Science.gov

Sample records for 600h hybrid synergy

  1. Evaluation of the 2008 Lexus LS 600H Hybrid Synergy Drive System

    SciTech Connect

    Burress, T.A.; Coomer, C.L.; Campbell, S.L.; Wereszczak, A.A.; Cunningham, J.P.; Marlino, L.D.; Seiber, L.E.; Lin, H.T.

    2009-01-15

    Subsystems of the 2008 Lexus 600h hybrid electric vehicle (HEV) were studied and tested as part of an intensive benchmarking effort carried out to produce detailed information concerning the current state of nondomestic alternative vehicle technologies. Feedback provided by benchmarking efforts is particularly useful to partners of the Vehicle Technologies collaborative research program as it is essential in establishing reasonable yet challenging programmatic goals which facilitate development of competitive technologies. The competitive nature set forth by the Vehicle Technologies program not only promotes energy independence and economic stability, it also advocates the advancement of alternative vehicle technologies in an overall global perspective. These technologies greatly facilitate the potential to reduce dependency on depleting natural resources and mitigate harmful impacts of transportation upon the environment.

  2. Engineering Synergy: Energy and Mass Transport in Hybrid Nanomaterials.

    PubMed

    Cho, Eun Seon; Coates, Nelson E; Forster, Jason D; Ruminski, Anne M; Russ, Boris; Sahu, Ayaskanta; Su, Norman C; Yang, Fan; Urban, Jeffrey J

    2015-10-14

    An emerging class of materials that are hybrid in nature is propelling a technological revolution in energy, touching many fundamental aspects of energy-generation, storage, and conservation. Hybrid materials combine classical inorganic and organic components to yield materials that manifest new functionalities unattainable in traditional composites or other related multicomponent materials, which have additive function only. This Research News article highlights the exciting materials design innovations that hybrid materials enable, with an eye toward energy-relevant applications involving charge, heat, and mass transport. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A Muscle Synergy-Inspired Adaptive Control Scheme for a Hybrid Walking Neuroprosthesis

    PubMed Central

    Alibeji, Naji A.; Kirsch, Nicholas Andrew; Sharma, Nitin

    2015-01-01

    A hybrid neuroprosthesis that uses an electric motor-based wearable exoskeleton and functional electrical stimulation (FES) has a promising potential to restore walking in persons with paraplegia. A hybrid actuation structure introduces effector redundancy, making its automatic control a challenging task because multiple muscles and additional electric motor need to be coordinated. Inspired by the muscle synergy principle, we designed a low dimensional controller to control multiple effectors: FES of multiple muscles and electric motors. The resulting control system may be less complex and easier to control. To obtain the muscle synergy-inspired low dimensional control, a subject-specific gait model was optimized to compute optimal control signals for the multiple effectors. The optimal control signals were then dimensionally reduced by using principal component analysis to extract synergies. Then, an adaptive feedforward controller with an update law for the synergy activation was designed. In addition, feedback control was used to provide stability and robustness to the control design. The adaptive-feedforward and feedback control structure makes the low dimensional controller more robust to disturbances and variations in the model parameters and may help to compensate for other time-varying phenomena (e.g., muscle fatigue). This is proven by using a Lyapunov stability analysis, which yielded semi-global uniformly ultimately bounded tracking. Computer simulations were performed to test the new controller on a 4-degree of freedom gait model. PMID:26734606

  4. A Muscle Synergy-Inspired Adaptive Control Scheme for a Hybrid Walking Neuroprosthesis.

    PubMed

    Alibeji, Naji A; Kirsch, Nicholas Andrew; Sharma, Nitin

    2015-01-01

    A hybrid neuroprosthesis that uses an electric motor-based wearable exoskeleton and functional electrical stimulation (FES) has a promising potential to restore walking in persons with paraplegia. A hybrid actuation structure introduces effector redundancy, making its automatic control a challenging task because multiple muscles and additional electric motor need to be coordinated. Inspired by the muscle synergy principle, we designed a low dimensional controller to control multiple effectors: FES of multiple muscles and electric motors. The resulting control system may be less complex and easier to control. To obtain the muscle synergy-inspired low dimensional control, a subject-specific gait model was optimized to compute optimal control signals for the multiple effectors. The optimal control signals were then dimensionally reduced by using principal component analysis to extract synergies. Then, an adaptive feedforward controller with an update law for the synergy activation was designed. In addition, feedback control was used to provide stability and robustness to the control design. The adaptive-feedforward and feedback control structure makes the low dimensional controller more robust to disturbances and variations in the model parameters and may help to compensate for other time-varying phenomena (e.g., muscle fatigue). This is proven by using a Lyapunov stability analysis, which yielded semi-global uniformly ultimately bounded tracking. Computer simulations were performed to test the new controller on a 4-degree of freedom gait model.

  5. Evaluation of the 2007 Toyota Camry Hybrid Synergy Drive System

    SciTech Connect

    Burress, T A; Coomer, C L; Campbell, S L; Seiber, L E; Marlino, L D; Staunton, R H; Cunningham, J P

    2008-04-15

    The U.S. Department of Energy (DOE) and American automotive manufacturers General Motors, Ford, and DaimlerChrysler began a five-year, cost-shared partnership in 1993. Currently, hybrid electric vehicle (HEV) research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. Under the FCVT program, support is provided through a three-phase approach [1] which is intended to: • Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry’s recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; • Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and • Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed in this area will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in hybrid electric, electric, and fuel-cell-powered vehicles.

  6. Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System

    SciTech Connect

    Burress, Timothy A; Campbell, Steven L; Coomer, Chester; Ayers, Curtis William; Wereszczak, Andrew A; Cunningham, Joseph Philip; Marlino, Laura D; Seiber, Larry Eugene; Lin, Hua-Tay

    2011-03-01

    Subsystems of the 2010 Toyota Prius hybrid electric vehicle (HEV) were studied and tested as part of an intensive benchmarking effort carried out to produce detailed information concerning the current state of nondomestic alternative vehicle technologies. Feedback provided by benchmarking efforts is particularly useful to partners of the Vehicle Technologies collaborative research program as it is essential in establishing reasonable yet challenging programmatic goals which facilitate development of competitive technologies. The competitive nature set forth by the Vehicle Technologies Program (VTP) not only promotes energy independence and economic stability, it also advocates the advancement of alternative vehicle technologies in an overall global perspective. These technologies greatly facilitate the potential to reduce dependency on depleting natural resources and mitigate harmful impacts of transportation upon the environment.

  7. Synergy effects during current drive by two lower-hybrid waves

    NASA Astrophysics Data System (ADS)

    Yang, Youlei; Xiang, Nong; Hu, Ye Min

    2017-03-01

    In recent lower-hybrid current drive experiments on the experimental advanced superconducting tokamak, two lower-hybrid waves are launched simultaneously from different locations with different phase velocities to drive the plasma current. To understand the synergy effects of the two LH waves, the analytical expression for the electron velocity distribution is obtained based on Fuchs' model [Fuchs et al., Phys. Fluids 28(12), 3619-3628 (1985)], which is in good agreement with that obtained by solving the quasi-linear equation numerically via the CQL3D code [R. W. Harvey and M. G. McCoy, in Proceedings of IAEA Technical Committee Meeting on Advances in Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada (1992)]. The synergy factor is also obtained analytically. It is found that the existence of two resonant regions may bring more resonant electrons interacting with each wave and the perpendicular dynamics can further enhance the synergy effect by increasing the effective electron temperature, which in turn increases the number of electrons in the resonance with each wave.

  8. Global hybrid forest mask: synergy of remote sensing, crowd sourcing and statistics

    NASA Astrophysics Data System (ADS)

    Shchepashchenko, D.; See, L. M.; Lesiv, M.; Fritz, S.; McCallum, I.; Shvidenko, A.; Kraxner, F.

    2013-12-01

    Many global and regional forest cover products have recently become available. The most advanced and comprehensive of these include the global land cover datasets (GLC2000, MODIS, GLOBCOVER), MODIS Vegetation Continuous Fields (VCF), LANDSAT based (e.g. Sexton et al., 2013) and radar based (e.g. Saatchi et al., 2010; Baccini et al., 2012; Santoro et al., 2012) products. However, they often contradict each other and are typically inconsistent with forest statistics. In particular, global land cover datasets contradict each other in many areas, have limited information about forest density and are not consistent with forest statistics. VCF most likely provides the most comprehensive information about forest density with a spatial resolution of 230m during 2000-2010. However when observing VCF dynamics for individual pixels, one can see variation that cannot be explained by forest cover dynamics, but instead by unstable pixel geometry and clouds. Landsat based products also suffer from cloud cover and cannot recognize sparse forest with canopy closure of 30% or less. Space-based radar is free from cloud, but still cannot reliably delineate areas as forest/non forest (Santoro, 2012). We compare all of the above mentioned remote sensing products with a sample of high resolution imagery provided by Google Earth. We have applied the crowd sourcing platform Geo-Wiki (Fritz et al., 2010, 2012) to collect 22K training points where the percentage of forest cover was estimated for a 1km pixel size. We applied the method of geographically weighted regression to calculate the map of probability of forest cover and the map of forest share. This involved the use of the Geo-Wiki training points in combination with the land cover products, MODIS VCF and LANDSAT. The synergy of remote sensing, statistics and crowd sourcing approaches was investigated to better understand the spatial distribution of forests. Both calibrated (using FAO FRA statistics) and non-calibrated ('best guess

  9. Optimized calculation of the synergy conditions between electron cyclotron current drive and lower hybrid current drive on EAST

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Bo-Jiang, Ding; Y, Peysson; J, Decker; Miao-Hui, Li; Xin-Jun, Zhang; Xiao-Jie, Wang; Lei, Zhang

    2016-01-01

    The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on the understanding of the synergy mechanisms so as to obtain a higher synergistic current and provide theoretical reference for the synergistic effect in the EAST experiment. The dependences of the synergistic effect on the parameters of two waves (lower hybrid wave (LHW) and electron cyclotron wave (ECW)), including the radial position of the power deposition, the power value of the LH and EC waves, and the parallel refractive indices of the LHW (N∥) are presented and discussed. Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2011GB102000, 2012GB103000, and 2013GB106001), the National Natural Science Foundation of China (Grant Nos. 11175206 and 11305211), the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (Grant No. 11261140328), and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2015HGBZ0472).

  10. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    SciTech Connect

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  11. Numerical study of the synergy effects of electron cyclotron wave and two lower-hybrid waves in the current drive process

    NASA Astrophysics Data System (ADS)

    Yang, Youlei; Xiang, Nong; Hu, Ye Min

    2017-08-01

    In recent experiments on the experimental advanced superconducting tokamak, the electron cyclotron wave and the two lower-hybrid waves at different frequencies, i.e., 4.6 GHz and 2.45 GHz, are applied simultaneously to sustain and control the plasma current. To investigate the synergy effects of the three waves, the Fokker-Planck equation with the quasi-linear diffusions induced by the three waves is solved numerically with the CQL3D code [R. W. Harvey and M. G. McCoy, in Proceedings of IAEA Technical Committee Meeting on Advances in Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada (1992)]. It is found that there might be strong synergy effects between the three waves. The electrons in the low velocity region in the velocity space can be accelerated perpendicularly by the electron cyclotron wave, and their parallel velocities can be increased due to scattering and fall into the resonance regions of the lower-hybrid waves. Therefore, such processes may bring more electrons to resonate with the lower-hybrid waves and enhance the current drive of the lower-hybrid waves. The synergy effects strongly depend on the distance between the resonance regions in the velocity space of the three waves.

  12. Hybrid Transvaginal NOTES and Mini-Laparoscopic Colectomy: Benefit Through Synergy

    PubMed Central

    Gan, Philip S. L.

    2016-01-01

    Background and Objectives: Hybrid-natural orifice surgery combines the advantages of traditional transabdominal laparoscopic surgery, while limiting surgical trauma to the abdominal wall. Among various routes of intra-abdominal access, the transvaginal method is most appealing because of its utility and proven safety. We describe a series of 4 colonic resections performed with this approach, combined with minilaparoscopy and needlescopic approaches, and discuss the technical aspects, efficacy, and applicability of this technique. Methods: Three patients were selected to undergo hybrid transvaginal natural-orifice right hemicolectomy. A fourth patient, who underwent a segmental resection of a splenic flexure carcinoma, was included. Transvaginal port access was obtained via posterior colpotomy, and was used for dissection, vascular ligation, bowel division, and anastomosis. We used a combination of standard laparoscopic, minilaparoscopic, and needlescopic instruments transabdominally, focusing on reduced size and number of access points. Results: Duration of laparoscopy, oncologic outcomes and rate of operative morbidity were comparable to the published literature. Early return of gastrointestinal function and low analgesic requirements was observed in all patients. No morbidity related to transvaginal access was observed and the procedure was performed without difficulty in all cases. Conclusion: Colonic resection performed by hybrid natural-orifice technique offers several advantages over purely transabdominal laparoscopic procedures. Transvaginal access is easy to perform and offers excellent safety, efficacy, and versatility, especially for right hemicolectomy. Techniques to reduce abdominal wall surgical trauma, such as minilaparoscopy and needlescopic graspers, can be combined effectively in colonic resections, and may act synergistically to reduce postoperative pain and improve outcomes. PMID:27904307

  13. Interpersonal Synergies

    PubMed Central

    Riley, Michael A.; Richardson, Michael J.; Shockley, Kevin; Ramenzoni, Verónica C.

    2010-01-01

    We present the perspective that interpersonal movement coordination results from establishing interpersonal synergies. Interpersonal synergies are higher-order control systems formed by coupling movement system degrees of freedom of two (or more) actors. Characteristic features of synergies identified in studies of intrapersonal coordination – dimensional compression and reciprocal compensation – are revealed in studies of interpersonal coordination that applied the uncontrolled manifold approach and principal component analysis to interpersonal movement tasks. Broader implications of the interpersonal synergy approach for movement science include an expanded notion of mechanism and an emphasis on interaction-dominant dynamics. PMID:21716606

  14. Professional Synergy.

    ERIC Educational Resources Information Center

    Harris, P. R.

    1981-01-01

    True professionals develop and create together a better future by their human endeavors in synergy. They must operate comfortably in two cultures--the industrial culture which is disappearing, and the superindustrial or cyberculture which is emerging. (CT)

  15. A Nanostructured Bifunctional platform for Sensing of Glucose Biomarker in Artificial Saliva: Synergy in hybrid Pt/Au surfaces.

    PubMed

    Raymundo-Pereira, Paulo A; Shimizu, Flávio M; Coelho, Dyovani; Piazzeta, Maria H O; Gobbi, Angelo L; Machado, Sergio A S; Oliveira, Osvaldo N

    2016-12-15

    We report on a bimetallic, bifunctional electrode where a platinum (Pt) surface was patterned with nanostructured gold (Au) fingers with different film thicknesses, which was functionalized with glucose oxidase (GOx) to yield a highly sensitive glucose biosensor. This was achieved by using selective adsorption of a self-assembled monolayer (SAM) onto Au fingers, which allowed GOx immobilization only onto the Au-SAM surface. This modified electrode was termed bifunctional because it allowed to simultaneously immobilize the biomolecule (GOx) on gold to catalyze glucose, and detect hydrogen peroxide on Pt sites. Optimized electrocatalytic activity was reached for the architecture Pt/Au-SAM/GOx with 50nm thickness of Au, where synergy between Pt and Au allowed for detection of hydrogen peroxide (H2O2) at a low applied potential (0V vs. Ag/AgCl). Detection was performed for H2O2 in the range between 4.7 and 102.7 nmol L(-1), with detection limit of 3.4×10(-9) mol L(-1) (3.4 nmol L(-1)) and an apparent Michaelis-Menten rate constant of 3.2×10(-6)molL(-1), which is considerably smaller than similar devices with monometallic electrodes. The methodology was validated by measuring glucose in artificial saliva, including in the presence of interferents. The synergy between Pt and Au was confirmed in electrochemical impedance spectroscopy measurements with an increased electron transfer, compared to bare Pt and Au electrodes. The approach for fabricating the reproducible bimetallic Pt/Au electrodes is entirely generic and may be explored for other types of biosensors and biodevices where advantage can be taken of the combination of the two metals.

  16. Superior wear resistance and low friction in hybrid ultrathin silicon nitride/carbon films: synergy of the interfacial chemistry and carbon microstructure.

    PubMed

    Yeo, Reuben J; Dwivedi, Neeraj; Zhang, Lu; Zhang, Zheng; Lim, Christina Y H; Tripathy, Sudhiranjan; Bhatia, Charanjit S

    2017-10-12

    Amorphous carbon-based films are commonly investigated as protective nanocoatings in macro- to nano-scale devices due to their exceptional tribological and mechanical properties. However, with further device miniaturization where even thinner coatings are required, the wear durability of the nanocoating rapidly degrades at the expense of lower thickness. Here we discover that for sub-10 nm coating thicknesses, a hybrid bi-layer film structure, comprising a high sp(3)-bonded amorphous carbon top layer and a silicon nitride (SiNx) bottom layer, consistently outperforms its single-layer amorphous carbon counterpart in terms of wear durability on a commercial tape drive head, while exhibiting low, stable friction and excellent wear resistance on a flat ceramic substrate. The superior performance of the hybrid film is attributed to the constructive synergy of the sp(3)-rich carbon microstructure and an enhanced interfacial chemistry arising from additional interfacial bonding. Moreover, a high energy C(+) ion treatment step, introduced either directly to the substrate or to the SiNx layer before carbon deposition, also aids in increasing atomic mixing that contributes to further improvement in the wear resistance. This study highlights the importance of both the carbon microstructure and interfacial chemistry in the design of wear-durable nanocoatings at few-nanometer thicknesses, particularly for aggressive wear conditions.

  17. Prehension Synergies

    PubMed Central

    Zatsiorsky, Vladimir M.; Latash, Mark L.

    2010-01-01

    The precision grip requires the control of the normal and tangential forces exerted by the fingers as well as the control of the rotational equilibrium of the grasped object. Prehension synergies involve the conjoint changes in finger forces and moments during multifinger gripping tasks. Some of these adjustments are dictated by mechanics, whereas others are the result of a choice by the performer. PMID:15064652

  18. Desperately seeking synergy.

    PubMed

    Goold, M; Campbell, A

    1998-01-01

    Corporate executives have strong biases in favor of synergy, and those biases can lead them into ill-advised attempts to force business units to cooperate--even when the ultimate benefits are unclear. But executives can separate the real opportunities from the mirages, say Michael Goold and Andrew Campbell. They simply need to take a more disciplined approach to synergy. These biases take four forms. First comes the synergy bias, which leads executives to overestimate the benefits and underestimate the costs of synergy. Then comes the parenting bias, a belief that synergy will be captured only by cajoling or compelling business units to cooperate. The parenting bias is usually accompanied by the skills bias--the assumption that whatever know-how is required to achieve synergy will be available within the organization. Finally, executives fall victim to the upside bias, which causes them to concentrate so hard on the potential benefits of synergy that they overlook the possible downside risks. In combination, these four biases make synergy seem more attractive and more easily achievable than it truly is. As a result, corporate executives often launch initiatives that ultimately waste time and money and sometimes even severely damage their businesses. To avoid such failures, executives need to subject all synergy opportunities to a clear-eyed analysis that clarifies the benefits to be gained, examines the potential for corporate involvement, and takes into account the possible downsides. Such a disciplined approach will inevitably mean that fewer initiatives will be launched. But those that are pursued will be far more likely to deliver substantial gains.

  19. Evaluation of the Steelex M600H coagulometer prothrombin time-international normalized ratio assay with Steelex test reagents

    PubMed Central

    Budak, Yasemin U.; Huysal, Kağan; Polat, Murat; Tarakçı, Gülsevil; Uçar, Hakan

    2012-01-01

    Introduction The aim of the present study was to validate prothrombin time (PT) international normalized ratio (INR) results obtained using Steelex test reagents and a Steelex coagulometer (Steelex Scientific Instrument Company, Beijing, China), in comparison with use of a well-established standard test employing Pacific Hemostasis reagents (Fisher Diagnostics, Middletown, VA, USA) and Teco Coatron A4 coagulometer (Teco Medical Instruments GmbH, Neufahrn, Germany). Materials and methods: Between- and within-day coefficients of variation (CVs) of both assays were calculated using control samples provided by the test manufacturers. Samples from 90 subjects were collected and INR values were determined in a double-blind parallel manner employing both systems. Results: The within-day coefficients of variation (CVs) in INR estimates ranged from 2.6% (INR = 1.12) to 3.1% (INR = 2.51) for the Steelex system and from 2.1% (INR = 1.09) to 1.8% (INR = 2.8) for the Pacific test; the between-day values ran from 3.4% (INR = 1.16) to 7.9% (INR = 2.64) and from 3.3% (INR = 1.1) to 2.3% (INR = 2.7), respectively. Passing-Bablok fit of the of the Steelex and Pacific methods yielded the equation: Steelex INR = 0.85 (0.79–0.91) × Pacific INR + 0.12 (−0.02–0.21), whereas the CUSUM linearity P value was < 0.01. The mean bias as determined by the Bland-Altman test was −0.156 (−0.912–0.600). Conclusion: The results obtained using Steelex reagents and the M600H coagulometer are not equivalent to those obtained using Pacific Hemostasis reagents and a Teco Coatron A4 coagulometer, at least in the therapeutic range. PMID:22384527

  20. The synergy between Ti species and g-C3N4 by doping and hybridization for the enhancement of photocatalytic H2 evolution.

    PubMed

    Wang, Xiao-Jing; Tian, Xiao; Li, Fa-Tang; Zhao, Jun; Li, Yu-Pei; Liu, Rui-Hong; Hao, Ying-Juan

    2015-10-28

    A Ti species modified g-C3N4 photocatalyst was synthesized via an in situ hydrothermal route and the subsequent low-temperature calcination. The hydrothermal process results in not only the fabrication of TiO2/g-C3N4 heterojunctions, but also the coordination between Ti species and g-C3N4, which are verified by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrical resistance test confirms that the coordination can improve the electrical conductivity of composites and can make the charge transfer easier. The photoluminescence (PL) and photocurrent measurements exhibit that the hybridization enhances the separation efficiency of photo-induced electrons and holes. As a result, the Ti species modified g-C3N4 photocatalysts exhibit much higher photocatalytic H2 evolution than the simple heterojunction of TiO2/g-C3N4 obtained via a microwave method and the mechanical mixture of TiO2 and g-C3N4 under visible-light irradiation. The coordination mechanism and synthesis route of TiO2/g-C3N4 heterojunctions are proposed.

  1. Compliant Synergies in Locomotion

    NASA Astrophysics Data System (ADS)

    Travers, Matthew; Choset, Howie; Goldman @ Georgia Tech. Physics Department Collaboration

    Biological systems appear to have natural mechanisms that allow them to readily compensate for unexpected environmental variations when compared to their mechanical (i.e., robotic) counterparts. We hypothesize that the basis for this discrepancy is almost innate: what biology appears to be born with, built-in mechanisms for coordinating their many degrees of freedom, we struggle to ``program.'' We therefore look toward biology for inspiration. In particular, we are interested in kinematic synergies, low-dimensional representations that explicitly encode the underlying structure of how systems coordinate their internal degrees of freedom to achieve high-level tasks. In this work, we derive parametric representations of kinematic synergies and present a new compliant locomotion control framework that enables the parameters to be directly controlled in response to external disturbances. We present results of this framework implemented on two separate platforms, a snake-like and hexapod robot. Our results show that, using synergies, the locomotion control of these very different systems can be reduced to simple, extremely capable, and common forms, thus offering new insights into both robotic as well as biological locomotion in complex terrains.

  2. Neural bases of hand synergies

    PubMed Central

    Santello, Marco; Baud-Bovy, Gabriel; Jörntell, Henrik

    2013-01-01

    The human hand has so many degrees of freedom that it may seem impossible to control. A potential solution to this problem is “synergy control” which combines dimensionality reduction with great flexibility. With applicability to a wide range of tasks, this has become a very popular concept. In this review, we describe the evolution of the modern concept using studies of kinematic and force synergies in human hand control, neurophysiology of cortical and spinal neurons, and electromyographic (EMG) activity of hand muscles. We go beyond the often purely descriptive usage of synergy by reviewing the organization of the underlying neuronal circuitry in order to propose mechanistic explanations for various observed synergy phenomena. Finally, we propose a theoretical framework to reconcile important and still debated concepts such as the definitions of “fixed” vs. “flexible” synergies and mechanisms underlying the combination of synergies for hand control. PMID:23579545

  3. Neural bases of hand synergies.

    PubMed

    Santello, Marco; Baud-Bovy, Gabriel; Jörntell, Henrik

    2013-01-01

    The human hand has so many degrees of freedom that it may seem impossible to control. A potential solution to this problem is "synergy control" which combines dimensionality reduction with great flexibility. With applicability to a wide range of tasks, this has become a very popular concept. In this review, we describe the evolution of the modern concept using studies of kinematic and force synergies in human hand control, neurophysiology of cortical and spinal neurons, and electromyographic (EMG) activity of hand muscles. We go beyond the often purely descriptive usage of synergy by reviewing the organization of the underlying neuronal circuitry in order to propose mechanistic explanations for various observed synergy phenomena. Finally, we propose a theoretical framework to reconcile important and still debated concepts such as the definitions of "fixed" vs. "flexible" synergies and mechanisms underlying the combination of synergies for hand control.

  4. Hand Grasping Synergies As Biometrics.

    PubMed

    Patel, Vrajeshri; Thukral, Poojita; Burns, Martin K; Florescu, Ionut; Chandramouli, Rajarathnam; Vinjamuri, Ramana

    2017-01-01

    Recently, the need for more secure identity verification systems has driven researchers to explore other sources of biometrics. This includes iris patterns, palm print, hand geometry, facial recognition, and movement patterns (hand motion, gait, and eye movements). Identity verification systems may benefit from the complexity of human movement that integrates multiple levels of control (neural, muscular, and kinematic). Using principal component analysis, we extracted spatiotemporal hand synergies (movement synergies) from an object grasping dataset to explore their use as a potential biometric. These movement synergies are in the form of joint angular velocity profiles of 10 joints. We explored the effect of joint type, digit, number of objects, and grasp type. In its best configuration, movement synergies achieved an equal error rate of 8.19%. While movement synergies can be integrated into an identity verification system with motion capture ability, we also explored a camera-ready version of hand synergies-postural synergies. In this proof of concept system, postural synergies performed well, but only when specific postures were chosen. Based on these results, hand synergies show promise as a potential biometric that can be combined with other hand-based biometrics for improved security.

  5. Motor maps and synergies.

    PubMed

    Neilson, Peter D; Neilson, Megan D

    2005-01-01

    Consider the process of raising and lowering the arm in the sagittal plane. Different parts of different muscles operate over different sectors of the angular range. How and why does the nervous system implement this differential muscle activation according to joint angle? We contend that such control depends on the adaptive formation of motor maps. These solve the problem of redundancy in the musculoskeletal system by connecting a relatively small number of cortical columns in the motor cortex to a large number of alpha motor neuron pools. We argue that motor maps are formed such that each functional muscle is activated in proportion to its moment arm about the movement. Because of this the required agonist and antagonist turning forces are generated with a minimum demand for metabolic energy. We know from biomechanical principles that, at any given posture, those muscle fibres that change length most in response to a small joint-angle change are those with the greatest moment arm. Likewise those that change least have the smallest. By establishing a model of the polynomial relationships between the lengths of functional muscles l and the corresponding changes in joint angles theta, the nervous system can generate signals partial differentiallj/ partial differentialthetai (where lj is the length of the jth functional muscle and thetai is the magnitude of the ith elemental movement). These signals create motor maps by modulating the gains of descending motor pathways. As a result, functional muscles are activated in proportion to their moment arms. This reduces the demand for metabolic energy to a minimum. Since moment arms change with joint angle, it also accounts for the experimental observations above. Such motor mapping effectively provides a minimum energy "wired-in" synergy. Established in utero, motor maps are the first stage of synergy formation and provide the basis for the development of subsequent task-dependent synergies.

  6. From silos to synergy.

    PubMed

    Treadwell, Janet; Levermann, Laurie; Soffar, Gail; Giardino, Angelo

    2007-08-01

    Texas Children's Health Plan (TCHP) redesigned its approach to care management in an effort to provide support for member-centric care and the medical home. The changes in process and structure focused on connecting information and programs to promote care for members in a collaborative manner and taking advantage of the synergy between staff, programming, and the physician practices serving health plan membership. The results brought about an improvement in job satisfaction, positive change in the medical-loss ratio, and new innovations to support preventive and chronic care service delivery needs of the TCHP membership.

  7. Hand Grasping Synergies As Biometrics

    PubMed Central

    Patel, Vrajeshri; Thukral, Poojita; Burns, Martin K.; Florescu, Ionut; Chandramouli, Rajarathnam; Vinjamuri, Ramana

    2017-01-01

    Recently, the need for more secure identity verification systems has driven researchers to explore other sources of biometrics. This includes iris patterns, palm print, hand geometry, facial recognition, and movement patterns (hand motion, gait, and eye movements). Identity verification systems may benefit from the complexity of human movement that integrates multiple levels of control (neural, muscular, and kinematic). Using principal component analysis, we extracted spatiotemporal hand synergies (movement synergies) from an object grasping dataset to explore their use as a potential biometric. These movement synergies are in the form of joint angular velocity profiles of 10 joints. We explored the effect of joint type, digit, number of objects, and grasp type. In its best configuration, movement synergies achieved an equal error rate of 8.19%. While movement synergies can be integrated into an identity verification system with motion capture ability, we also explored a camera-ready version of hand synergies—postural synergies. In this proof of concept system, postural synergies performed well, but only when specific postures were chosen. Based on these results, hand synergies show promise as a potential biometric that can be combined with other hand-based biometrics for improved security. PMID:28512630

  8. Electro-optical Synergy Technique

    PubMed Central

    El-Domyati, Moetaz; El-Ammawi, Tarek S.; Medhat, Walid; Moawad, Osama; Mahoney, My G.

    2010-01-01

    Objectives: Electro-optical synergy technology is one of the most recently described methods for nonablative skin rejuvenation. The aim of this study is to evaluate the effects of electro-optical synergy on connective tissue composition by histological and immunohistochemical techniques coupled with computerized morphometric analysis. Design: A prospective clinical study. Participants: Six volunteers with Fitzpatrick skin types 3 to 4 and Glogau class I to II wrinkles were subjected to three months (6 sessions at 2-week intervals) of electro-optical synergy treatment. Measurements: Standard photographs and skin biopsies were obtained at baseline as well as three and six months after the start of treatment. The authors performed quantitative evaluation of total elastin, tropoelastin, collagen types I, III, and VII, and newly synthesized collagen. Results: Noticeable clinical and histological improvement was observed after electro-optical synergy treatment. A statistically significant increase in the means of collagen types I, III, and VII, as well as newly synthesized collagen, together with increased levels of tropoelastin, were detected, while the mean level of total elastin was significantly decreased at the end of treatment and three months post-treatment. Conclusion: Electro-optical synergy is an effective treatment for contouring facial skin laxity. This modality stimulates the repair processes and reverses the clinical, as well as the histopathological, signs of aging with the advantage of being a relatively risk-free procedure with minimal patient recovery time. PMID:21203352

  9. Postural synergies and their development.

    PubMed

    Latash, Mark L; Krishnamoorthy, Vijaya; Scholz, John P; Zatsiorsky, Vladimir M

    2005-01-01

    The recent developments of a particular approach to analyzing motor synergies based on the principle of motor abundance has allowed a quantitative assessment of multi-effector coordination in motor tasks involving anticipatory adjustments to self-triggered postural perturbations and in voluntary postural sway. This approach, the uncontrolled manifold (UCM) hypothesis, is based on an assumption that the central nervous system organizes covariation of elemental variables to stabilize important performance variables in a task-specific manner. In particular, this approach has been used to demonstrate and to assess the emergence of synergies and their modification with motor practice in typical persons and persons with Down syndrome. The framework of the UCM hypothesis allows the formulation of testable hypotheses with respect to developing postural synergies in typically and atypically developing persons.

  10. Entrepreneurial Creativity through Motivational Synergy.

    ERIC Educational Resources Information Center

    Amabile, Teresa M.

    1997-01-01

    Defines and describes entrepreneurial creativity, which is the generation and implementation of novel, appropriate ideas to establish a new venture. Discusses the need for motivational synergy, which results when strong levels of personal interest and involvement are combined with the promise of rewards that confirm competence. (Author/CR)

  11. Chemogenomic profiling predicts antifungal synergies

    PubMed Central

    Jansen, Gregor; Lee, Anna Y; Epp, Elias; Fredette, Amélie; Surprenant, Jamie; Harcus, Doreen; Scott, Michelle; Tan, Elaine; Nishimura, Tamiko; Whiteway, Malcolm; Hallett, Michael; Thomas, David Y

    2009-01-01

    Chemotherapies, HIV infections, and treatments to block organ transplant rejection are creating a population of immunocompromised individuals at serious risk of systemic fungal infections. Since single-agent therapies are susceptible to failure due to either inherent or acquired resistance, alternative therapeutic approaches such as multi-agent therapies are needed. We have developed a bioinformatics-driven approach that efficiently predicts compound synergy for such combinatorial therapies. The approach uses chemogenomic profiles in order to identify compound profiles that have a statistically significant degree of similarity to a fluconazole profile. The compounds identified were then experimentally verified to be synergistic with fluconazole and with each other, in both Saccharomyces cerevisiae and the fungal pathogen Candida albicans. Our method is therefore capable of accurately predicting compound synergy to aid the development of combinatorial antifungal therapies. PMID:20029371

  12. On theory of motor synergies.

    PubMed

    Neilson, Peter D; Neilson, Megan D

    2010-10-01

    Recently Latash, Scholz, and Schöner (2007) proposed a new view of motor synergies which stresses the idea that the nervous system does not seek a unique solution to eliminate redundant degrees of freedom but rather uses redundant sets of elemental variables that each correct for errors in the other to achieve a performance goal. This is an attractive concept because the resulting flexibility in the synergy also provides for performance stability. But although Latash et al. construe this concept as the consequence of a "neural organization" they do not say what that may be, nor how it comes about. Adaptive model theory (AMT) is a computational theory developed in our laboratory to account for observed sensory-motor behavior. It gives a detailed account, in terms of biologically feasible neural adaptive filters, of the formation of motor synergies and control of synergistic movements. This account is amplified here to show specifically how the processes within the AMT computational framework lead directly to the flexibility/stability ratios of Latash et al. (2007). Accordingly, we show that quantitative analyses of experimental data, based on the uncontrolled manifold method, do not and indeed cannot refute the possibility that the nervous system tries to find a unique (optimal) solution to eliminate redundant degrees of freedom. We show that the desirable interplay between flexibility and stability demonstrated by uncontrolled manifold analysis can be equally well achieved by a system that forms and deploys optimized motor synergies, as in AMT. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. The Gaia-LSST Synergy

    NASA Astrophysics Data System (ADS)

    Ivezić, Ž.; Kahn, S. M.; Eliason, P.

    2014-07-01

    We discuss the synergy of Gaia and the Large Synoptic Survey Telescope (LSST) in the context of Milky Way studies. LSST can be thought of as Gaia's deep complement because the two surveys will deliver trigonometric parallax, proper-motion, and photometric measurements with similar uncertainties at Gaia's faint end at r = 20, and LSST will extend these measurements to a limit about five magnitudes fainter. We also point out that users of Gaia data will have developed data analysis skills required to benefit from LSST data, and provide detailed information about how international participants can join LSST.

  14. Effective force control by muscle synergies.

    PubMed

    Berger, Denise J; d'Avella, Andrea

    2014-01-01

    Muscle synergies have been proposed as a way for the central nervous system (CNS) to simplify the generation of motor commands and they have been shown to explain a large fraction of the variation in the muscle patterns across a variety of conditions. However, whether human subjects are able to control forces and movements effectively with a small set of synergies has not been tested directly. Here we show that muscle synergies can be used to generate target forces in multiple directions with the same accuracy achieved using individual muscles. We recorded electromyographic (EMG) activity from 13 arm muscles and isometric hand forces during a force reaching task in a virtual environment. From these data we estimated the force associated to each muscle by linear regression and we identified muscle synergies by non-negative matrix factorization. We compared trajectories of a virtual mass displaced by the force estimated using the entire set of recorded EMGs to trajectories obtained using 4-5 muscle synergies. While trajectories were similar, when feedback was provided according to force estimated from recorded EMGs (EMG-control) on average trajectories generated with the synergies were less accurate. However, when feedback was provided according to recorded force (force-control) we did not find significant differences in initial angle error and endpoint error. We then tested whether synergies could be used as effectively as individual muscles to control cursor movement in the force reaching task by providing feedback according to force estimated from the projection of the recorded EMGs into synergy space (synergy-control). Human subjects were able to perform the task immediately after switching from force-control to EMG-control and synergy-control and we found no differences between initial movement direction errors and endpoint errors in all control modes. These results indicate that muscle synergies provide an effective strategy for motor coordination.

  15. Synergy, redundancy and unnormalized Granger causality.

    PubMed

    Stramaglia, S; Angelini, L; Cortes, J M; Marinazzo, D

    2015-08-01

    We analyze by means of Granger causality the effect of synergy and redundancy in the inference (from time series data) of the information flow between subsystems of a complex network. Whilst fully conditioned Granger causality is not affected by synergy, the pairwise analysis fails to put in evidence synergetic effects. We show that maximization of the total Granger causality to a given target, over all the possible partitions of the set of driving variables, puts in evidence redundant multiplets of variables influencing the target, provided that an unnormalized definition of Granger causality is adopted. Along the same lines we also introduce a pairwise index of synergy (w.r.t. to information flow to a third variable) which is zero when two independent sources additively influence a common target; thus, this definition differs from previous definitions of synergy.

  16. Sensory synergy as environmental input integration

    PubMed Central

    Alnajjar, Fady; Itkonen, Matti; Berenz, Vincent; Tournier, Maxime; Nagai, Chikara; Shimoda, Shingo

    2015-01-01

    The development of a method to feed proper environmental inputs back to the central nervous system (CNS) remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with nine healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis' sensory system to make the controller simpler. PMID:25628523

  17. Bilateral synergies in foot force production tasks.

    PubMed

    Sarabon, Nejc; Markovic, Goran; Mikulic, Pavle; Latash, Mark L

    2013-05-01

    We analysed the effects of task symmetry during bilateral accurate force production tasks performed by the two feet. In particular, we tested a hypothesis that bilateral deficit would lead to higher indices of synergies defined as co-varied adjustments in the two forces across trials that reduced total force variability. The subjects produced steady-state force followed by a quick force pulse into the target. The two feet could be acting both into plantar flexion and into dorsiflexion (symmetrical tasks), or in opposite directions (asymmetrical task). We used the framework of the uncontrolled manifold hypothesis to quantify two variance components, one of which did not change total force (V UCM), while the other did (V ORT). Synergy indices during the asymmetrical task were higher than in either symmetrical task. The difference was due to higher V UCM (compared to the symmetrical plantar flexion task) or lower V ORT (compared to the symmetrical dorsiflexion task). The synergy index showed a drop (anticipatory synergy adjustment, ASA) starting 100-150 ms prior to the force pulse initiation. The ASA tended to be shorter and of a smaller magnitude for the asymmetrical task. This is the first demonstration of bilateral synergies during accurate force production by the legs. We conclude that bilateral deficit has no or weak effects on two-leg synergies. The results fit the earlier introduced scheme with two groups of neural variables defining average performance of a redundant system and patterns of co-variation among its elemental variables, respectively.

  18. Examining the Synergy of Practice

    PubMed Central

    2014-01-01

    Public health nurses in Ireland are charged with conducting a home visit to every postnatal mother within 48 hours of hospital discharge. This represents the beginning of a long-term relationship, not only with the mother and newborn child but also with the family. This article fundamentally demonstrates the essential work of the public health nurse in promoting the health of the baby within a family. In this article, the expertise the public health nurse uses in the first visit is examined in the context of 3 competencies: communication, partnerships with the family, and partnerships with individual family members. This expertise provides the foundation for a long-term therapeutic relationship with the family to the essential benefit of the baby’s early childhood growth and developmental milestones. Consequently, the first postnatal visit by public health nursing in Ireland represents a synergy of practice, which provides the foundation for enduring family relationships focused on potentializing both individual family members’ health and the family as a dynamic unit. PMID:27335911

  19. Greenhouses and their humanizing synergies

    NASA Astrophysics Data System (ADS)

    Haeuplik-Meusburger, Sandra; Paterson, Carrie; Schubert, Daniel; Zabel, Paul

    2014-03-01

    Greenhouses in space will require advanced technical systems of automatic watering, soil-less cultivation, artificial lighting, and computerized observation of plants. Functions discussed for plants in space habitats include physical/health requirements and human psychology, social cohesion, as well as the complex sensorial benefits of plants for humans. The authors consider the role of plants in long-term space missions historically since 1971 (Salyut 1) and propose a set of priorities to be considered within the design requirements for greenhouses and constructed environments given a range of benefits associated with plant-human relationships. They cite recent research into the use of greenhouses in extreme environments to reveal the relative importance of greenhouses for people living in isolated locations. Additionally, they put forward hypotheses about where greenhouses might factor into several strata of human health. In a recent design-in-use study of astronauts' experiences in space habitats discussed in Architecture for Astronauts (Springer Press 2011) it was found that besides the basic advantages for life support there are clearly additional "side benefits" for habitability and physical wellbeing, and thus long-term mission success. The authors have composed several key theses regarding the need to promote plant-human relationships in space, including areas where synergy and symbiosis occur. They cite new comprehensive research into the early US Space Program to reveal where programmatic requirements could be added to space architecture to increase the less quantifiable benefits to astronauts of art, recreation, and poetic engagement with their existential condition of estrangement from the planet. Specifically in terms of the technological requirements, the authors propose the integration of a new greenhouse subsystem component into space greenhouses—the Mobile Plant Cultivation Subsystem—a portable, personal greenhouse that can be integrated

  20. Modelling natural and artificial hands with synergies

    PubMed Central

    Bicchi, Antonio; Gabiccini, Marco; Santello, Marco

    2011-01-01

    We report on recent work in modelling the process of grasping and active touch by natural and artificial hands. Starting from observations made in human hands about the correlation of degrees of freedom in patterns of more frequent use (postural synergies), we consider the implications of a geometrical model accounting for such data, which is applicable to the pre-grasping phase occurring when shaping the hand before actual contact with the grasped object. To extend applicability of the synergy model to study force distribution in the actual grasp, we introduce a modified model including the mechanical compliance of the hand's musculotendinous system. Numerical results obtained by this model indicate that the same principal synergies observed from pre-grasp postural data are also fundamental in achieving proper grasp force distribution. To illustrate the concept of synergies in the dual domain of haptic sensing, we provide a review of models of how the complexity and heterogeneity of sensory information from touch can be harnessed in simplified, tractable abstractions. These abstractions are amenable to fast processing to enable quick reflexes as well as elaboration of high-level percepts. Applications of the synergy model to the design and control of artificial hands and tactile sensors are illustrated. PMID:21969697

  1. Modelling natural and artificial hands with synergies.

    PubMed

    Bicchi, Antonio; Gabiccini, Marco; Santello, Marco

    2011-11-12

    We report on recent work in modelling the process of grasping and active touch by natural and artificial hands. Starting from observations made in human hands about the correlation of degrees of freedom in patterns of more frequent use (postural synergies), we consider the implications of a geometrical model accounting for such data, which is applicable to the pre-grasping phase occurring when shaping the hand before actual contact with the grasped object. To extend applicability of the synergy model to study force distribution in the actual grasp, we introduce a modified model including the mechanical compliance of the hand's musculotendinous system. Numerical results obtained by this model indicate that the same principal synergies observed from pre-grasp postural data are also fundamental in achieving proper grasp force distribution. To illustrate the concept of synergies in the dual domain of haptic sensing, we provide a review of models of how the complexity and heterogeneity of sensory information from touch can be harnessed in simplified, tractable abstractions. These abstractions are amenable to fast processing to enable quick reflexes as well as elaboration of high-level percepts. Applications of the synergy model to the design and control of artificial hands and tactile sensors are illustrated.

  2. Team Synergies in Sport: Theory and Measures

    PubMed Central

    Araújo, Duarte; Davids, Keith

    2016-01-01

    Individual players act as a coherent unit during team sports performance, forming a team synergy. A synergy is a collective property of a task-specific organization of individuals, such that the degrees of freedom of each individual in the system are coupled, enabling the degrees of freedom of different individuals to co-regulate each other. Here, we present an explanation for the emergence of such collective behaviors, indicating how these can be assessed and understood through the measurement of key system properties that exist, considering the contribution of each individual and beyond These include: to (i) dimensional compression, a process resulting in independent degree of freedom being coupled so that the synergy has fewer degrees of freedom than the set of components from which it arises; (ii) reciprocal compensation, if one element do not produce its function, other elements should display changes in their contributions so that task goals are still attained; (iii) interpersonal linkages, the specific contribution of each element to a group task; and (iv), degeneracy, structurally different components performing a similar, but not necessarily identical, function with respect to context. A primary goal of our analysis is to highlight the principles and tools required to understand coherent and dynamic team behaviors, as well as the performance conditions that make such team synergies possible, through perceptual attunement to shared affordances in individual performers. A key conclusion is that teams can be trained to perceive how to use and share specific affordances, explaining how individual’s behaviors self-organize into a group synergy. Ecological dynamics explanations of team behaviors can transit beyond mere ratification of sport performance, providing a comprehensive conceptual framework to guide the implementation of diagnostic measures by sport scientists, sport psychologists and performance analysts. Complex adaptive systems, synergies, group

  3. Team Synergies in Sport: Theory and Measures.

    PubMed

    Araújo, Duarte; Davids, Keith

    2016-01-01

    Individual players act as a coherent unit during team sports performance, forming a team synergy. A synergy is a collective property of a task-specific organization of individuals, such that the degrees of freedom of each individual in the system are coupled, enabling the degrees of freedom of different individuals to co-regulate each other. Here, we present an explanation for the emergence of such collective behaviors, indicating how these can be assessed and understood through the measurement of key system properties that exist, considering the contribution of each individual and beyond These include: to (i) dimensional compression, a process resulting in independent degree of freedom being coupled so that the synergy has fewer degrees of freedom than the set of components from which it arises; (ii) reciprocal compensation, if one element do not produce its function, other elements should display changes in their contributions so that task goals are still attained; (iii) interpersonal linkages, the specific contribution of each element to a group task; and (iv), degeneracy, structurally different components performing a similar, but not necessarily identical, function with respect to context. A primary goal of our analysis is to highlight the principles and tools required to understand coherent and dynamic team behaviors, as well as the performance conditions that make such team synergies possible, through perceptual attunement to shared affordances in individual performers. A key conclusion is that teams can be trained to perceive how to use and share specific affordances, explaining how individual's behaviors self-organize into a group synergy. Ecological dynamics explanations of team behaviors can transit beyond mere ratification of sport performance, providing a comprehensive conceptual framework to guide the implementation of diagnostic measures by sport scientists, sport psychologists and performance analysts. Complex adaptive systems, synergies, group

  4. Cortex Integrity Relevance in Muscle Synergies in Severe Chronic Stroke

    PubMed Central

    García-Cossio, Eliana; Broetz, Doris; Birbaumer, Niels; Ramos-Murguialday, Ander

    2014-01-01

    Background: Recent experimental evidence has indicated that the motor system coordinates muscle activations through a linear combination of muscle synergies that are specified at the spinal or brainstem networks level. After stroke upper limb impairment is characterized by abnormal patterns of muscle activations or synergies. Objective: This study aimed at characterizing the muscle synergies in severely affected chronic stroke patients. Furthermore, the influence of integrity of the sensorimotor cortex on synergy modularity and its relation with motor impairment was evaluated. Methods: Surface electromyography from 33 severely impaired chronic stroke patients was recorded during 6 bilateral movements. Muscle synergies were extracted and synergy patterns were correlated with motor impairment scales. Results: Muscle synergies extracted revealed different physiological patterns dependent on the preservation of the sensorimotor cortex. Patients without intact sensorimotor cortex showed a high preservation of muscle synergies. On the contrary, patients with intact sensorimotor cortex showed poorer muscle synergies preservation and an increase in new generated synergies. Furthermore, the preservation of muscle synergies correlated positively with hand functionality in patients with intact sensorimotor cortex and subcortical lesions only. Conclusion: Our results indicate that severely paralyzed chronic stroke patient with intact sensorimotor cortex might sculpt new synergy patterns as a response to maladaptive compensatory strategies. PMID:25294998

  5. Project SYNERGY: Software Support for Underprepared Students. Year Four Report.

    ERIC Educational Resources Information Center

    Miami-Dade Community Coll., FL. Div. of Educational Technologies.

    With funds from the International Business Machines (IBM) Corporation, Project SYNERGY was launched in January 1990 to address the problem of students deficient in basic skills entering colleges. Project SYNERGY I focused on reviewing and compiling a list of useful instructional software for basic skills remediation; Project SYNERGY II focused on…

  6. Shared muscle synergies in human walking and cycling.

    PubMed

    Barroso, Filipe O; Torricelli, Diego; Moreno, Juan C; Taylor, Julian; Gomez-Soriano, Julio; Bravo-Esteban, Elisabeth; Piazza, Stefano; Santos, Cristina; Pons, José L

    2014-10-15

    The motor system may rely on a modular organization (muscle synergies activated in time) to execute different tasks. We investigated the common control features of walking and cycling in healthy humans from the perspective of muscle synergies. Three hypotheses were tested: 1) muscle synergies extracted from walking trials are similar to those extracted during cycling; 2) muscle synergies extracted from one of these motor tasks can be used to mathematically reconstruct the electromyographic (EMG) patterns of the other task; 3) muscle synergies of cycling can result from merging synergies of walking. A secondary objective was to identify the speed (and cadence) at which higher similarities emerged. EMG activity from eight muscles of the dominant leg was recorded in eight healthy subjects during walking and cycling at four matched cadences. A factorization technique [nonnegative matrix factorization (NNMF)] was applied to extract individual muscle synergy vectors and the respective activation coefficients behind the global muscular activity of each condition. Results corroborated hypotheses 2 and 3, showing that 1) four synergies from walking and cycling can successfully explain most of the EMG variability of cycling and walking, respectively, and 2) two of four synergies from walking appear to merge together to reconstruct one individual synergy of cycling, with best reconstruction values found for higher speeds. Direct comparison of the muscle synergy vectors of walking and the muscle synergy vectors of cycling (hypothesis 1) produced moderated values of similarity. This study provides supporting evidence for the hypothesis that cycling and walking share common neuromuscular mechanisms.

  7. IT Portfolio Selection and IT Synergy

    ERIC Educational Resources Information Center

    Cho, Woo Je

    2010-01-01

    This dissertation consists of three chapters. The primary objectives of this dissertation are: (1) to provide a methodological framework of IT (Information Technology) portfolio management, and (2) to identify the effect of IT synergy on IT portfolio selection of a firm. The first chapter presents a methodological framework for IT project…

  8. IT Portfolio Selection and IT Synergy

    ERIC Educational Resources Information Center

    Cho, Woo Je

    2010-01-01

    This dissertation consists of three chapters. The primary objectives of this dissertation are: (1) to provide a methodological framework of IT (Information Technology) portfolio management, and (2) to identify the effect of IT synergy on IT portfolio selection of a firm. The first chapter presents a methodological framework for IT project…

  9. Exploring Synergy between Classic Mutagens and Antibiotics To Examine Mechanisms of Synergy and Antibiotic Action

    PubMed Central

    Song, Lisa Yun; D'Souza, Sara; Lam, Karen; Kang, Tina Manzhu

    2015-01-01

    We used classical mutagens in Gram-negative Escherichia coli to study synergies with different classes of antibiotics, test models of antibiotic mechanisms of action, and examine the basis of synergy. We used 4-nitroquinoline 1-oxide (4NQO), zebularine (ZEB), 5-azacytidine (5AZ), 2-aminopurine (2AP), and 5-bromodeoxyuridine (5BrdU) as mutagens (with bactericidal potency of 4NQO > ZEB > 5AZ > 2AP > 5BrdU) and vancomycin (VAN), ciprofloxacin (CPR), trimethoprim (TMP), gentamicin (GEN), tetracycline (TET), erythromycin (ERY), and chloramphenicol (CHL) as antibiotics. We detected the strongest synergies with 4NQO, an agent that oxidizes guanines and ultimately results in double-strand breaks when paired with the bactericidal antibiotics VAN, TMP, CPR, and GEN, but no synergies with the bacteriostatic antibiotics TET, ERY, and CHL. Each of the other mutagens displays synergies with the bactericidal antibiotics to various degrees that reflect their potencies, as well as with some of the other mutagens. The results support recent models showing that bactericidal antibiotics kill bacteria principally by ultimately generating more double-strand breaks than can be repaired. We discuss the synergies seen here and elsewhere as representing dose effects of not the proximal target damage but rather the ultimate resulting double-strand breaks. We also used the results of pairwise tests to place the classic mutagens into functional antibacterial categories within a previously defined drug interaction network. PMID:26711761

  10. Exploring Synergy between Classic Mutagens and Antibiotics To Examine Mechanisms of Synergy and Antibiotic Action.

    PubMed

    Song, Lisa Yun; D'Souza, Sara; Lam, Karen; Kang, Tina Manzhu; Yeh, Pamela; Miller, Jeffrey H

    2015-12-28

    We used classical mutagens in Gram-negative Escherichia coli to study synergies with different classes of antibiotics, test models of antibiotic mechanisms of action, and examine the basis of synergy. We used 4-nitroquinoline 1-oxide (4NQO), zebularine (ZEB), 5-azacytidine (5AZ), 2-aminopurine (2AP), and 5-bromodeoxyuridine (5BrdU) as mutagens (with bactericidal potency of 4NQO > ZEB > 5AZ > 2AP > 5BrdU) and vancomycin (VAN), ciprofloxacin (CPR), trimethoprim (TMP), gentamicin (GEN), tetracycline (TET), erythromycin (ERY), and chloramphenicol (CHL) as antibiotics. We detected the strongest synergies with 4NQO, an agent that oxidizes guanines and ultimately results in double-strand breaks when paired with the bactericidal antibiotics VAN, TMP, CPR, and GEN, but no synergies with the bacteriostatic antibiotics TET, ERY, and CHL. Each of the other mutagens displays synergies with the bactericidal antibiotics to various degrees that reflect their potencies, as well as with some of the other mutagens. The results support recent models showing that bactericidal antibiotics kill bacteria principally by ultimately generating more double-strand breaks than can be repaired. We discuss the synergies seen here and elsewhere as representing dose effects of not the proximal target damage but rather the ultimate resulting double-strand breaks. We also used the results of pairwise tests to place the classic mutagens into functional antibacterial categories within a previously defined drug interaction network.

  11. Consistency of muscle synergies during pedaling across different mechanical constraints.

    PubMed

    Hug, François; Turpin, Nicolas A; Couturier, Antoine; Dorel, Sylvain

    2011-07-01

    The purpose of the present study was to determine whether muscle synergies are constrained by changes in the mechanics of pedaling. The decomposition algorithm used to identify muscle synergies was based on two components: "muscle synergy vectors," which represent the relative weighting of each muscle within each synergy, and "synergy activation coefficients," which represent the relative contribution of muscle synergy to the overall muscle activity pattern. We hypothesized that muscle synergy vectors would remain fixed but that synergy activation coefficients could vary, resulting in observed variations in individual electromyographic (EMG) patterns. Eleven cyclists were tested during a submaximal pedaling exercise and five all-out sprints. The effects of torque, maximal torque-velocity combination, and posture were studied. First, muscle synergies were extracted from each pedaling exercise independently using non-negative matrix factorization. Then, to cross-validate the results, muscle synergies were extracted from the entire data pooled across all conditions, and muscle synergy vectors extracted from the submaximal exercise were used to reconstruct EMG patterns of the five all-out sprints. Whatever the mechanical constraints, three muscle synergies accounted for the majority of variability [mean variance accounted for (VAF) = 93.3 ± 1.6%, VAF (muscle) > 82.5%] in the EMG signals of 11 lower limb muscles. In addition, there was a robust consistency in the muscle synergy vectors. This high similarity in the composition of the three extracted synergies was accompanied by slight adaptations in their activation coefficients in response to extreme changes in torque and posture. Thus, our results support the hypothesis that these muscle synergies reflect a neural control strategy, with only a few timing adjustments in their activation regarding the mechanical constraints.

  12. Combining activated carbon adsorption with heterogeneous photocatalytic oxidation: Lack of synergy for biologically treated greywater and tetraethylene glycol dimethyl ether

    PubMed Central

    Gulyas, Holger; Argáez, Ángel Santiago Oria; Kong, Fanzhuo; Jorge, Carlos Liriano; Eggers, Susanne; Otterpohl, Ralf

    2013-01-01

    The aim of the study was to evaluate whether the addition of activated carbon in the photocatalytic oxidation of biologically pretreated greywater and of a polar aliphatic compound gives synergy, as previously demonstrated with phenol. Photocatalytic oxidation kinetics were recorded with fivefold concentrated biologically pretreated greywater and with aqueous tetraethylene glycol dimethyl ether solutions using a UV lamp and the photocatalyst TiO2 P25 in the presence and the absence of powdered activated carbon. The synergy factor, SF, was quantified as the ratio of photocatalytic oxidation rate constant in the presence of powdered activated carbon to the rate constant without activated carbon. No synergy was observed for the greywater concentrate (SF ≈ 1). For the aliphatic compound, tetraethylene glycol dimethyl ether, addition of activated carbon actually had an inhibiting effect on photocatalysis (SF < 1), while synergy was confirmed in reference experiments using aqueous phenol solutions. The absence of synergy for the greywater concentrate can be explained by low adsorbability of its organic constituents by activated carbon. Inhibition of the photocatalytic oxidation of tetraethylene glycol dimethyl ether by addition of powdered activated carbon was attributed to shading of the photocatalyst by the activated carbon particles. It was assumed that synergy in the hybrid process was limited to aromatic organics. Regardless of the lack of synergy in the case of biologically pretreated greywater, the addition of powdered activated carbon is advantageous since, due to additional adsorptive removal of organics, photocatalytic oxidation resulted in a 60% lower organic concentration when activated carbon was present after the same UV irradiation time. PMID:24191472

  13. Combining activated carbon adsorption with heterogeneous photocatalytic oxidation: lack of synergy for biologically treated greywater and tetraethylene glycol dimethyl ether.

    PubMed

    Gulyas, Holger; Argáez, Angel Santiago Oria; Kong, Fanzhuo; Jorge, Carlos Liriano; Eggers, Susanne; Otterpohl, Ralf

    2013-01-01

    The aim of the study was to evaluate whether the addition of activated carbon in the photocatalytic oxidation of biologically pretreated greywater and of a polar aliphatic compound gives synergy, as previously demonstrated with phenol. Photocatalytic oxidation kinetics were recorded with fivefold concentrated biologically pretreated greywater and with aqueous tetraethylene glycol dimethyl ether solutions using a UV lamp and the photocatalyst TiO2 P25 in the presence and the absence of powdered activated carbon. The synergy factor, SF, was quantified as the ratio of photocatalytic oxidation rate constant in the presence of powdered activated carbon to the rate constant without activated carbon. No synergy was observed for the greywater concentrate (SF approximately 1). For the aliphatic compound, tetraethylene glycol dimethyl ether, addition of activated carbon actually had an inhibiting effect on photocatalysis (SF < 1), while synergy was confirmed in reference experiments using aqueous phenol solutions. The absence of synergy for the greywater concentrate can be explained by low adsorbability of its organic constituents by activated carbon. Inhibition of the photocatalytic oxidation of tetraethylene glycol dimethyl ether by addition of powdered activated carbon was attributed to shading of the photocatalyst by the activated carbon particles. It was assumed that synergy in the hybrid process was limited to aromatic organics. Regardless of the lack of synergy in the case of biologically pretreated greywater, the addition of powdered activated carbon is advantageous since, due to additional adsorptive removal of organics, photocatalytic oxidation resulted in a 60% lower organic concentration when activated carbon was present after the same UV irradiation time.

  14. Dietary antioxidant synergy in chemical and biological systems.

    PubMed

    Wang, Sunan; Zhu, Fan

    2017-07-24

    Antioxidant (AOX) synergies have been much reported in chemical ("test-tube" based assays focusing on pure chemicals), biological (tissue culture, animal and clinical models), and food systems during the past decade. Tentative synergies differ from each other due to the composition of AOX and the quantification methods. Regeneration mechanism responsible for synergy in chemical systems has been discussed. Solvent effects could contribute to the artifacts of synergy observed in the chemical models. Synergy in chemical models may hardly be relevant to biological systems that have been much less studied. Apparent discrepancies exist in understanding the molecular mechanisms in both chemical and biological systems. This review discusses diverse variables associated with AOX synergy and molecular scenarios for explanation. Future research to better utilize the synergy is suggested.

  15. Motor synergies and the equilibrium-point hypothesis.

    PubMed

    Latash, Mark L

    2010-07-01

    The article offers a way to unite three recent developments in the field of motor control and coordination: (1) The notion of synergies is introduced based on the principle of motor abundance; (2) The uncontrolled manifold hypothesis is described as offering a computational framework to identify and quantify synergies; and (3) The equilibrium-point hypothesis is described for a single muscle, single joint, and multijoint systems. Merging these concepts into a single coherent scheme requires focusing on control variables rather than performance variables. The principle of minimal final action is formulated as the guiding principle within the referent configuration hypothesis. Motor actions are associated with setting two types of variables by a controller, those that ultimately define average performance patterns and those that define associated synergies. Predictions of the suggested scheme are reviewed, such as the phenomenon of anticipatory synergy adjustments, quick actions without changes in synergies, atypical synergies, and changes in synergies with practice. A few models are briefly reviewed.

  16. Synergy between penicillin and gentamicin against enterococci.

    PubMed

    Winstanley, T G; Hastings, J G

    1990-04-01

    The role of active uptake in aminoglycoside activity against penicillin-treated enterococci was studied by viable counts and ATP determinations. Penicillin and gentamicin gave synergistic bactericidal and post-antibiotic effects (PAEs) which were partially reduced by sodium azide, an electron transport inhibitor, and totally blocked in the presence of both sodium azide and EDTA, which chelates divalent cations. EDTA and gentamicin showed marked synergy in both 'killing curve' and PAE experiments. This synergy was completely inhibited by sodium azide. The data indicate that the activity of gentamicin against enterococci that have been damaged by penicillin or EDTA is energy-dependent. This is consistent with present theories of gentamicin uptake via transportation drive by a protonmotive force.

  17. Polymicrobial synergy and dysbiosis in inflammatory disease

    PubMed Central

    Lamont, Richard J.; Hajishengallis, George

    2014-01-01

    Uncontrolled inflammation of the periodontal area may arise when complex microbial communities transition from a commensal to a pathogenic entity. Communication among constituent species leads to polymicrobial synergy among metabolically compatible organisms that acquire functional specialization within the developing community. Keystone pathogens, even at low abundance, elevate community virulence and the resulting dysbiotic community targets specific aspects of host immunity to further disable immune surveillance while promoting an overall inflammatory response. Inflammophilic organisms benefit from proteinaceous substrates derived from inflammatory tissue breakdown. Inflammation and dysbiosis reinforce each other and the escalating environmental changes further select for a pathobiotic community. We have synthesized the polymicrobial synergy and dysbiotic components of the process into a new model for inflammatory diseases. PMID:25498392

  18. Polymicrobial synergy and dysbiosis in inflammatory disease.

    PubMed

    Lamont, Richard J; Hajishengallis, George

    2015-03-01

    Uncontrolled inflammation of the periodontal area may arise when complex microbial communities transition from a commensal to a pathogenic entity. Communication among constituent species leads to polymicrobial synergy between metabolically compatible organisms that acquire functional specialization within the developing community. Keystone pathogens, even at low abundance, elevate community virulence, and the resulting dysbiotic community targets specific aspects of host immunity to further disable immune surveillance while promoting an overall inflammatory response. Inflammophilic organisms benefit from proteinaceous substrates derived from inflammatory tissue breakdown. Inflammation and dysbiosis reinforce each other, and the escalating environmental changes further select for a pathobiotic community. We have synthesized the polymicrobial synergy and dysbiotic components of the process into a new model for inflammatory diseases.

  19. A Synergy Cropland of China by Fusing Multiple Existing Maps and Statistics.

    PubMed

    Lu, Miao; Wu, Wenbin; You, Liangzhi; Chen, Di; Zhang, Li; Yang, Peng; Tang, Huajun

    2017-07-12

    Accurate information on cropland extent is critical for scientific research and resource management. Several cropland products from remotely sensed datasets are available. Nevertheless, significant inconsistency exists among these products and the cropland areas estimated from these products differ considerably from statistics. In this study, we propose a hierarchical optimization synergy approach (HOSA) to develop a hybrid cropland map of China, circa 2010, by fusing five existing cropland products, i.e., GlobeLand30, Climate Change Initiative Land Cover (CCI-LC), GlobCover 2009, MODIS Collection 5 (MODIS C5), and MODIS Cropland, and sub-national statistics of cropland area. HOSA simplifies the widely used method of score assignment into two steps, including determination of optimal agreement level and identification of the best product combination. The accuracy assessment indicates that the synergy map has higher accuracy of spatial locations and better consistency with statistics than the five existing datasets individually. This suggests that the synergy approach can improve the accuracy of cropland mapping and enhance consistency with statistics.

  20. Leveraging synergy for multiple agent infotaxis

    SciTech Connect

    Gintautas, Vadas; Hagberg, Aric A; Bettencourt, Luis M A

    2008-01-01

    Social computation, whether in the form of a search performed by a swarm of agents or the predictions of markets, often supplies remarkably good solutions to complex problems, which often elude the best experts. There is an intuition, built upon many anecdotal examples, that pervading principles are at play that allow individuals trying to solve a problem locally to aggregate their information to arrive at an outcome superior than any available to isolated parties. Here we show that the general structure of this problem can be cast in terms of information theory and derive general mathematical conditions for information sharing and coordination that lead to optimal multi-agent searches. Specifically we illustrate the problem in terms of the construction of local search algorithms for autonomous agents looking for the spatial location of a stochastic source. We explore the types of search problems -defined in terms of the properties of the source and the nature of measurements at each sensor -for which coordination among multiple searchers yields an advantage beyond that gained by having the same number of independent searchers. We assert that effective coordination corresponds to synergy and that ineffective coordination corresponds to redundancy as defined using information theory. We classify explicit types of sources in terms of their potential for synergy. We show that sources that emit uncorrelated particles based on a Poisson process, provide no opportunity for synergetic coordination while others, particularly sources that emit correlated signals, do allow for strong synergy between searchers. These general considerations are crucial for designing optimal algorithms for particular search problems in real world settings.

  1. Synergy Spells Success: Engineering an Education System with Synergy as the Primary Component.

    ERIC Educational Resources Information Center

    Mirchandani, Dilip

    2002-01-01

    Details a three-pronged approach to education used in the preschool through secondary level at St. John's School in India: developing students' human resources potential, introducing students to emerging technologies, and making conventional education interesting and meaningful. Describes the use of synergy meetings in which staff learn to know…

  2. Biomimetic microstructures for photonic and fluidic synergies

    NASA Astrophysics Data System (ADS)

    Vasileiou, Maria; Mpatzaka, Theodora; Alexandropoulos, Dimitris; Vainos, Nikolaos A.

    2017-08-01

    Nature-inspired micro- and nano-structures offer a unique platform for the development of novel synergetic systems combining photonic and microfluidic functionalities. In this context, we examine the paradigm of butterfly Vanessa cardui and develop artificial diffractive microstructures inspired by its natural designs. Softlithographic and nanoimprint protocols are developed to replicate surfaces of natural specimens. Further to their optical behavior, interphases tailored by such microstructures exhibit enhanced hydrophobic properties, as compared to their planar counterparts made of the same materials. Such synergies exploited by new design approaches pave the way to prospective optofluidic, lab-on-chip and sensing applications.

  3. The synergy model: the ultimate mentoring model.

    PubMed

    Kerfoot, Karlene M; Cox, Marilyn

    2005-06-01

    Clarian Health Partners is a system that includes Methodist Hospital of Indiana, Indiana University Hospital, and Riley Hospital for Children. The nurses of Clarian Health Partners are the recipients of many national awards for their leadership and innovations in critical care. Nurse leaders at Clarian have developed and implemented a unique framework for professional development based on the synergy model. In this article, the Chief Nurse Executive for the System, Dr. Karlene Kerfoot, and Marilyn Cox, the Senior Vice President for Nursing and Patient Care at Riley Hospital for Children, describe their vision of and strategies for a new approach to mentoring professional nursing staff.

  4. Influence of intermittency and synergy on grasping.

    PubMed

    Neilson, P D

    1999-07-01

    The commentary firstly supports Smeets and Brenner in their choice of a kinematic trajectory, submitting that the challenge posed by the rival torque-change formulation is resolved by consideration of intermittency in human movement control. Second, it examines the choice of optimization criterion for trajectory planning, arguing in favor of minimum acceleration rather than minimum jerk. Third, using the notion of optimized trajectories in task-dependent coordinate space together with synergy generation, it suggests a formulation that reduces the processing load entailed in Smeets and Brenner's proposal of individual trajectories for each digit.

  5. Toward a new theory of motor synergies.

    PubMed

    Latash, Mark L; Scholz, John P; Schöner, Gregor

    2007-07-01

    Driven by recent empirical studies, we offer a new understanding of the degrees of freedom problem, and propose a refined concept of synergy as a neural organization that ensures a one-to-many mapping of variables providing for both stability of important performance variables and flexibility of motor patterns to deal with possible perturbations and/or secondary tasks. Empirical evidence is reviewed, including a discussion of the operationalization of stability/flexibility through the method of the uncontrolled manifold. We show how this concept establishes links between the various accounts for how movement is organized in redundant effector systems.

  6. Neurosurgery, "neurospine," and neuroscience: a vital synergy?

    PubMed

    Nowitzke, Adrian

    2008-10-01

    A fundamental dilemma that faces both neurosurgery in general and the subspecialty field of spine surgery is the question of whether those who trained in the former and now work in the latter should maintain their links with their origins and remain under the broader umbrella of neurosurgery, or whether they should develop their own organizational structure and identity separate from organized neurosurgery. This challenge raises many questions with respect to future potential for growth and development, professional identity, and collegiality. This paper is an edited version of an invited speech to the 2007 Annual Meeting of the Joint Section on Disorders of the Spine and Peripheral Nerves. It uses the concept of synergy to review relevant history and explore possible future options for neurosurgery, neurospine, and neuroscience. An example from medical politics is used to illustrate the importance of perspective in approaching these questions, and examples of current therapeutic cutting-edge endeavors highlight the need for team-based behavior that takes a broad view. The premise of the paper is that while individual and specialty aspirations need to be acknowledged, considered, and managed, the results from truly working together will be greater than the sum of the individual efforts-synergy.

  7. Does Synergy Exist in Nursing? A Concept Analysis.

    PubMed

    Witges, Kim A; Scanlan, Judith M

    2015-01-01

    The aim is to analyze the concept of synergy, particularly as the concept applies to teamwork, and determine if the concept has utility in improving the work environment for nurses. Tackling nursing shortages that result from a poor work environment is a priority for many nurse leaders. Producing synergy among teams may be an effective strategy in enhancing the work environment. However, the understanding of synergy and the ability to produce synergy among teams has been seldom highlighted or discussed within nursing literature. Walker and Avant's approach was used to guide this concept analysis of synergy. Literature searches involved databases (PsycInfo, Medline, Cumulative Index for Nursing and Allied Health Literature [CINAHL], and Scopus), Internet search engines (Google), and hand searches. The analysis suggests that synergy is an outcome of the successful collaboration of the following three attributes: group cohesion, the pursuit of a common goal, and the achievement of a positive gain, considerably more than what was thought possible by the group. The foundation for this accomplishment requires an underlying feeling of special importance, the acknowledgment of each member's role, and open communication and dialogue among members. Nursing leaders would benefit from a broader understanding of synergy, and the mindful application and utility of synergy as an outcome of effective teamwork among nurses. © 2014 Wiley Periodicals, Inc.

  8. Hierarchical and multiple hand action representation using temporal postural synergies.

    PubMed

    Tessitore, G; Sinigaglia, C; Prevete, R

    2013-03-01

    The notion of synergy enables one to provide simplified descriptions of hand actions. It has been used in a number of different meanings ranging from kinematic and dynamic synergies to postural and temporal postural synergies. However, relatively little is known about how representing an action by synergies might take into account the possibility to have a hierarchical and multiple action representation. This is a key aspect for action representation as it has been characterized by action theorists and cognitive neuroscientists. Thus, the aim of the present paper is to investigate whether and to what extent a hierarchical and multiple action representation can be obtained by a synergy approach. To this purpose, we took advantage of representing hand action as a linear combination of temporal postural synergies (TPSs), but on the assumption that TPSs have a tree-structured organization. In a tree-structured organization, a hand action representation can involve a TPS only if the ancestors of the synergy in the tree are themselves involved in the action representation. The results showed that this organization is enough to force a multiple representation of hand actions in terms of synergies which are hierarchically organized.

  9. Influence of locomotion speed on biomechanical subtask and muscle synergy.

    PubMed

    Gui, Kai; Zhang, Dingguo

    2016-10-01

    This paper investigates the relationship of biomechanical subtasks, and muscle synergies with various locomotion speeds. Ground reaction force (GRF) of eight healthy subjects is measured synchronously by force plates of treadmill at five different speeds ranging from 0.5m/s to 1.5m/s. Four basic biomechanical subtasks, body support, propulsion, swing, and heel strike preparation, are identified according to GRF. Meanwhile, electromyography (EMG) data, used to extract muscle synergies, are collected from lower limb muscles. EMG signals are segmented periodically based on GRF with the heel strike as the split points. Variability accounted for (VAF) is applied to determine the number of muscle synergies. We find that four muscle synergies can be extracted in all five situations by non-negative matrix factorization (NMF). Furthermore, the four muscle synergies and biomechanical subtasks keep invariant as the walking speed changes.

  10. Muscle synergy analysis in children with cerebral palsy

    NASA Astrophysics Data System (ADS)

    Tang, Lu; Li, Fei; Cao, Shuai; Zhang, Xu; Wu, De; Chen, Xiang

    2015-08-01

    Objective. To explore the mechanism of lower extremity dysfunction of cerebral palsy (CP) children through muscle synergy analysis. Approach. Twelve CP children were involved in this study, ten adults (AD) and eight typically developed (TD) children were recruited as a control group. Surface electromyographic (sEMG) signals were collected bilaterally from eight lower limb muscles of the subjects during forward walking at a comfortable speed. A nonnegative matrix factorization algorithm was used to extract muscle synergies. In view of muscle synergy differences in number, structure and symmetry, a model named synergy comprehensive assessment (SCA) was proposed to quantify the abnormality of muscle synergies. Main results. There existed larger variations between the muscle synergies of the CP group and the AD group in contrast with the TD group. Fewer mature synergies were recruited in the CP group, and many abnormal synergies specific to the CP group appeared. Specifically, CP children were found to recruit muscle synergies with a larger difference in structure and symmetry between two legs of one subject and different subjects. The proposed SCA scale demonstrated its great potential to quantitatively assess the lower-limb motor dysfunction of CP children. SCA scores of the CP group (57.00 ± 16.78) were found to be significantly less (p < 0.01) than that of the control group (AD group: 95.74 ± 2.04; TD group: 84.19 ± 11.76). Significance. The innovative quantitative results of this study can help us to better understand muscle synergy abnormality in CP children, which is related to their motor dysfunction and even the physiological change in their nervous system.

  11. Representation of Muscle Synergies in the Primate Brain

    PubMed Central

    d'Avella, Andrea; Roh, Jinsook; Carmena, Jose M.; Bizzi, Emilio

    2015-01-01

    Evidence suggests that the CNS uses motor primitives to simplify movement control, but whether it actually stores primitives instead of computing solutions on the fly to satisfy task demands is a controversial and still-unanswered possibility. Also in contention is whether these primitives take the form of time-invariant muscle coactivations (“spatial” synergies) or time-varying muscle commands (“spatiotemporal” synergies). Here, we examined forelimb muscle patterns and motor cortical spiking data in rhesus macaques (Macaca mulatta) handling objects of variable shape and size. From these data, we extracted both spatiotemporal and spatial synergies using non-negative decomposition. Each spatiotemporal synergy represents a sequence of muscular or neural activations that appeared to recur frequently during the animals' behavior. Key features of the spatiotemporal synergies (including their dimensionality, timing, and amplitude modulation) were independently observed in the muscular and neural data. In addition, both at the muscular and neural levels, these spatiotemporal synergies could be readily reconstructed as sequential activations of spatial synergies (a subset of those extracted independently from the task data), suggestive of a hierarchical relationship between the two levels of synergies. The possibility that motor cortex may execute even complex skill using spatiotemporal synergies has novel implications for the design of neuroprosthetic devices, which could gain computational efficiency by adopting the discrete and low-dimensional control that these primitives imply. SIGNIFICANCE STATEMENT We studied the motor cortical and forearm muscular activity of rhesus macaques (Macaca mulatta) as they reached, grasped, and carried objects of varied shape and size. We applied non-negative matrix factorization separately to the cortical and muscular data to reduce their dimensionality to a smaller set of time-varying “spatiotemporal” synergies. Each synergy

  12. NCDs: can healthy synergies replace fatal interactions?

    PubMed

    2013-07-01

    A growing global movement argues for health to take center stage in the post-2015 sustainable human development agenda, building on the Millennium Development Goals and improving measurement of outcomes and equity. Considered key is the urgent need to effectively stem chronic noncommunicable diseases (NCDs). The reasoning is straightforward and yet addresses the interactive complexities of NCD impact and the potential synergies to reduce it: NCDs constitute the most important, if until recently neglected, pandemic of our era. They accounted for over 65% of global deaths and 54% of the global disease burden in 2010.[1,2] Such a negative "contribution" -including the sequelae of disability and alarming costs of treatment for multimorbidities associated with aging populations worldwide-jeopardizes sustainable human development.

  13. Motor Synergies and the Equilibrium-Point Hypothesis

    PubMed Central

    Latash, Mark L.

    2010-01-01

    The article offers a way to unite three recent developments in the field of motor control and coordination: (1) The notion of synergies is introduced based on the principle of motor abundance; (2) The uncontrolled manifold hypothesis is described as offering a computational framework to identify and quantify synergies; and (3) The equilibrium-point hypothesis is described for a single muscle, single joint, and multi-joint systems. Merging these concepts into a single coherent scheme requires focusing on control variables rather than performance variables. The principle of minimal final action is formulated as the guiding principle within the referent configuration hypothesis. Motor actions are associated with setting two types of variables by a controller, those that ultimately define average performance patterns and those that define associated synergies. Predictions of the suggested scheme are reviewed, such as the phenomenon of anticipatory synergy adjustments, quick actions without changes in synergies, atypical synergies, and changes in synergies with practice. A few models are briefly reviewed. PMID:20702893

  14. Synergy as a rationale for phage therapy using phage cocktails

    PubMed Central

    Schmerer, Matthew; Molineux, Ian J.

    2014-01-01

    Where phages are used to treat bacterial contaminations and infections, multiple phages are typically applied at once as a cocktail. When two or more phages in the cocktail attack the same bacterium, the combination may produce better killing than any single phage (synergy) or the combination may be worse than the best single phage (interference). Synergy is of obvious utility, especially if it can be predicted a priori, but it remains poorly documented with few examples known. This study addresses synergy in which one phage improves adsorption by a second phage. It first presents evidence of synergy from an experimental system of two phages and a mucoid E. coli host. The synergy likely stems from a tailspike enzyme produced by one of the phages. We then offer mathematical models and simulations to understand the dynamics of synergy and the enhanced magnitude of bacterial control possible. The models and observations complement each other and suggest that synergy may be of widespread utility and may be predictable from easily observed phenotypes. PMID:25279269

  15. Functional muscle synergies constrain force production during postural tasks.

    PubMed

    McKay, J Lucas; Ting, Lena H

    2008-01-01

    We recently demonstrated that a set of five functional muscle synergies were sufficient to characterize both hindlimb muscle activity and active forces during automatic postural responses in cats standing at multiple postural configurations. This characterization depended critically upon the assumption that the endpoint force vector (synergy force vector) produced by the activation of each muscle synergy rotated with the limb axis as the hindlimb posture varied in the sagittal plane. Here, we used a detailed, 3D static model of the hindlimb to confirm that this assumption is biomechanically plausible: as we varied the model posture, simulated synergy force vectors rotated monotonically with the limb axis in the parasagittal plane (r2=0.94+/-0.08). We then tested whether a neural strategy of using these five functional muscle synergies provides the same force-generating capability as controlling each of the 31 muscles individually. We compared feasible force sets (FFSs) from the model with and without a muscle synergy organization. FFS volumes were significantly reduced with the muscle synergy organization (F=1556.01, p<0.01), and as posture varied, the synergy-limited FFSs changed in shape, consistent with changes in experimentally measured active forces. In contrast, nominal FFS shapes were invariant with posture, reinforcing prior findings that postural forces cannot be predicted by hindlimb biomechanics alone. We propose that an internal model for postural force generation may coordinate functional muscle synergies that are invariant in intrinsic limb coordinates, and this reduced-dimension control scheme reduces the set of forces available for postural control.

  16. Developing a scale to measure synergy in health promotion partnerships.

    PubMed

    Jones, Jacky; Barry, Margaret M

    2011-06-01

    Synergy is the degree to which a partnership combines the assets of all the partners in the search for better solutions and is generally regarded as the product of a partnership including vertical integration, shared know-how and shared resources. There has been very little research on the determinants and measurement of synergy in health promotion partnerships. This study was designed to describe how synergy is conceptualized in health promotion partnerships and to develop a synergy measurement tool. Five focus groups were organized with 36 health promotion partners in order to explore how synergy is conceptualized in their partnerships. Participants represented health, community, education, arts, sports and youth sectors. Focus groups were recorded and transcribed verbatim. A content analysis was carried out on the transcripts using counting and data reduction techniques. An item pool was generated from these findings and an eight-item five-point scale was developed called the Jones synergy scale. This scale was incorporated into an overall questionnaire on partnership functioning which was posted to 469 partners in 40 health promotion partnerships. A response rate of 72% was achieved for the postal survey (n = 337). The Jones synergy scale was subjected to reliability and validity tests. Cronbach's alpha was 0.91. Corrected item-total correlations ranged from 0.6 to 0.7 with a Cronbach's alpha if item deleted of 0.9 for all items. Principal components analysis (PCA) was the chosen factor analysis method. One component was extracted explaining 62% of the variance. Coefficients ranged from 0.83 to 0.70 with an initial eigenvalue of 4.94. The scale was subjected to item-convergent, item-discriminant and concurrent validity tests. All items correlated more strongly with their own scale than with any other scales used in the questionnaire. The Jones synergy scale was highly correlated (0.73, P < 0.01) with an existing synergy scale.

  17. Generational Differences in Work-Family Conflict and Synergy

    PubMed Central

    Beutell, Nicholas J.

    2013-01-01

    This paper examines differences in work-family conflict and synergy among the four generational groups represented in the contemporary workforce: Generation Y Generation X, Baby Boomers, and Matures using data from the 2008 National Study of the Changing Workforce (n = 3,502). Significant generational differences were found for work-family conflict (work interfering with family and family interfering with work) but not for work-family synergy. Mental health and job pressure were the best predictors of work interfering with family conflict for each generational group. Work-family synergy presented a more complex picture. Work-family conflict and synergy were significantly related to job, marital, and life satisfaction. Implications and directions for future research are discussed. PMID:23783221

  18. Generational differences in work-family conflict and synergy.

    PubMed

    Beutell, Nicholas J

    2013-06-19

    This paper examines differences in work-family conflict and synergy among the four generational groups represented in the contemporary workforce: Generation Y Generation X, Baby Boomers, and Matures using data from the 2008 National Study of the Changing Workforce (n = 3,502). Significant generational differences were found for work-family conflict (work interfering with family and family interfering with work) but not for work-family synergy. Mental health and job pressure were the best predictors of work interfering with family conflict for each generational group. Work-family synergy presented a more complex picture. Work-family conflict and synergy were significantly related to job, marital, and life satisfaction. Implications and directions for future research are discussed.

  19. Food synergies for improving bioavailability of micronutrients from plant foods.

    PubMed

    Nair, K Madhavan; Augustine, Little Flower

    2018-01-01

    Plant foods are endowed with micronutrients but an understanding of bioavailability is essential in countries primarily dependent on plant based foods. Bioavailability depends majorly on food synergies. This review examines the nature of certain food synergies and methods to screen and establish it as a strategy to control micronutrient deficiency in the populations. Strong evidence on the synergistic effect of inclusion of vitamin C rich fruits and non-vegetarian foods in enhancing the bioavailability of iron has been demonstrated. Fat is found to be synergistic for vitamin A absorption. Red wine and protein have been explored for zinc absorption and effect of fat has been studied for vitamin D. Methods for screening of bioavailability, and biomarkers to demonstrate the synergistic effects of foods are required. Translation of food synergy as a strategy requires adaptation to the context and popularization of intelligent food synergies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Brain Connectivity Associated with Muscle Synergies in Humans

    PubMed Central

    Rana, Manku; Yani, Moheb S.; Asavasopon, Skulpan; Fisher, Beth E.

    2015-01-01

    The human brain is believed to simplify the control of the large number of muscles in the body by flexibly combining muscle coordination patterns, termed muscle synergies. However, the neural connectivity allowing the human brain to access and coordinate muscle synergies to accomplish functional tasks remains unknown. Here, we use a surprising pair of synergists in humans, the flexor hallucis longus (FHL, a toe flexor) and the anal sphincter, as a model that we show to be well suited in elucidating the neural connectivity underlying muscle synergy control. First, using electromyographic recordings, we demonstrate that voluntary FHL contraction is associated with synergistic anal sphincter contraction, but voluntary anal sphincter contraction occurs without FHL contraction. Second, using fMRI, we show that two important medial wall motor cortical regions emerge in relation to these tasks: one located more posteriorly that preferentially activates during voluntary FHL contraction and one located more anteriorly that activates during both voluntary FHL contraction as well as voluntary anal sphincter contraction. Third, using transcranial magnetic stimulation, we demonstrate that the anterior region is more likely to generate anal sphincter contraction than FHL contraction. Finally, using a repository resting-state fMRI dataset, we demonstrate that the anterior and posterior motor cortical regions have significantly different functional connectivity with distinct and distant brain regions. We conclude that specific motor cortical regions in humans provide access to different muscle synergies, which may allow distinct brain networks to coordinate muscle synergies during functional tasks. SIGNIFICANCE STATEMENT How the human nervous system coordinates activity in a large number of muscles is a fundamental question. The brain and spinal cord are believed to simplify the control of muscles by grouping them into functional units called muscle synergies. Motor cortex is

  1. Brain Connectivity Associated with Muscle Synergies in Humans.

    PubMed

    Rana, Manku; Yani, Moheb S; Asavasopon, Skulpan; Fisher, Beth E; Kutch, Jason J

    2015-11-04

    The human brain is believed to simplify the control of the large number of muscles in the body by flexibly combining muscle coordination patterns, termed muscle synergies. However, the neural connectivity allowing the human brain to access and coordinate muscle synergies to accomplish functional tasks remains unknown. Here, we use a surprising pair of synergists in humans, the flexor hallucis longus (FHL, a toe flexor) and the anal sphincter, as a model that we show to be well suited in elucidating the neural connectivity underlying muscle synergy control. First, using electromyographic recordings, we demonstrate that voluntary FHL contraction is associated with synergistic anal sphincter contraction, but voluntary anal sphincter contraction occurs without FHL contraction. Second, using fMRI, we show that two important medial wall motor cortical regions emerge in relation to these tasks: one located more posteriorly that preferentially activates during voluntary FHL contraction and one located more anteriorly that activates during both voluntary FHL contraction as well as voluntary anal sphincter contraction. Third, using transcranial magnetic stimulation, we demonstrate that the anterior region is more likely to generate anal sphincter contraction than FHL contraction. Finally, using a repository resting-state fMRI dataset, we demonstrate that the anterior and posterior motor cortical regions have significantly different functional connectivity with distinct and distant brain regions. We conclude that specific motor cortical regions in humans provide access to different muscle synergies, which may allow distinct brain networks to coordinate muscle synergies during functional tasks. How the human nervous system coordinates activity in a large number of muscles is a fundamental question. The brain and spinal cord are believed to simplify the control of muscles by grouping them into functional units called muscle synergies. Motor cortex is involved in activating

  2. Do muscle synergies reduce the dimensionality of behavior?

    PubMed

    Kuppuswamy, Naveen; Harris, Christopher M

    2014-01-01

    The muscle synergy hypothesis is an archetype of the notion of Dimensionality Reduction (DR) occurring in the central nervous system due to modular organization. Toward validating this hypothesis, it is important to understand if muscle synergies can reduce the state-space dimensionality while maintaining task control. In this paper we present a scheme for investigating this reduction utilizing the temporal muscle synergy formulation. Our approach is based on the observation that constraining the control input to a weighted combination of temporal muscle synergies also constrains the dynamic behavior of a system in a trajectory-specific manner. We compute this constrained reformulation of system dynamics and then use the method of system balancing for quantifying the DR; we term this approach as Trajectory Specific Dimensionality Analysis (TSDA). We then investigate the consequence of minimization of the dimensionality for a given task. These methods are tested in simulations on a linear (tethered mass) and a non-linear (compliant kinematic chain) system. Dimensionality of various reaching trajectories is compared when using idealized temporal synergies. We show that as a consequence of this Minimum Dimensional Control (MDC) model, smooth straight-line Cartesian trajectories with bell-shaped velocity profiles emerged as the optima for the reaching task. We also investigated the effect on dimensionality due to adding via-points to a trajectory. The results indicate that a trajectory and synergy basis specific DR of behavior results from muscle synergy control. The implications of these results for the synergy hypothesis, optimal motor control, motor development, and robotics are discussed.

  3. Do muscle synergies reduce the dimensionality of behavior?

    PubMed Central

    Kuppuswamy, Naveen; Harris, Christopher M.

    2014-01-01

    The muscle synergy hypothesis is an archetype of the notion of Dimensionality Reduction (DR) occurring in the central nervous system due to modular organization. Toward validating this hypothesis, it is important to understand if muscle synergies can reduce the state-space dimensionality while maintaining task control. In this paper we present a scheme for investigating this reduction utilizing the temporal muscle synergy formulation. Our approach is based on the observation that constraining the control input to a weighted combination of temporal muscle synergies also constrains the dynamic behavior of a system in a trajectory-specific manner. We compute this constrained reformulation of system dynamics and then use the method of system balancing for quantifying the DR; we term this approach as Trajectory Specific Dimensionality Analysis (TSDA). We then investigate the consequence of minimization of the dimensionality for a given task. These methods are tested in simulations on a linear (tethered mass) and a non-linear (compliant kinematic chain) system. Dimensionality of various reaching trajectories is compared when using idealized temporal synergies. We show that as a consequence of this Minimum Dimensional Control (MDC) model, smooth straight-line Cartesian trajectories with bell-shaped velocity profiles emerged as the optima for the reaching task. We also investigated the effect on dimensionality due to adding via-points to a trajectory. The results indicate that a trajectory and synergy basis specific DR of behavior results from muscle synergy control. The implications of these results for the synergy hypothesis, optimal motor control, motor development, and robotics are discussed. PMID:25002844

  4. Synergy optimization and operation management on syndicate complementary knowledge cooperation

    NASA Astrophysics Data System (ADS)

    Tu, Kai-Jan

    2014-10-01

    The number of multi enterprises knowledge cooperation has grown steadily, as a result of global innovation competitions. I have conducted research based on optimization and operation studies in this article, and gained the conclusion that synergy management is effective means to break through various management barriers and solve cooperation's chaotic systems. Enterprises must communicate system vision and access complementary knowledge. These are crucial considerations for enterprises to exert their optimization and operation knowledge cooperation synergy to meet global marketing challenges.

  5. Similarity of different lifting techniques in trunk muscular synergies.

    PubMed

    Mirakhorlo, Mojtaba; Azghani, Mahmood Reza

    2015-01-01

    Lifting is known to be a major reason for musculoskeletal injuries. In this way, lifting has a crucial effect on human musculoskeletal system and intensity of this impact depends slightly on the selection of techniques. Underlying mechanisms by which trunk muscles are executed during performing lifting are central to biomechanical study of lifting techniques. In the current study, the trunk muscular control mechanisms of lifting are investigated using the synergetic control analysis. Non-negative matrix factorization has been used to extract trunk muscles synergies from their activities - which are computed by a previously validated musculoskeletal model - during different lifting techniques aimed to investigate motor control strategies. Three lifting techniques are considered; stoop, squat and semi-squat. Three synergies account for variety among muscle activation of trunk muscles with related VAF (Variability Account For) of over 95%. Trunk muscle synergy weightings and related time-varying coefficients are calculated for each kind of lifting techniques considering three synergies. Paired correlation coefficients between muscle synergies are all greater than 0.91 (P < 0.05) suggesting that trunk muscle synergies are similar for examined techniques in spite of their kinematic diversity. This similarity can be a result of their common ultimate goal. The acquired results also elucidate the mechanisms of muscle activation patterns that can be exploited in future studies and ergonomic interventions.

  6. Synergies with CTA and VHE Astrophysics

    NASA Astrophysics Data System (ADS)

    Hofmann, W.

    2016-06-01

    The Cherenkov Telescope Array (CTA) is a next-generation observatory for very high energy (VHE) gamma-ray astronomy. With one array of imaging atmospheric Cherenkov telescopes each in the northern and southern hemispheres, CTA will provide full-sky coverage, enhance flux sensitivity by one order of magnitude compared to current instruments, cover gamma-ray energies from 20 GeV to 300 TeV, and provide angular resolution of a few arc-minutes across a multi-degree field of view. In the context of its Key Science Projects (KSPs), CTA will conduct a census of particle acceleration in the universe, with quarter-sky extragalactic, full-plane Galactic and Large Magellanic Cloud surveys planned. Additional KSPs are focused on transients, acceleration up to PeV energies in our own galaxy, active galaxies, star-forming systems on a wide range of scales, and the Perseus cluster of galaxies. A major element of the programme is the search for dark matter, in particular the annihilation signature of WIMPs. Like for current-generation VHE instruments, CTA science will strongly rely upon multiwavelength observations of sources, with the X-ray domain playing a particularly crucial role. The presentation will briefly introduce CTA, summarize its science perspectives, and address the synergies with instruments in other wavebands.

  7. The synergy between speech production and perception

    NASA Astrophysics Data System (ADS)

    Ru, Powen; Chi, Taishih; Shamma, Shihab

    2003-01-01

    Speech intelligibility is known to be relatively unaffected by certain deformations of the acoustic spectrum. These include translations, stretching or contracting dilations, and shearing of the spectrum (represented along the logarithmic frequency axis). It is argued here that such robustness reflects a synergy between vocal production and auditory perception. Thus, on the one hand, it is shown that these spectral distortions are produced by common and unavoidable variations among different speakers pertaining to the length, cross-sectional profile, and losses of their vocal tracts. On the other hand, it is argued that these spectral changes leave the auditory cortical representation of the spectrum largely unchanged except for translations along one of its representational axes. These assertions are supported by analyses of production and perception models. On the production side, a simplified sinusoidal model of the vocal tract is developed which analytically relates a few ``articulatory'' parameters, such as the extent and location of the vocal tract constriction, to the spectral peaks of the acoustic spectra synthesized from it. The model is evaluated by comparing the identification of synthesized sustained vowels to labeled natural vowels extracted from the TIMIT corpus. On the perception side a ``multiscale'' model of sound processing is utilized to elucidate the effects of the deformations on the representation of the acoustic spectrum in the primary auditory cortex. Finally, the implications of these results for the perception of generally identifiable classes of sound sources beyond the specific case of speech and the vocal tract are discussed.

  8. Global mental health and neuroscience: potential synergies.

    PubMed

    Stein, Dan J; He, Yanling; Phillips, Anthony; Sahakian, Barbara J; Williams, John; Patel, Vikram

    2015-02-01

    Global mental health has emerged as an important specialty. It has drawn attention to the burden of mental illness and to the relative gap in mental health research and services around the world. Global mental health has raised the question of whether this gap is a developmental issue, a health issue, a human rights issue, or a combination of these issues-and it has raised awareness of the need to develop new approaches for building capacity, mobilising resources, and closing the research and treatment gap. Translational neuroscience has also advanced. It comprises an important conceptual approach to understanding the neurocircuitry and molecular basis of mental disorders, to rethinking how best to undertake research on the aetiology, assessment, and treatment of these disorders, with the ultimate aim to develop entirely new approaches to prevention and intervention. Some apparent contrasts exist between these fields; global mental health emphasises knowledge translation, moving away from the bedside to a focus on health systems, whereas translational neuroscience emphasises molecular neuroscience, focusing on transitions between the bench and bedside. Meanwhile, important opportunities exist for synergy between the two paradigms, to ensure that present opportunities in mental health research and services are maximised. Here, we review the approaches of global mental health and clinical neuroscience to diagnosis, pathogenesis, and intervention, and make recommendations for facilitating an integration of these two perspectives.

  9. Prehension synergies and control with referent hand configurations

    PubMed Central

    Friedman, Jason; Kim, Sun Wook; Feldman, Anatol G.; Zatsiorsky, Vladimir M.

    2010-01-01

    We used the framework of the equilibrium-point hypothesis (in its updated form based on the notion of referent configuration) to investigate the multi-digit synergies at two levels of a hypothetical hierarchy involved in prehensile actions. Synergies were analyzed at the thumb–virtual finger (VF) level (VF is an imaginary digit with the mechanical action equivalent to that of the four actual fingers) and at the individual finger level. The subjects performed very quick vertical movements of a handle into a target. A load could be attached off-center to provide a pronation or supination torque. In a few trials, the handle was unexpectedly fixed to the table and the digits slipped off the sensors. In such trials, the hand stopped at a higher vertical position and rotated into pronation or supination depending on the expected torque. The aperture showed non-monotonic changes with a large, fast decrease and further increase, ending up with a smaller distance between the thumb and the fingers as compared to unperturbed trials. Multi-digit synergies were quantified using indices of co-variation between digit forces and moments of force across unperturbed trials. Prior to the lifting action, high synergy indices were observed at the individual finger level while modest indices were observed at the thumb–VF level. During the lifting action, the synergies at the individual finger level disappeared while the synergy indices became higher at the thumb–VF level. The results support the basic premise that, within a given task, setting a referent configuration may be described with a few referent values of variables that influence the equilibrium state, to which the system is attracted. Moreover, the referent configuration hypothesis can help interpret the data related to the trade-off between synergies at different hierarchical levels. PMID:20033397

  10. PHYTOREMEDIATION OF INORGANICS: REALISM AND SYNERGIES.

    PubMed

    Dickinson, Nicholas M; Baker, Alan J M; Doronila, Augustine; Laidlaw, Scott; Reeves, Roger D

    2009-02-01

    There are very few practical demonstrations of the phytoextraction of metals and metalloids from soils and sediments beyond small-scale and short-term trials. The two approaches used have been based on using 1) hyperaccumulator species, such as Thlaspi caerulescens (Pb, Zn, Cd, Ni), Alyssum spp. (Ni, Co), and Pteris vittata (As) or 2) fast-growing plants, such as Salix and Populus spp. that accumulate above-average concentrations of only a smaller number of the more mobile trace elements (Cd, Zn, B). Until we have advanced much more along the pathway of genetic isolation and transfer of hyperaccumulator traits into productive plants, there is a high risk in marketing either approach as a technology or stand-alone solution to clean up contaminated land. There are particular uncertainties over the longer-term effectiveness of phytoextraction and associated environmental issues. Marginally contaminated agricultural soils provide the most likely land use where phytoextraction can be used as a polishing technology. An alternative and more useful practical approach in many situations currently would be to give more attention to crops selected for phytoexclusion: selecting crops that do not translocate high concentrations of metals to edible parts. Soils of brownfield, urban, and industrial areas provide a large-scale opportunity to use phytoremediation, but the focus here should be on the more realistic possibilities of risk-managed phytostabilization and monitored natural attenuation. We argue that the wider practical applications of phytoremediation are too often overlooked. There is huge scope for cross-cutting other environmental agenda, with synergies that involve the recovery and provision of services from degraded landscapes and contaminated soils. An additional focus on biomass energy, improved biodiversity, watershed management, soil protection, carbon sequestration, and improved soil health is required for the justification and advancement of phytotechnologies.

  11. Radiologic and Near-Infrared/Optical Spectroscopic Imaging: Where Is the Synergy?

    PubMed Central

    Pogue, Brian W.; Leblond, Frederic; Krishnaswamy, Venkataramanan; Paulsen, Keith D.

    2010-01-01

    OBJECTIVE Optical and radiologic imaging are commonly used in preclinical research, and research into combined instruments for human applications is showing promise. The purpose of this article is to outline the fundamental limitations and advantages and to review the available systems. The emerging developments and future potential will be summarized. CONCLUSION Integration of hybrid systems is now routine at the preclinical level and appears in the form of specialized packages in which performance varies considerably. The synergy is commonly focused on using spatial localization from radiographs to provide structural data for spectroscopy; however, applications also exist in which the spectroscopy informs the use of radiologic imaging. Examples of clinical systems under research and development are shown. PMID:20651186

  12. Explosive spreading on complex networks: The role of synergy

    NASA Astrophysics Data System (ADS)

    Liu, Quan-Hui; Wang, Wei; Tang, Ming; Zhou, Tao; Lai, Ying-Cheng

    2017-04-01

    In spite of the vast literature on spreading dynamics on complex networks, the role of local synergy, i.e., the interaction of elements that when combined produce a total effect greater than the sum of the individual elements, has been studied but only for irreversible spreading dynamics. Reversible spreading dynamics are ubiquitous but their interplay with synergy has remained unknown. To fill this knowledge gap, we articulate a model to incorporate local synergistic effect into the classical susceptible-infected-susceptible process, in which the probability for a susceptible node to become infected through an infected neighbor is enhanced when the neighborhood of the latter contains a number of infected nodes. We derive master equations incorporating the synergistic effect, with predictions that agree well with the numerical results. A striking finding is that when a parameter characterizing the strength of the synergy reinforcement effect is above a critical value, the steady-state density of the infected nodes versus the basic transmission rate exhibits an explosively increasing behavior and a hysteresis loop emerges. In fact, increasing the synergy strength can promote the spreading and reduce the invasion and persistence thresholds of the hysteresis loop. A physical understanding of the synergy promoting explosive spreading and the associated hysteresis behavior can be obtained through a mean-field analysis.

  13. Bioinspired Hybrid White Light-Emitting Diodes.

    PubMed

    Weber, Michael D; Niklaus, Lukas; Pröschel, Marlene; Coto, Pedro B; Sonnewald, Uwe; Costa, Rubén D

    2015-10-07

    The first bioinspired hybrid white-light-emitting diodes (bio-HLEDs) featuring protein cascade coatings are presented. For easy fabrication a new strategy to stabilize proteins in rubber-like material was developed. The synergy between the excellent features of fluorescent proteins and the easily processed rubber produces bio-HLEDs with less than 10% loss in luminous efficiency over 100 hours. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Space and Terrestrial Photovoltaics: Synergy and Diversity

    NASA Astrophysics Data System (ADS)

    Bailey, Sheila; Raffaelle, Ryne; Emery, Keith

    2002-10-01

    A historical view of the research and development in photovoltaics from the perspective of both the terrestrial and the space communities is presented from the early days through the '70s and '80s and the '90s and beyond. The synergy of both communities in the beginning and once again in the present and hopefully future are highlighted, with examples of the important features in each program. The space community which was impressed by the light-weight and reliability of photovoltaics drove much of the early development. Even up to today, nearly every satellites and other scientific space probe that has been launched has included some solar power. However, since the cost of these power systems were only a small fraction of the satellite and launch cost, the use of much of this technology for the terrestrial marketplace was not feasible. It was clear that the focus of the terrestrial community would be best served by reducing costs. This would include addressing a variety of manufacturing issues and raising the rate of production. Success in these programs and a resulting globalization of effort resulted in major strides in the reduction of PV module costs and increased production. Although, the space community derived benefit from some of these advancements, its focus was on pushing the envelope with regard to cell efficiency. The gap between theoretical efficiencies and experimental efficiencies for silicon, gallium arsenide and indium phosphide became almost non-existent. Recent work by both communities have focused on the development thin film cells of amorphous silicon, CuInSe2 and CdTe. These cells hold the promise of lower costs for the terrestrial community as well as possible flexible substrates, better radiation resistance, and higher specific power for the space community. It is predicted that future trends in both communities will be directed toward advances through the application of nanotechnology. A picture is emerging in which the space and

  15. Space and Terrestrial Photovoltaics: Synergy and Diversity

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Raffaelle, Ryne; Emery, Keith

    2002-01-01

    A historical view of the research and development in photovoltaics from the perspective of both the terrestrial and the space communities is presented from the early days through the '70s and '80s and the '90s and beyond. The synergy of both communities in the beginning and once again in the present and hopefully future are highlighted, with examples of the important features in each program. The space community which was impressed by the light-weight and reliability of photovoltaics drove much of the early development. Even up to today, nearly every satellites and other scientific space probe that has been launched has included some solar power. However, since the cost of these power systems were only a small fraction of the satellite and launch cost, the use of much of this technology for the terrestrial marketplace was not feasible. It was clear that the focus of the terrestrial community would be best served by reducing costs. This would include addressing a variety of manufacturing issues and raising the rate of production. Success in these programs and a resulting globalization of effort resulted in major strides in the reduction of PV module costs and increased production. Although, the space community derived benefit from some of these advancements, its focus was on pushing the envelope with regard to cell efficiency. The gap between theoretical efficiencies and experimental efficiencies for silicon, gallium arsenide and indium phosphide became almost non-existent. Recent work by both communities have focused on the development thin film cells of amorphous silicon, CuInSe2 and CdTe. These cells hold the promise of lower costs for the terrestrial community as well as possible flexible substrates, better radiation resistance, and higher specific power for the space community. It is predicted that future trends in both communities will be directed toward advances through the application of nanotechnology. A picture is emerging in which the space and

  16. Resource synergy in stream periphyton communities

    SciTech Connect

    Hill, Walter; Fanta, S.E.; Roberts, Brian J; Francoeur, Steven N.

    2011-03-01

    1. Light and nutrients play pivotal roles in determining the growth of autotrophs, yet the potential for synergistic interactions between the two resources in algal communities is poorly understood, especially in stream ecosystems. In this study, light and phosphorus were manipulated in large experimental streams to examine resource colimitation and synergy in stream periphyton. 2. Whole-stream metabolism was simultaneously limited by light and phosphorus. Increasing the supply of either light or phosphorus resulted in significant increases in primary production and the transformation of the streams from heterotrophy to autotrophy. 3. Resource-driven changes in periphyton community structure occurred in concert with changes in production. Algal assemblages in highly shaded streams were composed primarily of small diatoms such as Achnanthidium minutissima, whereas larger diatoms such as Melosira varians predominated at higher irradiances. Phosphorus enrichment had relatively little effect on assemblage structure, but it did substantially diminish the abundance of Meridion circulare, a diatom whose mucilaginous colonies were conspicuously abundant in phosphorus-poor, high-light streams. Bacterial biomass declined relative to algal biomass with increases in primary productivity, regardless of whether the increases were caused by light or phosphorus. 4. Synergistic effects on primary production appeared to occur because the availability of one resource facilitated the utilization of the other. Light increased the abundance of large diatoms, which are known to convert high concentrations of nutrients into primary production more effectively than smaller taxa. Phosphorus enrichment led to the replacement of Meridion circulare by non-mucilaginous taxa in phosphorus-enriched streams, and we hypothesize that this change enabled more efficient use of light in photosynthesis. Higher ratios of chlorophyll a : biomass in phosphorus-enriched streams may have also led to more

  17. Synergy and Anti-Synergy between Palladium and Gold in Nanoparticles Dispersed on a Reducible Support.

    PubMed

    Carter, James H; Althahban, Sultan; Nowicka, Ewa; Freakley, Simon J; Morgan, David J; Shah, Parag M; Golunski, Stanislaw; Kiely, Christopher J; Hutchings, Graham J

    2016-10-07

    Highly active and stable bimetallic Au-Pd catalysts have been extensively studied for several liquid-phase oxidation reactions in recent years, but there are far fewer reports on the use of these catalysts for low-temperature gas-phase reactions. Here we initially established the presence of a synergistic effect in a range of bimetallic Au-Pd/CeZrO4 catalysts, by measuring their activity for selective oxidation of benzyl alcohol. The catalysts were then evaluated for low-temperature WGS, CO oxidation, and formic acid decomposition, all of which are believed to be mechanistically related. A strong anti-synergy between Au and Pd was observed for these reactions, whereby the introduction of Pd to a monometallic Au catalyst resulted in a significant decrease in catalytic activity. Furthermore, monometallic Pd was more active than Pd-rich bimetallic catalysts. The nature of the anti-synergy was probed by several ex situ techniques, which all indicated a growth in metal nanoparticle size with Pd addition. However, the most definitive information was provided by in situ CO-DRIFTS, in which CO adsorption associated with interfacial sites was found to vary with the molar ratio of the metals and could be correlated with the catalytic activity of each reaction. As a similar correlation was observed between activity and the presence of Au(0)* (as detected by XPS), it is proposed that peripheral Au(0)* species form part of the active centers in the most active catalysts for the three gas-phase reactions. In contrast, the active sites for the selective oxidation of benzyl alcohol are generally thought to be electronically modified gold atoms at the surface of the nanoparticles.

  18. Synergy and Anti-Synergy between Palladium and Gold in Nanoparticles Dispersed on a Reducible Support

    PubMed Central

    2016-01-01

    Highly active and stable bimetallic Au–Pd catalysts have been extensively studied for several liquid-phase oxidation reactions in recent years, but there are far fewer reports on the use of these catalysts for low-temperature gas-phase reactions. Here we initially established the presence of a synergistic effect in a range of bimetallic Au–Pd/CeZrO4 catalysts, by measuring their activity for selective oxidation of benzyl alcohol. The catalysts were then evaluated for low-temperature WGS, CO oxidation, and formic acid decomposition, all of which are believed to be mechanistically related. A strong anti-synergy between Au and Pd was observed for these reactions, whereby the introduction of Pd to a monometallic Au catalyst resulted in a significant decrease in catalytic activity. Furthermore, monometallic Pd was more active than Pd-rich bimetallic catalysts. The nature of the anti-synergy was probed by several ex situ techniques, which all indicated a growth in metal nanoparticle size with Pd addition. However, the most definitive information was provided by in situ CO-DRIFTS, in which CO adsorption associated with interfacial sites was found to vary with the molar ratio of the metals and could be correlated with the catalytic activity of each reaction. As a similar correlation was observed between activity and the presence of Au0* (as detected by XPS), it is proposed that peripheral Au0* species form part of the active centers in the most active catalysts for the three gas-phase reactions. In contrast, the active sites for the selective oxidation of benzyl alcohol are generally thought to be electronically modified gold atoms at the surface of the nanoparticles. PMID:27990317

  19. Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings

    SciTech Connect

    Ruth, M.; Antkowiak, M.; Gossett, S.

    2011-12-01

    Two of the major challenges the U.S. energy sector faces are greenhouse gas emissions and oil that is both imported and potentially reaching a peak (the point at which maximum extraction is reached). Interest in development of both renewable and nuclear energy has been strong because both have potential for overcoming these challenges. Research in both energy sources is ongoing, but relatively little research has focused on the potential benefits of combining nuclear and renewable energy. In September 2011, the Joint Institute for Strategic Energy Analysis (JISEA) convened the Nuclear and Renewable Energy Synergies Workshop at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to identify potential synergies and strategic leveraging opportunities between nuclear energy and renewable energy. Industry, government, and academic thought leaders gathered to identify potential broad categories of synergies and brainstorm topic areas for additional analysis and research and development (R&D). This report records the proceedings and outcomes of the workshop.

  20. Understanding Human Motion Skill with Peak Timing Synergy

    NASA Astrophysics Data System (ADS)

    Ueno, Ken; Furukawa, Koichi

    The careful observation of motion phenomena is important in understanding the skillful human motion. However, this is a difficult task due to the complexities in timing when dealing with the skilful control of anatomical structures. To investigate the dexterity of human motion, we decided to concentrate on timing with respect to motion, and we have proposed a method to extract the peak timing synergy from multivariate motion data. The peak timing synergy is defined as a frequent ordered graph with time stamps, which has nodes consisting of turning points in motion waveforms. A proposed algorithm, PRESTO automatically extracts the peak timing synergy. PRESTO comprises the following 3 processes: (1) detecting peak sequences with polygonal approximation; (2) generating peak-event sequences; and (3) finding frequent peak-event sequences using a sequential pattern mining method, generalized sequential patterns (GSP). Here, we measured right arm motion during the task of cello bowing and prepared a data set of the right shoulder and arm motion. We successfully extracted the peak timing synergy on cello bowing data set using the PRESTO algorithm, which consisted of common skills among cellists and personal skill differences. To evaluate the sequential pattern mining algorithm GSP in PRESTO, we compared the peak timing synergy by using GSP algorithm and the one by using filtering by reciprocal voting (FRV) algorithm as a non time-series method. We found that the support is 95 - 100% in GSP, while 83 - 96% in FRV and that the results by GSP are better than the one by FRV in the reproducibility of human motion. Therefore we show that sequential pattern mining approach is more effective to extract the peak timing synergy than non-time series analysis approach.

  1. Unravelling novel synergies between organometallic and biological partners: a quantum mechanics/molecular mechanics study of an artificial metalloenzyme.

    PubMed

    Ortega-Carrasco, Elisabeth; Lledós, Agustí; Maréchal, Jean-Didier

    2014-07-06

    In recent years, the design of artificial metalloenzymes obtained by the insertion of homogeneous catalysts into biological macromolecules has become a major field of research. These hybrids, and the corresponding X-ray structures of several of them, are offering opportunities to better understand the synergy between organometallic and biological subsystems. In this work, we investigate the resting state and activation process of a hybrid inspired by an oxidative haemoenzyme but presenting an unexpected reactivity and structural features. An extensive series of quantum mechanics/molecular mechanics calculations show that the resting state and the activation processes of the novel enzyme differ from naturally occurring haemoenzymes in terms of the electronic state of the metal, participation of the first coordination sphere of the metal and the dynamic process. This study presents novel insights into the sensitivity of the association between organometallic and biological partners and illustrates the molecular challenge that represents the design of efficient enzymes based on this strategy.

  2. Unravelling novel synergies between organometallic and biological partners: a quantum mechanics/molecular mechanics study of an artificial metalloenzyme

    PubMed Central

    Ortega-Carrasco, Elisabeth; Lledós, Agustí; Maréchal, Jean-Didier

    2014-01-01

    In recent years, the design of artificial metalloenzymes obtained by the insertion of homogeneous catalysts into biological macromolecules has become a major field of research. These hybrids, and the corresponding X-ray structures of several of them, are offering opportunities to better understand the synergy between organometallic and biological subsystems. In this work, we investigate the resting state and activation process of a hybrid inspired by an oxidative haemoenzyme but presenting an unexpected reactivity and structural features. An extensive series of quantum mechanics/molecular mechanics calculations show that the resting state and the activation processes of the novel enzyme differ from naturally occurring haemoenzymes in terms of the electronic state of the metal, participation of the first coordination sphere of the metal and the dynamic process. This study presents novel insights into the sensitivity of the association between organometallic and biological partners and illustrates the molecular challenge that represents the design of efficient enzymes based on this strategy. PMID:24829279

  3. Spontaneous resolution of polyoxometalate-based inorganic-organic hybrids driven by solvent and common ion.

    PubMed

    Zhang, Jiangwei; Zhao, Zhenlin; Zhang, Jin; She, Shan; Huang, Yichao; Wei, Yongge

    2014-12-14

    Three single-sided, triol-functionalized Anderson POM hybrids were successfully synthesized. With suitable solvents and the effect driven by common-ion synergy, enantiopure crystals were obtained when the spontaneous resolution of enantiomers occurred upon crystallization. The chirality of POM-organic hybrids was confirmed by single-crystal X-ray diffraction and solid-state CD spectrum. A reversible, spontaneous resolution process for POM-based inorganic-organic hybrids was observed in this work.

  4. Building Synergy: The Power of High Performance Work Systems.

    ERIC Educational Resources Information Center

    Gephart, Martha A.; Van Buren, Mark E.

    1996-01-01

    Suggests that high-performance work systems create the synergy that lets companies gain and keep a competitive advantage. Identifies the components of high-performance work systems and critical action steps for implementation. Describes the results companies such as Xerox, Lever Brothers, and Corning Incorporated have achieved by using them. (JOW)

  5. Learning Motor Synergies by Persons with Down Syndrome

    ERIC Educational Resources Information Center

    Latash, M. L.

    2007-01-01

    Persons with Down syndrome are frequently described as "clumsy". The recent progress in the development of quantitative approaches to motor synergies has allowed researchers to move towards an understanding of "clumsiness" at the level of underlying control mechanisms. This progress has also offered an opportunity to quantify changes in motor…

  6. Practice effects on intra-team synergies in football teams.

    PubMed

    Silva, Pedro; Chung, Dante; Carvalho, Thiago; Cardoso, Tiago; Davids, Keith; Araújo, Duarte; Garganta, Júlio

    2016-04-01

    Developing synchronised player movements for fluent competitive match play is a common goal for coaches of team games. An ecological dynamics approach advocates that intra-team synchronization is governed by locally created information, which specifies shared affordances responsible for synergy formation. To verify this claim we evaluated coordination tendencies in two newly-formed teams of recreational players during association football practice games, weekly, for fifteen weeks (thirteen matches). We investigated practice effects on two central features of synergies in sports teams - dimensional compression and reciprocal compensation here captured through near in-phase modes of coordination and time delays between coupled players during forward and backwards movements on field while attacking and defending. Results verified that synergies were formed and dissolved rapidly as a result of the dynamic creation of informational properties, perceived as shared affordances among performers. Practising once a week led to small improvements in the readjustment delays between co-positioning team members, enabling faster regulation of coordinated team actions. Mean values of the number of player and team synergies displayed only limited improvements, possibly due to the timescales of practice. No relationship between improvements in dimensional compression and reciprocal compensation were found for number of shots, amount of ball possession and number of ball recoveries made. Findings open up new perspectives for monitoring team coordination processes in sport.

  7. Building Synergy: The Power of High Performance Work Systems.

    ERIC Educational Resources Information Center

    Gephart, Martha A.; Van Buren, Mark E.

    1996-01-01

    Suggests that high-performance work systems create the synergy that lets companies gain and keep a competitive advantage. Identifies the components of high-performance work systems and critical action steps for implementation. Describes the results companies such as Xerox, Lever Brothers, and Corning Incorporated have achieved by using them. (JOW)

  8. Project SYNERGY: Software Support for Underprepared Students. Year Two Report.

    ERIC Educational Resources Information Center

    Miami-Dade Community Coll., FL. Div. of Educational Technologies.

    With funds from the International Business Machines (IBM) Corporation, Project SYNERGY was launched in January 1990 to address the problem of students entering colleges underprepared in basic skills and to make use of the tremendous potential for significant remediation through computers. Twenty-two institutions in the United States and Canada,…

  9. Peace Education, ESD and the Earth Charter: Interconnections and Synergies

    ERIC Educational Resources Information Center

    Toh, Swee-Hin; Cawagas, Virginia Floresca

    2010-01-01

    This article provides a review of how the values and principles of the Earth Charter initiative relate to two specific innovative movements of educational transformation, namely peace education and education for sustainable development (ESD). The interconnections and synergies between these movements and the Earth Charter are highlighted.…

  10. Project SYNERGY: Software Support for Underprepared Students. Software Implementation Report.

    ERIC Educational Resources Information Center

    Anandam, Kamala; And Others

    Miami-Dade Community College's (MDCC's) implementation and assessment of computer software as a part of Project SYNERGY, a multi-institutional project funded by the International Business Machines (IBM) Corporation designed to seek technological solutions for helping students underprepared in reading, writing and mathematics, is described in this…

  11. Project SYNERGY: Software Support for Underprepared Students. Year Two Report.

    ERIC Educational Resources Information Center

    Miami-Dade Community Coll., FL. Div. of Educational Technologies.

    With funds from the International Business Machines (IBM) Corporation, Project SYNERGY was launched in January 1990 to address the problem of students entering colleges underprepared in basic skills and to make use of the tremendous potential for significant remediation through computers. Twenty-two institutions in the United States and Canada,…

  12. syNErgy: A Case Study in Workforce Curriculum Development

    ERIC Educational Resources Information Center

    Killingsworth, John; Grosskopf, Kevin R.

    2013-01-01

    With high unemployment and structural changes to industry, workforce development in the United States is a growing concern. Many semiskilled workers lack knowledge, skills, and abilities to be competitive for reemployment to green jobs. Nebraska's syNErgy research grant was introduced to address the training needs of unemployed and underemployed…

  13. Peace Education, ESD and the Earth Charter: Interconnections and Synergies

    ERIC Educational Resources Information Center

    Toh, Swee-Hin; Cawagas, Virginia Floresca

    2010-01-01

    This article provides a review of how the values and principles of the Earth Charter initiative relate to two specific innovative movements of educational transformation, namely peace education and education for sustainable development (ESD). The interconnections and synergies between these movements and the Earth Charter are highlighted.…

  14. Academic Entrepreneurship and Traditional Academic Duties: Synergy or Rivalry?

    ERIC Educational Resources Information Center

    De Silva, Muthu

    2016-01-01

    This study investigates the influence of academic entrepreneurship on traditional academic duties carried out in a resource-constrained environment, particularly focusing on whether there is synergy or rivalry between these two activities. Using qualitative evidence, we discover that there are funding, resource, knowledge and skill and networking…

  15. Academic Entrepreneurship and Traditional Academic Duties: Synergy or Rivalry?

    ERIC Educational Resources Information Center

    De Silva, Muthu

    2016-01-01

    This study investigates the influence of academic entrepreneurship on traditional academic duties carried out in a resource-constrained environment, particularly focusing on whether there is synergy or rivalry between these two activities. Using qualitative evidence, we discover that there are funding, resource, knowledge and skill and networking…

  16. syNErgy: A Case Study in Workforce Curriculum Development

    ERIC Educational Resources Information Center

    Killingsworth, John; Grosskopf, Kevin R.

    2013-01-01

    With high unemployment and structural changes to industry, workforce development in the United States is a growing concern. Many semiskilled workers lack knowledge, skills, and abilities to be competitive for reemployment to green jobs. Nebraska's syNErgy research grant was introduced to address the training needs of unemployed and underemployed…

  17. Candidates for Synergies: Linear Discriminants versus Principal Components

    PubMed Central

    Vinjamuri, Ramana; Patel, Vrajeshri; Powell, Michael; Mao, Zhi-Hong; Crone, Nathan

    2014-01-01

    Movement primitives or synergies have been extracted from human hand movements using several matrix factorization, dimensionality reduction, and classification methods. Principal component analysis (PCA) is widely used to obtain the first few significant eigenvectors of covariance that explain most of the variance of the data. Linear discriminant analysis (LDA) is also used as a supervised learning method to classify the hand postures corresponding to the objects grasped. Synergies obtained using PCA are principal component vectors aligned with dominant variances. On the other hand, synergies obtained using LDA are linear discriminant vectors that separate the groups of variances. In this paper, time varying kinematic synergies in the human hand grasping movements were extracted using these two diametrically opposite methods and were evaluated in reconstructing natural and American sign language (ASL) postural movements. We used an unsupervised LDA (ULDA) to extract linear discriminants. The results suggest that PCA outperformed LDA. The uniqueness, advantages, and disadvantages of each of these methods in representing high-dimensional hand movements in reduced dimensions were discussed. PMID:25143763

  18. A novel computational framework for deducing muscle synergies from experimental joint moments

    PubMed Central

    Gopalakrishnan, Anantharaman; Modenese, Luca; Phillips, Andrew T. M.

    2014-01-01

    Prior experimental studies have hypothesized the existence of a “muscle synergy” based control scheme for producing limb movements and locomotion in vertebrates. Such synergies have been suggested to consist of fixed muscle grouping schemes with the co-activation of all muscles in a synergy resulting in limb movement. Quantitative representations of these groupings (termed muscle weightings) and their control signals (termed synergy controls) have traditionally been derived by the factorization of experimentally measured EMG. This study presents a novel approach for deducing these weightings and controls from inverse dynamic joint moments that are computed from an alternative set of experimental measurements—movement kinematics and kinetics. This technique was applied to joint moments for healthy human walking at 0.7 and 1.7 m/s, and two sets of “simulated” synergies were computed based on two different criteria (1) synergies were required to minimize errors between experimental and simulated joint moments in a musculoskeletal model (pure-synergy solution) (2) along with minimizing joint moment errors, synergies also minimized muscle activation levels (optimal-synergy solution). On comparing the two solutions, it was observed that the introduction of optimality requirements (optimal-synergy) to a control strategy solely aimed at reproducing the joint moments (pure-synergy) did not necessitate major changes in the muscle grouping within synergies or the temporal profiles of synergy control signals. Synergies from both the simulated solutions exhibited many similarities to EMG derived synergies from a previously published study, thus implying that the analysis of the two different types of experimental data reveals similar, underlying synergy structures. PMID:25520645

  19. Shared and Task-Specific Muscle Synergies during Normal Walking and Slipping

    PubMed Central

    Nazifi, Mohammad Moein; Yoon, Han Ul; Beschorner, Kurt; Hur, Pilwon

    2017-01-01

    Falling accidents are costly due to their prevalence in the workplace. Slipping has been known to be the main cause of falling. Understanding the motor response used to regain balance after slipping is crucial to developing intervention strategies for effective recovery. Interestingly, studies on spinalized animals and studies on animals subjected to electrical microstimulation have provided major evidence that the Central Nervous System (CNS) uses motor primitives, such as muscle synergies, to control motor tasks. Muscle synergies are thought to be a critical mechanism used by the CNS to control complex motor tasks by reducing the dimensional complexity of the system. Even though synergies have demonstrated potential for indicating how the body responds to balance perturbations by accounting for majority of the data set's variability, this concept has not been applied to slipping. To address this gap, data from 11 healthy young adults were collected and analyzed during both unperturbed walking and slipping. Applying an iterative non-negative matrix decomposition technique, four muscle synergies and the corresponding time-series activation coefficients were extracted. The synergies and the activation coefficients were then compared between baseline walking and slipping to determine shared vs. task-specific synergies. Correlation analyses found that among four synergies, two synergies were shared between normal walking and slipping. However, the other two synergies were task-specific. Both limbs were contributing to each of the four synergies, suggesting substantial inter-limb coordination during gait and slip. These findings stay consistent with previous unilateral studies that reported similar synergies between unperturbed and perturbed walking. Activation coefficients corresponding to the two shared synergies were similar between normal walking and slipping for the first 200 ms after heel contact and differed later in stance, suggesting the activation of muscle

  20. The flexion synergy, mother of all synergies and father of new models of gait

    PubMed Central

    Duysens, Jacques; De Groote, Friedl; Jonkers, Ilse

    2013-01-01

    Recently there has been a growing interest in the modular organization of leg movements, in particular those related to locomotion. One of the basic modules involves the flexion of the leg during swing and it was shown that this module is already present in neonates (Dominici et al., 2011). In this paper, we question how these finding build upon the original work by Sherrington, who proposed that the flexor reflex is the basic building block of flexion during swing phase. Similarly, the relation between the flexor reflex and the withdrawal reflex modules of Schouenborg and Weng (1994) will be discussed. It will be argued that there is large overlap between these notions on modules and the older concepts of reflexes. In addition, it will be shown that there is a great flexibility in the expression of some of these modules during gait, thereby allowing for a phase-dependent modulation of the appropriate responses. In particular, the end of the stance phase is a period when the flexor synergy is facilitated. It is proposed that this is linked to the activation of circuitry that is responsible for the generation of locomotor patterns (CPG, “central pattern generator”). More specifically, it is suggested that the responses in that period relate to the activation of a flexor burst generator. The latter structure forms the core of a new asymmetric model of the CPG. This activation is controlled by afferent input (facilitation by a broad range of afferents, suppression by load afferent input). Meanwhile, many of these physiologic features have found their way in the control of very flexible walking bipedal robots. PMID:23494365

  1. Evaluation of synergy in tire rubber-coal coprocessing

    SciTech Connect

    Mastral, A.M.; Mayoral, M.C.; Murillo, R.; Callen, M.; Garcia, T.; Tejero, M.P.; Torres, N.

    1998-09-01

    The tire rubber-coal synergy is evaluated through the different roles that rubber can have in coprocessing systems. For that, two different experimental designs were used: a swept fixed-bed reactor and tubing bomb minireactors. In this way, coal was coprocessed with rubber liquids from rubber pyrolysis and rubber hydrogenation, in a hydrogen atmosphere at 400 C. Coal was mixed as well with rubber in different proportions and hydrogenated at 375, 400, and 425 C, and oils obtained were characterized by thin-layer chromatography to obtain hydrocarbon type composition. Rubber behavior was compared to each of the main components of tires, and all the results indicated that the slight synergy found can be due to the small free radicals from vulcanized rubber decomposition, which are able to stabilize coal radicals to light products.

  2. Intravenous salbutamol and aminophylline in asthma: a search for synergy.

    PubMed Central

    Handslip, P D; Dart, A M; Davies, B H

    1981-01-01

    The bronchodilation produced by increasing intravenous doses of aminophylline, salbutamol, and a combination of aminophylline and salbutamol given in random order was determined in 10 stable asthmatics on three consecutive days. On a fourth day, response to placebo injections was determined. Forced expiratory volume in one second (FEV1) was measured at two-minute intervals after each dose until FEV1 returned to a new baseline. At no dosage level was there synergy between the two agents in terms of either mean percentage increase in FEV1 or the integrated response. The failure to demonstrate synergy has implications both with respect to the clinical use and the underlying mechanism of action of these drugs. PMID:7330791

  3. Interpersonal synergies: static prehension tasks performed by two actors.

    PubMed

    Solnik, Stanislaw; Reschechtko, Sasha; Wu, Yen-Hsun; Zatsiorsky, Vladimir M; Latash, Mark L

    2016-08-01

    We investigated multidigit synergies stabilizing components of the resultant force vector during joint performance of a static prehension task by two persons as compared to similar tasks performed by a single person using both hands. Subjects transferred the instrumented handle from the right hand to the left hand (one-person condition) or passed that handle to another person (two-person condition) while keeping the handle's position and orientation stationary. Only three digits were involved per hand, the thumb, the index finger, and the middle finger; the forces and moments produced by the digits were measured by six-component sensors. We estimated the performance-stabilizing synergies within the uncontrolled manifold framework by quantifying the intertrial variance structure of digit forces and moments. The analysis was performed at three levels: between hands, between virtual finger and virtual thumb (imagined digits producing the same mechanical variables as the corresponding actual digits combined) produced by the two hands (in both interpersonal and intrapersonal conditions), and between the thumb and virtual finger for one hand only. Additionally, we performed correlation and phase synchronization analyses of resultant tangential forces and internal normal forces. Overall, the one-person conditions were characterized by higher amount of intertrial variance that did not affect resultant normal force components, higher internal components of normal forces, and stronger synchronization of the normal forces generated by the hands. Our observations suggest that in two-person tasks, when participants try to achieve a common mechanical outcome, the performance-stabilizing synergies depend on non-visual information exchange, possibly via the haptic and proprioceptive systems. Therefore, synergies quantified in tasks using visual feedback only may not be generalizable to more natural tasks.

  4. Simbol-X: Synergies with JWST, ALMA and Herschel

    NASA Astrophysics Data System (ADS)

    Maiolino, R.

    2009-05-01

    I discuss the synergies between Simbol-X and three among the major astronomical facilities that, in the next decade, will be operative in the infrared-millimeter spectral range, namely JWST, Herschel and ALMA. I first provide a brief overview of the main features and observing capabilities offered by these facilities. Then I will discuss a few research fields (mostly extragalactic) that will geatly benefit of the joint exploitation of Simbol-X and these IR-mm observatories.

  5. Analgesic synergy between opioid and α2-adrenoceptors

    PubMed Central

    Chabot-Doré, A-J; Schuster, D J; Stone, L S; Wilcox, G L

    2015-01-01

    Opioid and α2-adrenoceptor agonists are potent analgesic drugs and their analgesic effects can synergize when co-administered. These supra-additive interactions are potentially beneficial clinically; by increasing efficacy and/or reducing the total drug required to produce sufficient pain relief, undesired side effects can be minimized. However, combination therapies of opioids and α2-adrenoceptor agonists remain underutilized clinically, in spite of a large body of preclinical evidence describing their synergistic interaction. One possible obstacle to the translation of preclinical findings to clinical applications is a lack of understanding of the mechanisms underlying the synergistic interactions between these two drug classes. In this review, we provide a detailed overview of the interactions between different opioid and α2-adrenoceptor agonist combinations in preclinical studies. These studies have identified the spinal cord as an important site of action of synergistic interactions, provided insights into which receptors mediate these interactions and explored downstream signalling events enabling synergy. It is now well documented that the activation of both μ and δ opioid receptors can produce synergy with α2-adrenoceptor agonists and that α2-adrenoceptor agonists can mediate synergy through either the α2A or the α2C adrenoceptor subtypes. Current hypotheses surrounding the cellular mechanisms mediating opioid–adrenoceptor synergy, including PKC signalling and receptor oligomerization, and the evidence supporting them are presented. Finally, the implications of these findings for clinical applications and drug discovery are discussed. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24641506

  6. Food synergy: an operational concept for understanding nutrition.

    PubMed

    Jacobs, David R; Gross, Myron D; Tapsell, Linda C

    2009-05-01

    Research and practice in nutrition relate to food and its constituents, often as supplements. In food, however, the biological constituents are coordinated. We propose that "thinking food first"' results in more effective nutrition research and policy. The concept of food synergy provides the necessary theoretical underpinning. The evidence for health benefit appears stronger when put together in a synergistic dietary pattern than for individual foods or food constituents. A review of dietary supplementation suggests that although supplements may be beneficial in states of insufficiency, the safe middle ground for consumption likely is food. Also, food provides a buffer during absorption. Constituents delivered by foods taken directly from their biological environment may have different effects from those formulated through technologic processing, but either way health benefits are likely to be determined by the total diet. The concept of food synergy is based on the proposition that the interrelations between constituents in foods are significant. This significance is dependent on the balance between constituents within the food, how well the constituents survive digestion, and the extent to which they appear biologically active at the cellular level. Many examples are provided of superior effects of whole foods over their isolated constituents. The food synergy concept supports the idea of dietary variety and of selecting nutrient-rich foods. The more we understand about our own biology and that of plants and animals, the better we will be able to discern the combinations of foods, rather than supplements, which best promote health.

  7. Muscle synergy patterns as physiological markers of motor cortical damage

    PubMed Central

    Cheung, Vincent C. K.; Turolla, Andrea; Agostini, Michela; Silvoni, Stefano; Bennis, Caoimhe; Kasi, Patrick; Paganoni, Sabrina; Bonato, Paolo; Bizzi, Emilio

    2012-01-01

    The experimental findings herein reported are aimed at gaining a perspective on the complex neural events that follow lesions of the motor cortical areas. Cortical damage, whether by trauma or stroke, interferes with the flow of descending signals to the modular interneuronal structures of the spinal cord. These spinal modules subserve normal motor behaviors by activating groups of muscles as individual units (muscle synergies). Damage to the motor cortical areas disrupts the orchestration of the modules, resulting in abnormal movements. To gain insights into this complex process, we recorded myoelectric signals from multiple upper-limb muscles in subjects with cortical lesions. We used a factorization algorithm to identify the muscle synergies. Our factorization analysis revealed, in a quantitative way, three distinct patterns of muscle coordination—including preservation, merging, and fractionation of muscle synergies—that reflect the multiple neural responses that occur after cortical damage. These patterns varied as a function of both the severity of functional impairment and the temporal distance from stroke onset. We think these muscle-synergy patterns can be used as physiological markers of the status of any patient with stroke or trauma, thereby guiding the development of different rehabilitation approaches, as well as future physiological experiments for a further understanding of postinjury mechanisms of motor control and recovery. PMID:22908288

  8. Analysis of muscle synergy for evaluation of task-specific performance in stroke patients.

    PubMed

    Li, Si; Zhuang, Cheng; Zhang, Xiao; Niu, Chuanxin M; Xie, Qing; Lan, Ning; Si Li; Cheng Zhuang; Xiao Zhang; Niu, Chuanxin M; Qing Xie; Ning Lan; Niu, Chuanxin M; Zhang, Xiao; Zhuang, Cheng; Li, Si; Lan, Ning; Xie, Qing

    2016-08-01

    Muscle synergy represents a central neural module that organizes and activates a group of muscles when performing a certain task. However, whether muscle synergy is a good physiological indicator of motor ability in task performance for patients suffering stroke is not clear. The purpose of this study is to understand how information of task-specific muscle synergy in healthy subjects and patients post stroke can be used to evaluate their motor ability, and further to assist motor rehabilitation for stroke patients. Electromyography (EMG) signals and movement kinematics in reaching tasks were recorded in 5 healthy subjects and 4 stroke patients. Muscle synergies were extracted from EMGs and compared cross healthy and stroke subjects. Normal synergies displayed a characteristic pattern common in healthy subjects. But pathological synergies in stroke subjects lacked the characteristics of normal synergy without a common component, implicating varying extent of damage to the motor module due to lesion in cerebral circuits. Further analysis in stroke subjects showed that pathological patterns of synergy in stroke subjects corresponded to the abnormality in their movement control compared with healthy subjects. Data showed that task-specific muscle synergy did reveal a positive correlation to the ability of neural control of tasks. It was further observed that task-specific synergy was changed towards the normal pattern after intervention with functional electrical stimulation in patients post stroke.

  9. Novel Methods to Enhance Precision and Reliability in Muscle Synergy Identification during Walking

    PubMed Central

    Kim, Yushin; Bulea, Thomas C.; Damiano, Diane L.

    2016-01-01

    Muscle synergies are hypothesized to reflect modular control of muscle groups via descending commands sent through multiple neural pathways. Recently, the number of synergies has been reported as a functionally relevant indicator of motor control complexity in individuals with neurological movement disorders. Yet the number of synergies extracted during a given activity, e.g., gait, varies within and across studies, even for unimpaired individuals. With no standardized methods for precise determination, this variability remains unexplained making comparisons across studies and cohorts difficult. Here, we utilize k-means clustering and intra-class and between-level correlation coefficients to precisely discriminate reliable from unreliable synergies. Electromyography (EMG) was recorded bilaterally from eight leg muscles during treadmill walking at self-selected speed. Muscle synergies were extracted from 20 consecutive gait cycles using non-negative matrix factorization. We demonstrate that the number of synergies is highly dependent on the threshold when using the variance accounted for by reconstructed EMG. Beyond use of threshold, our method utilized a quantitative metric to reliably identify four or five synergies underpinning walking in unimpaired adults and revealed synergies having poor reproducibility that should not be considered as true synergies. We show that robust and unreliable synergies emerge similarly, emphasizing the need for careful analysis in those with pathology. PMID:27695403

  10. Quantitative evaluation of muscle synergy models: a single-trial task decoding approach

    PubMed Central

    Delis, Ioannis; Berret, Bastien; Pozzo, Thierry; Panzeri, Stefano

    2013-01-01

    Muscle synergies, i.e., invariant coordinated activations of groups of muscles, have been proposed as building blocks that the central nervous system (CNS) uses to construct the patterns of muscle activity utilized for executing movements. Several efficient dimensionality reduction algorithms that extract putative synergies from electromyographic (EMG) signals have been developed. Typically, the quality of synergy decompositions is assessed by computing the Variance Accounted For (VAF). Yet, little is known about the extent to which the combination of those synergies encodes task-discriminating variations of muscle activity in individual trials. To address this question, here we conceive and develop a novel computational framework to evaluate muscle synergy decompositions in task space. Unlike previous methods considering the total variance of muscle patterns (VAF based metrics), our approach focuses on variance discriminating execution of different tasks. The procedure is based on single-trial task decoding from muscle synergy activation features. The task decoding based metric evaluates quantitatively the mapping between synergy recruitment and task identification and automatically determines the minimal number of synergies that captures all the task-discriminating variability in the synergy activations. In this paper, we first validate the method on plausibly simulated EMG datasets. We then show that it can be applied to different types of muscle synergy decomposition and illustrate its applicability to real data by using it for the analysis of EMG recordings during an arm pointing task. We find that time-varying and synchronous synergies with similar number of parameters are equally efficient in task decoding, suggesting that in this experimental paradigm they are equally valid representations of muscle synergies. Overall, these findings stress the effectiveness of the decoding metric in systematically assessing muscle synergy decompositions in task space. PMID

  11. Consequences of biomechanically constrained tasks in the design and interpretation of synergy analyses

    PubMed Central

    Tresch, Matthew C.; Perreault, Eric J.

    2015-01-01

    Matrix factorization algorithms are commonly used to analyze muscle activity and provide insight into neuromuscular control. These algorithms identify low-dimensional subspaces, commonly referred to as synergies, which can describe variation in muscle activity during a task. Synergies are often interpreted as reflecting underlying neural control; however, it is unclear how these analyses are influenced by biomechanical and task constraints, which can also lead to low-dimensional patterns of muscle activation. The aim of this study was to evaluate whether commonly used algorithms and experimental methods can accurately identify synergy-based control strategies. This was accomplished by evaluating synergies from five common matrix factorization algorithms using muscle activations calculated from 1) a biomechanically constrained task using a musculoskeletal model and 2) without task constraints using random synergy activations. Algorithm performance was assessed by calculating the similarity between estimated synergies and those imposed during the simulations; similarities ranged from 0 (random chance) to 1 (perfect similarity). Although some of the algorithms could accurately estimate specified synergies without biomechanical or task constraints (similarity >0.7), with these constraints the similarity of estimated synergies decreased significantly (0.3–0.4). The ability of these algorithms to accurately identify synergies was negatively impacted by correlation of synergy activations, which are increased when substantial biomechanical or task constraints are present. Increased variability in synergy activations, which can be captured using robust experimental paradigms that include natural variability in motor activation patterns, improved identification accuracy but did not completely overcome effects of biomechanical and task constraints. These results demonstrate that a biomechanically constrained task can reduce the accuracy of estimated synergies and highlight

  12. Synergy: A language and framework for robot design

    NASA Astrophysics Data System (ADS)

    Katragadda, Lalitesh Kumar

    Due to escalation in complexity, capability and application, robot design is increasingly difficult. A design environment can automate many design tasks, relieving the designer's burden. Prior to robot development, designers compose a robot from existing or custom developed components, simulate performance, optimize configuration and parameters, and write software for the robot. Robot designers customize these facets to the robot using a variety of software ranging from spreadsheets to C code to CAD tools. Valuable resources are expended, and very little of this expertise and development is reusable. This research begins with the premise that a language to comprehensively represent robots is lacking and that the aforementioned design tasks can be automated once such a language exists. This research proposes and demonstrates the following thesis: "A language to represent robots, along with a framework to generate simulations, optimize designs and generate control software, increases the effectiveness of design." Synergy is the software developed in this research to reflect this philosophy. Synergy was prototyped and demonstrated in the context of lunar rover design, a challenging real-world problem with multiple requirements and a broad design space. Synergy was used to automatically optimize robot parameters and select parts to generate effective designs, while meeting constraints of the embedded components and sub-systems. The generated designs are superior in performance and consistency when compared to designs by teams of designers using the same knowledge. Using a single representation, multiple designs are generated for four distinct lunar exploration objectives. Synergy uses the same representation to auto-generate landing simulations and simultaneously generate control software for the landing. Synergy consists of four software agents. A database and spreadsheet agent compiles the design and component information, generating component interconnections and

  13. The leucine zipper of NRL interacts with the CRX homeodomain. A possible mechanism of transcriptional synergy in rhodopsin regulation.

    PubMed

    Mitton, K P; Swain, P K; Chen, S; Xu, S; Zack, D J; Swaroop, A

    2000-09-22

    Photoreceptor-specific expression of rhodopsin is mediated by multiple cis-acting elements in the proximal promoter region. NRL (neural retina leucine zipper) and CRX (cone rod homeobox) proteins bind to the adjacent NRE and Ret-4 sites, respectively, within this region. Although NRL and CRX are each individually able to induce rhodopsin promoter activity, when expressed together they exhibit transcriptional synergy in rhodopsin promoter activation. Using the yeast two-hybrid method and glutathione S-transferase pull-down assays, we demonstrate that the leucine zipper of NRL can physically interact with CRX. Deletion analysis revealed that the CRX homeodomain (CRX-HD) plays an important role in the interaction with the NRL leucine zipper. Although binding with the CRX-HD alone was weak, a strong interaction was detected when flanking regions including the glutamine-rich and the basic regions that follow the HD were included. A reciprocal deletion analysis showed that the leucine zipper of NRL is required for interaction with CRX-HD. Two disease-causing mutations in CRX-HD (R41W and R90W) that exhibit reduced DNA binding and transcriptional synergy also decrease its interaction with NRL. These studies suggest novel possibilities for protein-protein interaction between two conserved DNA-binding motifs and imply that cross-talk among distinct regulatory pathways contributes to the establishment and maintenance of photoreceptor function.

  14. Impacts of Synergy-505 on the Functional Response and Behavior of the Reduviid Bug, Rhynocoris marginatus

    PubMed Central

    Ambrose, D. P.; Rajan, S. J.; Raja, J. M.

    2010-01-01

    The impact of the insecticide, Synergy-505 (chlorpyrifos 50% and cypermethrin 5% E.C), on the functional response, predatory behavior, and mating behavior of a non-target reduviid, Rhynocoris marginatus (Fabricius) (Hemiptera: Reduviidae), a potential biological control agent, were studied. Though both normal and Synergy-505-exposed R. marginatus exhibited Holling's type II curvilinear functional response, Synergy-505 caused a less pronounced type II functional response with reduced numbers of prey killed, attack rate, searching time, and prolonged handling time in 4th and 5th nymphal instars and adult males and females reflecting reduced predatory potential. Synergy-505 also delayed the predatory and mating events. The impacts of Synergy-505 on functional response, predatory behavior, and mating behavior were more evident at higher concentrations of Synergy-505. PMID:21265616

  15. Comparison of muscle synergies for running between different foot strike patterns

    PubMed Central

    Nishida, Koji; Hagio, Shota; Kibushi, Benio; Moritani, Toshio; Kouzaki, Motoki

    2017-01-01

    It is well known that humans run with a fore-foot strike (FFS), a mid-foot strike (MFS) or a rear-foot strike (RFS). A modular neural control mechanism of human walking and running has been discussed in terms of muscle synergies. However, the neural control mechanisms for different foot strike patterns during running have been overlooked even though kinetic and kinematic differences between different foot strike patterns have been reported. Thus, we examined the differences in the neural control mechanisms of human running between FFS and RFS by comparing the muscle synergies extracted from each foot strike pattern during running. Muscle synergies were extracted using non-negative matrix factorization with electromyogram activity recorded bilaterally from 12 limb and trunk muscles in ten male subjects during FFS and RFS running at different speeds (5–15 km/h). Six muscle synergies were extracted from all conditions, and each synergy had a specific function and a single main peak of activity in a cycle. The six muscle synergies were similar between FFS and RFS as well as across subjects and speeds. However, some muscle weightings showed significant differences between FFS and RFS, especially the weightings of the tibialis anterior of the landing leg in synergies activated just before touchdown. The activation patterns of the synergies were also different for each foot strike pattern in terms of the timing, duration, and magnitude of the main peak of activity. These results suggest that the central nervous system controls running by sending a sequence of signals to six muscle synergies. Furthermore, a change in the foot strike pattern is accomplished by modulating the timing, duration and magnitude of the muscle synergy activity and by selectively activating other muscle synergies or subsets of the muscle synergies. PMID:28158258

  16. The number and choice of muscles impact the results of muscle synergy analyses

    PubMed Central

    Steele, Katherine M.; Tresch, Matthew C.; Perreault, Eric J.

    2013-01-01

    One theory for how humans control movement is that muscles are activated in weighted groups or synergies. Studies have shown that electromyography (EMG) from a variety of tasks can be described by a low-dimensional space thought to reflect synergies. These studies use algorithms, such as nonnegative matrix factorization, to identify synergies from EMG. Due to experimental constraints, EMG can rarely be taken from all muscles involved in a task. However, it is unclear if the choice of muscles included in the analysis impacts estimated synergies. The aim of our study was to evaluate the impact of the number and choice of muscles on synergy analyses. We used a musculoskeletal model to calculate muscle activations required to perform an isometric upper-extremity task. Synergies calculated from the activations from the musculoskeletal model were similar to a prior experimental study. To evaluate the impact of the number of muscles included in the analysis, we randomly selected subsets of between 5 and 29 muscles and compared the similarity of the synergies calculated from each subset to a master set of synergies calculated from all muscles. We determined that the structure of synergies is dependent upon the number and choice of muscles included in the analysis. When five muscles were included in the analysis, the similarity of the synergies to the master set was only 0.57 ± 0.54; however, the similarity improved to over 0.8 with more than ten muscles. We identified two methods, selecting dominant muscles from the master set or selecting muscles with the largest maximum isometric force, which significantly improved similarity to the master set and can help guide future experimental design. Analyses that included a small subset of muscles also over-estimated the variance accounted for (VAF) by the synergies compared to an analysis with all muscles. Thus, researchers should use caution using VAF to evaluate synergies when EMG is measured from a small subset of muscles

  17. Comparison of muscle synergies for running between different foot strike patterns.

    PubMed

    Nishida, Koji; Hagio, Shota; Kibushi, Benio; Moritani, Toshio; Kouzaki, Motoki

    2017-01-01

    It is well known that humans run with a fore-foot strike (FFS), a mid-foot strike (MFS) or a rear-foot strike (RFS). A modular neural control mechanism of human walking and running has been discussed in terms of muscle synergies. However, the neural control mechanisms for different foot strike patterns during running have been overlooked even though kinetic and kinematic differences between different foot strike patterns have been reported. Thus, we examined the differences in the neural control mechanisms of human running between FFS and RFS by comparing the muscle synergies extracted from each foot strike pattern during running. Muscle synergies were extracted using non-negative matrix factorization with electromyogram activity recorded bilaterally from 12 limb and trunk muscles in ten male subjects during FFS and RFS running at different speeds (5-15 km/h). Six muscle synergies were extracted from all conditions, and each synergy had a specific function and a single main peak of activity in a cycle. The six muscle synergies were similar between FFS and RFS as well as across subjects and speeds. However, some muscle weightings showed significant differences between FFS and RFS, especially the weightings of the tibialis anterior of the landing leg in synergies activated just before touchdown. The activation patterns of the synergies were also different for each foot strike pattern in terms of the timing, duration, and magnitude of the main peak of activity. These results suggest that the central nervous system controls running by sending a sequence of signals to six muscle synergies. Furthermore, a change in the foot strike pattern is accomplished by modulating the timing, duration and magnitude of the muscle synergy activity and by selectively activating other muscle synergies or subsets of the muscle synergies.

  18. Between-subject variability of muscle synergies during a complex motor skill

    PubMed Central

    Frère, Julien; Hug, François

    2012-01-01

    The purpose of the present study was to determine whether subjects who have learned a complex motor skill exhibit similar neuromuscular control strategies. We studied a population of experienced gymnasts during backward giant swings on the high bar. This cyclic movement is interesting because it requires learning, as untrained subjects are unable to perform this task. Nine gymnasts were tested. Both kinematics and electromyographic (EMG) patterns of 12 upper-limb and trunk muscles were recorded. Muscle synergies were extracted by non-negative matrix factorization (NMF), providing two components: muscle synergy vectors and synergy activation coefficients. First, the coefficient of correlation (r) and circular cross-correlation (rmax) were calculated to assess similarities in the mechanical patterns, EMG patterns, and muscle synergies between gymnasts. We performed a further analysis to verify that the muscle synergies (in terms of muscle synergy vectors or synergy activation coefficients) extracted for one gymnast accounted for the EMG patterns of the other gymnasts. Three muscle synergies explained 89.9 ± 2.0% of the variance accounted for (VAF). The coefficients of correlation of the muscle synergy vectors among the participants were 0.83 ± 0.08, 0.86 ± 0.09, and 0.66 ± 0.28 for synergy #1, #2, and #3, respectively. By keeping the muscle synergy vectors constant, we obtained an averaged VAF across all pairwise comparisons of 79 ± 4%. For the synergy activation coefficients, rmax-values were 0.96 ± 0.03, 0.92 ± 0.03, and 0.95 ± 0.03, for synergy #1, #2, and #3, respectively. By keeping the synergy activation coefficients constant, we obtained an averaged VAF across all pairwise comparisons of 72 ± 5%. Although variability was found (especially for synergy #3), the gymnasts exhibited gross similar neuromuscular strategies when performing backward giant swings. This confirms that the muscle synergies are consistent across participants, even during a skilled

  19. Building Bridges for Innovation in Ageing: Synergies between Action Groups of the EIP on AHA.

    PubMed

    Bousquet, J; Bewick, M; Cano, A; Eklund, P; Fico, G; Goswami, N; Guldemond, N A; Henderson, D; Hinkema, M J; Liotta, G; Mair, A; Molloy, W; Monaco, A; Monsonis-Paya, I; Nizinska, A; Papadopoulos, H; Pavlickova, A; Pecorelli, S; Prados-Torres, A; Roller-Wirnsberger, R E; Somekh, D; Vera-Muñoz, C; Visser, F; Farrell, J; Malva, J; Andersen Ranberg, K; Camuzat, T; Carriazo, A M; Crooks, G; Gutter, Z; Iaccarino, G; Manuel de Keenoy, E; Moda, G; Rodriguez-Mañas, L; Vontetsianos, T; Abreu, C; Alonso, J; Alonso-Bouzon, C; Ankri, J; Arredondo, M T; Avolio, F; Bedbrook, A; Białoszewski, A Z; Blain, H; Bourret, R; Cabrera-Umpierrez, M F; Catala, A; O'Caoimh, R; Cesari, M; Chavannes, N H; Correia-da-Sousa, J; Dedeu, T; Ferrando, M; Ferri, M; Fokkens, W J; Garcia-Lizana, F; Guérin, O; Hellings, P W; Haahtela, T; Illario, M; Inzerilli, M C; Lodrup Carlsen, K C; Kardas, P; Keil, T; Maggio, M; Mendez-Zorrilla, A; Menditto, E; Mercier, J; Michel, J P; Murray, R; Nogues, M; O'Byrne-Maguire, I; Pappa, D; Parent, A S; Pastorino, M; Robalo-Cordeiro, C; Samolinski, B; Siciliano, P; Teixeira, A M; Tsartara, S I; Valiulis, A; Vandenplas, O; Vasankari, T; Vellas, B; Vollenbroek-Hutten, M; Wickman, M; Yorgancioglu, A; Zuberbier, T; Barbagallo, M; Canonica, G W; Klimek, L; Maggi, S; Aberer, W; Akdis, C; Adcock, I M; Agache, I; Albera, C; Alonso-Trujillo, F; Angel Guarcia, M; Annesi-Maesano, I; Apostolo, J; Arshad, S H; Attalin, V; Avignon, A; Bachert, C; Baroni, I; Bel, E; Benson, M; Bescos, C; Blasi, F; Barbara, C; Bergmann, K C; Bernard, P L; Bonini, S; Bousquet, P J; Branchini, B; Brightling, C E; Bruguière, V; Bunu, C; Bush, A; Caimmi, D P; Calderon, M A; Canovas, G; Cardona, V; Carlsen, K H; Cesario, A; Chkhartishvili, E; Chiron, R; Chivato, T; Chung, K F; d'Angelantonio, M; De Carlo, G; Cholley, D; Chorin, F; Combe, B; Compas, B; Costa, D J; Costa, E; Coste, O; Coupet, A-L; Crepaldi, G; Custovic, A; Dahl, R; Dahlen, S E; Demoly, P; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Du Toit, G; Dubakiene, R; Dupeyron, A; Emuzyte, R; Fiocchi, A; Wagner, A; Fletcher, M; Fonseca, J; Fougère, B; Gamkrelidze, A; Garces, G; Garcia-Aymeric, J; Garcia-Zapirain, B; Gemicioğlu, B; Gouder, C; Hellquist-Dahl, B; Hermosilla-Gimeno, I; Héve, D; Holland, C; Humbert, M; Hyland, M; Johnston, S L; Just, J; Jutel, M; Kaidashev, I P; Khaitov, M; Kalayci, O; Kalyoncu, A F; Keijser, W; Kerstjens, H; Knezović, J; Kowalski, M; Koppelman, G H; Kotska, T; Kovac, M; Kull, I; Kuna, P; Kvedariene, V; Lepore, V; MacNee, W; Maggio, M; Magnan, A; Majer, I; Manning, P; Marcucci, M; Marti, T; Masoli, M; Melen, E; Miculinic, N; Mihaltan, F; Milenkovic, B; Millot-Keurinck, J; Mlinarić, H; Momas, I; Montefort, S; Morais-Almeida, M; Moreno-Casbas, T; Mösges, R; Mullol, J; Nadif, R; Nalin, M; Navarro-Pardo, E; Nekam, K; Ninot, G; Paccard, D; Pais, S; Palummeri, E; Panzner, P; Papadopoulos, N K; Papanikolaou, C; Passalacqua, G; Pastor, E; Perrot, M; Plavec, D; Popov, T A; Postma, D S; Price, D; Raffort, N; Reuzeau, J C; Robine, J M; Rodenas, F; Robusto, F; Roche, N; Romano, A; Romano, V; Rosado-Pinto, J; Roubille, F; Ruiz, F; Ryan, D; Salcedo, T; Schmid-Grendelmeier, P; Schulz, H; Schunemann, H J; Serrano, E; Sheikh, A; Shields, M; Siafakas, N; Scichilone, N; Siciliano, P; Skrindo, I; Smit, H A; Sourdet, S; Sousa-Costa, E; Spranger, O; Sooronbaev, T; Sruk, V; Sterk, P J; Todo-Bom, A; Touchon, J; Tramontano, D; Triggiani, M; Tsartara, S I; Valero, A L; Valovirta, E; van Ganse, E; van Hage, M; van den Berge, M; Vandenplas, O; Ventura, M T; Vergara, I; Vezzani, G; Vidal, D; Viegi, G; Wagemann, M; Whalley, B; Wickman, M; Wilson, N; Yiallouros, P K; Žagar, M; Zaidi, A; Zidarn, M; Hoogerwerf, E J; Usero, J; Zuffada, R; Senn, A; de Oliveira-Alves, B

    2017-01-01

    The Strategic Implementation Plan of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) proposed six Action Groups. After almost three years of activity, many achievements have been obtained through commitments or collaborative work of the Action Groups. However, they have often worked in silos and, consequently, synergies between Action Groups have been proposed to strengthen the triple win of the EIP on AHA. The paper presents the methodology and current status of the Task Force on EIP on AHA synergies. Synergies are in line with the Action Groups' new Renovated Action Plan (2016-2018) to ensure that their future objectives are coherent and fully connected. The outcomes and impact of synergies are using the Monitoring and Assessment Framework for the EIP on AHA (MAFEIP). Eight proposals for synergies have been approved by the Task Force: Five cross-cutting synergies which can be used for all current and future synergies as they consider overarching domains (appropriate polypharmacy, citizen empowerment, teaching and coaching on AHA, deployment of synergies to EU regions, Responsible Research and Innovation), and three cross-cutting synergies focussing on current Action Group activities (falls, frailty, integrated care and chronic respiratory diseases).

  20. [Analysis on the factors that cause the difference of acupoints synergy effect].

    PubMed

    Zheng, Jiatai; Chen, Bo; Guo, Yongming; Guo, Yi

    2015-07-01

    Based on traditional acupuncture theory and modern researches, the factors that cause the difference of acupoints synergy effect are summarized and analyzed. It is found that the factors include the specificity of acupoint, the interaction of acupoints, the pathway of acupuncture signal, the body condition level, acupuncture manipulation, etc. It is believed that the specificity of acupoint is the key factor to determine the difference of acupoints synergy effect. Interaction of acupoints may be related to the pathway of selected acupuncture signal, which is an important factor in difference of acupoints synergy effect. The body condition level and acupuncture manipulation are internal and external factor to influence acupoints synergy effect, respectively.

  1. Classification of hand and wrist tasks of unknown force levels using muscle synergies.

    PubMed

    Atoufi, B; Kamavuako, E N; Hudgins, B; Englehart, K

    2015-08-01

    Muscle synergies have been proposed as a way for the central nervous system (CNS) to simplify the generation of motor commands and they have been shown to explain a large portion of the variation in the muscle patterns across a variety of conditions. However, whether human subjects are able to control prostheses proportionally with a small set of synergies has not been tested directly. Here we investigated if muscle synergies can be used to identify different wrist and hand motions. We recorded electromyographic (EMG) activity from eight arm muscles while the subjects exerted seven different intensity levels during the motions when performing seven classes of hand and wrist motion. From these data we extracted the muscle synergies and classified the tasks associated to each contraction intensity profile by linear discriminant analysis (LDA). We compared the performance obtained using muscle synergies with the performance of using the mean absolute values (MAV) as a feature. Also, the consistency of extracted muscle synergies was studied across intensity variations. While the synergies showed relative consistency particularly across closer intensity levels, average classification results generated with the synergies were less accurate than MAVs. These results indicate that although the performance of muscle synergies was very close to MAVs, they do not provide additional information for task identification across different exerted intensity levels.

  2. Rhythmic affects on stroke-induced joint synergies across a range of speeds.

    PubMed

    Simkins, Matt; Burleigh Jacobs, Anne; Rosen, Jacob

    2013-09-01

    Joint synergies are one among several diminished motor capabilities that are associated with stroke. These synergies are characterized by a stereotypical combination of involuntary joint coactivations. This research measured the synergistic rotations of the shoulder in response to voluntary rhythmic motion of the elbow across a range of speeds. The experimental protocol included a total of 22 subjects divided into two groups: (1) stroke survivors and (2) neurologically intact controls. Rhythmic motion in stroke survivors resulted in comparable synergies to discrete movement. It was found that hemiparetic subjects had greater synergy than neurologically intact individuals for all speeds. Synergy was quantified using a synergy ratio. This ratio uses elbow rotation as an input in the denominator and shoulder rotation as an output in the numerator. The amount of shoulder synergy varied with the subject's level of impairment as measured by a modified Fugl-Meyer assessment. As rhythmic speeds increased, the synergy ratios became higher for stroke subjects. This effect was especially pronounced for subjects with higher impairment. The relationships between synergies that arise from rhythmic and discrete movements are also discussed. The results of this study may have implications for therapeutic interventions, robotic rehabilitation approaches, and for the design of orthotic devices. More generally, these results shed light on the role of central pattern generators in hemiparetic motion.

  3. Effects of unilateral stroke on multi-finger synergies and their feed-forward adjustments

    PubMed Central

    Jo, Hang Jin; Maenza, Candice; Good, David C.; Huang, Xuemei; Park, Jaebum; Sainburg, Robert L.; Latash, Mark L.

    2016-01-01

    We explored the changes in multi-finger synergies in patients after a single cortical stroke with mild motor impairments. We hypothesized that both synergy indices and anticipatory synergy adjustments prior to the initiation of a self-paced quick action would be diminished in the patients compared to age-matched controls. The patients with history of cortical stroke, and age-matched controls (n = 12 in each group) performed one-finger and multi-finger accurate force production tasks involving both steady-state and quick force pulse production. Finger interdependence (enslaving) and multi-finger synergies stabilizing total force were quantified. The stroke patients showed lower maximal finger forces, in particular in the contralesional hand, which also showed increased enslaving indices. Multi-finger synergies during steady-state force production were, however, unchanged after stroke. In contrast, a drop in the synergy index prior to the force pulse generation was significantly delayed in the stroke patients. Our results show that mild cortical stroke leads to no significant changes in multifinger synergies, but there is impairment in feed-forward adjustments of the synergies prior to a quick action, a drop in the maximal force production, and an increase in enslaving. We conclude that studies of synergies reveal two aspects of synergic control differentially affected by cortical stroke. PMID:26828408

  4. No evidence of expertise-related changes in muscle synergies during rowing.

    PubMed

    Turpin, Nicolas A; Guével, Arnaud; Durand, Sylvain; Hug, François

    2011-12-01

    The purpose of the present study was to determine whether expertise in rowing is driven by a specific structure in muscular coordination. We compared seven experienced rowers and eight untrained (i.e., inexperienced) subjects during rowing on an ergometer. Both surface electromyography activity and mechanical patterns (forces exerted at the handle and the foot-stretcher) were recorded during a high intensity rowing exercise. A non-negative matrix factorization was applied to 23 electromyographic patterns to differentiate muscle synergies. Results showed that expertise was not associated with different dimensionality in the electromyographic data and that three muscle synergies were sufficient to explain the majority of the variance accounted for (i.e., >90% of the total variance) in the two populations. The synergies extracted were similar in the two populations, with identical functional roles. While the temporal organization of the propulsive synergies was very similar, slight differences were found in the composition of the muscle synergies (muscle synergy vectors) between the two populations. The results suggests that rowing expertise would not require the development of novel muscle synergies but would imply intrinsic synergies already used in different behaviors. Performance in rowing is more probably linked to adjustments in the mechanical output of the muscle synergies rather than to differences in the shape and timing of their activations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Additivity and synergy between an antimicrobial peptide and inhibitory ions.

    PubMed

    Walkenhorst, William F; Sundrud, Justine N; Laviolette, Joshua M

    2014-09-01

    Recently we described the pH dependence of activity for a family of cationic antimicrobial peptides (CAMPs) selected from a combinatorial library. In the current work we report on the effects of toxic ions (Cu(2+), Zn(2+), and F(-)) and the chelator EDTA on the activity profiles of one member of this family, the 12-residue cationic antimicrobial peptide *ARVA, against a panel of microorganisms. All four ions exhibited either synergy or additivity with *ARVA for all organisms tested with the exception of *ARVA combined with NaF against Candida albicans which exhibited indifference. CuCl2 and ZnCl2 exhibited synergy with *ARVA against both the Gram negative Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus as well as strong additivity against Escherichia coli at submillimolar concentrations. The chelator EDTA was synergistic with *ARVA against the two Gram negative organisms but showed only simple additivity with S. aureus and C. albicans despite their much lower MICs with EDTA. This effect may be related to the known differences in the divalent ion binding properties of the Gram negative LPS layer as compared to the peptidoglycan layer of the Gram positive organism. Unlike the other ions, NaF showed only additivity or indifference when combined with *ARVA and required much higher concentrations for activity. The yeast C. albicans did not show synergy or strong additivity with any of the inhibitory compounds tested. The effects of toxic ions and chelators observed here have important implications for applications using CAMPs and for the design of novel formulations involving CAMPs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Force-stabilizing synergies in motor tasks involving two actors

    PubMed Central

    Solnik, Stanislaw; Reschechtko, Sasha; Wu, Yen-Hsun; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2015-01-01

    We investigated the ability of two persons to produce force-stabilizing synergies in accurate multi-finger force production tasks under visual feedback on the total force only. The subjects produced a time profile of total force (the sum of two hand forces in one-person tasks and the sum of two subject forces in two-person tasks) consisting of a ramp-up, steady-state, and ramp-down segments; the steady-state segment was interrupted in the middle by a quick force pulse. Analyses of the structure of inter-trial finger force variance, motor equivalence, anticipatory synergy adjustments (ASAs), and the unintentional drift of the sharing pattern were performed. The two-person performance was characterized by a dramatically higher amount of inter-trial variance that did not affect total force, higher finger force deviations that did not affect total force (motor equivalent deviations), shorter ASAs, and larger drift of the sharing pattern. The rate of sharing pattern drift correlated with the initial disparity between the forces produced by the two persons (or two hands). The drift accelerated following the quick force pulse. Our observations show that sensory information on the task-specific performance variable is sufficient for the organization of performance-stabilizing synergies. They suggest, however, that two actors are less likely to follow a single optimization criterion as compared to a single performer. The presence of ASAs in the two-person condition might reflect fidgeting by one or both of the subjects. We discuss the characteristics of the drift in the sharing pattern as reflections of different characteristic times of motion within the sub-spaces that affect and do not affect salient performance variables. PMID:26105756

  7. Force-stabilizing synergies in motor tasks involving two actors.

    PubMed

    Solnik, Stanislaw; Reschechtko, Sasha; Wu, Yen-Hsun; Zatsiorsky, Vladimir M; Latash, Mark L

    2015-10-01

    We investigated the ability of two persons to produce force-stabilizing synergies in accurate multi-finger force production tasks under visual feedback on the total force only. The subjects produced a time profile of total force (the sum of two hand forces in one-person tasks and the sum of two subject forces in two-person tasks) consisting of a ramp-up, steady-state, and ramp-down segments; the steady-state segment was interrupted in the middle by a quick force pulse. Analyses of the structure of inter-trial finger force variance, motor equivalence, anticipatory synergy adjustments (ASAs), and the unintentional drift of the sharing pattern were performed. The two-person performance was characterized by a dramatically higher amount of inter-trial variance that did not affect total force, higher finger force deviations that did not affect total force (motor equivalent deviations), shorter ASAs, and larger drift of the sharing pattern. The rate of sharing pattern drift correlated with the initial disparity between the forces produced by the two persons (or two hands). The drift accelerated following the quick force pulse. Our observations show that sensory information on the task-specific performance variable is sufficient for the organization of performance-stabilizing synergies. They suggest, however, that two actors are less likely to follow a single optimization criterion as compared to a single performer. The presence of ASAs in the two-person condition might reflect fidgeting by one or both of the subjects. We discuss the characteristics of the drift in the sharing pattern as reflections of different characteristic times of motion within the subspaces that affect and do not affect salient performance variables.

  8. Strategies for Fostering Synergy between Neuroscience Programs and Chemistry Departments

    PubMed Central

    Ulness, Darin J.; Mach, Julie R.

    2011-01-01

    The successful model of the Neuroscience Program at Concordia College is used as a source of illustrative examples in a presentation of strategies to foster synergy between neuroscience programs and chemistry departments. Chemistry is an increasing voice in the dialog of modern neuroscience. To be well-prepared to engage in this dialog, students must have strong chemistry training and be comfortable applying it to situations in neuroscience. The strategies presented here are designed to stimulate thought and discussion in the undergraduate neuroscience education community. Hopefully this will lead to greater interaction between chemistry and neuroscience at the undergraduate level in other institutions. PMID:23626488

  9. Interdisciplinary evidence-based practice: moving from silos to synergy.

    PubMed

    Newhouse, Robin P; Spring, Bonnie

    2010-01-01

    Despite the assumption that health care providers work synergistically in practice, professions have tended to be more exclusive than inclusive when it comes to educating students in a collaborative approach to interdisciplinary evidence-based practice (EBP). This article explores the state of academic and clinical training regarding interdisciplinary EBP, describes efforts to foster interdisciplinary EBP, and suggests strategies to accelerate the translation of EBP across disciplines. Moving from silos to synergy in interdisciplinary EBP will require a paradigm shift. Changes can be leveraged professionally and politically using national initiatives currently in place on improving quality and health care reform.

  10. Staged and effortless explantation of CircuLite Synergy micropump.

    PubMed

    Mohite, Prashant N; Sabashnikov, Anton; Garcia, Diana; Zych, Bartlomeij; Simon, Andre R

    2014-09-01

    Synergy(®) micropump was implanted as a bridge to heart transplantation in a middle-age lady with chronic advanced heart failure due to dilated cardiomyopathy. After a good initial recovery, patient was discharged to ward, where her stay was prolonged due to non-healing operative wound over the micropump and recurrent gastrointestinal bleeding. After 3 months of therapy, the heart seemed to be recovered and the micropump was explanted. In view of the patient's bleeding tendency, the micropump was explanted in staged manner.

  11. Interdisciplinary Evidence-based Practice: Moving from Silos to Synergy

    PubMed Central

    Newhouse, Robin P.; Spring, Bonnie

    2010-01-01

    Despite the assumption that health care providers work synergistically in practice, professions have tended to be more exclusive than inclusive when it comes to educating students in a collaborative approach to interdisciplinary evidence-based practice (EBP). This article explores the state of academic and clinical training regarding interdisciplinary EBP, describes efforts to foster interdisciplinary EBP, and suggests strategies to accelerate the translation of EBP across disciplines. Moving from silos to synergy in interdisciplinary EBP will require a paradigm shift. Changes can be leveraged professionally and politically using national initiatives currently in place on improving quality and health care reform. PMID:21074648

  12. Is interindividual variability of EMG patterns in trained cyclists related to different muscle synergies?

    PubMed

    Hug, François; Turpin, Nicolas A; Guével, Arnaud; Dorel, Sylvain

    2010-06-01

    Our aim was to determine whether muscle synergies are similar across trained cyclists (and thus whether the same locomotor strategies for pedaling are used), despite interindividual variability of individual EMG patterns. Nine trained cyclists were tested during a constant-load pedaling exercise performed at 80% of maximal power. Surface EMG signals were measured in 10 lower limb muscles. A decomposition algorithm (nonnegative matrix factorization) was applied to a set of 40 consecutive pedaling cycles to differentiate muscle synergies. We selected the least number of synergies that provided 90% of the variance accounted for VAF. Using this criterion, three synergies were identified for all of the subjects, accounting for 93.5+/-2.0% of total VAF, with VAF for individual muscles ranging from 89.9+/-8.2% to 96.6+/-1.3%. Each of these synergies was quite similar across all subjects, with a high mean correlation coefficient for synergy activation coefficients (0.927+/-0.070, 0.930+/-0.052, and 0.877+/-0.110 for synergies 1-3, respectively) and muscle synergy vectors (0.873+/-0.120, 0.948+/-0.274, and 0.885+/-0.129 for synergies 1-3, respectively). Despite a large consistency across subjects in the weighting of several monoarticular muscles into muscle synergy vectors, we found larger interindividual variability for another monoarticular muscle (soleus) and for biarticular muscles (rectus femoris, gastrocnemius lateralis, biceps femoris, and semimembranosus). This study demonstrated that pedaling is accomplished by the combination of the similar three muscle synergies among trained cyclists. The interindividual variability of EMG patterns observed during pedaling does not represent differences in the locomotor strategy for pedaling.

  13. Inter-subject variability of muscle synergies during bench press in power lifters and untrained individuals.

    PubMed

    Kristiansen, M; Madeleine, P; Hansen, E A; Samani, A

    2015-02-01

    The purpose of the study was to elucidate the role of expertise on muscle synergies involved in bench press. Ten expert power lifters (EXP) and nine untrained participants (UNT) completed three sets of eight repetitions at 60% of three repetition maximum in bench press. Muscle synergies were extracted from surface electromyography data of 21 bench press cycles using non-negative matrix factorization algorithm. The synergy activation coefficient represents the relative contribution of the muscle synergy to the overall muscle activity pattern, while the muscle synergy vector represents the relative weighting of each muscle within each synergy. Describing more than 90% of the variability, two muscle synergies reflected the eccentric and concentric phase. The cross-correlations (ρ(max)) for synergy activation coefficient 2 (concentric phase) were 0.83 [0.71;0.88] and 0.59 [0.49;0.77] [Median ρ(max) (25th;75th percentile)] (P = 0.001) in UNT and EXP, respectively. Median correlation coefficient (ρ) for muscle synergy vector 2 was 0.15 [-0.08;0.46] and 0.48 [0.02;0.70] (P = 0.03) in UNT and EXP, respectively. Thus, EXP showed larger inter-subject variability than UNT in the synergy activation coefficient during the concentric phase, while the muscle synergy vectors were less variable in EXP. This points at the importance of a specialized neural strategy in elite bench press performance. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Are movement disorders and sensorimotor injuries pathologic synergies? When normal multi-joint movement synergies become pathologic.

    PubMed

    Santello, Marco; Lang, Catherine E

    2014-01-01

    The intact nervous system has an exquisite ability to modulate the activity of multiple muscles acting at one or more joints to produce an enormous range of actions. Seemingly simple tasks, such as reaching for an object or walking, in fact rely on very complex spatial and temporal patterns of muscle activations. Neurological disorders such as stroke and focal dystonia affect the ability to coordinate multi-joint movements. This article reviews the state of the art of research of muscle synergies in the intact and damaged nervous system, their implications for recovery and rehabilitation, and proposes avenues for research aimed at restoring the nervous system's ability to control movement.

  15. Potent Synergy between Spirocyclic Pyrrolidinoindolinones and Fluconazole against Candida albicans.

    PubMed

    Premachandra, Ilandari Dewage Udara Anulal; Scott, Kevin A; Shen, Chengtian; Wang, Fuqiang; Lane, Shelley; Liu, Haoping; Van Vranken, David L

    2015-10-01

    A spiroindolinone, (1S,3R,3aR,6aS)-1-benzyl-6'-chloro-5-(4-fluorophenyl)-7'-methylspiro[1,2,3a,6a-tetrahydropyrrolo[3,4-c]pyrrole-3,3'-1H-indole]-2',4,6-trione, was previously reported to enhance the antifungal effect of fluconazole against Candida albicans. A diastereomer of this compound was synthesized, along with various analogues. Many of the compounds were shown to enhance the antifungal effect of fluconazole against C. albicans, some with exquisite potency. One spirocyclic piperazine derivative, which we have named synazo-1, was found to enhance the effect of fluconazole with an EC50 value of 300 pM against a susceptible strain of C. albicans and going as low as 2 nM against some resistant strains. Synazo-1 exhibits true synergy with fluconazole, with an FIC index below 0.5 in the strains tested. Synazo-1 exhibited low toxicity in mammalian cells relative to the concentrations required for antifungal synergy.

  16. Discovering Pair-wise Synergies in Microarray Data

    PubMed Central

    Chen, Yuan; Cao, Dan; Gao, Jun; Yuan, Zheming

    2016-01-01

    Informative gene selection can have important implications for the improvement of cancer diagnosis and the identification of new drug targets. Individual-gene-ranking methods ignore interactions between genes. Furthermore, popular pair-wise gene evaluation methods, e.g. TSP and TSG, are helpless for discovering pair-wise interactions. Several efforts to discover pair-wise synergy have been made based on the information approach, such as EMBP and FeatKNN. However, the methods which are employed to estimate mutual information, e.g. binarization, histogram-based and KNN estimators, depend on known data or domain characteristics. Recently, Reshef et al. proposed a novel maximal information coefficient (MIC) measure to capture a wide range of associations between two variables that has the property of generality. An extension from MIC(X; Y) to MIC(X1; X2; Y) is therefore desired. We developed an approximation algorithm for estimating MIC(X1; X2; Y) where Y is a discrete variable. MIC(X1; X2; Y) is employed to detect pair-wise synergy in simulation and cancer microarray data. The results indicate that MIC(X1; X2; Y) also has the property of generality. It can discover synergic genes that are undetectable by reference feature selection methods such as MIC(X; Y) and TSG. Synergic genes can distinguish different phenotypes. Finally, the biological relevance of these synergic genes is validated with GO annotation and OUgene database. PMID:27470995

  17. Synergy 3000 CCS{trademark}: A new precision cleaning agent

    SciTech Connect

    Hand, T.; Bohnert, G.; Carter, R.; Flink, F.; Powers, M.

    1995-11-01

    Some of the semiaqueous cleaners in use employ terpenes as the cleaning agent, usually followed by a water rinse to remove the cleaner. Because terpenes are not miscible in water, these cleaners require the addition of surfactant to facilitate the water rinsing step, complicating recycling of the cleaner for reuse. A new critical cleaning solvent (CCS), named Synergy 3000 CCS{trademark} is a proprietary blend of terpene and heterocyclic alcohol solvents formulated to remove polar and nonpolar contaminants such as rosin fluxes, machining oils, greases, waxes, tape adhesive residue and handling soils from electrical and mechanical components and assemblies. It is a high purity, low odor solvent that does not require surfactants for water rinsing, and is derived from naturally and annually renewable resources. It demonstrates a high loading capacity for soils, grease, and contaminants and is compatible with a wide range of engineering materials commonly used in electronics applications. All of its components are biodegradable, are approved as food additives, and have no known human health effects. It has been formulated to have a higher flash point than citrus terpenes and flammable alcohols, and can be recycled via distillation. This paper presents some of the tests and evaluations that were performed during the development of Synergy 3000 CCS{trademark}, hereafter referred to as CCS, as well as current and potential applications for the solvent.

  18. Supersite synergies improve volcanic SO2 flux monitoring

    NASA Astrophysics Data System (ADS)

    Burton, Michael; Di Muro, Andrea

    2014-05-01

    Both the Etna, Italy, volcano and Piton de la Fournaise (PdF), France, volcano Supersites are monitored with networks of scanning UV spectrometers. An ongoing collaboration between INGV and IPGP researchers has led to a dynamic technology transfer of novel new data analysis procedures to both networks. This new approach has been custom built to account for the particularities of both Supersites. For the Etna Supersite, the large, continuous gas emission, wide plumes and high plume height produce significant challenges for automatic networks of scanning UV spectrometers, due to the lack of a clear sky spectrum and light dilution effects. The novel approach presented here addresses both these issues. In the case of the PdF Supersite, negligible SO2 efflux is observed apart from immediately before, during and after volcanic eruptions. This necessitates a very sensitive and precise automatic analysis in order to detect the first whiffs of SO2 which act as a precursor to eruptive activity. Exactly such a solution has been developed and is demonstrated here. The technology transfer between these two Supersites promotes synergistic advantages, improving the monitoring capacity at both sites. However, until now such synergies have come about exclusively through local support from each site and the initiative of individual researchers. The full potential of such synergies can be greatly enhanced in the future if they are fully recognised and supported within the context of the Supersite initiative.

  19. Food synergy: the key to a healthy diet.

    PubMed

    Jacobs, David R; Tapsell, Linda C

    2013-05-01

    Food synergy is the concept that the non-random mixture of food constituents operates in concert for the life of the organism eaten and presumably for the life of the eater. Isolated nutrients have been extensively studied in well-designed, long-term, large randomised clinical trials, typically with null and sometimes with harmful effects. Therefore, although nutrient deficiency is a known phenomenon, serious for the sufferer, and curable by taking the isolated nutrient, the effect of isolated nutrients or other chemicals derived from food on chronic disease, when that chemical is not deficient, may not have the same beneficial effect. It appears that the focus on nutrients rather than foods is in many ways counterproductive. This observation is the basis for the argument that nutrition research should focus more strongly on foods and on dietary patterns. Unlike many dietary phenomena in nutritional epidemiology, diet pattern appears to be highly correlated over time within person. A consistent and robust conclusion is that certain types of beneficial diet patterns, notably described with words such as 'Mediterranean' and 'prudent', or adverse patterns, often described by the word 'Western', predict chronic disease. Food is much more complex than drugs, but essentially uninvestigated as food or pattern. The concept of food synergy leads to new thinking in nutrition science and can help to forge rational nutrition policy-making and to determine future nutrition research strategies.

  20. Potent Synergy between Spirocyclic Pyrrolidinoindolinones and Fluconazole against Candida albicans

    PubMed Central

    Premachandra, Ilandari Dewage Udara Anulal; Scott, Kevin A.; Shen, Chengtian; Wang, Fuqiang; Lane, Shelley; Liu, Haoping

    2015-01-01

    A spiroindolinone (1S,3R,3aR,6aS)-1-benzyl-6′-chloro-5-(4-fluorophenyl)-7′-methylspiro[1,2,3a,6a-tetrahydropyrrolo[3,4-c]pyrrole-3,3′-1H-indole]-2′,4,6-trione was previously reported to enhance the antifungal effect of fluconazole against C. albicans. A diastereomer of that compound was synthesized, along with various analogues. Many of the compounds were shown to enhance the antifungal effect of fluconazole against C. albicans, some with exquisite potency. One spirocyclic piperazine derivative, which we have named synazo-1, enhanced the effect of fluconazole with EC50 of 300 pM against a susceptible strain of C. albicans and as low as 2 nM against some resistant strains. Synazo-1 exhibits true synergy with fluconazole with an FIC index below 0.5 in the strains tested. Synazo-1 exhibited low toxicity in mammalian cells relative to the concentrations required for the antifungal synergy. PMID:26263912

  1. Intra-Personal and Inter-Personal Kinetic Synergies During Jumping

    PubMed Central

    Slomka, Kajetan; Juras, Grzegorz; Sobota, Grzegorz; Furmanek, Mariusz; Rzepko, Marian; Latash, Mark L.

    2015-01-01

    We explored synergies between two legs and two subjects during preparation for a long jump into a target. Synergies were expected during one-person jumping. No such synergies were expected between two persons jumping in parallel without additional contact, while synergies were expected to emerge with haptic contact and become stronger with strong mechanical contact. Subjects performed jumps either alone (each foot standing on a separate force platform) or in dyads (parallel to each other, each person standing on a separate force platform) without any contact, with haptic contact, and with strong coupling. Strong negative correlations between pairs of force variables (strong synergies) were seen in the vertical force in one-person jumps and weaker synergies in two-person jumps with the strong contact. For other force variables, only weak synergies were present in one-person jumps and no negative correlations between pairs of force variable for two-person jumps. Pairs of moment variables from the two force platforms at steady state showed positive correlations, which were strong in one-person jumps and weaker, but still significant, in two-person jumps with the haptic and strong contact. Anticipatory synergy adjustments prior to action initiation were observed in one-person trials only. We interpret the different results for the force and moment variables at steady state as reflections of postural sway. PMID:26839608

  2. A model-based approach to predict muscle synergies using optimization: application to feedback control.

    PubMed

    Sharif Razavian, Reza; Mehrabi, Naser; McPhee, John

    2015-01-01

    This paper presents a new model-based method to define muscle synergies. Unlike the conventional factorization approach, which extracts synergies from electromyographic data, the proposed method employs a biomechanical model and formally defines the synergies as the solution of an optimal control problem. As a result, the number of required synergies is directly related to the dimensions of the operational space. The estimated synergies are posture-dependent, which correlate well with the results of standard factorization methods. Two examples are used to showcase this method: a two-dimensional forearm model, and a three-dimensional driver arm model. It has been shown here that the synergies need to be task-specific (i.e., they are defined for the specific operational spaces: the elbow angle and the steering wheel angle in the two systems). This functional definition of synergies results in a low-dimensional control space, in which every force in the operational space is accurately created by a unique combination of synergies. As such, there is no need for extra criteria (e.g., minimizing effort) in the process of motion control. This approach is motivated by the need for fast and bio-plausible feedback control of musculoskeletal systems, and can have important implications in engineering, motor control, and biomechanics.

  3. A model-based approach to predict muscle synergies using optimization: application to feedback control

    PubMed Central

    Sharif Razavian, Reza; Mehrabi, Naser; McPhee, John

    2015-01-01

    This paper presents a new model-based method to define muscle synergies. Unlike the conventional factorization approach, which extracts synergies from electromyographic data, the proposed method employs a biomechanical model and formally defines the synergies as the solution of an optimal control problem. As a result, the number of required synergies is directly related to the dimensions of the operational space. The estimated synergies are posture-dependent, which correlate well with the results of standard factorization methods. Two examples are used to showcase this method: a two-dimensional forearm model, and a three-dimensional driver arm model. It has been shown here that the synergies need to be task-specific (i.e., they are defined for the specific operational spaces: the elbow angle and the steering wheel angle in the two systems). This functional definition of synergies results in a low-dimensional control space, in which every force in the operational space is accurately created by a unique combination of synergies. As such, there is no need for extra criteria (e.g., minimizing effort) in the process of motion control. This approach is motivated by the need for fast and bio-plausible feedback control of musculoskeletal systems, and can have important implications in engineering, motor control, and biomechanics. PMID:26500530

  4. Stability of Hand Force Production: I. Hand Level Control Variables and Multi-Finger Synergies.

    PubMed

    Reschechtko, Sasha; Latash, Mark L

    2017-09-13

    We combined the theory of neural control of movement with referent coordinates and the uncontrolled manifold hypothesis to explore synergies stabilizing the hand action in accurate four-finger pressing tasks. In particular, we tested a hypothesis on two classes of synergies - those among the four fingers and those within a pair of control variables - stabilizing hand action under visual feedback and disappearing without visual feedback. Subjects performed four-finger total force and moment production tasks under visual feedback; the feedback was later partially or completely removed. The "inverse piano" device was used to lift and lower the fingers smoothly at the beginning and at the end of each trial. These data were used to compute pairs of hypothetical control variables. Inter-trial analysis of variance within the finger force space was used to quantify multi-finger synergies stabilizing both force and moment. A data permutation method was used to quantify synergies among control variables. Under visual feedback, synergies in the spaces of finger forces and hypothetical control variables were found to stabilize total force. Without visual feedback, the subjects showed a force drift to lower magnitudes and a moment drift toward pronation. This was accompanied by disappearance of the four-finger synergies and strong attenuation of the control-variable synergies. The indices of the two types of synergies correlated with each other. The findings are interpreted within the scheme with multiple levels of abundant variables. Copyright © 2017, Journal of Neurophysiology.

  5. Actinide incineration in fusion-fission hybrid-A model nuclear synergy

    NASA Astrophysics Data System (ADS)

    Taczanowski, Stefan

    2012-06-01

    The alliance of fusion with fission is a cause worthy of great efforts, as being able to ease (if not even to solve) serious problems that both these forms of nuclear energy are facing. Very high investment costs caused by tokamak enormous size, material consumption and difficult technology put in doubt whether alone the minute demand for fuel raw material (Li) and lack of danger of uncontrolled supercriticality prove sufficient for making it competitive. Preliminary evaluations demonstrated that a radical shift of energy production i.e. the energy gain from plasma to fission blanket is feasible [1]. A reduction in the fusion component to about 2% at given system power allows for a radical drop in plasma Q down to the values of ˜0.2-0.3 achievable in small systems [2] (e.g. mirrors) of sizes comparable to fission reactors. As a result in a Fusion-Driven Actinide Incinerator (FDI) both radiations from the plasma: corpuscular (i.e. neutrons and ions) and photons are drastically reduced. Thus are too, first of all - the neutron induced radiation damage: DPA and gas production, then plasma-wall interactions. The fundamental safety of the system has been proved by simulation of its collapse that has shown preservation its subcriticality. Summarizing, all the above problems may be solved with synergic union of fusion with fission embodied in the concept of FDI - small and less expensive.

  6. Stakeholders' Partnership Synergy and its Impact on Commercialization of New Technologies: Renewable Energy Industry Study

    NASA Astrophysics Data System (ADS)

    Manoukian, Agassy

    This study examines the impact of the partnership synergy and inter-organizational cooperation between government (federal, state, local), public agencies, private companies and local on successful communities commercialization of renewable energy (RE) technologies. The study produced several interesting results: (i) a model was developed that analyzes the role of partnership synergy on technology commercialization, conceptualizing the relationships among partnership drivers, partnership synergy, resources, and commercialization performance; (ii) the major drivers motivating stakeholders of RE projects have been identified and differences between those were recognized; (iii) a novel theoretical and analytical basis of commercialization through partnership and synergy has been established; (iv) interrelated effects of partnership synergy, dynamic capabilities and technology implementation mechanisms on various performance measures of project success have also been identified. Overall, this study and its conceptual model provide a richer understanding of the factors that lead to successful commercialization of RE technologies, possibly applicable to other infrastructural projects, as well.

  7. Assessment of Upper Limb Motor Dysfunction for Children with Cerebral Palsy Based on Muscle Synergy Analysis

    PubMed Central

    Tang, Lu; Chen, Xiang; Cao, Shuai; Wu, De; Zhao, Gang; Zhang, Xu

    2017-01-01

    Muscle synergies are considered to be building blocks underlying motor behaviors. The goal of this study is to explore an objective and effective method to assess the upper limb motor dysfunction of cerebral palsy (CP) children from the aspect of muscle synergy analysis. Fourteen CP children and 10 typically developed (TD) children were recruited to perform three similar upper limb motion tasks related to the movements of elbow and shoulder joints, and surface electromyographic (sEMG) signals were recorded from 10 upper arm and shoulder muscles involved in the defined tasks. Non-negative matrix factorization algorithm was used to extract muscle synergies and the corresponding activation patterns during three similar tasks. For each subject in TD group, four muscle synergies were extracted in each task. Whereas, fewer mature synergies were recruited in CP group, and many abnormal synergy structures specific to CP group appeared. In view of neuromuscular control strategy differences, three synergy-related parameters were proposed and synergy structure similarity coefficient was found to have high ability in depicting the inter-subject similarity within task and the intra-subject similarity between tasks. Seven upper limb assessment (UPA) metrics, which were defined as the combinations of synergy structure similarity coefficients of three tasks, were proposed to assess the upper limb motor function of CP children. The experimental results demonstrated that these UPA metrics were able to assess upper limb motor function comprehensively and effectively. The proposed assessment method can serve as a promising approach to quantify the abnormality of muscle synergies, thus offering potential to derive a physiologically based quantitative index for assessing upper limb motor function in CP clinical diagnosis and rehabilitation. PMID:28386223

  8. Muscle synergies underlying sit-to-stand tasks in elderly people and their relationship with kinetic characteristics.

    PubMed

    Hanawa, Hiroki; Kubota, Keisuke; Kokubun, Takanori; Marumo, Tatsuya; Hoshi, Fumihiko; Kobayashi, Akira; Kanemura, Naohiko

    2017-08-24

    Physiological evidence suggests that the nervous system controls motion by using a low-dimensional synergy organization for muscle activation. Because the muscle activation produces joint torques, kinetic changes accompanying aging can be related to changes in muscle synergies. We explored the effects of aging on muscle synergies underlying sit-to-stand tasks, and examined their relationships with kinetic characteristics. Four younger and three older adults performed the sit-to-stand task at two speeds. Subsequently, we extracted the muscle synergies used to perform these tasks. Hierarchical cluster analysis was used to classify these synergies. We also calculated kinetic variables to compare the groups. Three independent muscle synergies generally appeared in each subject. The spatial structure of these synergies was similar across age groups. The change in motion speed affected only the temporal structure of these synergies. However, subject-specific muscle synergies and kinetic variables existed. Our results suggest common muscle synergies underlying the sit-to-stand task in both young and elderly adults. People may actively change only the temporal structure of each muscle synergy. The precise subject-specific structuring of each muscle synergy may incorporate knowledge of the musculoskeletal kinetics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Building coherence and synergy among global health initiatives.

    PubMed

    Zicker, Fabio; Faid, Miriam; Reeder, John; Aslanyan, Garry

    2015-12-09

    The fast growth of global health initiatives (GHIs) has raised concerns regarding achievement of coherence and synergy among distinct, complementary and sometimes competing activities. Herein, we propose an approach to compare GHIs with regard to their main purpose and operational aspects, using the Special Programme for Research and Training in Tropical Diseases (TDR/WHO) as a case study. The overall goal is to identify synergies and optimize efforts to provide solutions to reduce the burden of diseases. Twenty-six long-established GHIs were identified from among initiatives previously associated/partnered with TDR/WHO. All GHIs had working streams that would benefit from linking to the capacity building or implementation research focus of TDR. Individual profiles were created using a common template to collect information on relevant parameters. For analytical purposes, GHIs were simultaneously clustered in five and eight groups according to their 'intended outcome' and 'operational framework', respectively. A set of specific questions was defined to assess coherence/alignment against a TDR reference profile by attributing a score, which was subsequently averaged per GHI cluster. GHI alignment scores for intended outcome were plotted against scores for operational framework; based on the analysis of coherence/alignment with TDR functions and operations, a risk level (high, medium or low) of engagement was attributed to each GHI. The process allowed a bi-dimensional ranking of GHIs with regards to how adequately they fit with or match TDR features and perspectives. Overall, more consistence was observed with regard to the GHIs' main goals and expected outcomes than with their operational aspects, reflecting the diversity of GHI business models. Analysis of coherence indicated an increasing common trend for enhancing the engagement of developing country stakeholders, building research capacity and optimization of knowledge management platforms in support of

  10. Adaptive control for backward quadrupedal walking. II. Hindlimb muscle synergies.

    PubMed

    Buford, J A; Smith, J L

    1990-09-01

    1. To compare the basic hindlimb synergies for backward (BWD) and forward (FWD) walking, electromyograms (EMG) were recorded from selected flexor and extensor muscles of the hip, knee, and ankle joints from four cats trained to perform both forms of walking at a moderate walking speed (0.6 m/s). For each muscle, EMG measurements included burst duration, burst latencies referenced to the time of paw contact or paw off, and integrated burst amplitudes. To relate patterns of muscle activity to various phases of the step cycle, EMG records were synchronized with kinematic data obtained by digitizing high-speed ciné film. 2. Hindlimb EMG data indicate that BWD walking in the cat was characterized by reciprocal flexor and extensor synergies similar to those for FWD walking, with flexors active during swing and extensors active during stance. Although the underlying synergies were similar, temporal parameters (burst latencies and durations) and amplitude levels for specific muscles were different for BWD and FWD walking. 3. For both directions, iliopsoas (IP) and semitendinosus (ST) were active as the hip and knee joints flexed at the onset of swing. For BWD walking, IP activity decreased early, and ST activity continued as the hip extended and the knee flexed. For FWD walking, in contrast, ST activity ceased early, and IP activity continued as the hip flexed and the knee extended. For both directions, tibialis anterior (TA) was active throughout swing as the ankle flexed and then extended. A second ST burst occurred at the end of swing for FWD walking as hip flexion and knee extension slowed for paw contact. 4. For both directions, knee extensor (vastus lateralis, VL) activity began at paw contact. Ankle extensor (lateral gastrocnemius, LG) activity began during midswing for BWD walking but just before paw contact for FWD walking. At the ankle joint, flexion during the E2 phase (yield) of stance was minimal or absent for BWD walking, and ankle extension during BWD

  11. Synergy between cellulases and pectinases in the hydrolysis of hemp.

    PubMed

    Zhang, Junhua; Pakarinen, Annukka; Viikari, Liisa

    2013-02-01

    The impact of pectinases in the hydrolysis of fresh, steam-exploded and ensiled hemp was investigated and the synergy between cellulases, pectinases and xylanase in the hydrolysis was evaluated. About half; 59.3% and 46.1% of pectin in the steam-exploded and ensiled hemp, respectively, could be removed by a low dosage of pectinases used. Pectinases were more efficient than xylanase in the hydrolysis of fresh and ensiled hemp whereas xylanase showed higher hydrolytic efficiency than the pectinase preparation used in the hydrolysis of steam-exploded hemp. Clear synergistic action between cellulases and xylanase could be observed in the hydrolysis of steam-exploded hemp. Supplementation of pectinase resulted in clear synergism with cellulases in the hydrolysis of all hemp substrates. Highest hydrolysis yield of steam-exploded hemp was obtained in the hydrolysis with cellulases and xylanase. In the hydrolysis of ensiled hemp, the synergistic action between cellulases and pectinases was more obvious for efficient hydrolysis.

  12. Creating partnership synergy: the critical role of community stakeholders.

    PubMed

    Lasker, Roz D; Weiss, Elisa S

    2003-01-01

    While there are compelling reasons for professionals in health and human services administration to collaborate with other stakeholders in the community, the experience with such partnerships thus far has generated more frustration than results. Recent research on partnership synergy--a key indicator of a successful collaboration process--suggests that many of these partnerships are inadvertently compromising their own success by the way they involve community stakeholders. Applying research findings to current practice, this article shows how the ability of a partnership to understand and address complex problems--and sustain interventions over time--is related to who is involved in the partnership, how community stakeholders are involved, and the leadership and management of the partnership. The article addresses key challenges that health and human services administrators face when they seek to optimize the role of community stakeholders in partnership.

  13. Hierarchical nanostructure and synergy of multimolecular signalling complexes

    PubMed Central

    Sherman, Eilon; Barr, Valarie A.; Merrill, Robert K.; Regan, Carole K.; Sommers, Connie L.; Samelson, Lawrence E.

    2016-01-01

    Signalling complexes are dynamic, multimolecular structures and sites for intracellular signal transduction. Although they play a crucial role in cellular activation, current research techniques fail to resolve their structure in intact cells. Here we present a multicolour, photoactivated localization microscopy approach for imaging multiple types of single molecules in fixed and live cells and statistical tools to determine the nanoscale organization, topology and synergy of molecular interactions in signalling complexes downstream of the T-cell antigen receptor. We observe that signalling complexes nucleated at the key adapter LAT show a hierarchical topology. The critical enzymes PLCγ1 and VAV1 localize to the centre of LAT-based complexes, and the adapter SLP-76 and actin molecules localize to the periphery. Conditional second-order statistics reveal a hierarchical network of synergic interactions between these molecules. Our results extend our understanding of the nanostructure of signalling complexes and are relevant to studying a wide range of multimolecular complexes. PMID:27396911

  14. Star Formation Studies with SOFIA and its Synergy with TMT

    NASA Astrophysics Data System (ADS)

    De Buizer, James

    2014-07-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is a modified Boeing 747 aircraft equipped with a 2.5m telescope that performs observations at high altitude from the optical to the sub-mm. The observatory just reached full operational capability in April of this year. Given that it is slated for a 20-year mission lifetime, SOFIA will overlap TMT by more than a decade. I will discuss the contrasting and complementary features of SOFIA and TMT in the context of star formation, discuss some of the early results from SOFIA in this field, and finish with a discussion of how TMT data can enhance and extended our understanding of star formation processes.[This talk could also be generalized to discuss more about synergies between SOFIA and TMT in a broader context (not just star formation), should the organizers prefer that.

  15. Synergy of understanding dermatologic disease and epidermal biology.

    PubMed

    Stanley, John R

    2012-02-01

    Dermatologic disease, although seldom life threatening, can be extremely disfiguring and interfere with the quality of life. In addition, as opposed to other organs, just the aging of skin and its adnexal structure the hair follicle can result in cosmetic concerns that affect most of us. The articles in this dermatology Review Series demonstrate recent progress in understanding the cell biology and molecular pathophysiology of the epidermis and hair follicles, which harbor keratinocyte and melanocyte stem cells. They reveal a dynamic relationship between research and clinical care: knowledge of dermatologic disease has facilitated the understanding of the biology of the epidermis and, in turn, progress in basic science has informed our understanding of disease. This type of synergy is a profound strength of clinical research of the type that the JCI is dedicated to publishing.

  16. Synergies Between Quantum Mechanics and Machine Learning in Reaction Prediction.

    PubMed

    Sadowski, Peter; Fooshee, David; Subrahmanya, Niranjan; Baldi, Pierre

    2016-11-28

    Machine learning (ML) and quantum mechanical (QM) methods can be used in two-way synergy to build chemical reaction expert systems. The proposed ML approach identifies electron sources and sinks among reactants and then ranks all source-sink pairs. This addresses a bottleneck of QM calculations by providing a prioritized list of mechanistic reaction steps. QM modeling can then be used to compute the transition states and activation energies of the top-ranked reactions, providing additional or improved examples of ranked source-sink pairs. Retraining the ML model closes the loop, producing more accurate predictions from a larger training set. The approach is demonstrated in detail using a small set of organic radical reactions.

  17. Hierarchical nanostructure and synergy of multimolecular signalling complexes

    NASA Astrophysics Data System (ADS)

    Sherman, Eilon; Barr, Valarie A.; Merrill, Robert K.; Regan, Carole K.; Sommers, Connie L.; Samelson, Lawrence E.

    2016-07-01

    Signalling complexes are dynamic, multimolecular structures and sites for intracellular signal transduction. Although they play a crucial role in cellular activation, current research techniques fail to resolve their structure in intact cells. Here we present a multicolour, photoactivated localization microscopy approach for imaging multiple types of single molecules in fixed and live cells and statistical tools to determine the nanoscale organization, topology and synergy of molecular interactions in signalling complexes downstream of the T-cell antigen receptor. We observe that signalling complexes nucleated at the key adapter LAT show a hierarchical topology. The critical enzymes PLCγ1 and VAV1 localize to the centre of LAT-based complexes, and the adapter SLP-76 and actin molecules localize to the periphery. Conditional second-order statistics reveal a hierarchical network of synergic interactions between these molecules. Our results extend our understanding of the nanostructure of signalling complexes and are relevant to studying a wide range of multimolecular complexes.

  18. Anomalies and synergy in the caloric effects of magnetoelectrics

    NASA Astrophysics Data System (ADS)

    Anand, Shashwat; Waghmare, Umesh V.

    2014-12-01

    We determine isothermal entropy changes (Δ S) associated with electrocaloric, magnetocaloric, and the corresponding multicaloric effects in a model type-I multiferroic system using Landau-Devonshire thermodynamic analysis. We show that (a) the magnetocaloric effect exhibits an unexpected anomaly at the ferroelectric transition occurring at a high temperature, even in the absence of magnetic ordering, and (b) the synergy between electro- and magnetocaloric effects leads to a significantly enhanced multicaloric effect (\\mid Δ {{S}MultiCE}\\mid \\gt \\mid Δ {{S}ECE}\\mid +\\mid Δ {{S}MCE}\\mid ) over a wide temperature range when the difference in temperatures of magnetic and ferroelectric ordering (\\mid Δ {{T}C}\\mid =\\mid TCE-TCM\\mid ) is small. This result originate from the coupled thermal fluctuations of magnetic and electric order parameters. While the former is useful in detecting multiferroic materials from the measurements covering higher temperature transition alone, the latter augurs well for caloric applications of multiferroics.

  19. Emerging Synergy between Nanotechnology and Implantable Biosensors: A Review

    PubMed Central

    Vaddiraju, Santhisagar; Tomazos, Ioannis; Burgess, Diane J; Jain, Faquir C; Papadimitrakopoulos, Fotios

    2010-01-01

    The development of implantable biosensors for continuous monitoring of metabolites is an area of sustained scientific and technological interest. On the other hand, nanotechnology, a discipline which deals with the properties of materials at the nanoscale, is developing as a potent tool to enhance the performance of these biosensors. This article reviews the current state of implantable biosensors, highlighting the synergy between nanotechnology and sensor performance. Emphasis is placed on the electrochemical method of detection in light of its widespread usage and substantial nanotechnology-based improvements in various aspects of electrochemical biosensor performance. Finally, issues regarding toxicity and biocompatibility of nanomaterials, along with future prospects for the application of nanotechnology in implantable biosensors, are discussed. PMID:20042326

  20. Synergies and trade-offs in achieving global biodiversity targets.

    PubMed

    Di Marco, Moreno; Butchart, Stuart H M; Visconti, Piero; Buchanan, Graeme M; Ficetola, Gentile F; Rondinini, Carlo

    2016-02-01

    After their failure to achieve a significant reduction in the global rate of biodiversity loss by 2010, world governments adopted 20 new ambitious Aichi biodiversity targets to be met by 2020. Efforts to achieve one particular target can contribute to achieving others, but different targets may sometimes require conflicting solutions. Consequently, lack of strategic thinking might result, once again, in a failure to achieve global commitments to biodiversity conservation. We illustrate this dilemma by focusing on Aichi Target 11. This target requires an expansion of terrestrial protected area coverage, which could also contribute to reducing the loss of natural habitats (Target 5), reducing human-induced species decline and extinction (Target 12), and maintaining global carbon stocks (Target 15). We considered the potential impact of expanding protected areas to mitigate global deforestation and the consequences for the distribution of suitable habitat for >10,000 species of forest vertebrates (amphibians, birds, and mammals). We first identified places where deforestation might have the highest impact on remaining forests and then identified places where deforestation might have the highest impact on forest vertebrates (considering aggregate suitable habitat for species). Expanding protected areas toward locations with the highest deforestation rates (Target 5) or the highest potential loss of aggregate species' suitable habitat (Target 12) resulted in partially different protected area network configurations (overlapping with each other by about 73%). Moreover, the latter approach contributed to safeguarding about 30% more global carbon stocks than the former. Further investigation of synergies and trade-offs between targets would shed light on these and other complex interactions, such as the interaction between reducing overexploitation of natural resources (Targets 6, 7), controlling invasive alien species (Target 9), and preventing extinctions of native

  1. Catalyst and electrolyte synergy in Li-O2 batteries.

    PubMed

    Gittleson, Forrest S; Sekol, Ryan C; Doubek, Gustavo; Linardi, Marcelo; Taylor, André D

    2014-02-21

    Understanding the interactions between catalyst and electrolyte in Li-O2 systems is crucial to improving capacities, efficiencies, and cycle life. In this study, supported noble metal catalysts Pt/C, Pd/C, and Au/C were paired with popular Li-O2 electrolyte solvents dimethoxyethane (DME), tetraglyme (TEGDME), and dimethyl sulfoxide (DMSO). The effects of these combinations on stability, kinetics, and activity were assessed. We show evidence of a synergistic effect between Pt and Pd catalysts and a DMSO-based electrolyte which enhances the kinetics of oxygen reduction and evolution reactions. DME and TEGDME are more prone to decomposition and less kinetically favorable for oxygen reduction and evolution than DMSO. While the order of oxygen reduction onset potentials with each catalyst was found to be consistent across electrolyte (Pd > Pt > Au), larger overpotentials with DME and TEGDME, and negative shifts in onset after only five cycles favor the stability of a DMSO electrolyte. Full cell cycling experiments confirm that catalyst-DMSO combinations produce up to 9 times higher discharge capacities than the same with TEGDME after 20 cycles (∼707.4 vs. 78.8 mA h g(-1) with Pd/C). Ex situ EDS and in situ EIS analyses of resistive species in the cathode suggest that improvements in capacity with DMSO are due to a combination of greater electrolyte conductivity and catalyst synergies. Our findings demonstrate that co-selection of catalyst and electrolyte is necessary to exploit chemical synergies and improve the performance of Li-O2 cells.

  2. Marine parameters from synergy of optical and radar satellite data

    NASA Astrophysics Data System (ADS)

    Lehner, S.; Hoja, D.; Schulz-Stellenfleth, J.

    In 2001 the European Space Agency ESA will launch the earth observation satellite ENVISAT. It will carry several instruments that provide new opportunities to measure oceanographic variables. Together, they represent the main measurement techniques of satellite oceanography, and complement each other in an ideal manner. These instruments are to be used in synergy to: Improve the analysis of measured wind and ocean wave fields, and thereby improve weather forecasting at weather centers; Determine the extent and variables of sea ice and develop a five-day sea ice prediction model, to support maritime shipping and offshore activities; Monitor and map sediment and suspended matter transport in coastal regions, especially in areas with large river estuaries, which greatly affects shipping lanes, harbors, and dredging activities; Monitor hydrobiological and bio-geochemical variables related to water quality in coastal regions and large inland waters, which affects ecology, coastal development, aquaculture, drinking water supplies, and tourism. To prepare the oceanographic community to make best use of the ENVISAT sensors in the pre-launch phase, existing algorithms to derive marine parameters are used and validated using data from the ERS SAR, the ERS RA, SeaWiFS and IRS MOS sensors now in operation. Derived products are used to address problems that can best be tackled using the synergy of radar and optical data, such as the effect of surface slicks on radar wind measurements, of sea state on ocean color, of wind and waves on the resuspension of suspended matter, and of wind and waves on sea ice variables.

  3. GlobCurrent: Sentinel-3 Synergy in Action

    NASA Astrophysics Data System (ADS)

    Johannessen, J. A.; Chapron, B.; Collard, F.; Rio, M.-H.; Piolle, J.-F.; Quartly, G.; Shutler, J.; Escola, R.; Donlon, C.; Danielson, R.; Korosov, A.; Raj, R. P.; Kudryavtsev, V.; Roca, M.; Tournadre, J.; Larnicol, G.; Labroue, S.; Miller, P.; Nencioli, F.; Warren, M.; Hansen, M.

    2015-12-01

    The ESA Data User Element (DUE) funded GlobCurrent project (http://www.globcurrent.org) aims to: (i) advance the quantitative estimation of ocean surface currents from satellite sensor synergy; and (ii) demonstrate impact in user-led scientific, operational and commercial applications that, in turn, will improve and strengthen the uptake of satellite measurements. Today, a synergetic approach for quantitative analysis can build on high-resolution imaging radar and spectrometer data, infrared radiometer data and radar altimeter measurements. It will further integrate Sentinel-3 in combination with Sentinel-1 SAR data. From existing and past missions, it is often demonstrated that sharp gradients in the sea surface temperature (SST) field and the ocean surface chlorophyll-a distribution are spatially correlated with the sea surface roughness anomaly fields at small spatial scales, in the sub-mesocale (1-10 km) to the mesoscale (30-80 km). At the larger mesoscale range (>50 km), information derived from radar altimeters often depict the presence of coherent structures and eddies. The variability often appears largest in regions where the intense surface current regimes (>100 - 200 km) are found. These 2-dimensional structures manifested in the satellite observations represent evidence of the upper ocean (~100-200 m) dynamics. Whereas the quasi geostrophic assumption is valid for the upper ocean dynamics at the larger scale (>100 km), possible triggering mechanisms for the expressions at the mesoscale-to-sub-mesoscale may include spiraling tracers of inertial motion and the interaction of the wind-driven Ekman layer with the quasi-geostrophic current field. This latter, in turn, produces bands of downwelling (convergence) and upwelling (divergence) near fronts. A regular utilization of the sensor synergy approach with the combination of Sentinel-3 and Sentinel-1 will provide a highly valuable data set for further research and development to better relate the 2

  4. Effects of muscle fatigue on multi-muscle synergies.

    PubMed

    Singh, Tarkeshwar; Latash, Mark L

    2011-10-01

    We studied the effects of fatigue of ankle dorsiflexors on multi-muscle synergies defined as co-varied adjustments of elemental variables (M-modes) that stabilize a task-related performance variable (trajectory of the center of pressure, COP). M-modes were defined as muscle groups with parallel changes in activation levels. Healthy participants performed voluntary body sway in the anterior-posterior direction while trying to minimize sway in the medio-lateral direction at 0.25, 0.5, and 0.75 Hz. The trials were repeated before and during fatigue induced with a timed voluntary contraction against a constant load. Factor extraction using the principal component method was used to identify four M-modes within the space of integrated indices of muscle activity. Variance in the M-mode space at different phases across sway cycles was partitioned into two components, one that did not affect the average value of COP shift and the other that did. There were no significant effects of fatigue on variability of performance of the explicit task and on the amplitude of the COP shift. Variance of muscle activation indices and M-mode magnitudes increased during fatigue for muscles (and M-modes) both involved and not involved in the fatiguing exercise. Most of the M-mode variance increase was within the sub-space compatible with the unchanged COP trajectory resulting in an increase of the index of the multi-M-mode synergy. We conclude that one of the adaptive mechanisms to fatigue within a redundant multi-muscle system involves an increase in the variance of activation of non-fatigued muscles with a simultaneous increase in co-variation among muscle activations. The findings can be interpreted within the referent configuration hypothesis on the control of whole-body actions.

  5. GlobCurrent- Multisensor Synergy for Surface Current Estimation

    NASA Astrophysics Data System (ADS)

    Johannessen, J. A.; Chapron, B.; Collard, F.; Rio, M.-H.; Piolle, J.-F.; Gaultier, L.; Quartly, G.; Shutler, J.; Escola, R.; Raj, R. P.; Donlon, C.; Danielson, R.; Korosov, A.; Nencioli, F.; Kudryavtsev, V.; Roca, M.; Tournadre, J.; Larnicol, G.; Guitton, G.; Miller, P.; Warren, M.; Hansen, M.

    2016-08-01

    The GlobCurrent project (http://www.globcurrent.org) aims to: (i) advance the quantitative estimation of ocean surface currents from satellite sensor synergy; and (ii) demonstrate impact in user-led scientific, operational and commercial applications that, in turn, will improve and strengthen the uptake of satellite measurements. It is often demonstrated that sharp gradients in the sea surface temperature (SST) and current fields and the ocean surface chlorophyll-a distribution are spatially correlated with the sea surface roughness anomaly fields at small spatial scales, in the sub-mesocale (1-10 km) to the mesoscale (30-80 km). At the larger mesoscale range (>50 km), information derived from radar altimeters often depict the presence of coherent structures and eddies. The variability often appears largest in regions where the intense surface current regimes (>100 - 200 km) are found. These 2- dimensional structures manifested in the satellite observations represent evidence of the upper ocean ( 100-200 m) dynamics. Whereas the quasi geostrophic assumption is valid for the upper ocean dynamics at the larger scale (>100 km), possible triggering mechanisms for the expressions at the mesoscale-to-submesoscale may include spiraling tracers of inertial motion and the interaction of the wind-driven Ekman layer with the quasi-geostrophic current field. This latter, in turn, produces bands of downwelling (convergence) and upwelling (divergence) near fronts. A regular utilization of the sensor synergy approach with the combination of Sentinel-3, Sentinel-2 and Sentinel-1 together with other satellite missions will provide a highly valuable data set for further research and development to better relate the 2-dimensional surface expressions and the upper ocean dynamics.

  6. Robustness of muscle synergies underlying three-dimensional force generation at the hand in healthy humans

    PubMed Central

    Rymer, William Z.; Beer, Randall F.

    2012-01-01

    Previous studies using advanced matrix factorization techniques have shown that the coordination of human voluntary limb movements may be accomplished using combinations of a small number of intermuscular coordination patterns, or muscle synergies. However, the potential use of muscle synergies for isometric force generation has been evaluated mostly using correlational methods. The results of such studies suggest that fixed relationships between the activations of pairs of muscles are relatively rare. There is also emerging evidence that the nervous system uses independent strategies to control movement and force generation, which suggests that one cannot conclude a priori that isometric force generation is accomplished by combining muscle synergies, as shown in movement control. In this study, we used non-negative matrix factorization to evaluate the ability of a few muscle synergies to reconstruct the activation patterns of human arm muscles underlying the generation of three-dimensional (3-D) isometric forces at the hand. Surface electromyographic (EMG) data were recorded from eight key elbow and shoulder muscles during 3-D force target-matching protocols performed across a range of load levels and hand positions. Four synergies were sufficient to explain, on average, 95% of the variance in EMG datasets. Furthermore, we found that muscle synergy composition was conserved across biomechanical task conditions, experimental protocols, and subjects. Our findings are consistent with the view that the nervous system can generate isometric forces by assembling a combination of a small number of muscle synergies, differentially weighted according to task constraints. PMID:22279190

  7. Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking.

    PubMed

    Chvatal, Stacie A; Ting, Lena H

    2012-08-29

    The modular control of muscles in groups, often referred to as muscle synergies, has been proposed to provide a motor repertoire of actions for the robust control of movement. However, it is not clear whether muscle synergies identified in one task are also recruited by different neural pathways subserving other motor behaviors. We tested the hypothesis that voluntary and reactive modifications to walking in humans result from the recruitment of locomotor muscle synergies. We recorded the activity of 16 muscles in the right leg as subjects walked a 7.5 m path at two different speeds. To elicit a second motor behavior, midway through the path we imposed ramp and hold translation perturbations of the support surface in each of four cardinal directions. Variations in the temporal recruitment of locomotor muscle synergies could account for cycle-by-cycle variations in muscle activity across strides. Locomotor muscle synergies were also recruited in atypical phases of gait, accounting for both anticipatory gait modifications before perturbations and reactive feedback responses to perturbations. Our findings are consistent with the idea that a common pool of spatially fixed locomotor muscle synergies can be recruited by different neural pathways, including the central pattern generator for walking, brainstem pathways for balance control, and cortical pathways mediating voluntary gait modifications. Together with electrophysiological studies, our work suggests that muscle synergies may provide a library of motor subtasks that can be flexibly recruited by parallel descending pathways to generate a variety of complex natural movements in the upper and lower limbs.

  8. Hybrid Vehicles

    DTIC Science & Technology

    2008-12-08

    hybrid electric vehicles typically contain potentially hazardous levels of electrical voltage or current. It is important to protect the operators...60740. ITOP 2-2-607(1)41 is used for tracked vehicles. 13 TOP 2-1-003 08 December 2008 Hybrid electric vehicles often employ much more

  9. Effects of 5 Weeks of Bench Press Training on Muscle Synergies: A Randomized Controlled Study.

    PubMed

    Kristiansen, Mathias; Samani, Afshin; Madeleine, Pascal; Hansen, Ernst A

    2016-07-01

    Kristiansen, M, Samani, A, Madeleine, P, and Hansen, EA. Effects of 5 weeks of bench press training on muscle synergies: A randomized controlled study. J Strength Cond Res 30(7): 1948-1959, 2016-The ability to perform forceful muscle contractions has important implications in sports performance and in activities of daily living. However, there is a lack of knowledge on adaptations in intermuscular coordination after strength training. The purpose of this study was therefore to assess muscle synergies before and after 5 weeks of bench press training. Thirty untrained male subjects were randomly allocated to a training group (TRA) or a control group (CON). After the pretest, TRA completed 5 weeks of bench press training, before completing a posttest, whereas subjects in CON continued their normal life. During test sessions, surface electromyography (EMG) was recorded from 13 different muscles. Muscle synergies were extracted from EMG data using nonnegative matrix factorization. To evaluate differences between pretest and posttest, we performed a cross-correlation analysis and a cross-validation analysis, in which the synergy components extracted in the pretest session were recomputed, using the fixed synergy components from the posttest session. Two muscle synergies accounted for 90% of the total variance and reflected the concentric and eccentric phase, respectively. TRA significantly increased 3 repetition maximum in bench press with 19.0% (25th; 75th percentile, 10.3%; 21.7%) (p < 0.001), whereas no change occurred in CON. No significant differences were observed in synergy components between groups. However, decreases in correlation values for intragroup comparisons in TRA may suggest that the synergy components changed, whereas this was not the case in CON. Strength and conditioning professionals may consider monitoring changes in muscle synergies in training and rehabilitation programs as a way to benchmark changes in intermuscular coordination.

  10. Multidimensional Hybridization of Dark Surface Plasmons.

    PubMed

    Yankovich, Andrew B; Verre, Ruggero; Olsén, Erik; Persson, Anton E O; Trinh, Viet; Dovner, Gudrun; Käll, Mikael; Olsson, Eva

    2017-04-07

    Synthetic three-dimensional (3D) nanoarchitectures are providing more control over light-matter interactions and rapidly progressing photonic-based technology. These applications often utilize the strong synergy between electromagnetic fields and surface plasmons (SPs) in metallic nanostructures. However, many of the SP interactions hosted by complex 3D nanostructures are poorly understood because they involve dark hybridized states that are typically undetectable with far-field optical spectroscopy. Here, we use experimental and theoretical electron energy loss spectroscopy to elucidate dark SPs and their interactions in layered metal-insulator-metal disc nanostructures. We go beyond the established dipole SP hybridization analysis by measuring breathing and multipolar SP hybridization. In addition, we reveal multidimensional SP hybridization that simultaneously utilizes in-plane and out-of-plane SP coupling. Near-field classic electrodynamics calculations provide excellent agreement with all experiments. These results advance the fundamental understanding of SP hybridization in 3D nanostructures and provide avenues to further tune the interaction between electromagnetic fields and matter.

  11. Are Movement Disorders and Sensorimotor Injuries Pathologic Synergies? When Normal Multi-Joint Movement Synergies Become Pathologic

    PubMed Central

    Santello, Marco; Lang, Catherine E.

    2015-01-01

    The intact nervous system has an exquisite ability to modulate the activity of multiple muscles acting at one or more joints to produce an enormous range of actions. Seemingly simple tasks, such as reaching for an object or walking, in fact rely on very complex spatial and temporal patterns of muscle activations. Neurological disorders such as stroke and focal dystonia affect the ability to coordinate multi-joint movements. This article reviews the state of the art of research of muscle synergies in the intact and damaged nervous system, their implications for recovery and rehabilitation, and proposes avenues for research aimed at restoring the nervous system’s ability to control movement. PMID:25610391

  12. Beyond synergies. Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    NASA Astrophysics Data System (ADS)

    Schwartz, Andrew B.

    2016-07-01

    The target paper by Santello et al. [1] uses the observation that hand shape during grasping can be described by a small set of basic postures, or ;synergies,; to describe the possible neural basis of motor control during this complex behavior. In the literature, the term ;synergy; has been used with a number of different meanings and is still loosely defined, making it difficult to derive concrete analogs of corresponding neural structure. Here, I will define ;synergy; broadly, as a set of parameters bound together by a pattern of correlation. With this definition, it can be argued that behavioral synergies are just one facet of the correlational structuring used by the brain to generate behavior. As pointed out in the target article, the structure found in synergies is driven by the physical constraints of our bodies and our surroundings, combined with the behavioral control imparted by our nervous system. This control itself is based on correlational structure which is likely to be a fundamental property of brain function.

  13. Exploring the molecular basis of antifungal synergies using genome-wide approaches

    USDA-ARS?s Scientific Manuscript database

    This is a review article summarizing genomic profiling strategies for determining the mechanism of action of antifungal synergies, and highlighting the potential applications of these technologies. Given the limitations of currently available antifungal agents and the development of drug resistance...

  14. Investigating Conversational Dynamics: Interactive Alignment, Interpersonal Synergy, and Collective Task Performance

    ERIC Educational Resources Information Center

    Fusaroli, Riccardo; Tylén, Kristian

    2016-01-01

    This study investigates interpersonal processes underlying dialog by comparing two approaches, "interactive alignment" and "interpersonal synergy", and assesses how they predict collective performance in a joint task. While the interactive alignment approach highlights imitative patterns between interlocutors, the synergy…

  15. Investigating Conversational Dynamics: Interactive Alignment, Interpersonal Synergy, and Collective Task Performance

    ERIC Educational Resources Information Center

    Fusaroli, Riccardo; Tylén, Kristian

    2016-01-01

    This study investigates interpersonal processes underlying dialog by comparing two approaches, "interactive alignment" and "interpersonal synergy", and assesses how they predict collective performance in a joint task. While the interactive alignment approach highlights imitative patterns between interlocutors, the synergy…

  16. Motor primitives and synergies in spinal cord and after injury– the current state of play

    PubMed Central

    Giszter, Simon F.; Hart, Corey B.

    2013-01-01

    Modular pattern generator elements, also known as burst synergies or motor primitives, have become a useful and important way of describing motor behavior, albeit controversial. It is suggested that these synergy elements may comprise part of the pattern shaping layers of a McCrea/Rybak two layer pattern generator, as well as being used in other ways in spinal cord. The data supporting modular synergies ranges across species including man and encompasses motor pattern analyses and neural recordings. Recently, synergy persistence and changes following clinical trauma have been presented. These new data underscore the importance of understanding the modular structure of motor behaviors and the underlying circuitry in order to best provide principled therapies and to understand phenomena reported in the clinic. We discuss the evidence and different viewpoints on modularity, the neural underpinnings identified thus far, and possible critical issues for the future of this area. PMID:23531009

  17. Forest Biomass Mapping From Lidar and Radar Synergies

    NASA Technical Reports Server (NTRS)

    Sun, Guoqing; Ranson, K. Jon; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D.

    2011-01-01

    The use of lidar and radar instruments to measure forest structure attributes such as height and biomass at global scales is being considered for a future Earth Observation satellite mission, DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice). Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield accurate information about the vertical profile of the canopy within lidar footprint samples. Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and provides image data. Methods for biomass mapping by a combination of lidar sampling and radar mapping need to be developed. In this study, several issues in this respect were investigated using aircraft borne lidar and SAR data in Howland, Maine, USA. The stepwise regression selected the height indices rh50 and rh75 of the Laser Vegetation Imaging Sensor (LVIS) data for predicting field measured biomass with a R(exp 2) of 0.71 and RMSE of 31.33 Mg/ha. The above-ground biomass map generated from this regression model was considered to represent the true biomass of the area and used as a reference map since no better biomass map exists for the area. Random samples were taken from the biomass map and the correlation between the sampled biomass and co-located SAR signature was studied. The best models were used to extend the biomass from lidar samples into all forested areas in the study area, which mimics a procedure that could be used for the future DESDYnI Mission. It was found that depending on the data types used (quad-pol or dual-pol) the SAR data can predict the lidar biomass samples with R2 of 0.63-0.71, RMSE of 32.0-28.2 Mg/ha up to biomass levels of 200-250 Mg/ha. The mean biomass of the study area calculated from the biomass maps generated by lidar- SAR synergy 63 was within 10% of the reference biomass map derived from LVIS data. The results from this study are preliminary, but do show the

  18. A hybrid air conditioner driven by a hybrid solar collector

    NASA Astrophysics Data System (ADS)

    Al-Alili, Ali

    The objective of this thesis is to search for an efficient way of utilizing solar energy in air conditioning applications. The current solar Air Conditioners (A/C)s suffer from low Coefficient of Performance (COP) and performance degradation in hot and humid climates. By investigating the possible ways of utilizing solar energy in air conditioning applications, the bottlenecks in these approaches were identified. That resulted in proposing a novel system whose subsystem synergy led to a COP higher than unity. The proposed system was found to maintain indoor comfort at a higher COP compared to the most common solar A/Cs, especially under very hot and humid climate conditions. The novelty of the proposed A/C is to use a concentrating photovoltaic/thermal collector, which outputs thermal and electrical energy simultaneously, to drive a hybrid A/C. The performance of the hybrid A/C, which consists of a desiccant wheel, an enthalpy wheel, and a vapor compression cycle (VCC), was investigated experimentally. This work also explored the use of a new type of desiccant material, which can be regenerated with a low temperature heat source. The experimental results showed that the hybrid A/C is more effective than the standalone VCC in maintaining the indoor conditions within the comfort zone. Using the experimental data, the COP of the hybrid A/C driven by a hybrid solar collector was found to be at least double that of the current solar A/Cs. The innovative integration of its subsystems allows each subsystem to do what it can do best. That leads to lower energy consumption which helps reduce the peak electrical loads on electric utilities and reduces the consumer operating cost since less energy is purchased during the on peak periods and less solar collector area is needed. In order for the proposed A/C to become a real alternative to conventional systems, its performance and total cost were optimized using the experimentally validated model. The results showed that for an

  19. Stellarator hybrids

    SciTech Connect

    Furth, H.P.; Ludescher, C.

    1984-08-01

    The present paper briefly reviews the subject of tokamak-stellarator and pinch-stellarator hybrids, and points to two interesting new possibilities: compact-torus-stellarators and mirror-stellarators.

  20. Muscle Synergies Heavily Influence the Neural Control of Arm Endpoint Stiffness and Energy Consumption.

    PubMed

    Inouye, Joshua M; Valero-Cuevas, Francisco J

    2016-02-01

    Much debate has arisen from research on muscle synergies with respect to both limb impedance control and energy consumption. Studies of limb impedance control in the context of reaching movements and postural tasks have produced divergent findings, and this study explores whether the use of synergies by the central nervous system (CNS) can resolve these findings and also provide insights on mechanisms of energy consumption. In this study, we phrase these debates at the conceptual level of interactions between neural degrees of freedom and tasks constraints. This allows us to examine the ability of experimentally-observed synergies--correlated muscle activations--to control both energy consumption and the stiffness component of limb endpoint impedance. In our nominal 6-muscle planar arm model, muscle synergies and the desired size, shape, and orientation of endpoint stiffness ellipses, are expressed as linear constraints that define the set of feasible muscle activation patterns. Quadratic programming allows us to predict whether and how energy consumption can be minimized throughout the workspace of the limb given those linear constraints. We show that the presence of synergies drastically decreases the ability of the CNS to vary the properties of the endpoint stiffness and can even preclude the ability to minimize energy. Furthermore, the capacity to minimize energy consumption--when available--can be greatly affected by arm posture. Our computational approach helps reconcile divergent findings and conclusions about task-specific regulation of endpoint stiffness and energy consumption in the context of synergies. But more generally, these results provide further evidence that the benefits and disadvantages of muscle synergies go hand-in-hand with the structure of feasible muscle activation patterns afforded by the mechanics of the limb and task constraints. These insights will help design experiments to elucidate the interplay between synergies and the mechanisms

  1. Quantifying Synergy: A Systematic Review of Mixture Toxicity Studies within Environmental Toxicology

    PubMed Central

    Cedergreen, Nina

    2014-01-01

    Cocktail effects and synergistic interactions of chemicals in mixtures are an area of great concern to both the public and regulatory authorities. The main concern is whether some chemicals can enhance the effect of other chemicals, so that they jointly exert a larger effect than predicted. This phenomenon is called synergy. Here we present a review of the scientific literature on three main groups of environmentally relevant chemical toxicants: pesticides, metal ions and antifouling compounds. The aim of the review is to determine 1) the frequency of synergy, 2) the extent of synergy, 3) whether any particular groups or classes of chemicals tend to induce synergy, and 4) which physiological mechanisms might be responsible for this synergy. Synergy is here defined as mixtures with minimum two-fold difference between observed and predicted effect concentrations using Concentration Addition (CA) as a reference model and including both lethal and sub-lethal endpoints. The results showed that synergy occurred in 7%, 3% and 26% of the 194, 21 and 136 binary pesticide, metal and antifoulants mixtures included in the data compilation on frequency. The difference between observed and predicted effect concentrations was rarely more than 10-fold. For pesticides, synergistic mixtures included cholinesterase inhibitors or azole fungicides in 95% of 69 described cases. Both groups of pesticides are known to interfere with metabolic degradation of other xenobiotics. For the four synergistic metal and 47 synergistic antifoulant mixtures the pattern in terms of chemical groups inducing synergy was less clear. Hypotheses in terms of mechanisms governing these interactions are discussed. It was concluded that true synergistic interactions between chemicals are rare and often occur at high concentrations. Addressing the cumulative rather than synergistic effect of co-occurring chemicals, using standard models as CA, is therefore regarded as the most important step in the risk

  2. Ground Truth Locations Using Synergy Between Remote Sensing and Seismic Methods

    DTIC Science & Technology

    2007-09-01

    GROUND TRUTH LOCATIONS USING SYNERGY BETWEEN REMOTE SENSING AND SEISMIC METHODS Gene A. Ichinose1, Hong Kie Thio2, and Don V. Helmberger3...have relocated a set of 50 ground truth (GT) earthquakes as determined from regional modeling, to estimate the performance of the station correction...DATES COVERED 00-00-2007 to 00-00-2007 4. TITLE AND SUBTITLE Ground Truth Locations Using Synergy Between Remote Sensing and Seismic Methods 5a

  3. Transdisciplinary breastfeeding support: Creating program and policy synergy across the reproductive continuum

    PubMed Central

    Labbok, Miriam H

    2008-01-01

    This paper was presented at the symposium on Breastfeeding and Feminism: A Focus on Reproductive Health, Rights and Justice. It underscores the power and potential of synergy between and among organizations and individuals supporting breastfeeding, the mother-child dyad, and reproductive health to increase sustainable breastfeeding support. These concepts were brought together to lay the groundwork for working group discussions of synergy in program and policy actions. PMID:18680583

  4. Thirteenth Annual Acquisition Research Symposium. Acquisition Research: Creating Synergy for Informed Change. Volume 1

    DTIC Science & Technology

    2016-04-30

    Research Program: Creating Synergy for Informed Change - 46 - National Climate Data Center (NCDC). (2013). Billion dollar U.S. weather/ climate disasters...MDAPs in Each Cohort, Bust Funding Climates Note. Numbers in parentheses are the number of observations in the cell. * Normalized for changes in...Thirteenth Annual Acquisition Research Symposium Wednesday Sessions Volume I Acquisition Research: Creating Synergy for Informed Change May 4–5, 2016

  5. Synergy of SOCS-1 Inhibition and Microbial-Based Cancer Vaccines

    DTIC Science & Technology

    2014-11-01

    AD ____________ __ Award Number: W81XWH-12-1-0292 TITLE: Synergy of SOCS-1 Inhibition and Microbial-Based Cancer Vaccines PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Sa. CONTRACT NUMBER Synergy of SOCS-1 Inhibition and Microbial-Based Cancer Vaccines Sb. GRANT NUMBER W81 XWH-12-1 -0292 Sc...growth or even complete eradication of the tumor. Vaccines capable of teaching the immune system to recognize cancer cells must be extremely potent

  6. Elderly Show Decreased Adjustments of Motor Synergies in Preparation to Action

    PubMed Central

    Olafsdottir, Halla; Yoshida, Naoki; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2007-01-01

    Background Aging is associated with decreased manual dexterity. Recent findings have identified changes in multi-finger synergies in elderly individuals. The purpose of current work was to study age-related changes in adjustments of multi-finger synergies in preparation to a quick targeted force pulse production task. Methods Right-handed elderly and young subjects produced force pulses by pressing on individual force sensors with the four fingers of the right hand. Prior to the force pulse, the subjects produced a constant low level of the total force. An index of multi-finger synergies was computed across trials for each time sample for each subject and each condition. Results During steady-state force production, subjects showed co-variation of commands to fingers that stabilized the total force. An index of this co-variation started to decrease prior to the initiation of the force pulse (anticipatory synergy adjustment). Anticipatory synergy adjustments in young subjects started earlier and were larger than in elderly subjects. In particular, young and elderly subjects showed significant anticipatory synergy adjustments starting about 150 ms and about 50 ms prior to the force pulse initiation, respectively. There were no significant differences between the two groups in other indices of performance such as reaction time, time to peak force, and magnitude of the peak force. Interpretation We conclude that healthy aging is associated with decreased feed-forward adjustments of multi-finger synergies in preparation to action. This may contribute to the age-related decline in the hand function. Based on similarities in age-related changes in anticipatory postural adjustments and anticipatory synergy adjustments we suggest a hypothesis that the two phenomena may share common mechanisms. PMID:17046125

  7. Children With and Without Dystonia Share Common Muscle Synergies While Performing Writing Tasks.

    PubMed

    Lunardini, Francesca; Casellato, Claudia; Bertucco, Matteo; Sanger, Terence D; Pedrocchi, Alessandra

    2017-08-01

    Childhood dystonia is a movement disorder characterized by muscle overflow and variability. This is the first study that investigates upper limb muscle synergies in childhood dystonia with the twofold aim of deepening the understanding of neuromotor dysfunctions and paving the way to possible synergy-based myocontrol interfaces suitable for this neurological population. Nonnegative matrix factorization was applied to the activity of upper-limb muscles recorded during the execution of writing tasks in children with dystonia and age-matched controls. Despite children with dystonia presented compromised kinematics of the writing outcome, a strikingly similarity emerged in the number and structure of the synergy vectors extracted from children in the two groups. The analysis also revealed that the timing of activation of the synergy coefficients did not significantly differ, while the amplitude of the peaks presented a slight reduction. These results suggest that the synergy analysis has the ability of capturing the uncorrupted part of the electromyographic signal in dystonia. Such an ability supports a possible future use of muscle synergies in the design of myocontrol interfaces for children with dystonia.

  8. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands

    NASA Astrophysics Data System (ADS)

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M. L.; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio

    2016-07-01

    The term 'synergy' - from the Greek synergia - means 'working together'. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project ;The Hand Embodied; (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies.

  9. The role of partnership functioning and synergy in achieving sustainability of innovative programmes in community care.

    PubMed

    Cramm, Jane M; Phaff, Sanne; Nieboer, Anna P

    2013-03-01

    This cross-sectional study (conducted in April-May 2011) explored associations between partnership functioning synergy and sustainability of innovative programmes in community care. The study sample consisted of 106 professionals (of 244 individuals contacted) participating in 21 partnerships that implemented different innovative community care programmes in Rotterdam, The Netherlands. Partnership functioning was evaluated by assessing leadership, resources administration and efficiency. Synergy was considered the proximal outcome of partnership functioning, which, in turn, influenced the achievement of programme sustainability. On a 5-point scale of increasing sustainability, mean sustainability scores ranged from 1.9 to 4.9. The results of the regression analysis demonstrated that sustainability was positively influenced by leadership (standardised regression coefficient β = 0.32; P < 0.001) and non-financial resources (β = 0.25; P = 0.008). No significant relationship was found between administration or efficiency and programme sustainability. Partnership synergy acted as a mediator for partnership functioning and significantly affected sustainability (β = 0.39; P < 0.001). These findings suggest that the sustainability of innovative programmes in community care is achieved more readily when synergy is created between partners. Synergy was more likely to emerge with boundary-spanning leaders, who understood and appreciated partners' different perspectives, and could bridge their diverse cultures and were comfortable sharing ideas, resources and power. In addition, the acknowledgement of and ability to use members' resources were found to be valuable in engaging partners' involvement and achieving synergy in community care partnerships.

  10. Absence of postural muscle synergies for balance after spinal cord transection

    PubMed Central

    Chvatal, Stacie A.; Macpherson, Jane M.; Torres-Oviedo, Gelsy

    2013-01-01

    Although cats that have been spinalized can also be trained to stand and step with full weight support, directionally appropriate long-latency responses to perturbations are impaired, suggesting that these behaviors are mediated by distinct neural mechanisms. However, it remains unclear whether these responses reflect an attenuated postural response using the appropriate muscular coordination patterns for balance or are due to fundamentally different neural mechanisms such as increased muscular cocontraction or short-latency stretch responses. Here we used muscle synergy analysis on previously collected data to identify whether there are changes in the spatial organization of muscle activity for balance within an animal after spinalization. We hypothesized that the modular organization of muscle activity for balance control is disrupted by spinal cord transection. In each of four animals, muscle synergies were extracted from postural muscle activity both before and after spinalization with nonnegative matrix factorization. Muscle synergy number was reduced after spinalization in three animals and increased in one animal. However, muscle synergy structure was greatly altered after spinalization with reduced direction tuning, suggesting little consistent organization of muscle activity. Furthermore, muscle synergy recruitment was correlated to subsequent force production in the intact but not spinalized condition. Our results demonstrate that the modular structure of sensorimotor feedback responses for balance control is severely disrupted after spinalization, suggesting that the muscle synergies for balance control are not accessible by spinal circuits alone. Moreover, we demonstrate that spinal mechanisms underlying weight support are distinct from brain stem mechanisms underlying directional balance control. PMID:23803327

  11. Synergy Repetition Training versus Task Repetition Training in Acquiring New Skill

    PubMed Central

    Patel, Vrajeshri; Craig, Jamie; Schumacher, Michelle; Burns, Martin K.; Florescu, Ionut; Vinjamuri, Ramana

    2017-01-01

    Traditionally, repetitive practice of a task is used to learn a new skill, exhibiting as immediately improved performance. Research suggests, however, that a more experience-based rather than exposure-based training protocol may allow for better transference of the skill to related tasks. In synergy-based motor control theory, fundamental motor skills, such as hand grasping, are represented with a synergy subspace that captures essential motor patterns. In this study, we propose that motor-skill learning through synergy-based mechanisms may provide advantages over traditional task repetition learning. A new task was designed to highlight the range of motion and dexterity of the human hand. Two separate training strategies were tested in healthy subjects: task repetition training and synergy training versus a control. All three groups showed improvements when retested on the same task. When tested on a similar, but different set of tasks, only the synergy group showed improvements in accuracy (9.27% increase) compared to the repetition (3.24% decline) and control (3.22% decline) groups. A kinematic analysis revealed that although joint angular peak velocities decreased, timing benefits stemmed from the initial feed-forward portion of the task (reaction time). Accuracy improvements may have derived from general improved coordination among the four involved fingers. These preliminary results warrant further investigation of synergy-based motor training in healthy individuals, as well as in individuals undergoing hand-based rehabilitative therapy. PMID:28289680

  12. An analysis of leg joint synergy during bipedal walking in Japanese macaques.

    PubMed

    Kaichida, Shoko; Hashizume, Yoshimitsu; Ogihara, Naomichi; Nishii, Jun

    2011-01-01

    We analyzed bipedal locomotion of Japanese macaques from the view point of leg joint synergy by the UCM (Uncontrolled manifold) analysis in order to examine how and when hip, knee and ankle joints cooperate so as to suppress the variances of the toe position relative to the hip position. Our results showed that joint synergy is exploited at some moments during walking. For instance, the variance of the vertical toe position was suppressed by joint synergy when the tip of the finger passes its lowest position from the ground. Some characteristics of the synergy pattern of macaques have been also reported in human walking, on the other hand, some differences between humans and macaques were found. For instance, high degree of joint synergy that suppresses the variance of hip height was observed around the end of stance phase in human walking, but such synergy was weak in macaques. The results suggest that different control strategies are used in bipedal walking of macaques and humans.

  13. Stability of muscle synergies for voluntary actions after cortical stroke in humans

    PubMed Central

    Cheung, Vincent C. K.; Piron, Lamberto; Agostini, Michela; Silvoni, Stefano; Turolla, Andrea; Bizzi, Emilio

    2009-01-01

    Production of voluntary movements relies critically on the functional integration of several motor cortical areas, such as the primary motor cortex, and the spinal circuitries. Surprisingly, after almost 40 years of research, how the motor cortices specify descending neural signals destined for the downstream interneurons and motoneurons has remained elusive. In light of the many recent experimental demonstrations that the motor system may coordinate muscle activations through a linear combination of muscle synergies, we hypothesize that the motor cortices may function to select and activate fixed muscle synergies specified by the spinal or brainstem networks. To test this hypothesis, we recorded electromyograms (EMGs) from 12–16 upper arm and shoulder muscles from both the unaffected and the stroke-affected arms of stroke patients having moderate-to-severe unilateral ischemic lesions in the frontal motor cortical areas. Analyses of EMGs using a nonnegative matrix factorization algorithm revealed that in seven of eight patients the muscular compositions of the synergies for both the unaffected and the affected arms were strikingly similar to each other despite differences in motor performance between the arms, and differences in cerebral lesion sizes and locations between patients. This robustness of muscle synergies that we observed supports the notion that descending cortical signals represent neuronal drives that select, activate, and flexibly combine muscle synergies specified by networks in the spinal cord and/or brainstem. Our conclusion also suggests an approach to stroke rehabilitation by focusing on those synergies with altered activations after stroke. PMID:19880747

  14. Target-Independent Prediction of Drug Synergies Using Only Drug Lipophilicity

    PubMed Central

    2015-01-01

    Physicochemical properties of compounds have been instrumental in selecting lead compounds with increased drug-likeness. However, the relationship between physicochemical properties of constituent drugs and the tendency to exhibit drug interaction has not been systematically studied. We assembled physicochemical descriptors for a set of antifungal compounds (“drugs”) previously examined for interaction. Analyzing the relationship between molecular weight, lipophilicity, H-bond donor, and H-bond acceptor values for drugs and their propensity to show pairwise antifungal drug synergy, we found that combinations of two lipophilic drugs had a greater tendency to show drug synergy. We developed a more refined decision tree model that successfully predicted drug synergy in stringent cross-validation tests based on only lipophilicity of drugs. Our predictions achieved a precision of 63% and allowed successful prediction for 58% of synergistic drug pairs, suggesting that this phenomenon can extend our understanding for a substantial fraction of synergistic drug interactions. We also generated and analyzed a large-scale synergistic human toxicity network, in which we observed that combinations of lipophilic compounds show a tendency for increased toxicity. Thus, lipophilicity, a simple and easily determined molecular descriptor, is a powerful predictor of drug synergy. It is well established that lipophilic compounds (i) are promiscuous, having many targets in the cell, and (ii) often penetrate into the cell via the cellular membrane by passive diffusion. We discuss the positive relationship between drug lipophilicity and drug synergy in the context of potential drug synergy mechanisms. PMID:25026390

  15. Muscle synergies during incremental rowing VO2max test of collegiate rowers and untrained subjects.

    PubMed

    Shaharudin, Shazlin; Agrawal, Sunil

    2016-09-01

    The purpose of this study was to evaluate the muscle synergies during incremental rowing VO2 max Test of collegiate rowers and untrained subjects. As a power endurance sport, high aerobic capacity was one of the determinants of rowing performance. The modulation of muscle recruitment patterns following specific physiological demands was an indication of the robustness of muscle synergies composition which was overlooked in previous studies. Ten male collegiate rowers and physically active untrained subjects were recruited. Muscle synergies were extracted from 16 rowing-specific muscles using Principal Component Analysis with varimax rotation. Incremental rowing VO2 max Test was performed on slides ergometer (SE). Rowing performance and physiological variables were analyzed. Rowers exerted greater power output, more energy expenditure and better rowing economy compared to untrained subjects. Rowers preferred to row slower with longer strokes compared to the untrained subjects. Three muscle synergies with high indices of similarity of waveform patterns were extracted in both groups. Significant association was found between muscle synergies and rowing economy. The findings of this study showed that muscle synergies were robust during aerobic-dominant activity for collegiate rowers and untrained subjects. Rowers and coaches could utilize the findings by emphasizing on muscle coordination training, which may enhance the rowing economy.

  16. Flexion synergy overshadows flexor spasticity during reaching in chronic moderate to severe hemiparetic stroke.

    PubMed

    Ellis, Michael D; Schut, Ingrid; Dewald, Julius P A

    2017-07-01

    Pharmaceutical intervention targets arm flexor spasticity with an often-unsuccessful goal of improving function. Flexion synergy is a related motor impairment that may be inadvertently neglected. Here, flexor spasticity and flexion synergy are disentangled to determine their contributions to reaching dysfunction. Twenty-six individuals participated. A robotic device systematically modulated shoulder abduction loading during ballistic reaching. Elbow muscle electromyography data were partitioned into windows delineated by elbow joint velocity allowing for the separation of synergy- and spasticity-related activation. Reaching velocity decreased with abduction loading (p<0.001) such that velocity was 30% slower when lifting the arm at 50% of abduction strength compared to when arm weight was supported. Abnormal flexion synergy increased with abduction loading (p<0.001) such that normalized activation ranged from a median (interquartile range) of 0.07 (0.03-0.12) when arm weight was supported to 0.19 (0.12-0.40) when actively lifting (large effect size, d=0.59). Flexor spasticity was detected during reaching (p=0.016) but only when arm weight was supported (intermediate effect size, d=0.33). Flexion synergy is the predominant contributor to reaching dysfunction while flexor spasticity appears only relevant during unnaturally occurring passively supported movement. Interventions targeting flexion synergy should be leveraged in future stroke recovery trials. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  17. Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives

    PubMed Central

    Alessandro, Cristiano; Delis, Ioannis; Nori, Francesco; Panzeri, Stefano; Berret, Bastien

    2013-01-01

    In this paper we review the works related to muscle synergies that have been carried-out in neuroscience and control engineering. In particular, we refer to the hypothesis that the central nervous system (CNS) generates desired muscle contractions by combining a small number of predefined modules, called muscle synergies. We provide an overview of the methods that have been employed to test the validity of this scheme, and we show how the concept of muscle synergy has been generalized for the control of artificial agents. The comparison between these two lines of research, in particular their different goals and approaches, is instrumental to explain the computational implications of the hypothesized modular organization. Moreover, it clarifies the importance of assessing the functional role of muscle synergies: although these basic modules are defined at the level of muscle activations (input-space), they should result in the effective accomplishment of the desired task. This requirement is not always explicitly considered in experimental neuroscience, as muscle synergies are often estimated solely by analyzing recorded muscle activities. We suggest that synergy extraction methods should explicitly take into account task execution variables, thus moving from a perspective purely based on input-space to one grounded on task-space as well. PMID:23626535

  18. Muscle synergies and complexity of neuromuscular control during gait in cerebral palsy.

    PubMed

    Steele, Katherine M; Rozumalski, Adam; Schwartz, Michael H

    2015-12-01

    Individuals with cerebral palsy (CP) have impaired movement due to a brain injury near birth. Understanding how neuromuscular control is altered in CP can provide insight into pathological movement. We sought to determine if individuals with CP demonstrate reduced complexity of neuromuscular control during gait compared with unimpaired individuals and if changes in control are related to functional ability. Muscle synergies during gait were retrospectively analyzed for 633 individuals (age range 3.9-70y): 549 with CP (hemiplegia, n=122; diplegia, n=266; triplegia, n=73; quadriplegia, n=88) and 84 unimpaired individuals. Synergies were calculated using non-negative matrix factorization from surface electromyography collected during previous clinical gait analyses. Synergy complexity during gait was compared with diagnosis subtype, functional ability, and clinical examination measures. Fewer synergies were required to describe muscle activity during gait in individuals with CP compared with unimpaired individuals. Changes in synergies were related to functional impairment and clinical examination measures including selective motor control, strength, and spasticity. Individuals with CP use a simplified control strategy during gait compared with unimpaired individuals. These results were similar to synergies during walking among adult stroke survivors, suggesting similar neuromuscular control strategies between these clinical populations. © 2015 Mac Keith Press.

  19. Decline of North Atlantic eels: a fatal synergy?

    PubMed Central

    Wirth, Thierry; Bernatchez, Louis

    2003-01-01

    Panmictic species pose particular problems for conservation because their welfare can be addressed effectively only on a global scale. We recently documented by means of microsatellite analysis that the European eel (Anguilla anguilla) is not panmictic but instead shows genetic isolation by distance. In this study, we extended the analysis to the American eel (A. rostrata) by applying identical analytical procedures and statistical power. Results obtained for the American eel were in sharp contrast with those obtained for the European eel: the null hypothesis of panmixia could not be rejected, and no isolation by distance was detected. This implies that the species must be managed as a single population. Using Bayesian statistics, we also found that the effective population sizes for both species were surprisingly low and that the populations had undergone severe contractions, most probably during the Wisconsinan glaciation. The apparent sensitivity of eels to climatic changes affecting the strength and position of the Gulf Stream 20,000 years ago is particularly worrying, given the effects of the ongoing global warming on the North Atlantic climate. Moreover, additional short-term stresses such as surging glass eel prizes, overfishing and lethal parasitic infections negatively affect eel population size. The fascinating transatlantic migration and life cycle of Atlantic eels is also their Achilles' heel as these negative short- and long-term effects will probably culminate in a fatal synergy if drastic conservation measures are not implemented to protect these international biological resources. PMID:12713741

  20. Techno-ecological synergy: a framework for sustainable engineering.

    PubMed

    Bakshi, Bhavik R; Ziv, Guy; Lepech, Michael D

    2015-02-03

    Even though the importance of ecosystems in sustaining all human activities is well-known, methods for sustainable engineering fail to fully account for this role of nature. Most methods account for the demand for ecosystem services, but almost none account for the supply. Incomplete accounting of the very foundation of human well-being can result in perverse outcomes from decisions meant to enhance sustainability and lost opportunities for benefiting from the ability of nature to satisfy human needs in an economically and environmentally superior manner. This paper develops a framework for understanding and designing synergies between technological and ecological systems to encourage greater harmony between human activities and nature. This framework considers technological systems ranging from individual processes to supply chains and life cycles, along with corresponding ecological systems at multiple spatial scales ranging from local to global. The demand for specific ecosystem services is determined from information about emissions and resource use, while the supply is obtained from information about the capacity of relevant ecosystems. Metrics calculate the sustainability of individual ecosystem services at multiple spatial scales and help define necessary but not sufficient conditions for local and global sustainability. Efforts to reduce ecological overshoot encourage enhancement of life cycle efficiency, development of industrial symbiosis, innovative designs and policies, and ecological restoration, thus combining the best features of many existing methods. Opportunities for theoretical and applied research to make this framework practical are also discussed.

  1. Thrombolysis and Thrombectomy for Acute Ischemic Stroke: Strengths and Synergies.

    PubMed

    Campbell, Bruce C V

    2017-03-01

    Acute ischemic stroke is responsible for around 80% of all strokes and is a leading cause of disability and death globally. There are two potential treatment strategies: restoring blood flow (reperfusion) and preventing cellular injury (neuroprotection). As yet, all the successful trials have involved reperfusion with numerous failures of neuroprotectants. There are two proven reperfusion strategies. Intravenous thrombolysis with alteplase was first demonstrated to reduce disability with publication of the National Institute of Neurological Disorders and Stroke tissue plasminogen activator trial in 1995. Since that time further trials have solidified the evidence base and demonstrated benefit when alteplase is administered within 4.5 hours of stroke onset. Exploration of potentially more effective thrombolytics is still underway with tenecteplase but others, such as desmoteplase, have been unsuccessful in clinical trials. The second proven reperfusion strategy is endovascular clot retrieval. This has been practiced for several years but came of age with the publication of five strongly positive trials in 2015. This review discusses the evidence for intravenous and intra-arterial reperfusion strategies and the advantages, disadvantages, and synergies of the two approaches. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Integrating parasitology and marine ecology: Seven challenges towards greater synergy

    NASA Astrophysics Data System (ADS)

    Poulin, Robert; Blasco-Costa, Isabel; Randhawa, Haseeb S.

    2016-07-01

    Despite their very different historical origins as scientific disciplines, parasitology and marine ecology have already combined successfully to make important contributions to our understanding of the functioning of natural ecosystems. For example, robust assessments of the contribution of parasites to ecosystem biomass and energetics, and of their impact on community-wide biodiversity and food web structure, have all been made for the first time in marine systems. Nevertheless, for the marriage between parasitology and marine ecology to remain fruitful, several challenges must first be overcome. We discuss seven such challenges on the road to a greater synergy between these disciplines: (1) Raising awareness of parasitism as an ecological force by increasing the proportion of articles about parasites and diseases in marine ecology journals; (2) Making greater use of theory and conceptual frameworks from marine ecology to guide parasitological research; (3) Speeding up or at least maintaining the current rate at which marine parasites are found and described; (4) Elucidating a greater proportion of life cycles in all major groups of marine parasites; (5) Increasing the number of host-parasite model systems on which our knowledge is based; (6) Extending parasitological research offshore and into ocean depths; and (7) Developing, as needed, new epidemiological theory and transmission models for the marine environment. None of these challenges is insurmountable, and addressing just a few of them should guarantee that parasitology and marine ecology will continue to join forces and make further substantial contributions.

  3. Motor synergies for dampening hand vibration during human walking.

    PubMed

    Togo, Shunta; Kagawa, Takahiro; Uno, Yoji

    2012-01-01

    This study investigated the motion required to carry a cup filled with water without spilling it, which is a common human dexterous task. This task requires the individual to dampen hand vibration while walking. We hypothesize that a reduction in hand jerk and a constant cup angle are required to achieve this task. We measured movements while human subjects carried a cup with water (WW task) and with stones (WS task) using a three-dimensional position measurement system and then analyzed joint coordination. We empirically confirmed that the value of hand jerk and the variance in cup angle in the WW task were smaller than those in the WS task. We used uncontrolled manifold (UCM) analysis to quantify joint coordination corresponding to the motor synergy required to reduce the hand jerk and variance of the cup angle. UCM components, which did not affect the hand jerk and cup angle, were larger than orthogonal components, which directly affected the hand jerk and cup angle in the WW task. These results suggest that there is a coordinated control mechanism that reduces hand jerk and maintains a constant cup angle when carrying a cup filled with water without spilling it. In addition, we suggest that humans adopt a flexible and coordinated control strategy of allowing variance independent of the variables that should be controlled to achieve this dexterous task.

  4. Air quality and climate--synergies and trade-offs.

    PubMed

    von Schneidemesser, Erika; Monks, Paul S

    2013-07-01

    Air quality and climate are often treated as separate science and policy areas. Air quality encompasses the here-and-now of pollutant emissions, atmospheric transformations and their direct effect on human and ecosystem health. Climate change deals with the drivers leading to a warmer world and the consequences of that. These two science and policy issues are inexorably linked via common pollutants, such as ozone (methane) and black carbon. This short review looks at the new scientific evidence around so-called "short-lived climate forcers" and the growing realisation that a way to meet short-term climate change targets may be through the control of "air quality" pollutants. None of the options discussed here can replace reduction of long-lived greenhouse gases, such as CO2, which is required for any long-term climate change mitigation strategy. An overview is given of the underlying science, remaining uncertainties, and some of the synergies and trade-offs for addressing air quality and climate in the science and policy context.

  5. Comparison of Vehicle Efficiency Technology Attributes and Synergy Estimates

    SciTech Connect

    Duleep, G.

    2011-02-01

    Analyzing the future fuel economy of light-duty vehicles (LDVs) requires detailed knowledge of the vehicle technologies available to improve LDV fuel economy. The National Highway Transportation Safety Administration (NHTSA) has been relying on technology data from a 2001 National Academy of Sciences (NAS) study (NAS 2001) on corporate average fuel economy (CAFE) standards, but the technology parameters were updated in the new proposed rulemaking (EPA and NHTSA 2009) to set CAFE and greenhouse gas standards for the 2011 to 2016 period. The update is based largely on an Environmental Protection Agency (EPA) analysis of technology attributes augmented by NHTSA data and contractor staff assessments. These technology cost and performance data were documented in the Draft Joint Technical Support Document (TSD) issued by EPA and NHTSA in September 2009 (EPA/NHTSA 2009). For these tasks, the Energy and Environmental Analysis (EEA) division of ICF International (ICF) examined each technology and technology package in the Draft TSD and assessed their costs and performance potential based on U.S. Department of Energy (DOE) program assessments. ICF also assessed the technologies, other relevant attributes based on data from actual production vehicles, and recently published technical articles in engineering journals. ICF examined technology synergy issues through an ICF in-house model that uses a discrete parameter approach.

  6. Comparison of Vehicle Efficiency Technology Attributes and Synergy Estimates

    SciTech Connect

    Duleep, G.

    2011-02-01

    Analyzing the future fuel economy of light-duty vehicles (LDVs) requires detailed knowledge of the vehicle technologies available to improve LDV fuel economy. The National Highway Transportation Safety Administration (NHTSA) has been relying on technology data from a 2001 National Academy of Sciences (NAS) study (NAS 2001) on corporate average fuel economy (CAFE) standards, but the technology parameters were updated in the new proposed rulemaking (EPA and NHTSA 2009) to set CAFE and greenhouse gas standards for the 2011 to 2016 period. The update is based largely on an Environmental Protection Agency (EPA) analysis of technology attributes augmented by NHTSA data and contractor staff assessments. These technology cost and performance data were documented in the Draft Joint Technical Support Document (TSD) issued by EPA and NHTSA in September 2009 (EPA/NHTSA 2009). For these tasks, the Energy and Environmental Analysis (EEA) division of ICF International (ICF) examined each technology and technology package in the Draft TSD and assessed their costs and performance potential based on U.S. Department of Energy (DOE) program assessments. ICF also assessed the technologies? other relevant attributes based on data from actual production vehicles and from recently published technical articles in engineering journals. ICF examined technology synergy issues through an ICF in-house model that uses a discrete parameter approach.

  7. Synergy between intention recognition and commitments in cooperation dilemmas.

    PubMed

    Han, The Anh; Santos, Francisco C; Lenaerts, Tom; Pereira, Luís Moniz

    2015-03-20

    Commitments have been shown to promote cooperation if, on the one hand, they can be sufficiently enforced, and on the other hand, the cost of arranging them is justified with respect to the benefits of cooperation. When either of these constraints is not met it leads to the prevalence of commitment free-riders, such as those who commit only when someone else pays to arrange the commitments. Here, we show how intention recognition may circumvent such weakness of costly commitments. We describe an evolutionary model, in the context of the one-shot Prisoner's Dilemma, showing that if players first predict the intentions of their co-player and propose a commitment only when they are not confident enough about their prediction, the chances of reaching mutual cooperation are largely enhanced. We find that an advantageous synergy between intention recognition and costly commitments depends strongly on the confidence and accuracy of intention recognition. In general, we observe an intermediate level of confidence threshold leading to the highest evolutionary advantage, showing that neither unconditional use of commitment nor intention recognition can perform optimally. Rather, our results show that arranging commitments is not always desirable, but that they may be also unavoidable depending on the strength of the dilemma.

  8. European Synergies for Soil-Related Training Provisions

    NASA Astrophysics Data System (ADS)

    Arnoult, Matthieu; Reynders, Suzanne; Dittmann, Marie; Lukac, Martin

    2017-04-01

    The University of Reading (UK) has created an original massive online open course (MOOC) the concepts and practices of Climate Smart Agriculture (CSA), a new approach to agriculture based on three principles: mitigation of climate change, adaptation to climate change, stable or increased productivity, and sustainable food security. Through 2 case studies (dairy farming and wine production) this MOOC is an opportunity to highlight the importance of soil conditions for farmers (e.g., organic matter content, erosion, leaching), an issue which had been overlooked but is now seen as an essential part of integrated farm management or techniques such as no-till farming. Furthermore, this 3-week course launching in January 2017 will be translated in several European languages in order to foster international interest in CSA from students across Europe, but also to create collaborative synergies with research partners. To that effect, collaborative work is under way between the University of Reading, INRA, and Agreenium to develop a soil-oriented MOOC, around the 4‰ Initiative to be launched by France in 2017/18. This session will present the existing MOOC material developed at Reading in the context of British and French farming, the current issues facing farmers with respect to soil, and how these will be addressed in the forthcoming MOOC to be developed in partnership with INRA and Agreenium. The use of online training provision to elicit interest in climate change in general and soil topics in particular will also be outlined.

  9. ESD and Education for All: synergies and potential conflicts

    NASA Astrophysics Data System (ADS)

    Gadotti, Moacir

    2010-06-01

    This paper analyses how Education for Sustainable Development (ESD) can assist in increasing access to quality education and discusses how it can contribute to the content and learning methods on the Education for All (EFA) agenda. It explores both the tensions and the common ground between ESD and EFA, and identifies the potential synergies between them. ESD implies a transformation of every aspect of school life at all levels: pre-school, primary and secondary. At the policy level, governments are in a position to establish links between ESD and EFA, recognising that the purpose of education is not just to support present economic development, but also to help individuals and societies to develop their potential without damaging the environment. At the grassroots level, in schools, much can—and must—be done by school leaders, teachers and students to integrate sustainability into all aspects of school life and the curriculum, thereby establishing connections between social, environmental, cultural and economic problems and achievements.

  10. Synergy, redundancy, and multivariate information measures: an experimentalist's perspective.

    PubMed

    Timme, Nicholas; Alford, Wesley; Flecker, Benjamin; Beggs, John M

    2014-04-01

    Information theory has long been used to quantify interactions between two variables. With the rise of complex systems research, multivariate information measures have been increasingly used to investigate interactions between groups of three or more variables, often with an emphasis on so called synergistic and redundant interactions. While bivariate information measures are commonly agreed upon, the multivariate information measures in use today have been developed by many different groups, and differ in subtle, yet significant ways. Here, we will review these multivariate information measures with special emphasis paid to their relationship to synergy and redundancy, as well as examine the differences between these measures by applying them to several simple model systems. In addition to these systems, we will illustrate the usefulness of the information measures by analyzing neural spiking data from a dissociated culture through early stages of its development. Our aim is that this work will aid other researchers as they seek the best multivariate information measure for their specific research goals and system. Finally, we have made software available online which allows the user to calculate all of the information measures discussed within this paper.

  11. Ocean Surface reconstruction from the synergy of Sentinel-3 sensors

    NASA Astrophysics Data System (ADS)

    Gonzalez-Haro, C.; Autret, E.; Isern-Fontanet, J.; Tandeo, P.; Le Goff, C.; Garello, R.; Fablet, R.

    2015-12-01

    Along-track altimetric measurements of Sea Surface Heights (SSH) are very well suited to quantify across-track currents. However, the spatial resolution of derived 2D velocities is restricted to scales above 100-150 km and the limited number of altimeters can lead to errors in the location of currents. On the contrary, infrared measurements of Sea Surface Temperature (SST) are well suited to locate flow patterns but it is difficult to extract quantitative estimations of ocean currents. During the last years, some works began to exploit the synergy of SST and altimetry measurements in order to retrieve ocean currents. Nevertheless, all this previous works employed measurements which were near in time but not simultaneous. In that sense, Sentinel-3 is a multi-instrument mission that will circumvent this temporal limitation, providing simultaneous measurements of SST and altimetry with high-end accuracy and reliability. Our approach, based on the spectral properties of simultaneous SST and SSH observations, is tested using ENVISAT (RA, AATSR) data, since its geometry is similar to that of Sentinel-3 (SRAL, SLSTR).

  12. Ginger phytochemicals exhibit synergy to inhibit prostate cancer cell proliferation

    PubMed Central

    Brahmbhatt, Meera; Gundala, Sushma R.; Asif, Ghazia; Shamsi, Shahab A; Aneja, Ritu

    2014-01-01

    Dietary phytochemicals offer non-toxic therapeutic management as well as chemopreventive intervention for slow-growing prostate cancers. However, the limited success of several single-agent clinical trials suggest a paradigm shift that the health benefits of fruits and vegetables are not ascribable due to individual phytochemicals rather may be ascribed to but to synergistic interactions among them. We recently reported growth-inhibiting and apoptosis-inducing properties of ginger extract (GE) in in vitro and in vivo prostate cancer models. Nevertheless, the nature of interactions among the constituent ginger biophenolics, viz. 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogoal, remains elusive. Here we show antiproliferative efficacy of the most-active GE biophenolics as single-agents and in binary combinations, and investigate the nature of their interactions using the Chou-Talalay combination-index (CI) method. Our data demonstrate that binary combinations of ginger phytochemicals synergistically inhibit proliferation of PC-3 cells with CI values ranging from 0.03-0.88. To appreciate synergy among phytochemicals present in GE, the natural abundance of ginger biophenolics was quantitated using LC-UV/MS. Interestingly, combining GE with its constituents (in particular, 6-gingerol) resulted in significant augmentation of GE’s antiproliferative activity. These data generate compelling grounds for further preclinical evaluation of GE alone and in combination with individual ginger biophenols for prostate cancer management. PMID:23441614

  13. Behaviors of Hydrogen, Helium and their Synergy in Tungsten

    NASA Astrophysics Data System (ADS)

    Lu, Guang-Hong

    2013-09-01

    Tungsten (W) is one of the most promising plasma facing material (PFM) candidates for fusion energy systems. However, effects of hydrogen (H) isotopes and helium (He) particularly their retention and blistering in W remain to be key issues that need to be addressed. In this talk, we will discuss the effects of H and He in W in terms of the physical mechanism revealed by simulations in combination with related experiments. Via modelling and simulation in different scales, the nucleation and growth mechanism of H bubbles in W have been investigated. First-principles calculations show that a vacancy induces collective H binding on its internal surface. Further calculations suggest a cascading effect of H bubble growth in W. Based on such vacancy trapping mechanism, He as well as other inert gas elements such as neon and argon can suppress the H bubble nucleation and blistering, which is confirmed by the experimental observation. Difference between H and He behaviors and their synergy in W due to their different electronic structure will be emphasized, from which we can further consider the actual complicated H/He interaction with W and their effects on (mechanical) properties of W in future fusion reactors.

  14. Synergy between intention recognition and commitments in cooperation dilemmas

    NASA Astrophysics Data System (ADS)

    Han, The Anh; Santos, Francisco C.; Lenaerts, Tom; Pereira, Luís Moniz

    2015-03-01

    Commitments have been shown to promote cooperation if, on the one hand, they can be sufficiently enforced, and on the other hand, the cost of arranging them is justified with respect to the benefits of cooperation. When either of these constraints is not met it leads to the prevalence of commitment free-riders, such as those who commit only when someone else pays to arrange the commitments. Here, we show how intention recognition may circumvent such weakness of costly commitments. We describe an evolutionary model, in the context of the one-shot Prisoner's Dilemma, showing that if players first predict the intentions of their co-player and propose a commitment only when they are not confident enough about their prediction, the chances of reaching mutual cooperation are largely enhanced. We find that an advantageous synergy between intention recognition and costly commitments depends strongly on the confidence and accuracy of intention recognition. In general, we observe an intermediate level of confidence threshold leading to the highest evolutionary advantage, showing that neither unconditional use of commitment nor intention recognition can perform optimally. Rather, our results show that arranging commitments is not always desirable, but that they may be also unavoidable depending on the strength of the dilemma.

  15. Synergy between LH and ECH waves in the FTU Tokamak

    NASA Astrophysics Data System (ADS)

    Pericoli-Ridolfini, V.; Cirant, S.; Giruzzi, G.; Panaccione, L.; Peysson, Y.; Podda, S.; Tuccillo, A.; FTU Team; ECRH Team

    2000-10-01

    Synergy between 140 GHz EC waves and 8 GHz LH waves is carried out at B=7.2 T allowing EC waves to interact only with the LH generated fast electrons, the cold resonance being outside the FTU vessel. EC and LH power are simultaneously injected up to PLH£ 950 kW and PEC£ 750 kW. Absorption of EC power, about 70%, takes place in almost all conditions of density and LH driven current, but macroscopic effects are only observed, for the first time in a tokamak, when LH waves are absorbed within r/a <0.3, and for ne < 0.6× 10^20 m-3. This is attributed to the need of a high local density of suprathermal electrons. In these conditions, synergistic effects produce a clear Vloop dro and an increase >1 keV for central electron temperature. The variation of Vloop is consistent with 10% extra driven current (35-40 kA out of 350 kA). The radial temperature profile shows an overall increase respective to the LH alone phase, within r/a=0.3, depending on P_EC. The hard X-ray data show a significant increase of the signal level, but no large changes on their radial profile.

  16. Sensitivities and synergies of DUNE and T2HK

    NASA Astrophysics Data System (ADS)

    Ballett, Peter; King, Stephen F.; Pascoli, Silvia; Prouse, Nick W.; Wang, TseChun

    2017-08-01

    Long-baseline neutrino oscillation experiments, in particular the Deep Underground Neutrino Experiment (DUNE) and Tokai to Hyper-Kamiokande (T2HK), will lead the effort in the precision determination of the as yet unknown parameters of the leptonic mixing matrix. In this article, we revisit the potential of DUNE, T2HK and their combination in light of the most recent experimental information. As well as addressing more conventional questions, we pay particular attention to the attainable precision on δ , which is playing an increasingly important role in the physics case of the long-baseline program. We analyze the complementarity of the two designs, identify the benefit of a program comprising distinct experiments and consider how best to optimize the global oscillation program. This latter question is particularly pertinent in light of a number of alternative design options which have recently been mooted: a Korean second detector for T2HK and different beams options at DUNE. We study the impact of these options and quantify the synergies between alternative proposals, identifying the best means of furthering our knowledge of the fundamental physics of neutrino oscillation.

  17. Synergy with new radio facilities: from LOFAR to SKA

    NASA Astrophysics Data System (ADS)

    Morganti, R.

    2016-06-01

    A number of new radio telescopes are coming on-line paving the way to the Square Kilometre Array. Their new capabilities, e.g. large field of view, broad instantaneous band and fast response, offer new possibilities for the science. I will briefly give an overview of the facilities that are becoming available. Many of them have open time and some are planning large surveys that will be made available to the entire astronomical community, providing an important legacy. I will then focus on some of the results obtained with the Low Frequency Array (LOFAR) on topics where a strong synergy with XMM is (or should be) present. In particular, I will focus on pulsars (e.g. fast switching mode pulsars) and accreting systems among the galactic objects. For the extragalactic objects, the combination radio/X-ray is key for understanding the energetics and, therefore, the impact that radio AGN have on their surroundings. I will in particular focus on results from observations of radio galaxies and clusters. Fast response to transient objects in the radio sky is also receiving a lot of attention with LOFAR (and other radio telescopes).

  18. Global phosphorus scarcity: identifying synergies for a sustainable future.

    PubMed

    Neset, Tina-Simone S; Cordell, Dana

    2012-01-15

    Global food production is dependent on constant inputs of phosphorus. In the current system this phosphorus is not predominantly derived from organic recycled waste, but to a large degree from phosphate-rock based mineral fertilisers. However, phosphate rock is a finite resource that cannot be manufactured. Our dependency therefore needs to be addressed from a sustainability perspective in order to ensure global food supplies for a growing global population. The situation is made more urgent by predictions that, for example, the consumption of resource intensive foods and the demand for biomass energy will increase. The scientific and societal debate has so far been focussed on the exact timing of peak phosphorus and on when the total depletion of the global reserves will occur. Even though the timing of these events is important, all dimensions of phosphorus scarcity need to be addressed in a manner which acknowledges linkages to other sustainable development challenges and which takes into consideration the synergies between different sustainability measures. Many sustainable phosphorus measures have positive impacts on other challenges; for example, shifting global diets to more plant-based foods would not only reduce global phosphorus consumption, but also reduce greenhouse gas emissions, reduce nitrogen fertiliser demand and reduce water consumption.

  19. 10+ more years of Chandra-XMM-Newton Synergy

    NASA Astrophysics Data System (ADS)

    Wilkes, B.

    2016-06-01

    In this current golden age of X-ray astronomy, the frontiers of the X-ray Universe are continually expanding in multiple, often unexpected, directions, due to the extraordinary success and longevity of both ESA's XMM-Newton and NASA's Chandra X-ray Observatory. These two ground-breaking, major observatories are supported by a number of smaller, more focused missions which feed into and expand the discovery space of X-ray astronomy even further. With the prospect of another decade of observing, now is an excellent time to take stock of how far we have come, and to look forward to the future with a view to maximizing the scientific legacy of both XMM-Newton and Chandra. This not only involves optimizing the contents of the archives and the impact of the science results, but also laying the ground-work for the next generation of X-ray telescopes, led by ESA's Athena mission in the late 2020s. I will summarize the synergy between XMM-Newton and Chandra, including complementary capabilities which facilitate coordinated observations and science programs, and overlapping capabilities which often provide the necessary confirmation (or not) of new, marginal and/or controversial results.

  20. Decline of North Atlantic eels: a fatal synergy?

    PubMed

    Wirth, Thierry; Bernatchez, Louis

    2003-04-07

    Panmictic species pose particular problems for conservation because their welfare can be addressed effectively only on a global scale. We recently documented by means of microsatellite analysis that the European eel (Anguilla anguilla) is not panmictic but instead shows genetic isolation by distance. In this study, we extended the analysis to the American eel (A. rostrata) by applying identical analytical procedures and statistical power. Results obtained for the American eel were in sharp contrast with those obtained for the European eel: the null hypothesis of panmixia could not be rejected, and no isolation by distance was detected. This implies that the species must be managed as a single population. Using Bayesian statistics, we also found that the effective population sizes for both species were surprisingly low and that the populations had undergone severe contractions, most probably during the Wisconsinan glaciation. The apparent sensitivity of eels to climatic changes affecting the strength and position of the Gulf Stream 20,000 years ago is particularly worrying, given the effects of the ongoing global warming on the North Atlantic climate. Moreover, additional short-term stresses such as surging glass eel prizes, overfishing and lethal parasitic infections negatively affect eel population size. The fascinating transatlantic migration and life cycle of Atlantic eels is also their Achilles' heel as these negative short- and long-term effects will probably culminate in a fatal synergy if drastic conservation measures are not implemented to protect these international biological resources.

  1. The Einstein-Brazil Fogarty: A decade of synergy

    PubMed Central

    Nosanchuk, Joshua D.; Nosanchuk, Murphy D.; Rodrigues, Marcio L.; Nimrichter, Leonardo; de Carvalho, Antonio C. Campos; Weiss, Louis M.; Spray, David C.; Tanowitz, Herbert B.

    2015-01-01

    Abstract A rich, collaborative program funded by the US NIH Fogarty program in 2004 has provided for a decade of remarkable opportunities for scientific advancement through the training of Brazilian undergraduate, graduate and postdoctoral students from the Federal University and Oswaldo Cruz Foundation systems at Albert Einstein College of Medicine. The focus of the program has been on the development of trainees in the broad field of Infectious Diseases, with a particular focus on diseases of importance to the Brazilian population. Talented trainees from various regions in Brazil came to Einstein to learn techniques and study fungal, parasitic and bacterial pathogens. In total, 43 trainees enthusiastically participated in the program. In addition to laboratory work, these students took a variety of courses at Einstein, presented their results at local, national and international meetings, and productively published their findings. This program has led to a remarkable synergy of scientific discovery for the participants during a time of rapid acceleration of the scientific growth in Brazil. This collaboration between Brazilian and US scientists has benefitted both countries and serves as a model for future training programs between these countries. PMID:26691452

  2. Advances and synergy of high pressure sciences at synchrotron sources

    SciTech Connect

    Liu, H.; Ehm, L.; Duffy, T.; Crichton, W.; Aoki, K.

    2009-01-01

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  3. Association between Muscle Synergy and Stability during Prolonged Walking

    PubMed Central

    Suzuki, Keisuke; Nishida, Yusuke; Mitsutomi, Kazuhiko

    2014-01-01

    [Purpose] The purpose of this study was to examine whether changes in muscle synergy could affect gait stability or muscle activity by comparing muscle activity before and after prolonged walking. [Subjects and Methods] Twelve healthy male subjects walked on a treadmill for 10 min as a warm-up. Data were recorded from the participants during the first and last 1 min during 90 min of walking at 4.5 km/h. Electromyographic (EMG) activity was recorded for 7 leg muscles, and patterns of coordination were determined by principal component analysis (PCA). The patterns of activity within the anatomic muscle groups were additionally determined by repeating PCA. iEMG was calculated using the mean EMG for each cycle step during the 1 min walking periods. The largest Lyapunov exponent was calculated to quantify each subject’s inherent local dynamic stability. [Results] The patterns for each of the 7 muscles showed no change between the start and end periods. However, the end period showed a higher co-activation of the triceps surae, lower iEMG of the medial gastrocnemius, and a smaller largest Lyapunov exponent of the mediolateral and anteroposterior directions than those observed during the start period. [Conclusion] The increase in triceps surae co-activation may be associated with gait stability. PMID:25364133

  4. The Einstein-Brazil Fogarty: A decade of synergy.

    PubMed

    Nosanchuk, Joshua D; Nosanchuk, Murphy D; Rodrigues, Marcio L; Nimrichter, Leonardo; Carvalho, Antonio C Campos de; Weiss, Louis M; Spray, David C; Tanowitz, Herbert B

    2015-01-01

    A rich, collaborative program funded by the US NIH Fogarty program in 2004 has provided for a decade of remarkable opportunities for scientific advancement through the training of Brazilian undergraduate, graduate and postdoctoral students from the Federal University and Oswaldo Cruz Foundation systems at Albert Einstein College of Medicine. The focus of the program has been on the development of trainees in the broad field of Infectious Diseases, with a particular focus on diseases of importance to the Brazilian population. Talented trainees from various regions in Brazil came to Einstein to learn techniques and study fungal, parasitic and bacterial pathogens. In total, 43 trainees enthusiastically participated in the program. In addition to laboratory work, these students took a variety of courses at Einstein, presented their results at local, national and international meetings, and productively published their findings. This program has led to a remarkable synergy of scientific discovery for the participants during a time of rapid acceleration of the scientific growth in Brazil. This collaboration between Brazilian and US scientists has benefitted both countries and serves as a model for future training programs between these countries.

  5. A methodology for assessing the effect of correlations among muscle synergy activations on task-discriminating information

    PubMed Central

    Delis, Ioannis; Berret, Bastien; Pozzo, Thierry; Panzeri, Stefano

    2013-01-01

    Muscle synergies have been hypothesized to be the building blocks used by the central nervous system to generate movement. According to this hypothesis, the accomplishment of various motor tasks relies on the ability of the motor system to recruit a small set of synergies on a single-trial basis and combine them in a task-dependent manner. It is conceivable that this requires a fine tuning of the trial-to-trial relationships between the synergy activations. Here we develop an analytical methodology to address the nature and functional role of trial-to-trial correlations between synergy activations, which is designed to help to better understand how these correlations may contribute to generating appropriate motor behavior. The algorithm we propose first divides correlations between muscle synergies into types (noise correlations, quantifying the trial-to-trial covariations of synergy activations at fixed task, and signal correlations, quantifying the similarity of task tuning of the trial-averaged activation coefficients of different synergies), and then uses single-trial methods (task-decoding and information theory) to quantify their overall effect on the task-discriminating information carried by muscle synergy activations. We apply the method to both synchronous and time-varying synergies and exemplify it on electromyographic data recorded during performance of reaching movements in different directions. Our method reveals the robust presence of information-enhancing patterns of signal and noise correlations among pairs of synchronous synergies, and shows that they enhance by 9–15% (depending on the set of tasks) the task-discriminating information provided by the synergy decompositions. We suggest that the proposed methodology could be useful for assessing whether single-trial activations of one synergy depend on activations of other synergies and quantifying the effect of such dependences on the task-to-task differences in muscle activation patterns. PMID

  6. A methodology for assessing the effect of correlations among muscle synergy activations on task-discriminating information.

    PubMed

    Delis, Ioannis; Berret, Bastien; Pozzo, Thierry; Panzeri, Stefano

    2013-01-01

    Muscle synergies have been hypothesized to be the building blocks used by the central nervous system to generate movement. According to this hypothesis, the accomplishment of various motor tasks relies on the ability of the motor system to recruit a small set of synergies on a single-trial basis and combine them in a task-dependent manner. It is conceivable that this requires a fine tuning of the trial-to-trial relationships between the synergy activations. Here we develop an analytical methodology to address the nature and functional role of trial-to-trial correlations between synergy activations, which is designed to help to better understand how these correlations may contribute to generating appropriate motor behavior. The algorithm we propose first divides correlations between muscle synergies into types (noise correlations, quantifying the trial-to-trial covariations of synergy activations at fixed task, and signal correlations, quantifying the similarity of task tuning of the trial-averaged activation coefficients of different synergies), and then uses single-trial methods (task-decoding and information theory) to quantify their overall effect on the task-discriminating information carried by muscle synergy activations. We apply the method to both synchronous and time-varying synergies and exemplify it on electromyographic data recorded during performance of reaching movements in different directions. Our method reveals the robust presence of information-enhancing patterns of signal and noise correlations among pairs of synchronous synergies, and shows that they enhance by 9-15% (depending on the set of tasks) the task-discriminating information provided by the synergy decompositions. We suggest that the proposed methodology could be useful for assessing whether single-trial activations of one synergy depend on activations of other synergies and quantifying the effect of such dependences on the task-to-task differences in muscle activation patterns.

  7. Synergy Conference: Industry's Role in the Reform of Mathematics, Science, and Technology Education. Report of the Synergy Conference (Leesburg, Virginia, June 23-25, 1993).

    ERIC Educational Resources Information Center

    Triangle Coalition for Science and Technology Education, College Park, MD.

    The purpose of the Synergy Conference was to define and initiate new roles for industry in the systemic reform of K-12 science, mathematics, and technology education. The three specific goals of the conference were: (1) inform the corporate community about the status of education reform and its relationship to the larger economic context; (2)…

  8. Synergy Conference: Industry's Role in the Reform of Mathematics, Science, and Technology Education. Report of the Synergy Conference (Leesburg, Virginia, June 23-25, 1993).

    ERIC Educational Resources Information Center

    Triangle Coalition for Science and Technology Education, College Park, MD.

    The purpose of the Synergy Conference was to define and initiate new roles for industry in the systemic reform of K-12 science, mathematics, and technology education. The three specific goals of the conference were: (1) inform the corporate community about the status of education reform and its relationship to the larger economic context; (2)…

  9. Hybrid Vehicle Technologies and their potential for reducing oil use

    NASA Astrophysics Data System (ADS)

    German, John

    2006-04-01

    Vehicles with hybrid gasoline-electric powertrains are starting to gain market share. Current hybrid vehicles add an electric motor, battery pack, and power electronics to the conventional powertrain. A variety of engine/motor configurations are possible, each with advantages and disadvantages. In general, efficiency is improved due to engine shut-off at idle, capture of energy during deceleration that is normally lost as heat in the brakes, downsizing of the conventional engine, and, in some cases, propulsion on the electric motor alone. Ongoing increases in hybrid market share are dependent on cost reduction, especially the battery pack, efficiency synergies with other vehicle technologies, use of the high electric power to provide features desired by customers, and future fuel price and availability. Potential barriers include historically low fuel prices, high discounting of the fuel savings by new vehicle purchasers, competing technologies, and tradeoffs with other factors desired by customers, such as performance, utility, safety, and luxury features.

  10. Development of hybrid polypropylene-steel fiber-reinforced concrete

    SciTech Connect

    Qian, C.X.; Stroeven, P.

    2000-01-01

    This research first investigates the optimization of fiber size, fiber content, and fly ash content in hybrid polypropylene-steel fiber concrete with low fiber content based on general mechanical properties. The research results show that a certain content of fine particles such as fly ash is necessary to evenly disperse fibers. The different sizes of steel fibers contributed to different mechanical properties, at least to a different degree. Additions of a small fiber type had a significant influence on the compressive strength, but the splitting tensile strength was only slightly affected. A large fiber type gave rise to opposite mechanical effects, which were further fortified by optimization of the aspect ratio. There is a synergy effect in the hybrid fibers system. The fracture properties and the dynamic properties will be further investigated for the hybrid fibers concrete with good general mechanical properties.

  11. Muscle Synergies of Untrained Subjects during 6 min Maximal Rowing on Slides and Fixed Ergometer.

    PubMed

    Shaharudin, Shazlin; Zanotto, Damiano; Agrawal, Sunil

    2014-12-01

    The slides ergometer (SE) was an improvisation from fixed ergometer (FE) to bridge the gap of mechanics between ergometer rowing and on-water rowing. The specific mechanical constraints of these two types of ergometers may affect the pattern of muscle recruitment, coordination and adaptation. The main purpose of this study was to evaluate the muscle synergy during 6 minutes maximal rowing on slides (SE) and fixed ergometers (FE). The laterality of muscle synergy was also examined. Surface electromyography activity, power output, heart rate, stroke length and stroke rate were analyzed from nine physically active subjects to assess the rowing performance. Physically active subjects, who were not specifically trained in rowing, were chosen to exclude the training effect on muscle synergy. Principal component analysis (PCA) with varimax rotation was applied to extract muscle synergy. Three muscle synergies were sufficient to explain the majority of variance in SE (94.4 ± 2.2 %) and FE (92.8 ± 1.7 %). Subjects covered more rowing distance, exerted greater power output and attained higher maximal heart rate during rowing on SE than on FE. The results proved the flexibility of muscle synergy to adapt to the mechanical constraints. Rowing on SE emphasized on bi-articular muscles contrary to rowing on FE which relied on cumulative effect of trunk and upper limb muscles during propulsive phase. Key pointsThree muscle synergies were extracted during maximal rowing on both fixed and slides ergometerUntrained subjects emphasized leg muscles while rowing on SEUntrained subjects focused on back muscles during FE rowing.

  12. Disease-management partnership functioning, synergy and effectiveness in delivering chronic-illness care.

    PubMed

    Cramm, Jane Murray; Nieboer, Anna Petra

    2012-06-01

    This study explored associations among disease-management partnership functioning, synergy and effectiveness in the delivery of chronic-illness care. This study had a cross-sectional design. The study sample consists of 218 professionals (out of 393) participating in 22 disease-management partnerships in various regions of the Netherlands. We assessed the relationships among partnership functioning, synergy and effectiveness in the delivery of chronic-illness care. Partnership functioning was assessed through leadership, resources, administration and efficiency. Synergy was considered the proximal outcome of partnership functioning, which, in turn, influenced the effectiveness of disease-management partnerships [measured with the Assessment of Chronic Illness Care (ACIC) survey instrument]. Overall ACIC scores ranged from 3 to 10, indicating basic/intermediate to optimal/comprehensive delivery of chronic-illness care. The results of the regression analysis demonstrate that partnership effectiveness was positively associated with leadership (β = 0.25; P≤ 0.01), and resources (β = 0.31; P≤ 0.001). No significant relationship was found between administration, efficiency and partnership effectiveness. Partnership synergy acted as a mediator for partnership functioning and was statistically significantly associated with partnership effectiveness (β = 0.25; P≤ 0.001). Disease-management partnerships seemed better able to deliver higher levels of chronic-illness care when synergy is created between partners. Synergy was more likely to emerge with boundary-spanning leaders who understood and appreciated partners' different perspectives, could bridge their diverse cultures and were comfortable sharing ideas, resources and power. In addition, the acknowledgement of and ability to use members' resources are valuable in engaging partners' involvement and achieving synergy in disease-management partnerships.

  13. Investigating reduction of dimensionality during single-joint elbow movements: a case study on muscle synergies.

    PubMed

    Chiovetto, Enrico; Berret, Bastien; Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry

    2013-01-01

    A long standing hypothesis in the neuroscience community is that the central nervous system (CNS) generates the muscle activities to accomplish movements by combining a relatively small number of stereotyped patterns of muscle activations, often referred to as "muscle synergies." Different definitions of synergies have been given in the literature. The most well-known are those of synchronous, time-varying and temporal muscle synergies. Each one of them is based on a different mathematical model used to factor some EMG array recordings collected during the execution of variety of motor tasks into a well-determined spatial, temporal or spatio-temporal organization. This plurality of definitions and their separate application to complex tasks have so far complicated the comparison and interpretation of the results obtained across studies, and it has always remained unclear why and when one synergistic decomposition should be preferred to another one. By using well-understood motor tasks such as elbow flexions and extensions, we aimed in this study to clarify better what are the motor features characterized by each kind of decomposition and to assess whether, when and why one of them should be preferred to the others. We found that three temporal synergies, each one of them accounting for specific temporal phases of the movements could account for the majority of the data variation. Similar performances could be achieved by two synchronous synergies, encoding the agonist-antagonist nature of the two muscles considered, and by two time-varying muscle synergies, encoding each one a task-related feature of the elbow movements, specifically their direction. Our findings support the notion that each EMG decomposition provides a set of well-interpretable muscle synergies, identifying reduction of dimensionality in different aspects of the movements. Taken together, our findings suggest that all decompositions are not equivalent and may imply different neurophysiological

  14. Muscle Synergies Heavily Influence the Neural Control of Arm Endpoint Stiffness and Energy Consumption

    PubMed Central

    Inouye, Joshua M.; Valero-Cuevas, Francisco J.

    2016-01-01

    Much debate has arisen from research on muscle synergies with respect to both limb impedance control and energy consumption. Studies of limb impedance control in the context of reaching movements and postural tasks have produced divergent findings, and this study explores whether the use of synergies by the central nervous system (CNS) can resolve these findings and also provide insights on mechanisms of energy consumption. In this study, we phrase these debates at the conceptual level of interactions between neural degrees of freedom and tasks constraints. This allows us to examine the ability of experimentally-observed synergies—correlated muscle activations—to control both energy consumption and the stiffness component of limb endpoint impedance. In our nominal 6-muscle planar arm model, muscle synergies and the desired size, shape, and orientation of endpoint stiffness ellipses, are expressed as linear constraints that define the set of feasible muscle activation patterns. Quadratic programming allows us to predict whether and how energy consumption can be minimized throughout the workspace of the limb given those linear constraints. We show that the presence of synergies drastically decreases the ability of the CNS to vary the properties of the endpoint stiffness and can even preclude the ability to minimize energy. Furthermore, the capacity to minimize energy consumption—when available—can be greatly affected by arm posture. Our computational approach helps reconcile divergent findings and conclusions about task-specific regulation of endpoint stiffness and energy consumption in the context of synergies. But more generally, these results provide further evidence that the benefits and disadvantages of muscle synergies go hand-in-hand with the structure of feasible muscle activation patterns afforded by the mechanics of the limb and task constraints. These insights will help design experiments to elucidate the interplay between synergies and the

  15. Investigating reduction of dimensionality during single-joint elbow movements: a case study on muscle synergies

    PubMed Central

    Chiovetto, Enrico; Berret, Bastien; Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry

    2013-01-01

    A long standing hypothesis in the neuroscience community is that the central nervous system (CNS) generates the muscle activities to accomplish movements by combining a relatively small number of stereotyped patterns of muscle activations, often referred to as “muscle synergies.” Different definitions of synergies have been given in the literature. The most well-known are those of synchronous, time-varying and temporal muscle synergies. Each one of them is based on a different mathematical model used to factor some EMG array recordings collected during the execution of variety of motor tasks into a well-determined spatial, temporal or spatio-temporal organization. This plurality of definitions and their separate application to complex tasks have so far complicated the comparison and interpretation of the results obtained across studies, and it has always remained unclear why and when one synergistic decomposition should be preferred to another one. By using well-understood motor tasks such as elbow flexions and extensions, we aimed in this study to clarify better what are the motor features characterized by each kind of decomposition and to assess whether, when and why one of them should be preferred to the others. We found that three temporal synergies, each one of them accounting for specific temporal phases of the movements could account for the majority of the data variation. Similar performances could be achieved by two synchronous synergies, encoding the agonist-antagonist nature of the two muscles considered, and by two time-varying muscle synergies, encoding each one a task-related feature of the elbow movements, specifically their direction. Our findings support the notion that each EMG decomposition provides a set of well-interpretable muscle synergies, identifying reduction of dimensionality in different aspects of the movements. Taken together, our findings suggest that all decompositions are not equivalent and may imply different neurophysiological

  16. Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking

    PubMed Central

    Chvatal, Stacie A.; Ting, Lena H.

    2012-01-01

    The modular control of muscles in groups, often referred to as muscle synergies, has been proposed to provide a motor repertoire of actions for the robust control of movement. However it is not clear whether muscle synergies identified in one task are also recruited by different neural pathways subserving other motor behaviors. We tested the hypothesis that voluntary and reactive modifications to walking in humans result from the recruitment of locomotor muscle synergies. We recorded the activity of 16 muscles in the right leg as subjects walked a 7.5 m path at two different speeds. To elicit a second motor behavior, midway through the path we imposed ramp and hold translation perturbations of the support surface in each of four cardinal directions. Variations in the temporal recruitment of locomotor muscle synergies could account for cycle-by-cycle variations in muscle activity across strides. Locomotor muscle synergies were also recruited in atypical phases of gait, accounting for both anticipatory gait modifications prior to perturbations and reactive feedback responses to perturbations. Our findings are consistent with the idea that a common pool of spatially-fixed locomotor muscle synergies can be recruited by different neural pathways, including the central pattern generator for walking, brainstem pathways for balance control, and cortical pathways mediating voluntary gait modifications. Together with electrophysiological studies, our work suggests that muscle synergies may provide a library of motor subtasks that can be flexibly recruited by parallel descending pathways to generate a variety of complex natural movements in the upper and lower limbs. PMID:22933805

  17. The SYNERGY biodegradable polymer everolimus eluting coronary stent: Porcine vascular compatibility and polymer safety study.

    PubMed

    Wilson, Gregory J; Marks, Angela; Berg, Kimberly J; Eppihimer, Michael; Sushkova, Natalia; Hawley, Steve P; Robertson, Kimberly A; Knapp, David; Pennington, Douglas E; Chen, Yen-Lane; Foss, Aaron; Huibregtse, Barbara; Dawkins, Keith D

    2015-11-15

    SYNERGY is a novel platinum chromium alloy stent that delivers abluminal everolimus from an ultrathin poly-lactide-co-glycide (PLGA) biodegradable polymer. This study evaluated the in vivo degradation of the polymer coating, everolimus release time course, and vascular compatibility of the SYNERGY stent. SYNERGY stents were implanted in arteries of domestic swine. Devices were explanted at predetermined time points (up to 120 days) and the extent of PLGA coating or everolimus remaining on the stents was quantified. Everolimus levels in the arterial tissue were also evaluated. A pathological analysis on coronary arteries of single and overlapping stents was performed at time points between 5 and 270 days. PLGA bioabsorption began immediately after implantation, and drug release was essentially complete by 90 days; PLGA absorption was substantially complete by 120 days (>90% of polymer was absorbed) leaving a bare metal SYNERGY stent. Vascular response was similar among SYNERGY and control stents (bare metal, polymer-only, and 3× polymer-only). Mild increases in para-strut fibrin were seen for SYNERGY at an early time point with no significant differences in all other morphological and morphometric parameters through 270 days or endothelial function (eNOS immunostaining) at 90 or 180 days. Inflammation was predominantly minimal to mild for all device types. In a swine model, everolimus was released by 90 days and PLGA bioabsorption was complete shortly thereafter. The SYNERGY stent and its biodegradable polymer, even at a 3× safety margin, demonstrated vascular compatibility similar to bare metal stent controls. © 2015 Wiley Periodicals, Inc.

  18. AIDS Vaccines and Preexposure Prophylaxis: Is Synergy Possible?

    PubMed Central

    Excler, Jean-Louis; Rida, Wasima; Priddy, Frances; Gilmour, Jill; McDermott, Adrian B.; Kamali, Anatoli; Anzala, Omu; Mutua, Gaudensia; Sanders, Eduard J.; Koff, Wayne; Berkley, Seth

    2011-01-01

    Abstract While the long-term goal is to develop highly effective AIDS vaccines, first generation vaccines may be only partially effective. Other HIV prevention modalities such as preexposure prophylaxis with antiretrovirals (PrEP) may have limited efficacy as well. The combined administration of vaccine and PrEP (VAXPREP), however, may have a synergistic effect leading to an overall benefit that is greater than the sum of the individual effects. We propose two test-of-concept trial designs for an AIDS vaccine plus oral or topical ARV. In one design, evidence that PrEP reduces the risk of HIV acquisition is assumed to justify offering it to all participants. A two-arm study comparing PrEP alone to VAXPREP is proposed in which 30 to 60 incident infections are observed to assess the additional benefit of vaccination on risk of infection and setpoint viral load. The demonstrated superiority of VAXPREP does not imply vaccine alone is efficacious. Similarly, the lack of superiority does not imply vaccine alone is ineffective, as antagonism could exist between vaccine and PrEP. In the other design, PrEP is assumed not to be in general use. A 2 × 2 factorial design is proposed in which high-risk individuals are randomized to one of four arms: placebo vaccine given with placebo PrEP, placebo vaccine given with PrEP, vaccine given with placebo PrEP, or VAXPREP. Between 60 and 210 infections are required to detect a benefit of vaccination with or without PrEP on risk of HIV acquisition or setpoint viral load, with fewer infections needed when synergy is present. PMID:21043994

  19. Mathematical Modeling of Cancer Immunotherapy and Its Synergy with Radiotherapy.

    PubMed

    Serre, Raphael; Benzekry, Sebastien; Padovani, Laetitia; Meille, Christophe; André, Nicolas; Ciccolini, Joseph; Barlesi, Fabrice; Muracciole, Xavier; Barbolosi, Dominique

    2016-09-01

    Combining radiotherapy with immune checkpoint blockade may offer considerable therapeutic impact if the immunosuppressive nature of the tumor microenvironment (TME) can be relieved. In this study, we used mathematical models, which can illustrate the potential synergism between immune checkpoint inhibitors and radiotherapy. A discrete-time pharmacodynamic model of the combination of radiotherapy with inhibitors of the PD1-PDL1 axis and/or the CTLA4 pathway is described. This mathematical framework describes how a growing tumor first elicits and then inhibits an antitumor immune response. This antitumor immune response is described by a primary and a secondary (or memory) response. The primary immune response appears first and is inhibited by the PD1-PDL1 axis, whereas the secondary immune response happens next and is inhibited by the CTLA4 pathway. The effects of irradiation are described by a modified version of the linear-quadratic model. This modeling offers an explanation for the reported biphasic relationship between the size of a tumor and its immunogenicity, as measured by the abscopal effect (an off-target immune response). Furthermore, it explains why discontinuing immunotherapy may result in either tumor recurrence or a durably sustained response. Finally, it describes how synchronizing immunotherapy and radiotherapy can produce synergies. The ability of the model to forecast pharmacodynamic endpoints was validated retrospectively by checking that it could describe data from experimental studies, which investigated the combination of radiotherapy with immune checkpoint inhibitors. In summary, a model such as this could be further used as a simulation tool to facilitate decision making about optimal scheduling of immunotherapy with radiotherapy and perhaps other types of anticancer therapies. Cancer Res; 76(17); 4931-40. ©2016 AACR.

  20. Collaborative Research. Atmospheric Pressure Microplasma Chemistry-Photon Synergies

    SciTech Connect

    Park, Sung-Jin; Eden, James Gary

    2015-12-01

    Combining the effects of low temperature, atmospheric pressure microplasmas and microplasma photon sources offers the promise of greatly expanding the range of applications for each of them. The plasma sources create active chemical species and these can be activated further by the addition of photons and the associated photochemistry. There are many ways to combine the effects of plasma chemistry and photochemistry, especially if there are multiple phases present. This project combined the construction of appropriate test experimental systems, various spectroscopic diagnostics and mathematical modeling. Through a continuous discussion and co-design process with the UC-Berkeley Team, we have successfully completed the fabrication and testing of all components for a microplasma array-assisted system designed for photon-activated plasma chemistry research. Microcavity plasma lamps capable of generating more than 20 mW/cm2 at 172 nm (Xe dimer) were fabricated with a custom form factor to mate to the plasma chemistry setup, and a lamp was current being installed by the Berkeley team so as to investigate plasma chemistry-photon synergies at a higher photon energy (~7.2 eV) as compared to the UVA treatment that is afforded by UV LEDs operating at 365 nm. In particular, motivated by the promising results from the Berkeley team with UVA treatment, we also produced the first generation of lamps that can generate photons in the 300-370 nm wavelength range. Another set of experiments, conducted under the auspices of this grant, involved the use of plasma microjet arrays. The combination of the photons and excited radicals produced by the plasma column resulted in broad area deactivation of bacteria.

  1. Nefopam and ketoprofen synergy in rodent models of antinociception.

    PubMed

    Girard, Philippe; Verniers, Danielle; Coppé, Marie-Claude; Pansart, Yannick; Gillardin, Jean-Marie

    2008-04-28

    Combinations of analgesics with different mechanisms of action offer the possibility of efficient analgesia with a decrease in side effects as a result of reduced dosages of one or both compounds. Based on a clinical observation of synergism between nefopam, a centrally acting non-opioid that inhibits monoamines reuptake, and ketoprofen, a non-steroidal anti-inflammatory drug, the objective of this study was to further explore this antinociceptive synergy in four distinct animal models of pain (both drugs were administered subcutaneously). Strong antinociceptive properties were observed in the mouse writhing abdominal test with ED50 values of 2.56+/-0.38 and 1.41+/-0.41 mg/kg for nefopam and ketoprofen, respectively. In the inflammatory phase of the mouse formalin test, both compounds significantly inhibited the licking time of the injected hind-paw with ED50 of 4.32+/-0.17 mg/kg for nefopam and 49.56+/-15.81 mg/kg for ketoprofen. Isobolographic analysis revealed that this drug combination is synergistic in the formalin test and additive in the writhing test. In rat carrageenan-induced tactile allodynia, single administration of nefopam or ketoprofen only partially reduced allodynia. Combination of low analgesic doses of nefopam (10 or 30 mg/kg) with low analgesic doses of ketoprofen (30 or 100 mg/kg) significantly reduced or reversed allodynia, with a more pronounced anti-allodynic effect and a longer duration efficacy. In a rat model of postoperative thermal hyperalgesia induced by incision, co-administration of nefopam at a low analgesic dose (10 mg/kg) with ketoprofen at non-analgesic doses (30 or 100 mg/kg) showed the appearance of a strong anti-hyperalgesic effect, maintained during at least 3 h. In conclusion, co-administration of nefopam with ketoprofen is synergistic, and should allow either to increase their analgesic efficacy and/or to reduce their side effects.

  2. Synergy of ultrasound microbubbles and vancomycin against Staphylococcus epidermidis biofilm.

    PubMed

    Dong, Ying; Chen, Shaojie; Wang, Zhigang; Peng, Ningning; Yu, Jialin

    2013-04-01

    Device-associated biofilm infections primarily caused by Staphylococcus epidermidis are difficult to treat effectively with conventional antibiotics. The aim of this study was to investigate the anti-biofilm effect of ultrasound-mediated microbubbles combined with vancomycin and to explore underlying mechanisms. Twenty-four hour S. epidermidis biofilms were established in OptiCell(TM) chambers to facilitate ultrasound exposure. Microbubbles were prepared and diluted to concentrations of 1% and 4% (v/v). Ultrasound was applied for 5 min at 300 kHz and 0.5 W/cm(2), with a 50% duty cycle. Vancomycin at the peak serum concentration of 32 mg/L was used on preformed biofilms for 24 h. Antibiotic susceptibility tests were conducted on biofilms to confirm the synergy between ultrasound and vancomycin. Biofilms exposed to ultrasound-mediated microbubbles combined with vancomycin were subjected to plate counting and microscopic examinations. A vancomycin penetration test was also performed. Ultrasound and ultrasound-mediated microbubbles both enhanced biofilm susceptibility to vancomycin. Ultrasound-mediated microbubbles without vancomycin could exert a bactericidal effect on biofilms. A bubble dose-dependent bioeffect was also observed. In the presence of vancomycin, biofilms exposed to ultrasound-mediated microbubbles exhibited significantly more micropores and more reduction in biofilm thickness than other treatment groups (P<0.05). The transportation of vancomycin through S. epidermidis biofilms was significantly enhanced by ultrasound, and microbubbles could further increase biofilm permeability to vancomycin. Ultrasound-mediated microbubbles may provide an efficient and non-invasive alternative to treat device-related biofilm infections. Future research is needed to optimize ultrasound parameters and microbubble concentrations so that this technology can be both effectively and safely applied in clinical practice.

  3. Space-Derived Transparency: Players, Policies, Implications, and Synergies

    NASA Astrophysics Data System (ADS)

    Kinnan, C. J.

    2001-06-01

    Space-derived transparency will become a common means of monitoring, preventing, and mitigating crises, verifying compliance with treaties and law, and enabling confidence and security building measures. Democratization and globalization, the proliferation of information technologies, the availability of commercial space high-resolution imagery, and the growing influence of NGOs invite this question: What is (space-derived) transparency and what effect does it have on US security policy? Three camps have emerged in the debate -Horaeists who seek to build a transnational society through complete transparency; Preservationists, mostly military, who fear the threat to national security, want to deny most space-derived information to non-traditional/non-state actors; and Synergists who seek to capitalize on the best of both camps. There is evidence suggesting that space-derived transparency is an inevitable trend and will resist even the best means of preservationist control. Space-derived transparency may change the dynamic of the security environment by introducing new players into the policy fomentation and implementation process. These players, if not properly schooled in imagery analysis or the potential effects of their use of misinterpreted space-derived imagery, could force policy makers to make fast, ill-considered decisions in order to respond to incidents. In some cases this fast response will defuse potential crises and in other situations these rushed decisions might result in policies without considering the potential consequences, which could turn incidents into crises. Space-derived transparency is a step forward into the future for each camp . . . the challenge for the United States lies in forging synergies in an increasingly transparent world while maintaining the balance between openness and security.

  4. Critical Importance of In Vivo Amoxicillin and Cefotaxime Concentrations for Synergy in Treatment of Experimental Enterococcus faecalis Endocarditis

    PubMed Central

    Join-Lambert, Olivier; Mainardi, Jean-Luc; Cuvelier, Catherine; Dautrey, Sophie; Farinotti, Robert; Fantin, Bruno; Carbon, Claude

    1998-01-01

    The synergy between amoxicillin and cefotaxime against two strains of Enterococcus faecalis (JH2-2 and 6370) in vitro and in rabbit endocarditis was investigated. In vitro synergy was obtained only when amoxicillin concentrations were below the MBC and when cefotaxime concentrations were above 1 μg/ml. No synergy was observed in vivo, because of the short period of time during which these pharmacologic requirements were achieved. PMID:9527811

  5. Extracting motor synergies from random movements for low-dimensional task-space control of musculoskeletal robots.

    PubMed

    Fu, Kin Chung Denny; Dalla Libera, Fabio; Ishiguro, Hiroshi

    2015-10-08

    In the field of human motor control, the motor synergy hypothesis explains how humans simplify body control dimensionality by coordinating groups of muscles, called motor synergies, instead of controlling muscles independently. In most applications of motor synergies to low-dimensional control in robotics, motor synergies are extracted from given optimal control signals. In this paper, we address the problems of how to extract motor synergies without optimal data given, and how to apply motor synergies to achieve low-dimensional task-space tracking control of a human-like robotic arm actuated by redundant muscles, without prior knowledge of the robot. We propose to extract motor synergies from a subset of randomly generated reaching-like movement data. The essence is to first approximate the corresponding optimal control signals, using estimations of the robot's forward dynamics, and to extract the motor synergies subsequently. In order to avoid modeling difficulties, a learning-based control approach is adopted such that control is accomplished via estimations of the robot's inverse dynamics. We present a kernel-based regression formulation to estimate the forward and the inverse dynamics, and a sliding controller in order to cope with estimation error. Numerical evaluations show that the proposed method enables extraction of motor synergies for low-dimensional task-space control.

  6. Electromyogram synergy control of a dexterous artificial hand to unscrew and screw objects

    PubMed Central

    2014-01-01

    Background Due to their limited dexterity, it is currently not possible to use a commercially available prosthetic hand to unscrew or screw objects without using elbow and shoulder movements. For these tasks, prosthetic hands function like a wrench, which is unnatural and limits their use in tight working environments. Results from timed rotational tasks with human subjects demonstrate the clinical need for increased dexterity of prosthetic hands, and a clinically viable solution to this problem is presented for an anthropomorphic artificial hand. Methods Initially, a human hand motion analysis was performed during a rotational task. From these data, human hand synergies were derived and mapped to an anthropomorphic artificial hand. The synergy for the artificial hand is controlled using conventional dual site electromyogram (EMG) signals. These EMG signals were mapped to the developed synergy to control four joints of the dexterous artificial hand simultaneously. Five limb absent and ten able-bodied test subjects participated in a comparison study to complete a timed rotational task as quickly as possible with their natural hands (except for one subject with a bilateral hand absence), eight commercially available prosthetic hands, and the proposed synergy controller. Each test subject used two to four different artificial hands. Results With the able-bodied subjects, the developed synergy controller reduced task completion time by 177% on average. The limb absent subjects completed the task faster on average than with their own prostheses by 46%. There was a statistically significant improvement in task completion time with the synergy controller for three of the four limb absent participants with integrated prostheses, and was not statistically different for the fourth. Conclusions The proposed synergy controller reduced average task completion time compared to commercially available prostheses. Additionally, the synergy controller is able to function in a small

  7. Electromyogram synergy control of a dexterous artificial hand to unscrew and screw objects.

    PubMed

    Kent, Benjamin A; Karnati, Nareen; Engeberg, Erik D

    2014-03-21

    Due to their limited dexterity, it is currently not possible to use a commercially available prosthetic hand to unscrew or screw objects without using elbow and shoulder movements. For these tasks, prosthetic hands function like a wrench, which is unnatural and limits their use in tight working environments. Results from timed rotational tasks with human subjects demonstrate the clinical need for increased dexterity of prosthetic hands, and a clinically viable solution to this problem is presented for an anthropomorphic artificial hand. Initially, a human hand motion analysis was performed during a rotational task. From these data, human hand synergies were derived and mapped to an anthropomorphic artificial hand. The synergy for the artificial hand is controlled using conventional dual site electromyogram (EMG) signals. These EMG signals were mapped to the developed synergy to control four joints of the dexterous artificial hand simultaneously.Five limb absent and ten able-bodied test subjects participated in a comparison study to complete a timed rotational task as quickly as possible with their natural hands (except for one subject with a bilateral hand absence), eight commercially available prosthetic hands, and the proposed synergy controller. Each test subject used two to four different artificial hands. With the able-bodied subjects, the developed synergy controller reduced task completion time by 177% on average. The limb absent subjects completed the task faster on average than with their own prostheses by 46%. There was a statistically significant improvement in task completion time with the synergy controller for three of the four limb absent participants with integrated prostheses, and was not statistically different for the fourth. The proposed synergy controller reduced average task completion time compared to commercially available prostheses. Additionally, the synergy controller is able to function in a small workspace and requires less physical

  8. Analysis of hand synergies in healthy subjects during bimanual manipulation of various objects

    PubMed Central

    2014-01-01

    Background Hand synergies have been extensively studied over the last few decades. Objectives of such research are numerous. In neuroscience, the aim is to improve the understanding of motor control and its ability to reduce the control dimensionality. In applied research fields like robotics the aim is to build biomimetic hand structures, or in prosthetics to design more performant underactuated replacement hands. Nevertheless, most of the synergy schemes identified to this day have been obtained from grasping experiments performed with one single (generally dominant) hand to objects placed in a given position and orientation in space. Aiming at identifying more generic synergies, we conducted similar experiments on postural synergy identification during bimanual manipulation of various objects in order to avoid the factors due to the extrinsic spatial position of the objects. Methods Ten healthy naive subjects were asked to perform a selected “grasp-give-receive” task with both hands using 9 objects. Subjects were wearing Cyberglove Ⓒ on both hands, allowing a measurement of the joint posture (15 degrees of freedom) of each hand. Postural synergies were then evaluated through Principal Component Analysis (PCA). Matches between the identified Principal Components and the human hand joints were analyzed thanks to the correlation matrix. Finally, statistical analysis was performed on the data in order to evaluate the effect of some specific variables on the hand synergies: object shape, hand side (i.e., laterality) and role (giving or receiving hand). Results Results on PCs are consistent with previous literature showing that a few principal components might be sufficient to describe a large variety of different grasps. Nevertheless some simple and strong correlations between PCs and clearly identified sets of hand joints were obtained in this study. In addition, these groupings of DoF corresponds to well-defined anatomo-functional finger joints according to

  9. In vitro synergy testing of macrolide-quinolone combinations against 41 clinical isolates of Legionella.

    PubMed Central

    Martin, S J; Pendland, S L; Chen, C; Schreckenberger, P; Danziger, L H

    1996-01-01

    Combination antimicrobial therapy against Legionella species has not been well studied. Several quinolones have activity against Legionella strains, which prompted this in vitro search for a synergistic combination with the macrolides. By a checkerboard assay, erythromycin, clarithromycin, and azithromycin, each in combination with ciprofloxacin and levofloxacin, were tested for synergy against 46 isolates of Legionella. The agar dilution method was employed using buffered charcoal-yeast extract media. A final inoculum of 10(4) CFU per spot was prepared from 24-h growth of each isolate. Plates were incubated at 35 degrees C for 48 h. Synergy, partial synergy, additive effect, or indifference was observed for all combinations of antibiotics tested. There was no antagonism observed. Synergy occurred to a significantly greater extent for the clarithromycin-levofloxacin (P = 0.0001) and azithromycin-levofloxacin (P = 0.003) combinations versus erythromycin-levofloxacin. The azithromycin-ciprofloxacin combination demonstrated significantly greater synergy than did either erythromycin-ciprofloxacin (P = 0.003) or clarithromycin-ciprofloxacin (P = 0.001). The newer macrolides clarithromycin and azithromycin may be more active in combination with a fluoroquinolone than is erythromycin. PMID:8726012

  10. In vitro synergy testing of macrolide-quinolone combinations against 41 clinical isolates of Legionella.

    PubMed

    Martin, S J; Pendland, S L; Chen, C; Schreckenberger, P; Danziger, L H

    1996-06-01

    Combination antimicrobial therapy against Legionella species has not been well studied. Several quinolones have activity against Legionella strains, which prompted this in vitro search for a synergistic combination with the macrolides. By a checkerboard assay, erythromycin, clarithromycin, and azithromycin, each in combination with ciprofloxacin and levofloxacin, were tested for synergy against 46 isolates of Legionella. The agar dilution method was employed using buffered charcoal-yeast extract media. A final inoculum of 10(4) CFU per spot was prepared from 24-h growth of each isolate. Plates were incubated at 35 degrees C for 48 h. Synergy, partial synergy, additive effect, or indifference was observed for all combinations of antibiotics tested. There was no antagonism observed. Synergy occurred to a significantly greater extent for the clarithromycin-levofloxacin (P = 0.0001) and azithromycin-levofloxacin (P = 0.003) combinations versus erythromycin-levofloxacin. The azithromycin-ciprofloxacin combination demonstrated significantly greater synergy than did either erythromycin-ciprofloxacin (P = 0.003) or clarithromycin-ciprofloxacin (P = 0.001). The newer macrolides clarithromycin and azithromycin may be more active in combination with a fluoroquinolone than is erythromycin.

  11. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    PubMed Central

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  12. Climate change mitigation and adaptation in the land use sector: from complementarity to synergy.

    PubMed

    Duguma, Lalisa A; Minang, Peter A; van Noordwijk, Meine

    2014-09-01

    Currently, mitigation and adaptation measures are handled separately, due to differences in priorities for the measures and segregated planning and implementation policies at international and national levels. There is a growing argument that synergistic approaches to adaptation and mitigation could bring substantial benefits at multiple scales in the land use sector. Nonetheless, efforts to implement synergies between adaptation and mitigation measures are rare due to the weak conceptual framing of the approach and constraining policy issues. In this paper, we explore the attributes of synergy and the necessary enabling conditions and discuss, as an example, experience with the Ngitili system in Tanzania that serves both adaptation and mitigation functions. An in-depth look into the current practices suggests that more emphasis is laid on complementarity-i.e., mitigation projects providing adaptation co-benefits and vice versa rather than on synergy. Unlike complementarity, synergy should emphasize functionally sustainable landscape systems in which adaptation and mitigation are optimized as part of multiple functions. We argue that the current practice of seeking co-benefits (complementarity) is a necessary but insufficient step toward addressing synergy. Moving forward from complementarity will require a paradigm shift from current compartmentalization between mitigation and adaptation to systems thinking at landscape scale. However, enabling policy, institutional, and investment conditions need to be developed at global, national, and local levels to achieve synergistic goals.

  13. Reaction null-space filter: extracting reactionless synergies for optimal postural balance from motion capture data.

    PubMed

    Nenchev, D N; Miyamoto, Y; Iribe, H; Takeuchi, K; Sato, D

    2016-01-01

    This paper introduces the notion of a reactionless synergy: a postural variation for a specific motion pattern/strategy, whereby the movements of the segments do not alter the force/moment balance at the feet. Given an optimal initial posture in terms of stability, a reactionless synergy can ensure optimality throughout the entire movement. Reactionless synergies are derived via a dynamical model wherein the feet are regarded to be unfixed. Though in contrast with the conventional fixed-feet models, this approach has the advantage of exhibiting the reactions at the feet explicitly. The dynamical model also facilitates a joint-space decomposition scheme yielding two motion components: the reactionless synergy and an orthogonal complement responsible for the dynamical coupling between the feet and the support. Since the reactionless synergy provides the basis (a feedforward control component) for optimal balance control, it may play an important role when evaluating balance abnormalities or when assessing optimality in balance control. We show how to apply the proposed method for analysis of motion capture data obtained from three voluntary movement patterns in the sagittal plane: squat, sway, and forward bend.

  14. Climate Change Mitigation and Adaptation in the Land Use Sector: From Complementarity to Synergy

    NASA Astrophysics Data System (ADS)

    Duguma, Lalisa A.; Minang, Peter A.; van Noordwijk, Meine

    2014-09-01

    Currently, mitigation and adaptation measures are handled separately, due to differences in priorities for the measures and segregated planning and implementation policies at international and national levels. There is a growing argument that synergistic approaches to adaptation and mitigation could bring substantial benefits at multiple scales in the land use sector. Nonetheless, efforts to implement synergies between adaptation and mitigation measures are rare due to the weak conceptual framing of the approach and constraining policy issues. In this paper, we explore the attributes of synergy and the necessary enabling conditions and discuss, as an example, experience with the Ngitili system in Tanzania that serves both adaptation and mitigation functions. An in-depth look into the current practices suggests that more emphasis is laid on complementarity—i.e., mitigation projects providing adaptation co-benefits and vice versa rather than on synergy. Unlike complementarity, synergy should emphasize functionally sustainable landscape systems in which adaptation and mitigation are optimized as part of multiple functions. We argue that the current practice of seeking co-benefits (complementarity) is a necessary but insufficient step toward addressing synergy. Moving forward from complementarity will require a paradigm shift from current compartmentalization between mitigation and adaptation to systems thinking at landscape scale. However, enabling policy, institutional, and investment conditions need to be developed at global, national, and local levels to achieve synergistic goals.

  15. Robustness and Reliability of Synergy-Based Myocontrol of a Multiple Degree of Freedom Robotic Arm.

    PubMed

    Lunardini, Francesca; Casellato, Claudia; d'Avella, Andrea; Sanger, Terence D; Pedrocchi, Alessandra

    2016-09-01

    In this study, we test the feasibility of the synergy- based approach for application in the realistic and clinically oriented framework of multi-degree of freedom (DOF) robotic control. We developed and tested online ten able-bodied subjects in a semi-supervised method to achieve simultaneous, continuous control of two DOFs of a robotic arm, using muscle synergies extracted from upper limb muscles while performing flexion-extension movements of the elbow and shoulder joints in the horizontal plane. To validate the efficacy of the synergy-based approach in extracting reliable control signals, compared to the simple muscle-pair method typically used in commercial applications, we evaluated the repeatability of the algorithm over days, the effect of the arm dynamics on the control performance, and the robustness of the control scheme to the presence of co-contraction between pairs of antagonist muscles. Results showed that, without the need for a daily calibration, all subjects were able to intuitively and easily control the synergy-based myoelectric interface in different scenarios, using both dynamic and isometric muscle contractions. The proposed control scheme was shown to be robust to co-contraction between antagonist muscles, providing better performance compared to the traditional muscle-pair approach. The current study is a first step toward user-friendly application of synergy-based myocontrol of assistive robotic devices.

  16. Hybrid opto-electric techniques for molecular diagnostics

    SciTech Connect

    Haque, Aeraj Ul

    2012-01-01

    Hybrid optoelectric techniques reflect a new paradigm in microfluidics. In essence, these are microfluidic techniques that employ a synergistic combination of optical and electrical forces to enable noninvasive manipulation of fluids and/or particle-type entities at the micro/nano-scale [1]. Synergy between optical and electrical forces bestows these techniques with several unique features that are promising to bring new opportunities in molecular diagnostics. Within the scope of molecular diagnostics, several aspects of optoelectric techniques promise to play a relevant role. These include, but are not limited to, sample preparation, sorting, purification, amplification and detection.

  17. Kaempferol and Chrysin Synergies to Improve Septic Mice Survival.

    PubMed

    Harasstani, Omar A; Tham, Chau Ling; Israf, Daud A

    2017-01-06

    Previously, we reported the role of synergy between two flavonoids-namely, chrysin and kaempferol-in inhibiting the secretion of a few major proinflammatory mediators such as tumor necrosis factor-alpha (TNF-α), prostaglandin E₂ (PGE₂), and nitric oxide (NO) from lipopolysaccharide (LPS)-induced RAW 264.7 cells. The present study aims to evaluate the effects of this combination on a murine model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Severe sepsis was induced in male ICR mice (n = 7) via the CLP procedure. The effects of chrysin and kaempferol combination treatment on septic mice were investigated using a 7-day survival study. The levels of key proinflammatory mediators and markers-such as aspartate aminotransferase (AST), TNF-α, and NO-in the sera samples of the septic mice were determined via ELISA and fluorescence determination at different time point intervals post-CLP challenge. Liver tissue samples from septic mice were harvested to measure myeloperoxidase (MPO) levels using a spectrophotometer. Moreover, intraperitoneal fluid (IPF) bacterial clearance and total leukocyte count were also assessed to detect any antibacterial effects exerted by chrysin and kaempferol, individually and in combination. Kaempferol treatment improved the survival rate of CLP-challenged mice by up to 16%. During this treatment, kaempferol expressed antibacterial, antiapoptotic and antioxidant activities through the attenuation of bacterial forming units, AST and NO levels, and increased polymorphonuclear leukocyte (PMN) count in the IPF. On the other hand, the chrysin treatment significantly reduced serum TNF-α levels. However, it failed to significantly improve the survival rate of the CLP-challenged mice. Subsequently, the kaempferol/chrysin combination treatment significantly improved the overall 7-day survival rate by 2-fold-up to 29%. Kaempferol and chrysin revealed some synergistic effects by acting individually upon multiple

  18. Nonadiabatic molecular dynamics simulations: synergies between theory and experiments.

    PubMed

    Tavernelli, Ivano

    2015-03-17

    Recent developments in nonadiabatic dynamics enabled ab inito simulations of complex ultrafast processes in the condensed phase. These advances have opened new avenues in the study of many photophysical and photochemical reactions triggered by the absorption of electromagnetic radiation. In particular, theoretical investigations can be combined with the most sophisticated femtosecond experimental techniques to guide the interpretation of measured time-resolved observables. At the same time, the availability of experimental data at high (spatial and time) resolution offers a unique opportunity for the benchmarking and the improvement of those theoretical models used to describe complex molecular systems in their natural environment. The established synergy between theory and experiments can produce a better understanding of new ultrafast physical and chemical processes at atomistic scale resolution. Furthermore, reliable ab inito molecular dynamics simulations can already be successfully employed as predictive tools to guide new experiments as well as the design of novel and better performing materials. In this paper, I will give a concise account on the state of the art of molecular dynamics simulations of complex molecular systems in their excited states. The principal aim of this approach is the description of a given system of interest under the most realistic ambient conditions including all environmental effects that influence experiments, for instance, the interaction with the solvent and with external time-dependent electric fields, temperature, and pressure. To this end, time-dependent density functional theory (TDDFT) is among the most efficient and accurate methods for the representation of the electronic dynamics, while trajectory surface hopping gives a valuable representation of the nuclear quantum dynamics in the excited states (including nonadiabatic effects). Concerning the environment and its effects on the dynamics, the quantum mechanics

  19. Task constraints and minimization of muscle effort result in a small number of muscle synergies during gait

    PubMed Central

    De Groote, Friedl; Jonkers, Ilse; Duysens, Jacques

    2014-01-01

    Finding muscle activity generating a given motion is a redundant problem, since there are many more muscles than degrees of freedom. The control strategies determining muscle recruitment from a redundant set are still poorly understood. One theory of motor control suggests that motion is produced through activating a small number of muscle synergies, i.e., muscle groups that are activated in a fixed ratio by a single input signal. Because of the reduced number of input signals, synergy-based control is low dimensional. But a major criticism on the theory of synergy-based control of muscles is that muscle synergies might reflect task constraints rather than a neural control strategy. Another theory of motor control suggests that muscles are recruited by optimizing performance. Optimization of performance has been widely used to calculate muscle recruitment underlying a given motion while assuming independent recruitment of muscles. If synergies indeed determine muscle recruitment underlying a given motion, optimization approaches that do not model synergy-based control could result in muscle activations that do not show the synergistic muscle action observed through electromyography (EMG). If, however, synergistic muscle action results from performance optimization and task constraints (joint kinematics and external forces), such optimization approaches are expected to result in low-dimensional synergistic muscle activations that are similar to EMG-based synergies. We calculated muscle recruitment underlying experimentally measured gait patterns by optimizing performance assuming independent recruitment of muscles. We found that the muscle activations calculated without any reference to synergies can be accurately explained by on average four synergies. These synergies are similar to EMG-based synergies. We therefore conclude that task constraints and performance optimization explain synergistic muscle recruitment from a redundant set of muscles. PMID:25278871

  20. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury

    PubMed Central

    Wenger, Nikolaus; Moraud, Eduardo Martin; Gandar, Jerome; Musienko, Pavel; Capogrosso, Marco; Baud, Laetitia; Le Goff, Camille G.; Barraud, Quentin; Pavlova, Natalia; Dominici, Nadia; Minev, Ivan R.; Asboth, Leonie; Hirsch, Arthur; Duis, Simone; Kreider, Julie; Mortera, Andrea; Haverbeck, Oliver; Kraus, Silvio; Schmitz, Felix; DiGiovanna, Jack; van den Brand, Rubia; Bloch, Jocelyne; Detemple, Peter; Lacour, Stéphanie P.; Bézard, Erwan; Micera, Silvestro; Courtine, Grégoire

    2016-01-01

    Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited this therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here, we developed novel stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real–time control software that modulate extensor versus flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight–bearing capacities, endurance and skilled locomotion in multiple rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans. PMID:26779815

  1. Making the most of collaboration: exploring the relationship between partnership synergy and partnership functioning.

    PubMed

    Weiss, Elisa S; Anderson, Rebecca Miller; Lasker, Roz D

    2002-12-01

    Considering the challenges inherent to collaboration and the time it takes to achieve measurable outcomes, partnerships need a way to determine, at an early stage, whether they are making the most of collaboration. The authors have developed a new measure, partnership synergy, which assesses the degree to which a partnership's collaborative process successfully combines its participants' perspectives, knowledge, and skills. This article reports the results of a national study designed to examine the relationship between partnership synergy and six dimensions of partnership functioning: leadership, administration and management, partnership efficiency, nonfinancial resources, partner involvement challenges, and community-related challenges. Data were collected from 815 informants in 63 partnerships. Results of regression analysis conducted with partnership-level data indicated that partnership synergy was most closely related to leadership effectiveness and partnership efficiency. Implications of these findings for research and practice are discussed.

  2. SynergyFinder: a web application for analyzing drug combination dose-response matrix data.

    PubMed

    Ianevski, Aleksandr; He, Liye; Aittokallio, Tero; Tang, Jing

    2017-08-01

    Rational design of drug combinations has become a promising strategy to tackle the drug sensitivity and resistance problem in cancer treatment. To systematically evaluate the pre-clinical significance of pairwise drug combinations, functional screening assays that probe combination effects in a dose-response matrix assay are commonly used. To facilitate the analysis of such drug combination experiments, we implemented a web application that uses key functions of R-package SynergyFinder, and provides not only the flexibility of using multiple synergy scoring models, but also a user-friendly interface for visualizing the drug combination landscapes in an interactive manner. The SynergyFinder web application is freely accessible at https://synergyfinder.fimm.fi ; The R-package and its source-code are freely available at http://bioconductor.org/packages/release/bioc/html/synergyfinder.html . jing.tang@helsinki.fi.

  3. A synergy-based hand control is encoded in human motor cortical areas.

    PubMed

    Leo, Andrea; Handjaras, Giacomo; Bianchi, Matteo; Marino, Hamal; Gabiccini, Marco; Guidi, Andrea; Scilingo, Enzo Pasquale; Pietrini, Pietro; Bicchi, Antonio; Santello, Marco; Ricciardi, Emiliano

    2016-02-15

    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses.

  4. Moving toward synergy: lessons learned in developing and sustaining community-academic partnerships.

    PubMed

    Brush, Barbara L; Baiardi, Janet M; Lapides, Sharon

    2011-01-01

    Community-academic partnerships are an increasingly popular approach to addressing community health problems and engaging vulnerable populations in research. Despite these altruistic foci, however, partnerships often struggle with fundamental issues that thwart sustainability, effectiveness, and efficiency. We adapted a synergy-promoting model to guide the development and evaluation of a community-academic partnership and share lessons learned along the way. We analyzed the partnership process over time to determine the interaction of trust, collaboration, and engagement in creating partnership synergy and promoting sustainability. Few community-academic partnerships use a conscious and systematic approach to guide and evaluate their progress. We argue that this is an important first step in creating a partnership, sustaining a milieu of open dialogue, and developing strategies that promote trust and equalize power dynamics. Still, as we learned, the best laid plans can go awry, challenging partnership synergy throughout its lifespan.

  5. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands.

    PubMed

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M L; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio

    2016-07-01

    The term 'synergy' - from the Greek synergia - means 'working together'. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project "The Hand Embodied" (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Defining the Catechol-Cation Synergy for Enhanced Wet Adhesion to Mineral Surfaces.

    PubMed

    Rapp, Michael V; Maier, Greg P; Dobbs, Howard A; Higdon, Nicholas J; Waite, J Herbert; Butler, Alison; Israelachvili, Jacob N

    2016-07-27

    Mussel foot proteins (Mfps) exhibit remarkably adaptive adhesion and bridging between polar surfaces in aqueous solution despite the strong hydration barriers at the solid-liquid interface. Recently, catechols and amines-two functionalities that account for >50 mol % of the amino acid side chains in surface-priming Mfps-were shown to cooperatively displace the interfacial hydration and mediate robust adhesion between mineral surfaces. Here we demonstrate that (1) synergy between catecholic and guanidinium side chains similarly promotes adhesion, (2) increasing the ratio of cationic amines to catechols in a molecule reduces adhesion, and (3) the catechol-cation synergy is greatest when both functionalities are present within the same molecule.

  7. Muscle Synergies May Improve Optimization Prediction of Knee Contact Forces During Walking

    PubMed Central

    Walter, Jonathan P.; Kinney, Allison L.; Banks, Scott A.; D'Lima, Darryl D.; Besier, Thor F.; Lloyd, David G.; Fregly, Benjamin J.

    2014-01-01

    The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact force

  8. Anticipatory synergy adjustments: Preparing a quick action in an unknown direction

    PubMed Central

    Zhou, Tao; Wu, Yen-Hsun; Bartsch, Angelo; Cuadra, Cristian; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2013-01-01

    We studied a mechanism of feed-forward control of a multi-finger action, namely anticipatory synergy adjustments (ASAs) prior to a quick force correction in response to a change in the gain of the visual feedback. Synergies were defined as co-varied across trials adjustments of commands to fingers that stabilized (decreased variance of) the total force. We hypothesized that ASAs would be highly sensitive to prior information about the timing of the action but not to information on its direction, i.e., on whether the gain would go up or down. The subjects produced accurate constant total force by pressing with four fingers on individual force sensors. The feedback signal could change from veridical (the sum of finger forces) to modified, with the middle finger force multiplied by 0.2 or by 1.8. The timing of the gain change and its direction could be known or unknown to the subject in advance. When the timing of the gain change was known, ASA was seen as a drop in the synergy index starting about 250–300 ms prior to the first visible correction of the total force. When the gain change timing was unknown, ASAs started much later, less than 100 ms prior to the total force correction. The magnitude of synergy index changes was significantly larger under the “time known” conditions. Information on the direction of the visual gain change had no effect on the ASA timing, while the ASA magnitude was somewhat larger when this information was not available to the subject. After the total force correction, the synergy index was significantly larger for the force signal computed using the modified gain values as compared to the synergy index value for the actual total force. We conclude that ASAs represent an important feed-forward motor control mechanism that allows preparing for a quick action even when the direction of the action is not known in advance. The results emphasize the subtle control of multi-finger synergies that are specific to the exact contributions of

  9. Synergy as a new and sensitive marker of basal ganglia dysfunction: A study of asymptomatic welders.

    PubMed

    Lewis, Mechelle M; Lee, Eun-Young; Jo, Hang Jin; Du, Guangwei; Park, Jaebum; Flynn, Michael R; Kong, Lan; Latash, Mark L; Huang, Xuemei

    2016-09-01

    Multi-digit synergies, a recently developed, theory-based method to quantify stability of motor action, are shown to reflect basal ganglia dysfunction associated with parkinsonian syndromes. In this study, we tested the hypothesis that multi-digit synergies may capture early and subclinical basal ganglia dysfunction. We chose asymptomatic welders to test the hypothesis because the basal ganglia are known to be most susceptible to neurotoxicity caused by welding-related metal accumulation (such as manganese and iron). Twenty right-handed welders and 13 matched controls were invited to perform single- and multi-finger pressing tasks using the fingers of the right or left hand. Unified Parkinson's Disease Rating Scale and Grooved Pegboard scores were used to gauge gross and fine motor dysfunction, respectively. High-resolution (3T) T1-weighted, T2-weighted, T1 mapping, susceptibility, and diffusion tensor MRIs were obtained to reflect manganese, iron accumulation, and microstructural changes in basal ganglia. The synergy index stabilizing total force and anticipatory synergy adjustments were computed, compared between groups, and correlated with estimates of basal ganglia manganese [the pallidal index, R1 (1/T1)], iron [R2* (1/T2*)], and microstructural changes [fractional anisotropy and mean diffusivity]. There were no significant differences in Unified Parkinson's Disease Rating Scale (total or motor subscale) or Grooved Pegboard test scores between welders and controls. The synergy index during steady-state accurate force production was decreased significantly in the left hand of welders compared to controls (p=0.004) but did not reach statistical significance in the right hand (p=0.16). Anticipatory synergy adjustments, however, were not significantly different between groups. Among welders, higher synergy indices in the left hand were associated significantly with higher fractional anisotropy values in the left globus pallidus (R=0.731, p<0.001) but not with the

  10. Health, supervisory support, and workplace culture in relation to work-family conflict and synergy.

    PubMed

    Beutell, Nicholas J

    2010-08-01

    This research examined health, supervisory support, and workplace culture as predictors of work interfering with family, family interfering with work, and work-family synergy. The analysis of data from 2,796 respondents from the 2002 National Study of the Changing Workforce yielded significant relations among measures of mental health, self-rated health, supervisory support, and work-family culture with a focus on career concerns. Support was found for a measure of work-family synergy. Implications and directions for research are discussed.

  11. The effect of parameters of equilibrium-based 3-D biomechanical models on extracted muscle synergies during isometric lumbar exertion.

    PubMed

    Eskandari, A H; Sedaghat-Nejad, E; Rashedi, E; Sedighi, A; Arjmand, N; Parnianpour, M

    2016-04-11

    A hallmark of more advanced models is their higher details of trunk muscles represented by a larger number of muscles. The question is if in reality we control these muscles individually as independent agents or we control groups of them called "synergy". To address this, we employed a 3-D biomechanical model of the spine with 18 trunk muscles that satisfied equilibrium conditions at L4/5, with different cost functions. The solutions of several 2-D and 3-D tasks were arranged in a data matrix and the synergies were computed by using non-negative matrix factorization (NMF) algorithms. Variance accounted for (VAF) was used to evaluate the number of synergies that emerged by the analysis, which were used to reconstruct the original muscle activations. It was showed that four and six muscle synergies were adequate to reconstruct the input data of 2-D and 3-D torque space analysis. The synergies were different by choosing alternative cost functions as expected. The constraints affected the extracted muscle synergies, particularly muscles that participated in more than one functional tasks were influenced substantially. The compositions of extracted muscle synergies were in agreement with experimental studies on healthy participants. The following computational methods show that the synergies can reduce the complexity of load distributions and allow reduced dimensional space to be used in clinical settings.

  12. Hybridization of XRF/XPS and scatterometry for Cu CMP process control

    NASA Astrophysics Data System (ADS)

    L'Herron, Benoit; Chao, Robin; Kim, Kwanghoon; Lee, Wei Ti; Motoyama, Koichi; Deprospo, Bartlet; Standaert, Theodorus; Gaudiello, John; Goldberg, Cindy

    2015-03-01

    This paper demonstrates the synergy between X-rays techniques and scatterometry, and the benefits to combine the data to improve the accuracy and precision for in-line metrology. Particular example is given to show that the hybridization addresses the challenges of aggressive patterning. In 10nm node back-end-of-line (BEOL) integration, we show that the hybridized data between scatterometry and simultaneous X-Ray Fluorescence (XRF) and X-ray Photoelectron Spectroscopy (XPS) provided the closest dimensional correlation to TEM results compared to the individual technique and CDSEM.

  13. Effect of fuel origin on synergy during co-gasification of biomass and coal in CO2.

    PubMed

    Zhang, Yan; Zheng, Yan; Yang, Mingjun; Song, Yongchen

    2016-01-01

    The effect of fuel origin on synergy in coal/biomass blends during co-gasification has been assessed using a congruent-mass thermogravimetry analysis (TGA) method. Results revealed that synergy occurs when ash residuals are formed, followed by an almost complete gasification of biomass. Potassium species in biomass ash play a catalytic role in promoting gasification reactivity of coal char, which is a direct consequence of synergy during co-gasification. The SEM-EDS spectra provided conclusive evidence that the transfer of potassium from biomass to the surface of coal char occurs during co-pyrolysis/gasification. Biomass ash rich in silica eliminated synergy in coal/biomass blends but not to the extent of inhibiting the reaction rate of the blended chars to make it slower than that of separated ones. The best result in terms of synergy was concluded to be the combination of low-ash coal and K-rich biomass.

  14. Sensors and OBIA synergy for operational monitoring of surface water

    NASA Astrophysics Data System (ADS)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    , frequent drought period and now with foreseen climate change impacts. This third case will demonstrate the efficiency of SPOT 5 programming in synergy with OBIA methodology to assess the evolution of dam surface water within a complete water cycle (i.e. 2008-09). In all those three cases image segmentation and classification algorithms developed with e-Cognition 8 software allow an easy to use implementation of simple to highly sophisticate OBIA rulsets fully operational in batch processes. Finally this contribution foresees the new opportunity of integration of Worldview 2 multispectral imagery (i.e. 8 bands) including its "coastal" band that will also find an application in continental surface water bathymetry. Worldview 2 is a recently launch satellite (e.g. October 2009) that starts to collect earth observation data since January 2010. It is therefore a promising new remote sensing tool to develop operational hydrology in combination high resolution SAR imagery and OBIA methodology. This contribution will conclude on the strong potential for operationalisation in hydrology and water resources management that recent and future sensors and image analysis methodologies are offering to water management and decision makers.

  15. Prehension synergies during smooth changes of the external torque.

    PubMed

    Sun, Yao; Park, Jaebum; Zatsiorsky, Vladimir M; Latash, Mark L

    2011-09-01

    We studied characteristics of digit action and their co-variation patterns across trials (prehension synergies) during static holding of an object while the external torque could change slowly and smoothly. The subjects held in the air an instrumented handle with an attachment that allowed a smooth change in the external torque over about 12 s; the load was always kept constant. Series of trials were performed under three conditions: The torque could be zero throughout the trial, or it could change slowly requiring a smooth change of the effort from a non-zero pronation value to zero (PR-0) or from a non-zero supination value to zero (SU-0). The handle was kept vertical at all times. Indices of variance and co-variation of elemental variables (forces and moments of force produced by individual digits) stabilizing such performance variables as total normal force, total tangential force, and total moment of force were computed at two levels of an assumed control hierarchy. At the upper level, the task is shared between the thumb and virtual finger (an imagined digit with the mechanical action equal to that of the four fingers), while at the lower level, the action of the virtual finger is shared among the actual four fingers. We analyzed the total moment of force as the sum of the moments of force produced by the thumb and virtual finger and also as the sum of the moments of force produced by the normal forces and tangential forces. The results showed that the adjustments in the total moment of force were produced primarily with changes in the moment produced by the virtual finger and by changes in the moment produced by the normal forces. The normal force of the thumb at the final state (which was the same across conditions) was larger in the two conditions with changes in the external torque. The safety margin was significantly higher in the PR-0 condition, and it dropped with the decrease in the external torque. A co-contraction index was computed to reflect the

  16. Prehension Synergies during Smooth Changes of the External Torque

    PubMed Central

    Sun, Yao; Park, Jaebum; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2011-01-01

    We studied characteristics of digit action and their co-variation patterns across trials (prehension synergies) during static holding of an object while the external torque could change slowly and smoothly. The subjects held in the air an instrumented handle with an attachment that allowed a smooth change in the external torque over about 12 s; the load was always kept constant. Series of trials were performed under three conditions: The torque could be zero throughout the trial or it could change slowly requiring a smooth change of the effort from a non-zero pronation value to zero (PR-0) or from a non-zero supination value to zero (SU-0). The handle was kept vertical at all times. Indices of variance and co-variation of elemental variables (forces and moments of force produced by individual digits) stabilizing such performance variables as total normal force, total tangential force, and total moment of force were computed at two levels of an assumed control hierarchy. At the upper level, the task is shared between the thumb and virtual finger (an imagined digit with the mechanical action equal to that of the four fingers), while at the lower level, action of the virtual finger is shared among the actual four fingers. We analyzed the total moment of force as the sum of the moments of force produced by the thumb and virtual finger and also as the sum of the moments of force produced by the normal forces and tangential forces. The results showed that the adjustments in the total moment of force were produced primarily with changes in the moment produced by the virtual finger and by changes in the moment produced by the normal forces. The normal force of the thumb at the final state (which was the same across conditions) was larger in the two conditions with changes in the external torque. The safety margin was significantly higher in the PR-0 condition, and it dropped with the decrease in the external torque. A co-contraction index was computed to reflect moment of

  17. Antistaphylococcal activity of DX-619 alone and in combination with vancomycin, teicoplanin, and linezolid assessed by time-kill synergy testing.

    PubMed

    Credito, Kim; Lin, Genrong; Appelbaum, Peter C

    2007-04-01

    Time-kill synergy studies testing in vitro activity of DX-619 alone and with added vancomycin, teicoplanin, or linezolid against 101 Staphylococcus aureus strains showed synergy between DX-619 and teicoplanin at 12 to 24 h in 72 strains and between DX-619 and vancomycin in 28 strains. No synergy was found with linezolid, and no antagonism was observed with any combination.

  18. Hybrid Gear

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)

    2016-01-01

    A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.

  19. Media Credibility Reconsidered: Synergy between On-Air and Online News.

    ERIC Educational Resources Information Center

    Bucy, Erik P.

    2003-01-01

    Examines the combined effects of on-air and online network news exposure, placing student and adult news consumers in broadcast news, online news, and telewebbing conditions. Indicates that perceptions of network news credibility are affected by channel used. Offers evidence for the existence of a synergy effect between on-air and online news. (PM)

  20. Understanding Youth STEM Interest Pathways within a Single Community: The "Synergies" Project

    ERIC Educational Resources Information Center

    Falk, John H.; Staus, Nancy; Dierking, Lynn D.; Penuel, William; Wyld, Jennifer; Bailey, Deborah

    2016-01-01

    The dramatic decline in youth interest in science, technology, engineering and mathematics (STEM) during adolescence, both in the USA and internationally, has been a phenomenon of societal concern for several decades. The Synergies project was launched to help deal with this issue. In this paper, we report findings from the first two years of our…

  1. "I've Known Rivers": A Reflection on the Synergy of Multigenre, Multimodal Texts

    ERIC Educational Resources Information Center

    Richter, Elizabeth

    2016-01-01

    In this article an elementary literacy specialist reflects on the use of multigenre, multimodal texts to support the teaching of poetry. She explores the synergy between poetry and related informational, visual, and auditory texts to afford deeper insights into the poem and the poet, in this instance, the poem, "The Negro Speaks of…

  2. Synergy, Holistic Education and R. Buckminster Fuller: Education for a World in Transformation.

    ERIC Educational Resources Information Center

    Gerber, Alex

    This pamphlet relates this quotation by R. Buckminster Fuller to the educational process: "To be optimally effective, undertake at outset the most comprehensive task in the most comprehensive and incisively detailed manner." The principle of synergy can be used to determine when something is "optimally effective." One example…

  3. The "Synergies" Research-Practice Partnership Project: A "2020 Vision" Case Study

    ERIC Educational Resources Information Center

    Falk, John H.; Dierking, Lynn D.; Staus, Nancy L.; Wyld, Jennifer N.; Bailey, Deborah L.; Penuel, William R.

    2016-01-01

    This paper, describes "Synergies," an on-going longitudinal study and design effort, being conducted in a diverse, under-resourced community in Portland, Oregon, with the goal of measurably improving STEM learning, interest and participation by early adolescents, both in school and out of school. Authors examine how the work of this…

  4. Heat transfer enhancement with mixing vane spacers using the field synergy principle

    NASA Astrophysics Data System (ADS)

    Yang, Lixin; Zhou, Mengjun; Tian, Zihao

    2017-01-01

    The single-phase heat transfer characteristics in a PWR fuel assembly are important. Many investigations attempt to obtain the heat transfer characteristics by studying the flow features in a 5 × 5 rod bundle with a spacer grid. The field synergy principle is used to discuss the mechanism of heat transfer enhancement using mixing vanes according to computational fluid dynamics results, including a spacer grid without mixing vanes, one with a split mixing vane, and one with a separate mixing vane. The results show that the field synergy principle is feasible to explain the mechanism of heat transfer enhancement in a fuel assembly. The enhancement in subchannels is more effective than on the rod's surface. If the pressure loss is ignored, the performance of the split mixing vane is superior to the separate mixing vane based on the enhanced heat transfer. Increasing the blending angle of the split mixing vane improves heat transfer enhancement, the maximum of which is 7.1%. Increasing the blending angle of the separate mixing vane did not significantly enhance heat transfer in the rod bundle, and even prevented heat transfer at a blending angle of 50°. This finding testifies to the feasibility of predicting heat transfer in a rod bundle with a spacer grid by field synergy, and upon comparison with analyzed flow features only, the field synergy method may provide more accurate guidance for optimizing the use of mixing vanes.

  5. Synergy between mu opioid ligands: evidence for functional interactions among mu opioid receptor subtypes.

    PubMed

    Bolan, Elizabeth A; Tallarida, Ronald J; Pasternak, Gavril W

    2002-11-01

    Pharmacological differences among mu opioid drugs have been observed in in vitro and in vivo preclinical models, as well as clinically, implying that all mu opioids may not be working through the same mechanism of action. Here we demonstrate analgesic synergy between L-methadone and several mu opioid ligands. Of the compounds examined, L-methadone selectively synergizes with morphine, morphine-6beta-glucuronide, codeine, and the active metabolite of heroin, 6-acetylmorphine. Morphine synergizes only with L-methadone. In analgesic assays, D-methadone was inactive alone and did not enhance morphine analgesia when the two were given together, confirming that L-methadone was not acting through N-methyl-D-aspartate mechanisms. Both L-methadone and morphine displayed only additive effects when paired with oxymorphone, oxycodone, fentanyl, alfentanyl, or meperidine. Although it displays synergy in analgesic assays, the L-methadone/morphine combination does not exhibit synergy in the gastrointestinal transit assay. This analgesic synergy of L-methadone with selective mu opioid drugs and the differences in opioid-mediated actions suggest that these drugs may be acting via different mechanisms. These findings provide further evidence for the complexity of the pharmacology of mu opioids.

  6. Air surface microdischarge-photon synergy in antibacterial plasma-activated water

    NASA Astrophysics Data System (ADS)

    Graves, David; Pavlovich, Mathew; Chang, Hung-Wen; Sakiyama, Yuki; Clark, Douglas

    2013-09-01

    We show that the antibacterial effects of air plasma on water can be amplified by synergy with ultraviolet (UV) photons. We use the surface microdischarge configuration (SMD) in atmospheric air adjacent to bacteria-laden water coupled with UVA (360 nm) photons from a light emitting diode (LED) to demonstrate this synergy. Air SMD, especially if operated in a confined space, can operate in different modes: low power mode (<0.1 W/cm2) generates primarily O3 whereas higher powers generate mainly nitrogen oxides; we focus here on the latter. The nitrogen oxide mode creates a powerful antibacterial mixture in water, including NO2-, NO3- and H2O2. Although these species alone can be strongly antibacterial, especially at low pH, we show that addition of UVA photons greatly amplifies the antibacterial effect. We first measured log reductions with only photons and then only plasma. Only when UVA exposes water after plasma does the synergy appear. Synergy appears to be due to UVA photolysis of plasma-generated NO2- to form NO and OH. We conclude that combining plasma-generated chemical species with activating photons can amplify and strengthen plasma effectiveness in many biological and other applications. Supported by Department of Energy, Office of Fusion Science Plasma Science Center.

  7. Exploring neuro-muscular synergies of reaching movements with unified independent component analysis.

    PubMed

    Artoni, Fiorenzo; Pirondini, Elvira; Panarese, Alessandro; Micera, Silvestre

    2016-08-01

    The coordinated recruitment of group of muscles through muscles synergies is known to simplify the control of movements. However, how and to what extent such control scheme is encoded at a cortical level is poorly understood. So far, electroencephalography (EEG) and electromyography (EMG) have been used, separately, to investigate the cortical regions of the human brain which may be involved in activating muscle synergies. Here we aim at extending these results by looking for a hierarchical relationship between cortical and muscular sources of activity (neuro-muscular synergies) with a unified analysis of independent components (IC) simultaneously extracted from both EEG and EMG signals. We show for the first time how the direct fusion of EEG and EMG signals to extract unified ICs (unICs) can overcome the limitations of previous approaches, i.e., the difficulty in linking neural with muscular activations, and the lack of reliability of separate preprocessing techniques. Our results show that unified ICs were physiologically meaningful components in agreement with previous works. UNICA (Unified Independent Component Analysis) can also be considered as a solution for estimating overcomplete ICA on EEG and EMG data. These findings are an important step towards an understanding of the cortical control of human muscles synergies, and may have important applications for understanding movement dysfunction and to develop novel approaches for brain-computer interfaces and neuroprostheses.

  8. Social constructionism, discourse analysis and mental health nursing: a natural synergy.

    PubMed

    Leishman, June L

    2003-09-01

    This paper has been developed to identify the natural synergy between social constructionism, discourse analysis and mental health research. It is based on research undertaken to explore mental health nurses' identity. The proposal is that nurses' identities are rhetorically constructed in the language they use to account for and justify their work in the practice context.

  9. Educational Opportunities Based on the University-Industry Synergies in an Open Innovation Framework

    ERIC Educational Resources Information Center

    Lucia, Oscar; Burdio, Jose M.; Acero, Jesus; Barragan, Luis A.; Garcia, Jose R.

    2012-01-01

    Collaboration between Industry and University is becoming more important in order to improve the competitiveness of the research and development activities. Moreover, establishing synergies to bridge the gap between the academic and industrial spheres has demonstrated to be advantageous for both of them. Nowadays, Industry is moving towards an…

  10. Stability and Composition of Functional Synergies for Speech Movements in Children with Developmental Speech Disorders

    ERIC Educational Resources Information Center

    Terband, H.; Maassen, B.; van Lieshout, P.; Nijland, L.

    2011-01-01

    The aim of this study was to investigate the consistency and composition of functional synergies for speech movements in children with developmental speech disorders. Kinematic data were collected on the reiterated productions of syllables spa(/spa[image omitted]/) and paas(/pa[image omitted]s/) by 10 6- to 9-year-olds with developmental speech…

  11. Stability and Composition of Functional Synergies for Speech Movements in Children with Developmental Speech Disorders

    ERIC Educational Resources Information Center

    Terband, H.; Maassen, B.; van Lieshout, P.; Nijland, L.

    2011-01-01

    The aim of this study was to investigate the consistency and composition of functional synergies for speech movements in children with developmental speech disorders. Kinematic data were collected on the reiterated productions of syllables spa(/spa[image omitted]/) and paas(/pa[image omitted]s/) by 10 6- to 9-year-olds with developmental speech…

  12. Educational Opportunities Based on the University-Industry Synergies in an Open Innovation Framework

    ERIC Educational Resources Information Center

    Lucia, Oscar; Burdio, Jose M.; Acero, Jesus; Barragan, Luis A.; Garcia, Jose R.

    2012-01-01

    Collaboration between Industry and University is becoming more important in order to improve the competitiveness of the research and development activities. Moreover, establishing synergies to bridge the gap between the academic and industrial spheres has demonstrated to be advantageous for both of them. Nowadays, Industry is moving towards an…

  13. "I've Known Rivers": A Reflection on the Synergy of Multigenre, Multimodal Texts

    ERIC Educational Resources Information Center

    Richter, Elizabeth

    2016-01-01

    In this article an elementary literacy specialist reflects on the use of multigenre, multimodal texts to support the teaching of poetry. She explores the synergy between poetry and related informational, visual, and auditory texts to afford deeper insights into the poem and the poet, in this instance, the poem, "The Negro Speaks of…

  14. Inquiry and Irony: Promise and Paradox in Paul Jablon's "The Synergy of Inquiry"

    ERIC Educational Resources Information Center

    Nurenberg, David

    2016-01-01

    Paul Jablon's "The Synergy of Inquiry" (2014) is well-timed. The 2014 deadline set by No Child Left Behind (NCLB, 2002) for universal student proficiency has come and gone, and according to the National Assessment of Educational Progress, "proficiency rates last year were below 50 percent for nearly every racial and ethnic group, in…

  15. Muscle synergies involved in shifts of the center of pressure while standing on a narrow support.

    PubMed

    Wang, Yun; Asaka, Tadayoshi

    2008-05-15

    We investigated multi-muscle synergies during preparation to push a load forward and their changes with different support conditions. We hypothesized that the subjects show unchanged mode structure and would be able to form multi-mode COP stabilizing synergies while standing on an unstable board. Eight healthy subjects participated in the study. Standing subjects performed load-pushing tasks under two conditions, "normal support" and "ML narrow support". Electromyographic (EMG) signals of 12 postural muscles were recorded and analyzed. The participants also performed standard tasks associated with releasing a load. These trials were used to identify muscle groupings (M-modes) associated with shifts of the center of pressure (COP) and relations between small changes in the M-modes and COP shifts in different support conditions. The subjects showed unchanged mode structure across different support conditions. The framework of the uncontrolled manifold hypothesis was used to partition the EMG variance across load-pushing trials into two components that kept constant and changed the COP coordinates in the anterior-posterior (AP) direction. This analysis has allowed us associate changes in the contribution of muscles with COP shifts under different support conditions. Different time profiles of the synergies were observed related to the COP shifts across conditions. This outcome supports a view that indices of multi-muscle (multi-M-mode) synergies can show anticipatory changes in preparation for a predictable perturbation.

  16. Media Credibility Reconsidered: Synergy between On-Air and Online News.

    ERIC Educational Resources Information Center

    Bucy, Erik P.

    2003-01-01

    Examines the combined effects of on-air and online network news exposure, placing student and adult news consumers in broadcast news, online news, and telewebbing conditions. Indicates that perceptions of network news credibility are affected by channel used. Offers evidence for the existence of a synergy effect between on-air and online news. (PM)

  17. Diversity and Synergy? The International Context of the English Literacy Strategy.

    ERIC Educational Resources Information Center

    Beard, Roger

    This paper builds upon the "Review of Research and Other Related Evidence" that was commissioned for the government of the United Kingdom's National Literacy Strategy and also upon a subsequent review of international research evidence on children's writing. The paper suggests how "synergy" (combined effect) may be created by…

  18. Distal longitudinal deformation of a Synergy stent by jailed Rotawire guidewire.

    PubMed

    Leong, A M; Ong, P J L; Ho, H H; Watson, T

    2017-04-01

    Recent advances in stent technology have led to the development of thin strut platforms with fewer connectors. This has improved delivery but compromised strength, as illustrated by recent cases of longitudinal compression. We present an unusual case of longitudinal shortening at the distal end of a Synergy stent.

  19. A Reflection on the Relationship between Technology and Teacher Education: Synergy or Separate Entities?

    ERIC Educational Resources Information Center

    Collis, Betty

    1994-01-01

    Teacher education (TE) refers too infrequently to computer related technology. Much computer-related TE is simulated and delivered by non-teacher educators. The paper discusses the lack of integration between information technology (IT) and TE, noting that synergy rather than fragmentation is needed among people involved with IT and TE. (SM)

  20. The fibronectin synergy site re-enforces cell adhesion and mediates a crosstalk between integrin classes.

    PubMed

    Benito-Jardón, Maria; Klapproth, Sarah; Gimeno-LLuch, Irene; Petzold, Tobias; Bharadwaj, Mitasha; Müller, Daniel J; Zuchtriegel, Gabriele; Reichel, Christoph A; Costell, Mercedes

    2017-01-16

    Fibronectin (FN), a major extracellular matrix component, enables integrin-mediated cell adhesion via binding of α5β1, αIIbβ3 and αv-class integrins to an RGD-motif. An additional linkage for α5 and αIIb is the synergy site located in close proximity to the RGD motif. We report that mice with a dysfunctional FN-synergy motif (Fn1(syn/syn)) suffer from surprisingly mild platelet adhesion and bleeding defects due to delayed thrombus formation after vessel injury. Additional loss of β3 integrins dramatically aggravates the bleedings and severely compromises smooth muscle cell coverage of the vasculature leading to embryonic lethality. Cell-based studies revealed that the synergy site is dispensable for the initial contact of α5β1 with the RGD, but essential to re-enforce the binding of α5β1/αIIbβ3 to FN. Our findings demonstrate a critical role for the FN synergy site when external forces exceed a certain threshold or when αvβ3 integrin levels decrease below a critical level.

  1. Neck rotation modulates flexion synergy torques, indicating an ipsilateral reticulospinal source for impairment in stroke

    PubMed Central

    Drogos, Justin; Carmona, Carolina; Keller, Thierry; Dewald, Julius P. A.

    2012-01-01

    The effect of reticular formation excitability on maximum voluntary torque (MVT) generation and associated muscle activation at the shoulder and elbow was investigated through natural elicitation (active head rotation) of the asymmetric tonic neck reflex (ATNR) in 26 individuals with stroke and 9 age-range-matched controls. Isometric MVT generation at the shoulder and elbow was quantified with the head rotated (face pointing) contralateral and ipsilateral to the paretic (stroke) and dominant (control) arm. Given the dominance of abnormal torque coupling of elbow flexion with shoulder abduction (flexion synergy) in stroke and well-developed animal models demonstrating a linkage between reticular formation and ipsilateral elbow flexors and shoulder abductors, we hypothesized that constituent torques of flexion synergy, specifically elbow flexion and shoulder abduction, would increase with contralateral head rotation. The findings of this investigation support this hypothesis. Increases in MVT for three of four flexion synergy constituents (elbow flexion, shoulder abduction, and shoulder external rotation) were observed during contralateral head rotation only in individuals with stroke. Electromyographic data of the associated muscle coactivations were nonsignificant but are presented for consideration in light of a likely underpowered statistical design for this specific variable. This study not only provides evidence for the reemergence of ATNR following stroke but also indicates a common neuroanatomical link, namely, an increased reliance on ipsilateral reticulospinal pathways, as the likely mechanism underlying the expression of both ATNR and flexion synergy that results in the loss of independent joint control. PMID:22956793

  2. Inquiry and Irony: Promise and Paradox in Paul Jablon's "The Synergy of Inquiry"

    ERIC Educational Resources Information Center

    Nurenberg, David

    2016-01-01

    Paul Jablon's "The Synergy of Inquiry" (2014) is well-timed. The 2014 deadline set by No Child Left Behind (NCLB, 2002) for universal student proficiency has come and gone, and according to the National Assessment of Educational Progress, "proficiency rates last year were below 50 percent for nearly every racial and ethnic group, in…

  3. Neoliberalism, New Public Management and the Sustainable Development Agenda of Higher Education: History, Contradictions and Synergies

    ERIC Educational Resources Information Center

    Bessant, Sophie E. F.; Robinson, Zoe P.; Ormerod, R. Mark

    2015-01-01

    This paper explores the ideological and the practical relationship between neoliberalism and New Public Management (NPM) and the sustainable development agenda of western higher education. Using the United Kingdom and specifically English universities as an example, it investigates the contradictions and the synergies between neoliberal and NPM…

  4. Synergy of Streptogramin Antibiotics Occurs Independently of Their Effects on Translation

    PubMed Central

    Noeske, Jonas; Huang, Jian; Olivier, Nelson B.; Giacobbe, Robert A.; Zambrowski, Mark

    2014-01-01

    Streptogramin antibiotics are divided into types A and B, which in combination can act synergistically. We compared the molecular interactions of the streptogramin combinations Synercid (type A, dalfopristin; type B, quinupristin) and NXL 103 (type A, flopristin; type B, linopristin) with the Escherichia coli 70S ribosome by X-ray crystallography. We further analyzed the activity of the streptogramin components individually and in combination. The streptogramin A and B components in Synercid and NXL 103 exhibit synergistic antimicrobial activity against certain pathogenic bacteria. However, in transcription-coupled translation assays, only combinations that include dalfopristin, the streptogramin A component of Synercid, show synergy. Notably, the diethylaminoethylsulfonyl group in dalfopristin reduces its activity but is the basis for synergy in transcription-coupled translation assays before its rapid hydrolysis from the depsipeptide core. Replacement of the diethylaminoethylsulfonyl group in dalfopristin by a nonhydrolyzable group may therefore be beneficial for synergy. The absence of general streptogramin synergy in transcription-coupled translation assays suggests that the synergistic antimicrobial activity of streptogramins can occur independently of the effects of streptogramin on translation. PMID:24957822

  5. Multidigit movement synergies of the human hand in an unconstrained haptic exploration task.

    PubMed

    Thakur, Pramodsingh H; Bastian, Amy J; Hsiao, Steven S

    2008-02-06

    Although the human hand has a complex structure with many individual degrees of freedom, joint movements are correlated. Studies involving simple tasks (grasping) or skilled tasks (typing or finger spelling) have shown that a small number of combined joint motions (i.e., synergies) can account for most of the variance in observed hand postures. However, those paradigms evoked a limited set of hand postures and as such the reported correlation patterns of joint motions may be task-specific. Here, we used an unconstrained haptic exploration task to evoke a set of hand postures that is representative of most naturalistic postures during object manipulation. Principal component analysis on this set revealed that the first seven principal components capture >90% of the observed variance in hand postures. Further, we identified nine eigenvectors (or synergies) that are remarkably similar across multiple subjects and across manipulations of different sets of objects within a subject. We then determined that these synergies are used broadly by showing that they account for the changes in hand postures during other tasks. These include hand motions such as reach and grasp of objects that vary in width, curvature and angle, and skilled motions such as precision pinch. Our results demonstrate that the synergies reported here generalize across tasks, and suggest that they represent basic building blocks underlying natural human hand motions.

  6. Synergy Access: A Global Newsletter on Futuristic Communications, Media & Networking. Number 1.

    ERIC Educational Resources Information Center

    Thomas, Wes, Ed.

    A global newsletter on futuristic communications, media and networking is dedicated to creating open, humanistic environments for better interpersonal communication and to exploring the phenomenon of synergy, the coming together of people, ideas and environments for creation of something greater than the sum of the parts. Editorials, poetry, and…

  7. Extended inclusive fitness theory: synergy and assortment drives the evolutionary dynamics in biology and economics.

    PubMed

    Jaffe, Klaus

    2016-01-01

    W.D. Hamilton's Inclusive Fitness Theory explains the conditions that favor the emergence and maintenance of social cooperation. Today we know that these include direct and indirect benefits an agent obtains by its actions, and through interactions with kin and with genetically unrelated individuals. That is, in addition to kin-selection, assortation or homophily, and social synergies drive the evolution of cooperation. An Extended Inclusive Fitness Theory (EIFT) synthesizes the natural selection forces acting on biological evolution and on human economic interactions by assuming that natural selection driven by inclusive fitness produces agents with utility functions that exploit assortation and synergistic opportunities. This formulation allows to estimate sustainable cost/benefit threshold ratios of cooperation among organisms and/or economic agents, using existent analytical tools, illuminating our understanding of the dynamic nature of society, the evolution of cooperation among kin and non-kin, inter-specific cooperation, co-evolution, symbioses, division of labor and social synergies. EIFT helps to promote an interdisciplinary cross fertilization of the understanding of synergy by, for example, allowing to describe the role for division of labor in the emergence of social synergies, providing an integrated framework for the study of both, biological evolution of social behavior and economic market dynamics. Another example is a bio-economic understanding of the motivations of terrorists, which identifies different forms of terrorism.

  8. In Vitro Synergy between Clofazimine and Amikacin in Treatment of Nontuberculous Mycobacterial Disease

    PubMed Central

    Totten, Sarah E.; Helstrom, Niels K.; Heifets, Leonid B.; Boeree, Martin J.; Daley, Charles L.

    2012-01-01

    Disease caused by nontuberculous mycobacteria (NTM) is increasing in frequency. The outcome of treatment for NTM lung disease is poor, particularly lung disease caused by Mycobacterium simiae and M. abscessus. Exploring synergy between active available drugs is a sensible way forward given the lack of new active drugs. We tested for synergy between amikacin and clofazimine, using standardized methods, in 564 consecutive clinical isolates identified as 21 species of rapidly growing mycobacteria, 16 clinical M. avium complex isolates, and 10 M. simiae isolates. Clofazimine and amikacin are each active in vitro against NTM; 97% (n = 548) of the rapid growers revealed MICs of clofazimine of ≤1 μg/ml, and 93% (n = 524) proved susceptible to amikacin. The combination showed significant synergistic activity in 56 of 68 (82%) eligible M. abscessus isolates, 4 of 5 M. chelonae isolates, and 1 M. fortuitum and 1 M. cosmeticum isolate, with 4- to 8-fold decreases in MICs to both drugs. Significant synergy could also be demonstrated against all M. avium complex and M. simiae isolates, with fractional inhibitory concentrations of <0.5. Clofazimine and amikacin show significant synergistic activity against both rapidly and slowly growing nontuberculous mycobacteria. The safety and tolerability of adding clofazimine to amikacin-containing regimens should be tested in clinical trials, and the results of susceptibility tests for these two compounds and their combination merit clinical validation. Synergy between clofazimine and other antibiotics with intracellular targets should be explored. PMID:23027189

  9. The "Synergies" Research-Practice Partnership Project: A "2020 Vision" Case Study

    ERIC Educational Resources Information Center

    Falk, John H.; Dierking, Lynn D.; Staus, Nancy L.; Wyld, Jennifer N.; Bailey, Deborah L.; Penuel, William R.

    2016-01-01

    This paper, describes "Synergies," an on-going longitudinal study and design effort, being conducted in a diverse, under-resourced community in Portland, Oregon, with the goal of measurably improving STEM learning, interest and participation by early adolescents, both in school and out of school. Authors examine how the work of this…

  10. Factors that Affect Synergies in Mergers, at Banking Sector: Simulation with a Dynamic Model

    NASA Astrophysics Data System (ADS)

    Yiannis, Triantafyllopoulos; Sakas, Damianos P.; Konstantopoulos, Nikolaos

    2007-12-01

    This article examines the factors that affect the intended synergy following an M&A, as they have emerged from the study of the M&A's that have taken place as yet in the Bank Sector of an EU country. On the basis of quality research, dynamic simulation models have been created for two out of the five factors.

  11. The development of motor synergies in children: ultrasound and acoustic measurements.

    PubMed

    Noiray, Aude; Ménard, Lucie; Iskarous, Khalil

    2013-01-01

    The present study focuses on differences in lingual coarticulation between French children and adults. The specific question pursued is whether 4-5 year old children have already acquired a synergy observed in adults in which the tongue back helps the tip in the formation of alveolar consonants. Locus equations, estimated from acoustic and ultrasound imaging data were used to compare coarticulation degree between adults and children and further investigate differences in motor synergy between the front and back parts of the tongue. Results show similar slope and intercept patterns for adults and children in both the acoustic and articulatory domains, with an effect of place of articulation in both groups between alveolar and non-alveolar consonants. These results suggest that 4-5 year old children (1) have learned the motor synergy investigated and (2) have developed a pattern of coarticulatory resistance depending on a consonant place of articulation. Also, results show that acoustic locus equations can be used to gauge the presence of motor synergies in children.

  12. Tuning of Muscle Synergies During Walking Along Rectilinear and Curvilinear Trajectories in Humans.

    PubMed

    Chia Bejarano, Noelia; Pedrocchi, Alessandra; Nardone, Antonio; Schieppati, Marco; Baccinelli, Walter; Monticone, Marco; Ferrigno, Giancarlo; Ferrante, Simona

    2017-01-31

    The aim of this study was to develop a methodology based on muscle synergies to investigate whether rectilinear and curvilinear walking shared the same neuro-motor organization, and how this organization was fine-tuned by the walking condition. Thirteen healthy subjects walked on rectilinear and curvilinear paths. Electromyographic data from thirteen back and lower-limb muscles were acquired, together with kinematic data using inertial sensors. Four macroscopically invariant muscle synergies, extracted through non-negative matrix factorization, proved a shared modular organization across conditions. The fine-tuning of muscle synergies was studied through non-negative matrix reconstruction, applied by fixing muscle weights or activation profiles to those of the rectilinear condition. The activation profiles tended to be recruited for a longer period and with a larger amplitude during curvilinear walking. The muscles of the posterior side of the lower limb were those mainly influenced by the fine-tuning, with the muscles inside the rotation path being more active than the outer muscles. This study shows that rectilinear and curvilinear walking share a unique motor command. However, a fine-tuning in muscle synergies is introduced during curvilinear conditions, adapting the kinematic strategy to the new biomechanical needs.

  13. Understanding Youth STEM Interest Pathways within a Single Community: The "Synergies" Project

    ERIC Educational Resources Information Center

    Falk, John H.; Staus, Nancy; Dierking, Lynn D.; Penuel, William; Wyld, Jennifer; Bailey, Deborah

    2016-01-01

    The dramatic decline in youth interest in science, technology, engineering and mathematics (STEM) during adolescence, both in the USA and internationally, has been a phenomenon of societal concern for several decades. The Synergies project was launched to help deal with this issue. In this paper, we report findings from the first two years of our…

  14. Synergy Access: A Global Newsletter on Futuristic Communications, Media & Networking. Number 1.

    ERIC Educational Resources Information Center

    Thomas, Wes, Ed.

    A global newsletter on futuristic communications, media and networking is dedicated to creating open, humanistic environments for better interpersonal communication and to exploring the phenomenon of synergy, the coming together of people, ideas and environments for creation of something greater than the sum of the parts. Editorials, poetry, and…

  15. Synergy in Urban Relationships--Public School Adult Education, Community Colleges, and Community Education.

    ERIC Educational Resources Information Center

    Griffith, William S.

    The presentation reviews selected developments in inter-organizational cooperation and coordination at the local, State, and national levels in order to provide a basis for identifying major questions and issues faced by the National Council of Urban Administrators of Adult Education (NCUAAE) as they strive for synergy in adult education. Trends…

  16. Neoliberalism, New Public Management and the Sustainable Development Agenda of Higher Education: History, Contradictions and Synergies

    ERIC Educational Resources Information Center

    Bessant, Sophie E. F.; Robinson, Zoe P.; Ormerod, R. Mark

    2015-01-01

    This paper explores the ideological and the practical relationship between neoliberalism and New Public Management (NPM) and the sustainable development agenda of western higher education. Using the United Kingdom and specifically English universities as an example, it investigates the contradictions and the synergies between neoliberal and NPM…

  17. The fibronectin synergy site re-enforces cell adhesion and mediates a crosstalk between integrin classes

    PubMed Central

    Benito-Jardón, Maria; Klapproth, Sarah; Gimeno-LLuch, Irene; Petzold, Tobias; Bharadwaj, Mitasha; Müller, Daniel J; Zuchtriegel, Gabriele; Reichel, Christoph A; Costell, Mercedes

    2017-01-01

    Fibronectin (FN), a major extracellular matrix component, enables integrin-mediated cell adhesion via binding of α5β1, αIIbβ3 and αv-class integrins to an RGD-motif. An additional linkage for α5 and αIIb is the synergy site located in close proximity to the RGD motif. We report that mice with a dysfunctional FN-synergy motif (Fn1syn/syn) suffer from surprisingly mild platelet adhesion and bleeding defects due to delayed thrombus formation after vessel injury. Additional loss of β3 integrins dramatically aggravates the bleedings and severely compromises smooth muscle cell coverage of the vasculature leading to embryonic lethality. Cell-based studies revealed that the synergy site is dispensable for the initial contact of α5β1 with the RGD, but essential to re-enforce the binding of α5β1/αIIbβ3 to FN. Our findings demonstrate a critical role for the FN synergy site when external forces exceed a certain threshold or when αvβ3 integrin levels decrease below a critical level. DOI: http://dx.doi.org/10.7554/eLife.22264.001 PMID:28092265

  18. Neck rotation modulates flexion synergy torques, indicating an ipsilateral reticulospinal source for impairment in stroke.

    PubMed

    Ellis, Michael D; Drogos, Justin; Carmona, Carolina; Keller, Thierry; Dewald, Julius P A

    2012-12-01

    The effect of reticular formation excitability on maximum voluntary torque (MVT) generation and associated muscle activation at the shoulder and elbow was investigated through natural elicitation (active head rotation) of the asymmetric tonic neck reflex (ATNR) in 26 individuals with stroke and 9 age-range-matched controls. Isometric MVT generation at the shoulder and elbow was quantified with the head rotated (face pointing) contralateral and ipsilateral to the paretic (stroke) and dominant (control) arm. Given the dominance of abnormal torque coupling of elbow flexion with shoulder abduction (flexion synergy) in stroke and well-developed animal models demonstrating a linkage between reticular formation and ipsilateral elbow flexors and shoulder abductors, we hypothesized that constituent torques of flexion synergy, specifically elbow flexion and shoulder abduction, would increase with contralateral head rotation. The findings of this investigation support this hypothesis. Increases in MVT for three of four flexion synergy constituents (elbow flexion, shoulder abduction, and shoulder external rotation) were observed during contralateral head rotation only in individuals with stroke. Electromyographic data of the associated muscle coactivations were nonsignificant but are presented for consideration in light of a likely underpowered statistical design for this specific variable. This study not only provides evidence for the reemergence of ATNR following stroke but also indicates a common neuroanatomical link, namely, an increased reliance on ipsilateral reticulospinal pathways, as the likely mechanism underlying the expression of both ATNR and flexion synergy that results in the loss of independent joint control.

  19. Improving activity of minicellulosomes by integration of intra- and intermolecular synergies

    PubMed Central

    2013-01-01

    Background Complete hydrolysis of cellulose to glucose requires the synergistic action of three general types of glycoside hydrolases; endoglucanases, exoglucanases, and cellobiases. Cellulases that are found in Nature vary considerably in their modular diversity and architecture. They include: non-complexed enzymes with single catalytic domains, independent single peptide chains incorporating multiple catalytic modules, and complexed, scaffolded structures, such as the cellulosome. The discovery of the latter two enzyme architectures has led to a generally held hypothesis that these systems take advantage of intramolecular and intermolecular proximity synergies, respectively, to enhance cellulose degradation. We use domain engineering to exploit both of these concepts to improve cellulase activity relative to the activity of mixtures of the separate catalytic domains. Results We show that engineered minicellulosomes can achieve high levels of cellulose conversion on crystalline cellulose by taking advantage of three types of synergism; (1) a complementary synergy produced by interaction of endo- and exo-cellulases, (2) an intramolecular synergy of multiple catalytic modules in a single gene product (this type of synergism being introduced for the first time to minicellulosomes targeting crystalline cellulose), and (3) an intermolecular proximity synergy from the assembly of these cellulases into larger multi-molecular structures called minicellulosomes. The binary minicellulosome constructed in this study consists of an artificial multicatalytic cellulase (CBM4-Ig-GH9-X11-X12-GH8-Doc) and one cellulase with a single catalytic domain (a modified Cel48S with the structure CBM4-Ig-GH48-Doc), connected by a non-catalytic scaffoldin protein. The high level endo-exo synergy and intramolecular synergies within the artificial multifunctional cellulase have been combined with an additional proximity-dependent synergy produced by incorporation into a minicellulosome

  20. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures.

    PubMed

    Sohn, M Hongchul; Ting, Lena H

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., <5°). Generalizable muscle activation patterns were suboptimal in terms of effort, often exceeding 50% of the maximum possible effort (cf. ~5% in minimum-effort muscle activation patterns). The feasible muscle activation ranges of individual

  1. Multi-digit coordination during lifting a horizontally oriented object: synergies control with referent configurations.

    PubMed

    Wu, Yen-Hsun; Zatsiorsky, Vladimir M; Latash, Mark L

    2012-10-01

    We explored digit coordination during the acceleration phase of a quick lifting movement of a hand-held horizontal object. We tested three hypotheses related to: (1) the scaling of mechanical variables produced by the hand with changes in the external load, torque, and moment of inertia; (2) changes in the safety margin for the thumb with both the loading conditions and acceleration; and (3) changes in the indices of synergies. The subjects held a horizontal handle with a prismatic grasp (the thumb acted on top of the handle) and performed series of "very quick" lifting movements to a visual target. Multi-digit synergies were quantified as co-variation indices among elemental variables (forces and moments produced by individual digits). The resultant force scaled with the external load but not torque, while the grip force scaled with the external torque but not load. The safety margin dropped with an increase in acceleration; it also showed changes with the external torque and moment of inertia. Total moment of force was primarily produced by the tangential forces (over 80 %) across all movement phases and loading conditions. The index and little fingers produced close to zero moment with their normal forces, while the middle and ring fingers produced consistent moments due to the reproducible shifts of their centers of pressure. Synergy indices at the upper level of the assumed hierarchy (the task is shared between the thumb and virtual finger--an imagined digit with the action equal to that of the four fingers combined) did not drop with acceleration for the three force vector components and one of the moment vector components. They did drop with acceleration at the lower level (virtual finger action is shared among the four fingers). There was a trade-off between synergy indices computed at the two levels for the three force vector components, but not for the moment of force components. We confirmed specialization of different fingers with respect to different

  2. Multi-digit coordination during lifting a horizontally oriented object: synergies control with referent configurations

    PubMed Central

    Wu, Yen-Hsun; Zatsiorsky, Vladimir M.

    2012-01-01

    We explored digit coordination during the acceleration phase of a quick lifting movement of a hand-held horizontal object. We tested three hypotheses related to: (1) the scaling of mechanical variables produced by the hand with changes in the external load, torque, and moment of inertia; (2) changes in the safety margin for the thumb with both the loading conditions and acceleration; and (3) changes in the indices of synergies. The subjects held a horizontal handle with a prismatic grasp (the thumb acted on top of the handle) and performed series of “very quick” lifting movements to a visual target. Multi-digit synergies were quantified as co-variation indices among elemental variables (forces and moments produced by individual digits). The resultant force scaled with the external load but not torque, while the grip force scaled with the external torque but not load. The safety margin dropped with an increase in acceleration; it also showed changes with the external torque and moment of inertia. Total moment of force was primarily produced by the tangential forces (over 80 %) across all movement phases and loading conditions. The index and little fingers produced close to zero moment with their normal forces, while the middle and ring fingers produced consistent moments due to the reproducible shifts of their centers of pressure. Synergy indices at the upper level of the assumed hierarchy (the task is shared between the thumb and virtual finger—an imagined digit with the action equal to that of the four fingers combined) did not drop with acceleration for the three force vector components and one of the moment vector components. They did drop with acceleration at the lower level (virtual finger action is shared among the four fingers). There was a trade-off between synergy indices computed at the two levels for the three force vector components, but not for the moment of force components. We confirmed specialization of different fingers with respect to

  3. Muscle Synergies Facilitate Computational Prediction of Subject-Specific Walking Motions

    PubMed Central

    Meyer, Andrew J.; Eskinazi, Ilan; Jackson, Jennifer N.; Rao, Anil V.; Patten, Carolynn; Fregly, Benjamin J.

    2016-01-01

    Researchers have explored a variety of neurorehabilitation approaches to restore normal walking function following a stroke. However, there is currently no objective means for prescribing and implementing treatments that are likely to maximize recovery of walking function for any particular patient. As a first step toward optimizing neurorehabilitation effectiveness, this study develops and evaluates a patient-specific synergy-controlled neuromusculoskeletal simulation framework that can predict walking motions for an individual post-stroke. The main question we addressed was whether driving a subject-specific neuromusculoskeletal model with muscle synergy controls (5 per leg) facilitates generation of accurate walking predictions compared to a model driven by muscle activation controls (35 per leg) or joint torque controls (5 per leg). To explore this question, we developed a subject-specific neuromusculoskeletal model of a single high-functioning hemiparetic subject using instrumented treadmill walking data collected at the subject’s self-selected speed of 0.5 m/s. The model included subject-specific representations of lower-body kinematic structure, foot–ground contact behavior, electromyography-driven muscle force generation, and neural control limitations and remaining capabilities. Using direct collocation optimal control and the subject-specific model, we evaluated the ability of the three control approaches to predict the subject’s walking kinematics and kinetics at two speeds (0.5 and 0.8 m/s) for which experimental data were available from the subject. We also evaluated whether synergy controls could predict a physically realistic gait period at one speed (1.1 m/s) for which no experimental data were available. All three control approaches predicted the subject’s walking kinematics and kinetics (including ground reaction forces) well for the model calibration speed of 0.5 m/s. However, only activation and synergy controls could predict the

  4. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures

    PubMed Central

    Sohn, M. Hongchul; Ting, Lena H.

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., <5°). Generalizable muscle activation patterns were suboptimal in terms of effort, often exceeding 50% of the maximum possible effort (cf. ~5% in minimum-effort muscle activation patterns). The feasible muscle activation ranges of individual

  5. Inference and representations of hand actions through grasping synergies. Comment on "Grasping synergies: A motor-control approach to the mirror neuron mechanism" by D'Ausilio, Bartoli, and Maffongelli

    NASA Astrophysics Data System (ADS)

    Santello, Marco

    2015-03-01

    The concept of synergy, denoting the coordination of multiple elements working together toward a common goal, has been extensively studied to understand how the central nervous system (CNS) controls movement (for review see [5,9]). Although this definition is appealing in its simplicity, 'multiple elements', 'working together', and 'common goal' each take different meanings depending on the scale at which a given sensorimotor system is studied, whether the 'working together' is defined in spatial and/or temporal domains, and the hypothesized synergy's 'common goal'. For example, the elements involved in a synergy can be defined as single motor units, muscles, or joints. Similarly, the goal of a synergy may be defined as a means available to the CNS to 'simplify' the control of multiple elements, or to minimize a given cost function or movement feature - all of which may differ across tasks and tasks conditions. These considerations underscore the fact that a universally accepted definition of synergies and their functional role remains to be established (for review see [6]). Thus, the nature and functional role(s) of synergies is still debated in the literature. Nevertheless, it is generally agreed that the reduction in the number of independent degrees of freedom that is manifested through synergies emerges from the interaction of biomechanical and neural factors constraining the spatial and temporal coordination of multiple muscles.

  6. Hybrid Supramolecular and Colloidal Hydrogels that Bridge Multiple Length Scales.

    PubMed

    Janeček, Emma-Rose; McKee, Jason R; Tan, Cindy S Y; Nykänen, Antti; Kettunen, Marjo; Laine, Janne; Ikkala, Olli; Scherman, Oren A

    2015-04-27

    Hybrid nanocomposites were constructed based on colloidal nanofibrillar hydrogels with interpenetrating supramolecular hydrogels, displaying enhanced rheological yield strain and a synergistic improvement in storage modulus. The supramolecular hydrogel consists of naphthyl-functionalized hydroxyethyl cellulose and a cationic polystyrene derivative decorated with methylviologen moieties, physically cross-linked with cucurbit[8]uril macrocyclic hosts. Fast exchange kinetics within the supramolecular system are enabled by reversible cross-linking through the binding of the naphthyl and viologen guests. The colloidal hydrogel consists of nanofibrillated cellulose that combines a mechanically strong nanofiber skeleton with a lateral fibrillar diameter of a few nanometers. The two networks interact through hydroxyethyl cellulose adsorption to the nanofibrillated cellulose surfaces. This work shows methods to bridge the length scales of molecular and colloidal hybrid hydrogels, resulting in synergy between reinforcement and dynamics.

  7. Hybrid Simulator

    SciTech Connect

    Trujillo, David J.; Sridharan, Srikesh; Weinstock, Irvin

    2005-10-15

    HybSim (short for Hybrid Simulator) is a flexible, easy to use screening tool that allows the user to quanti the technical and economic benefits of installing a village hybrid generating system and simulates systems with any combination of —Diesel generator sets —Photovoltaic arrays -Wind Turbines and -Battery energy storage systems Most village systems (or small population sites such as villages, remote military bases, small communities, independent or isolated buildings or centers) depend on diesel generation systems for their source of energy. HybSim allows the user to determine other "sources" of energy that can greatly reduce the dollar to kilo-watt hour ratio. Supported by the DOE, Energy Storage Program, HybSim was initially developed to help analyze the benefits of energy storage systems in Alaskan villages. Soon after its development, other sources of energy were added providing the user with a greater range of analysis opportunities and providing the village with potentially added savings. In addition to village systems, HybSim has generated interest for use from military institutions in energy provisions and USAID for international village analysis.

  8. Learning effects on muscle modes and multi-mode postural synergies.

    PubMed

    Asaka, Tadayoshi; Wang, Yun; Fukushima, Junko; Latash, Mark L

    2008-01-01

    We used the framework of the uncontrolled manifold hypothesis to explore the effects of practice on the composition of muscle groups (M-modes) and multi-M-mode synergies stabilizing the location of the center of pressure (COP). In particular, we tested a hypothesis that practice could lead to a transition from co-contraction muscle activation patterns to reciprocal patterns. We also tested a hypothesis that new sets of M-modes would form stronger synergies stabilizing COP location. Subjects practiced load release tasks for five days while standing on a board with a narrow support surface (unstable board). Their M-modes and indices of multi-M-mode synergies were computed during standing without instability and during standing on an unstable board before practice, in the middle of practice, and at the end of practice. During standing without instability, subjects showed two consistent M-modes uniting dorsal and ventral muscles of the body respectively (reciprocal modes). While standing on an unstable board, prior to practice, subjects commonly showed M-modes uniting muscle pairs with opposing actions at major leg joints-co-contraction modes. Such sets of M-modes failed to stabilize the COP location in the anterior-posterior direction. Practice led to better task performance reflected in fewer incidences of lost balance. This was accompanied by a drop in the occurrence of co-contraction M-modes and the emergence of multi-mode synergies stabilizing the COP location. We conclude that the central nervous system uses flexible sets of elemental variables (modes) to ensure stable trajectories of important performance variables (such as COP location). Practice can lead to adjustments in both the composition of M-modes and M-mode co-variation patterns resulting in stronger synergies stabilizing COP location.

  9. Are we ready to move beyond the reductionist approach of classical synergy control?. Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    NASA Astrophysics Data System (ADS)

    Lacquaniti, Francesco; Ivanenko, Yuri P.; Zago, Myrka

    2016-07-01

    Starting from the classical concepts introduced by Sherrington [1] and considerably elaborated by Bernstein [2], much has been learned about motor synergies in the last several years. The contributions of the group funded by the European project ;The Hand Embodied; are remarkable in the field of biological and robotic control of the hand based on synergies, and they are reflected in this enjoyable review [3]. There, Santello et al. adopt Bernstein's definition of motor synergies as multiple elements working together towards a common goal, with the result that multiple degrees of freedom are controlled within a lower-dimensional space than the available number of dimensions.

  10. Time-Kill Assay and Etest Evaluation for Synergy with Polymyxin B and Fluconazole against Candida glabrata

    PubMed Central

    Ashcraft, Deborah; Kahn, Heather; Ismail, Abdulrahim

    2014-01-01

    Fluconazole-resistant Candida glabrata is an emerging pathogen that causes fungemia. Polymyxin B, a last-resort antibiotic used to treat multidrug-resistant Gram-negative bacterial infections, has been found to possess in vitro fungicidal activity and showed synergy with fluconazole against a single strain of C. glabrata. Since both agents may be used simultaneously in intensive care unit (ICU) patients, this study was performed to test for possible synergy of this combination against 35 C. glabrata blood isolates, using 2 methods: a time-kill assay and an experimental MIC-MIC Etest method. Thirty-five genetically unique C. glabrata bloodstream isolates were collected from 2009 to 2011, identified using an API 20C system, and genotyped by repetitive sequence-based PCR (rep-PCR). MICs were determined by Etest and broth microdilution methods. Synergy testing was performed using a modified bacterial Etest synergy method and time-kill assay, with final results read at 24 h. The Etest method showed synergy against 19/35 (54%) isolates; the time-kill assay showed synergy against 21/35 (60%) isolates. Isolates not showing drug synergy had an indifferent status. Concordance between methods was 60%. In vitro synergy of polymyxin B and fluconazole against the majority of C. glabrata isolates was demonstrated by both methods. The bacterial Etest synergy method adapted well when used with C. glabrata. Etest was easier to perform than time-kill assay and may be found to be an acceptable alternative to time-kill assay with antifungals. PMID:25049251

  11. On the Origin of Muscle Synergies: Invariant Balance in the Co-activation of Agonist and Antagonist Muscle Pairs

    PubMed Central

    Hirai, Hiroaki; Miyazaki, Fumio; Naritomi, Hiroaki; Koba, Keitaro; Oku, Takanori; Uno, Kanna; Uemura, Mitsunori; Nishi, Tomoki; Kageyama, Masayuki; Krebs, Hermano Igo

    2015-01-01

    Investigation of neural representation of movement planning has attracted the attention of neuroscientists, as it may reveal the sensorimotor transformation essential to motor control. The analysis of muscle synergies based on the activity of agonist–antagonist (AA) muscle pairs may provide insight into such transformations, especially for a reference frame in the muscle space. In this study, we examined the AA concept using the following explanatory variables: the AA ratio, which is related to the equilibrium-joint angle, and the AA sum, which is associated with joint stiffness. We formulated muscle synergies as a function of AA sums, positing that muscle synergies are composite units of mechanical impedance. The AA concept can be regarded as another form of the equilibrium-point (EP) hypothesis, and it can be extended to the concept of EP-based synergies. We introduce, here, a novel tool for analyzing the neurological and motor functions underlying human movements and review some initial insights from our results about the relationships between muscle synergies, endpoint stiffness, and virtual trajectories (time series of EP). Our results suggest that (1) muscle synergies reflect an invariant balance in the co-activation of AA muscle pairs; (2) each synergy represents the basis for the radial, tangential, and null movements of the virtual trajectory in the polar coordinates centered on the specific joint at the base of the body; and (3) the alteration of muscle synergies (for example, due to spasticity or rigidity following neurological injury) results in significant distortion of endpoint stiffness and concomitant virtual trajectories. These results indicate that muscle synergies (i.e., the balance of muscle mechanical impedance) are essential for motor control. PMID:26636079

  12. On the Origin of Muscle Synergies: Invariant Balance in the Co-activation of Agonist and Antagonist Muscle Pairs.

    PubMed

    Hirai, Hiroaki; Miyazaki, Fumio; Naritomi, Hiroaki; Koba, Keitaro; Oku, Takanori; Uno, Kanna; Uemura, Mitsunori; Nishi, Tomoki; Kageyama, Masayuki; Krebs, Hermano Igo

    2015-01-01

    Investigation of neural representation of movement planning has attracted the attention of neuroscientists, as it may reveal the sensorimotor transformation essential to motor control. The analysis of muscle synergies based on the activity of agonist-antagonist (AA) muscle pairs may provide insight into such transformations, especially for a reference frame in the muscle space. In this study, we examined the AA concept using the following explanatory variables: the AA ratio, which is related to the equilibrium-joint angle, and the AA sum, which is associated with joint stiffness. We formulated muscle synergies as a function of AA sums, positing that muscle synergies are composite units of mechanical impedance. The AA concept can be regarded as another form of the equilibrium-point (EP) hypothesis, and it can be extended to the concept of EP-based synergies. We introduce, here, a novel tool for analyzing the neurological and motor functions underlying human movements and review some initial insights from our results about the relationships between muscle synergies, endpoint stiffness, and virtual trajectories (time series of EP). Our results suggest that (1) muscle synergies reflect an invariant balance in the co-activation of AA muscle pairs; (2) each synergy represents the basis for the radial, tangential, and null movements of the virtual trajectory in the polar coordinates centered on the specific joint at the base of the body; and (3) the alteration of muscle synergies (for example, due to spasticity or rigidity following neurological injury) results in significant distortion of endpoint stiffness and concomitant virtual trajectories. These results indicate that muscle synergies (i.e., the balance of muscle mechanical impedance) are essential for motor control.

  13. Hybridized tetraquarks

    DOE PAGES

    Esposito, Angelo; Pilloni, Alessadro; Polosa, A. D.

    2016-05-12

    In this study, we propose a new interpretation of the neutral and charged X,Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules. The latter would require a negative or zero binding energy whose counterpart in h-tetraquarks is a positive quantity. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the B0s π± channel by the D0 collaboration and the negative result presented subsequently by the LHCb collaboration are understood in this scheme, togethermore » with a considerable portion of available data on X, Z particles. Considerations on a state with the same quantum numbers as the X(5568) are also made.« less

  14. Synergy of 5-aza-2'-deoxycytidine (DAC) and paclitaxel in both androgen-dependent and -independent prostate cancer cell lines.

    PubMed

    Shang, Donghao; Liu, Yuting; Liu, Qingjun; Zhang, Fengbo; Feng, Lang; Lv, Wencheng; Tian, Ye

    2009-06-08

    To determine the synergy of 5-aza-2'-deoxycytidine (DAC) and paclitaxel (PTX) against prostate carcinoma (PC) cells by isobolographic analysis. We demonstrated that DAC could significantly increase the susceptibility of PC cells to PTX, and confirmed the synergy of DAC and PTX. DAC enhanced the PTX induced up-regulation of caspase activity and antiproliferative effect, resulting in an increase of cells in subG1 and G2/M phases. In addition, the synergy was observed in both androgen-dependent and -independent PC cell lines. It suggested that combination chemotherapy with DAC and PTX might be a new strategy to improve the clinical response rate of PC.

  15. Enhanced photocurrent production by the synergy of hematite nanowire-arrayed photoanode and bioengineered Shewanella oneidensis MR-1.

    PubMed

    Zhu, Gaolong; Yang, Yun; Liu, Juan; Liu, Feng; Lu, Anhuai; He, Weidong

    2017-08-15

    Coupling the light-harvesting capabilities of semiconductors with the catalytic power of bacteria is a promising way to increase the efficiency of bioelectrochemical systems. Here, we reported the enhanced photocurrents produced by the synergy of hematite nanowire-arrayed photoanode and the bio-engineered Shewanella oneidensis MR-1 in a solar-assisted microbial photoelectrochemical system (solar MPS) under the visible light. To increase the supply of bioelectrons, the D-lactate transporter, SO1522, was overexpressed in the recombinant S. oneidensis (T-SO1522) that could digest D-lactate 61% faster than the wild-type S. oneidenesis. Without light illumination, the addition of either the wild-type or the recombinant S. oneidensis to the system did not induce any obvious increase in the current output. However, under one-sun illumination, the photocurrent of the abiotic control was 16±2 μA cm(-2) at 0.8V vs. Ag/AgCl, and the addition of the wild-type S. oneidensis and the recombinant S. oneidensis increased the photocurrent to 70±6 and 95±8 μA cm(-2), respectively, at 0.8V vs. Ag/AgCl. Moreover, the solar MPS with T-SO1522 presented quick and repeatable responses to the on/off illumination cycles, and had relatively stable photocurrent generation in the 273-h operation. Scanning electron microscope (SEM) images showed that the cell density on the hematite photoelectrode was similar between the recombinant and the wild-type S. oneidensis. These findings revealed the pronounced influence of metabolic rates on the light-to-electricity conversion in the complex photocatalyst-electricigen hybrid system, which is important to promote the development of the solar MPS for electricity production and wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. E3 Success Story - Working Together: E3 Ohio and the Ohio By-Product Synergy Network

    EPA Pesticide Factsheets

    The Mid-Ohio Regional Planning Commission (MORPC) received funding to support the integration of the national E3 sustainability initiative with the Ohio By-Product Synergy (BPS) Network to create an efficient and replicable model for reducing GHGs.

  17. Modifications of muscle synergies and spinal maps due to absence of visual feedback in patients with unilateral vestibular disease.

    PubMed

    Monaco, V; Martelli, D; Nacci, A; Fattori, B; Berrettini, S; Micera, S

    2012-01-01

    The present study aimed at describing the modifications of muscle synergies and spinal activity due to the absence of visual feedback, in patients affected by unilateral vestibular disease. Patients were tested both during unperturbed quite stance and walking while the activity of 7 bilateral muscles, from the leg to the trunk, were recorded for the estimation of muscle synergies and spinal activity. Results showed that during locomotion the absence of visual feedback did not significantly modify either the principal roles underlying muscle activity (i.e., synergies) or the spinal bursts. Conversely, during the upright stance, the absence of visual feedback involved a significant coupling of ankle dorsi- and plantar-flexor muscle groups with a consequent shift of the motoneuronal (MN) activity toward most caudal segments. Results revealed that the muscle synergies are able to document an increased activity of sensory-motor afferences leading a more intense role of the forward based mechanism underlying balance control in vestibular patients.

  18. EBW-Bootstrap Current Synergy in the National Spherical Torus Experiment (NSTX)

    SciTech Connect

    R.W. Harvey; G. Taylor

    2005-02-02

    Current driven by electron Bernstein waves (EBW) and by the electron bootstrap effect are calculated separately and concurrently with a kinetic code, to determine the degree of synergy between them. A target {beta} = 40% NSTX plasma is examined. A simple bootstrap model in the CQL3D Fokker-Planck code is used in these studies: the transiting electron distributions are connected in velocity-space at the trapped-passing boundary to trapped-electron distributions which are displaced radially by a half-banana width outwards/inwards for the co-/counter-passing regions. This model agrees well with standard bootstrap current calculations, over the outer 60% of the plasma radius. Relatively small synergy net bootstrap current is obtained for EBW power up to 4 MW. Locally, bootstrap current density increases in proportion to increased plasma pressure, and this effect can significantly affect the radial profile of driven current.

  19. The Successful Synergy of Swift and Fermi/GBM in Magnetars

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2011-01-01

    The magnetar rate of discovery has increased dramatically in the last decade. Five sources were discovered in the last three years alone as a result of the very efficient synergy among three X- and .gamma-ray instruments on NASA satellites: the Swift/Burst Alert Telescope (BAT), the Fermi/Gamma ray Burst Monitor (GBM), and the Rossi X-Ray Timing Explorer; RXTE/Proportional Counter Array (PCA). To date, there are approx. 25 magnetar candidates, of which two are (one each) in the Large and Small Magellanic Cloud and the rest reside on the Galactic plane of our Milky Way. I will discuss here the main properties of the Magnetar Population and the common projects that can be achieved with the synergy of Swift and GBM.

  20. "Weighing in" on synergy: preclinical research on neurohormonal anti-obesity combinations.

    PubMed

    Roth, Jonathan D; Trevaskis, James L; Turek, Victoria F; Parkes, David G

    2010-09-02

    Active weight loss and the maintenance of a weight-reduced state elicit potent counter-regulatory responses in multiple neurochemical pathways rendering monotherapy-based anti-obesity agents relatively ineffective. Herein, we highlight potential strategies for overcoming counter-regulatory responses to states of negative energy balance using combinatorial approaches. We discuss methodological and practical considerations for preclinical modeling of additive/synergistic weight loss combinations that have emerged in our translational research program aimed at identifying naturally occurring neurohormonal synergies. As an example of synergy, pharmacological and mechanistic findings with the combined administration of the beta-cell hormone amylin and the adipokine leptin are reviewed. Finally, we briefly discuss what the future landscape of neurohormonal anti-obesity combinations may hold. 2010 Elsevier B.V. All rights reserved.

  1. Cell wall hydrolases and antibiotics: exploiting synergy to create efficacious new antimicrobial treatments.

    PubMed

    Wittekind, Michael; Schuch, Raymond

    2016-10-01

    Cell wall hydrolases (CWH) are enzymes that build, remodel and degrade peptidoglycan within bacterial cell walls and serve essential roles in cell-wall metabolism, bacteriophage adsorption and bacteriolysis, environmental niche expansion, as well as eukaryotic innate immune defense against bacterial infection. Some CWHs, when tested as recombinant purified proteins, have been shown to have bactericidal activities both as single agents and in combinations with other antimicrobials, displaying synergies in vitro and potent activities in animal models of infection greater than the single agents alone. We summarize in vitro, in vivo, and mechanistic studies that illustrate ACWH synergy with antibiotics, antimicrobial peptides, and other ACWHs, underscoring the overall synergistic potential of the ACWH class. Copyright © 2016. Published by Elsevier Ltd.

  2. Synergy temporal sequences and topography in the spinal cord: evidence for a traveling wave in frog locomotion.

    PubMed

    Saltiel, Philippe; d'Avella, Andrea; Wyler-Duda, Kuno; Bizzi, Emilio

    2016-11-01

    Locomotion is produced by a central pattern generator. Its spinal cord organization is generally considered to be distributed, with more rhythmogenic rostral lumbar segments. While this produces a rostrocaudally traveling wave in undulating species, this is not thought to occur in limbed vertebrates, with the exception of the interneuronal traveling wave demonstrated in fictive cat scratching (Cuellar et al. J Neurosci 29:798-810, 2009). Here, we reexamine this hypothesis in the frog, using the seven muscle synergies A to G previously identified with intraspinal NMDA (Saltiel et al. J Neurophysiol 85:605-619, 2001). We find that locomotion consists of a sequence of synergy activations (A-B-G-A-F-E-G). The same sequence is observed when focal NMDA iontophoresis in the spinal cord elicits a caudal extension-lateral force-flexion cycle (flexion onset without the C synergy). Examining the early NMDA-evoked motor output at 110 sites reveals a rostrocaudal topographic organization of synergy encoding by the lumbar cord. Each synergy is preferentially activated from distinct regions, which may be multiple, and partially overlap between different synergies. Comparing the sequence of synergy activation in locomotion with their spinal cord topography suggests that the locomotor output is achieved by a rostrocaudally traveling wave of activation in the swing-stance cycle. A two-layer circuitry model, based on this topography and a traveling wave reproduces this output and explores its possible modifications under different afferent inputs. Our results and simulations suggest that a rostrocaudally traveling wave of excitation takes advantage of the topography of interneuronal regions encoding synergies, to activate them in the proper sequence for locomotion.

  3. Synergy characterization for Enterococcus faecalis strains displaying moderately high-level gentamicin and streptomycin resistance.

    PubMed Central

    Bantar, C E; Micucci, M; Fernandez Canigia, L; Smayevsky, J; Bianchini, H M

    1993-01-01

    Synergy of 14 Enterococcus faecalis strains displaying moderately high-level aminoglycoside resistance (MICs, 500 and 256 to 1,000 micrograms/ml for gentamicin and streptomycin, respectively) was characterized by time-kill studies. All strains proved resistant to penicillin plus the respective aminoglycoside. Strains with moderately high-level aminoglycoside resistance should be considered to exhibit high-level resistance in severe infections. PMID:8349776

  4. Evaluation and modeling of synergy to pheromone and plant kairomone in American palm weevil

    PubMed Central

    2011-01-01

    Background Many behavioral responses to odors are synergistic, particularly in insects. In beetles, synergy often involves a pheromone and a plant odor, and pest management relies on them for the use of combined lures. To investigate olfactory synergy mechanisms, we need to distinguish synergistic effects from additive ones, when all components of the mixture are active. Results As versatile tools and procedures were not available, we developed a bioassay, and a mathematical model to evaluate synergy between aggregation pheromone (P) and host plant odors (kairomone: K) in the American palm weevil, a pest insect showing enhanced responses to P+K mixtures. Responses to synthetic P and natural K were obtained using a 4-arm olfactometer coupled to a controlled volatile delivery system. We showed that: (1) Response thresholds were ca. 10 and 100 pg/s respectively for P and K. (2) Both stimuli induced similar maximum response. (3) Increasing the dose decreased the response for P to the point of repellence and maintained a maximum response for K. (4) P and K were synergistic over a 100-fold range of doses with experimental responses to P+K mixtures greater than the ones predicted assuming additive effects. Responses close to maximum were associated with the mixture amounts below the response threshold for both P and K. Conclusion These results confirm the role of olfactory synergy in optimizing active host-plant localization by phytophagous insects. Our evaluation procedure can be generalized to test synergistic or inhibitory integrated responses of various odor mixtures for various insects. PMID:21463509

  5. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    SciTech Connect

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  6. Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli.

    PubMed

    Shen, Claire R; Liao, James C

    2013-05-01

    Synthesis of a desired product can often be achieved via more than one metabolic pathway. Whether naturally evolved or synthetically engineered, these pathways often exhibit specific properties that are suitable for production under distinct conditions and host organisms. Synergy between pathways arises when the underlying pathway characteristics, such as reducing equivalent demand, ATP requirement, intermediate utilization, and cofactor preferences, are complementary to each other. Utilization of such pathways in combination leads to an increased metabolite productivity and/or yield compared to using each pathway alone. This work illustrates the principle of synergy between two different pathways for 1-propanol production in Escherichia coli. A model-guided design based on maximum theoretical yield calculations identified synergy of the native threonine pathway and the heterologous citramalate pathway in terms of production yield across all flux ratios between the two pathways. Characterization of the individual pathways by host gene deletions demonstrates their distinct metabolic characteristics: the necessity of TCA cycle for threonine pathway and the independence of TCA cycle for the citramalate pathway. The two pathways are also complementary in driving force demands. Production experiments verified the synergistic effects predicted by the yield model, in which the platform with dual pathway for 2-ketobutyrate synthesis achieved higher yield (0.15g/g of glucose) and productivity (0.12g/L/h) of 1-propanol than individual ones alone: the threonine pathway (0.09g/g; 0.04g/L/h) or the citramalate pathway (0.11g/g; 0.04g/L/h). Thus, incorporation of synergy into the design principle of metabolic engineering may improve the production yield and rate of the desired compound.

  7. Bihemispheric Transcranial Direct Current Stimulation Enhances Effector-Independent Representations of Motor Synergy and Sequence Learning

    PubMed Central

    Husain, Masud; Wiestler, Tobias; Diedrichsen, Jörn

    2014-01-01

    Complex manual tasks—everything from buttoning up a shirt to playing the piano—fundamentally involve two components: (1) generating specific patterns of muscle activity (here, termed “synergies”); and (2) stringing these into purposeful sequences. Although transcranial direct current stimulation (tDCS) of the primary motor cortex (M1) has been found to increase the learning of motor sequences, it is unknown whether it can similarly facilitate motor synergy learning. Here, we determined the effects of tDCS on the learning of motor synergies using a novel hand configuration task that required the production of difficult muscular activation patterns. Bihemispheric tDCS was applied to M1 of healthy, right-handed human participants during 4 d of repetitive left-hand configuration training in a double-blind design. tDCS augmented synergy learning, leading subsequently to faster and more synchronized execution. This effect persisted for at least 4 weeks after training. Qualitatively similar tDCS-associated improvements occurred during training of finger sequences in a separate subject cohort. We additionally determined whether tDCS only improved the acquisition of motor memories for specific synergies/sequences or whether it also facilitated more general parts of the motor representations, which could be transferred to novel movements. Critically, we observed that tDCS effects generalized to untrained hand configurations and untrained finger sequences (i.e., were nonspecific), as well as to the untrained hand (i.e., were effector-independent). Hence, bihemispheric tDCS may be a promising adjunct to neurorehabilitative training regimes, in which broad transfer to everyday tasks is highly desirable. PMID:24431461

  8. Synergy between gemifloxacin and trimethoprim/sulfamethoxazole against community-associated methicillin-resistant Staphylococcus aureus.

    PubMed

    Leonard, Steven N; Kaatz, Glenn W; Rucker, Latoyia R; Rybak, Michael J

    2008-12-01

    The rapid emergence of methicillin-resistant Staphylococcus aureus from the community (CA-MRSA) presents difficulties in making treatment choices. We evaluated whether combining another orally available agent commonly used to treat CA-MRSA with gemifloxacin would enhance gemifloxacin activity against CA-MRSA. Fifty strains of SCCmec IV, agr group 1, Panton-Valentine leucocidin-positive CA-MRSA were evaluated for susceptibilities to gemifloxacin, trimethoprim/sulfamethoxazole, doxycycline, levofloxacin, rifampicin, clindamycin and erythromycin. Twenty of these strains were evaluated for the potential for synergy between gemifloxacin and trimethoprim/sulfamethoxazole, clindamycin and rifampicin by time-kill analysis. Two strains were further evaluated in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model. In time-kill analyses, gemifloxacin combined with trimethoprim/sulfamethoxazole produced additivity (6/20) or synergy (11/20) in 85% of the isolates tested. The addition of clindamycin to gemifloxacin showed additivity (3/20) or synergy (2/20) in 25% of the isolates. All isolates displayed indifference to the combination of gemifloxacin and rifampicin. In the PK/PD model, combining gemifloxacin and trimethoprim/sulfamethoxazole provided potent and sustained bactericidal activity to detection limits of 2 log(10) cfu/mL by 48 h; gemifloxacin combined with clindamycin or with rifampicin killed to detection limits by 56 h or later. One isolate developed efflux-mediated resistance to gemifloxacin at 96 h with gemifloxacin monotherapy. All combinations prevented the emergence of this resistance. Synergy or additivity was demonstrated by time-kill analysis between gemifloxacin and trimethoprim/sulfamethoxazole in most isolates tested. In the PK/PD model, the addition of trimethoprim/sulfamethoxazole, clindamycin and rifampicin enhanced the activity of gemifloxacin against CA-MRSA and suppressed the emergence of resistance to gemifloxacin.

  9. Quantifying Subpopulation Synergy for Antibiotic Combinations via Mechanism-Based Modeling and a Sequential Dosing Design

    PubMed Central

    Ly, Neang S.; Xu, Hongmei; Tsuji, Brian T.

    2013-01-01

    Quantitative modeling of combination therapy can describe the effects of each antibiotic against multiple bacterial populations. Our aim was to develop an efficient experimental and modeling strategy that evaluates different synergy mechanisms using a rapidly killing peptide antibiotic (nisin) combined with amikacin or linezolid as probe drugs. Serial viable counts over 48 h were obtained in time-kill experiments with all three antibiotics in monotherapy against a methicillin-resistant Staphylococcus aureus USA300 strain (inoculum, 108 CFU/ml). A sequential design (initial dosing of 8 or 32 mg/liter nisin, switched to amikacin or linezolid at 1.5 h) assessed the rate of killing by amikacin and linezolid against nisin-intermediate and nisin-resistant populations. Simultaneous combinations were additionally studied and all viable count profiles comodeled in S-ADAPT and NONMEM. A mechanism-based model with six populations (three for nisin times two for amikacin) yielded unbiased and precise (r = 0.99, slope = 1.00; S-ADAPT) individual fits. The second-order killing rate constants for nisin against the three populations were 5.67, 0.0664, and 0.00691 liter/(mg · h). For amikacin, the maximum killing rate constants were 10.1 h−1 against its susceptible and 0.771 h−1 against its less-susceptible populations, with 14.7 mg/liter amikacin causing half-maximal killing. After incorporating the effects of nisin and amikacin against each population, no additional synergy function was needed. Linezolid inhibited successful bacterial replication but did not efficiently kill populations less susceptible to nisin. Nisin plus amikacin achieved subpopulation synergy. The proposed sequential and simultaneous dosing design offers an efficient approach to quantitatively characterize antibiotic synergy over time and prospectively evaluate antibiotic combination dosing strategies. PMID:23478962

  10. Multi-muscle synergies in a dual postural task: evidence for the principle of superposition.

    PubMed

    Klous, Miriam; Danna-dos-Santos, Alessander; Latash, Mark L

    2010-04-01

    We used the framework of the uncontrolled manifold hypothesis to quantify multi-muscle synergies stabilizing the moment of force about the frontal axis (M(Y)) and the shear force in the anterior-posterior direction (F(X)) during voluntary body sway performed by standing subjects. We tested a hypothesis whether the controller could stabilize both M(Y) and F(X) at the same time when the task and the visual feedback was provided only on one of the variables (M(Y)). Healthy young subjects performed voluntary body sway in the anterior-posterior direction while different loads were attached at the ankle level producing horizontal forces acting forward or backwards. Principal component analysis was used to identify three M-modes within the space of integrated indices of muscle activation. Variance in the M-mode space across sway cycles was partitioned into two components, one that did not affect a selected performance variable (M(Y) or F(X)) and the other that did. Under all loading conditions and for each performance variable, a higher value for the former variance component was found. We interpret these results as reflections of two multi-M-mode synergies stabilizing both F(X) and M(Y). The indices of synergies were modulated within the sway cycle; both performance variables were better stabilized when the body moved forward than when it moved backward. The results show that the controller can use a set of three elemental variables (M-modes) to stabilize two performance variables at the same time. No negative interference was seen between the synergy indices computed for the two performance variables supporting the principle of superposition with respect to multi-muscle postural control.

  11. Two aspects of feedforward postural control: anticipatory postural adjustments and anticipatory synergy adjustments.

    PubMed

    Klous, Miriam; Mikulic, Pavle; Latash, Mark L

    2011-05-01

    We used the framework of the uncontrolled manifold hypothesis to explore the relations between anticipatory synergy adjustments (ASAs) and anticipatory postural adjustments (APAs) during feedforward control of vertical posture. ASAs represent a drop in the index of a multimuscle-mode synergy stabilizing the coordinate of the center of pressure in preparation to an action. ASAs reflect early changes of an index of covariation among variables reflecting muscle activation, whereas APAs reflect early changes in muscle activation levels averaged across trials. The assumed purpose of ASAs is to modify stability of performance variables, whereas the purpose of APAs is to change magnitudes of those variables. We hypothesized that ASAs would be seen before APAs and that this finding would be consistent with regard to the muscle-mode composition defined on the basis of different tasks and phases of action. Subjects performed a voluntary body sway task and a quick, bilateral shoulder flexion task under self-paced and reaction time conditions. Surface muscle activity of 12 leg and trunk muscles was analyzed to identify sets of 4 muscle modes for each task and for different phases within the shoulder flexion task. Variance components in the muscle-mode space and indexes of multimuscle-mode synergy stabilizing shift of the center of pressure were computed. ASAs were seen ∼ 100-150 ms prior to the task initiation, before APAs. The results were consistent with respect to different sets of muscle modes defined over the two tasks and different shoulder flexion phases. We conclude that the preparation for a self-triggered postural perturbation is associated with two types of anticipatory adjustments, ASAs and APAs. They reflect different feedforward processes within the hypothetical hierarchical control scheme, resulting in changes in patterns of covariation of elemental variables and in their patterns averaged across trials, respectively. The results show that synergies quantified

  12. Synergy in Polymicrobial Infections in a Mouse Model of Type 2 Diabetes†

    PubMed Central

    Mastropaolo, Matthew D.; Evans, Nicholas P.; Byrnes, Meghan K.; Stevens, Ann M.; Robertson, John L.; Melville, Stephen B.

    2005-01-01

    Human diabetics frequently suffer delayed wound healing, increased susceptibility to localized and systemic infections, and limb amputations as a consequence of the disease. Lower-limb infections in diabetic patients are most often polymicrobial, involving mixtures of aerobic, facultative anaerobic, and anaerobic bacteria. The purpose of this study is to determine if these organisms contribute to synergy in polymicrobial infections by using diabetic mice as an in vivo model. The model was the obese diabetic mouse strain BKS.Cg-m +/+ Leprdb/J, a model of human type 2 diabetes. Young (5- to 6-week-old) prediabetic mice and aged (23- to 24-week-old) diabetic mice were compared. The mice were injected subcutaneously with mixed cultures containing Escherichia coli, Bacteroides fragilis, and Clostridium perfringens. Progression of the infection (usually abscess formation) was monitored by examining mice for bacterial populations and numbers of white blood cells at 1, 8, and 22 days postinfection. Synergy in the mixed infections was defined as a statistically significant increase in the number of bacteria at the site of injection when coinfected with a second bacterium, compared to when the bacterium was inoculated alone. E. coli provided strong synergy to B. fragilis but not to C. perfringens. C. perfringens and B. fragilis provided moderate synergy to each other but only in young mice. B. fragilis was anergistic (antagonistic) to E. coli in coinfections in young mice at 22 days postinfection. When age-matched nondiabetic mice (C57BLKS/J) were used as controls, the diabetic mice exhibited 5 to 35 times the number of CFU as did the nondiabetic mice, indicating that diabetes was a significant factor in the severity of the polymicrobial infections. PMID:16113326

  13. Hybrid mimics and hybrid vigor in Arabidopsis

    PubMed Central

    Wang, Li; Greaves, Ian K.; Groszmann, Michael; Wu, Li Min; Dennis, Elizabeth S.; Peacock, W. James

    2015-01-01

    F1 hybrids can outperform their parents in yield and vegetative biomass, features of hybrid vigor that form the basis of the hybrid seed industry. The yield advantage of the F1 is lost in the F2 and subsequent generations. In Arabidopsis, from F2 plants that have a F1-like phenotype, we have by recurrent selection produced pure breeding F5/F6 lines, hybrid mimics, in which the characteristics of the F1 hybrid are stabilized. These hybrid mimic lines, like the F1 hybrid, have larger leaves than the parent plant, and the leaves have increased photosynthetic cell numbers, and in some lines, increased size of cells, suggesting an increased supply of photosynthate. A comparison of the differentially expressed genes in the F1 hybrid with those of eight hybrid mimic lines identified metabolic pathways altered in both; these pathways include down-regulation of defense response pathways and altered abiotic response pathways. F6 hybrid mimic lines are mostly homozygous at each locus in the genome and yet retain the large F1-like phenotype. Many alleles in the F6 plants, when they are homozygous, have expression levels different to the level in the parent. We consider this altered expression to be a consequence of transregulation of genes from one parent by genes from the other parent. Transregulation could also arise from epigenetic modifications in the F1. The pure breeding hybrid mimics have been valuable in probing the mechanisms of hybrid vigor and may also prove to be useful hybrid vigor equivalents in agriculture. PMID:26283378

  14. Hybrid mimics and hybrid vigor in Arabidopsis.

    PubMed

    Wang, Li; Greaves, Ian K; Groszmann, Michael; Wu, Li Min; Dennis, Elizabeth S; Peacock, W James

    2015-09-01

    F1 hybrids can outperform their parents in yield and vegetative biomass, features of hybrid vigor that form the basis of the hybrid seed industry. The yield advantage of the F1 is lost in the F2 and subsequent generations. In Arabidopsis, from F2 plants that have a F1-like phenotype, we have by recurrent selection produced pure breeding F5/F6 lines, hybrid mimics, in which the characteristics of the F1 hybrid are stabilized. These hybrid mimic lines, like the F1 hybrid, have larger leaves than the parent plant, and the leaves have increased photosynthetic cell numbers, and in some lines, increased size of cells, suggesting an increased supply of photosynthate. A comparison of the differentially expressed genes in the F1 hybrid with those of eight hybrid mimic lines identified metabolic pathways altered in both; these pathways include down-regulation of defense response pathways and altered abiotic response pathways. F6 hybrid mimic lines are mostly homozygous at each locus in the genome and yet retain the large F1-like phenotype. Many alleles in the F6 plants, when they are homozygous, have expression levels different to the level in the parent. We consider this altered expression to be a consequence of transregulation of genes from one parent by genes from the other parent. Transregulation could also arise from epigenetic modifications in the F1. The pure breeding hybrid mimics have been valuable in probing the mechanisms of hybrid vigor and may also prove to be useful hybrid vigor equivalents in agriculture.

  15. Molecular Signatures of Nicotinoid-Pathogen Synergy in the Termite Gut

    PubMed Central

    Sen, Ruchira; Raychoudhury, Rhitoban; Cai, Yunpeng; Sun, Yijun; Lietze, Verena-Ulrike; Peterson, Brittany F.; Scharf, Michael E.; Boucias, Drion G.

    2015-01-01

    Previous studies in lower termites revealed unexpected synergies between nicotinoid insecticides and fungal entomopathogens. The present study investigated molecular mechanisms of nicotinoid-pathogen synergy in the lower termite Reticulitermes flavipes, using the nicotinoid, imidacloprid, in combination with fungal and bacterial entomopathogens. Particular focus was placed on metatranscriptome composition and microbial dynamics in the symbiont-rich termite gut, which houses diverse mixes of protists and bacteria. cDNA microarrays containing a mix of host and protist symbiont oligonucleotides were used to simultaneously assess termite and protist gene expression. Five treatments were compared that included single challenges with sublethal doses of fungi (Metharizium anisopliae), bacteria (Serratia marcescens) or imidacloprid, and dual challenges with fungi + imidacloprid or bacteria + imidacloprid. Our findings point towards protist dysbiosis and compromised social behavior, rather than suppression of stereotypical immune defense mechanisms, as the dominant factors underlying nicotinoid-pathogen synergy in termites. Also, greater impacts observed for the fungal pathogen than for the bacterial pathogen suggest that the rich bacterial symbiont community in the R. flavipes gut (>5000 species-level phylotypes) exists in an ecological balance that effectively excludes exogenous bacterial pathogens. These findings significantly advance our understanding of antimicrobial defenses in this important eusocial insect group, as well as provide novel insights into how nicotinoids can exert deleterious effects on social insect colonies. PMID:25837376

  16. Antibacterial synergy of curcumin with antibiotics against biofilm producing clinical bacterial isolates

    PubMed Central

    Kali, Arunava; Bhuvaneshwar, Devaraj; Charles, Pravin M. V.; Seetha, Kunigal Srinivasaiah

    2016-01-01

    Introduction: The role of natural bioactive substances in treating infections has been rediscovered as bacterial resistance become common to most of the antibiotics. Curcumin is a bioactive substance from turmeric. Owing to antimicrobial properties, its prospect as an antibacterial agent is currently under focus. Materials and Methods: We have evaluated the in vitro synergy of curcumin with antibiotics against sixty biofilm producing bacterial isolates. Congo red agar method was used to identify the biofilm producing isolates. Curcumin minimum inhibitory concentration (MIC) was determined by agar dilution method. Its antibiotic synergy was identified by the increase in disc diffusion zone size on Mueller-Hinton agar with 32 mg/L curcumin. Results: The mean MICs of curcumin against Gram-positive and Gram-negative isolates were 126.9 mg/L and 117.4 mg/L, respectively. Maximum synergy was observed with ciprofloxacin among Gram-positive and amikacin, gentamicin, and cefepime among Gram-negative isolates. Conclusions: Curcumin per se as well as in combination with other antibiotics has a demonstrable antibacterial action against biofilm producing bacterial isolates. It may have a beneficial role in supplementing antibiotic therapy. PMID:27330262

  17. Stages in Learning Motor Synergies: A View Based on the Equilibrium-Point Hypothesis

    PubMed Central

    Latash, Mark L.

    2009-01-01

    This review describes a novel view on stages in motor learning based on recent developments of the notion of synergies, the uncontrolled manifold hypothesis, and the equilibrium-point hypothesis (referent configuration) that allow to merge these notions into a single scheme of motor control. The principle of abundance and the principle of minimal final action form the foundation for analyses of natural motor actions performed by redundant sets of elements. Two main stages of motor learning are introduced corresponding to (1) discovery and strengthening of motor synergies stabilizing salient performance variable(s), and (2) their weakening when other aspects of motor performance are optimized. The first stage may be viewed as consisting of two steps, the elaboration of an adequate referent configuration trajectory and the elaboration of multi-joint (multi-muscle) synergies stabilizing the referent configuration trajectory. Both steps are expected to lead to more variance in the space of elemental variables that is compatible with a desired time profile of the salient performance variable (“good variability”). Adjusting control to other aspects of performance during the second stage (for example, esthetics, energy expenditure, time, fatigue, etc.) may lead to a drop in the “good variability”. Experimental support for the suggested scheme is reviewed. PMID:20060610

  18. Cortical Activation Associated with Muscle Synergies of the Human Male Pelvic Floor

    PubMed Central

    Asavasopon, Skulpan; Rana, Manku; Kirages, Daniel J.; Yani, Moheb S.; Fisher, Beth E.; Hwang, Darryl H.; Lohman, Everett B.; Berk, Lee S.

    2014-01-01

    Human pelvic floor muscles have been shown to operate synergistically with a wide variety of muscles, which has been suggested to be an important contributor to continence and pelvic stability during functional tasks. However, the neural mechanism of pelvic floor muscle synergies remains unknown. Here, we test the hypothesis that activation in motor cortical regions associated with pelvic floor activation are part of the neural substrate for such synergies. We first use electromyographic recordings to extend previous findings and demonstrate that pelvic floor muscles activate synergistically during voluntary activation of gluteal muscles, but not during voluntary activation of finger muscles. We then show, using functional magnetic resonance imaging (fMRI), that a region of the medial wall of the precentral gyrus consistently activates during both voluntary pelvic floor muscle activation and voluntary gluteal activation, but not during voluntary finger activation. We finally confirm, using transcranial magnetic stimulation, that the fMRI-identified medial wall region is likely to generate pelvic floor muscle activation. Thus, muscle synergies of the human male pelvic floor appear to involve activation of motor cortical areas associated with pelvic floor control. PMID:25297107

  19. Field synergy analysis of six starts spiral corrugated tube under high Reynolds number

    NASA Astrophysics Data System (ADS)

    Qian, Jin-yuan; Liu, Bu-zhan; Chen, Fu-qiang; Gao, Xiao-fei; Jin, Zhi-jiang

    2016-09-01

    Coaxial heat exchanger is widely used in air conditioning, refrigeration etc., due to its highly efficient heat transfer performance. Spiral corrugated tube plays an important role in coaxial heat exchanger. In this paper, the numerical model of a six starts spiral corrugated tube and a smooth tube with the same size are developed. The temperature field and the velocity field of their streamline and longitudinal vortex are investigated respectively. Then, their heat transfer and pressure drop performance inside the spiral corrugated tube under different high Reynolds number is investigated by compared their Nusselt number and friction coefficient. Meanwhile, their field synergy performances with their field synergy angles are presented. The result shows that the Nusselt number and friction coefficient of spiral corrugated tube are always larger than the smooth tube, and with the increasing of Reynolds number, the heat transfer performance of SCT becomes better than smooth tube, however, the friction coefficient ratio also increases synchronously. And in spiral corrugated tube, the field synergy angel is smaller than in the smooth tube. This work can be referred by some who are also dealing with spiral corrugated tube and its heat performance research.

  20. A synergy-based hand control is encoded in human motor cortical areas

    PubMed Central

    Leo, Andrea; Handjaras, Giacomo; Bianchi, Matteo; Marino, Hamal; Gabiccini, Marco; Guidi, Andrea; Scilingo, Enzo Pasquale; Pietrini, Pietro; Bicchi, Antonio; Santello, Marco; Ricciardi, Emiliano

    2016-01-01

    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. DOI: http://dx.doi.org/10.7554/eLife.13420.001 PMID:26880543

  1. Cortical activation associated with muscle synergies of the human male pelvic floor.

    PubMed

    Asavasopon, Skulpan; Rana, Manku; Kirages, Daniel J; Yani, Moheb S; Fisher, Beth E; Hwang, Darryl H; Lohman, Everett B; Berk, Lee S; Kutch, Jason J

    2014-10-08

    Human pelvic floor muscles have been shown to operate synergistically with a wide variety of muscles, which has been suggested to be an important contributor to continence and pelvic stability during functional tasks. However, the neural mechanism of pelvic floor muscle synergies remains unknown. Here, we test the hypothesis that activation in motor cortical regions associated with pelvic floor activation are part of the neural substrate for such synergies. We first use electromyographic recordings to extend previous findings and demonstrate that pelvic floor muscles activate synergistically during voluntary activation of gluteal muscles, but not during voluntary activation of finger muscles. We then show, using functional magnetic resonance imaging (fMRI), that a region of the medial wall of the precentral gyrus consistently activates during both voluntary pelvic floor muscle activation and voluntary gluteal activation, but not during voluntary finger activation. We finally confirm, using transcranial magnetic stimulation, that the fMRI-identified medial wall region is likely to generate pelvic floor muscle activation. Thus, muscle synergies of the human male pelvic floor appear to involve activation of motor cortical areas associated with pelvic floor control.

  2. Evaluating synergy between marbofloxacin and gentamicin in Pseudomonas aeruginosa strains isolated from dogs with otitis externa.

    PubMed

    Jerzsele, Ákos; Pásztiné-Gere, Erzsébet

    2015-03-01

    The aim of this study was to determine antimicrobial susceptibility of Pseudomonas aeruginosa strains to marbofloxacin and gentamicin, and investigate the possible synergistic, additive, indifferent or antagonistic effects between the two agents. P. aeruginosa strains can develop resistance quickly against certain antibiotics if used alone, thus the need emerges to find synergistic combinations. A total of 68 P. aeruginosa strains isolated from dogs were examined. In order to describe interactions between marbofloxacin and gentamicin the checkerboard microdilution method was utilized. The MICs (minimum inhibitory concentrations) for marbofloxacin and gentamicin were in the range 0.25-64 mg/L and 0.25-32 mg/L, respectively. The combination of marbofloxacin and gentamicin was more effective with a MIC range of 0.031-8 mg/L and a MIC90 of 1 mg/L, compared to 16 mg/L for marbofloxacin alone and 8 mg/L for gentamicin alone. The FIC (fractional inhibitory concentration) indices ranged from 0.0945 (pronounced synergy) to 1.0625 (indifference). Synergy between marbofloxacin and gentamicin was found in 33 isolates. The mean FIC index is 0.546, which represents a partial synergistic/additive effect close to the full synergy threshold. In vitro results indicate that marbofloxacin and gentamicin as partially synergistic agents may prove clinically useful in combination therapy against P. aeruginosa infections. Although marbofloxacin is not used in the human practice, the interactions between fluoroquinolones and aminoglycosides may have importance outside the veterinary field.

  3. Co-gasification of coal and biomass: Synergy, characterization and reactivity of the residual char.

    PubMed

    Hu, Junhao; Shao, Jingai; Yang, Haiping; Lin, Guiying; Chen, Yingquan; Wang, Xianhua; Zhang, Wennan; Chen, Hanping

    2017-11-01

    The synergy effect between coal and biomass in their co-gasification was studied in a vertical fixed bed reactor, and the physic-chemical structural characteristics and gasification reactivity of the residual char obtained from co-gasification were also investigated. The results shows that, conversion of the residual char and tar into gas is enhanced due to the synergy effect between coal and biomass. The physical structure of residual char shows more pore on coal char when more biomass is added in the co-gasification. The migration of inorganic elements between coal and biomass was found, the formation and competitive role of K2SiO3, KAlSiO4, and Ca3Al2(SiO4)3 is a mechanism behind the synergy. The graphization degree is enhanced but size of graphite crystallite in the residual char decreases with biomass blending ratio increasing. TGA results strongly suggest the big difference in the reactivity of chars derived from coal and biomass in spite of influence from co-gasification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Study on reactivity characteristics and synergy behaviours of rice straw and bituminous coal co-gasification.

    PubMed

    Wei, Juntao; Guo, Qinghua; Chen, Handing; Chen, Xueli; Yu, Guangsuo

    2016-11-01

    Co-gasification of rice straw (RS) and Shenfu bituminous coal (SF) was conducted in a thermogravimetric analyzer (TGA) to explore the effects of gasification temperature and blend ratio on reactivity characteristics and synergy behaviours of co-gasification. Moreover, the relationship between the synergy and the K/Ca transformation in co-gasification was studied using flame atomic absorption spectrum (FAAS) and in-situ heating stage microscope. The results showed that the whole reactivities increased with increasing RS proportion and gasification temperature. The transformation of water-soluble and ion-exchanged (ws-ie) calcium was enhanced in whole co-gasification and the ws-ie potassium transformation was obviously inhibited in mid-late reaction. Hence, synergy behaviours were synthetically determined by the enhancement of Ca deactivation and the strengthening of K catalysis. The inhibiting effect was occurred in initial co-gasification and was converted to the synergistic effect at a characteristic conversion, which decreased with increasing RS proportion and decreasing gasification temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Research and teaching of dairy cattle well being: finding synergy between ethology and epidemiology.

    PubMed

    Duffield, Todd F; Leslie, Ken E; Lissemore, Kerry D; Millman, Suzanne T

    2009-01-01

    Epidemiology is a tool used to identify and quantify risk factors that contribute to the state of health or disease. In addition, the maintenance of health and recognition of nonhuman animal welfare are both key principles of health management. Animal welfare and ethology provide important contributions to our ability to understand and improve health. As such, there can be a strong connection between the disciplines of ethology and epidemiology. This connection becomes a synergy through collaborative research. At the University of Guelph, and at other institutions, dairy health management research efforts involving collaborations between faculty trained in ethology and epidemiology have led to refined and improved research programs, improved access to funding, and a broader extension audience. Furthermore, these collaborations have enhanced teaching programs and facilitated the integration of ethology and welfare topics throughout the veterinary medical curriculum. The paper provides the basis and context for the synergy between ethology and epidemiology and describes examples of teaching and research programs built upon this synergy for the enhancement of dairy cattle well being.

  6. Striking multiple synergies created by combining reduced graphene oxides and carbon nanotubes for polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Song, Ping'an; Liu, Lina; Fu, Shenyuan; Yu, Youming; Jin, Chunde; Wu, Qiang; Zhang, Yan; Li, Qian

    2013-03-01

    The extraordinary properties of carbon nanotubes (CNTs) and graphene stimulate the development of advanced composites. Recently, several studies have reported significant synergies in the mechanical, electrical and thermal conductivity properties of polymer nanocomposites by incorporating their nanohybrids. In this work, we created polypropylene nanocomposites with homogeneous dispersion of CNTs and reduced graphene oxides via a facile polymer-latex-coating plus melt-mixing strategy, and investigated their synergistic effects in their viscoelastic, gas barrier, and flammability properties. Interestingly, the results show remarkable synergies, enhancing their melt modulus and viscosity, O2 barrier, and flame retardancy properties and respectively exhibiting a synergy percentage of 15.9%, 45.3%, and 20.3%. As previously reported, we also observed remarkable synergistic effects in their tensile strength (14.3%) and Young’s modulus (27.1%), electrical conductivity (32.3%) and thermal conductivity (34.6%). These impressive results clearly point towards a new strategy to create advanced materials by adding binary combinations of different types of nanofillers.

  7. Stages in learning motor synergies: a view based on the equilibrium-point hypothesis.

    PubMed

    Latash, Mark L

    2010-10-01

    This review describes a novel view on stages in motor learning based on recent developments of the notion of synergies, the uncontrolled manifold hypothesis, and the equilibrium-point hypothesis (referent configuration) that allow to merge these notions into a single scheme of motor control. The principle of abundance and the principle of minimal final action form the foundation for analyses of natural motor actions performed by redundant sets of elements. Two main stages of motor learning are introduced corresponding to (1) discovery and strengthening of motor synergies stabilizing salient performance variable(s) and (2) their weakening when other aspects of motor performance are optimized. The first stage may be viewed as consisting of two steps, the elaboration of an adequate referent configuration trajectory and the elaboration of multi-joint (multi-muscle) synergies stabilizing the referent configuration trajectory. Both steps are expected to lead to more variance in the space of elemental variables that is compatible with a desired time profile of the salient performance variable ("good variability"). Adjusting control to other aspects of performance during the second stage (for example, esthetics, energy expenditure, time, fatigue, etc.) may lead to a drop in the "good variability". Experimental support for the suggested scheme is reviewed.

  8. Co-gasification of bituminous coal and hydrochar derived from municipal solid waste: Reactivity and synergy.

    PubMed

    Wei, Juntao; Guo, Qinghua; He, Qing; Ding, Lu; Yoshikawa, Kunio; Yu, Guangsuo

    2017-09-01

    In this work, the influences of gasification temperature and blended ratio on co-gasification reactivity and synergy of Shenfu bituminous coal (SF) and municipal solid waste-derived hydrochar (HTC) were investigated using TGA. Additionally, active alkaline and alkaline earth metal (AAEM) transformation during co-gasification was quantitatively analyzed by inductively coupled plasma optical emission spectrometer for correlating synergy on co-gasification reactivity. The results showed that higher char gasification reactivity existed at higher HTC char proportion and gasification temperature, and the main synergy behaviour on co-gasification reactivity was performed as synergistic effect. Enhanced synergistic effect at lower temperature was mainly resulted from more obviously inhibiting the primary AAEM (i.e. active Ca) transformation, and weak synergistic effect still existed at higher temperature since more active K with prominent catalysis was retained. Furthermore, more active HTC-derived AAEM remaining in SF sample during co-gasification would lead to enhanced synergistic effect as HTC char proportion increased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Construction of synergy networks from gene expression data related to disease.

    PubMed

    Chatterjee, Prantik; Pal, Nikhil Ranjan

    2016-09-30

    A few methods have been developed to determine whether genes collaborate with each other in relation to a particular disease using an information theoretic measure of synergy. Here, we propose an alternative definition of synergy and justify that our definition improves upon the existing measures of synergy in the context of gene interactions. We use this definition on a prostate cancer data set consisting of gene expression levels in both cancerous and non-cancerous samples and identify pairs of genes which are unable to discriminate between cancerous and non-cancerous samples individually but can do so jointly when we take their synergistic property into account. We also propose a very simple yet effective technique for computation of conditional entropy at a very low cost. The worst case complexity of our method is O(n) while the best case complexity of a state-of-the-art method is O(n(2)). Furthermore, our method can also be extended to find synergistic relation among triplets or even among a larger number of genes. Finally, we validate our results by demonstrating that these findings cannot be due to pure chance and provide the relevance of the synergistic pairs in cancer biology. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Using postural synergies to animate a low-dimensional hand avatar in haptic simulation.

    PubMed

    Mulatto, Sara; Formaglio, Alessandro; Malvezzi, Monica; Prattichizzo, Domenico

    2013-01-01

    A technique to animate a realistic hand avatar with 20 DoFs based on the biomechanics of the human hand is presented. The animation does not use any sensor glove or advanced tracker with markers. The proposed approach is based on the knowledge of a set of kinematic constraints on the model of the hand, referred to as postural synergies, which allows to represent the hand posture using a number of variables lower than the number of joints of the hand model. This low-dimensional set of parameters is estimated from direct measurement of the motion of thumb and index finger tracked using two haptic devices. A kinematic inversion algorithm has been developed, which takes synergies into account and estimates the kinematic configuration of the whole hand, i.e., also of the fingers whose end tips are not directly tracked by the two haptic devices. The hand skin is deformable and its deformation is computed using a linear vertex blending technique. The proposed synergy-based animation of the hand avatar involves only algebraic computations and is suitable for real-time implementation as required in haptics.

  11. Antibacterial synergy of curcumin with antibiotics against biofilm producing clinical bacterial isolates.

    PubMed

    Kali, Arunava; Bhuvaneshwar, Devaraj; Charles, Pravin M V; Seetha, Kunigal Srinivasaiah

    2016-06-01

    The role of natural bioactive substances in treating infections has been rediscovered as bacterial resistance become common to most of the antibiotics. Curcumin is a bioactive substance from turmeric. Owing to antimicrobial properties, its prospect as an antibacterial agent is currently under focus. We have evaluated the in vitro synergy of curcumin with antibiotics against sixty biofilm producing bacterial isolates. Congo red agar method was used to identify the biofilm producing isolates. Curcumin minimum inhibitory concentration (MIC) was determined by agar dilution method. Its antibiotic synergy was identified by the increase in disc diffusion zone size on Mueller-Hinton agar with 32 mg/L curcumin. The mean MICs of curcumin against Gram-positive and Gram-negative isolates were 126.9 mg/L and 117.4 mg/L, respectively. Maximum synergy was observed with ciprofloxacin among Gram-positive and amikacin, gentamicin, and cefepime among Gram-negative isolates. Curcumin per se as well as in combination with other antibiotics has a demonstrable antibacterial action against biofilm producing bacterial isolates. It may have a beneficial role in supplementing antibiotic therapy.

  12. Synergy between angiotensin and aldosterone in evoking sodium appetite in baboons.

    PubMed

    Shade, R E; Blair-West, J R; Carey, K D; Madden, L J; Weisinger, R S; Denton, D A

    2002-11-01

    The synergy between ANG II and aldosterone (Aldo) in the induction of salt appetite, extensively studied in rats, has been tested in baboons. ANG II was infused intracerebroventricularly at 0.5 or 1.0 microg/h; Aldo was infused subcutaneously at 20 microg/h. Separate infusions over 7 days had no significant effect on the daily intake of 300 mM NaCl. Concurrent infusions, however, increased daily NaCl intake approximately 10-fold and daily water intake approximately 2.5-fold. In addition, the combined infusions caused 1) a reduction in daily food intake, 2) changes in blood composition indicative of increased vasopressin release, and 3) changes of urinary excretion rates of cortisol and Aldo indicative of increased ACTH release. Arterial blood pressure, measured in two baboons, rose during concurrent ANG II and Aldo treatment. These results indicate a potent synergy between central ANG II and peripheral Aldo in stimulating salt appetite in baboons. At the same time, other ANG II-specific brain mechanisms concerned with water intake, food intake, vasopressin release, ACTH release, and blood pressure regulation appear to have been activated by the same type of synergy. These central enhancement processes have never been previously demonstrated in primates.

  13. Sensorimotor feedback based on task-relevant error robustly predicts temporal recruitment and multidirectional tuning of muscle synergies

    PubMed Central

    Safavynia, Seyed A.

    2013-01-01

    We hypothesized that motor outputs are hierarchically organized such that descending temporal commands based on desired task-level goals flexibly recruit muscle synergies that specify the spatial patterns of muscle coordination that allow the task to be achieved. According to this hypothesis, it should be possible to predict the patterns of muscle synergy recruitment based on task-level goals. We demonstrated that the temporal recruitment of muscle synergies during standing balance control was robustly predicted across multiple perturbation directions based on delayed sensorimotor feedback of center of mass (CoM) kinematics (displacement, velocity, and acceleration). The modulation of a muscle synergy's recruitment amplitude across perturbation directions was predicted by the projection of CoM kinematic variables along the preferred tuning direction(s), generating cosine tuning functions. Moreover, these findings were robust in biphasic perturbations that initially imposed a perturbation in the sagittal plane and then, before sagittal balance was recovered, perturbed the body in multiple directions. Therefore, biphasic perturbations caused the initial state of the CoM to differ from the desired state, and muscle synergy recruitment was predicted based on the error between the actual and desired upright state of the CoM. These results demonstrate that that temporal motor commands to muscle synergies reflect task-relevant error as opposed to sensory inflow. The proposed hierarchical framework may represent a common principle of motor control across motor tasks and levels of the nervous system, allowing motor intentions to be transformed into motor actions. PMID:23100133

  14. KINEMATIC SYNERGIES DURING SACCADES INVOLVING WHOLE-BODY ROTATION: A STUDY BASED ON THE UNCONTROLLED MANIFOLD HYPOTHESIS

    PubMed Central

    Degani, Adriana M.; Danna-Dos-Santos, Alessander; Robert, Thomas; Latash, Mark L.

    2010-01-01

    We used the framework of the uncontrolled manifold hypothesis to study the coordination of body segments and eye movements in standing persons during the task of shifting the gaze to a target positioned behind the body. The task was performed at a comfortable speed and fast. Multi-segment and head-eye synergies were quantified as co-varied changes in elemental variables (body segment rotations and eye rotation) that stabilized (reduced the across trials variability) of head rotation in space and gaze trajectory. Head position in space was stabilized by co-varied rotations of body segments prior to the action, during its later stages, and after its completion. The synergy index showed a drop that started prior to the action initiation (anticipatory synergy adjustment) and continued during the phase of quick head rotation. Gaze direction was stabilized only at the movement completion and immediately after the saccade at movement initiation under the “fast” instruction. The study documents for the first time anticipatory synergy adjustments during whole-body actions. It shows multi-joint synergies stabilizing head trajectory in space. In contrast, there was no synergy between head and eye rotations during saccades that would achieve a relatively invariant gaze trajectory. PMID:20346529

  15. Hybrid supercapacitor-battery materials for fast electrochemical charge storage.

    PubMed

    Vlad, A; Singh, N; Rolland, J; Melinte, S; Ajayan, P M; Gohy, J-F

    2014-03-07

    High energy and high power electrochemical energy storage devices rely on different fundamental working principles--bulk vs. surface ion diffusion and electron conduction. Meeting both characteristics within a single or a pair of materials has been under intense investigations yet, severely hindered by intrinsic materials limitations. Here, we provide a solution to this issue and present an approach to design high energy and high power battery electrodes by hybridizing a nitroxide-polymer redox supercapacitor (PTMA) with a Li-ion battery material (LiFePO4). The PTMA constituent dominates the hybrid battery charge process and postpones the LiFePO4 voltage rise by virtue of its ultra-fast electrochemical response and higher working potential. We detail on a unique sequential charging mechanism in the hybrid electrode: PTMA undergoes oxidation to form high-potential redox species, which subsequently relax and charge the LiFePO4 by an internal charge transfer process. A rate capability equivalent to full battery recharge in less than 5 minutes is demonstrated. As a result of hybrid's components synergy, enhanced power and energy density as well as superior cycling stability are obtained, otherwise difficult to achieve from separate constituents.

  16. Hybrid supercapacitor-battery materials for fast electrochemical charge storage

    PubMed Central

    Vlad, A.; Singh, N.; Rolland, J.; Melinte, S.; Ajayan, P. M.; Gohy, J.-F.

    2014-01-01

    High energy and high power electrochemical energy storage devices rely on different fundamental working principles - bulk vs. surface ion diffusion and electron conduction. Meeting both characteristics within a single or a pair of materials has been under intense investigations yet, severely hindered by intrinsic materials limitations. Here, we provide a solution to this issue and present an approach to design high energy and high power battery electrodes by hybridizing a nitroxide-polymer redox supercapacitor (PTMA) with a Li-ion battery material (LiFePO4). The PTMA constituent dominates the hybrid battery charge process and postpones the LiFePO4 voltage rise by virtue of its ultra-fast electrochemical response and higher working potential. We detail on a unique sequential charging mechanism in the hybrid electrode: PTMA undergoes oxidation to form high-potential redox species, which subsequently relax and charge the LiFePO4 by an internal charge transfer process. A rate capability equivalent to full battery recharge in less than 5 minutes is demonstrated. As a result of hybrid's components synergy, enhanced power and energy density as well as superior cycling stability are obtained, otherwise difficult to achieve from separate constituents. PMID:24603843

  17. Multi-muscle synergies in an unusual postural task: quick shear force production.

    PubMed

    Robert, Thomas; Zatsiorsky, Vladimir M; Latash, Mark L

    2008-05-01

    We considered a hypothetical two-level hierarchy participating in the control of vertical posture. The framework of the uncontrolled manifold (UCM) hypothesis was used to explore the muscle groupings (M-modes) and multi-M-mode synergies involved in the stabilization of a time profile of the shear force in the anterior-posterior direction. Standing subjects were asked to produce pulses of shear force into a target using visual feedback while trying to minimize the shift of the center of pressure (COP). Principal component analysis applied to integrated muscle activation indices identified three M-modes. The composition of the M-modes was similar across subjects and the two directions of the shear force pulse. It differed from the composition of M-modes described in earlier studies of more natural actions associated with large COP shifts. Further, the trial-to-trial M-mode variance was partitioned into two components: one component that does not affect a particular performance variable (V(UCM)), and its orthogonal component (V(ORT)). We argued that there is a multi-M-mode synergy stabilizing this particular performance variable if V(UCM) is higher than V(ORT). Overall, we found a multi-M-mode synergy stabilizing both shear force and COP coordinate. For the shear force, this synergy was strong for the backward force pulses and nonsignificant for the forward pulses. An opposite result was found for the COP coordinate: the synergy was stronger for the forward force pulses. The study shows that M-mode composition can change in a task-specific way and that two different performance variables can be stabilized using the same set of elemental variables (M-modes). The different dependences of the ΔV indices for the shear force and COP coordinate on the force pulse direction supports applicability of the principle of superposition (separate controllers for different performance variables) to the control of different mechanical variables in postural tasks. The M

  18. A meta-analysis of in vitro antibiotic synergy against Acinetobacter baumannii.

    PubMed

    March, Gabriel A; Bratos, Miguel A

    2015-12-01

    The aim of the work was to describe the different in vitro models for testing synergism of antibiotics and gather the results of antibiotic synergy against multidrug-resistant Acinetobacter baumannii (MDR-Ab). The different original articles were obtained from different web sites. In order to compare the results obtained by the different methods for synergy testing, the Pearson chi-square and the Fischer tests were used. Moreover, non-parametric chi-square test was used in order to compare the frequency distribution in each analysed manuscript. In the current meta-analysis 24 manuscripts, which encompassed 2016 tests of in vitro synergism of different antimicrobials against MDR-Ab, were revised. Checkerboard synergy testing was used in 11 studies, which encompasses 1086 tests (53.9%); time-kill assays were applied in 12 studies, which encompass 359 tests (17.8%); gradient diffusion methods were used in seven studies, encompassing 293 tests (14.5%). And, finally, time-kill plus checkerboard were applied in two studies, encompassing 278 tests (13.8%). By comparing these data, checkerboard and time-kill methods were significantly more used than gradient diffusion methods (p<0.005). Regarding synergy rates obtained on the basis of the applied method, checkerboard provided 227 tests (20.9%) with a synergistic effect; time-kill assays yielded 222 tests (61.8%) with a synergistic effect; gradient diffusion methods only provided 29 tests (9.9%) with a synergistic effect; and, finally, time-kill plus checkerboard yielded just 15 tests (5.4%) with a synergistic effect. When comparing these percentages, synergy rates reported by time-kill methods were significantly higher than that obtained by checkerboard and gradient diffusion methods (p<0.005). On the basis of the revised data, the combinations of a bactericidal antibiotic plus Tigecycline, Vancomycin or Teicoplanin are not recommended. The best combinations of antibiotics are those which include bactericidal antibiotics

  19. Postural Control during Upper Body Locomotor-Like Movements: Similar Synergies Based on Dissimilar Muscle Modes

    PubMed Central

    Danna-Dos-Santos, Alessander; Shapkova, Elena Yu.; Shapkova, Alexandra L.; Degani, Adriana M.; Latash, Mark L.

    2009-01-01

    We studied the organization of leg and trunk muscles into groups (M-modes) and co-variation of M-mode involvement (M-mode synergies) during whole-body tasks associated with large variations of the moment of force about the vertical body axis. Our major questions were: (1) Can muscle activation patterns during such tasks be described with a few M-modes common across tasks and subjects? (2) Do these modes form the basis for synergies stabilizing MZ time pattern? (3) Will this organization differ between an explicit body rotation task and a task associated with locomotor-like alternating arm movements? Healthy subjects stood barefoot on the force platform and performed two motor tasks while paced by the metronome at 0.7, 1.0, and 1.4 Hz: Cyclic rotation of the upper body about the vertical body axis (body rotation task), and alternating rhythmic arm movements imitating those during running or quick walking (arm movement task). Principal component analysis was used to identify three M-modes within the space of integrated indices of muscle activity. The M-mode vectors showed clustering neither across subjects nor across frequencies. Variance in the M-mode space across sway cycles was partitioned into two components, one that did not affect the average value of MZ shift ("good variance") and the other that did. An index was computed reflecting the relative amount of the "good variance"; positive values of this index have been interpreted as reflecting a multi-M-mode synergy stabilizing the MZ trajectory. On average, the index was positive for both tasks and across all frequencies studied. However, the magnitude of the index was smaller for the intermediate frequency (1 Hz). The results show that the organization of muscles into groups during relatively complex whole-body tasks can differ significantly across both task variations and subjects. Nevertheless, the central nervous system seems to be able to build MZ stabilizing synergies based on different sets of M

  20. Invasion of the hybrids.

    PubMed

    Hegarty, M J

    2012-10-01

    Human activity and climate change are increasingly driving species, which were once separate together, leading to the potential for gene flow. Hybridization between diverged species brings together two genomes which have evolved to meet different adaptive requirements. The unique combination of these traits in a hybrid may be beneficial or maladaptive, but either way it results in increased phenotypic variation. A percentage of hybrid individuals may, therefore, find themselves able to exploit environmental niches which their progenitors cannot, leading to invasive hybrid swarms becoming established in new habitats. Previous research into hybrids, most famously that of Loren Rieseberg and co-workers (Rieseberg et al. 1999, 2003) in sunflowers, demonstrated that hybridization can give rise to transgressive segregation of adaptive traits, wherein the combination of favourable alleles from both parents in hybrids can enable them to outperform either. However, the question still remains as to how much of the competitive ability of hybrids is a direct result of admixture and how much is the result of selection after the fact. In this issue of Molecular Ecology, (Czypionka et al. 2012) describe their study of transcriptional changes resulting from hybridization in a fish hybrid termed invasive sculpins (Cottus). Using gene expression microarray assays, they compare gene expression in both wild and lab-reared invasive hybrids to the progenitor species and experimentally produced F(2) hybrids. They demonstrate that whilst hybridization alone does result in higher variance in gene expression (some of which is transgressive), many of the transgressive changes distinguishing the invasives appear to have come about subsequent to the initial natural hybridization event. They speculate that initial success of the hybrids in their new habitat is facilitated by hybridization, but that optimization of the invasive phenotype and removal of maladaptive traits rapidly reduces the

  1. Synergy of β-Lactams with Vancomycin against Methicillin-Resistant Staphylococcus aureus: Correlation of Disk Diffusion and Checkerboard Methods.

    PubMed

    Sy, Cheng Len; Huang, Tsi-Shu; Chen, Chii Shiang; Chen, Yao-Shen; Tsai, Hung-Chin; Wann, Shue-Renn; Wu, Kuan-Sheng; Chen, Jui-Kuang; Lee, Susan Shin-Jung; Liu, Yung-Ching

    2016-03-01

    Modified disk diffusion (MDD) and checkerboard tests were employed to assess the synergy of combinations of vancomycin and β-lactam antibiotics for 59 clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Mu50 (ATCC 700699). Bacterial inocula equivalent to 0.5 and 2.0 McFarland standard were inoculated on agar plates containing 0, 0.5, 1, and 2 μg/ml of vancomycin. Oxacillin-, cefazolin-, and cefoxitin-impregnated disks were applied to the surface, and the zones of inhibition were measured at 24 h. The CLSI-recommended checkerboard method was used as a reference to detect synergy. The MICs for vancomycin were determined using the Etest method, broth microdilution, and the Vitek 2 automated system. Synergy was observed with the checkerboard method in 51% to 60% of the isolates when vancomycin was combined with any β-lactam. The fractional inhibitory concentration indices were significantly lower in MRSA isolates with higher vancomycin MIC combinations (P < 0.05). The overall agreement between the MDD and checkerboard methods to detect synergy in MRSA isolates with bacterial inocula equivalent to McFarland standard 0.5 were 33.0% and 62.5% for oxacillin, 45.1% and 52.4% for cefazolin, and 43.1% and 52.4% for cefoxitin when combined with 0.5 and 2 μg/ml of vancomycin, respectively. Based on our study, the simple MDD method is not recommended as a replacement for the checkerboard method to detect synergy. However, it may serve as an initial screening method for the detection of potential synergy when it is not feasible to perform other labor-intensive synergy tests. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Antistaphylococcal Activity of DX-619 Alone and in Combination with Vancomycin, Teicoplanin, and Linezolid Assessed by Time-Kill Synergy Testing▿ †

    PubMed Central

    Credito, Kim; Lin, Genrong; Appelbaum, Peter C.

    2007-01-01

    Time-kill synergy studies testing in vitro activity of DX-619 alone and with added vancomycin, teicoplanin, or linezolid against 101 Staphylococcus aureus strains showed synergy between DX-619 and teicoplanin at 12 to 24 h in 72 strains and between DX-619 and vancomycin in 28 strains. No synergy was found with linezolid, and no antagonism was observed with any combination. PMID:17261625

  3. From hybrid swarms to swarms of hybrids

    USDA-ARS?s Scientific Manuscript database

    The introgression of modern humans (Homo sapiens) with Neanderthals 40,000 YBP after a half-million years of separation, may have led to the best example of a hybrid swarm on earth. Modern trade and transportation in support of the human hybrids has continued to introduce additional species, genotyp...

  4. Hybrid rocket propulsion

    NASA Technical Reports Server (NTRS)

    Holzman, Allen L.

    1993-01-01

    Topics addressed are: (1) comparison of the theoretical impulses; (2) comparison of the density-specific impulses; (3) general propulsion system features comparison; (4) hybrid systems, booster applications; and (5) hybrid systems, upper stage propulsion applications.

  5. Hydraulic Hybrid Vehicles

    EPA Pesticide Factsheets

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  6. Integration of robotics and neuroscience beyond the hand: What kind of synergies?. Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    NASA Astrophysics Data System (ADS)

    d'Avella, Andrea

    2016-07-01

    Santello et al. [1] review an impressive amount of work on the control of biological and artificial hands that demonstrates how the concept of synergies can lead to a successful integration of robotics and neuroscience. Is it possible to generalize the same approach to the control of biological and artificial limbs and bodies beyond the hand? The human hand synergies that appear most relevant for robotic hands are those defined at the kinematic level, i.e. postural synergies [2]. Postural synergies capture the geometric relations among the many joints of the hand and allow for a low dimensional characterization and synthesis of the static hand postures involved in grasping and manipulating a large set of objects. However, many other complex motor skills such as walking, reaching, throwing, and catching require controlling multi-articular time-varying trajectories rather than static postures. Dynamic control of biological and artificial limbs and bodies, especially when geometric and inertial parameters are uncertain and the joints are compliant, poses great challenges. What kind of synergies might simplify the dynamic control of motor skills involving upper and lower limbs as well as the whole body?

  7. How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?

    PubMed

    Moghadam, M Nassajian; Aminian, K; Asghari, M; Parnianpour, M

    2013-01-01

    The way central nervous system manages the excess degrees of freedom to solve kinetic redundancy of musculoskeletal system remains an open question. In this study, we utilise the concept of synergy formation as a simplifying control strategy to find the muscle recruitment based on summation of identified muscle synergies to balance the biomechanical demands (biaxial external torque) during an isometric shoulder task. A numerical optimisation-based shoulder model was used to obtain muscle activation levels when a biaxial external isometric torque is imposed at the shoulder glenohumeral joint. In the numerical simulations, 12 different shoulder torque vectors in the transverse plane are considered. For each selected direction for the torque vector, the resulting muscle activation data are calculated. The predicted muscle activation data are used for grouping muscles in some fixed element synergies by the non-negative matrix factorisation method. Next, torque produced by these synergies are computed and projected in the 2D torque space to investigate the magnitude and direction of torques that each muscle synergy generated. The results confirmed our expectation that few dominant synergies are sufficient to reconstruct the torque vectors and each muscle contributed to more than one synergy. Decomposition of the concatenated data, combining the activation and external torque, provided functional muscle synergies that produced torques in the four principal directions. Four muscle synergies were able to account for more than 95% of variation of the original data.

  8. Mesoscale hybrid calibration artifact

    DOEpatents

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  9. Hybrid armature projectile

    DOEpatents

    Hawke, Ronald S.; Asay, James R.; Hall, Clint A.; Konrad, Carl H.; Sauve, Gerald L.; Shahinpoor, Mohsen; Susoeff, Allan R.

    1993-01-01

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

  10. Hybrid quantum information processing

    SciTech Connect

    Furusawa, Akira

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  11. Realizing the Hybrid Library.

    ERIC Educational Resources Information Center

    Pinfield, Stephen; Eaton, Jonathan; Edwards, Catherine; Russell, Rosemary; Wissenburg, Astrid; Wynne, Peter

    1998-01-01

    Outlines five projects currently funded by the United Kingdom's Electronic Libraries Program (eLib): HyLiFe (Hybrid Library of the Future), MALIBU (MAnaging the hybrid Library for the Benefit of Users), HeadLine (Hybrid Electronic Access and Delivery in the Library Networked Environment), ATHENS (authentication scheme), and BUILDER (Birmingham…

  12. Homoploid hybrid expectations

    USDA-ARS?s Scientific Manuscript database

    Homoploid hybrid speciation occurs when a stable, fertile, and reproductively isolated lineage results from hybridization between two distinct species without a change in ploidy level. Reproductive isolation between a homoploid hybrid species and its parents is generally attained via chromosomal re...

  13. Hybrid armature projectile

    DOEpatents

    Hawke, R.S.; Asay, J.R.; Hall, C.A.; Konrad, C.H.; Sauve, G.L.; Shahinpoor, M.; Susoeff, A.R.

    1993-03-02

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasma blowby.

  14. Intraply Hybrid Composite Design

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1986-01-01

    Several theoretical approaches combined in program. Intraply hybrid composites investigated theoretically and experimentally at Lewis Research Center. Theories developed during investigations and corroborated by attendant experiments used to develop computer program identified as INHYD (Intraply Hybrid Composite Design). INHYD includes several composites micromechanics theories, intraply hybrid composite theories, and integrated hygrothermomechanical theory. Equations from theories used by program as appropriate for user's specific applications.

  15. Hybrid rocket instability

    NASA Technical Reports Server (NTRS)

    Greiner, B.; Frederick, R. A., Jr.

    1993-01-01

    The paper provides a brief review of theoretical and experimental studies concerned with hybrid rocket instability. The instabilities discussed include atomization and mixing instabilities, chuffing instabilities, pressure coupled combustion instabilities, and vortex shedding. It is emphasized that the future use of hybrid motor systems as viable design alternatives will depend on a better understanding of hybrid instability.

  16. Diagnostic set-up and modelling for investigation of synergy between 3D edge physics and plasma-wall interactions on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Neubauer, O.; König, R.; Krychowiak, M.; Schweer, B.; Denner, P.; Rack, M.; Reiter, D.; Feng, Y.; Krämer-Flecken, A.; Drews, P.; Hasenbeck, F.; Liu, S.; Gao, Y.; Wang, E. H.; Wei, Y.; Dostal, M.; Li, L.; Wang, N.; Geiger, J.; Suzuki, Y.; Sereda, S.; Börner, P.; Weger, A. C.; Biel, W.; Brezinsek, S.; Charl, A.; Czymek, G.; Höschen, D.; Effenberg, F.; Grulke, O.; Nicolai, D.; Lambertz, H. T.; Marchuk, O.; Schmitz, O.; Hollfeld, K. P.; Knaup, M.; Offermanns, G.; Satheeswaran, G.; Terra, A.; Thomas, J.; Pederson, T. S.; Samm, U.; Linsmeier, C.; the W7-X Team

    2017-06-01

    A group of edge diagnostics and modelling has been developed for investigation of synergy between 3D edge physics and plasma-wall interactions on Wendelstein 7-X (W7-X). Two endoscopes have been designed for visible and ultraviolet spectroscopy and tomography of the plasma edge, along with infrared thermography of the divertor tiles. 2D profiles of impurities (e.g. helium, carbon) will be measured by two endoscopes viewing the island divertor region in the plasma edge with a spatial resolution of  <2 mm. A multipurpose manipulator, which is used as the carrier either of the probe head for measuring the plasma edge profiles or of samples for plasma exposure studies, was installed at the outside mid-plane on W7-X in 2015. A poloidal correlation reflectometer has also been installed at W7-X. The system consists of an antenna array observing the propagation of turbulent phenomena in the mid-plane. The EMC3-EIRENE code package has been adapted for plasma edge transport in helium plasma at W7-X using a hybrid fluid-kinetic approach by enabling EMC3 to treat non-hydrogen isotopes and extending the usage of EIRENE features within EMC3-EIRENE.

  17. Trade-Off and Synergy among Ecosystem Services in the Guanzhong-Tianshui Economic Region of China

    PubMed Central

    Qin, Keyu; Li, Jing; Yang, Xiaonan

    2015-01-01

    Natural ecosystems provide society with important goods and services. With rapidly increasing populations and excessive utilization of natural resources, humans have been enhancing the production of some services at the expense of others. Although the need for certain trade-offs between conservation and development is urgent, having only a small number of efficient methods to assess such trade-offs has impeded progress. This study focuses on the evaluation of ecosystem services under different land use schemes. It reveals the spatial and temporal distributions of and changes in ecosystem services. Based on a correlation rate model and distribution mapping, the trade-offs and synergies of these ecosystem services can be found. Here, we also describe a new simple approach to quantify the relationships of every trade-off and synergy. The results show that all ecosystem services possess trade-offs and synergies in the study area. The trend of improving carbon sequestration and water interception indicate that these key ecosystem services have the strongest synergy. And the decrease in regional agricultural production and other services, except water yield, may be considered as trade-offs. The synergy between water yield and agricultural production was the most significant, while the trade-off between water interception and carbon sequestration was the most apparent, according to our interaction quantification model. The results of this study have implications for planning and monitoring the future management of natural capital and ecosystem services, and can be integrated into land use decision-making. PMID:26540068

  18. Trade-Off and Synergy among Ecosystem Services in the Guanzhong-Tianshui Economic Region of China.

    PubMed

    Qin, Keyu; Li, Jing; Yang, Xiaonan

    2015-11-03

    Natural ecosystems provide society with important goods and services. With rapidly increasing populations and excessive utilization of natural resources, humans have been enhancing the production of some services at the expense of others. Although the need for certain trade-offs between conservation and development is urgent, having only a small number of efficient methods to assess such trade-offs has impeded progress. This study focuses on the evaluation of ecosystem services under different land use schemes. It reveals the spatial and temporal distributions of and changes in ecosystem services. Based on a correlation rate model and distribution mapping, the trade-offs and synergies of these ecosystem services can be found. Here, we also describe a new simple approach to quantify the relationships of every trade-off and synergy. The results show that all ecosystem services possess trade-offs and synergies in the study area. The trend of improving carbon sequestration and water interception indicate that these key ecosystem services have the strongest synergy. And the decrease in regional agricultural production and other services, except water yield, may be considered as trade-offs. The synergy between water yield and agricultural production was the most significant, while the trade-off between water interception and carbon sequestration was the most apparent, according to our interaction quantification model. The results of this study have implications for planning and monitoring the future management of natural capital and ecosystem services, and can be integrated into land use decision-making.

  19. Synergy study of the inhibitory potential of red wine polyphenols on vascular smooth muscle cell proliferation.

    PubMed

    Kurin, Elena; Atanasov, Atanas G; Donath, Oliver; Heiss, Elke H; Dirsch, Verena M; Nagy, Milan

    2012-05-01

    Vascular smooth muscle cell (VSMC) proliferation contributes to the development of atherosclerosis. Red wine consumption due to the polyphenol content has been reported to counteract atherosclerosis progression possibly through inhibition of VSMC proliferation, among other mechanisms. In this study we investigate the antiproliferative activity of four wine polyphenols: resveratrol, quercetin, ethyl gallate, and (+)-catechin in rat aortic VSMC. All four polyphenols inhibited serum-induced VSMC proliferation when applied as a single treatment. To further address a potential synergistic action of the investigated polyphenols, the antiproliferative effect of different combinations in equimolar, as well as equipotent ratios were quantified. The IC₅₀ values of single polyphenols regarding the inhibition of VSMC proliferation ranged from 49.58 µM to 86.06 µM. However, apparent inhibitory efficacy of each compound increased by a factor of 10.4 in the quadruple equipotent mixture, as calculated from the dose-reduction index. Thus, the effective IC₅₀ values of each of the four mixture constituents ranged from 4.76 µM to 8.27 µM. The calculated combination index (CI, where CI <, =, or > 1 indicate synergy, additivity, or antagonism, respectively) values of equimolar combinations of the polyphenols indeed indicated mainly synergy (CI ranging from 0.24 ± 0.01 to 1.51 ± 0.13). Optimized equipotent mixture showed enhanced synergy (CI ranging from 0.18 ± 0.04 to 1.36 ± 0.26). In conclusion, we show for the first time that four major polyphenols from wine synergistically inhibit VSMC proliferation. Georg Thieme Verlag KG Stuttgart · New York.

  20. Stability and composition of functional synergies for speech movements in children with developmental speech disorders.

    PubMed

    Terband, H; Maassen, B; van Lieshout, P; Nijland, L

    2011-01-01

    The aim of this study was to investigate the consistency and composition of functional synergies for speech movements in children with developmental speech disorders. Kinematic data were collected on the reiterated productions of syllables spa(/spaː/) and paas(/paːs/) by 10 6- to 9-year-olds with developmental speech disorders (five with speech sound disorder [SSD] and five with subtype childhood apraxia of speech [CAS]) and six normally speaking children using electro-magnetic midsagittal articulography (EMMA). Results showed a higher variability of tongue tip movement trajectories and a larger contribution of the lower lip relative to the jaw in oral closures for the five children with CAS compared to normally developing controls, indicating that functional synergies for speech movements in children with CAS may be both delayed and less stable. Furthermore, the SSD group showed a composition of tongue tip movements that is different from both CAS and controls. These results suggest that the differences in speech motor characteristics between SSD and subtype CAS are qualitative rather than quantitative. At the same time, the results suggest that both SSD and subtype CAS increase movement amplitude as an adaptive strategy to increase articulatory stability. Although in direct comparison no exclusive characteristics were found to differentiate subtype CAS from the group of children with SSD and from normally developing children, these preliminary results are promising for quantifying the role of speech motor processes in childhood speech sound disorders. The reader will be able to: (1) describe the development of speech motor control and explain the role of functional synergies/coordinative structures; (2) explain the measurement of the stability and composition of speech movements; (3) identify the difficulties in studying disordered speech motor development; (4) describe the differences in speech motor characteristics between SSD and subtype CAS; (5) describe

  1. Synergy of Penicillin-Netilmicin Combinations Against Enterococci Including Strains Highly Resistant to Streptomycin or Kanamycin

    PubMed Central

    Sanders, Christine C.

    1977-01-01

    The in vitro activity of combinations of penicillin and netilimicin was determined against 20 clinical isolates of enterococci and compared with that obtained in simultaneous tests with penicillin/sisomicin, penicillin/streptomycin, and penicillin/kanamycin. Synergy between the two drugs in each combination was determined by the use of quantitative kill curves and was defined as a killing by the combination at least 100-fold greater than that produced by the most effective drug alone. Penicillin/netilmicin and penicillin/sisomicin combinations were found to be synergistic against the majority of isolates tested, including strains resistant to penicillin/streptomycin or penicillin/kanamycin combinations. This synergy with penicillin could be demonstrated at a concentration of ≤7 μg/ml for either netilmicin or sisomicin. Studies on the kinetics of killing produced by these combinations showed the rate and extent of killing to be directly dependent upon the organism's relative susceptibility to the aminoglycoside alone and the aminoglycoside concentration in the combination. Results also indicated that the interaction between penicillin and netilmicin was true synergy; i.e., rapid and complete killing was produced by combinations containing each drug at concentrations insufficient to produce any killing alone, and the killing observed could not be produced by either drug alone at a concentration equivalent to the total drug concentration in the combination. The potential clinical application of this synergistic interaction should be investigated further, especially in view of recent reports showing netilmicin to be considerably less toxic than gentamicin in experimental animals. PMID:242509

  2. Analysis of Hand and Wrist Postural Synergies in Tolerance Grasping of Various Objects.

    PubMed

    Liu, Yuan; Jiang, Li; Yang, Dapeng; Liu, Hong

    2016-01-01

    Human can successfully grasp various objects in different acceptable relative positions between human hand and objects. This grasp functionality can be described as the grasp tolerance of human hand, which is a significant functionality of human grasp. To understand the motor control of human hand completely, an analysis of hand and wrist postural synergies in tolerance grasping of various objects is needed. Ten healthy right-handed subjects were asked to perform the tolerance grasping with right hand using 6 objects of different shapes, sizes and relative positions between human hand and objects. Subjects were wearing CyberGlove attaching motion tracker on right hand, allowing a measurement of the hand and wrist postures. Correlation analysis of joints and inter-joint/inter-finger modules were carried on to explore the coordination between joints or modules. As the correlation between hand and wrist module is not obvious in tolerance grasping, individual analysis of wrist synergies would be more practical. In this case, postural synergies of hand and wrist were then presented separately through principal component analysis (PCA), expressed through the principal component (PC) information transmitted ratio, PC elements distribution and reconstructed angle error of joints. Results on correlation comparison of different module movements can be well explained by the influence factors of the joint movement correlation. Moreover, correlation analysis of joints and modules showed the wrist module had the lowest correlation among all inter-finger and inter-joint modules. Hand and wrist postures were both sufficient to be described by a few principal components. In terms of the PC elements distribution of hand postures, compared with previous investigations, there was a greater proportion of movement in the thumb joints especially the interphalangeal (IP) and opposition rotation (ROT) joint. The research could serve to a complete understanding of hand grasp, and the design

  3. Analysis of Hand and Wrist Postural Synergies in Tolerance Grasping of Various Objects

    PubMed Central

    Liu, Yuan; Jiang, Li; Yang, Dapeng; Liu, Hong

    2016-01-01

    Human can successfully grasp various objects in different acceptable relative positions between human hand and objects. This grasp functionality can be described as the grasp tolerance of human hand, which is a significant functionality of human grasp. To understand the motor control of human hand completely, an analysis of hand and wrist postural synergies in tolerance grasping of various objects is needed. Ten healthy right-handed subjects were asked to perform the tolerance grasping with right hand using 6 objects of different shapes, sizes and relative positions between human hand and objects. Subjects were wearing CyberGlove attaching motion tracker on right hand, allowing a measurement of the hand and wrist postures. Correlation analysis of joints and inter-joint/inter-finger modules were carried on to explore the coordination between joints or modules. As the correlation between hand and wrist module is not obvious in tolerance grasping, individual analysis of wrist synergies would be more practical. In this case, postural synergies of hand and wrist were then presented separately through principal component analysis (PCA), expressed through the principal component (PC) information transmitted ratio, PC elements distribution and reconstructed angle error of joints. Results on correlation comparison of different module movements can be well explained by the influence factors of the joint movement correlation. Moreover, correlation analysis of joints and modules showed the wrist module had the lowest correlation among all inter-finger and inter-joint modules. Hand and wrist postures were both sufficient to be described by a few principal components. In terms of the PC elements distribution of hand postures, compared with previous investigations, there was a greater proportion of movement in the thumb joints especially the interphalangeal (IP) and opposition rotation (ROT) joint. The research could serve to a complete understanding of hand grasp, and the design

  4. Synergy and redundancy in the Granger causal analysis of dynamical networks

    NASA Astrophysics Data System (ADS)

    Stramaglia, Sebastiano; Cortes, Jesus M.; Marinazzo, Daniele

    2014-10-01

    We analyze, by means of Granger causality (GC), the effect of synergy and redundancy in the inference (from time series data) of the information flow between subsystems of a complex network. While we show that fully conditioned GC (CGC) is not affected by synergy, the pairwise analysis fails to prove synergetic effects. In cases when the number of samples is low, thus making the fully conditioned approach unfeasible, we show that partially conditioned GC (PCGC) is an effective approach if the set of conditioning variables is properly chosen. Here we consider two different strategies (based either on informational content for the candidate driver or on selecting the variables with highest pairwise influences) for PCGC and show that, depending on the data structure, either one or the other might be equally valid. On the other hand, we observe that fully conditioned approaches do not work well in the presence of redundancy, thus suggesting the strategy of separating the pairwise links in two subsets: those corresponding to indirect connections of the CGC (which should thus be excluded) and links that can be ascribed to redundancy effects and, together with the results from the fully connected approach, provide a better description of the causality pattern in the presence of redundancy. Finally we apply these methods to two different real datasets. First, analyzing electrophysiological data from an epileptic brain, we show that synergetic effects are dominant just before seizure occurrences. Second, our analysis applied to gene expression time series from HeLa culture shows that the underlying regulatory networks are characterized by both redundancy and synergy.

  5. Proton Beam Fast Ignition Fusion: Synergy of Weibel and Rayleigh-Taylor Instabilities

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2011-04-01

    The proton beam generation and focusing in fast ignition inertial confinement fusion is studied. The spatial and energy spread of the proton beam generated in a laser-solid interaction is increased due to the synergy of Weibel and Rayleigh-Taylor instabilities. The focal spot radius can reach 100 μm, which is nearly an order of magnitude larger than the optimal value. The energy spread decreases the beam deposition energy in the focal spot. Under these conditions, ignition of a precompressed DT fuel is achieved with the beam powers much higher than the values presently in consideration. Work supported in part by NIKOLA TESLA Laboratories (Stefan University), La Jolla, CA.

  6. Drivers and synergies in the management of inland fisheries: Searching for sustainable solutions

    USGS Publications Warehouse

    Lynch, Abigail; Beard, Douglas

    2015-01-01

    At the 2015 Global Conference on Inland Fisheries, we convened a Drivers and Synergies panel and working group to discuss competing sectors (e.g., hydropower, transportation, agriculture, mining and oil and gas extraction, forestry, tourism and recreation, and aquaculture) and large-scale drivers which exist predominately outside of the water sectors (e.g., economic growth, diversifying economies, population growth, urbanization, and climate change).  Drivers will influence these sectors and tradeoffs will be made.  Management of sustainable inland water systems requires making informed choices emphasizing those services that will provide sustainable benefits for humans while maintaining well-functioning ecological systems.  

  7. Robots, multi-user virtual environments and healthcare: synergies for future directions.

    PubMed

    Moon, Ajung; Grajales, Francisco J; Van der Loos, H F Machiel

    2011-01-01

    The adoption of technology in healthcare over the last twenty years has steadily increased, particularly as it relates to medical robotics and Multi-User Virtual Environments (MUVEs) such as Second Life. Both disciplines have been shown to improve the quality of care and have evolved, for the most part, in isolation from each other. In this paper, we present four synergies between medical robotics and MUVEs that have the potential to decrease resource utilization and improve the quality of healthcare delivery. We conclude with some foreseeable barriers and future research directions for researchers in these fields.

  8. The SKA and its pathfinders in the next decade: synergies with the TMT

    NASA Astrophysics Data System (ADS)

    Spekkens, Kristine

    2014-07-01

    The next decade will be extremely exciting for centimeter- and meter-wave radio astronomy. Large new facilities such as ASKAP, LOFAR and MeerKAT, as well as major retrofits to existing facilities such as the JVLA and WSRT, are under construction or have begun operations. While revolutionary in and of themselves, these facilities are also important pathfinders to the SKA, whose construction will begin towards the end of this decade. This talk will review the key science that will be delivered by the SKA pathfinders as well as that anticipated with SKA Phase One (2018-2023) and Phase Two (>2023), with a focus on potential synergies with the TMT.

  9. The influence of a bilateral peripheral vestibular deficit on postural synergies.

    PubMed

    Allum, J H; Honegger, F; Schicks, H

    1994-01-01

    The role of vestibular sensory information in the triggering, selection and modulation of postural response synergies was evaluated by comparing the EMG responses of normal subjects to balance perturbations with those of subjects with a bilateral peripheral vestibular deficit. The balance perturbations were a rotation and/or a translation of a support surface on which the test subjects stood with eyes open. Onset latencies and most timing patterns of muscle responses were not altered in vestibular-loss subjects. Major changes were observed, however, in the muscle amplitude synergy. Responses between 120 and 240 ms in tibialis anterior, soleus, and quadriceps muscles were reduced more than 50% with respect to normal amplitudes. In contrast, responses in paraspinal muscles were enhanced nearly 100% with respect to normal values. These changes in muscle amplitudes with accompanying vestibular loss were highest for rotation and lowest for translation perturbations. The identification of a bilateral vestibular loss using EMG amplitudes was always 100% correct for rotation perturbations and between 75 to 85% correct for translation perturbations. Multivariate linear correlations between muscle EMG response areas, and the amplitudes of initial link velocities revealed an increased contribution of afferent signals from the upper leg and a decreased dependence on signals from the trunk and head to postural synergies in vestibular-loss subjects. The afferent modulation of the muscle amplitude synergy correcting a balance disturbance to the stance of normal subjects is, on the basis of these findings, highly dependent on vestibular afferent signals. Our results indicate that vestibular afferent signals are used to enhance the amplitude of responses in tibialis anterior, quadriceps, and soleus muscles; and inhibit the responses of paraspinal muscles, once the response timing has been triggered and selected by proprioceptive signals. Lacking this modulation, bilateral

  10. Dramatic solvent effect on the synergy between α-tocopherol and BHT antioxidants.

    PubMed

    Marteau, Clémentine; Favier, Dominique; Nardello-Rataj, Véronique; Aubry, Jean-Marie

    2014-10-01

    During the DPPH scavenging assay carried out in non polar and non protic solvents, such as toluene, BHT regenerates α-tocopherol from tocopheryl radical, whereas in polar and protic solvents, like methanol, no regeneration is observed due to a fast electron transfer reaction from the tocopheryl radical to the reactive DPPH radical. Surprisingly, in the presence of a small amount of alcohol, the synergy is exalted and BHT regenerates twice as much α-tocopherol due to a nucleophilic addition of short alcohols on the BHT oxidation product, giving a new phenolic co-antioxidant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A simple gene set-based method accurately predicts the synergy of drug pairs.

    PubMed

    Hsu, Yu-Ching; Chiu, Yu-Chiao; Chen, Yidong; Hsiao, Tzu-Hung; Chuang, Eric Y

    2016-08-26

    The advance in targeted therapy has greatly increased the effectiveness of clinical cancer therapy and reduced the cytotoxicity of treatments to normal cells. However, patients still suffer from cancer relapse due to the occurrence of drug resistance. It is of great need to explore potential combinatorial drug therapy since individual drug alone may not be sufficient to inhibit continuous activation of cancer-addicted genes or pathways. The DREAM challenge has confirmed the potentiality of computational methods for predicting synergistic drug combinations, while the prediction accuracy can be further improved. Based on previous reports, we hypothesized the similarity in biological functions or genes perturbed by two drugs can determine their synergistic effects. To test the feasibility of the hypothesis, we proposed three scoring systems: co-gene score, co-GS score, and co-gene/GS score, measuring the similarities in genes with significant expressional changes, enriched gene sets, and significantly changed genes within an enriched gene sets between a pair of drugs, respectively. Performances of these scoring systems were evaluated by the probabilistic c-index (PC-index) devised by the DREAM consortium. We also applied the proposed method to the Connectivity Map dataset to explore more potential synergistic drug combinations. Using a gold standard derived by the DREAM consortium, we confirmed the prediction power of the three scoring systems (all P-values < 0.05). The co-gene/GS score achieved the best prediction of drug synergy (PC-index = 0.663, P-value < 0.0001), outperforming all methods proposed during DREAM challenge. Furthermore, a binary classification test showed that co-gene/GS scoring was highly accurate and specific. Since our method is constructed on a gene set-based analysis, in addition to synergy prediction, it provides insights into the functional relevance of drug combinations and the underlying mechanisms by which drugs achieve synergy

  12. Synergy of inelastic and elastic energy loss. Temperature effects and electronic stopping power dependence

    DOE PAGES

    Zarkadoula, Eva; Xue, Haizhou; Zhang, Yanwen; ...

    2015-06-16

    A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO3 systems with pre-existing disorder. We find temperature dependence of the ion track size. In addition, we find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss.

  13. Synergy of inelastic and elastic energy loss. Temperature effects and electronic stopping power dependence

    SciTech Connect

    Zarkadoula, Eva; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-06-16

    A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO3 systems with pre-existing disorder. We find temperature dependence of the ion track size. In addition, we find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss.

  14. The hydrogen hybrid option

    SciTech Connect

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  15. Towards a synergy framework across neuroscience and robotics: Lessons learned and open questions. Reply to comments on: "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands"

    NASA Astrophysics Data System (ADS)

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jorntell, Henrik; Kappers, Astrid M. L.; Kyriakopoulos, Kostas; Schaeffer, Alin Abu; Castellini, Claudio; Bicchi, Antonio

    2016-07-01

    We would like to thank all commentators for their insightful commentaries. Thanks to their diverse and complementary expertise in neuroscience and robotics, the commentators have provided us with the opportunity to further discuss state-of-the-art and gaps in the integration of neuroscience and robotics reviewed in our article. We organized our reply in two sections that capture the main points of all commentaries [1-9]: (1) Advantages and limitations of the synergy approach in neuroscience and robotics, and (2) Learning and role of sensory feedback in biological and robotics synergies.

  16. Working hard to make a simple definition of synergies. Comment on: "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    NASA Astrophysics Data System (ADS)

    Alessandro, Cristiano; Oliveira Barroso, Filipe; Tresch, Matthew

    2016-07-01

    The paper ;Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands; [1] presents a comprehensive review of the work carried out as part of the EU funded project ;The Hand Embodied;. The work uses the concept of ;synergy; to study the neuromuscular control of the human hand and to design novel robotics systems. The project has been very productive and has made important contributions. We are therefore confident that it will lead to further advancements and experiments in the future.

  17. A central back-coupling hypothesis on the organization of motor synergies: a physical metaphor and a neural model

    PubMed Central

    Latash, Mark L.; Shim, Jae Kun; Smilga, Andrei V.; Zatsiorsky, Vladimir M.

    2010-01-01

    We offer a hypothesis on the organization of multi-effector motor synergies and illustrate it with the task of force production with a set of fingers. A physical metaphor, a leaking bucket, is analyzed to demonstrate that an inanimate structure can show apparent error compensation among its elements. A neural model is developed using tunable back-coupling loops as means of assuring error compensation in a task-specific way. The model demonstrates non-trivial features of multi-finger interaction such as delayed emergence of force stabilizing synergies and simultaneous stabilization of the total force and total moment produced by the fingers. The hypothesis suggests that neurophysiological structures involving short-latency feedback may play a central role in the formation of motor synergies. PMID:15739110

  18. Listening to speech recruits specific tongue motor synergies as revealed by transcranial magnetic stimulation and tissue-Doppler ultrasound imaging.

    PubMed

    D'Ausilio, A; Maffongelli, L; Bartoli, E; Campanella, M; Ferrari, E; Berry, J; Fadiga, L

    2014-01-01

    The activation of listener's motor system during speech processing was first demonstrated by the enhancement of electromyographic tongue potentials as evoked by single-pulse transcranial magnetic stimulation (TMS) over tongue motor cortex. This technique is, however, technically challenging and enables only a rather coarse measurement of this motor mirroring. Here, we applied TMS to listeners' tongue motor area in association with ultrasound tissue Doppler imaging to describe fine-grained tongue kinematic synergies evoked by passive listening to speech. Subjects listened to syllables requiring different patterns of dorso-ventral and antero-posterior movements (/ki/, /ko/, /ti/, /to/). Results show that passive listening to speech sounds evokes a pattern of motor synergies mirroring those occurring during speech production. Moreover, mirror motor synergies were more evident in those subjects showing good performances in discriminating speech in noise demonstrating a role of the speech-related mirror system in feed-forward processing the speaker's ongoing motor plan.

  19. Listening to speech recruits specific tongue motor synergies as revealed by transcranial magnetic stimulation and tissue-Doppler ultrasound imaging

    PubMed Central

    D'Ausilio, A.; Maffongelli, L.; Bartoli, E.; Campanella, M.; Ferrari, E.; Berry, J.; Fadiga, L.

    2014-01-01

    The activation of listener's motor system during speech processing was first demonstrated by the enhancement of electromyographic tongue potentials as evoked by single-pulse transcranial magnetic stimulation (TMS) over tongue motor cortex. This technique is, however, technically challenging and enables only a rather coarse measurement of this motor mirroring. Here, we applied TMS to listeners’ tongue motor area in association with ultrasound tissue Doppler imaging to describe fine-grained tongue kinematic synergies evoked by passive listening to speech. Subjects listened to syllables requiring different patterns of dorso-ventral and antero-posterior movements (/ki/, /ko/, /ti/, /to/). Results show that passive listening to speech sounds evokes a pattern of motor synergies mirroring those occurring during speech production. Moreover, mirror motor synergies were more evident in those subjects showing good performances in discriminating speech in noise demonstrating a role of the speech-related mirror system in feed-forward processing the speaker's ongoing motor plan. PMID:24778384

  20. An approach for improving repeatability and reliability of non-negative matrix factorization for muscle synergy analysis.

    PubMed

    Shourijeh, Mohammad S; Flaxman, Teresa E; Benoit, Daniel L

    2016-02-01

    The aim of this study was to evaluate non-negative matrix factorization (NMF) and concatenated NMF (CNMF) to analyze and reliably extract muscle synergies. NMF and CNMF were used to extract knee joint muscle synergies from surface EMGs collected during a weight bearing, force matching task. Repeatability and between subject similarity were evaluated for each method using intra-class correlation coefficients (ICCs). High repeatability was found for CNMF (>0.99; 0.99-1.0) compared to NMF (>0.26; range 0.26-0.98). Reasonable consistency across subjects was improved using the CNMF over the NMF approach. CNMF was found to be a more reliable approach than NMF and suitable for between subject comparison of muscle synergies.

  1. Partnerships in health disparities research and the roles of pastors of black churches: potential conflict, synergy, and expectations.

    PubMed

    Corbie-Smith, Giselle; Goldmon, Moses; Isler, Malika Roman; Washington, Chanetta; Ammerman, Alice; Green, Melissa; Bunton, Audrina

    2010-09-01

    The black church is a promising site to engage in health disparities research; however, little is understood about the pastors' perspectives. We used role theory to explore their expectations, potential conflicts, and synergy with research. Four focus groups (n = 30) were conducted with pastors and analyzed using principles of grounded theory and content analysis. Pastors identified a variety of potential roles in research. They noted potential conflicts due to perceptions of research, the process, and pace of research. Areas of synergy included perceptions of health disparities research as consistent with the healthy mind, body, and spirit ideology, and clear benefits to congregations and communities. Pastors' research expectations included long-term commitments, honest and clear communication, investigator visibility, respect for church traditions/practices, and support in forming collaborations. Understanding pastors' roles, potential areas of synergy and conflict, and collaboration expectations offers insight in support of successful church-academic partnerships.

  2. Administrative Synergy

    ERIC Educational Resources Information Center

    Hewitt, Kimberly Kappler; Weckstein, Daniel K.

    2012-01-01

    One of the biggest obstacles to overcome in creating and sustaining an administrative professional learning community (PLC) is time. Administrators are constantly deluged by the tyranny of the urgent. It is a Herculean task to carve out time for PLCs, but it is imperative to do so. In this article, the authors describe how an administrative PLC…

  3. Single-step One-pot Synthesis of Graphene Foam/TiO2 Nanosheet Hybrids for Effective Water Treatment

    PubMed Central

    Wang, Weilin; Wang, Zhaofeng; Liu, Jingjing; Zhang, Zhengguo; Sun, Luyi

    2017-01-01

    Millions of tons of wastewater containing both inorganic and organic pollutants are generated every day, leading to significant social, environmental, and economic issues. Herein, we designed a graphene foam/TiO2 nanosheet hybrid, which is able to effectively remove both chromium (VI) cations and organic pollutants simultaneously. This graphene foam/TiO2 nanosheet hybrid was synthesized via a facile single-step one-pot hydrothermal method. The structure of the hybrid was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The hybrid was evaluated for both chromium (VI) and organic pollutants (using methyl blue (MB) as an example) removal, and the removal mechanism was also investigated. During water treatment, graphene and TiO2 nanosheets function complimentarily, leading to a significant synergy. The hybrid exhibited outstanding chromium (VI) and MB removal capacity, much superior to the performance of the individual pure TiO2 sheets or pure graphene foam. The hybrid could also be easily separated after water treatment, and exhibited excellent recycle stability. Considering the very facile synthesis of this graphene foam/TiO2 nanosheet hybrid, and its excellent water treatment performance and recycle stability, such a hybrid is promising for large scale production for practical applications where both chromium (VI) cations and organic dyes are the main pollutants. PMID:28251998

  4. Single-step One-pot Synthesis of Graphene Foam/TiO2 Nanosheet Hybrids for Effective Water Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Weilin; Wang, Zhaofeng; Liu, Jingjing; Zhang, Zhengguo; Sun, Luyi

    2017-03-01

    Millions of tons of wastewater containing both inorganic and organic pollutants are generated every day, leading to significant social, environmental, and economic issues. Herein, we designed a graphene foam/TiO2 nanosheet hybrid, which is able to effectively remove both chromium (VI) cations and organic pollutants simultaneously. This graphene foam/TiO2 nanosheet hybrid was synthesized via a facile single-step one-pot hydrothermal method. The structure of the hybrid was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The hybrid was evaluated for both chromium (VI) and organic pollutants (using methyl blue (MB) as an example) removal, and the removal mechanism was also investigated. During water treatment, graphene and TiO2 nanosheets function complimentarily, leading to a significant synergy. The hybrid exhibited outstanding chromium (VI) and MB removal capacity, much superior to the performance of the individual pure TiO2 sheets or pure graphene foam. The hybrid could also be easily separated after water treatment, and exhibited excellent recycle stability. Considering the very facile synthesis of this graphene foam/TiO2 nanosheet hybrid, and its excellent water treatment performance and recycle stability, such a hybrid is promising for large scale production for practical applications where both chromium (VI) cations and organic dyes are the main pollutants.

  5. Single-step One-pot Synthesis of Graphene Foam/TiO2 Nanosheet Hybrids for Effective Water Treatment.

    PubMed

    Wang, Weilin; Wang, Zhaofeng; Liu, Jingjing; Zhang, Zhengguo; Sun, Luyi

    2017-03-02

    Millions of tons of wastewater containing both inorganic and organic pollutants are generated every day, leading to significant social, environmental, and economic issues. Herein, we designed a graphene foam/TiO2 nanosheet hybrid, which is able to effectively remove both chromium (VI) cations and organic pollutants simultaneously. This graphene foam/TiO2 nanosheet hybrid was synthesized via a facile single-step one-pot hydrothermal method. The structure of the hybrid was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The hybrid was evaluated for both chromium (VI) and organic pollutants (using methyl blue (MB) as an example) removal, and the removal mechanism was also investigated. During water treatment, graphene and TiO2 nanosheets function complimentarily, leading to a significant synergy. The hybrid exhibited outstanding chromium (VI) and MB removal capacity, much superior to the performance of the individual pure TiO2 sheets or pure graphene foam. The hybrid could also be easily separated after water treatment, and exhibited excellent recycle stability. Considering the very facile synthesis of this graphene foam/TiO2 nanosheet hybrid, and its excellent water treatment performance and recycle stability, such a hybrid is promising for large scale production for practical applications where both chromium (VI) cations and organic dyes are the main pollutants.

  6. Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors.

    PubMed

    Chvatal, Stacie A; Torres-Oviedo, Gelsy; Safavynia, Seyed A; Ting, Lena H

    2011-08-01

    We investigated muscle activity, ground reaction forces, and center of mass (CoM) acceleration in two different postural behaviors for standing balance control in humans to determine whether common neural mechanisms are used in different postural tasks. We compared nonstepping responses, where the base of support is stationary and balance is recovered by returning CoM back to its initial position, with stepping responses, where the base of support is enlarged and balance is recovered by pushing the CoM away from the initial position. In response to perturbations of the same direction, these two postural behaviors resulted in different muscle activity and ground reaction forces. We hypothesized that a common pool of muscle synergies producing consistent task-level biomechanical functions is used to generate different postural behaviors. Two sets of support-surface translations in 12 horizontal-plane directions were presented, first to evoke stepping responses and then to evoke nonstepping responses. Electromyographs in 16 lower back and leg muscles of the stance leg were measured. Initially (∼100-ms latency), electromyographs, CoM acceleration, and forces were similar in nonstepping and stepping responses, but these diverged in later time periods (∼200 ms), when stepping occurred. We identified muscle synergies using non-negative matrix factorization and functional muscle synergies that quantified correlations between muscle synergy recruitment levels and biomechanical outputs. Functional muscle synergies that produce forces to restore CoM position in nonstepping responses were also used to displace the CoM during stepping responses. These results suggest that muscle synergies represent common neural mechanisms for CoM movement control under different dynamic conditions: stepping and nonstepping postural responses.

  7. Synergy between prochloraz and esfenvalerate in Daphnia magna from acute and subchronic exposures in the laboratory and microcosms.

    PubMed

    Bjergager, Maj-Britt A; Hanson, Mark L; Solomon, Keith R; Cedergreen, Nina

    2012-04-01

    Azole fungicides can enhance the toxicity of pyrethroid insecticides on aquatic species. It is, however, unknown to what extend the synergy found under laboratory conditions for strongly sorbing compounds (Azole logK(ow): 3-4, pyrethroid logK(ow): 6-7) will also take place in the field. We therefore investigated the synergising potential of the fungicide prochloraz on the pyrethroid esfenvalerate on Daphnia magna in the laboratory and in situ in cages placed in outdoor aquatic microcosms treated with 0.17, 0.33 and 0.83 μgL(-1) esfenvalerate with and without 90 μg L(-1) prochloraz. We found that the 8-14 fold synergy observed after 2 and 7 days of exposure to mixtures in the microcosms was equivalent to or greater than the 3-7 fold synergy found in 2-day laboratory tests. Incubating new neonates in situ 7 and 14 days after pesticide addition gave EC(50) values of 0.012 ± 0.001 and <0.005μgesfenvalerateL(-1) in the mixture treatments, based on measured water column concentrations. The detection limit is more than ten-fold lower than the lowest esfenvalerate concentration observed to cause ecologically significant effects across seven long term mesocosms studies, hence, even on a longer time scale prochloraz apparently synergises the effect of esfenvalerate under field-like conditions in the microcosms. The results show that synergy found in the laboratory also takes place under field like conditions at quantitatively similar levels, and that it lasts for several weeks. More knowledge on the identification of potential synergists, their true bioavailability and the concentrations and time span within which they can cause synergy needs further study, before an overall evaluation of the occurrence and severity of synergy under field conditions can take place. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors

    PubMed Central

    Chvatal, Stacie A.; Torres-Oviedo, Gelsy; Safavynia, Seyed A.

    2011-01-01

    We investigated muscle activity, ground reaction forces, and center of mass (CoM) acceleration in two different postural behaviors for standing balance control in humans to determine whether common neural mechanisms are used in different postural tasks. We compared nonstepping responses, where the base of support is stationary and balance is recovered by returning CoM back to its initial position, with stepping responses, where the base of support is enlarged and balance is recovered by pushing the CoM away from the initial position. In response to perturbations of the same direction, these two postural behaviors resulted in different muscle activity and ground reaction forces. We hypothesized that a common pool of muscle synergies producing consistent task-level biomechanical functions is used to generate different postural behaviors. Two sets of support-surface translations in 12 horizontal-plane directions were presented, first to evoke stepping responses and then to evoke nonstepping responses. Electromyographs in 16 lower back and leg muscles of the stance leg were measured. Initially (∼100-ms latency), electromyographs, CoM acceleration, and forces were similar in nonstepping and stepping responses, but these diverged in later time periods (∼200 ms), when stepping occurred. We identified muscle synergies using non-negative matrix factorization and functional muscle synergies that quantified correlations between muscle synergy recruitment levels and biomechanical outputs. Functional muscle synergies that produce forces to restore CoM position in nonstepping responses were also used to displace the CoM during stepping responses. These results suggest that muscle synergies represent common neural mechanisms for CoM movement control under different dynamic conditions: stepping and nonstepping postural responses. PMID:21653725

  9. On identifying kinematic and muscle synergies: a comparison of matrix factorization methods using experimental data from the healthy population.

    PubMed

    Lambert-Shirzad, Navid; Van der Loos, H F Machiel

    2017-01-01

    Human motor behavior is highly goal directed, requiring the central nervous system to coordinate different aspects of motion generation to achieve the motion goals. The concept of motor synergies provides an approach to quantify the covariation of joint motions and of muscle activations, i.e., elemental variables, during a task. To analyze goal-directed movements, factorization methods can be used to reduce the high dimensionality of these variables while accounting for much of the variance in large data sets. Three factorization methods considered in this paper are principal component analysis (PCA), nonnegative matrix factorization (NNMF), and independent component analysis (ICA). Bilateral human reaching data sets are used to compare the methods, and advantages of each are presented and discussed. PCA and NNMF had a comparable performance on both EMG and joint motion data and both outperformed ICA. However, NNMF's nonnegativity condition for activation of basis vectors is a useful attribute in identifying physiologically meaningful synergies, making it a more appealing method for future studies. A simulated data set is introduced to clarify the approaches and interpretation of the synergy structures returned by the three factorization methods. Literature on comparing factorization methods in identifying motor synergies using numerically generated, simulation, and muscle activation data from animal studies already exists. We present an empirical evaluation of the performance of three of these methods on muscle activation and joint angles data from human reaching motion: principal component analysis, nonnegative matrix factorization, and independent component analysis. Using numerical simulation, we also studied the meaning and differences in the synergy structures returned by each method. The results can be used to unify approaches in identifying and interpreting motor synergies. Copyright © 2017 the American Physiological Society.

  10. Sustainable livelihoods and ecosystem health: exploring methodological relations as a source of synergy.

    PubMed

    Connell, David J

    2010-09-01

    Using ecohealth as a transdisciplinary lens to explore the connections among overlapping domains of inquiry, this article examines methodological relations between Sustainable Livelihoods and Ecosystem Health, two approaches for improving rural health and well-being. The experience of working on a project tasked with developing an integrated, systems-based approach for understanding the nature of rural livelihoods and ecosystems provides the base for analysis. Several key insights are discussed: The overarching goals of health and sustainability facilitate collaboration among disciplines; differences arise from how each approach operationalizes systems as variables and indicators; the dependent variables for one approach can be used as the independent variables for the other. In summary, while broad concepts like health and sustainability help transcend differences across disciplines and scales of analysis, variables and indicators cannot, as they are bound to how an observed system is operationalized. An advantage of using an ecohealth lens is that it creates conceptual and analytical spaces in which differences can be reconciled and used as sources of synergy. A source of synergy revealed in this article is the interdependence of variables used by each approach.

  11. The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams

    NASA Astrophysics Data System (ADS)

    Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing

    2016-11-01

    Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams.

  12. Characterizing Aerosols over Southeast Asia using the AERONET Data Synergy Tool

    NASA Technical Reports Server (NTRS)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Slutsker, Ilya; Slutsker, Ilya; Welton, Ellsworth, J.; Chin, Mian; Kucsera, Thomas; Schmaltz, Jeffery E.; Diehl, Thomas; Singh, Ramesh P.; Boonjawat, Jariya; Snidvongs, Arond; Le, Huy V.

    2007-01-01

    Biomass burning, urban pollution and dust aerosols have significant impacts on the radiative forcing of the atmosphere over Asia. In order to better quanti@ these aerosol characteristics, the Aerosol Robotic Network (AERONET) has established over 200 sites worldwide with an emphasis in recent years on the Asian continent - specifically Southeast Asia. A total of approximately 15 AERONET sun photometer instruments have been deployed to China, India, Pakistan, Thailand, and Vietnam. Sun photometer spectral aerosol optical depth measurements as well as microphysical and optical aerosol retrievals over Southeast Asia will be analyzed and discussed with supporting ground-based instrument, satellite, and model data sets, which are freely available via the AERONET Data Synergy tool at the AERONET web site (http://aeronet.gsfc.nasa.gov). This web-based data tool provides access to groundbased (AERONET and MPLNET), satellite (MODIS, SeaWiFS, TOMS, and OMI) and model (GOCART and back trajectory analyses) databases via one web portal. Future development of the AERONET Data Synergy Tool will include the expansion of current data sets as well as the implementation of other Earth Science data sets pertinent to advancing aerosol research.

  13. Electron Bernstein wave-bootstrap current synergy in the National Spherical Torus Experiment

    SciTech Connect

    Harvey, R.W.; Taylor, G.

    2005-05-15

    Current driven by electron Bernstein waves (EBW) and by the electron bootstrap effect are calculated separately and concurrently with a kinetic code to determine the degree of synergy between them. A target {beta}=40% NSTX [M. Ono, S. Kaye, M. Peng et al., Proceedings of the 17th IAEA Fusion Energy Conference, edited by M. Spak (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135] plasma is examined. A simple bootstrap model in the collisional-quasilinear CQL3D Fokker-Planck code (National Technical Information Service document No. DE93002962) is used in these studies: the transiting electron distributions are connected in velocity space at the trapped-passing boundary to trapped-electron distributions that are displaced radially by a half-banana-width outwards/inwards for the co-passing/counter-passing regions. This model agrees well with standard bootstrap current calculations over the outer 60% of the plasma radius. Relatively small synergy net bootstrap current is obtained for EBW power up to 4 MW. Locally, bootstrap current density increases in proportion to increased plasma pressure, and this effect can significantly affect the radial profile of driven current.

  14. A Systems Biology Approach to Uncovering Pharmacological Synergy in Herbal Medicines with Applications to Cardiovascular Disease

    PubMed Central

    Wang, Xia; Xu, Xue; Tao, Weiyang; Li, Yan; Wang, Yonghua; Yang, Ling

    2012-01-01

    Background. Clinical trials reveal that multiherb prescriptions of herbal medicine often exhibit pharmacological and therapeutic superiority in comparison to isolated single constituents. However, the synergistic mechanisms underlying this remain elusive. To address this question, a novel systems biology model integrating oral bioavailability and drug-likeness screening, target identification, and network pharmacology method has been constructed and applied to four clinically widely used herbs Radix Astragali Mongolici, Radix Puerariae Lobatae, Radix Ophiopogonis Japonici, and Radix Salviae Miltiorrhiza which exert synergistic effects of combined treatment of cardiovascular disease (CVD). Results. The results show that the structural properties of molecules in four herbs have substantial differences, and each herb can interact with significant target proteins related to CVD. Moreover, the bioactive ingredients from different herbs potentially act on the same molecular target (multiple-drug-one-target) and/or the functionally diverse targets but with potentially clinically relevant associations (multiple-drug-multiple-target-one-disease). From a molecular/systematic level, this explains why the herbs within a concoction could mutually enhance pharmacological synergy on a disease. Conclusions. The present work provides a new strategy not only for the understanding of pharmacological synergy in herbal medicine, but also for the rational discovery of potent drug/herb combinations that are individually subtherapeutic. PMID:23243453

  15. Characterizing Aerosols over Southeast Asia using the AERONET Data Synergy Tool

    NASA Technical Reports Server (NTRS)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Slutsker, Ilya; Slutsker, Ilya; Welton, Ellsworth, J.; Chin, Mian; Kucsera, Thomas; Schmaltz, Jeffery E.; Diehl, Thomas; hide

    2007-01-01

    Biomass burning, urban pollution and dust aerosols have significant impacts on the radiative forcing of the atmosphere over Asia. In order to better quanti@ these aerosol characteristics, the Aerosol Robotic Network (AERONET) has established over 200 sites worldwide with an emphasis in recent years on the Asian continent - specifically Southeast Asia. A total of approximately 15 AERONET sun photometer instruments have been deployed to China, India, Pakistan, Thailand, and Vietnam. Sun photometer spectral aerosol optical depth measurements as well as microphysical and optical aerosol retrievals over Southeast Asia will be analyzed and discussed with supporting ground-based instrument, satellite, and model data sets, which are freely available via the AERONET Data Synergy tool at the AERONET web site (http://aeronet.gsfc.nasa.gov). This web-based data tool provides access to groundbased (AERONET and MPLNET), satellite (MODIS, SeaWiFS, TOMS, and OMI) and model (GOCART and back trajectory analyses) databases via one web portal. Future development of the AERONET Data Synergy Tool will include the expansion of current data sets as well as the implementation of other Earth Science data sets pertinent to advancing aerosol research.

  16. Non-communicable diseases and human rights: Global synergies, gaps and opportunities.

    PubMed

    Ferguson, Laura; Tarantola, Daniel; Hoffmann, Michael; Gruskin, Sofia

    2016-03-28

    The incorporation of human rights in health policy and programmes is known to strengthen responses to health problems and help address disparities created or exacerbated by illness yet this remains underexplored in relation to non-communicable diseases (NCDs). Aiming to understand existing synergies and how they might be further strengthened, we assessed the extent to which human rights are considered in global NCD policies and strategies and the degree of attention given to NCDs by select United Nations human rights mechanisms. Across global NCD policies and strategies, rhetorical assertions regarding human rights appear more often than actionable statements, thus limiting their implementation and impact. Although no human rights treaty explicitly mentions NCDs, some human rights monitoring mechanisms have been paying increasing attention to NCDs. This provides important avenues for promoting the incorporation of human rights norms and standards into NCD responses as well as for accountability. Linking NCDs and human rights at the global level is critical for encouraging national-level action to promote better outcomes relating to both health and human rights. The post-2015 development agenda constitutes a key entry point for highlighting these synergies and strengthening opportunities for health and rights action at global, national and local levels.

  17. An Automated Miniaturized Method to Perform and Analyze Antimicrobial Drug Synergy Assays

    PubMed Central

    Chase, Peter; Enogieru, Imarhia; Madoux, Franck; Bishop, Eric; Beer, Jacob; Scampavia, Louis

    2016-01-01

    Abstract In the light of emerging antibiotic resistance mechanisms found in bacteria throughout the world, discovery of drugs that potentiate the effect of currently available antibiotics remains an important aspect of pharmaceutical research in the 21st century. Well-established clinical tests exist to determine synergy in vitro, but these are only optimal for low-throughput experimentation while leaving analysis of results and interpretation of high-throughput microscale assays poorly standardized. Here, we describe a miniaturized broth microdilution checkerboard assay and data analysis method in 384-well plate format that conforms to the Clinical Laboratory and Standards Institute (CLSI) methods. This method has been automated and developed to rapidly determine the synergism of current antibiotics with various beta-lactamase inhibitors emerging from our antimicrobial research efforts. This technique increases test throughput and integrity of results, and saves test compound and labor. We facilitated the interpretation of results with an automated analysis tool allowing us to rapidly qualify inter- and intraplate robustness, determine efficacy of multiple antibiotics at the same time, and standardize the results of synergy interpretation. This procedure should enhance high-throughput antimicrobial drug discovery and supersedes former techniques. PMID:26669516

  18. Dynamics of Large Multi-View Social Networks: Synergy, Cannibalization and Cross-View Interplay.

    PubMed

    Shi, Yu; Kim, Myunghwan; Chatterjee, Shaunak; Tiwari, Mitul; Ghosh, Souvik; Rosales, Rómer

    2016-08-01

    Most social networking services support multiple types of relationships between users, such as getting connected, sending messages, and consuming feed updates. These users and relationships can be naturally represented as a dynamic multi-view network, which is a set of weighted graphs with shared common nodes but having their own respective edges. Different network views, representing structural relationship and interaction types, could have very distinctive properties individually and these properties may change due to interplay across views. Therefore, it is of interest to study how multiple views interact and affect network dynamics and, in addition, explore possible applications to social networking. In this paper, we propose approaches to capture and analyze multi-view network dynamics from various aspects. Through our proposed descriptors, we observe the synergy and cannibalization between different user groups and network views from LinkedIn dataset. We then develop models that consider the synergy and cannibalization per new relationship, and show the outperforming predictive capability of our models compared to baseline models. Finally, the proposed models allow us to understand the interplay among different views where they dynamically change over time.

  19. Biologically inspired kinematic synergies enable linear balance control of a humanoid robot.

    PubMed

    Hauser, Helmut; Neumann, Gerhard; Ijspeert, Auke J; Maass, Wolfgang

    2011-05-01

    Despite many efforts, balance control of humanoid robots in the presence of unforeseen external or internal forces has remained an unsolved problem. The difficulty of this problem is a consequence of the high dimensionality of the action space of a humanoid robot, due to its large number of degrees of freedom (joints), and of non-linearities in its kinematic chains. Biped biological organisms face similar difficulties, but have nevertheless solved this problem. Experimental data reveal that many biological organisms reduce the high dimensionality of their action space by generating movements through linear superposition of a rather small number of stereotypical combinations of simultaneous movements of many joints, to which we refer as kinematic synergies in this paper. We show that by constructing two suitable non-linear kinematic synergies for the lower part of the body of a humanoid robot, balance control can in fact be reduced to a linear control problem, at least in the case of relatively slow movements. We demonstrate for a variety of tasks that the humanoid robot HOAP-2 acquires through this approach the capability to balance dynamically against unforeseen disturbances that may arise from external forces or from manipulating unknown loads.

  20. Probing Corticospinal Recruitment Patterns and Functional Synergies with Transcranial Magnetic Stimulation

    PubMed Central

    Mathew, James; Kübler, Angelika; Bauer, Robert; Gharabaghi, Alireza

    2016-01-01

    Background: On the one hand, stimulating the motor cortex at different spots may activate the same muscle and result in a muscle-specific cortical map. Maps of different muscles, which are functionally coupled, may present with a large overlap but may also show a relevant variability. On the other hand, stimulation of the motor cortex at one spot with different stimulation intensities results in a characteristic input–output (IO) curve for one specific muscle but may simultaneously also activate different, functionally coupled muscles. A comparison of the cortical map overlap of synergistic muscles and their IO curves has not yet been carried out. Objective: The aim of this study was to probe functional synergies of forearm muscles with transcranial magnetic stimulation by harnessing the convergence and divergence of the corticospinal output. Methods: We acquired bihemispheric cortical maps and IO curves of the extensor carpi ulnaris, extensor carpi radialis, and extensor digitorum communis muscles by subjecting 11 healthy subjects to both monophasic and biphasic pulse waveforms. Results: The degree of synergy between pairs of forearm muscles was captured by the overlap of the cortical motor maps and the respective IO curves which were influenced by the pulse waveform. Monophasic and biphasic stimulation were particularly suitable for disentangling synergistic muscles in the right and left hemisphere, respectively. Conclusion: Combining IO curves and different pulse waveforms may provide complementary information on neural circuit dynamics and corticospinal recruitment patterns of synergistic muscles and their neuroplastic modulation. PMID:27458344

  1. A systems biology approach to uncovering pharmacological synergy in herbal medicines with applications to cardiovascular disease.

    PubMed

    Wang, Xia; Xu, Xue; Tao, Weiyang; Li, Yan; Wang, Yonghua; Yang, Ling

    2012-01-01

    Background. Clinical trials reveal that multiherb prescriptions of herbal medicine often exhibit pharmacological and therapeutic superiority in comparison to isolated single constituents. However, the synergistic mechanisms underlying this remain elusive. To address this question, a novel systems biology model integrating oral bioavailability and drug-likeness screening, target identification, and network pharmacology method has been constructed and applied to four clinically widely used herbs Radix Astragali Mongolici, Radix Puerariae Lobatae, Radix Ophiopogonis Japonici, and Radix Salviae Miltiorrhiza which exert synergistic effects of combined treatment of cardiovascular disease (CVD). Results. The results show that the structural properties of molecules in four herbs have substantial differences, and each herb can interact with significant target proteins related to CVD. Moreover, the bioactive ingredients from different herbs potentially act on the same molecular target (multiple-drug-one-target) and/or the functionally diverse targets but with potentially clinically relevant associations (multiple-drug-multiple-target-one-disease). From a molecular/systematic level, this explains why the herbs within a concoction could mutually enhance pharmacological synergy on a disease. Conclusions. The present work provides a new strategy not only for the understanding of pharmacological synergy in herbal medicine, but also for the rational discovery of potent drug/herb combinations that are individually subtherapeutic.

  2. Techno-ecological synergy as a path toward sustainability of a North American residential system.

    PubMed

    Urban, Robert A; Bakshi, Bhavik R

    2013-02-19

    For any human-designed system to be sustainable, ecosystem services that support it must be readily available. This work explicitly accounts for this dependence by designing synergies between technological and ecological systems. The resulting techno-ecological network mimics nature at the systems level, can stay within ecological constraints, and can identify novel designs that are economically and environmentally attractive that may not be found by the traditional design focus on technological options. This approach is showcased by designing synergies for a typical American suburban home at local and life cycle scales. The objectives considered are carbon emissions, water withdrawal, and cost savings. Systems included in the design optimization include typical ecosystems in suburban yards: lawn, trees, water reservoirs, and a vegetable garden; technological systems: heating, air conditioning, faucets, solar panels, etc.; and behavioral variables: heating and cooling set points. The ecological and behavioral design variables are found to have a significant effect on the three objectives, in some cases rivaling and exceeding the effect of traditional technological options. These results indicate the importance and benefits of explicitly including ecosystems in the design of sustainable systems, something that is rarely done in existing methods.

  3. Systems-pharmacology dissection of a drug synergy in imatinib-resistant CML

    PubMed Central

    Carlson, Scott M; Gleixner, Karoline V; Grebien, Florian; Gridling, Manuela; Müller, André C; Breitwieser, Florian P; Bilban, Martin; Colinge, Jacques; Valent, Peter; Bennett, Keiryn L; White, Forest M; Superti-Furga, Giulio

    2014-01-01

    Occurrence of the BCR-ABLT315I gatekeeper mutation is among the most pressing challenges in the therapy of chronic myeloid leukemia (CML). Several BCR-ABL inhibitors have multiple targets and pleiotropic effects that could be exploited for their synergistic potential. Testing combinations of such kinase inhibitors identified a strong synergy between danusertib and bosutinib that exclusively affected CML cells harboring BCR-ABLT315I. To elucidate the underlying mechanisms, we applied a systems-level approach comprising phosphoproteomics, transcriptomics and chemical proteomics. Data integration revealed that both compounds targeted Mapk pathways downstream of BCR-ABL, resulting in impaired activity of c-Myc. Using pharmacological validation, we assessed that the relative contributions of danusertib and bosutinib could be mimicked individually by Mapk inhibitors and collectively by downregulation of c-Myc through Brd4 inhibition. Thus, integration of genome- and proteome-wide technologies enabled the elucidation of the mechanism by which a new drug synergy targets the dependency of BCR-ABLT315I CML cells on c-Myc through nonobvious off targets. PMID:23023260

  4. Coaching efficacy and exploratory structural equation modeling: a substantive-methodological synergy.

    PubMed

    Myers, Nicholas D; Chase, Melissa A; Pierce, Scott W; Martin, Eric

    2011-12-01

    The purpose of this article was to provide a substantive-methodological synergy of potential importance to future research in sport and exercise psychology. The substantive focus was to improve the measurement of coaching efficacy by developing a revised version of the coaching efficacy scale (CES) for head coaches (N = 557) of youth sport teams (CES II-YST). The methodological focus was exploratory structural equation modeling (ESEM), a methodology that integrates the advantages of exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) within the general structural equation model (SEM). The synergy was a demonstration of how ESEM (as compared with CFA) may be used, guided by content knowledge, to develop (or confirm) a measurement model for the CES II-YST. A single-group ESEM provided evidence for close model-data fit, while a single-group CFA fit significantly worse than the single-group ESEM and provided evidence for only approximate model-data fit. A multiple-group ESEM provided evidence for partial factorial invariance by coach's gender.

  5. The synergy professional practice model and its patient characteristics tool: a staff empowerment strategy.

    PubMed

    MacPhee, Maura; Wardrop, Andrea; Campbell, Cheryl; Wejr, Patricia

    2011-10-01

    Nurse leaders can positively influence practice environments through a number of empowerment strategies, among them professional practice models. These models encompass the philosophy, structures and processes that support nurses' control over their practice and their voice within healthcare organizations. Nurse-driven professional practice models can serve as a framework for collaborative decision-making among nursing and other staff. This paper describes a provincewide pilot project in which eight nurse-led project teams in four healthcare sectors worked with the synergy professional practice model and its patient characteristics tool. The teams learned how the model and tool can be used to classify patients' acuity levels and make staffing assignments based on a "best fit" between patient needs and staff competencies. The patient characteristics tool scores patients' acuities on eight characteristics such as stability, vulnerability and resource availability. This tool can be used to make real-time patient assessments. Other potential applications for the model and tool are presented, such as care planning, team-building and determining appropriate staffing levels. Our pilot project evidence suggests that the synergy model and its patient characteristics tool may be an empowerment strategy that nursing leaders can use to enhance their practice environments.

  6. The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams

    PubMed Central

    Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing

    2016-01-01

    Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams. PMID:27841307

  7. Epigenetic synergies between biotin and folate in the regulation of pro-inflammatory cytokines and repeats.

    PubMed

    Xue, J; Zempleni, J

    2013-11-01

    The protein biotin ligase, holocarboxylase synthetase (HLCS), is a chromatin protein that interacts physically with the DNA methyltransferase DNMT1, the methylated cytosine-binding protein MeCP2 and the histone H3 K9-methyltransferase EHMT1, all of which participate in folate-dependent gene repression. Here we tested the hypothesis that biotin and folate synergize in the repression of pro-inflammatory cytokines and long-terminal repeats (LTRs), mediated by interactions between HLCS and other chromatin proteins. Biotin and folate supplementation could compensate for each other's deficiency in the repression of LTRs in Jurkat and U937 cells. For example, when biotin-deficient Jurkat cells were supplemented with folate, the expression of LTRs decreased by >70%. Epigenetic synergies were more complex in the regulation of cytokines compared with LTRs. For example, the abundance of TNF-α was 100% greater in folate- and biotin-supplemented U937 cells compared with biotin-deficient and folate-supplemented cells. The NF-κB inhibitor curcumin abrogated the effects of folate and biotin in cytokine regulation, suggesting that transcription factor signalling adds an extra layer of complexity to the regulation of cytokine genes by epigenetic phenomena. We conclude that biotin and folate synergize in the repression of LTRs and that these interactions are probably mediated by HLCS-dependent epigenetic mechanisms. In contrast, synergies between biotin and folate in the regulation of cytokines need to be interpreted in the context of transcription factor signalling.

  8. Synergy-COPD: a systems approach for understanding and managing chronic diseases

    PubMed Central

    2014-01-01

    Chronic diseases (CD) are generating a dramatic societal burden worldwide that is expected to persist over the next decades. The challenges posed by the epidemics of CD have triggered a novel health paradigm with major consequences on the traditional concept of disease and with a profound impact on key aspects of healthcare systems. We hypothesized that the development of a systems approach to understand CD together with the generation of an ecosystem to transfer the acquired knowledge into the novel healthcare scenario may contribute to a cost-effective enhancement of health outcomes. To this end, we designed the Synergy-COPD project wherein the heterogeneity of chronic obstructive pulmonary disease (COPD) was addressed as a use case representative of CD. The current manuscript describes main features of the project design and the strategies put in place for its development, as well the expected outcomes during the project life-span. Moreover, the manuscript serves as introductory and unifying chapter of the different papers associated to the Supplement describing the characteristics, tools and the objectives of Synergy-COPD PMID:25472826

  9. Age-related modifications of muscle synergies and spinal cord activity during locomotion.

    PubMed

    Monaco, Vito; Ghionzoli, Alessio; Micera, Silvestro

    2010-10-01

    Recent findings have shown that neural circuits located in the spinal cord drive muscular activations during locomotion while intermediating between descending signals and peripheral sensory information. This relationship could be modified by the natural aging process. To address this issue, the activity of 12 ipsilateral leg muscles was analyzed in young and elderly people (7 subjects per group) while walking at six different cadences (40-140 steps/min). These signals were used to extract synergies underlying muscle activation and to map the motoneuronal activity of the pools belonging to the lumbosacral enlargement (L(2)-S(2)). The comparison between the two groups showed that neither temporal patterning of motor primitives nor muscles loading synergies seemed to be significantly affected by aging. Conversely, as the cadence increased, spinal maps differ significantly between the groups, showing higher and scattered activity during the whole gait cycle in elders and well-defined bursts in young subjects. The results suggested that motor primitives lead the synchronization of muscle activation mainly depending on the biomechanical demand of the locomotion; hence they are not significantly affected by aging. Nevertheless, at the spinal cord level, biomechanical requirements, peripheral afference, and descending inputs are differently integrated between the two groups, probably reflecting age-related changes of both nervous system and motor control strategies during locomotion.

  10. Confirmation of Maslow's Hypothesis of Synergy: Developing an Acceptance of Selfishness at the Workplace Scale.

    PubMed

    Takaki, Jiro; Taniguchi, Toshiyo; Fujii, Yasuhito

    2016-04-30

    This study aimed to develop a new Acceptance of Selfishness at the Workplace Scale (ASWS) and to confirm Maslow's hypothesis of synergy: if both a sense of contribution and acceptance of selfishness at the workplace are high, workers are psychologically healthy. In a cross-sectional study with employees of three Japanese companies, 656 workers answered a self-administered questionnaire on paper completely (response rate = 66.8%). Each questionnaire was submitted to us in a sealed envelope and analyzed. The ASWS indicated high internal consistency (Cronbach's alpha = 0.86). Significant (p < 0.001) positive moderate correlations between ASWS scores and job control scores support the ASWS's convergent and discriminant validity. Significant (p < 0.001) associations of ASWS scores with psychological distress and work engagement supported the ASWS's criterion validity. In short, ASWS was a psychometrically satisfactory measure. Significant (p < 0.05) interactions between a sense of contribution and acceptance of selfishness at the workplace in linear regression models showed that when those two factors are low, psychological distress becomes high. However, when a sense of contribution and acceptance of selfishness are high, work engagement also becomes high. Thus, Maslow's hypothesis of synergy was confirmed.

  11. The metaphor-gestalt synergy underlying the self-organisation of perception as a semiotic process.

    PubMed

    Rail, David

    2013-04-01

    Recently the basis of concept and language formation has been redefined by the proposal that they both stem from perception and embodiment. The experiential revolution has lead to a far more integrated and dynamic understanding of perception as a semiotic system. The emergence of meaning in the perceptual process stems from the interaction between two key mechanisms. These are first, the generation of schemata through recurrent sensorimotor activity (SM) that underlies category and language formation (L). The second is the interaction between metaphor (M) and gestalt mechanisms (G) that generate invariant mappings beyond the SM domain that both conserve and diversify our understanding and meaning potential. We propose an important advance in our understanding of perception as a semiotic system through exploring the affect of self-organising to criticality where hierarchical behaviour becomes widely integrated through 1/f process and isomorphisms. Our proposal leads to several important implications. First, that SM and L form a functional isomorphism depicted as SM <=> L. We contend that SM <=> L is emergent, corresponding to the phenomenal self. Second, meaning structures the isomorphism SM <=>L through the synergy between M and G (M-G). M-G synergy is based on a combination of structuring and imagination. We contend that the interaction between M-G and SM <=> L functions as a macro-micro comutation that governs perception as semiosis. We discuss how our model relates to current research in fractal time and verb formation.

  12. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    NASA Astrophysics Data System (ADS)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  13. Prehension synergies: principle of superposition and hierarchical organization in circular object prehension.

    PubMed

    Shim, Jae Kun; Park, Jaebum

    2007-07-01

    This study tests the following hypotheses in multi-digit circular object prehension: the principle of superposition (i.e., a complex action can be decomposed into independently controlled sub-actions) and the hierarchical organization (i.e., individual fingers at the lower level are coordinated to generate a desired task-specific outcome of the virtual finger at the higher level). Subjects performed 25 trials while statically holding a circular handle instrumented with five six-component force/moment sensors under seven external torque conditions. We performed a principal component (PC) analysis on forces and moments of the thumb and virtual finger (VF: an imagined finger producing the same mechanical effects of all finger forces and moments combined) to test the applicability of the principle of superposition in a circular object prehension. The synergy indices, measuring synergic actions of the individual finger (IF) moments for the stabilization of the VF moment, were calculated to test the hierarchical organization. Mixed-effect ANOVAs were used to test the dependent variable differences for different external torque conditions and different fingers at the VF and IF levels. The PC analysis showed that the elemental variables were decoupled into two groups: one group related to grasping stability control (normal force control) and the other group associated with rotational equilibrium control (tangential force control), which supports the principle of superposition. The synergy indices were always positive, suggesting error compensations between IF moments for the VF moment stabilization, which confirms the hierarchical organization of multi-digit prehension.

  14. Prehension synergies during fatigue of a single digit: adaptations in control with referent configurations.

    PubMed

    Singh, Tarkeshwar; Zatsiorsky, Vladimir M; Latash, Mark L

    2014-07-01

    The effects of muscle fatigue on the stability of precision grasps are not well known. The purpose of the current study was to investigate the effects of exercise-induced fatigue of a digit on prehension synergies in a static precision grasp. One group of participants performed the fatiguing exercise using the thumb (group-thumb) and the second group performed the exercise using the index finger (group-index). Grasp force and load-resisting force-stabilizing synergies were weaker during fatigue for group-thumb and showed no significant change for group-index. These results indicate that fatiguing the thumb compromises the stability of the precision grasp more than when the index finger is fatigued. Our results support the idea of hierarchical organization of prehension control. We proffer an explanation of our results based on two control constructs: a) Principle of superposition. This principle states that prehension can be viewed as a superposition of two independent processes controlling the slip and the tilt of the object respectively; and b) The referent configuration hypothesis. According to this hypothesis, the neural control of actions is associated with defining a set of referent values for task-related coordinates (given an external force field) defined as the referent configuration.

  15. BMP15 Mutations Associated With Primary Ovarian Insufficiency Reduce Expression, Activity, or Synergy With GDF9.

    PubMed

    Patiño, Liliana C; Walton, Kelly L; Mueller, Thomas D; Johnson, Katharine E; Stocker, William; Richani, Dulama; Agapiou, David; Gilchrist, Robert B; Laissue, Paul; Harrison, Craig A

    2017-03-01

    Bone morphogenetic protein (BMP)15 is an oocyte-specific growth factor, which, together with growth differentiation factor (GDF) 9, regulates folliculogenesis and ovulation rate. Multiple mutations in BMP15 have been identified in women with primary ovarian insufficiency (POI), supporting a pathogenic role; however, the underlying biological mechanism of many of these mutants remains unresolved. To determine how mutations associated with ovarian dysfunction alter the biological activity of human BMP15. The effects of 10 mutations in BMP15 on protein production, activation of granulosa cells, and synergy with GDF9 were assessed. Sequencing of 35 patients with POI identified both an unrecognized BMP15 variant (c.986G>A, R329H) and a variant (c.581T>C, F194S) previously associated with the condition. Assessing expression and activity of these and 8 other BMP15 mutants identified: (1) multiple variants, including L148P, F194S, and Y235C, with reduced mature protein production; (2) three variants (R138H, A180T, and R329H) with ∼fourfold lower activity than wild-type BMP15; and (3) 3 variants (R68W, F194S, and N196K) with a significantly reduced ability to synergize with GDF9. Mutations in BMP15 associated with POI reduce mature protein production, activity, or synergy with GDF9. The latter effect is perhaps most interesting given that interactions with GDF9 most likely underlie the physiology of BMP15 in the human ovary.

  16. Grasping synergies: A motor-control approach to the mirror neuron mechanism

    NASA Astrophysics Data System (ADS)

    D'Ausilio, Alessandro; Bartoli, Eleonora; Maffongelli, Laura

    2015-03-01

    The discovery of mirror neurons revived interest in motor theories of perception, fostering a number of new studies as well as controversies. In particular, the degree of motor specificity with which others' actions are simulated is highly debated. Human corticospinal excitability studies support the conjecture that a mirror mechanism encodes object-directed goals or low-level kinematic features of others' reaching and grasping actions. These interpretations lead to different experimental predictions and implications for the functional role of the simulation of others' actions. We propose that the representational granularity of the mirror mechanism cannot be any different from that of the motor system during action execution. Hence, drawing from motor control models, we propose that the building blocks of the mirror mechanism are the relatively few motor synergies explaining the variety of hand functions. The recognition of these synergies, from action observation, can be potentially very robust to visual noise and thus demonstrate a clear advantage of using motor knowledge for classifying others' action.

  17. Grasping synergies: a motor-control approach to the mirror neuron mechanism.

    PubMed

    D'Ausilio, Alessandro; Bartoli, Eleonora; Maffongelli, Laura

    2015-03-01

    The discovery of mirror neurons revived interest in motor theories of perception, fostering a number of new studies as well as controversies. In particular, the degree of motor specificity with which others' actions are simulated is highly debated. Human corticospinal excitability studies support the conjecture that a mirror mechanism encodes object-directed goals or low-level kinematic features of others' reaching and grasping actions. These interpretations lead to different experimental predictions and implications for the functional role of the simulation of others' actions. We propose that the representational granularity of the mirror mechanism cannot be any different from that of the motor system during action execution. Hence, drawing from motor control models, we propose that the building blocks of the mirror mechanism are the relatively few motor synergies explaining the variety of hand functions. The recognition of these synergies, from action observation, can be potentially very robust to visual noise and thus demonstrate a clear advantage of using motor knowledge for classifying others' action. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Carbapenems and Rifampin Exhibit Synergy against Mycobacterium tuberculosis and Mycobacterium abscessus.

    PubMed

    Kaushik, Amit; Makkar, Nayani; Pandey, Pooja; Parrish, Nicole; Singh, Urvashi; Lamichhane, Gyanu

    2015-10-01

    An effective regimen for treatment of tuberculosis (TB) is comprised of multiple drugs that inhibit a range of essential cellular activities in Mycobacterium tuberculosis. The effectiveness of a regimen is further enhanced if constituent drugs act with synergy. Here, we report that faropenem (a penem) or biapenem, doripenem, or meropenem (carbapenems), which belong to the β-lactam class of antibiotics, and rifampin, one of the drugs that forms the backbone of TB treatment, act with synergy when combined. One of the reasons (carba)penems are seldom used for treatment of TB is the high dosage levels required, often at the therapeutic limits. The synergistic combination of rifampin and these (carba)penems indicates that (carba)penems can be administered at dosages that are therapeutically relevant. The combination of faropenem and rifampin also limits the frequency of resistant mutants, as we were unable to obtain spontaneous mutants in the presence of these two drugs. The combinations of rifampin and (carba)penems were effective not only against drug-sensitive Mycobacterium tuberculosis but also against drug-resistant clinical isolates that are otherwise resistant to rifampin. A combination of doripenem or biapenem and rifampin also exhibited synergistic activity against Mycobacterium abscessus. Although the MICs of these three drugs alone against M. abscessus are too high to be of clinical relevance, their concentrations in combinations are therapeutically relevant; therefore, they warrant further evaluation for clinical utility to treat Mycobacterium abscessus infection, especially in cystic fibrosis patients.

  19. Synergy between bio-based industry and the feed industry through biorefinery.

    PubMed

    Teekens, Amanda M; Bruins, Marieke E; van Kasteren, Johannes Mn; Hendriks, Wouter H; Sanders, Johan Pm

    2016-06-01

    Processing biomass into multi-functional components can contribute to the increasing demand for raw materials for feed and bio-based non-food products. This contribution aims to demonstrate synergy between the bio-based industry and the feed industry through biorefinery of currently used feed ingredients. Illustrating the biorefinery concept, rapeseed was selected as a low priced feed ingredient based on market prices versus crude protein, crude fat and apparent ileal digestible lysine content. In addition it is already used as an alternative protein source in diets and can be cultivated in European climate zones. Furthermore, inclusion level of rapeseed meal in pig diet is limited because of its nutritionally active factors. A conceptual process was developed to improve rapeseeds nutritional value and producing other bio-based building blocks simultaneously. Based on the correlation between market prices of feed ingredients and its protein and fat content, the value of refined products was estimated. Finally, a sensitivity analysis, under two profit scenario, shows that the process is economically feasible. This study demonstrates that using biorefinery processes on feed ingredients can improve feed quality. In conjunction, it produces building blocks for a bio-based industry and creates synergy between bio-based and feed industry for more efficient use of biomass. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. The role of muscle synergies in myoelectric control: trends and challenges for simultaneous multifunction control

    NASA Astrophysics Data System (ADS)

    Ison, Mark; Artemiadis, Panagiotis

    2014-10-01

    Myoelectric control is filled with potential to significantly change human-robot interaction due to the ability to non-invasively measure human motion intent. However, current control schemes have struggled to achieve the robust performance that is necessary for use in commercial applications. As demands in myoelectric control trend toward simultaneous multifunctional control, multi-muscle coordinations, or synergies, play larger roles in the success of the control scheme. Detecting and refining patterns in muscle activations robust to the high variance and transient changes associated with surface electromyography is essential for efficient, user-friendly control. This article reviews the role of muscle synergies in myoelectric control schemes by dissecting each component of the scheme with respect to associated challenges for achieving robust simultaneous control of myoelectric interfaces. Electromyography recording details, signal feature extraction, pattern recognition and motor learning based control schemes are considered, and future directions are proposed as steps toward fulfilling the potential of myoelectric control in clinically and commercially viable applications.

  1. SU-E-T-268: Evaluation of Photoneutron Contamination in Elekta Synergy-S High-Energy Linear Accelerator and Indigenous Novel Solution: The AIIMS Experience.

    PubMed

    Subramani, V; Singh, M; Sharma, S; Bisht, R; Gopishankar, N; Rath, G

    2012-06-01

    The photoneutron contamination problem was encountered due to laminated barrier wall and short maze. The purpose of this study was to report our experience in evaluating the photoneutron contamination during radiation safety survey and solution. The photoneutron contamination measurement was carried out in Elekta Synergy-S high-energylinear accelerator for 15MV beam. A NE Neutron survey meter and for photon, Victoreen and RADOS survey meters were used. The laminated barrier wall composed of 37cm steel with 30cm concrete both side and short maze length of 5 meter. During safety survey, higher photoneutron levels for 15MV X-rays at treatment room door found. The effect of photoneutron contamination as function of neutron shielding materials of wood, polyethylene and boron and thickness, distance, locations and directions to the control console at distance upto 7 meter were investigated for 4 gantry angles at locations of treatment room entry doors namely door1(A), door2(B), console(C), conduit (D) and above-ceiling(G) for 15MV. The initial safety survey showed that neutron level of 47mR/h and photon leakage of 3.2mR/hr at the treatment entry room door1. The neutron values could bring down to the level of acceptance at the treatment entry door2, but the photon values are not acceptable. Therefore, 30cm concrete wall block was made at the location of door2 and another bend was taken. Finally, treatment entrance room door was made using 3cm polyethylene neutron shielding materials in order to achieve the both neutron contamination and photon leakage within the acceptable levels. The neutron sliding-door is operated manually in finger-push by technologist for day-to-day usage. This simple solution is cost effective and increases the patient throughput. This study underlines that one needs to take appropriate safety measures prior to facility design whenever the space constraints situations arises for high energy linear accelerator. © 2012 American Association of

  2. SU-E-T-600: Utilizing Collimator Rotation to Increase Maximum Treatable Target Dimensions Using an Elekta Synergy-S with Beam Modulator Multileaf Collimator.

    PubMed

    Rhodes, C; Campbell, S; Shields, W; Fabien, J; Colussi, V; Wessels, B

    2012-06-01

    To determine if a rotated collimator on an Elekta Synergy-S with Beam Modulator MLC (BMx) allows for dosimetrically acceptable treatment of targets exceeding the length of the maximum field size (21×16cm). The BMx is a high-resolution MLC with 4mm leaves but is of limited clinical use on patient target volumes exceeding 20cm in length. Rotation of the collimator utilizes the Pythagorean geometry to extend treatment length. This potentially increases the length of the PTV that be conformally treated. Rods of 21-23cm length were contoured in water with the Pinnacle treatment planning system. The width of the rods varies from 1 -5cm. Four isocentric treatment plans were generated for each target: four-field conformal, 7-field IMRT, single-arc VMAT, and a modified double-arc VMAT (MDAV), with the collimator angled at 55°. The MDAV method consists of two opposing 180° arcs with the collimator turned 55° in opposite directions. A successful plan is defined as 99% of the target volume being covered by a minimum of 95% of the prescribed dose. Conformality is determined as a ratio of the volume exposed to prescribed isodose and target volume. Targets of length 21cm, 22cm, and 23 cm are able to be treated with widths of 4cm, 5 cm, and 4cm respectively. The MDAV method achieves these results on all trials. The VMAT method achieves these results for the 21cm and 23cm long target. The IMRT Method achieves these results for the 21cm long target. With the exception of the 1cm wide targets, the average conformality is approximately 2.5. Changing the collimator angle of the BMx Elekta-S machine allows for a 3cm length increase of targets up to 5cm. Further work will assess clinical suitability of these findings for treatment of head and neck tumors and spinal masses. © 2012 American Association of Physicists in Medicine.

  3. Synergy effects of Cu and Sn on pitting corrosion resistance of ultra-purified medium chromium ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Zhang, XiangJun; Liu, ZhenYu

    2017-03-01

    The influence of combination of Cu and Sn on pitting resistance of ultra-purified medium chromium ferritic stainless steel in 3.5 wt.% NaCl at 25°C was investigated by using electrochemical method. The results show that there is synergy effect between Cu and Sn, and the strong interaction between Cu and Sn in ferritic stainless steels clearly affects their pitting corrosion behaviour in 3.5% NaCl. A mechanism of the synergy of Cu and Sn was discussed.

  4. Merging and Fractionation of Muscle Synergy Indicate the Recovery Process in Patients with Hemiplegia: The First Study of Patients after Subacute Stroke.

    PubMed

    Hashiguchi, Yu; Ohata, Koji; Kitatani, Ryosuke; Yamakami, Natsuki; Sakuma, Kaoru; Osako, Sayuri; Aga, Yumi; Watanabe, Aki; Yamada, Shigehito

    2016-01-01

    Loss of motor coordination is one of the main problems for patients after stroke. Muscle synergy is widely accepted as an indicator of motor coordination. Recently, the characteristics of muscle synergy were quantitatively evaluated using nonnegative matrix factorization (NNMF) with surface electromyography. Previous studies have identified that the number and structure of synergies were associated with motor function in patients after stroke. However, most of these studies had a cross-sectional design, and the changes in muscle synergy during recovery process are not clear. In present study, two consecutive measurements were conducted for subacute patients after stroke and the change of number and structure of muscle synergies during gait were determined using NNMF. Results showed that functional change did not rely on number of synergies in patients after subacute stroke. However, the extent of merging of the synergies was negatively associated with an increase in muscle strength and the range of angle at ankle joint. Our results suggest that the neural changes represented by NNMF were related to the longitudinal change of function and gait pattern and that the merging of synergy is an important marker in patients after subacute stroke.

  5. Merging and Fractionation of Muscle Synergy Indicate the Recovery Process in Patients with Hemiplegia: The First Study of Patients after Subacute Stroke

    PubMed Central

    Ohata, Koji; Kitatani, Ryosuke; Yamakami, Natsuki; Sakuma, Kaoru; Osako, Sayuri; Aga, Yumi; Watanabe, Aki; Yamada, Shigehito

    2016-01-01

    Loss of motor coordination is one of the main problems for patients after stroke. Muscle synergy is widely accepted as an indicator of motor coordination. Recently, the characteristics of muscle synergy were quantitatively evaluated using nonnegative matrix factorization (NNMF) with surface electromyography. Previous studies have identified that the number and structure of synergies were associated with motor function in patients after stroke. However, most of these studies had a cross-sectional design, and the changes in muscle synergy during recovery process are not clear. In present study, two consecutive measurements were conducted for subacute patients after stroke and the change of number and structure of muscle synergies during gait were determined using NNMF. Results showed that functional change did not rely on number of synergies in patients after subacute stroke. However, the extent of merging of the synergies was negatively associated with an increase in muscle strength and the range of angle at ankle joint. Our results suggest that the neural changes represented by NNMF were related to the longitudinal change of function and gait pattern and that the merging of synergy is an important marker in patients after subacute stroke. PMID:28090358

  6. [The synergy between quality approach and health promotion: synergy between quality approach and health promotion: example of the Ile-de-France/Outre-Mer Legal Protection of Youth].

    PubMed

    Lavoyer, Florian; Marchand-Butin, Françoise; Pâme, Patricia; Quintino, Nadège; Drouet, Philippe; Dewallers, Vanessa

    2014-01-01

    Legal Protection of Youth is responsible for the education of juvenile offenders, and for the inspection and assessment of the bodies that supervise them. The objective of this project is to promote and strengthen the synergy between the quality approach and health promotion in the missions of the Ile-de-France/ Outre-Mer Inter-regional Directorate of Legal Protection of Youth. A participatory and cross-sectional methodology was used to study two strategies designed to integrate existing prevention and health promotion actions into a quality approach and to include prevention and health promotion in the existing quality approach. Three reference frameworks were constructed: a guide for the analysis of prevention and health promotion actions implemented by associations financed by the Ile-de-France Regional Health Agency; a guide for internal evaluation for health promotion in educational bodies; a technical data sheet proposing audit references for health promotion. The results of the project contributed to achieving the initial objective. The frameworks and tools should now be compared with prevention and health promotion actions, and activities and services provided by educational bodies, in order to measure their usefulness to improve quality.

  7. Hybrid radiator cooling system

    DOEpatents

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  8. Military Hybrid Vehicle Survey

    DTIC Science & Technology

    2011-08-03

    Some examples include:  Allison Hybrid EP System™ - Transit buses two-mode parallel hybrid with continuously variable transmission (CVT)  Azure... Transit Buses , Proceeding of the Vehicular Technology Conference, Vol. 5, pp 3310-3315, October 2003. [3] E. Rosenthal, U.S. Military Orders Less...applications such as delivery trucks and transit busses. One of the biggest justifications for hybrids is their fuel efficiency. However, the U.S

  9. Ex ante Implementatietoetsing van Beleid, Een Methodiek Gebaseerd op Synergie Tussen Risicomanagement en Verandermanagement (Ex Ante Test for Policy Implementation - A Method Based Upon Synergy Between Risk Management an Change Management)

    DTIC Science & Technology

    2006-12-01

    policy implementation - A method based upon synergy between risk management an change management (Ex ante implementatietoetsing van beleid - Een...implementation is presented 16. DESCRIPTORS IDENTIFIERS Policy making, Defence, Change management , Risk management 17a.SECURITY CLASSIFICATION 17b.SECURITY

  10. The role of synergies within generative models of action execution and recognition: A computational perspective. Comment on "Grasping synergies: A motor-control approach to the mirror neuron mechanism" by A. D'Ausilio et al.

    NASA Astrophysics Data System (ADS)

    Pezzulo, Giovanni; Donnarumma, Francesco; Iodice, Pierpaolo; Prevete, Roberto; Dindo, Haris

    2015-03-01

    Controlling the body - given its huge number of degrees of freedom - poses severe computational challenges. Mounting evidence suggests that the brain alleviates this problem by exploiting "synergies", or patterns of muscle activities (and/or movement dynamics and kinematics) that can be combined to control action, rather than controlling individual muscles of joints [1-10].

  11. Managing hybrid marketing systems.

    PubMed

    Moriarty, R T; Moran, U

    1990-01-01

    As competition increases and costs become critical, companies that once went to market only one way are adding new channels and using new methods - creating hybrid marketing systems. These hybrid marketing systems hold the promise of greater coverage and reduced costs. But they are also hard to manage; they inevitably raise questions of conflict and control: conflict because marketing units compete for customers; control because new indirect channels are less subject to management authority. Hard as they are to manage, however, hybrid marketing systems promise to become the dominant design, replacing the "purebred" channel strategy in all kinds of businesses. The trick to managing the hybrid is to analyze tasks and channels within and across a marketing system. A map - the hybrid grid - can help managers make sense of their hybrid system. What the chart reveals is that channels are not the basic building blocks of a marketing system; marketing tasks are. The hybrid grid forces managers to consider various combinations of channels and tasks that will optimize both cost and coverage. Managing conflict is also an important element of a successful hybrid system. Managers should first acknowledge the inevitability of conflict. Then they should move to bound it by creating guidelines that spell out which customers to serve through which methods. Finally, a marketing and sales productivity (MSP) system, consisting of a central marketing database, can act as the centr