock strata include the Upper Cretaceous Iles Formation through Ordovician and Cambrian units. The Iles Formation includes the Cozzette Sandstone and Corcoran Sandstone Members, which are undivided. The Mancos Shale is divided into three members, an upper member, the Niobrara Member, and a lower member. The Lower Cretaceous Dakota Sandstone, the Upper Jurassic Morrison Formation, and the Entrada Sandstone are present. Below the Upper Jurassic Entrada Sandstone, the easternmost limit of the Lower Jurassic and Upper Triassic Glen Canyon Sandstone is recognized. Both the Upper Triassic Chinle Formation and the Lower Triassic(?) and Permian State Bridge Formation are present. The Pennsylvanian and Permian Maroon Formation is divided into two members, the Schoolhouse Member and a lower member. All the exposures of the Middle Pennsylvanian Eagle Evaporite intruded into the Middle Pennsylvanian Eagle Valley Formation, which includes locally mappable limestone beds. The Middle and Lower Pennsylvanian Belden Formation and the Lower Mississippian Leadville Limestone are present. The Upper Devonian Chaffee Group is divided into the Dyer Dolomite, which is broken into the Coffee Pot Member and the Broken Rib Member, and the Parting Formation. Ordovician through Cambrian units are undivided. The southwest flank of the White River uplift is a late Laramide structure that is represented by the steeply southwest-dipping Grand Hogback, which is only present in the southwestern corner of the map area, and less steeply southwest-dipping older strata that flatten to nearly horizontal attitudes in the northern part of the map area. Between these two is a large-offset, mid

  9. Map showing distribution of bismuth and cadmium in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle shows the regional distribution of bismuth and cadimum in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  10. Map showing distribution of barium in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle shows the regional distribution of barium in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  11. Map showing distribution of molybdenum in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of molybdenum in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  12. Map showing distribution of thorium in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of thorium in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  13. Geologic map of the Jam Up Cave and Pine Crest quadrangles, Shannon, Texas, and Howell Counties, Missouri

    USGS Publications Warehouse

    Weary, David J.; Orndorff, Randall C.; Repetski, John E.

    2013-01-01

    The Jam Up Cave and Pine Crest 7.5-minute quadrangles are located in south-central Missouri within the Salem Plateau region of the Ozark Plateaus physiographic province. About 2,400 to 3,100 feet (ft) of flat-lying to gently dipping Lower Paleozoic sedimentary rocks, mostly dolomite, chert, sandstone, and orthoquartzite, overlie Mesoproterozoic igneous basement rocks. Unconsolidated residuum, colluvium, terrace deposits, and alluvium overlie the sedimentary rocks. Numerous karst features, such as sinkholes, caves, and springs, have formed in the carbonate rocks. Many streams are spring fed. The topography is a dissected karst plain with elevations ranging from about 690 ft where the Jacks Fork River exits the northeastern corner of the Jam Up Cave quadrangle to about 1,350 ft in upland areas along the north-central edge and southwestern corner of the Pine Crest quadrangle. The most prominent physiographic feature is the valley of the Jacks Fork River. This reach of the upper Jacks Fork, with its clean, swiftly-flowing water confined by low cliffs and bluffs, provides one of the most beautiful canoe float trips in the nation. Most of the land in the quadrangles is privately owned and used primarily for grazing cattle and horses and growing timber. A large minority of the land within the quadrangles is publicly owned by the Ozark National Scenic Riverways of the National Park Service. Geologic mapping for this investigation was conducted in 2005 and 2006.

  14. Geologic map of the Dillon quadrangle, Summit and Grand Counties, Colorado

    USGS Publications Warehouse

    Kellogg, Karl S.

    1997-01-01

    New 1:24,000-scale geologic mapping along the Interstate-70 urban corridor in western Colorado, in support of the USGS Central Region State/USGS Cooperative Geologic Mapping Project, is contributing to a more complete understanding of the stratigraphy, structure, tectonic evolution, and hazard potential of this rapidly developing region. The 1:24,000-scale Dillon quadrangle is near the headwaters of the Blue River and straddles features of the Blue River graben (Kellogg, 1999), part of the northernmost reaches of the Rio Grande rift, a major late Oligocene to recent zone of extension that extends from Colorado to Mexico. The Williams Range thrust fault, the western structural margin of the Colorado Front Range, cuts through the center of the quadrangle, although is mostly covered by surficial deposits. The oldest rocks in the quadrangle underlie the Williams Fork Mountains and the ridge immediately east of South Fork Middle Fork River, and include biotite-sillimanite schist and gneiss, amphibolite, and migmatite that are intruded by granite inferred to be part of the 1,667-1,750 Ma Routt Plutonic Suite (Tweto, 1987). The oldest exposed sedimentary unit is the Upper Jurassic Morrison Formation, but Pennsylvanian Maroon Formation, a sequence of red sandstone, conglomerate, and interbedded shale, underlies the southern part of the quadrangle. The thickest sequence of sedimentary rocks is Cretaceous in age and includes at least 500 m of the Upper Cretaceous Pierre Shale. Surficial deposits include (1) an old, deeply dissected landslide deposit, possibly as old as Pliocene, on the west flank of the Williams Fork Mountains, (2) deeply weathered, very coarse gravel deposits underlying a mesa in the southwest part of the quadrangle (the Mesa Cortina subdivision. The gravels are gold bearing and were mined by hydraulic methods in the 1800s), (3) moderately to deeply weathered, widespread, bouldery material that is a combination of till of the Bull Lake glaciation, debris

  15. Geologic map of the Dillon quadrangle, Summit and Grand Counties, Colorado

    USGS Publications Warehouse

    Kellogg, Karl S.

    2002-01-01

    New 1:24,000-scale geologic mapping along the Interstate-70 urban corridor in western Colorado, in support of the USGS Central Region State/USGS Cooperative Geologic Mapping Project, is contributing to a more complete understanding of the stratigraphy, structure, tectonic evolution, and hazard potential of this rapidly developing region. The 1:24,000-scale Dillon quadrangle is near the headwaters of the Blue River and straddles features of the Blue River graben (Kellogg, 1999), part of the northernmost reaches of the Rio Grande rift, a major late Oligocene to recent zone of extension that extends from Colorado to Mexico. The Williams Range thrust fault, the western structural margin of the Colorado Front Range, cuts through the center of the quadrangle, although is mostly covered by surficial deposits. The oldest rocks in the quadrangle underlie the Williams Fork Mountains and the ridge immediately east of South Fork Middle Fork River, and include biotite-sillimanite schist and gneiss, amphibolite, and migmatite that are intruded by granite inferred to be part of the 1,667-1,750 Ma Routt Plutonic Suite (Tweto, 1987). The oldest exposed sedimentary unit is the Upper Jurassic Morrison Formation, but Pennsylvanian Maroon Formation, a sequence of red sandstone, conglomerate, and interbedded shale, underlies the southern part of the quadrangle. The thickest sequence of sedimentary rocks is Cretaceous in age and includes at least 500 m of the Upper Cretaceous Pierre Shale. Surficial deposits include (1) an old, deeply dissected landslide deposit, possibly as old as Pliocene, on the west flank of the Williams Fork Mountains, (2) deeply weathered, very coarse gravel deposits underlying a mesa in the southwest part of the quadrangle (the Mesa Cortina subdivision. The gravels are gold bearing and were mined by hydraulic methods in the 1800s), (3) moderately to deeply weathered, widespread, bouldery material that is a combination of till of the Bull Lake glaciation, debris

  16. Geologic Mapping of the Ac-H-1 quadrangle of Ceres from NASA's Dawn mission

    NASA Astrophysics Data System (ADS)

    Rüsch, Ottaviano; McFadden, Lucy A.; Hiesinger, Harald; Scully, Jennifer; Kneissl, Thomas; Hughson, Kynan; Williams, David A.; Roatsch, Thomas; Platz, Thomas; Preusker, Frank; Schmedemann, Nico; Marchi, Simone; Jaumann, Ralf; Nathues, Andreas; Raymond, Carol A.; Russell, Christopher T.

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta (1, 2), including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map, and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract, we present the geologic map and geologic evolution of the Ac-H-1 Asari Quadrangle. At the time of writing, LAMO images (35 m/pixel) are just becoming available. Thus, our geologic maps are based on HAMO images (140 m/pixel) and HAMO and Survey (400 m/pixel) digital terrain models (for topographic information) (3). Dawn Framing Camera (FC) color images are also used to provide context for map unit identification. The maps to be presented as posters will be updated from analyses of LAMO images. Ac-H-1 quadrangle covers the North Pole area: 65°N-90°N. Key characteristics of the study area are: (i) a high density of impact craters and (ii) only moderate topographic variations across the quadrangle. We measured a crater density of 9.8E-04 km-2 for crater diameters >10 km, the highest on Ceres measured so far. Topographic lows, reaching -4 km, correspond to the floors of impact craters with diameters up to 64 km. A few isolated topographic highs (plateaus), reaching ~5 km in altitude relative to the ellipsoid are present. Their irregular shape is often sculpted by impacts. A peculiar topographic rise is represented by Ysolo Mons: a ~5 km high and ~20 km wide mountain. No downslope striations are preserved on the Mons flanks, indicating an older surface relative to Ahuna Mons, a similar but morphologically fresh appearing mountain at the equator (quadrangle Ac-H-10, (4)). Several impact craters show central peaks and/or mass wasting deposits on their floor. Crater rims often display terraces. These morphologies show varying degrees of degradation. Uncommon crater morphologies are a smooth crater floor (crater located at 79°N-170°E) and a large mass wasting landform inside

  17. Geological Mapping of the Ac-H-13 Urvara Quadrangle of Ceres from NASA's Dawn Mission

    NASA Astrophysics Data System (ADS)

    Sizemore, Hanna; Williams, David; Platz, Thomas; Mest, Scott; Yingst, Aileen; Crown, David; O'Brien, David; Buczkowski, Debra; Schenk, Paul; Scully, Jennifer; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andreas; De Sanctis, Maria Cristina; Russell, Christopher; Raymond, Carol

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map, and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the geologic evolution of the Ac-H-13 Urvara Quadrangle. At the time of this writing LAMO images (35 m/pixel) are just becoming available. Thus, our geologic maps are based on HAMO images (140 m/pixel) and Survey (400 m/pixel) digital ter-rain models (for topographic information). Dawn Framing Camera (FC) color images are also used to provide context for map unit identification. The maps to be presented as posters will be updated from analyses of LAMO images. The Urvara Quadrangle is dominated by the 170-km diameter impact basin Urvara (46.4°S, 248.6°E) and includes cratered terrain to the west. Named features include the impact craters Meanderi (40.9°S, 193.7°E, 103 km diameter), Sekhet (66.4°S, 254.9°E, 41 km diameter), and Fluusa (31.5°S, 277.9°E), as well as the crater chains Gerber Catena (38.1°S, 214.8°E) and Sam-hain Catena (19.6°S, 210.3°E). Based on preliminary geologic mapping [3,4], we interpret the two prominent catenae as pit craters associated with large scale tectonism rather than secondary impacts. We interpret two large curvilinear depressions near the eastern quadrangle boundary as secondary crater chains resulting from the Urvara impact. Textural and morphological asymme-tries in crater materials within the quadrangle indicate heterogeneities in subsurface composition and volatile content. Features on the Urvara basin floor are consistent with impact fluidization of target materials; post impact extrusion of volatile rich material may have also played a minor role. References: [1] Williams D.A. et al. (2014) Icarus, 244, 1-12. [2] Yingst R.A. et al. (2014) PSS, 103, 2-23. [3] Sizemore et al. (2015) GSA Abstracts with Program

  18. Geological Mapping of the Ac-H-2 Coniraya Quadrangle of Ceres from NASA's Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Hendrik Pasckert, Jan; Hiesinger, Harald; Williams, David; Crown, David; Mest, Scott; Buczkowski, Debra; Scully, Jennifer; Schmedemann, Nico; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Naß, Andrea; Nathues, Andreas; Hoffmann, Martin; Schäfer, Michael; De Sanctis, Maria Cristina; Raymond, Carol; Russell, Christopher

    2016-04-01

    Dwarf planet Ceres (˜950 km) is located at ˜2.8 AU in the main asteroid belt [1], and is currently orbited by NASA's Dawn spacecraft. Similar to Vesta [2], the 15 quadrangles of Ceres will be mapped on the basis of Framing Camera mosaics from Low Altitude Mapping Orbits (LAMO) with a spatial resolution of ˜35 m/px. Here we report on our preliminary geological map of the Ac-H-2 Coniraya Quadrangle (located between 21-66 ° N and 0-90 ° E) based on High Altitude Mapping Orbit (HAMO) data (˜120 m/px), as LAMO images are just becoming available. The Coniraya Quadrangle is dominated by craters of different sizes and degradation stages. Most of the craters are highly degraded and no ejecta blankets are visible (e.g., Coniraya: 136 km; 65.8° E/40.5° N). Only some craters like Gaue and Ikapati seem to be relatively fresh, and still have ejecta blankets. Such fresher impact craters could already be mapped in detail on HAMO data, and subdivided into crater ejecta, crater wall, crater floor, and crater central peak materials. At the crater floor and around Ikapati crater we also identified smooth materials that fill local depressions. The formation of the smooth material seems to be related to the formation of the impact crater, as crater densities of the smooth materials and the ejecta blanket are similar, as are their absolute model ages (AMAs), derived from crater size-frequency distribution (CSFD) measurements. Using the lunar derived chronology, CSFD measurements of Ikapati's ejecta blanket and the smooth materials located in and around the crater show AMAs of 300 to 390 Ma. CSFD measurements of Gaue crater show AMAs of 910-980 Ma. Both craters show background AMAs of 3.1 to 3.5 Ga, which might be related to old large craters (e.g., Coniraya or Kerwan). Apart from crater related units, we identified one dome-like structure (˜65 km wide; ˜3 km high) at the crater floor of a large degraded crater at the western edge of this quadrangle. This might be an indication

  19. Geologic Map and Map Database of the Spreckels 7.5-minute Quadrangle, Monterey County, California

    USGS Publications Warehouse

    Clark, Joseph C.; Brabb, Earl E.; Rosenberg, Lewis I.; Goss, Heather V.; Watkins, Sarah E.

    2001-01-01

    Introduction The Spreckels quadrangle lies at the north end of the Sierra de Salinas and extends from the Salinas Valley on the northeast across Los Laurelles Ridge south to Carmel Valley, an intermontane valley that separates the Santa Lucia Range from the Sierra de Salinas (fig. 1). The Toro Regional Park occupies the east-central part of the quadrangle, whereas the former Fort Ord Military Reservation covers the northwestern part of the area and is the probable locus of future development. Subdivisions largely occupy the older floodplain of Toro Creek and the adjacent foothills, with less dense development along the narrower canyons of Corral de Tierra and San Benancio Gulch to the south. The foothills southwest of the Salinas River are the site of active residential development. Geologically, the study area has a crystalline basement of Upper Cretaceous granitic rocks of the Salinian block and older metasedimentary rocks of the schist of the Sierra de Salinas of probable Cretaceous age. Resting nonconformably upon these basement rocks is a sedimentary section that ranges in age from middle Miocene to Holocene and has a composite thickness of as much as 1,200 m. One of the purposes of the present study was to investigate the apparent lateral variation of the middle to upper Miocene sections from the typical porcelaneous and diatomaceous Monterey Formation of the Monterey and Seaside quadrangles to the west (Clark and others, 1997) to a thick marine sandstone section in the eastern part of the Spreckels quadrangle. Liquefaction, which seriously affected the Spreckels area in the 1906 San Francisco earthquake (Lawson, 1908), and landsliding are the two major geological hazards of the area. The landslides consist mainly of older large slides in the southern and younger debris flows in the northern part of the quadrangle. This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general

  20. Geological Mapping of the Ac-H-14 Yalode Quadrangle of Ceres from NASA's Dawn Mission

    NASA Astrophysics Data System (ADS)

    Crown, David; Yingst, Aileen; Mest, Scott; Platz, Thomas; Sizemore, Hanna; Berman, Daniel; Williams, David; Roatsch, Thomas; Preusker, Frank; Nathues, Andreas; Hoffman, Martin; Schäfer, Michael; Raymond, Carol; Russell, Christopher

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres that includes production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the surface geology and geologic evolution of the Ac-H-14 Yalode Quadrangle (21-66°S, 270-360°E). The current geologic map was produced using ArcGIS software based on HAMO images (140 m/pixel) for surface morphology and stratigraphic relationships, Survey (400 m/pixel) digital terrain models for topographic information, and Dawn Framing Camera (FC) color images as context for map unit identification. The map will be updated through analysis of LAMO images (35 m/pixel) that are just becoming available. The Yalode Quadrangle is dominated by the 260-km diameter impact basin Yalode (42.3°S, 293.6°E) and includes rugged and smooth terrains to the east. Preliminary geologic mapping defined two regional units (cratered terrain and smooth material), which dominate the quadrangle, as well as a series of impact crater material units. Mapped geologic features include crater rims, graben, ridges, troughs, scarp, lineaments, and impact crater chains. Geologic contacts are typically not distinct in Survey and HAMO images. Impact craters in Yalode Quadrangle display a range of preservation states. Degraded features, including Yalode basin and numerous smaller craters, exhibit subdued rims, lack discrete ejecta deposits, and have infilled interiors. More pristine features (including Mondamin, Besua, Lono and craters on the Yalode basin floor) have well-defined, quasi-circular forms with prominent rims and in some cases discernible ejecta. Some of these craters have bowl-shaped interiors, and others contain hills or mounds on their floors that are interpreted as central peaks. Yalode basin has a variably preserved rim, which is continuous and sharply defined to the north/northwest and is irregular or degraded

  1. Geologic Mapping of the Av-14 Urbinia Quadrangle of Asteroid 4 Vesta

    NASA Astrophysics Data System (ADS)

    Mest, S. C.; Yingst, R. A.; Williams, D. A.; Garry, W. B.; Pieters, C. M.; Jaumann, R.; Buczkowski, D. L.; Sykes, M. V.; Wyrick, D. Y.; Schenk, P. M.; Russell, C. T.; Raymond, C. A.; Neukum, G.; Schmedemann, N.; Roatsch, T.; Preusker, F.; Ammannito, E.

    2012-04-01

    NASA's Dawn spacecraft is providing unprecedented views of the surface of 4 Vesta since it went into orbit in July 2011. Dawn is actively gathering an abundance of image, spectral and topographic data to characterize the geology, composition, shape and internal structure of the ~560-km-diameter asteroid. Geologic mapping of Vesta's surface is being undertaken at the global and regional scales by subdividing Vesta into 15 quadrangles. Here, we report the mapping results for quadrangle Av-14, the Urbinia quadrangle of Vesta, derived from data acquired during the High Altitude Mapping Orbit (HAMO) and Survey orbit. Base materials for mapping include HAMO-derived monochrome (clear filter) Framing Camera (FC) mosaic (~70 m/pixel and a Digital Terrain Model (DTM) derived from Survey orbit FC data (450 m/pixel). We also use FC color ratio images (~250 m/pixel) from Survey orbit and Visible and InfraRed (VIR) hyperspectral images from Survey (700 m/pixel) and HAMO (200 m/pixel) orbits to provide information on surface composition and refine unit boundaries. The Av-14 Quadrangle covers the region between 21°-66°S latitude and 270°-360°E longitude. The quadrangle is named after crater Urbinia (D=24 km; 30°S, 276°E), which displays an ejecta blanket with moderate albedo and a smooth, lightly cratered surface. The map area is dominated by moderately cratered equatorial terrains and lightly cratered, but highly deformed, southern terrains. The topographic gradient of the map area is declined toward the south from the more elevated equatorial terrain to the relatively lower interior of the Rheasilivia impact basin. Av-14 contains two dominant terrains - (1) intermediately-cratered equatorial terrain bearing flat-floored, E-W-trending troughs, and (2) relatively lightly-cratered south polar terrain, which contains the Rheasilvia impact basin and related terrains. The northern part of the quadrangle is covered by the moderately cratered equatorial ridge-and-trough terrain

  2. Geologic Mapping of the Av-8 Marcia Quadrangle of Asteroid 4 Vesta

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Hiesinger, H.; Schenk, P. M.; Jaumann, R.; Buczkowski, D. L.; McCord, T. B.; Yingst, R. A.; Garry, W. B.; Combe, J.-Ph.; Pieters, C. M.; Nathues, A.; Le Corre, L.; Reddy, V.; Roatsch, T.; Preusker, F.; Schmedemann, N.; Neukum, G.; Raymond, C. A.; Ammannito, E.; De Sanctis, M. C.

    2012-04-01

    NASA's Dawn spacecraft is spending one year in orbit of asteroid 4Vesta to characterize its geology, chemical and mineralogical composition, topography, shape, and internal structure. The Dawn Team is conducting geological mapping of the surface in the form of 15 quadrangle maps, and here we report results from the mapping of Marcia quadrangle Av-8. Mapping is based on a Framing Camera (FC) mosaic produced from High Altitude Mapping Orbit (HAMO) data with a spatial resolution of ~70 m/pixel, supplemented by a Digital Terrain Model (DTM: lateral spacing of 450 m/pixel and vertical accuracy of ~30 meters), FC color images, and Visible and InfraRed (VIR) hyperspectral images. Av-8 Marcia Quadrangle covers 144˚-216˚E longitude and ±21˚ latitude in the equatorial region of Vesta. This quadrangle is dominated by the 'Snowman' crater region, which is a low-albedo ejecta field containing impact craters Marcia, (68 km by 58 km), Calpurnia (54 km by 52 km), and Minucia (26 km by 23 km). A hill with a dark-rayed crater, named Aricia Tholus, is 42.5 km by 28 km. This quadrangle has all three of the dominant terrains found on Vesta: A heavily-cratered northern terrain with ancient troughs and grooves, an intermediately-cratered equatorial terrain bearing prominent flat-floored, E-W-trending troughs, and the relatively lightly-cratered south polar region, containing the Rheasilvia impact basin and related terrains. The low albedo ejecta field derived from the 'Snowman' craters, which we call Dark Crater Ejecta Material, mantles underlying older terrains. It has an obvious lower abundance of impact craters, indicative of a relatively younger age. A dark-rayed crater, occurring at ~14˚N, 180˚, excavates a darker unit from underneath the brighter ejecta. Images from the Low Altitude Mapping Orbit (LAMO) show dark materials exposed in the rim of crater Marcia, suggesting basaltic flows or intrusions underlie the ejecta. Bright and Dark Lobate Materials also occur in this quad

  3. Geologic Mapping of the Av-13 Tuccia Quadrangle of Asteroid 4 Vesta

    NASA Astrophysics Data System (ADS)

    Kneissl, T.; Schmedemann, N.; Neukum, G.; Williams, D. A.; Garry, W. B.; Yingst, R. A.; Ammannito, E.; Jaumann, R.; Pieters, C. M.; Russell, C. T.; Raymond, C. A.; Schenk, P.; Hiesinger, H.; McCord, T. B.; Buczkowski, D.; Nathues, A.; Reddy, V.; Büttner, I.; Krohn, K.; Preusker, F.

    2012-04-01

    NASA's Dawn spacecraft is spending one year in orbit around asteroid 4Vesta to characterize its geology, chemical and mineralogical composition, topography, shape, and internal structure. The Dawn Team is conducting geological mapping of the surface in the form of one global and 15 quadrangle maps, and here we report results from the mapping of Tuccia quadrangle Av-13. Mapping is based on a Framing Camera (FC) mosaic produced from High Altitude Mapping Orbit (HAMO) data with a spatial resolution of ~70 m/pixel, supplemented by a Digital Terrain Model (DTM: lateral spacing of 450 m/pixel and vertical accuracy of ~30 meters), FC color images, and Visible and InfraRed (VIR) hyperspectral images. The Av-13 Quadrangle covers the region between 21°-66°S latitude and 180°-270°E longitude. It shows mainly three different terrains: Vestalia Terra located in the north of the quadrangle, the Equatorial Cratered Terrain, and the Ridge-and-Groove Terrain which is part of the Rheasilvia Formation. The Tuccia impact crater which names quadrangle Av-13 is located at 40°S and 197°E and has a diameter of about 16 km. The bright-rayed crater on its rim has a diameter of ~3.4 km. The crater Vibidia is located at 27.9°S and 220.3°E and has a diameter of ~7.5 km. It is a bright-rayed crater, which, however, also excavated dark material visible on the crater floor and at the eastern crater rim. Outcrops of dark material are also located at the eastern crater wall of a 25km-diameter crater at 30.0°S and 228.0°E. Another interesting crater is located at 60°S and 200°E on a steep slope on the Rheasilvia ridge-and-groove terrain. This crater has a diameter of approximately 15 km and shows a sharp, undegraded crater rim in the north and a highly degraded/mantled crater rim in the south. Proposed formation processes for this irregular crater rim are: ballistic ejecta coverage of the southern rim, incomplete formation of the rim, as well as mass-wasting processes like slumping and

  4. Geological Mapping of the Ac-H-5 Fejokoo Quadrangle of Ceres from NASA's Dawn Mission

    NASA Astrophysics Data System (ADS)

    Hughson, Kynan; Russell, Christopher; Williams, David; Buczkowski, Debra; Mest, Scott; Scully, Jennifer; Kneissl, Thomas; Ruesch, Ottaviano; Frigeri, Alessandro; Combe, Jean-Philippe; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Platz, Thomas; Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael; Park, Ryan; Marchi, Simone; Raymond, Carol

    2016-04-01

    NASA's Dawn spacecraft arrived at Ceres on March 6, 2015, and has been studying the dwarf planet through a series of successively lower orbits, obtaining morphological & topographical image, mineralogical, elemental abundance, and gravity data. Ceres is the largest object in the asteroid belt with a mean diameter of ~950 km. The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for the asteroid Vesta [1, 2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map, and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we present the LAMO-based geologic map of the Ac-H-5 Fejokoo quadrangle (21-66 °N and 270-360 °E) and discuss its geologic evolution. At the time of this writing LAMO images (35 m/pixel) are just becoming available. Thus, our geologic maps are based on HAMO images (~140 m/pixel) and Survey (~400 m/pixel) digital terrain models (for topographic information) [3, 4]. Dawn Framing Camera (FC) color images are also used to provide context for map unit identification. The maps to be presented as posters will be updated from analyses of LAMO images (~35 m/pixel). The Fejokoo quadrangle hosts six primary geologic features: (1) the centrally located, ~80 km diameter, distinctly hexagonal impact crater Fejokoo; (2) Victa crater with its large exterior dark lobate flow feature, and interior lobate and furrowed deposits; (3) Abellio crater, which exhibits a well formed ejecta blanket and has an arcuately textured infilled floor whose morphology is similar to those of homologously sized craters on some of the icy Saturnian satellites [5]; (4) Cozobi crater, whose floor is filled with an unusually bulbous and smooth deposit, thin sheeted multi-lobed flow-like features that are reminiscent of fluidized ejecta as seen on Mars are also observed to be emanating outwards from the N and S rims of this crater [6]; (5) the peculiar Oxo crater on the eastern

  5. View of southeastern Washington State

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A vertical view of southeastern Washington States as photographed from Earth orbit by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment aboard the Skylab space station. The Snake River flows into the Columbia River in the most southerly corner of the picture. The Wallula Lake is below the junction of the two rivers. The Yakima Valley is at the southwestern edge of the photograph. The Columbia Basin is in the center of the picture. The Cascade Range extends across the northwest corner of the photograph.

  6. Reconnaissance for mineral deposits in the Precambrian rocks of the Wadi Ar Rimah quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Mytton, James W.

    1970-01-01

    A reconnaissance of the Precambrian area of the Wadl ar Rlmah quadrangle, Kingdom of Saudi Arabia, included more than 50 ancient mines which are grouped into seven mining districts. The best mineral potential appears .to be in the Ad Dawadami district, where silver and lead were formerly mined, and in the southwestern part of the quadrangle in the vicinity of the Nafud al Urayk. Ancient mines in the southwestern part of the quadrangle were probably opened for gold, but the present exploration disclosed tungsten and antimony minerals, and slightly anomalous lead, zinc, and molybdenum. Of these elements the greatest potential appears to be tungsten. Most ancient mines and the newly discovered mineralized veins are in areas underlain by graywacke intruded by granitic stocks and apophyses. These areas should be further investigated for ore deposits.

  7. Map showing geologic terranes of the Hailey 1 degree x 2 degrees quadrangle and the western part of the Idaho Falls 1 degree x 2 degrees quadrangle, south-central Idaho

    USGS Publications Warehouse

    Worl, R.G.; Johnson, K.M.

    1995-01-01

    The paper version of Map Showing Geologic Terranes of the Hailey 1x2 Quadrangle and the western part of the Idaho Falls 1x2 Quadrangle, south-central Idaho was compiled by Ron Worl and Kate Johnson in 1995. The plate was compiled on a 1:250,000 scale topographic base map. TechniGraphic System, Inc. of Fort Collins Colorado digitized this map under contract for N.Shock. G.Green edited and prepared the digital version for publication as a geographic information system database. The digital geologic map database can be queried in many ways to produce a variety of geologic maps.

  8. Washington: a guide to geothermal energy development

    SciTech Connect

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    Washington's geothermal potential is discussed. The following topics are covered: exploration, drilling, utilization, legal and institutional setting, and economic factors of direct use projects. (MHR)

  9. False-Color-Image Map of Quadrangle 3470 and the Northern Edge of Quadrangle 3370, Jalal-Abad (511), Chaghasaray (512), and Northernmost Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. Natural-Color-Image Map of Quadrangle 3470 and the Northern Edge of Quadrangle 3370, Jalal-Abad (511), Chaghasaray (512), and Northernmost Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  11. Booker T. Washington and George Washington Carver: A Tandem of Adult Educators at Tuskegee.

    ERIC Educational Resources Information Center

    McGee, Leo

    1984-01-01

    Shows how Booker T. Washington and George Washington Carver espoused adult education principles through their efforts to eradicate illiteracy, teach practical knowledge to Black farmers and poor Blacks, and instill the value of education in Black adults. (SK)

  12. Contributors to Adult Education: Booker T. Washington, George Washington Carver, Alain L. Locke, and Ambrose Caliver.

    ERIC Educational Resources Information Center

    Gyant, LaVerne

    1988-01-01

    Outlines the lives and the contributions to adult education made by the following African American educators: (1) Booker T. Washington; (2) George Washington Carver; (3) Alain L. Locke; and (4) Ambrose Caliver. (BJV)

  13. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Tupelo quadrangle, Mississippi, Alabama, and Tennessee. Final report

    SciTech Connect

    Not Available

    1980-09-01

    The Tupelo quadrangle covers a region immediately east of the Mississippi River flood plain in the northernmost Gulf Coastal Physiographic Province. Sediments of Teritary and Paleozoic basins shoal eastward. Tertiary exposures dominate the western half of the quadrangle. Cretaceous strata are exposed over most of the eastern half. A search of available literature revealed no known uranium deposits. A total of eighty-six uranium anomalies were detected and are discussed briefly. Few were considered significant, and most appear to relate to some cultural feature. Magnetic data appears, for the most part, to be in agreement with existing structural interpretations of the region.

  14. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Nashville quadrangle, Tennessee, and Kentucky. Final report

    SciTech Connect

    Not Available

    1980-09-01

    The Nashville quadrangle covers a portion of the interior lowland plateau region of the Midwestern Physiographic Province. The quadrangle contains a shallow to moderately thick Paleozoic section that overlies a Precambrian basement complex. Paleozoic carbonates dominate surficial exposures. A search of available literature revealed no known uranium deposits. Fifty-five uranium anomalies were detected and are discussed briefly. Most anomalies appear to relate to cultural features. Some have relatively high uranium concentration levels that may be significant despite their correlation with culture. Magnetic data appear to illustrate complexities in the Precambrian basement.

  15. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Fort Smith quadrangle, Oklahoma, and Arkansas. Final report

    SciTech Connect

    Not Available

    1980-09-01

    The Fort Smith quadrangle in western Arkansas and eastern Oklahoma overlies thick Paleozoic sediments of the Arkoma Basin. These Paleozoics dominate surface exposure except where covered by Quaternary Alluvial materials. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. Seventy-five groups of uranium samples were defined as anomalies and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data show character that suggest structural and/or lithologic complexity, but imply relatively deep-seated sources.

  16. Mineralogical and spectral analysis of Vesta's Gegania and Lucaria quadrangles and comparative analysis of their key features

    NASA Astrophysics Data System (ADS)

    Longobardo, Andrea; Palomba, Ernesto; De Sanctis, Maria Cristina; Zinzi, Angelo; Scully, Jennifer E. C.; Capaccioni, Fabrizio; Tosi, Federico; Zambon, Francesca; Ammannito, Eleonora; Combe, Jean-Philippe; Raymond, Carol A.; Russell, Cristopher T.

    2015-10-01

    This work is aimed at developing and interpreting infrared albedo, pyroxene and OH band depths, and pyroxene band center maps of Vesta's Gegania and Lucaria quadrangles, obtained from data provided by the Visible and InfraRed (VIR) mapper spectrometer on board NASA's Dawn spacecraft. The Gegania and Lucaria quadrangles span latitudes from 22°S to 22°N and longitudes from 0°E to 144°E. The mineralogical and spectral maps identify two large-scale units on this area of Vesta, which extend eastwards and westward of about 60°E, respectively. The two regions are not associated to large-scale geological units, which have a latitudinal distribution rather than longitudinal, but are defined by different contents of carbonaceous chondrites (CC): the eastern region, poor in CCs, is brighter and OH-depleted, whereas the western one, rich in CCs, is darker and OH-enriched. A detailed analysis of the small-scale units in these quadrangles is also performed. Almost all the units show the typical correspondence between high albedo, deep pyroxene bands, short band centers and absence of OH and vice versa. Only a few exceptions occur, such as the ejecta from the Aelia crater, where dark and bright materials are intimately mixed. The most characteristic features of these quadrangles are the equatorial troughs and the Lucaria tholus. The equatorial troughs consist of graben, i.e. a depression limited by two conjugate faults. The graben do not present their own spectral signatures, but spectral parameters similar to their surroundings, in agreement to their structural origin. This is observed also in graben outside the Gegania and Lucaria quadrangles. However, it is possible to observe other structural features, such as tectonic grooves, characterized by a changing composition and hence an albedo variation. This result is confirmed not only by mineralogical maps of Vesta, but also by analyzing the VIRTIS-Rosetta observations of Lutetia. The albedo change is instead a typical

  17. Maps showing coal resources in the Crumpler Quadrangle, Mercer, McDowell, and Wyoming counties, West Virginia

    USGS Publications Warehouse

    Stricker, Gary D.

    1980-01-01

    Coal Geology The Crumpler quadrangle lies in the Appalachian Plateaus province, with the coal bearing Pocahontas and New River Formations of Pennsylvanian age having a gentle dip toward the northwest. Coal bed maps were prepared (figures 1-7) and resources were estimated (table 1) for seven of the many coal beds in the Crumpler quadrangle (Stricker, 1980, lists the names of the various coal beds in the quadrangle) following methods established by U.S. Bureau of Mines and U.S. Geological Survey, 1976. All of these coal beds crop out at the surface in the quadrangle, have a maximum thickness thickness of over-burden of less than 300 meters, and have been mined at the surface, or under-ground, or both. Resource estimates were not calculated for other coal beds in the Pocahontas and New River Formations, either because of insufficient data of because of the beds are too thin. Figure 8 is a generalized stratigraphic column of the coal-bearing sequence in the Crumpler quadrangle showing thickness and relative positions of the various coal beds. The Crumpler quadrangle originally contained about 498 million metric tons of coal. Approximately 326 million metric tons have been mined, or lost in mining, leaving remaining resources of 172 million metric tons. Analyses of the mined coal beds in the Crumpler and adjacent quadrangle show the coal is medium - to low volatile bituminous (most are low volatile bituminous), containing 14-27 percent volatile matter (with an arithmetic mean of 18 percent), 2.1-22.4 percent ash (with an arithmetic mean of 7 percent), and 0.5-1.8 percent total sulfur (with an arithmetic mean of 0.8 percent). Heating values range from 6,380 to 8,610 Kcal/kg on an as-received basis. Trace element and major and minor oxide composition, of both whole coal and laboratory ash, for 59 samples within or near the quadrangle were obtained from USCHEM (Geochemical Data File or National Coal Resources Data System), (Kozey and others, 1980.) Neither elements of

  18. Geologic Map of the Scott City 7.5-Minute Quadrangle, Scott and Cape Girardeau Counties, Missouri

    USGS Publications Warehouse

    Harrison, Richard W.; Palmer, James R.; Hoffman, David; Vaughn, James D.; Repetski, John E.; Frederiksen, Norman O.; Forman, Steven L.

    2002-01-01

    The Scott City quadrangle is located at the northern end of the Mississippi embayment (fig. 1). The quadrangle contains parts of three physiographic features: the abandoned channel of the ancestral Mississippi River, the Benton Hills, and the flood plain of the ancestral Ohio River and modern Mississippi River. These features are largely the manifestation of the Quaternary evolution of the Mississippi and Ohio Rivers, the chronology and analysis of which has been discussed by Fisk (1944), Saucier (1968, 1974, 1994), Guccione and others (1990), Madole and others (1991), Autin and others (1991), Porter and Guccione (1994), and Blum and others (1995a,b).

  19. Statistical parameters for resource evaluation of geochemical data from the Ajo 1 degree x 2 degrees Quadrangle, Arizona

    USGS Publications Warehouse

    Theobald, P.K.; Barton, Harlan N.

    1983-01-01

    Statistical data are presented from a regional geochemical study of the Ajo 1? X 2? quadrangle exclusive of the Papago Indian Reservation, but including the extension of Organ Pipe Cactus National Monument into the Lukeville 1? X 2? quadrangle. Frequency distribution data from the analysis of stream-sediment and heavy-mineral-concentrate samples for 31 elements have broad ranges and for most elements have maxima well above normal. Elemental associations derived from correlation and R-mode factor analysis related to regional lithologic variation and for some associations suggest mineral-resource potential.

  20. Washington State biomass data book

    SciTech Connect

    Deshaye, J.A.; Kerstetter, J.D.

    1991-07-01

    This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

  1. Geological Mapping of the Ac-H-3 Dantu Quadrangle of Ceres from NASA's Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Kneissl, Thomas; Schmedemann, Nico; Neesemann, Adrian; Williams, David A.; Crown, David A.; Mest, Scott C.; Buczkowski, Debra L.; Scully, Jennifer E. C.; Frigeri, Allessandro; Ruesch, Ottaviano; Hiesinger, Harald; Walter, Sebastian H. G.; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Kersten, Elke; Naß, Andrea; Nathues, Andreas; Platz, Thomas; Russell, Chistopher T.

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the geologic evolution of the Ac-H-3 Dantu Quadrangle. The current map is based on a Framing Camera (FC) clear-filter image mosaic from HAMO data (~140 m/px) as well as a digital terrain model (DTM) derived from imagery of the Survey phase [3]. Albedo variations were identified and mapped using a mosaic of photometrically corrected HAMO images provided by DLR. FC color images provided further context for map unit identification. LAMO images (35m/pixel), which have just become available at the time of writing, will be used to update the map to be presented as a poster. The quadrangle is located between 21-66°N and 90-180°E in a large-scale depression north of the impact basin Kerwan. The northern and southeastern parts of the quadrangle are characterized by cratered terrain while the south and southwest are dominated by the partially smooth ejecta blankets of craters Dantu and Gaue. East-west oriented pit/crater chains in the southern half of the quadrangle might be related to tectonic processes [4,5]. Dantu crater (d=~126 km) is a complex impact crater showing slump terraces and a partially smooth crater floor with concentric and radial fractures. Furthermore, Dantu shows a central pit structure with pitted terrain on its floor as well as several bright spots in the interior and exterior of the crater. High-resolution measurements of crater size-frequency distributions (CSFDs) superposed on Dantu indicate a formation/modification age of ~200 - 700 Ma. Most of the ejecta appear to be relatively bright and correspond to parts of the #2 high albedo region observed with the Hubble Space Telescope [6]. However, the southwestern portion of the ejecta blanket is

  2. Geologic Mapping of the Av-15 Rheasilvia Quadrangle of Asteroid 4 Vesta

    NASA Astrophysics Data System (ADS)

    Yingst, R. A.; Ammannito, E.; Berman, D.; De Sanctis, M. C.; Capaccioni, F.; Frigeri, A.; Jaumann, R.; Le Corre, L.; Mest, S.; Palomba, E.; Pieters, C. M.; Preusker, F.; Reddy, V.; Roatsch, T.; Russell, C. T.; Schenk, P. M.; Schmedemann, N.; Williams, D. A.; Tosi, F.; Zambon, F.

    2012-04-01

    NASA's Dawn spacecraft is spending one year in orbit around asteroid 4 Vesta to characterize its geology, chemical and mineralogical composition, topography, shape, and internal structure. The Dawn Team is conducting geological mapping of the surface in the form of one global and 15 quadrangle maps. Here we report results from the mapping of Rheasilvia quadrangle Av-15. Mapping is based on a Framing Camera (FC) mosaic produced from High Altitude Mapping Orbit (HAMO) data with a spatial resolution of ~70 m/pixel, supplemented by a Digital Terrain Model (DTM: lateral spacing of 450 m/pixel and vertical accuracy of ~30 meters), FC color images, and Visible and InfraRed (VIR) hyperspectral images. Av-15 Rheasilvia Quadrangle covers the southern pole of Vesta and stretches north to -21°S. Vesta has three dominant terrains: A heavily-cratered northern terrain with ancient troughs and grooves, an intermediately-cratered equatorial terrain bearing prominent flat-floored, E-W-trending troughs, and the relatively lightly-cratered south polar region, containing the Rheasilvia impact basin and related terrains. This quadrangle is dominated by the central mound complex of the Rheasilvia impact basin. Primary geologic features of this region include: (1) the Rheasilvia complex, including the central mound terrain, ridge-and-groove terrain, and smoother terrain; (2) slump material; and (3) impact craters and associated material. The Rheasilvia formation encompasses the central mound complex, two trends of ridges and grooves (only 5% of the quad area is covered by this terrain), and patches of smoother, less-cratered terrain on the mound itself. The mound, which covers nearly 60% of the quadrangle area, is ~22 km high and ~180 km wide, with a discontinuous bounding scarp and low crater density. The ridge-and groove terrain consists of ridges and grooves radiating approximately 90°-270°, and ridges and troughs or ridge and groove complexes that arch or curve as they extend out

  3. Booker T. Washington: Rural West Virginia Teacher.

    ERIC Educational Resources Information Center

    King, Althea M.

    1985-01-01

    The biographical sketch focuses on the early teaching career of Booker T. Washington at Tinkersville School in his hometown of Malden, West Virginia, from 1876-1878. Recollections of Washington's own education in Sunday school, the Tinkersville School, and Hampton Institute are included. (NEC)

  4. Aerospace Training. Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Aerospace is an economic powerhouse that generates jobs and fuels our economy. Washington's community and technical colleges produce the world-class employees needed to keep it that way. With about 1,250 aerospace-related firms employing more than 94,000 workers, Washington has the largest concentration of aerospace expertise in the nation. To…

  5. 77 FR 61466 - Washington Disaster #WA-00037

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... ADMINISTRATION Washington Disaster WA-00037 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... completed loan applications to: U.S. Small Business Administration, Processing and Disbursement Center... Disaster Assistance, U.S. Small Business Administration, 409 3rd Street SW., Suite 6050, Washington,...

  6. 21 CFR 808.97 - Washington.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Washington. 808.97 Section 808.97 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EXEMPTIONS FROM FEDERAL PREEMPTION OF STATE AND LOCAL MEDICAL DEVICE REQUIREMENTS Listing of Specific State and Local Exemptions § 808.97 Washington....

  7. Early Childhood Injury Deaths in Washington State.

    ERIC Educational Resources Information Center

    Starzyk, Patricia M.

    This paper discusses data on the deaths of children aged 1-4 years in Washington State. A two-fold approach was used in the analysis. First, Washington State death certificate data for 1979-85 were used to characterize the deaths and identify hazardous situations. Second, death certificates were linked to birth certificates of children born in…

  8. Person in Washington: Should You Have One?

    ERIC Educational Resources Information Center

    Recer, J. Dan

    1980-01-01

    A Washington-based fund-seeker is seen as necessary for helping institutions get a share of the billions in federal funds spent yearly in education. Responsibilities of a Washington representative are discussed, including knowing an institution's strong areas, knowing the agencies with jurisdiction over those areas, and connecting the two. (MLW)

  9. Washington State Survey of Adolescent Health Behaviors.

    ERIC Educational Resources Information Center

    Washington State Dept. of Social and Health Services, Olympia.

    The 1992 Washington State Survey of Adolescent Health Behaviors (WSSAHB) was created to collect information regarding a variety of adolescent health behaviors among students in the state of Washington. It expands on two previous administrations of a student tobacco, alcohol, and other drug survey and includes questions about medical care, safety,…

  10. Corrections Education. Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2015

    2015-01-01

    The Washington State Department of Corrections contracts with community colleges to provide basic education and job training at each of the state's 12 adult prisons so upon release, individuals are more likely to get jobs and less likely to return. Washington State community colleges build a bridge for offenders to successfully re-enter…

  11. Reshaping the Image of Booker T. Washington

    ERIC Educational Resources Information Center

    Norrell, Robert J.

    2009-01-01

    Booker T. Washington, founder of the Tuskegee Institute and the recognized leader of American black people from 1895 until his death in 1915, has been viewed as an accommodationist to segregation, an African-American leader who traded black equality and voting rights for his own influence among white bigots. Washington rose to national fame with a…

  12. 50 CFR 32.67 - Washington.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Washington. 32.67 Section 32.67 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM HUNTING AND FISHING Refuge-Specific Regulations for Hunting and Fishing § 32.67 Washington. The following refuge...

  13. 40 CFR 81.348 - Washington.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Washington. 81.348 Section 81.348 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.348 Washington. Washington—TSP Designated area Does...

  14. 40 CFR 81.348 - Washington.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Washington. 81.348 Section 81.348 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.348 Washington. Washington—TSP Designated area Does...

  15. 50 CFR 32.67 - Washington.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Washington. 32.67 Section 32.67 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM HUNTING AND FISHING Refuge-Specific Regulations for Hunting and Fishing § 32.67 Washington. The following refuge...

  16. Frustration at Heart of Washington Rally

    ERIC Educational Resources Information Center

    Robelen, Erik W.

    2011-01-01

    Thousands of educators, parent activists, and others are expected to convene in the heat and humidity of Washington next month for a march protesting the current thrust of education policy in the United States, especially the strong emphasis on test-based accountability. Organizers of the Washington say U.S. policymakers are moving in the wrong…

  17. Washington's Asian American Studies: Today and Tomorrow.

    ERIC Educational Resources Information Center

    Kashima, Tetsuden

    An overview of Asian American studies in the State of Washington is provided in this report. Statistics on the number of Asian students in Washington's schools are used to illustrate the need for Asian American courses at all educational levels. The results of three questionnaires which were distributed to obtain information about respondents'…

  18. Geologic map of the East of Grotto Hills Quadrangle, California: a digital database

    USGS Publications Warehouse

    Nielson, Jane E.; Bedford, David R.

    1999-01-01

    The East of Grotto Hills 1:24,000-scale quadrangle of California lies west of the Colorado River about 30 km southwest of Searchlight, Nevada, near the boundary between the northern and southern parts of the Basin and Range Province. The quadrangle includes the eastern margin of Lanfair Valley, the southernmost part of the Castle Mountains, and part of the northwest Piute Range. The generally north-trending Piute Range aligns with the Piute and Dead Mountains of California and the Newberry and Eldorado Mountains and McCullough Range of Nevada. The southern part of the Piute Range adjoins Homer Mountain (Spencer and Turner, 1985) near Civil War-era Fort Piute. Adjacent 1:24,000-scale quadrangles include Castle Peaks, Homer Mountain, and Signal Hill, Calif.; also Hart Peak, Tenmile Well, and West of Juniper Mine, Calif. and Nev. The mapped area contains Tertiary (Miocene) volcanic and sedimentary rocks, interbedded with and overlain by Tertiary and Quaternary surficial deposits. Miocene intrusions mark conduits that served as feeders for the Miocene volcanic rocks, which also contain late magma pulses that cut the volcanic section. Upper Miocene conglomerate deposits interfinger with the uppermost volcanic flows. Canyons and intermontane valleys contain dissected Quaternary alluvial-fan deposits, mantled by active alluvial-fan deposits and detritus of active drainages. The alluvial materials were derived largely from Early Proterozoic granite and gneiss complexes, intruded by Mesozoic granite, dominate the heads of Lanfair Valley drainages in the New York Mountains and Mid Hills (fig. 1; Jennings, 1961). Similar rocks also underlie Tertiary deposits in the Castle Peaks, Castle Mountains, and eastern Piute Range.

  19. Geologic map of the MTM 85200 quadrangle, Olympia Rupes region of Mars

    USGS Publications Warehouse

    Skinner, James A.; Herkenhoff, Kenneth E.

    2012-01-01

    The north polar region of Mars is dominated by Planum Boreum, a roughly circular, domical plateau that rises >2,500 m above the surrounding lowland. Planum Boreum is >1,500 km in diameter, contains deep, curvilinear troughs and chasmata, isolated cavi, and marginal scarps and slopes. The north polar plateau is surrounded by low-lying and nearly horizontal plains of various surface texture, geologic origin, and stratigraphic significance. The MTM 85200 quadrangle spans 5° of latitude (lat 82.5° to 87.5° N.) and 40° of longitude (long 140° to 180° E.) within the eastern hemisphere of Mars. The quadrangle includes the high-standing Planum Boreum, curvilinear troughs of Boreales Scopuli, deep, sinuous scarps of Olympia Rupes, isolated and coalesced depressions of Olympia Cavi, margins of the circular polar erg Olympia Undae, and low-standing Olympia Planum. The surface of Planum Boreum within the MTM 85200 quadrangle is characterized by smoothly sculptured landforms with shallow slopes and variable relief at kilometer scales. Areas that are perennially covered with bright frost are generally smooth and planar at 100-m scales. However, MGS MOC and MRO HiRISE images show that much of the icy polar plateau is rough at decameter scale. The Martian polar plateaus are likely to contain a record of global climate history for >107 to as much as ~3 x 109 years. This record is partly observable as rhythmically layered deposits exposed in the curvilinear troughs of the north polar plateau, Planum Boreum. The north polar layered deposits are widely interpreted to be among the most youthful bedrock deposits on the Martian surface. These materials and their stratigraphic and structural relations provide a glimpse into some of the more recent geologic processes that have occurred on Mars. The ability of the massive polar deposits to periodically trap and release both volatiles and lithic particles may represent a globally important, recurring geologic process for Mars.

  20. Geologic Map of the Boxley Quadrangle, Newton and Madison Counties, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Turner, Kenzie J.

    2007-01-01

    This map summarizes the geology of the Boxley 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the Boxley quadrangle lies within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and its tributaries expose an approximately 1,600-ft-(490-m-)thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. Part of Buffalo National River, a park encompassing the Buffalo River and adjacent land that is administered by the National Park Service, extends through the eastern part of the quadrangle. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevation sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as orthophotos were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours were constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation based on elevations of control points as well as other limiting information on their maximum or minimum elevations.

  1. Preliminary grid data and maps for an aeromagnetic survey of the Taylor mountains quadrangle and a portion of the Bethel quadrangle, Alaska

    USGS Publications Warehouse

    Saltus, R.W.; Milicevic, B.

    2004-01-01

    A preliminary data grid and maps are presented for an aeromagnetic survey of the Taylor Mountains and a portion of the Bethel quadrangles, Alaska. The aeromagnetic survey was flown by McPhar Geosurveys Ltd. for the U.S. Geological Survey (USGS). A flight-line spacing of 1,600 meters (1 mile) and nominal flight height of 305 meters (1,000 feet) above topography (draped) was used for the survey. The preliminary data grid has a grid cell size of 350 meters (1150 feet). Final data processing and quality control have not been applied to these data. The purpose of this preliminary data release is to allow prompt public access to these data, which are of interest for active mineral exploration in the region. A more complete data release and description will be published later once the final data processing is complete.

  2. Isopachs of Quaternary deposits, Fremont 1- by 2- degree Quadrangle and part of Omaha Quadrangle, Nebraska, digitized from a published 1:250,000-scale geologic map

    USGS Publications Warehouse

    Zelt, R.B.; Patton, E.J.

    1995-01-01

    A geologic map showing the isopachs of Quaternary deposits in the Fremont and part of the Omaha, Nebraska, 1- by 2-degree quadrangles was published at a scale of 1:250,000 in 1975 (Burchett and others, 1975). This report describes the conversion of Quaternary thickness data into a digital geographic data set. A film separation of the published isopachs was scan-digitized and processed to produce digital geographic data. Geographic feature attributes and data-set documentation also are included in the digital data set. The digital data set are formatted for distribution with accordance with the Spatial Data Transfer Standard approved by the U.S. National Institute of Standards and Technology.

  3. Analytical results of stream-sediment samples from the Medford 1/sup 0/ x 2/sup 0/ quadrangle, Oregon-California

    SciTech Connect

    Whittington, C.L.; Leinz, R.W.; Speckman, W.S.

    1983-01-01

    The report presents analytical and location data of 1529 stream-sediment samples and their oxide residues (oxalic-acid leachates) from the Medford 1/sup 0/ x 2/sup 0/ quadrangle, Oregon-California. These samples were collected during a geochemical survey of the quadrangle and during mineral resource and geochemical studies of wilderness areas lying partly or entirely within the quadrangle including the Wild Rogue Wilderness, the Kalmiopsis Wilderness, and the Sky Lakes Roadless Area and Mountain Lakes Wilderness. 12 refs., 2 tabs. (ACR)

  4. Interpretation of geochemical data from panned concentrates of wadi sediments using R-mode factor analysis, Jabal Habashi Quadrangle, sheet 26F, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Allen, M.S.; Tidball, R.R.; Samater, R.M.; Selner, G.I.

    1985-01-01

    Panned-concentrate samples from wadi sediments were collected over terranes of Precambrian age intrusive, volcanic, sedimentary, and metamorphic rocks, within the Jabal Habashi quadrangle, sheet 26F, Kingdom of Saudi Arabia. Multivariate analysis of the chemical data indicates that a significant base-metal association occurs in three areas within the quadrangle. An association of strontium, barium, and calcium possibly indicates areas of hydrothermal alteration. Three other associations that were found define the major rock lithologies: niobium-yttrium-lanthanum outlines granitic terranes; magnesium-nickel indicates mafic rocks; and cobalt-vanadium-chromium have an indefinite relation with units mapped as graywacke in the central part of the quadrangle.

  5. Natural-Color-Image Map of Quadrangles 3870 and 3770, Maymayk (211), Jamarj-I-Bala (212), Faydz-Abad (217), and Parkhaw (218) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  6. False-Color-Image Map of Quadrangles 3870 and 3770, Maymayk (211), Jamarj-I-Bala (212), Faydz-Abad (217), and Parkhaw (218) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  7. Natural-Color-Image Map of Quadrangles 3168 and 3268, Yahya-Wona (703), Wersek (704), Khayr-Kot (521), and Urgon (522) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  8. False-Color-Image Map of Quadrangles 3168 and 3268, Yahya-Wona (703), Wersek (704), Khayr-Kot (521), and Urgon (522) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  9. Natural-Color-Image Map of Quadrangles 3666 and 3766, Balkh (219), Mazar-I-Sharif (220), Qarqin (213), and Hazara Toghai (214) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. False-Color-Image Map of Quadrangles 3666 and 3766, Balkh (219), Mazar-I-Sharif (220), Qarqin (213), and Hazara Toghai (214) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  11. False-Color-Image Map of Quadrangles 3260 and 3160, Dasht-E-Chahe-Mazar (419), Anardara (420), Asparan (601), and Kang (602) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  12. False-Color-Image Map of Quadrangles 3560 and 3562, Sir Band (402), Khawja-Jir (403), and Bala-Murghab (404) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. False-Color-Image Map of Quadrangles 3060 and 2960, Qala-I-Fath (608), Malek-Sayh-Koh (613), and Gozar-E-Sah (614) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  14. False-Color-Image Map of Quadrangles 3062 and 2962, Charburjak (609), Khanneshin (610), Gawdezereh (615), and Galachah (616) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  15. Natural-Color-Image Map of Quadrangles 3764 and 3664, Jalajin (117), Kham-Ab (118), Char Shangho (123), and Sheberghan (124) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  16. False-Color-Image Map of Quadrangles 3764 and 3664, Jalajin (117), Kham-Ab (118), Char Shangho (123), and Sheberghan (124) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  17. Natural-Color-Image Map of Quadrangles 3768 and 3668, Imam-Saheb (215), Rustaq (216), Baghlan (221), and Taloqan (222) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  18. False-Color-Image Map of Quadrangles 3768 and 3668, Imam-Saheb (215), Rustaq (216), Baghlan (221), and Taloqan (222) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  19. Geological Mapping of the Ac-H-11 Sintana Quadrangle of Ceres from NASA's Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Schulzeck, Franziska; Krohn, Katrin; Jaumann, Ralf; Williams, David A.; Buczkowski, Debra L.; Mest, Scott C.; Scully, Jennifer E. C.; Gathen, Isabel v. d.; Kersten, Elke; Matz, Klaus-Dieter; Naß, Andrea; Otto, Katharina; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; De Sanctis, Maria C.; Schenk, Paul; Schröder, Stefanus; Stephan, Katrin; Wagner, Roland

    2016-04-01

    In December 2015, the Dawn spacecraft delivered the first images of the Low Altitude Mapping Orbit (LAMO) of the dwarf planet Ceres at a resolution of 35 m/pixel. This data will be used to finish the geological mapping of Ceres' surface in order to identify composition and surface forming processes. Mapping was already done using Survey Orbit and High Altitude Mapping Orbit (HAMO) data. With the new images, an updated map will be presented. To this point, the data material consists of a HAMO clear-filter mosaic (140 m/pixel) [1], a digital elevation model (DTM) [2] derived from Survey orbit (415 m/pixel) data, color-filter ratios and photometrically corrected images. Ceres' surface has been divided into 15 mapping quadrangles. The Ac-H-11 Sintana quadrangle is located in the southern hemisphere of Ceres between 21 66°S and 0 90°E. Geological units identified so far are cratered terrain, which covers most of the area, and a younger unit of relatively smooth material. The latter is characterized by a low crater density. Material of the same unit was found in adjacent quadrangles as well. Interest is taken in the diversity of crater shapes. Many craters show different forms of asymmetries. One and the same crater for instance displays different stages of rim degradation and some crater walls are partly terraced and their slopes' steepness is varying alongside the crater rim. Several mass wasting features, which partly cause the observed asymmetries, have been identified. Next to the multiple collapsed rims, landslides due to later cratering on the primary crater rim are observed. Whereas collapse structures are mostly blocky, single landslides are characterized by lobate margins. Occurrence and type of mass wasting feature might hint to subsurface differences. Further, there is a diversity of inner crater structures, like relaxed crater floors, ridges, central peaks, mounds and smooth plains. Processes like mass wasting and relaxation have modified many craters

  20. Geology of -30247, -35247, and -40247 Quadrangles, Southern Hesperia Planum, Mars

    NASA Technical Reports Server (NTRS)

    Mest, S. C.; Crown, D. A.

    2010-01-01

    Geologic mapping of MTM -30247, -35247, and -40247 quadrangles is being used to characterize Reull Vallis (RV) and examine the roles and timing of volatile-driven erosional and depositional processes. This study complements earlier investigations of the eastern Hellas region, including regional analyses [1-6], mapping studies of circum-Hellas canyons [7-10], and volcanic studies of Hadriaca and Tyrrhena Paterae [11-13]. Key scientific objectives include 1) characterizing RV in its "fluvial zone," and evaluating its history of formation, 2) analyzing channels in the surrounding plains and potential connections to RV, and 3) examining young, possibly sedimentary plains along RV.

  1. Digital data and geologic map of the Powder Mill Ferry Quadrangle, Shannon and Reynolds counties, Missouri

    USGS Publications Warehouse

    McDowell, Robert C.; Harrison, Richard W.; Lagueux, Kerry M.

    2000-01-01

    The geology of the Powder Mill Ferry 7 1/2-minute quadrangle , Shannon and Reynolds Counties, Missouri was mapped from 1997 through 1998 as part of the Midcontinent Karst Systems and Geologic Mapping Project, Eastern Earth Surface Processes Team. The map supports the production of a geologic framework that will be used in hydrogeologic investigations related to potential lead and zinc mining in the Mark Twain National Forest adjacent to the Ozark National Scenic Riverways (National Park Service). Digital geologic coverages will be used by other federal and state agencies in hydrogeologic analyses of the Ozark karst system and in ecological models.

  2. Aerial gamma ray and magnetic survey: West Palm Beach quadrangle, Florida. Final report

    SciTech Connect

    Not Available

    1981-03-01

    The West Palm Beach quadrangle of south peninsular Florida, covers 8300 square miles of predominantly Floridan Everglades. Extremely thick platform deposits overlie the pre-Cretaceous Peninsular Arch. Surficial exposures are entirely Miocene to Recent in age. A search of available literature revealed no economically feasible uranium deposits. Thirty-two uranium anomalies were detected and are discussed briefly in this report. All appear to have cultural associations, and none appear to contain significant measured quantities of uranium. Magnetic data appear to be roughly in agreement with present structural interpretations, but suggest some lithologic and/or structural complexities in the Paleozoic and older basement material.

  3. Geologic map of the St. Joe quadrangle, Searcy and Marion Counties, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Turner, Kenzie J.

    2009-01-01

    This map summarizes the geology of the St. Joe 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the St. Joe quadrangle lies within the Springfield Plateau, a topographic surface generally held up by Mississippian cherty limestone. The quadrangle also contains isolated mountains (for example, Pilot Mountain) capped by Pennsylvanian rocks that are erosional outliers of the higher Boston Mountains plateau to the south. Tomahawk Creek, a tributary of the Buffalo River, flows through the eastern part of the map area, enhancing bedrock erosion. Exposed bedrock of this region comprises an approximately 1,300-ft-thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The geology of the St. Joe quadrangle was mapped by McKnight (1935) as part of a larger area at 1:125,000 scale. The current map confirms many features of this previous study, but it also identifies new structures and uses a revised stratigraphy. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevations of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as U.S. Geological Survey orthophotographs from 2000 were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strikes and dips of beds were typically measured along stream drainages or at well-exposed ledges. Beds dipping less

  4. Geologic map of the Lone Pine 15' quadrangle, Inyo County, California

    USGS Publications Warehouse

    Stone, Paul; Dunne, George C.; Moore, James G.; Smith, George I.

    2000-01-01

    Oblique aerial view west across Owens Valley in Lone Pine 15' quadrangle. In distance, Sierra Nevada, capped by Mount Whitney (elev. 14,494 ft; 4,418 m). In middle distance, Alabama Hills, town of Lone Pine, and Owens River. In foreground, Kern Knob, at base of Inyo Mountains. Movement along Owens Valley Fault Zone, at base of Alabama Hills, caused great Lone Pine earthquake of 1872 (estimated Richter magnitude about 8). From U.S. Geological Survey photograph GS–OAI–5–13, taken November 25, 1955.

  5. Geologic map of the Julian 7.5' quadrangle, San Diego County, California

    USGS Publications Warehouse

    Todd, Victoria R.

    2015-01-01

    Jurassic plutons in the Julian quadrangle underwent synkinematic metamorphism with the result that plutonic contacts and foliation are concordant with those in the surrounding metamorphosed country rocks. Foliation in Jurassic plutons consists of the planar orientation of recrystallized mineral grains and aggregates; deformation textures include augen gneiss, mylonitic gneiss, and mylonite. Structural studies indicate that a significant part of this deformation took place in the Cretaceous and, therefore, the regional foliation in this part of the batholith clearly postdates intrusion of many Cretaceous plutons.

  6. Analysis of the Tectonic Lineaments in the Ganiki Planitia (V14) Quadrangle, Venus

    NASA Technical Reports Server (NTRS)

    Venechuk, E. M.; Hurwitz, D. M.; Drury, D. E.; Long, S. M.; Grosfils, E. B.

    2005-01-01

    The Ganiki Planitia quadrangle, located between the Atla Regio highland to the south and the Atalanta Planitia lowland to the north, is deformed by many tectonic lineaments which have been mapped previously but have not yet been assessed in detail. As a result, neither the characteristics of these lineaments nor their relationship to material unit stratigraphy is well constrained. In this study we analyze the orientation of extensional and compressional lineaments in all non-tessera areas in order to begin characterizing the dominant tectonic stresses that have affected the region.

  7. Measuring the fourth-generation b{yields}s quadrangle at the LHC

    SciTech Connect

    Hou, Wei-Shu; Kohda, Masaya; Xu Fanrong

    2011-11-01

    We show that simultaneous precision measurements of the CP-violating phase in time-dependent B{sub s}{yields}J/{psi}{phi} study and the B{sub s}{yields}{mu}{sup +}{mu}{sup -} rate, together with measuring m{sub t'} by direct search at the LHC, would determine V{sub t's}*V{sub t'b} and therefore the b{yields}s quadrangle in the four-generation standard model. The forward-backward asymmetry in B{yields}K*l{sup +}l{sup -} provides further discrimination.

  8. Geologic Mapping of the Av-3 Caparronia Quadrangle of Asteroid 4 Vesta

    NASA Astrophysics Data System (ADS)

    Blewett, D. T.; Young, B. L.; Williams, D. A.; O'Brien, D. P.; Gaskell, R.; Yingst, R. A.; Garry, W. B.; Buczkowski, D. L.; Hiesinger, H.; McCord, T. B.; Combe, J.-Ph; Schenk, P. M.; Jaumann, R.; Pieters, C. M.; Nathues, A.; Le Corre, L.; Reddy, V.; De Sanctis, M.; Roatsch, T.; Preusker, F.

    2012-04-01

    NASA's Dawn spacecraft is spending one year in orbit around asteroid (4) Vesta to characterize its geology, chemical and mineralogical composition, topography, shape, and internal structure. The Dawn Team is conducting geological mapping of the surface in the form of 15 quadrangle maps, and here we report results from the mapping of Caparronia quadrangle Av-3. Mapping is based on a Framing Camera (FC) mosaic produced from High Altitude Mapping Orbit (HAMO) data with a spatial resolution of ~70 m/pixel, supplemented by a Digital Terrain Model (DTM: lateral spacing of 450 m/pixel and vertical accuracy of ~30 meters), FC color images, and Visible and InfraRed (VIR) hyperspectral images. The Caparronia Quadrangle extends from 90˚ to 180˚ E longitude and 21˚ to 66˚ N latitude. Vesta's rotation axis is tilted ~29˚ with respect to its orbital plane. Dawn arrived during northern winter, hence portions of Vesta north of ~45˚ N are in shadow and have not yet been imaged. Vesta has three dominant terrains: A heavily-cratered northern terrain with ancient troughs and grooves, an intermediately-cratered equatorial terrain bearing prominent flat-floored, E-W-trending troughs, and the relatively lightly-cratered south polar region, containing the Rheasilvia impact basin and related terrains. The Northern Cratered Trough terrain dominates the Caparronia quadrangle. Part of a NW-SE-trending trough enters the center of the sunlit part of the quad. Caparronia crater is centered at ~36˚ N, 167˚ E and is located near the eastern edge of the quad. The crater's elongation in the north-south direction is caused by slumping, likely as a result of the steep topography on which the crater formed. Smooth ejecta from Caparronia and two other relatively fresh craters can be mapped to a distance of roughly one crater radius from the crater rims, and to greater distances in places. In addition to morphology derived from FC clear filter images, we plan to take advantage of compositional

  9. Cenozoic Volcanic Rocks of the Devils Postpile Quadrangle, Eastern Sierra Nevada, California

    USGS Publications Warehouse

    Huber, N. King; Rinehart, C. Dean

    1967-01-01

    Cenozoic volcanic rocks of the Devils Postpile quadrangle are of late Pliocene to Recent age and are divided into 11 map units. The suite is alkalic-calcic and ranges in composition from basalt to rhyolite. It includes a rhyolitic welded ash-flow tuff which is probably correlative with the Bishop Tuff, although the two units are geographically isolated by the Sierra Nevada drainage divide. The Devils Postpile itself is a classic example of columnar jointing in the lower part of a lava flow.

  10. Geological Mapping of the Ac-H-7 Kerwan Quadrangle of Ceres from NASA Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Williams, David; Mest, Scott; Kneissl, Thomas; Hendrik Pasckert, Jan; Hiesinger, Harald; Neesemann, Adrian; Schmedemann, Nico; Buczkowski, Debra; Scully, Jennifer; Marchi, Simone; Schenk, Paul; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andreas; Schaefer, Michael; Hoffmann, Martin; Raymond, Carol; Russell, Christopher

    2016-04-01

    NASA's Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. Ac-H-7 Kerwan Quadrangle is located between 22°S-22°N and 72-144°E, and hosts several primary features and terrains: 1) The 280 km diameter impact basin Kerwan occur in the center and SE corner of the quad-rangle. Kerwan's rim is very degraded and there is no obvious ejecta field, indicating it is one of the oldest visible large impact basins on Ceres. Kerwan's interior is filled with a 'smooth terrain' that also extends beyond the rim to the east and west. This smooth terrain hosts a significantly lower impact crater density than most of the rest of Ceres' surface. Preliminary crater counts of the Kerwan smooth terrain derive cratering model ages of ~3 Ga using the lunar-derived chronology and ~600-800 Ma using the asteroid flux-derived chronology (H. Hiesinger, pers. comm., 2016). Our working interpretation is that the Kerwan impact occurred when Ceres' crust had a greater proportion of ice than at present, and that impact heating melted crustal material resulting in resurfacing of the Kerwan region by an icy impact melt, or possibly initiated cryovolcanic flows. There are hints of possible flow margins on the Kerwan floor in HAMO images, that have to be confirmed or denied by study of LAMO images. 2) Part of the 126 km diameter crater Dantu and its ejecta field covers the NE corner of the quadrangle. FC color data show both bright and dark materials in the ejecta field, suggesting ex-cavation of terrains of different compositions. Alternatively, because Dantu is one of two longitudes on Ceres where water vapor release has been detected [3], another interpretation is that the bright and/or dark deposits in the Dantu region could result from explosive cryovolcanism. Further study of LAMO data is required to investigate these hypotheses. 3) Other features include the

  11. Geologic Mapping of Isabella Quadrangle (V-50) and Helen Planitia, Venus

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III

    2008-01-01

    (25-50 S, 180-210 E) is host to numerous coronae and small volcanic centers (paterae and shield fields), focused (Aditi and Sirona Dorsa) and distributed (penetrative north-south trending wrinkle ridges) contractional deformation, and radial and linear extensional structures, all of which contribute materials to and/or deform the expansive surrounding plains (Nsomeka and Wawalag Planitiae). Regional plains, which are a northern extension of regional plains mapped in the Barrymore Quadrangle V-59 [1], dominate the V-50 quadrangle. Previous mapping divided the regional plains into two members: regional plains, members a and b [2]. A re-evaluation of these members has determined that a continuous and consistent unit contact does not exist; however, the majority of this radar unit or surficial unit will still be displayed on the final map as a stipple pattern as it is a prevalent feature of the quadrangle. With minimal tessera or highland material, much of the quadrangle s oldest materials are plains units (the regional plains). Much of these plains are covered with small shield edifices that exhibit a variety of material contributions (or flows). In the northwest, several flows emerge and flow to the southeast from Diana-Dali Chasmata. Local corona- and mons-fed flows superpose the regional plains; however, earlier stages of volcano-tectonic centers marked by arcuate and radial structural elements, including terrain so heavily deformed that it takes on a new appearance, may have developed prior to or concurrently with the region plains. Northtrending deformation belts disrupt the central portion of the map area and wrinkle ridges parallel these larger belts. Isabella crater, in the northeastern quadrant, is highly asymmetric and displays two prominent ejecta blanket morphologies, which generally correlate with distance from the impact structure suggesting that ejecta block size or ejecta blanket thickness may be the cause. The crater floor is very dark and shows no

  12. Geologic map of the Granite 7.5' quadrangle, Lake and Chaffee Counties, Colorado

    USGS Publications Warehouse

    Shroba, Ralph R.; Kellogg, Karl S.; Brandt, Theodore R.

    2014-01-01

    The geologic map of the Granite 7.5' quadrangle, Lake and Chaffee Counties, Colorado, portrays the geology in the upper Arkansas valley and along the lower flanks of the Sawatch Range and Mosquito Range near the town of Granite. The oldest rocks, exposed in the southern and eastern parts of the quadrangle, include gneiss and plutonic rocks of Paleoproterozoic age. These rocks are intruded by younger plutonic rocks of Mesoproterozoic age. Felsic hypabyssal dikes, plugs, and plutons, ranging in age from Late Cretaceous or Paleocene to late Oligocene, locally intruded Proterozoic rocks. A small andesite lava flow of upper Oligocene age overlies Paleoproterozoic rock, just south of the Twin Lakes Reservoir. Gravelly fluvial and fan deposits of the Miocene and lower Pliocene(?) Dry Union Formation are preserved in the post-30 Ma upper Arkansas valley graben, a northern extension of the Rio Grande rift. Mostly north-northwest-trending faults displace deposits of the Dry Union Formation and older rock units. Light detection and ranging (lidar) imagery suggests that two short faults, near the Arkansas River, may displace surficial deposits as young as middle Pleistocene. Surficial deposits of middle Pleistocene to Holocene age are widespread in the Granite quadrangle, particularly in the major valleys and on slopes underlain by the Dry Union Formation. The main deposits are glacial outwash and post-glacial alluvium; mass-movement deposits transported by creep, debris flow, landsliding, and rockfall; till deposited during the Pinedale, Bull Lake, and pre-Bull Lake glaciations; rock-glacier deposits; and placer-tailings deposits formed by hydraulic mining and other mining methods used to concentrate native gold. Hydrologic and geologic processes locally affect use of the land and locally may be of concern regarding the stability of buildings and infrastructure, chiefly in low-lying areas along and near stream channels and locally in areas of moderate to steep slopes. Low

  13. Geologic map of the Big Delta B-2 quadrangle, east-central Alaska

    USGS Publications Warehouse

    Day, Warren C.; Aleinikoff, John N.; Roberts, Paul; Smith, Moira; Gamble, Bruce M.; Henning, Mitchell W.; Gough, Larry P.; Morath, Laurie C.

    2003-01-01

    New 1:63,360-scale geologic mapping of the Big Delta B-2 quadrangle provides important data on the structural setting and age of geologic units, as well as on the timing of gold mineralization plutonism within the Yukon-Tanana Upland of east-central Alaska. Gold exploration has remained active throughout the region in response to the discovery of the Pogo gold deposit, which lies within the northwestern part of the quadrangle near the south bank of the Goodpaster River. Geologic mapping and associated geochronological and geochemical studies by the U.S. Geological Survey (USGS) and the Alaska Department of Natural Resources, Division of Mining and Water Management, provide baseline data to help understand the regional geologic framework. Teck Cominco Limited geologists have provided the geologic mapping for the area that overlies the Pogo gold deposit as well as logistical support, which has lead to a much improved and informative product. The Yukon-Tanana Upland lies within the Tintina province in Alaska and consists of Paleozoic and possibly older(?) supracrustal rocks intruded by Paleozoic (Devonian to Mississippian) and Cretaceous plutons. The oldest rocks in the Big Delta B-2 quadrangle are Paleozoic gneisses of both plutonic and sedimentary origin. Paleozoic deformation, potentially associated with plutonism, was obscured by intense Mesozoic deformation and metamorphism. At least some of the rocks in the quadrangle underwent tectonism during the Middle Jurassic (about 188 Ma), and were subsequently deformed in an Early Cretaceous contractional event between about 130 and 116 Ma. New U-Pb SHRIMP data presented here on zircons from the Paleozoic biotite gneisses record inherited cores that range from 363 Ma to about 2,130 Ma and have rims of euhedral Early Cretaceous metamorphic overgrowths (116 +/- 4 Ma), interpreted to record recrystallization during Cretaceous west-northwest-directed thrusting and folding. U-Pb SHRIMP dating of monazite from a Paleozoic

  14. Data on ground-water quality for the southern Nevada part of the Kingman 1 degree by 2 degree quadrangle

    USGS Publications Warehouse

    Welch, Alan H.; Williams, Rhea P.

    1987-01-01

    Water quality data for groundwater were compiled for the Kingman 1 degree x 2 degree quadrangle which covers a portion of southern Nevada. Chemical characteristics of the water are shown on a map (at a scale of 1:250,000) and on trilinear diagrams for the major ions. The data for the area are also presented in a table. (USGS)

  15. Resource characterization for uranium mineralization in the Montrose 1/sup 0/ x 2/sup 0/ quadrangle, Colorado

    SciTech Connect

    Bolivar, S.L.; Balog, S.H.; Weaver, T.A.

    1981-01-01

    A data-classification scheme was developed to detect potential uranium mineralization in the Montrose 1/sup 0/ x 2/sup 0/ quadrangle, Colorado. The methodology developed is a rapid and efficient method of resource evaluation on a reconnaissance scale. The necessary techniques were developed and refined to digitize, integrate, and register various large geological, geochemical, and geophysical data sets for the Montrose quadrangle, Colorado, using a grid resolution of 1 km. All data sets for the Montrose quadrangle were registered to the Universal Transverse Mercator projection. The data sets include hydrogeochemical and stream sediment analyses for 23 elements, uranium-to-thorium ratios, airborne geophysical survey data, the locations of 90 uranium occurrences, and a geologic map (scale 1:250 000). Geochemical samples were collected from 3965 locations in the 19 200 km/sup 2/ quadrangle; aerial data were collected on flight lines flown with 3 to 5 km spacings. These data sets were smoothed by universal kriging and interpolated to a 179 x 119 rectangular grid (each grid block is 1 km/sup 2/). A mylar transparency of the geologic map was prepared and digitized. All possible combinations of three, for all data sets, were examined for general geologic correlations by utilizing a color microfilm output. Subsets of data were further examined for selected test areas. A classification scheme for uranium mineralization, based on selected test areas in the Cochetopa uranium district, is presented. Areas favorable for uranium mineralization, based on this scheme, were identified and are discussed.

  16. National uranium resource evaluation program: hydrogeochemical and stream sediment reconnaissance basic data for Ely quadrangle, Nevada; Utah

    SciTech Connect

    Not Available

    1981-10-15

    Field and laboratory data are presented for 1937 sediment samples from the Ely Quadrangle, Nevada; Utah. The samples were collected by Savannah River Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  17. Data on ground-water quality for the Lovelock 1 degree by 2 degree quadrangle, western Nevada

    USGS Publications Warehouse

    Welch, Alan H.; Williams, Rhea P.

    1987-01-01

    Water quality data for groundwater has been compiled for the Lovelock 1 degree x 2 degree quadrangle which covers a portion of western Nevada. Chemical characteristics of the water are shown on a map (at a scale of 1:250,000) and on trilinear diagrams for the major ions. The data for the area are also presented in a table. (USGS)

  18. Principal facts for gravity stations and physical property measurements in the Lake Mead 30' by 60' quadrangle, Nevada and Arizona

    USGS Publications Warehouse

    Langenheim, V.E.; Davidson, J.G.; Anderson, M.L.; Blank, H.R., Jr.

    1999-01-01

    The U.S. Geological Survey (USGS) collected 811 gravity stations on the Lake Mead 30' by 60' quadrangle from October, 1997 to September, 1999. These data were collected in support of geologic mapping of the Lake Mead quadrangle. In addition to these new data, gravity stations were compiled from a number of sources. These stations were reprocessed according to the reduction method described below and used for the new data. Density and magnetic susceptibility measurements were also performed on more than 250 rock samples. The Lake Mead quadrangle ranges from 360 to 360 30' north latitude and from 114° to 115° west longitude. It spans most of Lake Mead (see index map, below), the largest manmade lake in the United States, and includes most of the Lake Mead National Recreation Area. Its geology is very complex; Mesozoic thrust faults are exposed in the Muddy Mountains, Precambrian crystalline basement rocks are exhumed in tilted fault blocks near Gold Butte, extensive Tertiary volcanism is evident in the Black Mountains, and strike-slip faults of the right-lateral Las Vegas Valley shear zone and the left-lateral Lake Mead fault system meet near the Gale Hills. These gravity data and physical property measurements will aid in the 3-dimensional characterization of structure and stratigraphy in the quadrangle as part of the Las Vegas Urban Corridor mapping project.

  19. Data on ground-water quality for the Reno 1 degree by 2 degree quadrangle, western Nevada

    USGS Publications Warehouse

    Welch, Alan H.; Williams, Rhea P.

    1987-01-01

    Water quality data for groundwater has been compiled for the Reno 1 degree x 2 degree quadrangle which covers a portion of western Nevada. Chemical characteristics of the water are shown on a map (at a scale of 1:250,000) and on trilinear diagrams for the major ions. The data for the area is also presented in a table. (USGS)

  20. Maps showing abundance and distribution of mercury in rock samples, Medford 1 degree by 2 degrees Quadrangle, Oregon-California

    USGS Publications Warehouse

    Whittington, Charles L.; Grimes, David J.; Leinz, Reinhard W.

    1985-01-01

    This map presents data on the abundance and distribution of mercury in 3,146 rock samples from the Medford quadrangle. Most of the rock samples were collected incidental to geologic, geochemical, and mineral resources studies in the period from 1974 to 1980, but about 6 percent date from earlier investigations (Wells, 1940; 1956; Wells and others 1949).