Science.gov

Sample records for 60co radiotherapy unit

  1. Fast Monte Carlo simulation for total body irradiation using a (60)Co teletherapy unit.

    PubMed

    Liu, Xiaodong; Lack, Danielle; Rakowski, Joseph T; Knill, Cory; Snyder, Michael

    2013-05-06

    Our institution delivers TBI using a modified Theratron 780 60Co unit. Due to limitations of our treatment planning system in calculating dose for this treatment, we have developed a fast Monte Carlo code to calculate dose distributions within the patient. The algorithm is written in C and uses voxel density information from CT images to calculate dose in heterogeneous media. To test the algorithm, film-based dose measurements were made separately in a simple water phantom with a high-density insert and a RANDO phantom and then compared to doses calculated by the Monte Carlo algorithm. In addition, a separate simulation in GEANT4 was run for the RANDO phantom and compared to both film and the in-house simulation. All results were analyzed using RIT113 film analysis software. Simulations in the water phantom accurately predict the depth of maximum dose in the phantom at 0.5 cm. The measured PDD along the central axis of the beam closely matches the PDD generated from the Monte Carlo code, deviating on average by only 3% along the depth of the water phantom. Dose measured at planes inside the high-density insert had a mean difference of 4.9% on cross-profile measurement. In the RANDO phantom, gamma pass rates vary between 91% and 99% at 3 mm, 3%, and were >99% at 5 mm, 5% for the four film planes measured. Profiles taken across the film and both simulations resulted in mean relative differences of < 2% for all profiles in each slice measured. The Monte Carlo algorithm presented here is potentially a viable method for calculating dose distributions delivered in TBI treatments at our center. While not yet refined enough to be the primary method of treatment planning, the algorithm at its current resolution determines the dose distribution for one patient within a few hours, and provides clinically useful information in planning TBI. With appropriate optimization, the Monte Carlo method presented here could potentially be implemented as a first-line treatment planning

  2. Radiotherapy of bronchogenic carcinoma: analysis of a treatment schedule designed for use with hyperbaric oxygen. [/sup 60/Co

    SciTech Connect

    Sause, W.T.; Sweeney, R.A.; Plenk, H.P.; Thomson, J.W.

    1981-07-01

    All cases of bronchogenic carcinoma treated with curative intent over an eight-year period were reviewed. Most were treated with 12 x 400 rad in 32 days using /sup 60/Co, a schedule designed to optimize the radiation-sensitizing properties of hyperbaric oxygen. While O/sub 2/ gave no obvious benefit, overall four-year survival was 10.6% and that of patients with good prognostic indicators was 18%. No radiation myelitis was observed. This protocol delivers an adequate tumor dose and appears to be tolerated well by most patients.

  3. Optically stimulated luminescence in vivo dosimetry for radiotherapy: physical characterization and clinical measurements in 60Co beams

    NASA Astrophysics Data System (ADS)

    Mrčela, I.; Bokulić, T.; Izewska, J.; Budanec, M.; Fröbe, A.; Kusić, Z.

    2011-09-01

    A commercial optically stimulated luminescence (OSL) dosimetry system was investigated for in vivo dosimetry in radiation therapy. Dosimetric characteristics of InLight dot dosimeters and a microStar reader (Landauer Inc.) were tested in 60Co beams. The reading uncertainty of a single dosimeter was 0.6%. The reproducibility of a set of dosimeters after a single irradiation was 1.6%, while in repeated irradiations of the same dosimeters it was found to be 3.5%. When OSL dosimeters were optically bleached between exposures, the reproducibility of repeated measurements improved to 1.0%. Dosimeters were calibrated for the entrance dose measurements and a full set of correction factors was determined. A pilot patient study that followed phantom validation testing included more than 100 measured fields with a mean relative difference of the measured entrance dose from the expected dose of 0.8% and the standard deviation of 2.5%. In conclusion, these results demonstrate that OSL dot dosimeters represent a valid alternative to already established in vivo dosimetry systems.

  4. Optically stimulated luminescence in vivo dosimetry for radiotherapy: physical characterization and clinical measurements in (60)Co beams.

    PubMed

    Mrčela, I; Bokulić, T; Izewska, J; Budanec, M; Fröbe, A; Kusić, Z

    2011-09-21

    A commercial optically stimulated luminescence (OSL) dosimetry system was investigated for in vivo dosimetry in radiation therapy. Dosimetric characteristics of InLight dot dosimeters and a microStar reader (Landauer Inc.) were tested in (60)Co beams. The reading uncertainty of a single dosimeter was 0.6%. The reproducibility of a set of dosimeters after a single irradiation was 1.6%, while in repeated irradiations of the same dosimeters it was found to be 3.5%. When OSL dosimeters were optically bleached between exposures, the reproducibility of repeated measurements improved to 1.0%. Dosimeters were calibrated for the entrance dose measurements and a full set of correction factors was determined. A pilot patient study that followed phantom validation testing included more than 100 measured fields with a mean relative difference of the measured entrance dose from the expected dose of 0.8% and the standard deviation of 2.5%. In conclusion, these results demonstrate that OSL dot dosimeters represent a valid alternative to already established in vivo dosimetry systems. PMID:21873767

  5. Experimental investigation of the effect of air cavity size in cylindrical ionization chambers on the measurements in 60Co radiotherapy beams

    NASA Astrophysics Data System (ADS)

    Swanpalmer, John; Johansson, Karl-Axel

    2011-11-01

    In the late 1970s, Johansson et al (1978 Int. Symp. National and International Standardization of Radiation Dosimetry (Atlanta 1977) vol 2 (Vienna: IAEA) pp 243-70) reported experimentally determined displacement correction factors (pdis) for cylindrical ionization chamber dosimetry in 60Co and high-energy photon beams. These pdis factors have been implemented and are currently in use in a number of dosimetry protocols. However, the accuracy of these factors has recently been questioned by Wang and Rogers (2009a Phys. Med. Biol. 54 1609-20), who performed Monte Carlo simulations of the experiments performed by Johansson et al. They reported that the inaccuracy of the pdis factors originated from the normalization procedure used by Johansson et al. In their experiments, Johansson et al normalized the measured depth-ionization curves at the depth of maximum ionization for each of the different ionization chambers. In this study, we experimentally investigated the effect of air cavity size of cylindrical ionization chambers in a PMMA phantom and 60Co γ-beam. Two different pairs of air-filled cylindrical ionization chambers were used. The chambers in each pair had identical construction and materials but different air cavity volume (diameter). A 20 MeV electron beam was utilized to determine the ratio of the mass of air in the cavity of the two chambers in each pair. This ratio of the mass of air in each pair was then used to compare the ratios of the ionizations obtained at different depths in the PMMA phantom and 60Co γ-beam using the two pairs of chambers. The diameter of the air cavity of cylindrical ionization chambers influences both the depth at which the maximum ionization is observed and the ionization per unit mass of air at this depth. The correction determined at depths of 50 mm and 100 mm is smaller than the correction currently used in many dosimetry protocols. The results presented here agree with the findings of Wang and Rogers' Monte Carlo

  6. Consistency in reference radiotherapy dosimetry: resolution of an apparent conundrum when 60Co is the reference quality for charged-particle and photon beams

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro; Wulff, Jörg; Burns, David T.; Palmans, Hugo

    2013-10-01

    Substantial changes in ion chamber perturbation correction factors in 60Co γ-rays, suggested by recent Monte Carlo (MC) calculations, would cause a decrease of about 1.5% in the reference dosimetry of all types of charged particles (electrons, protons and heavier ions) based on calculated kQ values. It has gone largely unnoticed that the ratio of calibration coefficients ND, w, Co60 and NK, air, Co60 yields an experimental value of Fch, Co60 = (sw-air pch)Co60 through ND, air, Co60. Coefficients provided by the IAEA and traceable to the BIPM for 91 NE-2571 chambers result in an average Fch, Co60 which is compared with published (and new) MC simulations and with the value in IAEA TRS-398. It is shown that TRS-398 agrees within 0.12% with the experimental Fch, Co60. The 1.5% difference resulting from MC calculations (1.1% for the new simulations) cannot be justified using current fundamental data and BIPM standards if consistency in the entire dosimetry chain is sought. For photons, MC kQ factors are compared with TRS-398. Using the same uncertainty for Wair, the two sets of data overlap considerably. Experimental kQ values from standards laboratories lie between the two sets of calculated values, showing no preference for one set over the other. Observed chamber-to-chamber differences, that include the effect of waterproof sleeves (also seen for 60Co), justify the recommendation in TRS-398 for kQ values specifically measured for the user chamber. Current developments on I-values for the stopping powers of water and graphite are presented. A weighted average Iwater = 78 ± 2 eV is obtained from published experimental and DRF-based values; this would decrease sw-air for all types of radiotherapy beams between 0.3% and 0.6%, and would consequently decrease the MC derived Fch, Co60. The implications of a recent proposal for Igraphite = 81 eV are analysed, resulting in a potential decrease of 0.7% in NK, air, Co60 which would raise the experimental Fch, Co60

  7. Consistency in reference radiotherapy dosimetry: resolution of an apparent conundrum when (60)Co is the reference quality for charged-particle and photon beams.

    PubMed

    Andreo, Pedro; Wulff, Jörg; Burns, David T; Palmans, Hugo

    2013-10-01

    Substantial changes in ion chamber perturbation correction factors in (60)Co γ-rays, suggested by recent Monte Carlo (MC) calculations, would cause a decrease of about 1.5% in the reference dosimetry of all types of charged particles (electrons, protons and heavier ions) based on calculated kQ values. It has gone largely unnoticed that the ratio of calibration coefficients ND, w, Co60 and NK, air, Co60 yields an experimental value of Fch, Co60 = (sw-air pch)Co60 through ND, air, Co60. Coefficients provided by the IAEA and traceable to the BIPM for 91 NE-2571 chambers result in an average Fch, Co60 which is compared with published (and new) MC simulations and with the value in IAEA TRS-398. It is shown that TRS-398 agrees within 0.12% with the experimental Fch, Co60. The 1.5% difference resulting from MC calculations (1.1% for the new simulations) cannot be justified using current fundamental data and BIPM standards if consistency in the entire dosimetry chain is sought. For photons, MC kQ factors are compared with TRS-398. Using the same uncertainty for Wair, the two sets of data overlap considerably. Experimental kQ values from standards laboratories lie between the two sets of calculated values, showing no preference for one set over the other. Observed chamber-to-chamber differences, that include the effect of waterproof sleeves (also seen for (60)Co), justify the recommendation in TRS-398 for kQ values specifically measured for the user chamber. Current developments on I-values for the stopping powers of water and graphite are presented. A weighted average Iwater = 78 ± 2 eV is obtained from published experimental and DRF-based values; this would decrease sw-air for all types of radiotherapy beams between 0.3% and 0.6%, and would consequently decrease the MC derived Fch, Co60. The implications of a recent proposal for Igraphite = 81 eV are analysed, resulting in a potential decrease of 0.7% in NK, air, Co60 which would raise the experimental Fch, Co60

  8. Chemotherapy-radiotherapy association in Hodgkin's disease, clinical stages IA, II/sub 2/A: results of a prospective clinical trial with 166 patients. [/sup 60/Co

    SciTech Connect

    Andrieu, J.M.; Montagnon, B.; Asselain, B.; Bayle-Weisgerber, C.; Chastang, C.; Teillet, F.; Bernard, J.

    1980-11-15

    One hundred sixty-six patients with clinical stages IA, II/sub 2/A Hodgkin's disease were treated between April 1972 and December 1976 with three courses of multiagent chemotherapy (methylchlorethamine, vincristine, procarbazine, prednisone) followed by mantle irradiation - excluding mediastinum for those with initial upper cervical presentation and absence of mediastinal involvement - or inverted Y radiotherapy. With a follow-up of 12 to 84 months, the overall survival is 93.5% and the overall relapse-free survival 89.9%. With chemotherapy-radiotherapy sequence, staging laparotomy is not indicated. Results and side effects of this treatment strategy are compared with those of other treatment policies.

  9. V79 survival following simultaneous or sequential irradiation by 15-MeV neutrons and /sup 60/Co photons

    SciTech Connect

    Higgins, P.D.; DeLuca, P.M. Jr.; Pearson, D.W.; Gould, M.N.

    1983-07-01

    A unique tandem source irradiation facility, composed of an intense d-T neutron source and a /sup 60/Co teletherapy unit, was used to investigate biological responses for different neutron/photon configurations. V79 Chinese hamster cells, attached as monolayers in log-phase growth, were irradiated at 37 degrees C by either 14.8-MeV neutrons, /sup 60/Co, or a mixture of 40% neutrons and 60% photons in simultaneous or sequential application. Measurements of cell survival indicate an increased effectiveness in cell killing for simultaneously administered neutrons and photons compared to that measured or predicted for sequentially applied beam modalities. An understanding of the magnitude of these interactive effects is important both for calculating accurate effective doses for neutron radiotherapy of deep-seated tumors, for which the photon component is appreciable, and for determination of environmental hazards to people occupationally exposed to mixtures of photons and neutrons.

  10. V79 survival following simultaneous or sequential irradiation by 15-MeV neutrons and /sup 60/Co photons

    SciTech Connect

    Higgins, P.D.; DeLuca, P.M. Jr.; Pearson, D.W.; Gould, M.N.

    1983-07-01

    A unique tandem source irradiation facility, composed of an intense d-T neutron source and a /sup 60/Co teletherapy unit, was used to investigate biological responses for different neutron/photon configurations. V79 Chinese hamster cells, attached as monolayers in log-phase growth, were irradiated at 37/sup 0/C by either 14.8-MeV neutrons, /sup 60/Co, or a mixture of 40% neutrons and 60% photons in simultaneous or sequential application. Measurements of cell survival indicate an increased effectiveness in cell killing for simultaneously administered neutrons and photons compared to that measured or predicted for sequentially applied beam modalities. An understanding of the magnitude of these interactive effects is important both for calculating accurate effective doses for neutron radiotherapy of deep-seated tumors, for which the photon component is appreciable, and for determination of environmental hazards to people occupationally exposed to mixtures of photons and neutrons.

  11. Monitor Unit Checking in Heterogeneous Stereotactic Body Radiotherapy Treatment Planning

    SciTech Connect

    Higgins, Patrick D.; Adolfson, Troy; Cho, L. Chinsoo; Saxena, Rishik

    2011-10-01

    Treatment of lung cancer using very-high-dose fractionation in small fields requires well-tested dose modeling, a method for density-averaging compound targets constructed from different parts of the breathing cycle, and monitor unit verification of the heterogeneity-corrected treatment plans. The quality and safety of each procedure are dependent on these factors. We have evaluated the dosimetry of our first 26 stereotactic body radiotherapy (SBRT) patients, including 260 treatment fields, planned with the Pinnacle treatment planning system. All targets were combined from full expiration and inspiration computed tomography scans and planned on the normal respiration scan with 6-MV photons. Combined GTVs (cGTVs) have been density-averaged in different ways for comparison of the effect on total monitor units. In addition, we have compared planned monitor units against hand calculations using 2 classic 1D correction methods: (1) effective attenuation and (2) ratio of Tissue-Maximum Ratios (TMRs) to determine the range of efficacy of simple verification methods over difficult-to-perform measurements. Different methods of density averaging for combined targets have been found to have minimal impact on total dose as evidenced by the range of total monitor units generated for each method. Nondensity-corrected treatment plans for the same fields were found to require about 8% more monitor units on average. Hand calculations, using the effective attenuation method were found to agree with Pinnacle calculations for nonproblematic fields to within {+-}10% for >95% of the fields tested. The ratio of TMRs method was found to be unacceptable. Reasonable choices for density-averaging of cGTVs using full inspiration/expiration scans should not strongly affect the planning dose. Verification of planned monitor units, as a check for problematic fields, can be done for 6-MV fields with simple 1D effective attenuation-corrected hand calculations.

  12. Prevalence of Neuropathic Pain in Radiotherapy Oncology Units

    SciTech Connect

    Manas, Ana; Monroy, Jose Luis; Ramos, Avelino Alia; Cano, Carmen; Lopez-Gomez, Vanessa; Masramon, Xavier; Perez, Maria

    2011-10-01

    Purpose: Neuropathic pain (NP) in cancer patients severely impacts quality of life. Radiotherapy (RT) may cause NP, and at the same time, cancer patients visit RT units for pain relief. NP prevalence at these sites and current analgesic treatment should be assessed to improve management. Methods and Materials: This epidemiological, prospective, multicenter study was undertaken to assess NP prevalence, according to Douleur Neuropathique 4 questions questtionaire (DN4) test results, and analgesic management in cancer pain patients visiting RT oncologic units. Secondary analyses assessed NP etiology and pain intensity (using the Brief Pain Inventory-Short Form) and impact (using the Hospital Anxiety and Depression Scale (HADS), Medical Outcomes Study [MOS] for Sleep, and the Health Survey Short Form-12). Results: A total of 1,098 patients with any kind of pain were registered. NP prevalence was 31.1% (95% confidence interval, 28.4%--33.9%); 291 NP patients (mean age, 62.2 {+-}12.5 years and 57.7% men) were eligible for study; 49% of patients were overweight. The most frequent tumors were those of breast and lung, and stage IIIB was the most common cancer stage. The tumors caused 75% of NP cases. Anxiety, sleepiness, and depression were common. At 8 weeks, pain intensity and interference with daily activities decreased significantly for 50.8% of responders. Depression and anxiety (p < 0.0001) scores on the Physical Component Summary and Mental Component Summary measures (p < 0.0001) and all MOS-Sleep subscales, except for snoring, improved significantly. The percentage of satisfied patients increased from 13.8% to 87.4% (p < 0.0001) with the current analgesic treatment, which meant a 1.2- and 6-fold increase (p < 0.0001) in narcotic analgesics and anticonvulsants, respectively, compared to previous treatment. Conclusions: NP is highly prevalent at RT oncology units, with sleepiness, anxiety, and depression as frequent comorbidities. There is a need to improve

  13. Experimental studies of combination of PDT and tumor chemotherapy or 60Co irradiation

    NASA Astrophysics Data System (ADS)

    Didziapetriene, Janina; Prasmickiene, Grazina; Sukeliene, Dalija; Rotomskis, Ricardas; Streckyte, Giedre; Atkocius, Vydmantas; Staciokiene, Laima; Smilgevicius, Valerijus

    1995-01-01

    We present experimental results obtained by combining photodynamic therapy (PDT) with tumor chemotherapy or radiotherapy. Dimethoxyhematoporphyrin (DMHp) and photosan (PS) were used as photosensitizers, pharanoxi and vincristine as antitumor drugs. The therapeutic effect of the combination of PDT and antitumor drugs (pharanoxi, vincristine) slightly increases as compared to the treatment of PDT or antitumor drug alone. The additive therapeutic effect is achieved under the combination of PDT and 60Co irradiation. It seems that the sensitizers DMHp and PS regulate lipid peroxidation in blood serum of experimental animals, which becomes more active under the influence of alkylating antitumor drugs. Therefore, they could protect an organism from negative influence of tumor chemotherapy.

  14. The cancer burden in the United Kingdom in 2007 due to radiotherapy.

    PubMed

    Maddams, Jacob; Parkin, D Maxwell; Darby, Sarah C

    2011-12-15

    The number of long-term cancer survivors in the general population of the UK is substantial and increasing rapidly. Many cancer survivors have been treated with radiotherapy but the likely number of radiotherapy-related second cancers has not previously been estimated. We used estimates of the numbers of cancer survivors in the UK at the beginning of 2007, in conjunction with estimates of the relative risk of a second primary cancer associated with previous radiotherapy from the United States Surveillance Epidemiology and End Results (SEER) programme, to estimate the numbers of incident cancers in the UK in 2007 that were associated with radiotherapy for a previous cancer and that may have been caused by it. We estimated that 1,346 cases of cancer, or about 0.45% of the 298,000 new cancers registered in the UK in 2007, were associated with radiotherapy for a previous cancer. The largest numbers of radiotherapy-related second cancers were lung cancer (23.7% of the total), oesophageal cancer (13.3%), and female breast cancer (10.6%); 54% of radiotherapy-related second cancers were in individuals aged 75 or over. The highest percentages of second cancers related to radiotherapy were among survivors of Hodgkin's disease and cancers of the oral cavity and pharynx and cervix uteri; over 15% of second cancers among these survivors were associated with radiotherapy for the first cancer. These calculations, which involve a number of assumptions and approximations, provide a reasonable, if conservative, estimate of the fraction of incident cancers in the UK that are attributable to past radiation therapy.

  15. Distribution of 60Co in steel samples from Hiroshima.

    PubMed

    Hult, M; Marissens, G; Sahin, N; Hoshi, M; Hasai, H; Shizuma, K; Tanaka, K; Endo, S

    2012-09-01

    This paper describes ultra low-level gamma-ray spectrometry measurements of the (60)Co activity distribution inside one 52 mm and one 41 mm thick steel sample. The samples had been exposed to the Hiroshima atomic bomb and were from the Aioi bridge and the Yokogawa bridge. Both samples were measured in a recent study aiming to back up model calculation of Hiroshima dosimetry. The (60)Co activity distributions found in this study support the assumptions made in the previous study. PMID:22406217

  16. Radiolytic degradation scheme for 60Co-irradiated corticosteroids

    SciTech Connect

    Kane, M.P.; Tsuji, K.

    1983-01-01

    The cobalt 60 radiolytic degradation products have been identified in the following corticosteroids: cortisone, cortisone acetate, hydrocortisone, hydrocortisone acetate, hydrocortisone sodium succinate, isoflupredone acetate, methylprednisolone, methylprednisolone acetate, prednisolone, prednisolone acetate, and prednisone. Two major types of degradation processes have been identified: loss of the corticoid side chain on the D-ring to produce the C-17 ketone and conversion of the C-11 alcohol, if present, to the C-11 ketone. Minor degradation products derived from other changes affecting the side chain are also identified in several corticosteroids. These compounds are frequently associated in corticosteroids as process impurities or degradation compounds. No new radiolytic compounds unique to 60Co-irradiation have been found. The majority of corticosteroids have been shown to be stable to 60Co-irradiation. The rates of radiolytic degradation ranged from 0.2 to 1.4%/Mrad.

  17. Depolymerization of fucosylated chondroitin sulfate from sea cucumber, Pearsonothuria graeffei, via 60Co irradiation.

    PubMed

    Wu, Nian; Ye, Xingqian; Guo, Xin; Liao, Ningbo; Yin, Xinzi; Hu, Yaqin; Sun, Yujing; Liu, Donghong; Chen, Shiguo

    2013-04-01

    A method for depolymerization of a novel fucosylated chondroitin sulfate from Pearsonothuria graeffei (fCS-Pg) using (60)Co irradiation in water solution was developed in the current study. Fragments with varying molecular weights were obtained by (60)Co irradiation at different dosages and sample concentrations. The chemical compositions and structures of these fragments were further investigated using high-performance liquid chromatography (HPLC), infrared spectroscopy (IR) and nuclear magnetic resonance spectroscopy (NMR). Our results indicated that (60)Co irradiation induced depolymerization via selective breakage of glucuronic acid units in the fCS-Pg backbone, with no obvious influence on sulfated fucose branches under mild conditions. The recommended conditions for fCS-Pg degradation were 2-10% solution concentration and irradiation dosages of 10-50kGy. The anticoagulant activities of the low molecular weight fragments were additionally evaluated. Notably, anticoagulant activities were reduced with decreasing molecular weights. Compared to the native fCS-Pg, low molecular weight fragments displayed significantly decreased anticoagulant activities. Based on the collective findings, we propose that these fragments are potentially applicable as antithrombotic agents with reduced bleeding risk relative to native fCS-Pg.

  18. Fieldbus: technology application in a 60Co sterilization plant

    NASA Astrophysics Data System (ADS)

    Karam, D.; Sampa, M. H. O.; Rela, P. R.

    2000-03-01

    Process instrumentation was made by pressure signals in the 1940s. In the 1960s, 4-20 mA analogue signals were introduced. The development of digital processors in the 1970s sparked the use of computers to monitor and control instruments from a central point. In the 1980s smart sensors were developed and implemented in digital control, microprocessor environments. Fieldbus is a generic-term that describes a new digital communications network. The network is a digital, bi-directional, multidrop, serial-bus, and communications network used to link isolated field devices, such as controllers, transducers, actuators and sensors. Fieldbus technology may improve quality, reduce costs and increase efficiency because information is transmitted digitally without analog to digital or digital to analog converters, which also minimizes hardware errors. Fieldbus communication is based on two-wire communication, interconnecting all the components in the system. This paper introduces Fieldbus technology in a 60Co sterilization plant.

  19. Dose reconstruction for residents living in 60Co-contaminated rebar buildings.

    PubMed

    Tung, C J; Chao, T C; Chen, T R; Hsu, F Y; Lee, I T; Chang, S L; Liao, C C; Chen, W L

    1998-06-01

    The first 60Co-contaminated rebar building was discovered in Taipei city in 1992. As of 18 July 1997, 144 buildings with 1,327 housing units were confirmed to contain 60Co-contaminated rebars. All these reinforced concrete buildings were constructed between 1982 and 1984. Thousands of residents have been exposed to ionizing radiation of various degrees. Preliminary assessments by the Atomic Energy Council showed that the accumulated maximal doses ranged from a few mSv to several Sv. The purpose of this work was to reconstruct more reliable individual doses for epidemiologic and medical uses. This reconstruction provided the best estimated doses as well as conceivable upper and lower bounds. The variation of residential day-life activities by individual members in a family was considered according to their sex, age, profession, etc. Intensive data on exposure rates were collected using thermoluminescent dosimeters positioned at 1 m height and 1 m x 1 m intersections with additional measurements at special locations such as bed, sofa, dining table, etc. Thermoluminescent dosimeter measurements were performed in all 24 residences studied in this work. This showed that the Atomic Energy Council maximal doses were 2-6 times higher than the present best estimated doses. Among all family members, elders and housewives received the highest doses; children received the lowest doses. The difference in doses among all family members belonging to different cohort categories is within a factor of two.

  20. Assessing deposition levels of 55Fe, 60Co and 63Ni in the Ignalina NPP environment.

    PubMed

    Gudelis, A; Druteikiene, R; Luksiene, B; Gvozdaite, R; Nielsen, S P; Hou, X; Mazeika, J; Petrosius, R

    2010-06-01

    Two RBMK-1500 reactor units operated in Lithuania in the 1987-2004 period (one of them was stopped for decommissioning in 2004). This study presents a preliminary investigation of surface deposition density levels of (55)Fe and (63)Ni in moss samples collected in the close vicinity of the Ignalina NPP. Non-destructive analysis by the HPGe gamma-spectrometry was followed by radiochemical separation. Radiochemical analysis was based on anion-exchange and extraction chromatography. (55)Fe and (63)Ni activities were measured by liquid scintillation counting (LSC). The results indicate that the deposition values of (55)Fe are generally higher than those of (60)Co and (63)Ni. PMID:18818005

  1. Long-term follow-up after accidental gamma irradiation from a 60Co source

    SciTech Connect

    Klener, V.; Tuscany, R.; Vejlupkova, J.; Dvorak, J.; Vlkovic, P.

    1986-11-01

    In December 1973 a technician was accidentally irradiated when attempting to bring under control a sealed /sup 60/Co source (110 TBq) which had been lodged in the head of a medical irradiation unit during a replacement operation. In the early period after the accident, severe skin changes on the left hand, epilation in a small area of the left temporal region and minor deviations in peripheral blood developed. In the following years, repeated surgery due to secondary skin defects of the left hand resulted in the loss of the fingers 2-5. Since 1975, changes in the lens of the left eye began to appear leading gradually to the deterioration of visual acuity. Later, opacities of the lens of the right eye were found. The patient's psychological and emotional attitude about the accident changed in the course of time. The factors influencing the psychic state of the patient are identified.

  2. A new standard cylindrical graphite-walled ionization chamber for dosimetry in 60Co beams at calibration laboratories

    NASA Astrophysics Data System (ADS)

    Neves, Lucio P.; Perini, Ana P.; Caldas, Linda V. E.

    2014-11-01

    60Co sources are used mostly at dosimetry laboratories for calibration of ionization chambers utilized for radiotherapy dosimetry, mainly in those laboratories where there is no linear accelerator available. In this work, a new cylindrical ionization chamber was developed and characterized to be used as a reference dosimeter at the Calibration Laboratory of the IPEN. The characterization tests were performed according to the IEC 60731 standard, and all tests presented results within its recommended limits. Furthermore, the correction factors for the wall, stem, central collecting electrode, nonaxial uniformity and the mass-energy absorption coefficient were determined using the EGSnrc Monte Carlo code. The air kerma rate determined with this new dosimeter was compared to the one obtained with the IPEN standard, presenting a difference of 1.5%. Therefore, the new ionization chamber prototype developed and characterized in this work presents potential use as a primary standard dosimeter at radiation metrology laboratories.

  3. A standard Fricke dosimeter compared to an ionization chamber used for dosimetric characterization of 60Co photon beam

    NASA Astrophysics Data System (ADS)

    Moussous, Ouiza; Medjadj, Toufik

    2016-06-01

    The main objective of this study was to investigate the Fricke dosimeter water equivalent system for measurement of dosimetric parameters for photon beam. The parameters measured with the Fricke dosimeter were compared to those obtained with an ionization chamber. In this work characteristics for 60Co γ-rays of field sizes ranging from 5 × 5 cm2 to 20 × 20 cm2 are reported. The measurements were carried out in the secondary standard dosimetry laboratory using a collimated 60Co gamma source therapy unit. The 60Co beam output in terms of absorbed dose to water was obtained as per IAEA TRS 398 recommendations using cylindrical ionization chamber, whose ND,w has been supplied by the IAEA's reference laboratory. Specific quantities measured include: output factors, peak scatter factor, lateral beam profiles and percentage depth dose. The Fricke dosimeters were irradiated in a water phantom using the suitable poly (methyl methacrylate), PMMA stand. Our results demonstrate that Fricke dosimeter and ionization chamber agree with each other.

  4. The solubility of the aerosol, 137Cs and 60Co carrier, in the Ignalina Nuclear Power Plant region.

    PubMed

    Jasiulionis, Rimvydas; Rozkov, Andrej

    2008-12-01

    The dissolution of aerosol particles, carrier of (137)Cs and (60)Co, sampled on filters is studied by means of a leaching test with distilled water. Samples were collected from the ventilation stack of the operating Ignalina Nuclear Power Plant (NPP) reactor, the shut down reactor and in the ground-level air. The insolubility in water of radionuclides attached to aerosol particles sampled on filters, collected in the operating Unit 2 reactor effluents, is clearly lower than the insolubility in water of radionuclides attached to aerosol particles sampled on filters, collected in the ground-level air. The mean rate of the change in the insolubility in water of (60)Co and (137)Cs attached to aerosol particles, released from the Ignalina NPP and registered at a 3.5km distance from the NPP, is estimated. The radionuclide activity concentration distribution in the ground-level air is calculated in respect of the insolubility in water of (60)Co attached to aerosol particles and compared with experimental data.

  5. Development and evaluation of a technique for in vivo monitoring of 60Co in human lungs

    NASA Astrophysics Data System (ADS)

    de Mello, J. Q.; Lucena, E. A.; Dantas, A. L. A.; Dantas, B. M.

    2016-07-01

    60Co is a fission product of 235U and represents a risk of internal exposure of workers in nuclear power plants, especially those involved in the maintenance of potentially contaminated parts and equipment. The control of 60Co intake by inhalation can be performed through in vivo monitoring. This work describes the evaluation of a technique through the minimum detectable activity and the corresponding minimum detectable effective doses, based on biokinetic and dosimetric models of 60Co in the human body. The results allow to state that the technique is suitable either for monitoring of occupational exposures or evaluation of accidental intake.

  6. Effect of Acuros XB algorithm on monitor units for stereotactic body radiotherapy planning of lung cancer

    SciTech Connect

    Khan, Rao F. Villarreal-Barajas, Eduardo; Lau, Harold; Liu, Hong-Wei

    2014-04-01

    Stereotactic body radiotherapy (SBRT) is a curative regimen that uses hypofractionated radiation-absorbed dose to achieve a high degree of local control in early stage non–small cell lung cancer (NSCLC). In the presence of heterogeneities, the dose calculation for the lungs becomes challenging. We have evaluated the dosimetric effect of the recently introduced advanced dose-calculation algorithm, Acuros XB (AXB), for SBRT of NSCLC. A total of 97 patients with early-stage lung cancer who underwent SBRT at our cancer center during last 4 years were included. Initial clinical plans were created in Aria Eclipse version 8.9 or prior, using 6 to 10 fields with 6-MV beams, and dose was calculated using the anisotropic analytic algorithm (AAA) as implemented in Eclipse treatment planning system. The clinical plans were recalculated in Aria Eclipse 11.0.21 using both AAA and AXB algorithms. Both sets of plans were normalized to the same prescription point at the center of mass of the target. A secondary monitor unit (MU) calculation was performed using commercial program RadCalc for all of the fields. For the planning target volumes ranging from 19 to 375 cm{sup 3}, a comparison of MUs was performed for both set of algorithms on field and plan basis. In total, variation of MUs for 677 treatment fields was investigated in terms of equivalent depth and the equivalent square of the field. Overall, MUs required by AXB to deliver the prescribed dose are on an average 2% higher than AAA. Using a 2-tailed paired t-test, the MUs from the 2 algorithms were found to be significantly different (p < 0.001). The secondary independent MU calculator RadCalc underestimates the required MUs (on an average by 4% to 5%) in the lung relative to either of the 2 dose algorithms.

  7. Validation of in-house treatment planning system software for cobalt-60 teletherapy unit at two radiotherapy installations

    NASA Astrophysics Data System (ADS)

    Mu'minah, I. A. S.; Toresano, L. O. H. Z.; Wibowo, W. E.; Sugiyantari; Pawiro, S. A.

    2016-03-01

    DSSuperDose v.1.0 is an in-house treatment planning system (TPS) developed by Medical Physics and Biophysics Laboratory (LFMB) Universitas Indonesia as a treatment planning software for Cobalt-60 teletherapy unit. The main objective of this study was the validation of in-house TPS calculation as an essential part in quality assurance (QA) of radiotherapy. Validation of an in-house TPS was performed with two Cobalt-60 teletherapy units by comparison between in-house TPS and ISIS TPS and by measurements of absorbed dose. Mean dose deviations between in-house TPS and measurement were (1.97 ± 2.42)% for open field, (1.32 ± 1.30)% for tray field, and (2.91 ± 2.36)% for wedge field treatments. In-house TPS provide optimal planning for open and tray beam conditions with depth fewer than 10 cm (≤ 10 cm) and field sizes up to 20×20 cm2, while for wedge beam conditions with field sizes fewer than the physical size of the wedge. Comparison of in-house TPS and ISIS TPS demonstrated a good match of 96%. From the results, it is concluded that DSSuperDose v.1.0 is adequately accurate for treatment planning of radiotherapy.

  8. 60Co contamination in recycled steel resulting in elevated civilian radiation doses: causes and challenges.

    PubMed

    Chang, W P; Chan, C C; Wang, J D

    1997-09-01

    Since late 1992, more than 100 building complexes containing public and private schools and nearly 1,000 apartments have been identified in Taiwan with elevated levels of gamma-radiation from construction steel contaminated with 60Co. Due to improper handling of 60Co contaminated scrap steel in late 1982 and 1983, contaminated construction materials have been widely distributed throughout the country. These contaminated construction materials have generated elevated radiation exposures to members of the public in Taiwan. As of early 1996, more than 4,000 people, including young students, have been identified as receiving more than 1 mSv y(-1) above the local background for up to 12 y. This report provides a detailed discussion of the sources of the 60Co contamination in construction steel, its discovery in the building complexes, and preliminary evaluation and remediation activities.

  9. Shear Stress in Nickel and Ni-60Co under One-Dimensional Shock Loading

    SciTech Connect

    Workman, A.; Wallwork, A.; Meziere, Y. J. E.; Millett, J. C. F.; Bourne, N. K.

    2006-07-28

    The dynamic response of pure nickel (Ni), and its alloy, Ni-60Co (by weight %), has been investigated during one-dimensional shock loading. Few materials' properties are different and the only significantly altered feature is the reduced stacking fault energy (SFE) for the Ni-60Co. This paper considers the effect of this reduced SFE on the shear strength. Data (in terms of shock stress, particle velocity and shock velocity) are also presented. The influence on the shear stress, {tau} of cobalt additions in nickel are then investigated and presented. Results indicate that the lateral stress is increasing in both materials with the increasing impact stress. The shear stress was found to be higher in the nickel than in the Ni-60Co. The progressive decrease of the lateral stress noted during loading indicates a complex mechanism of deformation behind the shock front.

  10. 60Co irradiation of Shiga toxin (Stx)-producing Escherichia coli induces Stx phage.

    PubMed

    Yamamoto, Tatsuo; Kojio, Seiichi; Taneike, Ikue; Nakagawa, Saori; Iwakura, Nobuhiro; Wakisaka-Saito, Noriko

    2003-05-16

    Shiga toxin (Stx)-producing Escherichia coli (STEC), an important cause of hemolytic uremic syndrome, was completely killed by (60)Co irradiation at 1 x l0(3) gray (1 kGy) or higher. However, a low dose of irradiation (0.1-0.3 kGy) markedly induced Stx phage from STEC. Stx production was observed in parallel to the phage induction. Inactivation of Stx phage required a higher irradiation dose than that for bacterial killing. Regarding Stx, cytotoxicity was susceptible to irradiation, but cytokine induction activity was more resistant than Stx phage. The findings suggest that (1). although (60)Co irradiation is an effective means to kill the bacteria, it does induce Stx phage at a lower irradiation dose, with a risk of Stx phage transfer and emergence of new Stx-producing strains, and (2). irradiation differentially inactivates some activities of Stx.

  11. Morphological and histological studies on freshwater prawn Macrobrachium rosenbergii (de man) irradiated with (60)Co gamma radiation.

    PubMed

    Stalin, A; Broos, K V; Sadiq Bukhari, A; Syed Mohamed, H E; Singhal, R K; Venu-Babu, P

    2013-11-15

    This study was framed to investigate the (60)Co gamma radiation induced morphological and histological variations in freshwater prawn Macrobrachium rosenbergii. The LD50 value of (60)Co gamma irradiated M. rosenbergii observed (by probit analysis) at 30 Gy. Prawns were irradiated to four different dose levels (3 mGy, 30 mGy, 300 mGy and 3,000 mGy) using Theratron Phoenix TeleCobalt Unit [P-33] and one control group (without irradiation) maintained separately. Irradiated groups exhibited several morphological variations such as discoloration; damaged rostrum; opaque coloration in cephalothorax; black bands and dot formation in abdomen; deformed uropods and telson in tail regions when compared with control group. The Hepato Somatic Index reflected the severity of radiation on hepatopancreas. Histological variations in gills, hepatopancreas and muscles of irradiated groups were observed. In gills, structural changes such as swollen and fused lamellae, abnormal gill tips, hyperplasic, necrotic and clavate-globate lamellae were observed in gamma irradiated prawns. Accumulation of hemocytes in hemocoelic space, interstitial sinuses filled with abnormal infiltrated hemocytes, the tubular epithelium with ruptured basal laminae, abnormal and coagulated lumen, necrotic tubules, thickened basal laminae, tissue debris, necrotic hepatocytes were observed in irradiated prawn hepatopancreas. In muscle, shrinkage of muscular fiber and necrotic musculature were observed in irradiated prawns. These structural alterations of the organs it is felt could affect the vital physiological functions such as respiration, osmotic and ionic regulation in gills and muscles; absorption, storage and secretion of the hepatopancreas which in turn could adversely affect the growth and survival of freshwater prawn M. rosenbergii.

  12. Experimental and Monte Carlo evaluation of an ionization chamber in a 60Co beam

    NASA Astrophysics Data System (ADS)

    Perini, A. P.; Neves, L. P.; Santos, W. S.; Caldas, L. V. E.

    2016-07-01

    Recently a special parallel-plate ionization chamber was developed and characterized at the Instituto de Pesquisas Energeticas e Nucleares. The operational tests presented results within the recommended limits. In order to determine the influence of some components of the ionization chamber on its response, Monte Carlo simulations were carried out. The experimental and simulation results pointed out that the dosimeter evaluated in the present work has favorable properties to be applied to 60Co dosimetry at calibration laboratories.

  13. Decoloration Kinetics of Waste Cooking Oil by 60Co γ-ray/H2O2

    NASA Astrophysics Data System (ADS)

    Xiang, Yulin; Xiang, Yuxiu; Wang, Lipeng

    2016-03-01

    In order to decolorize, waste cooking oil, a dark red close to black solution from homes and restaurants, was subjected to 60Co γ-ray/H2O2 treatment. By virtue of UV/Vis spectrophotometric method, the influence of Gamma irradiation to decoloration kinetics and rate constants of the waste cooking oil in the presence of H2O2 was researched. In addition, the influence of different factors such as H2O2 concentration and irradiation dose on the decoloration rate of waste cooking oil was investigated. Results indicated that the decoloration kinetics of waste cooking oil conformed to the first-order reaction. The decoloration rate increased with the increase of irradiation dose and H2O2 concentration. Saponification analysis and sensory evaluation showed that the sample by 60Co γ-ray/H2O2 treatment presented better saponification performance and sensory score. Furthermore, according to cost estimate, the cost of the 60Co γ-ray/H2O2 was lower and more feasible than the H2O2 alone for decoloration of waste cooking oil.

  14. Improvement of dose distribution in breast radiotherapy using a reversible transverse magnetic field Linac-MR unit

    SciTech Connect

    Esmaeeli, A. D.; Mahdavi, S. R.; Pouladian, M.; Bagheri, S.; Monfared, A. S.

    2014-01-15

    Purpose: To investigate the improvement in dose distribution in tangential breast radiotherapy using a reversible transverse magnetic field that maintains the same direction of Lorentz force between two fields. The investigation has a potential application in future Linac-MR units. Methods: Computed tomography images of four patients and magnetic fields of 0.25–1.5 Tesla (T) were used for Monte Carlo simulation. Two patients had intact breast while the other two had mastectomy. Simulations of planning and chest wall irradiation were similar to the actual clinical process. The direction of superior-inferior magnetic field for the medial treatment beam was reversed for the lateral beam. Results: For the ipsilateral lung and heart mean doses were reduced by a mean (range) of 45.8% (27.6%–58.6%) and 26.0% (20.2%–38.9%), respectively, depending on various treatment plan setups. The mean V{sub 20} for ipsilateral lung was reduced by 55.0% (43.6%–77.3%). In addition acceptable results were shown after simulation of 0.25 T magnetic field demonstrated in dose-volume reductions of the heart, ipsilateral lung, and noninvolved skin. Conclusions: Applying a reversible magnetic field during breast radiotherapy, not only reduces the dose to the lung and heart but also produces a sharp drop dose volume histogram for planning target volume, because of bending of the path of secondary charged particles toward the chest wall by the Lorentz force. The simulations have shown that use of the magnetic field at 1.5 T is not feasible for clinical applications due to the increase of ipsilateral chest wall skin dose in comparison to the conventional planning while 0.25 T is suitable for all patients due to dose reduction to the chest wall skin.

  15. Behavior of 60Co and 134Cs in a Canadian Shield lake over 5 years.

    PubMed

    Bird, G A; Schwartz, W J; Motycka, M; Rosentreter, J

    1998-04-01

    Radionuclides were added to the anoxic hypolimnion of a Canadian Shield lake to simulate the nuclear fuel waste disposal scenario where radionuclides might enter the bottom waters of a lake. The radionuclides remained in the hypolimnion until lake mixing at autumn turnover after which 60Co was rapidly lost and 134Cs was slowly lost from the water. Only 0.4% of the 60Co and 0.6% of the 134Cs remained in the water at year 5. Highest concentrations occurred in periphyton and filter feeders, Holopedium gibberum and clams (Anodonata grandis grandis). From maximum annual concentrations in clam tissues, it was estimated that the availability of 60Co for uptake had a half-time (t1/2) of 835 days in the lake, whereas that for 134Cs was 780 days. Loss rate coefficients, k, for the radionuclides from taxa ranged from 0.0008 to 0.0043 day-1 (t1/2 = 161-866 days) for 60Co and from 0.0009 to 0.005 day-1 (t1/2 = 139-770 days) for 134Cs. Cobalt-60 concentrations in forage fish were low, whereas 134Cs concentrations increased over the first year or two, then slowly declined. On the basis of k values measured for forage fish, the biological half-time of 134Cs in forage fish ranged from 428 to 630 days. Maximum 134Cs concentrations in forage fish were higher following hypolimnetic addition than epilimnetic addition. Relatively high 134Cs concentrations in periphyton at year 5 point to the importance of benthic pathways in the recycling of contaminants to higher trophic levels. The presence of 134Cs in biota 5 years after the addition, long after concentrations were no longer detectable in surface waters, is evidence of the persistence of Cs in aquatic systems. The k values (or t1/2 values) for the loss of 60Co and 134Cs from water and their uptake and loss from biota can be used to establish parameter values for assessment models. The results demonstrate that assessment models should account for the release of radionuclides from sediment and their subsequent recycling in the food

  16. Behavior of 60Co and 134Cs in a Canadian Shield lake over 5 years.

    PubMed

    Bird, G A; Schwartz, W J; Motycka, M; Rosentreter, J

    1998-04-01

    Radionuclides were added to the anoxic hypolimnion of a Canadian Shield lake to simulate the nuclear fuel waste disposal scenario where radionuclides might enter the bottom waters of a lake. The radionuclides remained in the hypolimnion until lake mixing at autumn turnover after which 60Co was rapidly lost and 134Cs was slowly lost from the water. Only 0.4% of the 60Co and 0.6% of the 134Cs remained in the water at year 5. Highest concentrations occurred in periphyton and filter feeders, Holopedium gibberum and clams (Anodonata grandis grandis). From maximum annual concentrations in clam tissues, it was estimated that the availability of 60Co for uptake had a half-time (t1/2) of 835 days in the lake, whereas that for 134Cs was 780 days. Loss rate coefficients, k, for the radionuclides from taxa ranged from 0.0008 to 0.0043 day-1 (t1/2 = 161-866 days) for 60Co and from 0.0009 to 0.005 day-1 (t1/2 = 139-770 days) for 134Cs. Cobalt-60 concentrations in forage fish were low, whereas 134Cs concentrations increased over the first year or two, then slowly declined. On the basis of k values measured for forage fish, the biological half-time of 134Cs in forage fish ranged from 428 to 630 days. Maximum 134Cs concentrations in forage fish were higher following hypolimnetic addition than epilimnetic addition. Relatively high 134Cs concentrations in periphyton at year 5 point to the importance of benthic pathways in the recycling of contaminants to higher trophic levels. The presence of 134Cs in biota 5 years after the addition, long after concentrations were no longer detectable in surface waters, is evidence of the persistence of Cs in aquatic systems. The k values (or t1/2 values) for the loss of 60Co and 134Cs from water and their uptake and loss from biota can be used to establish parameter values for assessment models. The results demonstrate that assessment models should account for the release of radionuclides from sediment and their subsequent recycling in the food

  17. The management of breast carcinoma by primary radiotherapy of Mount Sinai hospital from 1962-1979. [/sup 60/Co; Betatron

    SciTech Connect

    Balawajder, I.; Antich, P.P.; Boland, J.

    1982-04-15

    Two-hundred eight patients with carcinoma of the breast were treated with megavoltage irradiation as the primary method of local management at Mount Sinai Hospital between 1962-1979. The effects of treatment volume, technique, and other parameters are discussed for the Stage I and II patients, together with the importance of tumor size and nodal status in control of local disease and distant metastases. In this series the cumulative probability of freedom from metastases is 93 +/- 5% when the irradiation is confined to the breast and axilla as compared with 72 +/- 9% when extended fields are used, with no difference in local control. Based on these results it was decided to confine irradiation to the breast and axilla alone in the majority of early stage cancer patients. Recommendations are made for radiation techniques and dosages to optimize control of the disease, minimize complications, and facilitate systemic therapy in patients with positive nodes.

  18. Detection and temporal variation of (60)Co in the digestive glands of the common octopus, Octopus vulgaris, in the East China Sea.

    PubMed

    Morita, Takami; Otosaka, Shigeyoshi; Fujimoto, Ken; Nishiuchi, Kou; Kimoto, Katsunori; Yamada, Haruya; Kasai, Hiromi; Minakawa, Masayuki; Yoshida, Katsuhiko

    2010-08-01

    (60)Co were detected in common octopus specimens collected in the East China Sea in 1996-2005. The source of (60)Co has remained unclear yet. Stable isotope analyses showed that there was no difference in stable Co concentrations between octopus samples with (60)Co and without (60)Co. This result showed that the stable Co in the digestive gland of octopus potentially did not include a trace amount of (60)Co and the source of (60)Co existed independently. Furthermore, investigations of octopus in other area and other species indicated that the origin of the source of (60)Co occurred locally in the restricted area in the East China Sea and not in the coastal area of Japan. Concentrations of (60)Co have annually decreased with shorter half-life than the physical half-life. This decrease tendency suggests that the sources of (60)Co were identical and were temporary dumped into the East China Sea as a solid waste.

  19. Effect of 60Co-gamma radiation on the properties of furs

    NASA Astrophysics Data System (ADS)

    Raina, R. K.; Wali, B. K.; Wani, A. M.

    Furs pretanned with various combinations of vegetable tanning agents and retanned with alum have been irradiated with 60Co γ-radiation in the dose range 5.0-114.0 kGy. The physico-chemical modifications induced by the radiation have been assessed by measuring changes in tensile strength, absorption of water, elongation and shrinkage temperature. For investigations, samples have been taken from the same topographic region of the rabbit furs, belonging to the same age and sex. The results are discussed hereunder.

  20. Monitor unit optimization in stereotactic body radiotherapy for small peripheral non-small cell lung cancer patients

    PubMed Central

    Huang, Bao-Tian; Lin, Zhu; Lin, Pei-Xian; Lu, Jia-Yang; Chen, Chuang-Zhen

    2015-01-01

    The increasingly attractive stereotactic body radiotherapy (SBRT) treatment for stage I lung cancer is concomitant with a large amount of monitor units (MU), leading to excessive out-of-field dose and prolonged beam-on time. The study aims to reduce the MU number and shorten the beam-on time by optimizing the planning parameters. Clinically acceptable treatment plans from fourteen patients suffered from peripheral stage I non-small cell lung cancer (NSCLC) were created in the study. Priority for the upper objective of the target (PUOT), strength and Max MU setting in the MU objective function (MUOF) were adjusted respectively to investigate their effect on MU number, organs at risk (OARs) sparing and beam-on time. We found that the planning parameters influenced the MU number in a PUOT, strength and Max MU dependent manner. Combined with high priority for the UOT (HPUOT) and MUOF, the MU number was reduced from 443 ± 25 to 228 ± 22 MU/Gy without compromising the target coverage and OARs sparing. We also found beam-on time was proportional to MU number and it could be shortened from 7.9 ± 0.5 to 4.1 ± 0.4 minutes. PMID:26679747

  1. Characterization of a homemade ionization chamber for radiotherapy beams.

    PubMed

    Neves, Lucio P; Perini, Ana P; dos Santos, Gelson P; Xavier, Marcos; Khoury, Helen J; Caldas, Linda V E

    2012-07-01

    A homemade cylindrical ionization chamber was studied for routine use in therapy beams of (60)Co and X-rays. Several characterization tests were performed: leakage current, saturation, ion collection efficiency, polarity effect, stability, stabilization time, chamber orientation and energy dependence. All results obtained were within international recommendations. Therefore the homemade ionization chamber presents usefulness for routine dosimetric procedures in radiotherapy beams.

  2. Residual 152Eu and 60Co activities induced by neutrons from the Hiroshima atomic bomb.

    PubMed

    Shizuma, K; Iwatani, K; Hasai, H; Hoshi, M; Oka, T; Morishima, H

    1993-09-01

    Specific activities of 152Eu:Eu in stone samples exposed to the Hiroshima atomic bomb were determined for 70 samples up to a 1,500-m slant range from the epicenter. The specific activities of 60Co:Co were also determined for six samples near the Hiroshima hypocenter. First, the 152Eu data were investigated to find out the directional dependence of neutron activation. Directional anisotropy was not definite; however, there was an indication that the activation in the west-southwest was lower than in other directions. Second, measured 152Eu and 60Co radioactivity data were compared with activation calculations based on DS86 neutrons. It is clearly shown that the measured data are lower than the calculation near the hypocenter and vice versa at long distances beyond 1,000 m. The calculated-to-measured ratios of 152Eu are 1.6 at the hypocenter, 1.0 at approximately 900 m, and 0.05 at a 1,500-m slant range. Present results indicate that systematic errors exist in the DS86 neutrons concerning the source-term spectrum, neutron transport calculations in air, and/or activation measurements.

  3. Radiation quality of tritium: a comparison with 60Co gamma rays.

    PubMed

    Chen, Jing

    2013-09-01

    In a previous study, microdosimetric simulations were performed for tritium uniformly distributed in a medium, and for tritium bound to biologically critical sites of dimensions from 10 nm to 2 µm. Results of local energy density, i.e. energy deposition in microscopic regions, are different for these two cases. Based on the spatial distribution of energy deposition, dose mean lineal energies are calculated for tritium in the forms of tritiated water (HTO) and organically bound tritium (OBT). The dose mean lineal energies of OBT are about a factor of 1.7 higher than those of HTO in a wide range of target dimensions of biological interest. The results are consistent with radiobiological findings that OBT is about twice as effective as HTO. In this study, the same calculations were performed for (60)Co gamma rays in a wide range of target dimensions of biological interest (10 nm to 2 µm). Compared with (60)Co gamma rays, the estimated relative biological effectiveness could vary from 1.3 to 3.5 for HTO, and 2.3 to 5.6 for OBT. The results are consistent with radiobiological findings for various biological endpoints in different biological systems that OBT is about twice as effective as HTO.

  4. A procedure for calculation of monitor units for passively scattered proton radiotherapy beams

    SciTech Connect

    Sahoo, Narayan; Zhu, X. Ronald; Arjomandy, Bijan; Ciangaru, George; Lii, MingFwu; Amos, Richard; Wu, Richard; Gillin, Michael T.

    2008-11-15

    The purpose of this study is to validate a monitor unit (MU) calculation procedure for passively scattered proton therapy beams. The output dose per MU (d/MU) of a therapeutic radiation beam is traditionally calibrated under specific reference conditions. These conditions include beam energy, field size, suitable depth in water or water equivalent phantom in a low dose gradient region with known relative depth dose, and source to point of calibration distance. Treatment field settings usually differ from these reference conditions leading to a different d/MU that needs to be determined for delivering the prescribed dose. For passively scattered proton beams, the proton specific parameters, which need to be defined, are related to the energy, lateral scatterers, range modulating wheel, spread out Bragg peak (SOBP) width, thickness of any range shifter, the depth dose value relative to the normalization point in the SOBP, and scatter both from the range compensator and inhomogeneity in the patient. Following the custom for photons or electrons, a set of proton dosimetry factors, representing the changes in the d/MU relative to a reference condition, can be defined as the relative output factor (ROF), SOBP factor (SOBPF), range shifter factor (RSF), SOBP off-center factor (SOBPOCF), off-center ratio (OCR), inverse square factor (ISF), field size factor (FSF), and compensator and patient scatter factor (CPSF). The ROF, SOBPF, and RSF are the major contributors to the d/MU and were measured using an ion chamber in water tank during the clinical commissioning of each beam to create a dosimetry beam data table to be used for calculating the monitor units. The following simple formula is found to provide an independent method to determine the d/MU at the point of interest (POI) in the patient, namely, (d/MU)=ROF{center_dot}SOBPF{center_dot}RSF{center_dot}SOBPOCF{center_dot}OCR{center_dot}FSF{center_dot}ISF{center_dot}CPSF. The monitor units for delivering the intended dose

  5. Modification of the chemical composition and structure of the US Reference Standard Endotoxin (RSE) by /sup 60/Co radiation

    SciTech Connect

    Csako, G.; Tsai, C.M.; Slomiany, B.L.; Herp, A.; Elin, R.J.

    1986-03-01

    A highly purified bacterial lipopolysaccharide (LPS) preparation was exposed in water to megadoses of ionizing radiation from a /sup 60/Co source. As evidenced by electrophoresis, the radiation treatment progressively degraded the lipopolysaccharide molecules by removing first the O-side chain units and then components of the R-core. Chemical analysis of the irradiated (LPS) preparations showed that, in accord with the structural changes, the most profound effects of ionizing radiation occurred in the hydrophilic oligo/polysaccharide moieties (R-core and O-side chain). Progressively higher doses of radiation degraded the simple sugars in decreasing order of galactose, galactosamine, glucosamine, glucose, and heptose. The R-core component 2-keto-3-deoxyoctonate was the most resistant sugar derivative to ionizing radiation. Due to its central position in the LPS aggregates in water, even at comparatively high doses of radiation the hydrophobic lipid A moiety of endotoxin was less affected than the sugar components. Of the fatty acids of lipid A, however, either partial conversion of beta-hydroxymyristic acid into myristic acid or selective loss of the former occurred. The observed structural and chemical changes of LPS are consistent with the effect of active oxygen radicals of radiolysis. In addition, the extensive physicochemical changes explain the altered biological reactivity of radiation-treated endotoxins.

  6. Relation of structure to function for the US reference standard endotoxin after exposure to /sup 60/Co radiation

    SciTech Connect

    Csako, G.; Suba, E.A.; Ahlgren, A.; Tsai, C.M.; Elin, R.J.

    1986-01-01

    The structure and function of the highly purified US reference standard endotoxin (RSE) were studied after exposure to ionizing radiation from a /sup 60/Co source. With increasing doses of radiation, the trilaminar ribbon-like structure of untreated endotoxin exhibited focal swelling, after which only spherical particles were seen by electron microscopy. These morphological changes were paralleled by the respective loss of O-side chain repeating units and pieces of the R-core from the lipopolysaccharide molecules, as demonstrated by electrophoresis. The biologic function of the irradiated endotoxin was assessed with a variety of tests. At higher doses of radiation, a direct relation was observed between the degradation of the molecular and supramolecular structure and the loss of biologic function. At lower doses of radiation, however, there was variability among the functional assays in their rate of change with progressive irradiation of the RSE. The results suggest that the carbohydrate moiety plays an important role both in determining the supramolecular structure and in modulating certain biologic activities of bacterial endotoxins.

  7. APMP key comparison for the measurement of air kerma for 60Co (APMP.RI(I)-K1.1)

    NASA Astrophysics Data System (ADS)

    Webb, D. V.; Lee, J.-H.; Budiantari, C. T.; Laban, J.; Saito, N.; Srimanoroth, S.; Khaled, N. E.

    2016-01-01

    The results are reported for an APMP.R(I)-K1.1 comparison that extends the regional comparison of standards for air kerma APMP.R(I)-K1 to several laboratories unable to participate earlier. The comparison was conducted with the goal of supporting the relevant calibration and measurement capabilities (CMCs) planned for publication by the participant laboratories. The comparison was conducted by the pilot laboratory, the Australian Radiation Protection and Nuclear Safety (ARPANSA), Australia, supported by the Institute of Nuclear Energy Research (INER), Taiwan, in a modified ring-shaped arrangement from September 2009 to November 2010, in parallel with an APMP.R(I)-K4 comparison being piloted by the INER. The laboratories that took part in the comparison were the ARPANSA, the Centre of Technology of Radiation Safety and Metrology (PTKMR-BATAN), Indonesia, the Division of Radiation and Medical Devices (DMSC), Thailand, the INER, the National Centre for Radiation Science (NCRS), New Zealand, the National Institute for Standards (NIS), Egypt and the National Metrology Institute of Japan (NMIJ/AIST), Japan. The two primary laboratories, ARPANSA and NMIJ, were chosen as the linking laboratories. Three ionization chambers were used as transfer instruments to be calibrated in terms of air kerma in 60Co radiotherapy beams. The comparison result is based on the ratio between the air kerma calibration coefficients (NK) determined by the participants and the mean of the results of the linking laboratories. The mean comparison ratio was found to be within 0.5 % of the key comparison reference value KCRV. The largest deviation between any two comparison ratios for the three chambers in terms of air kerma was 2.0 %. An analysis of the participant uncertainty budgets enabled the calculation of degrees of equivalence (DoE) in terms of the deviations of the results and their associated uncertainties. As a result of this APMP comparison, the BIPM key comparison database (KCDB) should

  8. Measurements of (60)Co in massive steel samples exposed to the Hiroshima atomic bomb explosion.

    PubMed

    Gasparro, Joël; Hult, Mikael; Marissens, Gerd; Hoshi, Masaharu; Tanaka, Kenichi; Endo, Satoru; Laubenstein, Matthias; Dombrowski, Harald; Arnold, Dirk

    2012-04-01

    To study discrepancies in retrospective Hiroshima dosimetry, the specific activity of (60)Co in 16 steel samples from Hiroshima was measured using gamma-ray spectrometry in underground laboratories. There is general agreement between these new activity measurements and the specific activities derived from previously calculated dose values on the one hand and former measurements of samples gathered at distances less than 1,000 m from the center of the explosion (< 1,000 m slant range) on the other. It was found that activities at long range (> 1,300 m slant range) were mainly cosmogenically induced. Furthermore, at long range, these results are in disagreement with older measurements whose specific activity values were 10 to 100 times higher than predicted by computer model calculations in DS86 and DS02. As a consequence, the previously reported discrepancy is not confirmed. PMID:22378201

  9. Preparation of strong base anion exchange membrane using 60Co gamma radiation

    NASA Astrophysics Data System (ADS)

    Kolhe, Shailesh M.; Kumar, Ashok

    2005-12-01

    Vinyl benzyl trimethyl ammonium chloride (VBTAC) is grafted onto polyethylene (PE) film by simultaneous irradiation technique by 60Co γ-radiation in the presence of 2-hydroxy ethyl methacrylate (HEMA) and air. The effect of solvents, monomer concentration, total dose and dose rate on grafting was studied. All the above parameters affect the grafting of VBTAC. It was also observed that the presence of HEMA is essential to initiate the grafting and low dose rate to facilitate the grafting rate. Properties such as grafting amount, ion exchange capacity and water uptake of the grafted PE film were determined. The ion exchange capacity was found to increase with increasing percentage of grafting, which in turn was found to be dose dependent. The grafting was confirmed by Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA).

  10. Radiation esophagitis in the opossum: radioprotection with indomethacin. [/sup 60/Co

    SciTech Connect

    Northway, M.G.; Libshitz, H.I.; Osborne, B.M.; Feldman, M.S.; Mamel, J.J.; West, J.H.; Szwarc, I.A.

    1980-05-01

    Twenty-five opossums were evaluated before irradiation by fiberoptic endoscopy and air-contrast barium esophagram examination. All animals received 2250 rad /sup 60/Co-irradiated in a single exposure to the entire esophagus and lower exophageal sphincter. Animals received treatment with indomethacin. Acute esophagitis occurred 7 to 10 days postirradiation in control animals and was characterized by erythema, ulceration, and sloughing of esophageal mucosa as determined by air-contrast barium esophagram, endoscopy, and histology. Prostaglandin-treated animals showed more severe evidence of esophagitis than control animals. Indomethacin-treated animals showed no signs or only mild esophagitis posttreatment. It is concluded that indomethacin treatment may significantly reduce the severity of radiation esophagitis perhaps by blockade of prostaglandin synthesis.

  11. Grafting of HEMA onto dopamine coated stainless steel by 60Co-γ irradiation method

    NASA Astrophysics Data System (ADS)

    Jin, Wanqin; Yang, Liming; Yang, Wei; Chen, Bin; Chen, Jie

    2014-12-01

    A novel method for grafting of 2-hydroxyethyl methacrylate (HEMA) onto the surface of stainless steel (SS) was explored by using 60Co-γ irradiation. The surface of SS was modified by coating of dopamine before radiation grafting. The grafting reaction was performed in a simultaneous irradiation condition. The chemical structures change of the surface before and after grafting was demonstrated by Fourier transform infrared (FTIR) spectrometer. The hydrophilicity of the samples was determined by water contact angle measurement in the comparison of the stainless steel in the conditions of pristine, dopamine coated and HEMA grafted. Surface morphology of the samples was characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The corrosion resistance properties of the samples were evaluated by Tafel polarization curve. The hemocompatibility of the samples were tested by platelet adhesion assay.

  12. Radiation decomposition of trichlorofluoromethane in flow system under 60Co gamma-ray irradiation.

    PubMed

    Yamamoto, T; Ootsuka, N

    1982-12-01

    Irradiation experiments of CCl3F were carried out with 60Co gamma-rays using the irradiation facility of the flow system. In the system, CCl3F was irradiated at 5.7 kGg/h (5.7 X 10(5) rad/h) and -30 degrees C. The decomposition behavior of CCl3F and the influence of impurities in the circulating gas on the decomposition were examined. The result was compared with that of ampoule scale. The decomposition yield of CCl3F and the yields of radiolytic products (fluorocarbons) increased in proportion to the absorbed dose. The decomposition yield per Mrad of CCl3F was 0.0246 mol%/Mrad (G = 2.9). This value was equal to 1.8 times that of the ampoule scale. The marked influence of impurities (air, CH4, I2) was recognized for the yields of halogen ions. PMID:7170349

  13. Measurements of (60)Co in massive steel samples exposed to the Hiroshima atomic bomb explosion.

    PubMed

    Gasparro, Joël; Hult, Mikael; Marissens, Gerd; Hoshi, Masaharu; Tanaka, Kenichi; Endo, Satoru; Laubenstein, Matthias; Dombrowski, Harald; Arnold, Dirk

    2012-04-01

    To study discrepancies in retrospective Hiroshima dosimetry, the specific activity of (60)Co in 16 steel samples from Hiroshima was measured using gamma-ray spectrometry in underground laboratories. There is general agreement between these new activity measurements and the specific activities derived from previously calculated dose values on the one hand and former measurements of samples gathered at distances less than 1,000 m from the center of the explosion (< 1,000 m slant range) on the other. It was found that activities at long range (> 1,300 m slant range) were mainly cosmogenically induced. Furthermore, at long range, these results are in disagreement with older measurements whose specific activity values were 10 to 100 times higher than predicted by computer model calculations in DS86 and DS02. As a consequence, the previously reported discrepancy is not confirmed.

  14. Tracer diffusion of /sup 60/Co and /sup 63/Ni in amorphous NiZr alloy

    SciTech Connect

    Hoshino, K.; Averback, R.S.; Hahn, H.; Rothman, S.J.

    1987-01-01

    Tracer diffusion of /sup 60/Co and /sup 63/Ni in equiatomic amorphous NiZr alloy in the temperature range between 486 and 641/sup 0/K can be described by: D/sub Co/sup */ = 3.7 x 10/sup -7/ exp(-(135 +- 14) kJ mole/sup -1//RT) m/sup 2//sec and D/sub Ni//sup */ = 1.7 x 10/sup -7/ exp(-(140 +- 9) kJ mole/sup -1//RT) m/sup 2//sec. The values of D/sub Ni//sup */ are in reasonable agreement with those measured by the Rutherford backscattering technique. The measured diffusivities were independent of time, indicating that no relaxation took place during diffusion. 27 refs., 2 tabs.

  15. Sensitivity to. gamma. rays of avian sarcoma and murine leukemia viruses. [/sup 60/Co, uv

    SciTech Connect

    Toyoshima, K.; Niwa, O.; Yutsudo, M.; Sugiyama, H.; Tahara, S.; Sugahara, T.

    1980-09-01

    The direct inactivation of avian and murine oncoviruses by ..gamma.. rays was examined using /sup 60/Co as a ..gamma..-ray source. The inactivation of murine leukemia virus (M-MuLV) followed single-hit kinetics while the subgroup D Schmidt-Ruppin strain of avian sarcoma virus (SR-RSV D) showed multihit inactivation kinetics with an extrapolation number of 5. The two viruses showed similar uv-inactivation kinetics. The genomic RNA of the SR-RSV D strain was degraded by ..gamma.. irradiation faster than its infectivity, but viral clones isolated from the foci formed after ..gamma.. irradiation had a complete genome. These results suggest that SR-RSV D has a strong repair function, possibly connected with reverse transcriptase activity.

  16. EVALUATION OF THE MIGRATION POTENTIAL FOR 60Co AND 137Cs AT THE MAINE YANKEE SITE.

    SciTech Connect

    FUHRMANN,M.SULLIVAN,T.

    2002-08-08

    The objective of this report is to discuss the degree of sorption and desorption of {sup 137}Cs and {sup 60}Co that may be associated with the granite bedrock and the ''popcorn'' cement drain system that underlie the Maine Yankee Containment Foundation. The purpose is to estimate how much retardation of these two radionuclides takes place in groundwater that flows in the near-field of the Containment Foundation, specifically with respect to contamination originating at the PAB Test Pit. Specific concerns revolve around the potential for the contamination originating near the PAB to create a radioactive dose to a hypothetical ''resident farmer'' using a well intercepting this water to exceed 4 millirems/yr.

  17. 60Co irradiation for sterilization of veterinary mastitis products containing antibiotics and steroids

    NASA Astrophysics Data System (ADS)

    Tsuji, K.; Kane, M. P.; Rahn, P. D.; Steindler, K. A.

    Effects of 60Co irradiation for sterilization of veterinary mastitis products were evaluated. The mastitis products which were examined contained various combinations of antibiotics and steroids suspended in peanut oil vehicle. Bioburden data indicated that the unirradiated products were only occasionally contaminated with microorganisms. The D-values of the nonsterile product and environmental isolates were 0.028, 0.15, 0.017, and 0.018 Mrads for Aspergillus fumigatus, Penicillium oxalicum, Pseudomonas aeruginosa, and Pseudomonas maltophilia, respectively. The D-value of the biological indicator organism, Bacillus pumilus spores, in the vehicle was 0.27 Mrads. Thus, an irradiation dose of 1.6 Mrads would be sufficient to achieve six log cycles of destruction of the biological indicator organism. The minimum absorbed irradiation dose of 2.5 Mrads preferred by many countries for sterilization would achieve 9.3 log cycle destruction of the indicator organism and guarantee a probability of 1 × 10 -15 assurance for the most radio-resistant product isolate, Penicillium oxalicum. In order to examine short and long term chemical stabilities of active components, stability indicating high-performance liquid chromatographic (HPLC) methods for the determination of the following antibiotics and steroids were developed. They were: dihydrostreptomycin, neomycin, novobiocin, penicillin G, hydrocortisone acetate, hydrocortisone sodium succinate, and prednisolone. The rates of degradation and radiolytic degradation schemes for the majority of these compounds were elucidated. Formation of new compounds was not observed in these antibiotics and steroids upon 60Co irradiation. The compounds that increased by irradiation were inherently present in commercially available non-irradiated lots and/or can easily be formed by either acidic, basic, or thermal treatment.

  18. Characteristics of nucleoplasmic bridges induced by 60Co γ-rays in human peripheral blood lymphocytes.

    PubMed

    Zhao, Hua; Lu, Xue; Li, Shuang; Chen, De-Qing; Liu, Qing-Jie

    2013-12-16

    Few studies have shown that the yields of ionising-radiation-induced nucleoplasmic bridges (NPBs) in human cells are dose dependent. However, a dose-response curve between the NPB frequency and the absorbed dose of ionising radiation has not yet been established. This study aimed to investigate NPB frequencies in human peripheral blood lymphocytes induced by cobalt-60 ((60)Co) γ-rays and to establish a dose-response curve. Human peripheral blood samples were collected from three healthy males, and some of these samples were irradiated with 0-6 Gy (60)Co γ-rays. A cytokinesis-block micronucleus cytome assay was then carried out to analyse NPBs and micronuclei (MN) in binucleated cells. The remaining blood samples were irradiated with 0, 2 and 5 Gy of γ-rays, and unstable chromosome aberrations (dicentric chromosome, ring chromosome and acentric chromosome fragment) were analysed. The correlation between NPBs and dicentric plus ring chromosome (dic+r) induced by the same γ-ray dose was also analysed. Results showed that the NPB yields among the three subjects at each dose level were not significantly different. NPBs in binucleated cells at all γ-ray doses conformed to Poisson distribution. The dose-response curve of the γ-ray-induced NPB frequencies followed the linear-quadratic model y = (1.39×10(-3))x (2) + (4.94×10(-3))x. A positive correlation was observed between the frequencies of NPB and dic+r, as well as between the frequencies of MN and acentric fragments. Therefore, NPB is an important biomarker of early chromosome damage event induced by ionising radiation.

  19. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a {sup 60}Co Magnetic Resonance Image Guidance Radiation Therapy System

    SciTech Connect

    Wooten, H. Omar Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H. Harold; Mutic, Sasa

    2015-07-15

    Purpose: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating {sup 60}Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. Methods and Materials: The ViewRay treatment planning system (Oakwood Village, OH) was used to create {sup 60}Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The {sup 60}Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. Results: All {sup 60}Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for {sup 60}Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all {sup 60}Co plan OARs were within clinical tolerances. Conclusions: A commercial {sup 60}Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system.

  20. Measurement of residual 60Co activity induced by atomic-bomb neutrons in Nagasaki and background contribution by environmental neutrons.

    PubMed

    Shizuma, Kiyoshi; Endo, Satoru; Hoshi, Masaharu; Takada, Jun; Iwatani, Kazuo; Hasai, Hiromi; Oka, Takamitsu; Shimazaki, Tatsuya; Okumura, Yutaka; Fujita, Shoichiro; Watanabe, Tadaaki; Imanaka, Tetsuji

    2002-12-01

    Residual 60Co activity in five steel samples induced by neutrons from the Nagasaki atomic bomb has been measured within about 1000 m from the hypocenter. The chemical separation of cobalt and nickel from steel samples was performed, and cobalt-enriched samples were prepared for all samples. Gamma-ray measurements were carried out with a low-background well-type germanium detector. The gamma-ray spectra for five samples were compared with the spectrum of a control sample to ensure that the observed 60Co was actually induced by A-bomb neutrons. The activation of cobalt by environmental neutrons was also investigated. It has been shown that the present 60Co data are consistent with earlier Hashizume's data. PMID:12674203

  1. The effect of organic amendment on potential mobility and bioavailability of 137Cs and 60Co in tropical soils.

    PubMed

    Wasserman, M A; Bartoly, F; Portilho, A P; Rochedo, E R R; Viana, A G; Pérez, D V; Conti, C C

    2008-03-01

    In this work the role of organic matter in the potential mobility and bioavailability of 137Cs and 60Co in Brazilian soil was investigated. Radish was cultivated in pots containing the top layer (0-20 cm) of a Histosol, Ferralsol and Nitisol spiked with 137Cs and 60Co. In the case of the Ferralsol and Nitisol samples, besides the control, two different rates of organic amendments were used. In these soils, a sequential extraction protocol was used to identify the main soil compartments that could be responsible for the variation of transfer factor values. Our results indicate that organic amendment could be suggested as a practical countermeasure for 137Cs and 60Co contamination, since it reduces bioavailability of radionuclides and, consequently, soil to plant transfer factor values by almost one order of magnitude in a short period of time.

  2. Migration of radioactive {sup 85}Sr, {sup 134}Cs and {sup 60}Co through a loess soil layer

    SciTech Connect

    Li, Z.; Wang, H.; Takebe, Shinichi; Tanaka, Tadao

    1995-12-31

    Column experiments have been completed on the migration of {sup 85}Sr, {sup 134}Cs and {sup 60}Co through a loess layer in order to examine the migration behavior of radionuclides in an aerated soil layer. Radionuclide concentration distributions between the effluent and the soil layer were measured after the solution containing the radionuclides was introduced into the column from the top of the soil layer and fifty liters of the underground water were introduced at a constant flow. Results indicate most of the {sup 85}Sr, {sup 134}Cs and {sup 60}Co remained attached to the soil layer, and only a small amount of radionuclide was released from the soil layer. Within the soil layer, the migration depths of three radionuclides are {sup 85}Sr > {sup 134}Cs = {sup 60}Co.

  3. Monte Carlo study of a 60Co calibration field of the Dosimetry Laboratory Seibersdorf.

    PubMed

    Hranitzky, C; Stadtmann, H

    2007-01-01

    The gamma radiation fields of the reference irradiation facility of the Dosimetry Laboratory Seibersdorf with collimated beam geometry are used for calibrating radiation protection dosemeters. A close-to-reality simulation model of the facility including the complex geometry of a 60Co source was set up using the Monte Carlo code MCNP. The goal of this study is to characterise the radionuclide gamma calibration field and resulting air-kerma distributions inside the measurement hall with a total of 20 m in length. For the whole range of source-detector-distances (SDD) along the central beam axis, simulated and measured relative air-kerma values are within +/-0.6%. Influences on the accuracy of the simulation results are investigated, including e.g., source mass density effects or detector volume dependencies. A constant scatter contribution from the lead ring-collimator of approximately 1% and an increasing scatter contribution from the concrete floor for distances above 7 m are identified, resulting in a total air-kerma scatter contribution below 5%, which is in accordance to the ISO 4037-1 recommendations.

  4. Gamma 60Co-irradiation of organic matter in the Phosphoria Retort Shale

    NASA Astrophysics Data System (ADS)

    Lewan, M. D.; Ulmishek, G. F.; Harrison, W.; Schreiner, F.

    1991-04-01

    Irradiation experiments were conducted on a thermally immature rock sample of the Phosphoria Retort Shale and its isolated kerogen. A 60Co-source for gamma radiation was employed at dosages ranging from 81 to 885 Mrads, which are attainable by Paleozoic and Precambrian black shales with syngenetic uranium enrichments. Kerogen elemental, isotopic, and pyrolysate compositions are not affected at these dosages, but the bitumens extracted from the irradiated rock are affected. The major effects are reductions in the amounts of bitumen, acyclic isoprenoids, and high-molecular weight acyclic carboxylic acids. Natural differences in the amounts of bitumen and acyclic isoprenoid due to regional and stratigraphie variations in organic source input and depositional conditions make the radiation-induced reductions in these parameters difficult to use as indicators of natural radiation damage in black shales. However, the preferential reduction in the high-molecular weight acyclic carboxylic acids, which are ubiquitous in the living precursory organic matter, is diagnostic of experimental γ-irradiation but may not be diagnostic of natural irradiation. The overall process associated with radiation damage is polymerization by cross-linking through a free radical mechanism. As a result, irradiation of organic matter in black shales is more likely to retard rather than enhance petroleum generation.

  5. Succinylcholine-induced hyperkalemia in the rat following radiation injury to muscle. [60Co

    SciTech Connect

    Cairoli, V.J.; Ivankovich, A.D.; Vucicevic, D.; Patel, K.

    1982-02-01

    During anesthetic preparation of a patient who had received routine radiation therapy of sarcoma of the leg, cardiac collapse occurred following succinylcholine (SCh) administration. Experiments were designed to test the hypothesis that radiation injury to muscle might cause increased sensitivity to SCh similar to that reported in patients with muscle trauma, severe burns, and lesions causing muscle denervation. Venous plasma potassium levels and arterial blood gas tensions were measured in rats after they were given SCh (3 mg/kg) at various times following 60Co irradiation of the hind legs. Nonirradiated rats responded to SCh with a slight but statistically significant increase in plasma K+. Rats subjected to high levels of radiation (10,000 to 20,000 R) and given SCh 4 to 7 days later responded in the same way as the control rats. Plasma K+ levels in rats exposed to a fractionated irradiated dosage (25000 R given twice with a 1-week interval) followed by SCh 1 week later were similar to those in the control group, but when SCh was given 2 weeks later (3 weeks after initial irradiation) there was a marked elevation of plasma K+, from 3.6 to 7.7 meq/L, a statistically significant increase.

  6. Studying the Effect of Ionization Radiation of 60Co on the Spirulina

    NASA Astrophysics Data System (ADS)

    Ai, Weidang; Guo, Shuang-Sheng; Ai, Weidang; Dong, Wen-Ping; Qin, Li-Feng; Tang, Yong-Kang

    It studied the effect of ionization radiation on the Spirulina plastensis(No.6) by using the γ-rays of 60 Co. In the experiment, Spirulina were irradiated, and the dose of the ionization radiation covered 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0kGy. After irradiating, these Spirulina were cultured under the same conditions. During the course of the experiment, the growth rate, photosynthetic efficiency and nutrition quality of the Spirulina, were analyzed. From the results, low dose of γ-rays (less than 1.5kGy) could improve the content of phycobilin and protein of Spirulina. Only small changes in the morphology of algae filament were found at dose less than 1.0kGy. But with the increase of the dose of γ-rays (more than 1.5kGy), the filaments would break up or even disintegrate. Spirulina had stronger ionization radiation proof and self-rehabilitation capacity, but the growth of Spirulina was stagnated. The LD50 (i.e. the dose resulted in 50% death of the Spirulina) of the colony was 2.0kGy. Considering the capacity of being resistant to γ-rays irradiation, Spirulina can be considered as one of the key biological components in the Controlled Ecological Life Support System (CELSS) for future long-term space missions. Keywords: Controlled Ecological Life Support System (CELSS); Spirulina; ionization radiation; biological component

  7. Level densities and spin cutoff parameters for 60Co and 62Ni from proton evaporation spectra

    NASA Astrophysics Data System (ADS)

    Voinov, Alexander; Grimes, Steven; Brune, Carl R.; Burger, Alexander; Gorgen, Andreas; Guttormsen, Magne; Larsen, Ann Cecilie; Massey, Tomas; Siem, Sunniva

    2013-10-01

    Prediction of reaction cross sections remains a major problem in applications such as data evaluations or/and astrophysics reaction rate calculations. There is big progress in the development of nuclear reaction codes which now include different reaction mechanisms. However, these codes use many input parameters. The variety of input parameters helps us to describe existing experimental data but it creates problems when it comes to predictions. The uncertainties of the level density and the spin cutoff parameter cause the major concern. The proton spectra from α and lithium induced reactions have been measured and analyzed with the Hauser-Feshbach model. Different input level density models have been tested. The level densities and spin cutoff parameters were obtained with Monte-Carlo technique taking into account known spins of discrete low-lying levels of residual nuclei. It was found that the best description is achieved with the Gilbert and Cameron model functions. Excitation energy dependence of spin cutoff parameters was found to be different for 60Co and 62Ni nuclei. It is inconsistent with Fermi-gas model which is usually used to calculate spin cutoff parameters.

  8. The effect of perinatal sup 60 Co gamma radiation on brain weight in beagles

    SciTech Connect

    Hamilton, B.F.; Benjamin, S.A.; Angleton, G.M.; Lee, A.C. )

    1989-08-01

    Beagle dogs were given single, whole-body {sup 60}Co gamma-radiation exposures at one of three prenatal (8, 28, or 55 days postcoitus) or three postnatal (2, 70, or 365 days postpartum) ages to evaluate the relative radiosensitivity of various stages of brain development. A total of 387 dogs received mean doses ranging from 0.16 to 3.83 Gy, and 120 dogs were sham-irradiated. Groups of dogs were sacrificed at preselected times from 70 days to 11 years of age. Brain weight decreased significantly with increasing dose in dogs irradiated at 28 or 55 days postcoitus or at 2 days postpartum. Irradiations at 28 days postcoitus were dramatically more effective in causing a reduction in brain weight than those at 55 days postcoitus or 2 days postpartum. Among dogs given 1.0 Gy or more and followed for up to 4 years, there was a radiation effect evident at all three sensitive exposure ages. Among dogs given lower doses and followed for up to 11 years, there was a significant decrease in brain weight in dogs given 0.80-0.88 Gy at 28 days postcoitus. All decreases in brain weight were present after normalization for radiation-induced reductions in skeletal (body) size. No specific morphologic changes were noted in the brains which showed the radiation-related reductions in size.

  9. Specific activities of 60Co and 152Eu in samples collected from the Atomic-Bomb Dome in Hiroshima.

    PubMed

    Shizuma, K; Iwatani, K; Hashi, H; Oka, T; Morishima, H; Hoshi, M

    1992-06-01

    Neutron-induced activities 60Co and 152Eu have been measured for samples collected from the Atomic-Bomb Dome locating at 161 m from the hypocenter of the Hiroshima Bomb. Specific activities 60Co/Co and 152Eu/Eu at the time of the detonation have been determined as 10.0 +/- 1.0 Bq mg-1 (steel sample S4) and 80 +/- 9 Bq mg-1 (granite sample G1), respectively. Detailed measurements of 60Co and 152Eu activities for samples collected from various locations of the Dome show almost no directional dependence whether the sample faced to the epicenter or not, nor vertical height dependence between 17 m height and the ground level. In addition, 152Eu was not detected in the sample collected from the basement. It has been shown that the present 60Co activity value, the nearest steel one to the hypocenter, as well as other short distance data are systematically lower than the calculated values based on the neutron fluence of the DS86.

  10. Proposed model for estimating dose to inhabitants of 60Co contaminated buildings.

    PubMed

    Cardarelli, J; Elliott, L; Hornung, R; Chang, W P

    1997-03-01

    A model to predict the time weighted exposures to gamma radiation was developed for buildings constructed with structural steel having some contamination from 60Co. Several buildings throughout sixteen city blocks in downtown Taipei were built about ten years ago with this material. These buildings were used for residential, business, and educational purposes with radiation levels ranging from background to five hundred times background. A comprehensive epidemiologic study by the National Yang Ming University Medical School in Taipei is underway to study the effects of this exposure to the building occupants. An evaluation of external radiation exposure was performed using survey instruments and thermoluminescent dosimeters. Exposure data from the survey instruments were used in a computer model developed to calculate cumulative radiation exposure estimates for the epidemiologic research. While the survey instrument data provided radiation levels at a point in time, the thermoluminescent dosimeters were placed in fixed locations and on several volunteers for a period of one month to verify the modeling results. The model itself is a mathematical algorithm that provides estimates with minimum and maximum range values by taking into account differences in the survey data between adults and children, variable occupancy patterns, background radiation, and radioactive decay. Several assumptions (background rates, height adjustment values, and occupancy factors) are easily adjusted to improve the estimated radiation exposures. The model predicted the exposures as measured by the thermoluminescent dosimeters with greater reliability for adults than for children. The differences between the two methods were about 10-15% for the adults and about 60% for the child. This strategy, its advantages, limitations, and its performance against actual thermoluminescent dosimeter measurements are presented. PMID:9030836

  11. [The estimation of appropriateness of chromosomal aberration assay as a biological dosimetry based on cytogenetic investigation of lung cancer patients given non-uniform fractional exposures to high doses of therapeutic 60Co gamma-rays].

    PubMed

    Khvostunov, I K; Kursova, L V; Shepel', N N; Ragulin, Iu A; Sevan'kaev, A V; Gulidov, I A; Glazyrin, D A; Ivanova, I N

    2012-01-01

    The objective of this study was to investigate in vivo the dose response of radiation induced chromosomal aberrations in human blood lymphocytes of lung cancer patients given non-uniform fractional exposures to high doses of therapeutic 60Co gamma-rays delivered synchronously with polychemotherapy. The chromosome aberration analysis was carried out in peripheral blood lymphocytes of 13 lung cancer patients who manifested II to IV developmental clinical stage. During the course of radiotherapy they received the accumulated tumor dose ranged 47.5 to 70 Gy. The yield ofdicentrics, centric rings and fragments was measured in the blood samples taken before treatment, after the first day and after the complete course of radiotherapy. Based on cytogenetic measurements of 3 patients, the average tumor dose after the first day was estimated to be 2.1 to 3.0 Gy given that the corresponding physical dose was (1.0 Gy + 1.5 Gy). The quotient of the individual dose estimated by the frequency of aberrations to the physical dose after the complete course of radiotherapy was calculated for all 13 patients. The mean quotient was shown to be equal to 93 +/- 9% ranged 50 to 154%.

  12. Investigation of Chitosan for Decorporation of 60Co in the Rat

    SciTech Connect

    Levitskaia, Tatiana G.; Creim, Jeffrey A.; Curry, Terry L.; Luders, Teresa; Morris, James E.; Sinkov, Sergey I.; Woodstock, Angela D.; Thrall, Karla D.

    2009-08-01

    Purpose: The reported investigation is a part of our on-going research aimed at identifying effective in vivo non-toxic decorporation agents and developing new therapies to treat internal contamination with radionuclides. The non-toxic nature of chitosan makes it an especially attractive candidate for unsupervised treatment of the general population in case of radiological/nuclear emergency. In this study, chemically unmodified water-soluble chitosan oligosaccharide of low molecular weight was tested for decorporation of cobalt-60 (Co-60) using a rodent model. Methods: Affinity of chitosan oligosaccharide for Co(II) was tested in vitro under conditions of physiological pH range and ionic strength using combined spectrophotometric and potentiometric titration techniques. Fisher F344 rat model was used for in vivo studies. To evaluate effect of chitosan on ingested Co-60, animals received single oral dose of Co-60 chloride (7 – 13.2 kBq per animal) followed by oral administration of chitosan material (288 – 366 mg per kg body weight); chitosan dosing was repeated in 24 hours. Chitosan was also tested for removal of internalized Co-60. In this study, Co-60 single intravenous injection (7 – 8 kBq per animal) was followed by repetitive oral (300 mg per kg body weight) or intravenous (195 mg per kg body weight) administration of the chitosan material once daily for 5 days. Control animal groups received a single dose of Co-60 without chelator treatment. Excreta was collected daily. Tissues were collected postmortem and analyzed for radioactivity by gamma counting technique. Results: In vitro experiments confirmed binding of Co(II) by chitosan oligosaccharide, formation of mixed cobalt-chitosan-hydroxide complex species was proposed, and stability constants was calculated. Control in vivo studies indicated that about 71% of ingested Co-60 was excreted in two days predominantly through the gastrointestinal tract. For intravenously administered Co-60, urinal excretion

  13. Case report of a near medical event in stereotactic radiotherapy due to improper units of measure from a treatment planning system

    SciTech Connect

    Gladstone, D. J.; Li, S.; Jarvis, L. A.; Hartford, A. C.

    2011-07-15

    Purpose: The authors hereby notify the Radiation Oncology community of a potentially lethal error due to improper implementation of linear units of measure in a treatment planning system. The authors report an incident in which a patient was nearly mistreated during a stereotactic radiotherapy procedure due to inappropriate reporting of stereotactic coordinates by the radiation therapy treatment planning system in units of centimeter rather than in millimeter. The authors suggest a method to detect such errors during treatment planning so they are caught and corrected prior to the patient positioning for treatment on the treatment machine. Methods: Using pretreatment imaging, the authors found that stereotactic coordinates are reported with improper linear units by a treatment planning system. The authors have implemented a redundant, independent method of stereotactic coordinate calculation. Results: Implementation of a double check of stereotactic coordinates via redundant, independent calculation is simple and accurate. Use of this technique will avoid any future error in stereotactic treatment coordinates due to improper linear units, transcription, or other similar errors. Conclusions: The authors recommend an independent double check of stereotactic treatment coordinates during the treatment planning process in order to avoid potential mistreatment of patients.

  14. Effects of 60Co gamma-rays, ultraviolet light, and mitomycin C on Halobacterium salinarium and Thiobacillus intermedius.

    PubMed

    Shahmohammadi, H R; Asgarani, E; Terato, H; Ide, H; Yamamoto, O

    1997-03-01

    Lethal effects of 60Co gamma-rays, UV light, and mitomycin C on two kinds of bacteria, Halobacterium salinarium which grows in highly concentrated salt media and Thiobacillus intermedius which requires reduced sulfur compounds, were studied and compared with those on Escherichia coli B/r. D37 values for H. salinarium, T. intermedius and E. coli B/r were 393, 150, and 92 Gy, respectively, by exposure to 60Co gamma-rays. They were 212, 38, and 10 J/m2, respectively, by exposure to UV light and 2.36, 0.25, and 0.53 microgram/ml/h, respectively, by exposure to mitomycin C. Against these agents, H. salinarium was much more resistant than T. intermedius and E. coli B/r.

  15. Combined reactor neutron beam and {sup 60}Co γ-ray radiation effects on CMOS APS image sensors

    SciTech Connect

    Wang, Zujun Chen, Wei; Sheng, Jiangkun; Liu, Yan; Xiao, Zhigang; Huang, Shaoyan; Liu, Minbo

    2015-02-15

    The combined reactor neutron beam and {sup 60}Co γ-ray radiation effects on complementary metal-oxide semiconductor (CMOS) active pixel sensors (APS) have been discussed and some new experimental phenomena are presented. The samples are manufactured in the standard 0.35-μm CMOS technology. Two samples were first exposed to {sup 60}Co γ-rays up to the total ionizing dose (TID) level of 200 krad(Si) at the dose rates of 50.0 and 0.2 rad(Si)/s, and then exposed to neutron fluence up to 1 × 10{sup 11} n/cm{sup 2} (1-MeV equivalent neutron fluence). One sample was first exposed to neutron fluence up to 1 × 10{sup 11} n/cm{sup 2} (1-MeV equivalent neutron fluence), and then exposed to {sup 60}Co γ-rays up to the TID level of 200 krad(Si) at the dose rate of 0.2 rad(Si)/s. The mean dark signal (K{sub D}), the dark signal non-uniformity (DSNU), and the noise (V{sub N}) versus the total dose and neutron fluence has been investigated. The degradation mechanisms of CMOS APS image sensors have been analyzed, especially for the interaction induced by neutron displacement damage and TID damage.

  16. Steroid hormone production in testis, ovary, and adrenal gland of immature rats irradiated in utero with /sup 60/Co

    SciTech Connect

    Inano, H.; Suzuki, K.; Ishii-Ohba, H.; Imada, Y.; Kumagai, R.; Kurihara, S.; Sato, A.

    1989-02-01

    Pregnant rats received whole-body irradiation at 20 days of gestation with 2.6 Gy lambda rays from a 60Co source. Endocrinological effects before maturation were studied using testes and adrenal glands obtained from male offspring and ovaries from female offspring irradiated in utero. Seminiferous tubules of the irradiated male offspring were remarkably atrophied with free germinal epithelium and containing only Sertoli cells. Female offspring also had atrophied ovaries. Testicular tissue obtained from intact and 60Co-irradiated rats was incubated with 14C-labeled pregnenolone, progesterone, 17 alpha-hydroxyprogesterone, and androstenedione as a substrate. Intermediates for androgen production and catabolic metabolites were isolated after the incubation. The amounts of these metabolites produced by the irradiated testes were low in comparison with the control. The activities of delta 5-3 beta-hydroxysteroid dehydrogenase, 17 alpha-hydroxylase, C17,20-lyase, and delta 4-5 alpha-reductase in the irradiated testes were 30-40% of those in nonirradiated testes. Also, the activities of 17 beta- and 20 alpha-hydroxysteroid dehydrogenases were 72 and 52% of the control, respectively. In adrenal glands, the 21-hydroxylase activity of the irradiated animals was 38% of the control, but the delta 5-3 beta-hydroxysteroid dehydrogenase activity was comparable to that of the control. On the other hand, the activity of delta 5-3 beta-hydroxysteroid dehydrogenase of the irradiated ovary was only 19% of the control. These results suggest that 60Co irradiation of the fetus in utero markedly affects the production of steroid hormones in testes, ovaries, and adrenal glands after birth.

  17. Development and characterization of a graphite-walled ionization chamber as a reference dosimeter for 60Co beams

    NASA Astrophysics Data System (ADS)

    Perini, Ana P.; Neves, Lucio P.; Caldas, Linda V. E.

    2014-11-01

    A graphite-walled ionization chamber with a sensitive volume of 6.4 cm3 was developed at the Calibration Laboratory of IPEN (LCI) to determine the air kerma rate of a 60Co source. This new prototype was developed to be a simple chamber, without significant nongraphite components and with a simple set-up, which allows the determination of its various required correction factors by Monte Carlo simulations. This new ionization chamber was characterized according to the IEC 60731 standard, and all results were obtained within its limits. Furthermore, Monte Carlo simulations were undertaken to obtain the correction factors involved with the air kerma determination. The air kerma rate obtained with the graphite-walled ionization chamber was compared with that from the reference dosimeter at the LCI, a PTW ionization chamber (model TN30002). The results obtained showed good agreement within the statistical uncertainties. A graphite ionization chamber was assembled and characterized as a reference dosimeter. The characterization test results were within recommended limits. Monte Carlo simulations were undertaken to obtain the correction factors. The air kerma rate of a 60Co source was obtained with satisfactory results.

  18. 60Co-irradiation as an alternate method for sterilization of penicillin G, neomycin, novobiocin, and dihydrostreptomycin

    SciTech Connect

    Tsuji, K.; Rahn, P.D.; Steindler, K.A.

    1983-01-01

    The effects of the use of 60Co-irradiation to sterilize antibiotics were evaluated. The antibiotic powders were only occasionally contaminated with microorganisms. The D-values of the products and environmental isolates were 0.028, 0.027, 0.015, 0.046, 0.15, 0.018, and 0.19 Mrads for Aspergillus species (UC 7297, 7298), A. fumigatus (UC 7299), Rhodotorula species (UC 7300), Penicillium oxalicum (UC 7269), Pseudomonas maltophilia (UC 6855), and a biological indicator microorganism, Bacillus pumilus spores (ATCC 27142). An irradiation dose of 1.14 Mrads, therefore, was sufficient to achieve a six-log cycle destruction of B. pumilus spores. Based on the bioburden data, a minimum irradiation dose of 1.05 Mrads was calculated to be sufficient to obtain a 10(-6) probability of sterilizing the most radioresistant isolate, Pen. oxalicum. To determine the radiolytic degradation scheme and the stability of the antibiotics following irradiation, high-performance liquid chromatographic (HPLC) methods were developed. The resulting rates of degradation for the antibiotics were 0.6, 1.2, 2.3, and 0.95%/Mrad for penicillin G, neomycin, novobiocin, and dihydrostreptomycin, respectively. Furthermore, radiolytic degradation pathways for the antibiotics were identified and found to be similar to those commonly encountered when antibiotics are subjected to acidic, basic, hydrolytic, or oxidative treatments. No radiolytic compounds unique to 60Co-irradiation were found.

  19. Effects of (60)Co gamma irradiation on behavior and gill histoarchitecture of giant fresh water prawn Macrobrachium rosenbergii (DE MAN).

    PubMed

    Stalin, A; Broos, K V; Sadiq Bukhari, A; Syed Mohamed, H E; Singhal, R K; Venu-babu, P

    2013-06-01

    Present study was designed to observe the effects of (60)Co gamma radiation in behavioral and histological changes in the gills of giant fresh water prawn Macrobrachium rosenbergii. The adult prawns were irradiated with four different dose levels (3mGy, 30mGy, 300mGy and 3000mGy) and the control group (without irradiation) was maintained separately. Behavioral changes like hyperactivity, loss of balance, reduced swimming rate, slower rate of food intake and convulsions were observed in higher dose levels of 300mGy and 3000mGy. The histological alterations such as accumulated haemocytes in haemocoelic spaces, abnormal gill tips, lifted lamellar epithelium, swollen and fused lamellae, hyperplasic, necrotic, clavate-globate and complete disorganization of lamellae were observed in (60)Co gamma irradiated prawns. Significantly more considerable histological alterations were observed in the highest dose level of 3000mGy, but no mortality was evidenced. This study serves as biomonitoring tool to assess the radiation pollution in the aquatic environment.

  20. Effects of high-temperature anneals and {sup 60}Co gamma-ray irradiation on strained silicon on insulator

    SciTech Connect

    Park, K.; Canonico, M.; Celler, G. K.; Seacrist, M.; Chan, J.; Gelpey, J.; Holbert, K. E.; Nakagawa, S.; Tajima, M.; Schroder, D. K.

    2007-10-01

    Strained silicon on insulator was exposed to high-temperature annealing and high-dose {sup 60}Co gamma ({gamma})-ray irradiation to study the tenacity of the bond between the strained Si film and the underlying buried oxide. During the high-temperature anneals, the samples were ramped at a rate of 150 deg. C/s to 850 deg. C then ramped to 1200, 1250, and 1300 deg. C at a rate of approximately 5x10{sup 5} deg. C/s for millisecond duration anneals. For the irradiation experiments, the samples were irradiated with {sup 60}Co {gamma} rays to a dose of 51.5 kGy. All samples were characterized by ultraviolet (UV) Raman, pseudo metal-oxide-semiconductor field-effect transistor ({psi}-MOSFET) current voltage, Hall mobility, and photoluminescence (PL) to verify changes in strain. UV Raman, PL, and {psi}-MOSFET measurements show no strain relaxation for the high-temperature annealed samples and only very slight relaxation for the {gamma}-ray irradiated samples.

  1. Evaluating the effect of various intracavitary applicators on dosimetric parameters of (192)Ir, (137)Cs, and (60)Co sources.

    PubMed

    Ghorbani, Mahdi; Hashempour, Marjan; Azizi, Mona; Meigooni, Ali S

    2016-06-01

    The purpose of this research is to study the effect of various applicator compositions on dosimetric parameters and dose distribution of (192)Ir, (137)Cs, and (60)Co sources, using Monte Carlo simulation techniques. To study the effect of applicators on source dosimetry, the dose rate constant, and radial dose function and isodose curves for the above noted sources were calculated in the presence and absence of plastic, titanium, and a stainless steel applicators. The effects of the applicators on the dosimetric parameters and isodose curves of these sources were dependent of the source type and materials of the applicator. The (192)Ir source with the stainless steel applicator has the maximum difference of dose rate (4.2 %) relative to the without applicator case. The (60)Co source with plastic applicator has the minimum dose variation. Moreover, this effect is higher for lower energy sources. Ignoring the effect of applicator composition and geometry on dose distribution may cause discrepancies in treatment planning. Plastic applicators have the least radiation attenuation compared to the other applicators, therefore, they are recommended for use in brachytherapy. A table of correction factors has been introduced for different sources and applicators with different materials for the clinical applications.

  2. Similar Treatment Outcomes for Radical Cystectomy and Radical Radiotherapy in Invasive Bladder Cancer Treated at a United Kingdom Specialist Treatment Center

    SciTech Connect

    Kotwal, Sanjeev; Choudhury, Ananya; Johnston, Colin; Paul, Alan B.; Whelan, Peter; Kiltie, Anne E.

    2008-02-01

    Purpose: To conduct a retrospective analysis within a large university teaching hospital, comparing outcomes between patients receiving either radical surgery or radiotherapy as curative treatment for bladder cancer. Patients and Methods: Between March 1996 and December 2000, 169 patients were treated radically for muscle-invasive bladder cancer. Data were collected from patient notes. Statistical analyses were performed using Kaplan-Meier methods and Cox proportional hazards regression analysis to compare radiotherapy and surgical outcome data. Results: There was no difference in overall, cause-specific, and distant recurrence-free survival at 5 years between the two groups, despite the radiotherapy group being older (median age, 75.3 years vs. 68.2 years). There were 31 local bladder recurrences in the radiotherapy group (24 solitary), but there was no significant difference in distant recurrence-free survival. In a more recent (2002-2006) cohort, the median age of radiotherapy patients but not the cystectomy patients was higher than in the 1996-2000 cohort (78.4 years vs. 75.3 years for radiotherapy and 67.9 years vs. 68.2 years for surgery). Conclusions: Although the patients undergoing radical cystectomy were significantly younger than the radiotherapy patients, treatment modality did not influence survival. Bladder cancer patients are an increasingly elderly group. Radical radiotherapy is a viable treatment option for these patients, with the advantage of organ preservation.

  3. DETECTORS AND EXPERIMENTAL METHODS: A comparison of ionizing radiation damage in CMOS devices from 60Co gamma rays, electrons and protons

    NASA Astrophysics Data System (ADS)

    He, Bao-Ping; Yao, Zhi-Bin; Zhang, Feng-Qi

    2009-06-01

    Radiation hardened CC4007RH and non-radiation hardened CC4011 devices were irradiated using 60Co gamma rays, 1 MeV electrons and 1-9 MeV protons to compare the ionizing radiation damage of the gamma rays with the charged particles. For all devices examined, with experimental uncertainty, the radiation induced threshold voltage shifts (ΔVth) generated by 60Co gamma rays are equal to that of 1 MeV electron and 1-7 MeV proton radiation under 0 gate bias condition. Under 5 V gate bias condition, the distinction of threshold voltage shifts (ΔVth) generated by 60Co gamma rays and 1 MeV electrons irradiation are not large, and the radiation damage for protons below 9 MeV is always less than that of 60Co gamma rays. The lower energy the proton has, the less serious the radiation damage becomes.

  4. Comparison of Axxent-Xoft, 192Ir and 60Co high-dose-rate brachytherapy sources for image-guided brachytherapy treatment planning for cervical cancer

    PubMed Central

    Packianathan, S; He, R; Yang, C C

    2015-01-01

    Objective: To evaluate the dosimetric differences and similarities between treatment plans generated with Axxent-Xoft electronic brachytherapy source (Xoft-EBS), 192Ir and 60Co for tandem and ovoids (T&O) applicators. Methods: In this retrospective study, we replanned 10 patients previously treated with 192Ir high-dose-rate brachytherapy. Prescription was 7 Gy × 4 fractions to Point A. For each original plan, we created two additional plans with Xoft-EBS and 60Co. The dose to each organ at risk (OAR) was evaluated in terms of V35% and V50%, the percentage volume receiving 35% and 50% of the prescription dose, respectively, and D2cc, highest dose to a 2 cm3 volume of an OAR. Results: There was no difference between plans generated by 192Ir and 60Co, but the plans generated using Xoft-EBS showed a reduction of up to 50% in V35%, V50% and D2cc. The volumes of the 200% and 150% isodose lines, however, were 74% and 34% greater than the comparable volumes generated with the 192Ir source. Point B dose was on average only 16% of the Point A dose for plans generated with Xoft-EBS compared with 30% for plans generated with 192Ir or 60Co. Conclusion: The Xoft-EBS can potentially replace either 192Ir or 60Co in T&O treatments. Xoft-EBS offers either better sparing of the OARs compared with 192Ir or 60Co or at least similar sparing. Xoft-EBS-generated plans had higher doses within the target volume than 192Ir- or 60Co-generated ones. Advances in knowledge: This work presents newer knowledge in dosimetric comparison between Xoft-EBS, 192Ir or 60Co sources for T&O implants. PMID:25996576

  5. Relation of structure to function for the US reference standard endotoxin after exposure to /sup 60/Co radiation, Interim report, September 1984-December 1985

    SciTech Connect

    Suba, E.A.; Elin, R.J.

    1986-01-01

    The structure and function of the highly purified U.S. reference standard endotoxin (RSE) were studied after exposure to ionizing radiation from a /sup 60/Co source. With increasing doses of radiation, the trilaminar ribbon-like structure of untreated endotoxin exhibited focal swelling, after which only spherical particles were seen by electron microscopy. These morphological changes were paralleled by the respective loss of O-side chain-repeating units and pieces of the R-core from the lipopolysaccharide molecules, as demonstrated by electrophoresis. The biologic function of the irradiated endotoxin was assessed with a variety of tests. At higher doses of radiation, a direct relation was observed between the degradation of the molecular and supramolecular structure and the loss of biologic function. At lower doses of radiation, however, there was variability among the functional assays in their rate of change with progressive irradiation of the RSE. The results suggest that the carbohydrate moiety plays an important role both in determining the supramolecular structure and in modulating certain biologic activities of bacterial endotoxins.

  6. Verification of monitor unit calculations for non-IMRT clinical radiotherapy: Report of AAPM Task Group 114

    SciTech Connect

    Stern, Robin L.; Heaton, Robert; Fraser, Martin W.; and others

    2011-01-15

    The requirement of an independent verification of the monitor units (MU) or time calculated to deliver the prescribed dose to a patient has been a mainstay of radiation oncology quality assurance. The need for and value of such a verification was obvious when calculations were performed by hand using look-up tables, and the verification was achieved by a second person independently repeating the calculation. However, in a modern clinic using CT/MR/PET simulation, computerized 3D treatment planning, heterogeneity corrections, and complex calculation algorithms such as convolution/superposition and Monte Carlo, the purpose of and methodology for the MU verification have come into question. In addition, since the verification is often performed using a simpler geometrical model and calculation algorithm than the primary calculation, exact or almost exact agreement between the two can no longer be expected. Guidelines are needed to help the physicist set clinically reasonable action levels for agreement. This report addresses the following charges of the task group: (1) To re-evaluate the purpose and methods of the ''independent second check'' for monitor unit calculations for non-IMRT radiation treatment in light of the complexities of modern-day treatment planning. (2) To present recommendations on how to perform verification of monitor unit calculations in a modern clinic. (3) To provide recommendations on establishing action levels for agreement between primary calculations and verification, and to provide guidance in addressing discrepancies outside the action levels. These recommendations are to be used as guidelines only and shall not be interpreted as requirements.

  7. Verification of monitor unit calculations for non-IMRT clinical radiotherapy: report of AAPM Task Group 114.

    PubMed

    Stern, Robin L; Heaton, Robert; Fraser, Martin W; Goddu, S Murty; Kirby, Thomas H; Lam, Kwok Leung; Molineu, Andrea; Zhu, Timothy C

    2011-01-01

    The requirement of an independent verification of the monitor units (MU) or time calculated to deliver the prescribed dose to a patient has been a mainstay of radiation oncology quality assurance. The need for and value of such a verification was obvious when calculations were performed by hand using look-up tables, and the verification was achieved by a second person independently repeating the calculation. However, in a modern clinic using CT/MR/PET simulation, computerized 3D treatment planning, heterogeneity corrections, and complex calculation algorithms such as convolution/superposition and Monte Carlo, the purpose of and methodology for the MU verification have come into question. In addition, since the verification is often performed using a simpler geometrical model and calculation algorithm than the primary calculation, exact or almost exact agreement between the two can no longer be expected. Guidelines are needed to help the physicist set clinically reasonable action levels for agreement. This report addresses the following charges of the task group: (1) To re-evaluate the purpose and methods of the "independent second check" for monitor unit calculations for non-IMRT radiation treatment in light of the complexities of modern-day treatment planning. (2) To present recommendations on how to perform verification of monitor unit calculations in a modern clinic. (3) To provide recommendations on establishing action levels for agreement between primary calculations and verification, and to provide guidance in addressing discrepancies outside the action levels. These recommendations are to be used as guidelines only and shall not be interpreted as requirements.

  8. Radiotherapy Accidents

    NASA Astrophysics Data System (ADS)

    Mckenzie, Alan

    A major benefit of a Quality Assurance system in a radiotherapy centre is that it reduces the likelihood of an accident. For over 20 years I have been the interface in the UK between the Institute of Physics and Engineering in Medicine and the media — newspapers, radio and TV — and so I have learned about radiotherapy accidents from personal experience. In some cases, these accidents did not become public and so the hospital cannot be identified. Nevertheless, lessons are still being learned.

  9. Time resolution of a 1-inch cylindrical CeBr{sub 3} crystal at {sup 60}Co energies

    SciTech Connect

    Vedia, V.; Fraile, L. M.; Olaizola, B.; Paziy, V.; Picado, E.; Udias, J. M.; Mach, H.

    2013-06-10

    We have measured time resolutions of a cylindrical CeBr{sub 3} scintillator of 1-inch in height and 1-inch in diameter coupled to two different fast photomultiplier tubes, Hamamatsu R9779 and Photonis XP20D0, as a function of applied high voltages and different settings of a Constant Fraction Discriminator ORTEC 935. The time resolution was measured using a time-delayed coincidence set-up involving a fast reference detector. The best result of 119(2) ps at {sup 60}Co energies was obtained for the CeBr{sub 3} crystal coupled to the Hamamatsu PMT. This result is comparable to the resolution of 107 ps reported for a LaBr{sub 3}(Ce) crystal of the same size. For the coupling of the CeBr{sub 3} scintillator to the Photonis PMT we got the time resolution of 146(2) ps.

  10. Determination of 137Cs and 60Co pollution in the area of the Laguna Verde Nuclear Power Plant, Mexico.

    PubMed

    Salas Mar, Bernardo

    2015-11-01

    The project 'Radiological Analysis of Environmental Samples in the Gulf of Mexico and the coast of Quintana Roo', had the aim of identifying and quantifying anthropogenic radionuclides in environmental samples consisting of silt, sand and sea water. This paper presents the results of the radiological analysis of these samples, which was made in the multichannel system for gamma spectrometry with hyperpure germanium detector in the Laboratory of Radiological Analysis of Environmental Samples, located at the Physics Department, Faculty of Sciences, of the Autonomous National University of Mexico (UNAM). The sampled points are along the coast of the contiguous states of Tamaulipas, Veracruz, Tabasco, Campeche, Yucatan and Quintana Roo. This paper presents the qualitative and quantitative concentrations of the main identified anthropogenic radionuclides (60)Co and (137)Cs.

  11. Effect of 60Co-irradiation on the development and immunogenicity of Plasmodium berghei sporozoites in Anopheles stephensi mosquitoes

    SciTech Connect

    Smrkovski, L.L.; McConnell, E.; Tubergen, T.A.

    1983-10-01

    Protection conferred to mice by Plasmodium berghei sporozoites increased significantly when the time interval between 60Co-irradiation of the infected mosquitoes and harvest of sporozoites increased. One thousand sporozoites conferred no protection against challenge if harvested on the day of irradiation, but protected 60% of recipient mice when harvested 28 days postirradiation. When the time between feeding of mosquitoes and irradiation was varied, sporozoites from mosquitoes irradiated 3 days after feeding were infective for mice. Sporozoites from mosquitoes irradiated on day 10 postfeeding were not infective, but were immunogenic. In all experiments a decline occurred in the number of recoverable sporozoites over a 28-day period postirradiation to less than 10% of the yield on the day of irradiation.

  12. Determination of 137Cs and 60Co pollution in the area of the Laguna Verde Nuclear Power Plant, Mexico.

    PubMed

    Salas Mar, Bernardo

    2015-11-01

    The project 'Radiological Analysis of Environmental Samples in the Gulf of Mexico and the coast of Quintana Roo', had the aim of identifying and quantifying anthropogenic radionuclides in environmental samples consisting of silt, sand and sea water. This paper presents the results of the radiological analysis of these samples, which was made in the multichannel system for gamma spectrometry with hyperpure germanium detector in the Laboratory of Radiological Analysis of Environmental Samples, located at the Physics Department, Faculty of Sciences, of the Autonomous National University of Mexico (UNAM). The sampled points are along the coast of the contiguous states of Tamaulipas, Veracruz, Tabasco, Campeche, Yucatan and Quintana Roo. This paper presents the qualitative and quantitative concentrations of the main identified anthropogenic radionuclides (60)Co and (137)Cs. PMID:25944960

  13. Determination of late-time Gamma-Ray (60Co) sensitivity of single diffusion Lot 2N2222A transistors.

    SciTech Connect

    DePriest, Kendall Russell; Kajder, Karen C.; Peters, Curtis D.

    2008-08-01

    Sandia National Laboratories (SNL) has embarked on a program to develop a methodology to use damage relations techniques (alternative experimental facilities, modeling, and simulation) to understand the time-dependent effects in transistors (and integrated circuits) caused by neutron irradiations in the Sandia Pulse Reactor-III (SPR-III) facility. The development of these damage equivalence techniques is necessary since SPR-III was shutdown in late 2006. As part of this effort, the late time {gamma}-ray sensitivity of a single diffusion lot of 2N2222A transistors has been characterized using one of the {sup 60}Co irradiation cells at the SNL Gamma Irradiation Facility (GIF). This report summarizes the results of the experiments performed at the GIF.

  14. High dose rate /sup 60/Co remote afterloading irradiation in cancer of the cervix in Haiti, 1977-1984

    SciTech Connect

    Streeter, O.E. Jr.; Goldson, A.L.; Chevallier, C.; Nibhanupudy, J.R.

    1988-06-01

    From 1977 through 1984, 293 previously untreated patients with biopsy proven carcinoma of the uterine cervix were treated by whole pelvis irradiation and high intensity 60Co remote afterloading (RAL) intrauterine tandem techniques in Haiti. The treatment results were analyzed retrospectively to evaluate the therapeutic results and prognostic factors of a strict protocol involving 40 Gy to the whole pelvis (2 Gy/day, 5 days/week). In addition, on the 5th day of the 3rd week, the first outpatient 60Co remote afterloading intracavitary insertion, delivering 7.5 Gy to point A with each insertion, repeated 3 times by a week separation for a total of 4 times. The total TDF for external beam plus RAL was 158 and 175 for early and late effects respectively. One hundred-four patients were evaluable after 1 year or more follow-up, with a median of 26.5 months. No evidence of disease (NED) by Stage at 1 year was: Stage I of 100% (3/3), Stage II of 82% (9/11), Stage III of 80% (47/59), and Stage IV of 58% (18/31). The post-therapeutic complication rate was 7.7%, with no fistulas or requirement of surgical intervention. Those with documented follow-up of at least 2 years (74 patients) had comparable survival to other high dose rate and low dose rate studies. This study shows that outpatient brachytherapy can be carried out without sophisticated and expensive equipment with minimal staff trained in radiation therapy. A detailed description of this outpatient RAL technique and results are described so that this method can be adapted to other developing and industrialized nations where cost containment is becoming a key issue.

  15. Serum creatine kinase (CK) activity following exposure to cadmium and/or /sup 60/CO gamma irradiation

    SciTech Connect

    Morgan, R.M.; Kundomal, Y.R.; Hupp, E.W.

    1985-01-01

    Two hundred and sixteen young adult male Sprague-Dawley rats were injected IP every 3 days for 29 days for a total of 9 injections with 0, 1.0, or 2.5 mg CdCl/sub 2//kg body weight. Total cumulative doses were 0, 9.0 or 22.5 mg CdCl/sub 2//kg body weight. Twenty-four hours after the last cadmium injection (day 30), each rat was irradiated with a total-body exposure of 0, 3.62, or 5.43 Gray of gamma (/sup 60/Co) radiation at a dose rate of 3.04 Gray/min. Eight rats from each of the 9 groups were sacrificed on day 1, 7, or 21. Highest levels of the creatine kinase enzyme were seen in radiation groups at day 1, indicating an immediate radiotoxic response. Enzyme levels decreased through day 21 indicating clearance of the enzyme from the plasma. Although statistically significant differences between the groups, cadmium, radiation, or days were not seen, cadmium did protect against radiation. This protective function is not explainable; however, it is speculated that different conformations of metal-induced metallothionein clusters exist to accommodate various metal ions. Further, that each kind of metal ion may have different and unique distribution patterns between the cluster centers which account for different functions.

  16. The effects of 60Co γ-ray on poly(ethylene-co-vinyl acetate)/carbon black composites

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Yong; Kim, Ki-Yup

    2008-04-01

    Cables used in a nuclear power plant are irradiation suppressing ones. Until now, researches on the irradiation suppressing cables have mainly been focused on insulation materials. Therefore, in this paper, the non-isothermal crystallization behaviors and degradation characteristics of ethylene vinyl acetate-carbon black (EVA-CB), used as a shielding material, were investigated by means of the Differential scanning calorimetry (DSC) and chemiluminescence analyzer (CL). The specimens were cooled after removing thermal history at 150 °C for 5 min by changing the cooling rates to 5, 7.5, 10, 15 and 20 °C/min with DSC. In addition, after maintaining a thermal equilibrium at each temperature of 25, 50, 75, 100, 125, 150 and 175 °C, their thermoluminescence was measured for 20 min with CL equipment. The 60Co γ-ray was used for irradiation. Tc, T0, T∞ and t1/2 in the DSC experiments are found to decrease gradually as radiation dose increases. Secondly, with the CL experiment, the 0.1, 0.25 and 0.5 MGy EVA-CB composites were found to show a much smaller thermoluminescence than the intact EVA-CB composites, while the 0.75 and 1 MGy EVA-CB composites were found to show a much higher thermoluminescence than ones.

  17. Effect of low /sup 60/Co dose rates on sister chromatid exchange incidence in the benthic worm. Neanthes arenaceodentata

    SciTech Connect

    Harrison, F.L.; Rice, D.W. Jr.

    1981-10-13

    The usefulness of sister chromatid exchange (SCE) induction as a measure of low-level radiation effect was examined in a benthic marine worm, Neanthes arenaceodentata. Larvae were exposed to /sup 60/Co radiation for 12 to 24 h at total doses ranging from 0.5 to 309 R and at dose rates from 0.04 to 13 R/h. Animals exposed at intermediate dose rates (0.5, 0.6, 1.25, 2.0, and 2.5 R/h) had SCE frequencies per chromosome about twice that of those receiving no radiation (controls), whereas those exposed at the higher dose rates (7.0 and 13 R/h) had SCE frequencies lower than the controls. Animals exposed at the lower dose rates (0.04 and 0.1 R/h) had lower SCE frequencies than those exposed at intermediate dose rates (and higher SCE frequencies than controls). The length of chromosome pair number one differed among metaphase spreads and was used as an index of chromosome condensation in a given metaphase. Because there is a possibility that chromosome morphology may affect the ability to resolve SCEs, morphology will be monitored in future studies. A preliminary experiment was performed to assess the effects of 2.2 and 11.5 R/h for 24 h on growth and development. Larvae observed at 6 and 17 d after irradiation did not have significantly different numbers of abnormal larvae or survival rates.

  18. Identification of Novel Chromosomal Aberrations Induced by (60)Co-γ-Irradiation in Wheat-Dasypyrum villosum Lines.

    PubMed

    Zhang, Jie; Jiang, Yun; Guo, Yuanlin; Li, Guangrong; Yang, Zujun; Xu, Delin; Xuan, Pu

    2015-01-01

    Mutations induced by radiation are widely used for developing new varieties of plants. To better understand the frequency and pattern of irradiation-induced chromosomal rearrangements, we irradiated the dry seeds of Chinese Spring (CS)-Dasypyrum villosum nullisomic-tetrasomic (6A/6D) addition (6V) line (2n = 44), WD14, with (60)Co-γ-rays at dosages of 100, 200, and 300 Gy. The M₀ and M₁ generations were analyzed using Feulgen staining and non-denaturing fluorescence in situ hybridization (ND-FISH) by using oligonucleotide probes. Abnormal mitotic behavior and chromosomes with structural changes were observed in the M₀ plants. In all, 39 M₁ plants had structurally changed chromosomes, with the B genome showing the highest frequency of aberrations and tendency to recombine with chromosomes of the D genome. In addition, 19 M₁ plants showed a variation in chromosome number. The frequency of chromosome loss was considerably higher for 6D than for the alien chromosome 6V, indicating that 6D is less stable after irradiation. Our findings suggested that the newly obtained γ-induced genetic materials might be beneficial for future wheat breeding programs and functional gene analyses. PMID:26694350

  19. Identification of Novel Chromosomal Aberrations Induced by 60Co-γ-Irradiation in Wheat-Dasypyrum villosum Lines

    PubMed Central

    Zhang, Jie; Jiang, Yun; Guo, Yuanlin; Li, Guangrong; Yang, Zujun; Xu, Delin; Xuan, Pu

    2015-01-01

    Mutations induced by radiation are widely used for developing new varieties of plants. To better understand the frequency and pattern of irradiation-induced chromosomal rearrangements, we irradiated the dry seeds of Chinese Spring (CS)-Dasypyrum villosum nullisomic-tetrasomic (6A/6D) addition (6V) line (2n = 44), WD14, with 60Co-γ-rays at dosages of 100, 200, and 300 Gy. The M0 and M1 generations were analyzed using Feulgen staining and non-denaturing fluorescence in situ hybridization (ND-FISH) by using oligonucleotide probes. Abnormal mitotic behavior and chromosomes with structural changes were observed in the M0 plants. In all, 39 M1 plants had structurally changed chromosomes, with the B genome showing the highest frequency of aberrations and tendency to recombine with chromosomes of the D genome. In addition, 19 M1 plants showed a variation in chromosome number. The frequency of chromosome loss was considerably higher for 6D than for the alien chromosome 6V, indicating that 6D is less stable after irradiation. Our findings suggested that the newly obtained γ-induced genetic materials might be beneficial for future wheat breeding programs and functional gene analyses. PMID:26694350

  20. Identification of Novel Chromosomal Aberrations Induced by (60)Co-γ-Irradiation in Wheat-Dasypyrum villosum Lines.

    PubMed

    Zhang, Jie; Jiang, Yun; Guo, Yuanlin; Li, Guangrong; Yang, Zujun; Xu, Delin; Xuan, Pu

    2015-12-14

    Mutations induced by radiation are widely used for developing new varieties of plants. To better understand the frequency and pattern of irradiation-induced chromosomal rearrangements, we irradiated the dry seeds of Chinese Spring (CS)-Dasypyrum villosum nullisomic-tetrasomic (6A/6D) addition (6V) line (2n = 44), WD14, with (60)Co-γ-rays at dosages of 100, 200, and 300 Gy. The M₀ and M₁ generations were analyzed using Feulgen staining and non-denaturing fluorescence in situ hybridization (ND-FISH) by using oligonucleotide probes. Abnormal mitotic behavior and chromosomes with structural changes were observed in the M₀ plants. In all, 39 M₁ plants had structurally changed chromosomes, with the B genome showing the highest frequency of aberrations and tendency to recombine with chromosomes of the D genome. In addition, 19 M₁ plants showed a variation in chromosome number. The frequency of chromosome loss was considerably higher for 6D than for the alien chromosome 6V, indicating that 6D is less stable after irradiation. Our findings suggested that the newly obtained γ-induced genetic materials might be beneficial for future wheat breeding programs and functional gene analyses.

  1. Paramecium tetraurelia growth stimulation under low-level chronic irradiation: investigations on a possible mechanism. [/sup 60/Co

    SciTech Connect

    Croute, F.; Soleilhavoup, J.P.; Vidal, S.; Dupouy, D.; Planel, H.

    1982-12-01

    Experiments were carried out to demonstrate the effects of low-level chronic irradiation on Paramecium tetraurelia proliferation. Biological effects were strongly dependent on the bacterial density of culture medium and more exactly on the catalase content of the medium. Significant growth stimulation was found under /sup 60/Co chronic irradiation at a dose rate of 2 rad/year when paramecia were grown in a medium containing a high bacterial concentration (2.5 x 10/sup 2/ cells/m) or supplemented with catalase (300 U/ml). In a medium with a low bacterial density (1 x 10/sup 6/ cell/ml) or supplemented with a catalase activity inhibitor, growth simulation was preceded by a transitory inhibiting effect which could be correlated with extracellularly radioproduced H/sub 2/O/sub 2/. H/sub 2/O/sub 2/ addition appeared to be able to simulate the biological effects of chronic irradiation. A possible mechanism is discussed.We proposed that the stimulating effects were the result of intracellular enzymatic scavenging of radioproduced H/sub 2/O/sub 2/.

  2. Radiation damage of contact structures with diffusion barriers exposed to irradiation with {sup 60}Co{gamma}-ray photons

    SciTech Connect

    Belyaev, A. E.; Boltovets, N. S.; Konakova, R. V. Milenin, V. V.; Sveshnikov, Yu. N.; Sheremet, V. N.

    2010-04-15

    The effect of ionizing radiation of {sup 60}Co {gamma}-ray photons in the dose range 10{sup 4}-2 x 10{sup 9} rad on metal-semiconductor Au-ZrB{sub x}-AlGaN/GaN and Au-TiB{sub x}-Al-Ti-n-GaN contacts and Au-ZrB{sub x}-n-GaN Schottky diodes is examined. The contacts with the TiB{sub x} and ZrB{sub x} diffusion barriers do not degrade under the effect of ionizing radiation if the dose does not exceed 10{sup 8} rad. The Au-ZrB{sub x}-n-GaN Schottky diodes remain stable in the dose range 10{sup 4}-10{sup 6} rad. As the radiation dose is increased to {>=}10{sup 8} rad, the damage to the contact metallization increases and is accompanied by formation of through pores, which is conducive to accumulation of oxygen at the Au-ZrB{sub x}(TiB{sub x}) interfaces and to an increase in mass transport of atoms in contact-forming layers. In this case, irradiation-caused degradation of the Schottky diodes is observed. Possible mechanisms of radiation damage of contact structures with diffusion barriers are analyzed.

  3. Historical aspects of heavy ion radiotherapy

    SciTech Connect

    Raju, M.R.

    1995-03-01

    This paper presents historical developments of heavy-ion radiotherapy including discussion of HILAC and HIMAC and discussion of cooperation between Japan and the United States, along with personal reflections.

  4. Development, physical properties and clinical applicability of a mechanical Multileaf Collimator for the use in Cobalt-60 radiotherapy.

    PubMed

    Langhans, Marco; Echner, Gernot; Runz, Armin; Baumann, Martin; Xu, Mark; Ueltzhöffer, Stefan; Häring, Peter; Schlegel, Wolfgang

    2015-04-21

    According to the Directory of Radiotherapy Centres (DIRAC) there are 2348 Cobalt-60 (Co-60) teletherapy units worldwide, most of them in low and middle income countries, compared to 11046 clinical accelerators. To improve teletherapy with Co-60, a mechanical Multi-Leaf Collimator (MLC) was developed, working with pneumatic pressure and thus independent of electricity supply. Instead of tungsten, brass was used as leaf material to make the mechanical MLC more affordable. The physical properties and clinical applicability of this mechanical MLC are presented here. The leakage strongly depends on the fieldsize of the therapy unit due to scatter effects. The maximum transmission through the leaves measured 2.5 cm from the end-to-end gap, within a field size of 20 cm × 30 cm defined by jaws of the therapy unit at 80 cm SAD, amounts 4.2%, normalized to an open 10 cm × 10 cm field, created by the mechanical MLC. Within a precollimated field size of 12.5 cm × 12.5 cm, the end-to-end leakage is 6.5% normalized to an open 10 cm × 10 cm field as well. This characteristic is clinically acceptable considering the criteria for non-IMRT MLCs of the International Electrotechnical Commission (IEC 60601-2-1). The penumbra for a 10 cm × 10 cm field was measured to be 9.14 mm in plane and 8.38 mm cross plane. The clinical applicability of the designed mechanical MLC was affirmed by measurements relating to all relevant clinical properties such as penumbra, leakage, output factors and field widths. Hence this novel device presents an apt way forward to make radiotherapy with conformal fields possible in low-infrastructure environments, using gantry based Co-60 therapy units.

  5. Thermoluminescence characteristics of Nd-doped SiO2 optical fibers irradiated with the (60)Co gamma rays.

    PubMed

    Refaei, Azadeh; Wagiran, Husin; Saeed, M A; Hosssain, I

    2014-12-01

    Thermoluminescence (TL) properties (radiation sensitivity, dose response, signal fading) of Nd-doped SiO2 optical fibers irradiated with 1.25MeV photons to 1-50Gy were studied. The peak of the glow curve is around 190°C regardless of the dose. The dose response is linear up to 50Gy. The radiation sensitivity is 219nCmg(-1)Gy(-1). The fiber can be a potential candidate for photon radiotherapy dosimetry due to its high radiation sensitivity, linear dose response in a wide range, slow fading, and high spatial resolution due to the small size of the fiber.

  6. Mean dose to lymphocytes during radiotherapy treatments

    SciTech Connect

    Brandan, M.E.; Perez-Pastenes, M.A.; Ostrosky-Wegman, P.; Gonsebatt, M.E.; Diaz-Perches, R.

    1994-10-01

    Using a probabilistic model with parameters from four radiotherapy protocols used in Mexican hospitals for the treatment of cervical cancer, the authors have calculated the distribution of dose to cells in peripheral blood of patients. Values of the mean dose to the lymphocytes during and after a {sup 60}Co treatment are compared to estimates from an in vivo chromosome aberration study performed on five patients. Calculations indicate that the mean dose to the circulating blood is about 2% of the tumor dose, while the mean dose to recirculating lymphocytes may reach up to 7% of the tumor dose. Differences up to a factor of two in the dose to the blood are predicted for different protocols delivering equal tumor doses. The data suggest mean doses higher than the predictions of the model. 10 refs., 3 figs., 2 tabs.

  7. LiF:Mg,Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20-250 kVp relative to 60Co.

    PubMed

    Nunn, A A; Davis, S D; Micka, J A; DeWerd, L A

    2008-05-01

    The response of LiF:Mg,Ti thermoluminescent dosimeters (TLDs) as a function of photon energy was determined using irradiations with moderately filtered x-ray beams in the energy range of 20-250 kVp relative to the response to irradiations with 60Co photons. To determine if the relative light output from LiF:Mg,Ti TLDs per unit air kerma as a function of photon energy can be predicted using calculations such as Monte Carlo (MC) simulations, measurements from the x-ray beam irradiations were compared with MC calculated results, similar to the methodology used by Davis et al. [Radiat. Prot. Dosim. 106, 33-43 (2003)]. TLDs were irradiated in photon beams with well-known air kerma rates using the National Institute of Standards and Technology traceable M-series x-ray beams in the range of 20-250 kVp. For each x-ray beam, several sets of TLDs were irradiated for times corresponding to different air kerma levels to take into account any dose nonlinearity. TLD light output was then compared to that from several sets of TLDs irradiated at similar corresponding air kerma levels using a 60Co irradiator. The MC code MCNP5 was used to account for photon scatter and attenuation in the holder and TLDs and was used to calculate the predicted relative TLD light output per unit air kerma for irradiations with each of the experimentally used photon beams. The measured relative TLD response as a function of photon energy differed by up to 13% from the MC calculations. We conclude that MC calculations do not accurately predict the relative response of TLDs as a function of photon energy, consistent with the conclusions of Davis et al. [Radiat. Prot. Dosim. 106, 33-43 (2003)]. This is likely due to complications in the solid state physics of the thermoluminescence process that are not incorporated into the simulation.

  8. LiF:Mg,Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20-250 kVp relative to {sup 60}Co

    SciTech Connect

    Nunn, A. A.; Davis, S. D.; Micka, J. A.; DeWerd, L. A.

    2008-05-15

    The response of LiF:Mg,Ti thermoluminescent dosimeters (TLDs) as a function of photon energy was determined using irradiations with moderately filtered x-ray beams in the energy range of 20-250 kVp relative to the response to irradiations with {sup 60}Co photons. To determine if the relative light output from LiF:Mg,Ti TLDs per unit air kerma as a function of photon energy can be predicted using calculations such as Monte Carlo (MC) simulations, measurements from the x-ray beam irradiations were compared with MC calculated results, similar to the methodology used by Davis et al. [Radiat. Prot. Dosim. 106, 33-43 (2003)]. TLDs were irradiated in photon beams with well-known air kerma rates using the National Institute of Standards and Technology traceable M-series x-ray beams in the range of 20-250 kVp. For each x-ray beam, several sets of TLDs were irradiated for times corresponding to different air kerma levels to take into account any dose nonlinearity. TLD light output was then compared to that from several sets of TLDs irradiated at similar corresponding air kerma levels using a {sup 60}Co irradiator. The MC code MCNP5 was used to account for photon scatter and attenuation in the holder and TLDs and was used to calculate the predicted relative TLD light output per unit air kerma for irradiations with each of the experimentally used photon beams. The measured relative TLD response as a function of photon energy differed by up to 13% from the MC calculations. We conclude that MC calculations do not accurately predict the relative response of TLDs as a function of photon energy, consistent with the conclusions of Davis et al. [Radiat. Prot. Dosim. 106, 33-43 (2003)]. This is likely due to complications in the solid state physics of the thermoluminescence process that are not incorporated into the simulation.

  9. Pineal region tumors: results of radiation therapy and indications for elective spinal irradiation. [/sup 60/Co; x ray

    SciTech Connect

    Griffin, B.R.; Griffin, T.W.; Tong, D.Y.K.; Russell, A.H.; Kurtz, J.; Laramore, G.E.; Groudine, M.

    1981-05-01

    Eighteen patients with pineal region tumors seen from November 1960 to November 1978 were reviewed. Thirteen patients treated with radiation therapy received tumor doses in the 4000 to 5500 rad range. The five year survival and five year disease-free survival were 73 and 63% respectively. Spinal cord metastasis occurred in 2 of 13 (15%) patients. Attempts at salvage radiotherapy for these patients were unsuccessful. Computerized tomography (CT) scan provides an excellent method of evaluating the response of pineal region tumors to radiation. Rapid regression of the tumor mass on CT scan reflects the highly radioresponsive nature of germinomas, the tumor type most likely to disseminate throughout the neuraxis. This principle can be exploited to select unbiopsied patients with a high risk of spinal cord metastasis for prophylactic spinal radiation at an early stage of treatment.

  10. (60)Co in cast steel matrix: A European interlaboratory comparison for the characterisation of new activity standards for calibration of gamma-ray spectrometers in metallurgy.

    PubMed

    Tzika, Faidra; Burda, Oleksiy; Hult, Mikael; Arnold, Dirk; Marroyo, Belén Caro; Dryák, Pavel; Fazio, Aldo; Ferreux, Laurent; García-Toraño, Eduardo; Javornik, Andrej; Klemola, Seppo; Luca, Aurelian; Moser, Hannah; Nečemer, Marijan; Peyrés, Virginia; Reis, Mario; Silva, Lidia; Šolc, Jaroslav; Svec, Anton; Tyminski, Zbigniew; Vodenik, Branko; Wätjen, Uwe

    2016-08-01

    Two series of activity standards of (60)Co in cast steel matrix, developed for the calibration of gamma-ray spectrometry systems in the metallurgical sector, were characterised using a European interlaboratory comparison among twelve National Metrology Institutes and one international organisation. The first standard, consisting of 14 disc shaped samples, was cast from steel contaminated during production ("originally"), and the second, consisting of 15 similar discs, from artificially-contaminated ("spiked") steel. The reference activity concentrations of (60)Co in the cast steel standards were (1.077±0.019) Bqg(-1) on 1 January 2013 12h00 UT and (1.483±0.022) Bqg(-1) on 1 June 2013 12h00 UT, respectively.

  11. (60)Co in cast steel matrix: A European interlaboratory comparison for the characterisation of new activity standards for calibration of gamma-ray spectrometers in metallurgy.

    PubMed

    Tzika, Faidra; Burda, Oleksiy; Hult, Mikael; Arnold, Dirk; Marroyo, Belén Caro; Dryák, Pavel; Fazio, Aldo; Ferreux, Laurent; García-Toraño, Eduardo; Javornik, Andrej; Klemola, Seppo; Luca, Aurelian; Moser, Hannah; Nečemer, Marijan; Peyrés, Virginia; Reis, Mario; Silva, Lidia; Šolc, Jaroslav; Svec, Anton; Tyminski, Zbigniew; Vodenik, Branko; Wätjen, Uwe

    2016-08-01

    Two series of activity standards of (60)Co in cast steel matrix, developed for the calibration of gamma-ray spectrometry systems in the metallurgical sector, were characterised using a European interlaboratory comparison among twelve National Metrology Institutes and one international organisation. The first standard, consisting of 14 disc shaped samples, was cast from steel contaminated during production ("originally"), and the second, consisting of 15 similar discs, from artificially-contaminated ("spiked") steel. The reference activity concentrations of (60)Co in the cast steel standards were (1.077±0.019) Bqg(-1) on 1 January 2013 12h00 UT and (1.483±0.022) Bqg(-1) on 1 June 2013 12h00 UT, respectively. PMID:27236833

  12. A water calorimeter for on-site absorbed dose to water calibrations in (60)Co and MV-photon beams including MRI incorporated treatment equipment.

    PubMed

    de Prez, Leon; de Pooter, Jacco; Jansen, Bartel; Aalbers, Tony

    2016-07-01

    In reference dosimetry the aim is to establish the absorbed dose to water, D w, under reference conditions. However, existing dosimetry protocols are not always applicable for rapidly emerging new treatment modalities. For primary standard dosimetry laboratories it is generally not feasible to acquire such modalities. Therefore it is strongly desired that D w measurements with primary standards can be performed on-site in clinical beams for the new treatment modalities in order to characterize and calibrate detectors. To serve this need, VSL has developed a new transportable water calorimeter serving as a primary D w standard for (60)Co and MV-photons including MRI incorporated treatment equipment. Special attention was paid to its operation in different beam geometries and beam modalities including the application in magnetic fields. The new calorimeter was validated in the VSL (60)Co beam and on-site in clinical MV-photon beams. Excellent agreement of 0.1% was achieved with previous (60)Co field calibrations, i.e. well within the uncertainty of the previous calorimeter, and with measurements performed in horizontal and vertical MV-photon beams. k Q factors, determined for two PTW 30013 ionization chambers, agreed very well with available literature data. The relative combined standard uncertainty (k  =  1) for D w measurements in (60)Co and MV-photons is 0.37%. Calibrations are carried out with a standard uncertainty of 0.42% and k Q -factors are determined with a relative standard uncertainty of 0.40%. PMID:27300589

  13. A water calorimeter for on-site absorbed dose to water calibrations in 60Co and MV-photon beams including MRI incorporated treatment equipment

    NASA Astrophysics Data System (ADS)

    de Prez, Leon; de Pooter, Jacco; Jansen, Bartel; Aalbers, Tony

    2016-07-01

    In reference dosimetry the aim is to establish the absorbed dose to water, D w, under reference conditions. However, existing dosimetry protocols are not always applicable for rapidly emerging new treatment modalities. For primary standard dosimetry laboratories it is generally not feasible to acquire such modalities. Therefore it is strongly desired that D w measurements with primary standards can be performed on-site in clinical beams for the new treatment modalities in order to characterize and calibrate detectors. To serve this need, VSL has developed a new transportable water calorimeter serving as a primary D w standard for 60Co and MV-photons including MRI incorporated treatment equipment. Special attention was paid to its operation in different beam geometries and beam modalities including the application in magnetic fields. The new calorimeter was validated in the VSL 60Co beam and on-site in clinical MV-photon beams. Excellent agreement of 0.1% was achieved with previous 60Co field calibrations, i.e. well within the uncertainty of the previous calorimeter, and with measurements performed in horizontal and vertical MV-photon beams. k Q factors, determined for two PTW 30013 ionization chambers, agreed very well with available literature data. The relative combined standard uncertainty (k  =  1) for D w measurements in 60Co and MV-photons is 0.37%. Calibrations are carried out with a standard uncertainty of 0.42% and k Q -factors are determined with a relative standard uncertainty of 0.40%.

  14. A novel challenge test incorporating irradiation (60Co) of compost sub-samples to validate thermal lethality towards pathogenic bacteria.

    PubMed

    Moore, John E; Watabe, Miyuki; Stewart, Andrew; Cherie Millar, B; Rao, Juluri R

    2009-01-01

    Maturing compost heaps normally attaining temperatures ranging from 55 to 65 degrees C is generally regarded to conform to recommended biological risks and sanitation standards for composts stipulated by either EU or US-EPA. Composted products derived from animal sources are further required by EU biohazard safety regulatory legislation that such composts either attain 70 degrees C for over 3h during maturation or via treatment at 70 degrees C for 1h before being considered for dispensation on land. The setting of the upper limit of thermal lethality at 70 degrees C/1h for achieving biosecurity of the animal waste composted products (e.g. pelleted fertilizer formulations) is not properly substantiated by specific validation tests, comprising a 'wipe-out' step (usually via autoclaving) followed by inoculation of a prescribed bacterium, exposure to 70 degrees C/1h and the lethality determined. Pelleted formulations of composts are not amenable for wet methods (autoclaving) for wipe-out sterilization step as this is detrimental to the pellet and compromises sample integrity. This study describes a laboratory method involving the employment of ((60)Co) irradiation 'wipe-out' step to: (a) compost sub-samples drawn from compost formulation heaps and (b) pelleted products derived from composted animal products while determining the thermal lethality of a given time/temperature (70 degrees C/1h) treatment process and by challenging the irradiated sample (not just with one bacterium but), out with 10 potential food-poisoning organisms from the bacterial genera (Campylobacter, Escherichia, Listeria, Salmonella, Yersinia) frequently detected in pig and poultry farm wastes. This challenge test on compost sub-samples can be a useful intervention ploy for 'inspection and validation' technique for composters during the compost maturity process, whose attainment of temperatures of 55-65 degrees C is presumed sufficient for attainment of sanitation. Stringent measures are further

  15. Influence of the colloid type on the transfer of 60Co and 85Sr in silica sand column under varying physicochemical conditions.

    PubMed

    Solovitch-Vella, Natalia; Garnier, Jean-Marie; Ciffroy, Philippe

    2006-10-01

    The influence of two types of colloids (natural organic matter, NOM), a colloid with high affinity for radionuclides (RN(s)), and hydrophilic synthetic latex (SHL), a colloid with low affinity for RN(s) on the transfer of (60)Co and (85)Sr in a silica sand column was studied under different physicochemical conditions: pH (4.9), ionic strength (10(-3) M and 10(-2) M), concentration of colloids (100 mg l(-1), 10 mg l(-1)), flow velocity (12.4 cm h(-1) and 3.7 cm h(-1)), water saturation of the column (100% and 70%). In the absence of colloids, the transfer of (60)Co and (85)Sr was retarded compared to the transfer of the conservative tracer. In the presence of colloids and according to the specific physicochemical conditions, an acceleration or retardation of (60)Co and (85)Sr transfer was observed compared to their transfer in the absence of colloids. Our results evidenced that any colloids even with low reactivity could significantly modify the RN transfer. However, the extent to which the transfer was influenced differs according to the colloid type; the NOM exhibiting higher impact than SHL. Batch experiments helped in interpreting of the interactions between the colloids, RN(s) and solid phase observed in column.

  16. Numerical simulation of 60Co-gamma irradiation effects on electrical characteristics of n-type FZ silicon X-ray detectors

    NASA Astrophysics Data System (ADS)

    Vigneshwara Raja, P.; Rao, C. V. S.; Narasimha Murty, N. V. L.

    2016-07-01

    This paper describes the gamma irradiation effects on the electrical characteristics of n-type float zone (FZ) silicon detectors by incorporating a 4-level 60Co-gamma radiation damage model in the commercial device simulator for plasma X-ray tomography diagnostics. In the simulations, a segmented n-type silicon detector (i.e. p+-n-n+ structure) is considered with varying substrate resistivity (ρ = 5.4, 2.5, and 0.3 kΩ cm). The simulation results have been validated with the reported experimental measurements carried out on similar device structures. The 60Co-gamma irradiation induced changes in the electrical characteristics of the detectors are analyzed up to the dose of 3500 Mrad. The possible gamma induced degradation in the X-ray response of the detectors is investigated from the changes in the effective doping concentration and the leakage current of the detectors. The survival of the gamma irradiated detectors is predicted from the simulation studies. The comparison between the 60Co-gamma and 14.1 MeV neutron irradiation effects (typical fusion environments) on silicon detectors is attempted.

  17. Pre-assessment of dose rates of (134)Cs, (137)Cs, and (60)Co for marine biota from discharge of Haiyang Nuclear Power Plant, China.

    PubMed

    Li, Jingjing; Liu, Senlin; Zhang, Yongxing; Chen, Ling; Yan, Yuan; Cheng, Weiya; Lou, Hailin; Zhang, Yongbao

    2015-09-01

    Haiyang Nuclear Power Plant to be built in China was selected as a case for the dose pre-assessment for marine biota in this study. The concentrations of Cs and Co in organisms (turbot, yellow croaker, swimming crab, abalone, sea cucumber, and sea lettuce), seawater, and bottom sediment sampled on-site were measured by neutron activation analysis, and the site-specific transfer parameters (concentration ratios and distribution coefficients) of Cs and Co were calculated. (134)Cs, (137)Cs, and (60)Co activity concentrations in the organisms and the sediment at the site were calculated with the site-specific transfer parameters and the anticipated activity concentrations in the liquid effluent of the nuclear power plant. The ERICA tool was used to estimate the dose rates of (134)Cs, (137)Cs, and (60)Co to the selected organisms based on the biological models developed. The total dose rates of (134)Cs, (137)Cs, and (60)Co to the six organisms were all <0.001 μGy h(-1). PMID:26005771

  18. Areal distribution of /sup 60/Co, /sup 137/Cs, and /sup 90/Sr in streambed gravels of White Oak Creek Watershed, Oak Ridge, Tennessee

    SciTech Connect

    Cerling, T.E.; Spalding, B.P.

    1981-01-01

    The concentrations of /sup 90/Sr, /sup 60/Co, and /sup 137/Cs in streambed gravels from contaminated drainages in White Oak Creek Watershed were determined. Methods to determine the relative contributions of various sources to the total discharge from the watershed were developed. Principal sources of /sup 90/Sr were: ORNL plant effluents (50%), leaching from solid waste disposal area (SWDA) 4 (30%), and leaching from SWDA 5 (10%). Minor sources included SWDA 3, the Molten Salt Reactor Facility, and intermediate-level liquid waste pit 1 with each representing 4% or less of the total basin discharge. The cooling water effluent from the High-Flux Isotope Reactor was the dominant source of /sup 60/Co contamination in the watershed. ORNL plant effluents accounted for almost all the /sup 137/Cs discharge from White Oak Creek basin. Downstream radionuclide concentrations were constant until significant dilution by other tributaries occurred. Any future activities giving rise to additional contamination can now be identified. Distribution coefficients between streambed gravels and streamwater for /sup 85/Sr, /sup 60/Co, and /sup 137/Cs were 50, 560, and 8460 ml/g, respectively. An abridged radiochemical fractionation developed for /sup 90/Sr was found to be as accurate and precise for these samples as the standard /sup 90/Sr method above levels of 2 dpm/g. (ERB)

  19. Pre-assessment of dose rates of (134)Cs, (137)Cs, and (60)Co for marine biota from discharge of Haiyang Nuclear Power Plant, China.

    PubMed

    Li, Jingjing; Liu, Senlin; Zhang, Yongxing; Chen, Ling; Yan, Yuan; Cheng, Weiya; Lou, Hailin; Zhang, Yongbao

    2015-09-01

    Haiyang Nuclear Power Plant to be built in China was selected as a case for the dose pre-assessment for marine biota in this study. The concentrations of Cs and Co in organisms (turbot, yellow croaker, swimming crab, abalone, sea cucumber, and sea lettuce), seawater, and bottom sediment sampled on-site were measured by neutron activation analysis, and the site-specific transfer parameters (concentration ratios and distribution coefficients) of Cs and Co were calculated. (134)Cs, (137)Cs, and (60)Co activity concentrations in the organisms and the sediment at the site were calculated with the site-specific transfer parameters and the anticipated activity concentrations in the liquid effluent of the nuclear power plant. The ERICA tool was used to estimate the dose rates of (134)Cs, (137)Cs, and (60)Co to the selected organisms based on the biological models developed. The total dose rates of (134)Cs, (137)Cs, and (60)Co to the six organisms were all <0.001 μGy h(-1).

  20. Radiotherapy dosimetry using a commercial OSL system

    SciTech Connect

    Viamonte, A.; Rosa, L. A. R. da; Buckley, L. A.; Cherpak, A.; Cygler, J. E.

    2008-04-15

    A commercial optically stimulated luminescence (OSL) system developed for radiation protection dosimetry by Landauer, Inc., the InLight microStar reader, was tested for dosimetry procedures in radiotherapy. The system uses carbon-doped aluminum oxide, Al{sub 2}O{sub 3}:C, as a radiation detector material. Using this OSL system, a percent depth dose curve for {sup 60}Co gamma radiation was measured in solid water. Field size and SSD dependences of the detector response were also evaluated. The dose response relationship was investigated between 25 and 400 cGy. The decay of the response with time following irradiation and the energy dependence of the Al{sub 2}O{sub 3}:C OSL detectors were also measured. The results obtained using OSL dosimeters show good agreement with ionization chamber and diode measurements carried out under the same conditions. Reproducibility studies show that the response of the OSL system to repeated exposures is 2.5% (1sd), indicating a real possibility of applying the Landauer OSL commercial system for radiotherapy dosimetric procedures.

  1. Radiotherapy dosimetry using a commercial OSL system.

    PubMed

    Viamonte, A; da Rosa, L A R; Buckley, L A; Cherpak, A; Cygler, J E

    2008-04-01

    A commercial optically stimulated luminescence (OSL) system developed for radiation protection dosimetry by Landauer, Inc., the InLight microStar reader, was tested for dosimetry procedures in radiotherapy. The system uses carbon-doped aluminum oxide, Al2O3:C, as a radiation detector material. Using this OSL system, a percent depth dose curve for 60Co gamma radiation was measured in solid water. Field size and SSD dependences of the detector response were also evaluated. The dose response relationship was investigated between 25 and 400 cGy. The decay of the response with time following irradiation and the energy dependence of the Al2O3:C OSL detectors were also measured. The results obtained using OSL dosimeters show good agreement with ionization chamber and diode measurements carried out under the same conditions. Reproducibility studies show that the response of the OSL system to repeated exposures is 2.5% (1sd), indicating a real possibility of applying the Landauer OSL commercial system for radiotherapy dosimetric procedures. PMID:18491518

  2. Imaging in radiotherapy

    NASA Astrophysics Data System (ADS)

    Calandrino, R.; Del Maschio, A.; Cattaneo, G. M.; Castiglioni, I.

    2009-09-01

    The diagnostic methodologies used for the radiotherapy planning have undergone great developments in the last 30 years. Since the 1980s, after the introduction of the CT scanner, the modality for the planning moved beyond the planar 2D assessment to approach a real and more realistic volumetric 3D definition. Consequently the dose distribution, previously obtained by means of an overly simple approximation, became increasingly complex, better tailoring the true shape of the tumour. The final therapeutic improvement has been obtained by a parallel increase in the complexity of the irradiating units: the Linacs for therapy have, in fact, been equipped with a full accessory set capable to modulate the fluence (IMRT) and to check the correct target position continuously during the therapy session (IMRT-IGRT). The multimodal diagnostic approach, which integrates diagnostic information, from images of the patient taken with CT, NMR, PET and US, further improves the data for a biological and topological optimization of the radiotherapy plan and consequently of the dose distribution in the Planning Target Volume. Proteomic and genomic analysis will be the next step in tumour diagnosis. These methods will provide the planners with further information, for a true personalization of the treatment regimen and the assessment of the predictive essays for each tumour and each patient.

  3. Medical Applications: Proton Radiotherapy

    NASA Astrophysics Data System (ADS)

    Keppel, Cynthia

    2009-05-01

    Proton therapy is a highly advanced and precise form of radiation treatment for cancer. Due to the characteristic Bragg peak associated with ion energy deposition, proton therapy provides the radiation oncologist with an improved method of treatment localization within a patient, as compared with conventional radiation therapy using X-rays or electrons. Controlling disease and minimizing side effects are the twin aims of radiation treatment. Proton beams enhance the opportunity for both by facilitating maximal dose to tumor and minimal dose to surrounding tissue. In the United States, five proton radiotherapy centers currently treat cancer patients, with more in the construction phase. New facilities and enabling technologies abound. An overview of the treatment modality generally, as well as of the capabilities and research planned for the field and for the Hampton University Proton Therapy Institute in particular, will be presented.

  4. Cluster pattern analysis of energy deposition sites for the brachytherapy sources 103Pd, 125I, 192Ir, 137Cs, and 60Co.

    PubMed

    Villegas, Fernanda; Tilly, Nina; Bäckström, Gloria; Ahnesjö, Anders

    2014-09-21

    Analysing the pattern of energy depositions may help elucidate differences in the severity of radiation-induced DNA strand breakage for different radiation qualities. It is often claimed that energy deposition (ED) sites from photon radiation form a uniform random pattern, but there is indication of differences in RBE values among different photon sources used in brachytherapy. The aim of this work is to analyse the spatial patterns of EDs from 103Pd, 125I, 192Ir, 137Cs sources commonly used in brachytherapy and a 60Co source as a reference radiation. The results suggest that there is both a non-uniform and a uniform random component to the frequency distribution of distances to the nearest neighbour ED. The closest neighbouring EDs show high spatial correlation for all investigated radiation qualities, whilst the uniform random component dominates for neighbours with longer distances for the three higher mean photon energy sources (192Ir, 137Cs, and 60Co). The two lower energy photon emitters (103Pd and 125I) present a very small uniform random component. The ratio of frequencies of clusters with respect to 60Co differs up to 15% for the lower energy sources and less than 2% for the higher energy sources when the maximum distance between each pair of EDs is 2 nm. At distances relevant to DNA damage, cluster patterns can be differentiated between the lower and higher energy sources. This may be part of the explanation to the reported difference in RBE values with initial DSB yields as an endpoint for these brachytherapy sources.

  5. Cluster pattern analysis of energy deposition sites for the brachytherapy sources 103Pd, 125I, 192Ir, 137Cs, and 60Co

    NASA Astrophysics Data System (ADS)

    Villegas, Fernanda; Tilly, Nina; Bäckström, Gloria; Ahnesjö, Anders

    2014-09-01

    Analysing the pattern of energy depositions may help elucidate differences in the severity of radiation-induced DNA strand breakage for different radiation qualities. It is often claimed that energy deposition (ED) sites from photon radiation form a uniform random pattern, but there is indication of differences in RBE values among different photon sources used in brachytherapy. The aim of this work is to analyse the spatial patterns of EDs from 103Pd, 125I, 192Ir, 137Cs sources commonly used in brachytherapy and a 60Co source as a reference radiation. The results suggest that there is both a non-uniform and a uniform random component to the frequency distribution of distances to the nearest neighbour ED. The closest neighbouring EDs show high spatial correlation for all investigated radiation qualities, whilst the uniform random component dominates for neighbours with longer distances for the three higher mean photon energy sources (192Ir, 137Cs, and 60Co). The two lower energy photon emitters (103Pd and 125I) present a very small uniform random component. The ratio of frequencies of clusters with respect to 60Co differs up to 15% for the lower energy sources and less than 2% for the higher energy sources when the maximum distance between each pair of EDs is 2 nm. At distances relevant to DNA damage, cluster patterns can be differentiated between the lower and higher energy sources. This may be part of the explanation to the reported difference in RBE values with initial DSB yields as an endpoint for these brachytherapy sources.

  6. Effect of pulsed dose in simultaneous and sequential irradiation of V-79 cells by 14. 8 MeV neutrons and /sup 60/Co photons

    SciTech Connect

    Higgins, P.D.; DeLuca, P.M. Jr.; Gould, M.N.; Schell, M.C.; Pearson, D.W.

    1983-01-01

    The effect of irradiating V-79 Chinese hamster ovary cells with a mixture of 40% 14.8-MeV neutrons and 60% /sup 60/Co photons with simultaneous or sequential exposures is investigated. Target doses are obtained by irradiating cell samples with 3-minute-long pulses of alternating neutrons and photons (in the sequential case) or with mixed neutrons and photons followed by equal beam-off periods to insure equal total-exposure times for sequenced and simultaneous irradiations. We observe qualitative differences between the survival results under each beam configuration that confirms earlier observations.

  7. Selectivity of 90Sr urine bioassay technique over 241Am, 238/239PU, 210PO, 137CS and 60CO.

    PubMed

    Sadi, Baki B; Li, Chunsheng; Bahraini, Negar; Lai, Edward P C; Kramer, Gary H

    2010-09-01

    The selectivity of a rapid (90)Sr bioassay technique over (241)Am, (238/239)Pu, (210)Po, (137)Cs and (60)Co has been investigated. Similar to (90)Sr, these radionuclides are likely to be used in radiological dispersive devices. The purpose of this study was to demonstrate the degree to which the (90)Sr bioassay technique is free from interference by these radionuclides if present in a urine matrix. The interfering radionuclides were removed (from (90)Sr) by their retention on an anion exchange column. While, recovery of the target radionuclide ((90)Sr) was found to be >or= 90 %, contributions from (241)Am, (242)Pu and (208)Po were found to be 60)Co, however, was found to be

  8. Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy 125I and 192Ir sources and 60Co cell irradiation.

    PubMed

    Villegas, Fernanda; Tilly, Nina; Ahnesjö, Anders

    2013-09-01

    The stochastic nature of ionizing radiation interactions causes a microdosimetric spread in energy depositions for cell or cell nucleus-sized volumes. The magnitude of the spread may be a confounding factor in dose response analysis. The aim of this work is to give values for the microdosimetric spread for a range of doses imparted by (125)I and (192)Ir brachytherapy radionuclides, and for a (60)Co source. An upgraded version of the Monte Carlo code PENELOPE was used to obtain frequency distributions of specific energy for each of these radiation qualities and for four different cell nucleus-sized volumes. The results demonstrate that the magnitude of the microdosimetric spread increases when the target size decreases or when the energy of the radiation quality is reduced. Frequency distributions calculated according to the formalism of Kellerer and Chmelevsky using full convolution of the Monte Carlo calculated single track frequency distributions confirm that at doses exceeding 0.08 Gy for (125)I, 0.1 Gy for (192)Ir, and 0.2 Gy for (60)Co, the resulting distribution can be accurately approximated with a normal distribution. A parameterization of the width of the distribution as a function of dose and target volume of interest is presented as a convenient form for the use in response modelling or similar contexts.

  9. Calculation of direct effects of 60Co gamma rays on the different DNA structural levels: A simulation study using the Geant4-DNA toolkit

    NASA Astrophysics Data System (ADS)

    Tajik, Marjan; Rozatian, Amir S. H.; Semsarha, Farid

    2015-03-01

    In this study, simple single strand breaks (SSB) and double strand breaks (DSB) due to direct effects of the secondary electron spectrum of 60Co gamma rays on different organizational levels of a volume model of the B-DNA conformation have been calculated using the Geant4-DNA toolkit. Result of this study for the direct DSB yield shows a good agreement with other theoretical and experimental results obtained by both photons and their secondary electrons; however, in the case of SSB a noticeable difference can be observed. Moreover, regarding the almost constant yields of the direct strand breaks in the different structural levels of the DNA, calculated in this work, and compared with some theoretical studies, it can be deduced that the direct strand breaks yields depend mainly on the primary double helix structure of the DNA and the higher-order structures cannot have a noticeable effect on the direct DNA damage inductions by 60Co gamma rays. In contrast, a direct dependency between the direct SSB and DSB yields and the volume of the DNA structure has been found. Also, a further study on the histone proteins showed that they can play an important role in the trapping of low energy electrons without any significant effect on the direct DNA strand breaks inductions, at least in the range of energies used in the current study.

  10. Evaluation of endogenous control gene(s) for gene expression studies in human blood exposed to 60Co γ-rays ex vivo.

    PubMed

    Vaiphei, S Thangminlal; Keppen, Joshua; Nongrum, Saibadaiahun; Chaubey, R C; Kma, L; Sharan, R N

    2015-01-01

    In gene expression studies, it is critical to normalize data using a stably expressed endogenous control gene in order to obtain accurate and reliable results. However, we currently do not have a universally applied endogenous control gene for normalization of data for gene expression studies, particularly those involving (60)Co γ-ray-exposed human blood samples. In this study, a comparative assessment of the gene expression of six widely used housekeeping endogenous control genes, namely 18S, ACTB, B2M, GAPDH, MT-ATP6 and CDKN1A, was undertaken for a range of (60)Co γ-ray doses (0.5, 1.0, 2.0 and 4.0 Gy) at 8.4 Gy min(-1) at 0 and 24 h post-irradiation time intervals. Using the NormFinder algorithm, real-time PCR data obtained from six individuals (three males and three females) were analyzed with respect to the threshold cycle (Ct) value and abundance, ΔCt pair-wise comparison, intra- and inter-group variability assessments, etc. GAPDH, either alone or in combination with 18S, was found to be the most suitable endogenous control gene and should be used in gene expression studies, especially those involving qPCR of γ-ray-exposed human blood samples.

  11. Characterization of the Natural Organic Matter (NOM) in groundwater contaminated with (60)Co and (137)Cs using ultrafiltration, Solid Phase Extraction and fluorescence analysis.

    PubMed

    Caron, François; Siemann, Stefan; Riopel, Rémi

    2014-12-01

    Spot samples of shallow groundwaters have been taken between the years 2004 and 2010 near a site formerly used for the dispersal of radioactive liquid wastes. Three sampling points, one clean (upstream), and two downstream of the contamination source, were processed by ultrafiltration (5000 Da cut-off) and Solid Phase Extraction (SPE) to determine the association of selected artificial radionuclides ((60)Co, (137)Cs) with Natural Organic Matter (NOM). The last two sampling episodes (2008 and 2010) also benefited from fluorescence analysis to determine the major character of the NOM. The fluorescence signals are reported as humic-like, fulvic-like and protein-like, which are used to characterize the different NOM types. The NOM from the clean site comprised mostly fine material, whereas the colloidal content (retained by ultrafiltration) was higher (e.g., 15-40% of the Total Organic Carbon - TOC). Most of the 137Cs was present in the colloidal fraction, whereas (60)Co was found in the filtered fraction. Fluorescence analysis, on the other hand, indicated a contrasting behavior between the clean and contaminated sites, with a dominance of protein-like material, a feature usually associated with human impacts. Finally, SPE removed almost quantitatively the protein-like material (>90%), whereas it removed a much smaller fraction of the (137)Cs (<28%). This finding indicates that the (137)Cs preferential binding occurs with a fraction other than the protein-like NOM, likely the fulvic-like or humic-like portion. PMID:24476752

  12. Energy response of GR-200A thermoluminescence dosemeters to 60Co and to monoenergetic synchrotron radiation in the energy range 28-40 keV.

    PubMed

    Emiro, F; Di Lillo, F; Mettivier, G; Fedon, C; Longo, R; Tromba, G; Russo, P

    2016-01-01

    The response of LiF:Mg,Cu,P thermoluminescence dosemeters (type GR-200A) to monoenergetic radiation of energy 28, 35, 38 and 40 keV was evaluated with respect to irradiation with a calibrated (60)Co gamma-ray source. High-precision measurements of the relative air kerma response performed at the SYRMEP beamline of the ELETTRA synchrotron radiation facility (Trieste, Italy) showed a significant deviation of the average response to low-energy X-rays from that to (60)Co, with an over-response from 6 % (at 28 keV) to 22 % (at 40 keV). These data are not consistent with literature data for these dosemeters, where model predictions gave deviation from unity of the relative air kerma response of about 10 %. The authors conclude for the need of additional determinations of the low-energy relative response of GR-200A dosemeters, covering a wider range of monoenergetic energies sampled at a fine energy step, as planned in future experiments by their group at the ELETTRA facility.

  13. Characterization of the Natural Organic Matter (NOM) in groundwater contaminated with (60)Co and (137)Cs using ultrafiltration, Solid Phase Extraction and fluorescence analysis.

    PubMed

    Caron, François; Siemann, Stefan; Riopel, Rémi

    2014-12-01

    Spot samples of shallow groundwaters have been taken between the years 2004 and 2010 near a site formerly used for the dispersal of radioactive liquid wastes. Three sampling points, one clean (upstream), and two downstream of the contamination source, were processed by ultrafiltration (5000 Da cut-off) and Solid Phase Extraction (SPE) to determine the association of selected artificial radionuclides ((60)Co, (137)Cs) with Natural Organic Matter (NOM). The last two sampling episodes (2008 and 2010) also benefited from fluorescence analysis to determine the major character of the NOM. The fluorescence signals are reported as humic-like, fulvic-like and protein-like, which are used to characterize the different NOM types. The NOM from the clean site comprised mostly fine material, whereas the colloidal content (retained by ultrafiltration) was higher (e.g., 15-40% of the Total Organic Carbon - TOC). Most of the 137Cs was present in the colloidal fraction, whereas (60)Co was found in the filtered fraction. Fluorescence analysis, on the other hand, indicated a contrasting behavior between the clean and contaminated sites, with a dominance of protein-like material, a feature usually associated with human impacts. Finally, SPE removed almost quantitatively the protein-like material (>90%), whereas it removed a much smaller fraction of the (137)Cs (<28%). This finding indicates that the (137)Cs preferential binding occurs with a fraction other than the protein-like NOM, likely the fulvic-like or humic-like portion.

  14. Optimization of foaming properties of sludge protein solution by 60Co γ-ray/H2O2 using response surface methodology

    NASA Astrophysics Data System (ADS)

    Xiang, Yulin; Xiang, Yuxiu; Wang, Lipeng; Zhang, Zhifang

    2016-10-01

    Response surface methodology and Box-Behnken experimental design were used to model and optimize the operational parameters of foaming properties of the sludge protein solution by 60Co γ-ray/H2O2 treatment. The four variables involved in this research were the protein solution concentration, H2O2, pH and dose. In the range studied, statistical analysis of the results showed that selected variables had a significant effect on protein foaming properties. The optimized conditions contained: protein solution concentration 26.50% (v/v), H2O2 concentration 0.30% (v/v), pH value 9.0, and dose 4.81 kGy. Under optimal conditions, the foamability and foam stability approached 23.3 cm and 21.3 cm, respectively. Regression analysis with R2 value of 0.9923 (foamability) and 0.9922 (foam stability) indicated a satisfactory correlation between the experimental data and predicted values (response). In addition, based on a feasibility analysis, the 60Co γ-ray/H2O2 method can improve odor and color of the protein foaming solution.

  15. [Radiotherapy for Thyroid Cancer].

    PubMed

    Jingu, Keiichi; Maruoka, Shin; Umezawa, Rei; Takahashi, Noriyoshi

    2015-06-01

    Radioactive 131I therapy for differentiated thyroid cancer has been used since the 1940s and is an established and effective treatment. In contrast, external beam radiotherapy (EBRT) was considered to be effective for achieving local control but not for prolonging survival. Although clinicians were hesitant to administer EBRT owing to the potential radiation-induced adverse effects of 2 dimensional (2D)-radiotherapy until 2000, it is expected that adverse effects will be reduced and treatment efficacy improved through the introduction of more advanced techniques for delivering radiation (eg, 3D-radiotherapy and intensity modulated radiotherapy [IMRT]). The prognosis of undifferentiated thyroid cancer is known to be extremely bad, although in very rare cases, multimodality therapy (total or subtotal resection, chemotherapy, and radiotherapy) has allowed long-term survival. Here, we report the preliminary results of using hypofractionated radiotherapy for undifferentiated thyroid cancer in our institution. PMID:26199238

  16. Radiotherapy of Cervical Cancer.

    PubMed

    Vordermark, Dirk

    2016-01-01

    Curative-intent radical radiotherapy of cervical cancer consists of external-beam radiotherapy, brachytherapy, and concomitant chemotherapy with cisplatin. For each element, new developments aim to improve tumor control rates or treatment tolerance. Intensity-modulated radiotherapy (IMRT) has been shown to reduce gastrointestinal toxicity and can be used to selectively increase the radiotherapy dose. Individualized, image-guided brachytherapy enables better adaptation of high-dose volumes to the tumor extension. Intensification of concomitant or sequential systemic therapy is under evaluation. PMID:27614991

  17. Relative effectiveness of radiation therapy, corticosteroids, and surgery in the management of melanoma metastatic to the central nervous system. [/sup 60/Co

    SciTech Connect

    Katz, H.R.

    1981-07-01

    The records of all patients who received radiotherapy for melanoma metastatic to brain (63 patients) and epidural space (9 patients) at the American Oncologic Hospital from January 1971, through March 1980, were reviewed. Patients were evaluated according to the type of therapy received (corticosteroids, radiotherapy, surgery) and whether their brain metastases were radiographically solitary (60%) or multiple (40%). Forty-nine patients with brain metastases received corticosteroid therapy for 2 to 7 days or more before radiotherapy. Fifty-two percent of the patients with solitary and 30% of those with multiple brain metastases responded to radiotherapy. The use of large doses (greater than or equal to 500 rad) per fraction produced a significantly higher response rate than did the use of low doses (less than or equal to 400 rad) per fraction (P < .02), but only for those patients with solitary brain metastases. Patients with cord compression undergoing decompressive laminectomy had relief of neurologic symptoms, whereas those not paralyzed who received radiotherapy alone did not respond. Surgical excision with postoperative irradiation is recommended for the management of solitary brain metastases from melanoma. Surgical decompression is recommended for the management of epidural cord compression.

  18. Evaluation of the EGSnrc Monte Carlo code for interface dosimetry near high-Z media exposed to kilovolt and 60Co photons

    NASA Astrophysics Data System (ADS)

    Verhaegen, Frank

    2002-05-01

    High atomic number (Z) heterogeneities in tissue exposed to photons with energies of up to about 1 MeV can cause significant dose perturbations in their immediate vicinity. The recently released Monte Carlo (MC) code EGSnrc (Kawrakow 2000a Med. Phys. 27 485-98) was used to investigate the dose perturbation of high-Z heterogeneities in tissue in kilovolt (kV) and 60Co photon beams. Simulations were performed of measurements with a dedicated thin-window parallel-plate ion chamber near a high-Z interface in a 60Co photon beam (Nilsson et al 1992 Med. Phys. 19 1413-21). Good agreement was obtained between simulations and measurements for a detailed set of experiments in which the thickness of the ion chamber window, the thickness of the air gap between ion chamber and heterogeneity, the depth of the ion chamber in polystyrene and the material of the interface was varied. The EGSnrc code offers several improvements in the electron and photon production and transport algorithms over the older EGS4/PRESTA code (Nelson et al 1985 Stanford Linear Accelerator Center Report SL AC-265, Bielajew and Rogers 1987 Nucl. Instrum. Methods Phys. Res. B 18 165-81). The influence of the new EGSnrc features was investigated for simulations of a planar slab of a high-Z medium embedded in water and exposed to kV or 60Co photons. It was found that using the new electron transport algorithm in EGSnrc, including relativistic spin effects in elastic scattering, significantly affects the calculation of dose distribution near high-Z interfaces. The simulations were found to be independent of the maximum fractional electron energy loss per step (ESTEPE), which was often a cause for concern in older EGS4 simulations. Concerning the new features of the photon transport algorithm sampling of the photoelectron angular distribution was found to have a significant effect, whereas the effect of binding energies in Compton scatter was found to be negligible. A slight dose artefact very close to high

  19. [Radiotherapy of skin cancers].

    PubMed

    Hennequin, C; Rio, E; Mahé, M-A

    2016-09-01

    The indications of radiotherapy for skin cancers are not clearly defined because of the lack of randomised trials or prospective studies. For basal cell carcinomas, radiotherapy frequently offers a good local control, but a randomized trial showed that surgery is more efficient and less toxic. Indications of radiotherapy are contra-indications of surgery for patients older than 60, non-sclerodermiform histology and occurring in non-sensitive areas. Adjuvant radiotherapy could be proposed to squamous cell carcinomas, in case of poor prognostic factors. Dose of 60 to 70Gy are usually required, and must be modulated to the size of the lesions. Adjuvant radiotherapy seems beneficial for desmoplastic melanomas but not for the other histological types. Prophylactic nodal irradiation (45 to 50Gy), for locally advanced tumours (massive nodal involvement), decreases the locoregional failure rate but do not increase survival. Adjuvant radiotherapy (50 to 56Gy) for Merckel cell carcinomas increases also the local control rate, as demonstrated by meta-analysis and a large epidemiological study. Nodal areas must be included, if there is no surgical exploration (sentinel lymph node dissection). Kaposi sarcomas are radiosensitive and could be treated with relatively low doses (24 to 30Gy). Also, cutaneous lymphomas are good indications for radiotherapy: B lymphomas are electively treated with limited fields. The role of total skin electron therapy for T-lymphomas is still discussed; but palliative radiotherapy is very efficient in case of cutaneous nodules. PMID:27522189

  20. Planning National Radiotherapy Services

    PubMed Central

    Rosenblatt, Eduardo

    2014-01-01

    Countries, states, and island nations often need forward planning of their radiotherapy services driven by different motives. Countries without radiotherapy services sponsor patients to receive radiotherapy abroad. They often engage professionals for a feasibility study in order to establish whether it would be more cost-beneficial to establish a radiotherapy facility. Countries where radiotherapy services have developed without any central planning, find themselves in situations where many of the available centers are private and thus inaccessible for a majority of patients with limited resources. Government may decide to plan ahead when a significant exodus of cancer patients travel to another country for treatment, thus exposing the failure of the country to provide this medical service for its citizens. In developed countries, the trigger has been the existence of highly visible waiting lists for radiotherapy revealing a shortage of radiotherapy equipment. This paper suggests that there should be a systematic and comprehensive process of long-term planning of radiotherapy services at the national level, taking into account the regulatory infrastructure for radiation protection, planning of centers, equipment, staff, education programs, quality assurance, and sustainability aspects. Realistic budgetary and cost considerations must also be part of the project proposal or business plan. PMID:25505730

  1. Glass Forming Ability and Kinetic Characters of Paramagnetic Nd60Co40-xAlx(x=5, 10, 15) Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Xia, L.; Dong, Y. D.

    Paramagnetic Nd60Co40-xAlx(x=5, 10, 15) bulk metallic glasses (BMGs) were prepared in the shape of rods 2 mm in diameter by suction casting. The ternary alloys have shown distinct glass transitions in Differential Scanning Calorimetry (DSC) measurements and excellent glass-forming ability. The glass transition and crystallization behaviors as well as their kinetics have been studied. The reduced glass transition temperature and the supercooled liquid region of the alloys were found to increase with the increasing content of Al. The role of Al was discussed. The parameter γ defined by Liu et al. was employed to discuss the glass-forming ability of the alloys and the critical cooling rates as well as the critical section thickness of the alloys were predicted accordingly.

  2. The effect of 60Co (γ-ray) irradiation on the electrical characteristics of Au/SnO 2/n-Si (MIS) structures

    NASA Astrophysics Data System (ADS)

    Gökçen, M.; Tataroğlu, A.; Altındal, Ş.; Bülbül, M. M.

    2008-01-01

    The effect of 60Co (γ-ray) irradiation on the electrical properties of Au/SnO 2/n-Si (MIS) structures has been investigated using the capacitance-voltage ( C- V) and conductance-voltage ( G/ ω- V) measurements in the frequency range 1 kHz to 1 MHz at room temperature. The MIS structures were exposed to γ-rays at a dose rate of 2.12 kGy/h in water and the range of total dose was 0-500 kGy. It was found that the C- V and G/ ω- V curves were strongly influenced with both frequency and the presence of the dominant radiation-induced defects, and the series resistance was increased with increasing dose. Also, the radiation-induced threshold voltage shift (Δ VT) strongly depended on radiation dose and frequency, and the density of interface states Nss by Hill-Coleman method decreases with increasing radiation dose.

  3. Comment on 'Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy (125)I and (192)Ir sources and (60)Co cell irradiation'.

    PubMed

    Lindborg, Lennart; Lillhök, Jan; Grindborg, Jan-Erik

    2015-11-01

    The relative standard deviation, σr,D, of calculated multi-event distributions of specific energy for (60)Co ϒ rays was reported by the authors F Villegas, N Tilly and A Ahnesjö (Phys. Med. Biol. 58 6149-62). The calculations were made with an upgraded version of the Monte Carlo code PENELOPE. When the results were compared to results derived from experiments with the variance method and simulated tissue equivalent volumes in the micrometre range a difference of about 50% was found. Villegas et al suggest wall-effects as the likely explanation for the difference. In this comment we review some publications on wall-effects and conclude that wall-effects are not a likely explanation.

  4. Key comparison BIPM.RI(I)-K1 of the air-kerma standards of the NIM, China and the BIPM in 60Co gamma radiation

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Burns, D.; Wang, K.; Fan, Y.; Jin, S.; Yang, X.

    2016-01-01

    An indirect comparison of the standards for air kerma of the National Institute of Metrology (NIM), China and of the Bureau International des Poids et Mesures (BIPM) was carried out in the 60Co radiation beam of the BIPM in November 2015. The comparison result, evaluated as a ratio of the NIM and the BIPM standards for air kerma, is 0.9997 with a combined standard uncertainty of 2.7 × 10-3. The results are analysed and presented in terms of degrees of equivalence for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. Effects of 60Co γ-ray irradiation on microstructure and ferroelectric properties of Bi3.25La0.75Ti3O12 thin films

    NASA Astrophysics Data System (ADS)

    Wang, Zan; Jiang, Wei; Li, San-xi; Tong, Jun-sheng

    2016-01-01

    Bi3.25La0.75Ti3O12 (BLT) thin films were deposited on Pt/Ti/SiO2/Si substrates through sol-gel method. Films underwent 60Co γ-ray irradiation with different doses; 0, 50, 100 and 150 kGy, respectively. Impacts of γ-ray on the microstructure, ferroelectric properties, leakage current density and fatigue characteristic were studied in detail. The results of SEM images show that grain patterns become irregular. Remnant polarization (2Pr) and coercive field (2Ec) decrease with irradiation dose increase. C-V curves reveal obvious asymmetry along y-axis. The irradiated thin films display lower leakage current density and fatigue endurance up to more than 1010 switching cycles. These results suggest that radiation can improve the film performance in some areas.

  6. SU-E-J-129: A Strategy to Consolidate the Image Database of a VERO Unit Into a Radiotherapy Management System

    SciTech Connect

    Yan, Y; Medin, P; Yordy, J; Zhao, B; Jiang, S

    2014-06-01

    Purpose: To present a strategy to integrate the imaging database of a VERO unit with a treatment management system (TMS) to improve clinical workflow and consolidate image data to facilitate clinical quality control and documentation. Methods: A VERO unit is equipped with both kV and MV imaging capabilities for IGRT treatments. It has its own imaging database behind a firewall. It has been a challenge to transfer images on this unit to a TMS in a radiation therapy clinic so that registered images can be reviewed remotely with an approval or rejection record. In this study, a software system, iPump-VERO, was developed to connect VERO and a TMS in our clinic. The patient database folder on the VERO unit was mapped to a read-only folder on a file server outside VERO firewall. The application runs on a regular computer with the read access to the patient database folder. It finds the latest registered images and fuses them in one of six predefined patterns before sends them via DICOM connection to the TMS. The residual image registration errors will be overlaid on the fused image to facilitate image review. Results: The fused images of either registered kV planar images or CBCT images are fully DICOM compatible. A sentinel module is built to sense new registered images with negligible computing resources from the VERO ExacTrac imaging computer. It takes a few seconds to fuse registered images and send them to the TMS. The whole process is automated without any human intervention. Conclusion: Transferring images in DICOM connection is the easiest way to consolidate images of various sources in your TMS. Technically the attending does not have to go to the VERO treatment console to review image registration prior delivery. It is a useful tool for a busy clinic with a VERO unit.

  7. Re-evaluation of the product of (W/e)air and the graphite to air stopping-power ratio for 60Co air kerma standards.

    PubMed

    Thomson, R M; Rogers, D W O

    2010-07-01

    Experiments which determine the product of (W/e)air, the average energy deposited per coulomb of charge of one sign released by an electron coming to rest in dry air, and (LDelta/rho)Ca, the Spencer-Attix mean restricted mass collision stopping-power ratio for graphite to air, in a 60Co or 137Cs beam are reanalysed. Correction factors, e.g., to account for gaps about a calorimeter core or perturbations due to a cavity's presence, are calculated using the EGSnrc Monte Carlo code system and these generally decrease the value of (W/e)air(LDelta/rho)Ca for each experiment. Stopping-power ratios are calculated for different choices of density correction and average excitation energy (I-value) for graphite. To calculate an average value (W/e)air(LBIPM/rho)Ca for the BIPM air kerma standard, each experimental result is multiplied by the ratio (LBIPM/rho)Ca/(LDelta/Rho)Ca. While individual values of (LDelta/rho)Ca are sensitive to the I-values and density corrections assumed, this ratio varies by less than 0.1% for different choices. Hence, the product (W/e)air(LBIPM/rho)Ca is relatively insensitive to these choices. The weighted mean of the updated data is (W/e)air(LBIPM/rho)Ca=33.68 J C(-1)+/-0.2%, suggesting that the accepted value of 33.97 J C(-1)+/-0.1% is 0.8% too high. This has implications for primary 60Co air kerma standards worldwide and potentially for the choice of graphite I-value and density correction for the calculation of the graphite stopping power, as well as the value of (W/e)air.

  8. Dose-effect relationships of nucleoplasmic bridges and complex nuclear anomalies in human peripheral lymphocytes exposed to 60Co γ-rays at a relatively low dose.

    PubMed

    Tian, Xue-Lei; Zhao, Hua; Cai, Tian-Jing; Lu, Xue; Chen, De-Qing; Li, Shuang; Liu, Qing-Jie

    2016-07-01

    The dose effect between nucleoplasmic bridges (NPB) and relatively low doses of ionising radiation remains unknown. Accordingly, this study investigated the NPB frequencies in human peripheral blood lymphocytes exposed to low-dose (60)Co γ-rays. Complex anomalies, including fused nuclei (FUS), horse-shoe nuclei (HS) and circular nuclei (CIR), which possibly originated from multiple NPBs, were also scored. Human peripheral blood samples were collected from three healthy males and irradiated with 0-1 and 0-0.4 Gy (60)Co γ-rays. A cytokinesis-block micronucleus cytome assay was then conducted to analyse NPB, PFHC (NPB plus three complex nuclear anomalies) and micronucleus (MN) in binucleated cells. All dose-response curves followed the linear model for both NPB frequency and PFHC cell frequency. The dose-response curves between NPB frequency and absorbed dose at 0-1 and 0-0.4 Gy were y = 0.0037x + 0.0005 (R (2) = 0.979, P < 0.05) and y = 0.0043x + 0.0004 (R (2) = 0.941, P < 0.05), respectively. The dose-response curves between PFHC cell frequency and absorbed dose at 0-1 and 0-0.4 Gy were y = 0.0044x + 0.0007 (R (2) = 0.982, P < 0.05) and y = 0.0059x + 0.0005 (R (2) = 0.969, P < 0.05), respectively. The statistical significance of differences between the irradiated groups (0-0.4 Gy) and background levels of NPB, PFHC and MN were also analysed. The lowest analysable doses of NPB, PFHC and MN were 0.12, 0.08 and 0.08 Gy, respectively. In conclusion, NPBs and PFHC positively correlated with the absorbed radiation at a relatively low dose.

  9. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co

    SciTech Connect

    Reed, J. L. Micka, J. A.; Culberson, W. S.; DeWerd, L. A.; Rasmussen, B. E.; Davis, S. D.

    2014-12-15

    Purpose: To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co. Methods: LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a {sup 60}Co teletherapy source. The brachytherapy sources measured were the Best 2301 {sup 125}I seed, the OncoSeed 6711 {sup 125}I seed, and the Best 2335 {sup 103}Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the {sup 60}Co irradiations. Monte Carlo (MC) simulations were used to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the {sup 60}Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for {sup 125}I and {sup 103}Pd relative to {sup 60}Co. Results: The relative TLD intrinsic energy dependences (relative to {sup 60}Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. Conclusions: The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%–15% for {sup 125}I and {sup 103}Pd sources relative to {sup 60}Co. TLD measurements of absolute dose around {sup 125}I and {sup 103}Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy.

  10. Adaptive hormetic response of pre-exposure of mouse brain with low-dose 12C 6+ ion or 60Co γ-ray on growth hormone (GH) and body weight induced by subsequent high-dose irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Xie, Yi; Zhou, Qingming; Liu, Bing; Li, Wenjian; Li, Xiaoda; Duan, Xin; Yuan, Zhigang; Zhou, Guangming; Min, Fengling

    2006-01-01

    The brain of the Kun-Ming strain mice were irradiated with 0.05 Gy of 12C 6+ ion or 60Co γ-ray as the pre-exposure dose, and were then irradiated with 2 Gy of 12C 6+ ion or 60Co γ-ray as challenging irradiation dose at 4 h after per-exposure. Body weight and serum growth hormone (GH) concentration were measured at 35th day after irradiation. The results showed that irradiation of mouse brain with 2 Gy of 12C 6+ ion or 60Co γ-ray significantly diminished mouse body weight and level of serum GH. The relative biological effectiveness values of a 2 Gy dose of 12C 6+ ion calculated with respect to 60Co γ-ray were 1.47 and 1.34 for body weight and serum GH concentration, respectively. Pre-exposure with a low-dose (0.05 Gy) of 12C 6+ ion or 60Co γ-ray significantly alleviated reductions of mouse body weight and level of serum GH induced by a subsequent high-dose (2 Gy) irradiation. The data suggested that low-dose ionizing irradiation can induce adaptive hormetic responses to the harmful effects of pituitary by subsequent high-dose exposure.

  11. Monte Carlo-based energy response studies of diode dosimeters in radiotherapy photon beams.

    PubMed

    Arun, C; Palani Selvam, T; Dinkar, Verma; Munshi, Prabhat; Kalra, Manjit Singh

    2013-01-01

    This study presents Monte Carlo-calculated absolute and normalized (relative to a (60)Co beam) sensitivity values of silicon diode dosimeters for a variety of commercially available silicon diode dosimeters for radiotherapy photon beams in the energy range of (60)Co-24 MV. These values were obtained at 5 cm depth along the central axis of a water-equivalent phantom of 10 cm × 10 cm field size. The Monte Carlo calculations were based on the EGSnrc code system. The diode dosimeters considered in the calculations have different buildup materials such as aluminum, brass, copper, and stainless steel + epoxy. The calculated normalized sensitivity values of the diode dosimeters were then compared to previously published measured values for photon beams at (60)Co-20 MV. The comparison showed reasonable agreement for some diode dosimeters and deviations of 5-17 % (17 % for the 3.4 mm brass buildup case for a 10 MV beam) for some diode dosimeters. Larger deviations of the measurements reflect that these models of the diode dosimeter were too simple. The effect of wall materials on the absorbed dose to the diode was studied and the results are presented. Spencer-Attix and Bragg-Gray stopping power ratios (SPRs) of water-to-diode were calculated at 5 cm depth in water. The Bragg-Gray SPRs of water-to-diode compare well with Spencer-Attix SPRs for ∆ = 100 keV and above at all beam qualities.

  12. Recruitment in Radiotherapy

    ERIC Educational Resources Information Center

    Deeley, T. J.; And Others

    1976-01-01

    The Faculty Board of Radiotherapy and Oncology of the Royal College of Radiobiologists surveyed the factors thought to influence recruitment into the specialty. Possible factors listed in replies of 36 questionnaires are offered. (LBH)

  13. Californium versus cobalt brachytherapy combined with external-beam radiotherapy for IIB stage cervical cancer: long-term experience of a single institute

    PubMed Central

    Janulionis, Ernestas; Valuckas, Konstantinas Povilas; Samerdokiene, Vitalija; Atkocius, Vydmantas

    2015-01-01

    Purpose The purpose of this paper was to observe and compare long-term curative effects and complications of FIGO stage IIB cervical cancer patients (n = 232) treated with high-dose-rate (HDR) californium (252Cf) neutron or cobalt (60Co) photon intracavitary brachytherapy (ICBT) combined with external-beam radiotherapy (EBRT). Material and methods The EBRT dose to the small pelvis was 50 Gy in both groups. The brachytherapy component of 252Cf or 60Co was added in the 3rd week of EBRT, 5 fractions were performed once per week resulting in a total ICBT dose of 40 Gy/Gyeq (point A). Results Overall survival (OS) at 5, 10 and 15 years was 63.6%, 50.4% and 38.8% in the 252Cf group and 62.2%, 50.5%, 39.9%, in the 60Co group, respectively (p = 0.74). The percentage of tumour recurrence was statistically significantly lower in the 252Cf group with 7.4% versus 17.1% in the 60Co group (p = 0.02). Second primary cancers have developed similarly 9.1% and 8.1% cases for 252Cf and 60Co groups, respectively. Conclusions Our long-term retrospective study comparing 252Cf and 60Co isotopes with brachytherapy in combined treatment of FIGO IIB stage cervix carcinoma patients shows, that overall survival in the both groups are similar. However, the recurrence of tumour was significantly lower in the 252Cf group. The incidence of second primary cancers was similar in both groups. PMID:26622239

  14. Magnetic removal of electron contamination for 60Co panoramic gamma ray exposure--Investigations with CaSO4:Dy and LiF based dosimeters.

    PubMed

    Kumar, Munish; Sahani, G; Chourasiya, G

    2010-06-01

    Electron contamination from a sealed (60)Co radiation source has been investigated comprehensively using a CaSO(4):Dy based TLD badge and LiF crystals. It has been found that due to electron contamination, the thermoluminescence (TL) detectors exhibit over response which can be corrected by applying a magnetic field. It has also been found that for a source-to-dosimeter distance of 50 cm, the ratio of the TL readouts of the third to first discs of the TLD badge reduces from approximately 1.5 to approximately 1.00 after applying a magnetic field. Hence detectors which are sensitive to electrons as well as photons, and are capable of distinguishing them, can lead to an erroneous measurement. This happens because the contribution due to electron contamination interferes with pure gamma calibration. The study is helpful in establishing accurate calibration and appropriate correction factors for personnel monitoring carried out using CaSO(4):Dy based TLD badge.

  15. Magnetization behavior and magnetocaloric effect in bulk amorphous Fe 60Co 5Zr 8Mo 5W 2B 20 alloy

    NASA Astrophysics Data System (ADS)

    Gondro, J.; Świerczek, J.; Olszewski, J.; Zbroszczyk, J.; Sobczyk, K.; Ciurzyńska, W. H.; Rzącki, J.; NabiaŁek, M.

    2012-04-01

    Microstructure by X-ray diffraction and Mössbauer spectroscopy, and isothermal magnetic entropy changes in the bulk amorphous Fe60Co5Zr8Mo5W2B20 alloy in the as-quenched state and after annealing at 720 K for 15 min are studied. The as-cast and heat treated alloy is paramagnetic at room temperature. The quadrupole splitting distribution is unimodal after annealing indicating the more homogenous structure in comparison with that for the as-cast alloy. Curie temperature slightly increases after annealing from 265±2 K in the as-quenched state to 272±2 K and the alloy exhibits the second order magnetic phase transition. The maximum of isothermal magnetic entropy changes appears at the Curie points and is equal to 0.30 and 0.42 J/(kg·K) for the alloy in the as-quenched state and after annealing, respectively. In the paramagnetic region the material behaves as a Curie-Weiss paramagnet.

  16. KEY COMPARISON: COOMET.RI(I)-K1 comparison of national measurement standards of air kerma for 60Co γ radiation

    NASA Astrophysics Data System (ADS)

    Büermann, L.; Oborin, A. V.; Dobrovosky, J.; Milevsky, V. S.; Walwyn Salas, G.; Lapenas, A.

    2009-01-01

    Results are presented of the COOMET key comparison of the national measurement standards of air kerma for 60Co γ radiation. Participants of the comparison were PTB (Germany, pilot institute), VNIIM (Russia), SMU (Slovakia), BelGIM (Belarus), CPHR (Cuba) and RMTC (Latvia). PTB, VNIIM and SMU had previously taken part in a key comparison with the Bureau International de Poids et Mesures (BIPM) and operated as link laboratories in order to evaluate the degree of equivalence of the participants' results with the key comparison reference value. These data form the basis of the results entered into the BIPM key comparison database for comparison COOMET.RI(I)-K1. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  17. Key comparison BIPM.RI(I)-K4 of the absorbed dose to water standards of the PTB, Germany and the BIPM in 60Co gamma radiation

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Burns, D. T.; Kapsch, R.-P.; Krauss, A.

    2016-01-01

    An indirect comparison has been made of the standards for absorbed dose to water in 60Co radiation of the Physikalisch-Technische Bundesanstalt, (PTB), Germany and of the Bureau International des Poids et Mesures (BIPM). The measurements at the BIPM were carried out in October 2015. The comparison result, based on the calibration coefficients for two transfer standards and evaluated as a ratio of the PTB and the BIPM standards for absorbed dose to water, is 0.9977 with a combined standard uncertainty of 3.8 × 10-3. The results are analysed and presented in terms of degrees of equivalence for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  18. Optimization of process parameters for the inactivation of Lactobacillus sporogenes in tomato paste with ultrasound and 60Co- γ irradiation using response surface methodology

    NASA Astrophysics Data System (ADS)

    Ye, Sheng-Ying; Qiu, Yuan-Xin; Song, Xian-Liang; Luo, Shu-Can

    2009-03-01

    The processing parameters for ultrasound and 60Co- γ irradiation were optimized for their ability to inactivate Lactobacillus sporogenes in tomato paste using a systematic experimental design based on response surface methodology. Ultrasonic power, ultrasonic processing time and irradiation dose were explored and a central composite rotation design was adopted as the experimental plan, and a least-squares regression model was obtained. The significant influential factors for the inactivation rate of L. sporogenes were obtained from the quadratic model and the t-test analyses for each process parameter. Confirmation of the experimental results indicated that the proposed model was reasonably accurate and could be used to describe the efficacy of the treatments for inactivating L. sporogenes within the limits of the factors studied. The optimized processing parameters were found to be an ultrasonic power of 120 W with a processing time of 25 min and an irradiation dose of 6.5 kGy. These were measured under the constraints of parameter limitation, based on the Monte Carlo searching method and the quadratic model of the response surface methodology, including the a/ b value of the Hunter color scale of tomato paste. Nevertheless, the ultrasound treatment prior to irradiation for the inactivation of L. sporogenes in tomato paste was unsuitable for reducing the irradiation dose.

  19. KEY COMPARISON: Comparison of the standards for absorbed dose to water of the ENEA-INMRI (Italy) and the BIPM for 60Co γ rays

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Allisy-Roberts, P. J.; Burns, D. T.; Guerra, A. S.; Laitano, R. F.; Pimpinella, M.

    2010-01-01

    A comparison of the standards for absorbed dose to water of the Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti of the Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, Italy (ENEA-INMRI), and of the Bureau International des Poids et Mesures (BIPM) has been made in 60Co gamma radiation under the auspices of the key comparison BIPM.RI(I)-K4. The comparison result, based on the calibration coefficients for three transfer standards and expressed as a ratio of the ENEA and the BIPM standards for absorbed dose to water, is 0.9999 (0.0044). The present 2007 result replaces the earlier ENEA value in this key comparison. The degrees of equivalence between the ENEA and the other participants in this comparison have been calculated and the results are given in the form of a matrix for the ten national metrology institutes (NMIs) that have published results in this ongoing comparison for absorbed dose to water. A graphical presentation is also given. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  20. The changing role of external-beam irradiation in the management of malignant tumors of the major slaivary glands. [/sup 60/Co

    SciTech Connect

    Chung, C.T.; Sagerman, R.H.; Ryoo, M.C.; King, G.A.; Yu, W.S.; Dalal, P.S.

    1982-10-01

    Postoperative irradiation reduces the local recurrence rate for malignant salivary gland tumors. Less extensive surgery followed by immediate radiotherapy is possible without decreasing local control; moreover, cosmetic apperance and physiological function are preserved. Local tumor control was achieved in 16 out of 17 patients without gross tumor using a dose of 6,000 rad/6 wk. Combined photon and electron beams give better cosmetic and functional results than either modality alone. Irradiation with greater than or equal to7,000 rad should be employed in unresectable cases and may effect tumor control.

  1. [Radiotherapy of larynx cancers].

    PubMed

    Pointreau, Y; Lafond, C; Legouté, F; Trémolières, P; Servagi-Vernat, S; Giraud, P; Maingon, P; Calais, G; Lapeyre, M

    2016-09-01

    Intensity-modulated radiotherapy is the gold standard in the treatment of larynx cancers (except T1 glottic tumour). Early T1 and T2 tumours may be treated by exclusive radiation or surgery. For tumours requiring total laryngectomy (T2 or T3), induction chemotherapy followed by exclusive radiotherapy or concurrent chemoradiotherapy is possible. For T4 tumour, surgery must be proposed. The treatment of lymph nodes is based on the initial treatment of the primary tumour. In non-surgical procedure, in case of sequential radiotherapy, the curative dose is 70Gy and the prophylactic dose is 50Gy. An integrated simultaneous boost radiotherapy is allowed (70Gy in 2Gy per fraction and 56Gy in 1.8Gy per fraction or 70Gy in 2.12Gy per fraction). Postoperatively, radiotherapy is used in locally advanced cancer with dose levels based on pathologic criteria (66Gy for R1 resection, 50 to 54Gy for complete resection). Volume delineation was based on guidelines. PMID:27521037

  2. Consecutive C[subscript 60] Fullerene Dissociation from Ir([eta][superscript 2]-C[subscript 60])(CO)(Cl)(PPh[subscript 3])[subscript 2] and the Oxidative Addition of Benzene

    ERIC Educational Resources Information Center

    Felix, Tamara; Cortes-Figueroa, Jose E.

    2010-01-01

    This laboratory activity is a mechanistic exploration of the interactions between electronically deficient organometallic compounds and solvent molecules. Simple kinetics experiments designed to explore the mechanism of C[subscript 60] fullerene-benzene exchange on Ir(([eta][superscript 2]-C[subscript 60])(CO)(Cl)(PPh[subscript 3])[subscript 2]…

  3. [Prostate cancer external beam radiotherapy].

    PubMed

    de Crevoisier, R; Pommier, P; Latorzeff, I; Chapet, O; Chauvet, B; Hennequin, C

    2016-09-01

    The prostate external beam radiotherapy techniques are described, when irradiating the prostate or after prostatectomy, with and without pelvic lymph nodes. The following parts are presented: indications of radiotherapy, total dose and fractionation, planning CT image acquisition, volume of interest delineation (target volumes and organs at risk) and margins, Intensity modulated radiotherapy planning and corresponding dose-volume constraints, and finally Image guided radiotherapy. PMID:27516051

  4. [Protective effects of WR2721 on early bone marrow hematopoietic function in mice exposed to 6.5 Gy of (60)Co γ-rays].

    PubMed

    Deng, Zi-Liang; Zhang, Liu-Zhen; Cong, Yue; Liu, Xiao-Lan; Yu, Zu-Ying; Shan, Ya-Jun; Cui, Yu; Wang, Li-Mei; Xing, Shuang; Cong, Yu-Wen; Luo, Qing-Liang

    2014-06-01

    The aim of this study was to investigate the effect of WR2721(amifostine) against bone marrow hematopoietic damage of mice exposed to 6.5 Gy of (60)Co-γ ray. A total of 60 C57/BL6J mice was divided into 3 groups:normal group (mice were injected with physiological salt solution), irradiation group (mice were injected with physiologic salt solution before irradiation) and WR2721 group (mice were injected with WR2721 before irradiation). The WBC, neutrophil (Neut), Plt and RBC levels in peripheral blood of 3 group mice were counted within 60 days after irradiation; the bone marrow nuclear cells (BMNC) were counted at 2 and 24 hours after irradiation; the hematopoietic stem/progenitor cell (LK/LSK) level and colony formation capability were detected by flow cytometry at 2 and 24 hours after irradiation. The results indicated that the counts of WBC and neut at 4 and 18 days, Plt at 7-18 days and RBC at 10-30 day after irradiation in WR2721 group were higher than those in irradiation group (P < 0.05); the BMNC, LSK and LK levels obviously increased at 24 hours after irradiation (P < 0.05), the CFU-GEMM, CFU-GM, CFU-MK BFU-E and CFU-E all significantly increased at 2 and 24 hours after irradiation (P < 0.01), as compared with irradiation group. It is concluded that WR2721 can effectively alleviate early hematopoietic damage and promote the fast recovery of peripheral blood cells in mice exposed to γ-ray, suggesting that the WR2721 has significant radioprotective effect on hematopoietic system.

  5. Luminescence characteristics of C5+ ions and 60Co irradiated Li2BaP2O7:Dy3+ phosphor

    NASA Astrophysics Data System (ADS)

    Wani, J. A.; Dhoble, N. S.; Lochab, S. P.; Dhoble, S. J.

    2015-04-01

    In this work a study on some thermoluminescence characteristics of Li2BaP2O7:Dy phosphor is presented. The phosphor was synthesized by solid state diffusion method and characterized for its phase purity by X-ray diffraction (XRD). FT-IR spectrum was also carried out to confirm the presence of phosphate family and vibrations corresponding to P-O-P group. Spectroscopic investigation was approached through photoluminescence (PL) and thermoluminescence (TL). PL emission spectrum of Dy3+ ions corresponding to 4F9/2 → 6H13/2 (483 nm) and 4F9/2 → 6H15/2 (574 nm) transitions is revealed under 351 nm excitation wavelength. This characteristic emission confirms the presence of Dy3+ ions in the Li2BaP2O7 host matrix. To induce TL properties in Li2BaP2O7:Dy phosphor was irradiated with C5+ ion beams and gamma rays (60Co). A nearly simple glow curve was observed for Li2BaP2O7:Dy under two different excitation sources. TL response is almost linear over a wide range. Average absorbed dose (D bar) and mean linear energy transfer (LET ‾) of C5+ ion beams in Li2BaP2O7:Dy have also been calculated. Values of parameters like E and S known as trap depth and frequency factor respectively were obtained by using TLanal computer program. Also SRIM based calculations were performed to study the effect of C5+ ion beams on the samples of Li2BaP2O7:Dy. SRIM calculations show that Ba2+ vacancies are highest in number. Till date no such luminescence information on Li2BaP2O7:Dy phosphor is available.

  6. Characterization of a new ionization chamber in radiotherapy beams: angular dependence and variation of response with distance.

    PubMed

    Silva, Jonas O; Linda V E, Caldas

    2012-10-01

    A new double faced ionization chamber was constructed at the Calibration Laboratory of IPEN. It has different collecting electrode materials: aluminum and graphite. It was irradiated in standard radiotherapy beams ((60)Co and X-rays). The response variation with distance and the angular dependence of this ionization chamber were evaluated. It was verified that the chamber response follows the inverse square law within a maximum variation of 11.2% in relation to the reference value. For the angular dependence it showed good agreement with international standards.

  7. Dosimetric and geometric evaluation of a novel stereotactic radiotherapy device for breast cancer: The GammaPod Trade-Mark-Sign

    SciTech Connect

    Mutaf, Yildirim D.; Yi, Byong Yong; Prado, Karl; D'Souza, Warren D.; Regine, William F.; Feigenberg, Steven J.; Zhang Jin; Yu, Cedric X.

    2013-04-15

    Purpose: A dedicated stereotactic gamma irradiation device, the GammaPod Trade-Mark-Sign from Xcision Medical Systems, was developed specifically to treat small breast cancers. This study presents the first evaluation of dosimetric and geometric characteristics from the initial prototype installed at University of Maryland Radiation Oncology Department. Methods: The GammaPod Trade-Mark-Sign stereotactic radiotherapy device is an assembly of a hemi-spherical source carrier containing 36 {sup 60}Co sources, a tungsten collimator, a dynamically controlled patient support table, and the breast immobilization system which also functions as a stereotactic frame. The source carrier contains the sources in six columns spaced longitudinally at 60 Degree-Sign intervals and it rotates together with the variable-size collimator to form 36 noncoplanar, concentric arcs focused at the isocenter. The patient support table enables motion in three dimensions to position the patient tumor at the focal point of the irradiation. The table moves continuously in three cardinal dimensions during treatment to provide dynamic shaping of the dose distribution. The breast is immobilized using a breast cup applying a small negative pressure, where the immobilization cup is embedded with fiducials also functioning as the stereotactic frame for the breast. Geometric and dosimetric evaluations of the system as well as a protocol for absorbed dose calibration are provided. Dosimetric verifications of dynamically delivered patient plans are performed for seven patients using radiochromic films in hypothetical preop, postop, and target-in-target treatment scenarios. Results: Loaded with 36 {sup 60}Co sources with cumulative activity of 4320 Ci, the prototype GammaPod Trade-Mark-Sign unit delivers 5.31 Gy/min at the isocenter using the largest 2.5 cm diameter collimator. Due to the noncoplanar beam arrangement and dynamic dose shaping features, the GammaPod Trade-Mark-Sign device is found to deliver

  8. Radiotherapy of inoperable lung cancer

    SciTech Connect

    Namer, M.; Lalanne, C.M.; Boublil, J.L.; Hery, M.; Chauvel, P.; Verschoore, J.; Aubanel, J.M.; Bruneton, J.N.

    1980-08-01

    Evaluation of loco-regional results obtained by radiotherapy for 31 patients with inoperable epidermoid lung cancer revealed objective remission (over 50%) in only 25% of patients. These results emphasize the limited effectiveness of radiotherapy in such cases and point out the need for increased research in radiotherapy techniques if survival rates are to be improved.

  9. [Radiotherapy for brain metastases].

    PubMed

    Latorzeff, I; Antoni, D; Gaudaire-Josset, S; Feuvret, L; Tallet-Richard, A; Truc, G; Noël, G

    2016-09-01

    Radiotherapy for brain metastases has become more multifaceted. Indeed, with the improvement of the patient's life expectancy, side effects must be undeniably avoided and the retreatments or multiple treatments are common. The cognitive side effects should be warned and the most modern techniques of radiation therapy are used regularly to reach this goal. The new classifications of patients with brain metastases help guiding treatment more appropriately. Stereotactic radiotherapy has supplanted whole brain radiation therapy both for patients with metastases in place and for those who underwent surgery. Hippocampus protection is possible with intensity-modulated radiotherapy. Its relevance in terms of cognitive functioning should be more clearly demonstrated but the requirement, for using it, is increasingly strong. While addressing patients in palliative phase, the treatment of brain metastases is one of the localisations where technical thinking is the most challenging. PMID:27523410

  10. [Radiotherapy in Europe].

    PubMed

    Verheij, M; Slotman, B J

    2016-01-01

    Radiotherapy plays an important part in the curing of cancer patients and is an effective treatment for tumour-related symptoms. However, in many countries the level of access to this treatment modality is unacceptably low due to shortage of infrastructure, modern apparatus and trained staff. In Europe it is mainly the Eastern European countries that are behind in the provision of and accessibility to radiotherapy. Worldwide investment to narrow the gap would put an end to these undesirable differences. In addition, these investments would deliver economic benefits, especially in low-to-middle income countries. In this article, on the basis of a number of recently published reports, we discuss the differences that exist in the geographical spread of radiotherapy departments and the availability of apparatus within Europe. In conclusion we also take a short look at the Dutch situation. PMID:27334085

  11. Low-cost commercial glass beads as dosimeters in radiotherapy

    NASA Astrophysics Data System (ADS)

    Jafari, S. M.; Bradley, D. A.; Gouldstone, C. A.; Sharpe, P. H. G.; Alalawi, A.; Jordan, T. J.; Clark, C. H.; Nisbet, A.; Spyrou, N. M.

    2014-04-01

    Recent developments in advanced radiotherapy techniques using small field photon beams, require small detectors to determine the delivered dose in steep dose gradient fields. Commercially available glass jewellery beads exhibit thermoluminescent properties and have the potential to be used as dosimeters in radiotherapy due to their small size (<5 mm), low cost, reusability and inert nature. This study investigated the dosimetric characteristics of glass beads. The beads were irradiated by 6 MV photons using a medical linear-accelerator and 60Co gamma rays over doses ranging from 1 to 2500 cGy. A thermoluminescence (TL) system and an electron paramagnetic resonance (EPR) system were employed for read out. Both the TL and EPR studies demonstrated a radiation-induced signal, the sensitivity of which varied with bead colour. White coloured beads proved to be the most sensitive for both systems. The smallest and therefore least sensitive bead sizes allowed measurement of doses of 1 cGy using the TL system while that for the EPR system was approximately 1000 cGy. The fading rate was found to be 10% 30 days after irradiation with both readout systems. The dose response is linear with measured dose over the dose range 1 to 2500 cGy, with an R2 correlation coefficient of greater than 0.999. The batch-to-batch reproducibility of a set of dosimeters after a single irradiation was found to be 3% (1 SD). The reproducibility of individual dosimeters was found to be 1.7%. No measurable angular dependence was found (results agreed within 1%). Dose rate response was found to agree within 1% for dose rates of 100 to 600 cGy/min. These results demonstrate the potential use of glass beads as TL dosimeters over the dose range commonly applied in radiotherapy.

  12. Radiotherapy for craniopharyngioma.

    PubMed

    Aggarwal, Ajay; Fersht, Naomi; Brada, Michael

    2013-03-01

    Radiotherapy remains the mainstay of multidisciplinary management of patients with incompletely resected and recurrent craniopharyngioma. Advances in imaging and radiotherapy technology offer new alternatives with the principal aim of improving the accuracy of treatment and reducing the volume of normal brain receiving significant radiation doses. We review the available technologies, their technical advantages and disadvantages and the published clinical results. Fractionated high precision conformal radiotherapy with image guidance remains the gold standard; the results of single fraction treatment are disappointing and hypofractionation should be used with caution as long term results are not available. There is insufficient data on the use of protons to assess the comparative efficacy and toxicity. The precision of treatment delivery needs to be coupled with experienced infrastructure and more intensive quality assurance to ensure best treatment outcome and this should be carried out within multidisciplinary teams experienced in the management of craniopharyngioma. The advantages of the combined skills and expertise of the team members may outweigh the largely undefined clinical gain from novel radiotherapy technologies.

  13. [Radiotherapy of cerebral metastases].

    PubMed

    Soffietti, R

    1984-05-31

    Radiotherapy of brain metastases is almost always palliative, as histologically documented cures are exceptional. Radiotherapy alone improves neurological symptoms in two-thirds of cases, but median survivals do not generally exceed 6 months. Whole brain radiation is mandatory as the lesions are often multiple, even when they escape clinical demonstration. There is no definite difference in prognosis after conventional rather than concentrated treatments. The role of steroids in the prevention and/or control of the acute effects of radiotherapy is controversial. Favorable prognostic factors are a good neurological and performance status, a solitary brain metastasis of a primary tumor under control, some histological types (i.e.: metastases from "oat" cell carcinomas, breast carcinomas, non-Hodgkin lymphomas are more responsive). Surgical excision before radiotherapy improves survival (6-12 months), especially in solitary metastases from melanomas, colon and renal tumors. Reirradiation can be useful, but the risk of delayed damage to the normal tissue in patients with longer survival (solitary operated and irradiated metastases) must be considered. The search for new radiotherapeutic modalities must be based on a deeper understanding of the biological factors involved in the response to radiation through controlled anatomo-clinical studies and biological research on experimental models.

  14. [Radiotherapy of lymphomas].

    PubMed

    Barillot, I; Mahé, M A; Antoni, D; Hennequin, C

    2016-09-01

    Radiotherapy for Hodgkin's lymphoma has evolved over time but retains a dominant position in the treatment of early stage tumours. Its indications are more limited for non-Hodgkin's lymphomas, but the techniques follow the same principles whatever the histological type. This review presents the French recommendations in terms of preparation and choice of irradiation techniques. PMID:27521031

  15. SU-E-T-102: Determination of Dose Distributions and Water-Equivalence of MAGIC-F Polymer Gel for 60Co and 192Ir Brachytherapy Sources

    SciTech Connect

    Quevedo, A; Nicolucci, P

    2014-06-01

    Purpose: Analyse the water-equivalence of MAGIC-f polymer gel for {sup 60}Co and {sup 192}Ir clinical brachytherapy sources, through dose distributions simulated with PENELOPE Monte Carlo code. Methods: The real geometry of {sup 60} (BEBIG, modelo Co0.A86) and {sup 192}192Ir (Varian, model GammaMed Plus) clinical brachytherapy sources were modelled on PENELOPE Monte Carlo simulation code. The most probable emission lines of photons were used for both sources: 17 emission lines for {sup 192}Ir and 12 lines for {sup 60}. The dose distributions were obtained in a cubic water or gel homogeneous phantom (30 × 30 × 30 cm{sup 3}), with the source positioned in the middle of the phantom. In all cases the number of simulation showers remained constant at 10{sup 9} particles. A specific material for gel was constructed in PENELOPE using weight fraction components of MAGIC-f: wH = 0,1062, wC = 0,0751, wN = 0,0139, wO = 0,8021, wS = 2,58×10{sup −6} e wCu = 5,08 × 10{sup −6}. The voxel size in the dose distributions was 0.6 mm. Dose distribution maps on the longitudinal and radial direction through the centre of the source were used to analyse the water-equivalence of MAGIC-f. Results: For the {sup 60} source, the maximum diferences in relative doses obtained in the gel and water were 0,65% and 1,90%, for radial and longitudinal direction, respectively. For {sup 192}Ir, the maximum difereces in relative doses were 0,30% and 1,05%, for radial and longitudinal direction, respectively. The materials equivalence can also be verified through the effective atomic number and density of each material: Zef-MAGIC-f = 7,07 e .MAGIC-f = 1,060 g/cm{sup 3} and Zef-water = 7,22. Conclusion: The results showed that MAGIC-f is water equivalent, consequently being suitable to simulate soft tissue, for Cobalt and Iridium energies. Hence, gel can be used as a dosimeter in clinical applications. Further investigation to its use in a clinical protocol is needed.

  16. Effect of Brazilian propolis (AF-08) on genotoxicity, cytotoxicity and clonogenic death of Chinese hamster ovary (CHO-K1) cells irradiated with (60)Co gamma-radiation.

    PubMed

    Santos, Geyza Spigoti; Tsutsumi, Shigetoshi; Vieira, Daniel Perez; Bartolini, Paolo; Okazaki, Kayo

    2014-03-01

    The present study was conducted in order to evaluate the effect of Brazilian propolis (AF-08; 5, 10, 15, 30, 50, 100, and 200μg/mL) in protecting CHO-K1 cells against genotoxic and cytotoxic damage and clonogenic death induced by (60)Co gamma-radiation (1.0, 2.0, 4.0, and 6.0Gy). For this purpose, three interlinked endpoints were analyzed: induction of DNA damage by use of the micronucleus (MN) test (genotoxic damage), cell viability by means of the MTS assay, and differential staining (cytotoxic damage) and clonogenic death via the colony-formation test (cytotoxic damage). The MN test revealed that propolis alone (5-100μg/mL) was not genotoxic up to 100μg/mL and that 30μg/mL of propolis reduced the radiation-induced DNA damage (∼56% reduction, p<0.05), exhibiting a radio-protective effect on irradiated CHO-K1 cells. On the other hand, analysis of cytotoxicity showed that a concentration of 50μg/mL presented a significant proliferative effect (p<0.001) when associated with radiation, decreasing the percentage of necrotic cells (p<0.01). No mediated cytotoxic effect was found, but the concentration of 200μg/mL was toxic when analyzed at 24 and 48h via the differential staining technique, but not at 72h after irradiation, analyzed with the MTS assay. Differential staining also showed that necrosis was the main death modality in irradiated cells and that apoptosis was induced only at the toxic concentration of propolis (200μg/mL). Concerning the clonogenic capacity, a concentration of 50μg/mL also exhibited a significant stimulating effect on cell proliferation (p<0.001), in agreement with the data from differential staining. Taken together, these data suggest that the use of propolis AF-08 for the prevention of the adverse effects of ionizing radiation is promising. Nevertheless, additional investigations are necessary for a better understanding of potential applications of propolis to improve human health.

  17. [Radiotherapy of breast cancer].

    PubMed

    Hennequin, C; Barillot, I; Azria, D; Belkacémi, Y; Bollet, M; Chauvet, B; Cowen, D; Cutuli, B; Fourquet, A; Hannoun-Lévi, J M; Leblanc, M; Mahé, M A

    2016-09-01

    In breast cancer, radiotherapy is an essential component of the treatment. After conservative surgery for an infiltrating carcinoma, radiotherapy must be systematically performed, regardless of the characteristics of the disease, because it decreases the rate of local recurrence and by this way, specific mortality. Partial breast irradiation could not be proposed routinely but only in very selected and informed patients. For ductal carcinoma in situ, adjuvant radiotherapy must be also systematically performed after lumpectomy. After mastectomy, chest wall irradiation is required for pT3-T4 tumours and if there is an axillary nodal involvement, whatever the number of involved lymph nodes. After neo-adjuvant chemotherapy and mastectomy, in case of pN0 disease, chest wall irradiation is recommended if there is a clinically or radiologically T3-T4 or node positive disease before chemotherapy. Axillary irradiation is recommended only if there is no axillary surgical dissection and a positive sentinel lymph node. Supra and infra-clavicular irradiation is advised in case of positive axillary nodes. Internal mammary irradiation must be discussed case by case, according to the benefit/risk ratio (cardiac toxicity). Dose to the chest wall or the breast must be between 45-50Gy with a conventional fractionation. A boost dose over the tumour bed is required if the patient is younger than 60 years old. Hypofractionation (42.5 Gy in 16 fractions, or 41.6 Gy en 13 or 40 Gy en 15) is possible after tumorectomy and if a nodal irradiation is not mandatory. Delineation of the breast, the chest wall and the nodal areas are based on clinical and radiological evaluations. 3D-conformal irradiation is the recommended technique, intensity-modulated radiotherapy must be proposed only in case of specific clinical situations. Respiratory gating could be useful to decrease the cardiac dose. Concomitant administration of chemotherapy in unadvised, but hormonal treatment could be start with

  18. The influence of internally deposited alpha ({sup 239}Pu) or beta-gamma ({sup 144}Ce) emitting radionuclides on the sensitivity of Chinese hamster bone marrow cells to {sup 60}CO induced chromosome aberrations

    SciTech Connect

    Brooks, A.L.; McDonald, K.E.; Kitchin, R.M.

    1994-12-31

    The current study was designed to determine if protracted low-dose-rate exposures from either high-({sup 239}Pu) or low-({sup 144}Ce) LET radiation from internally deposited radioactive materials changes the frequency of chromosome aberrations induced by acute {sup 60}Co exposure. THe potential for interaction was evaluated 30 days after injection with either 0 or 0.85 kBq {sup 144}Ce g{sup -1} body weight or 0.0 or 2.2 Bq of {sup 239}Pu g{sup -1}. Injection with {sup 239}Pu or {sup 144}Ce resulted in few aberrations in bone marrow cells 30 days after injection. The presence of internally deposited {sup 239}Pu or {sup 144}Ce did not significantly alter the total frequency of {sup 60}Co induced aberrations. However, the frequency of {sup 60}Co induced chromatid exchanges was significantly greater (P=0.03) in bone marrow cells of animals with {sup 144}Ce body burdens (0.14{+-}0.03 chromatid exchanges/cell). Such data illustrates that changes in cellular responsiveness may be dependent on the LET of the isotope, the dose rate of the primary dose and the type of damage being evaluated.

  19. Radiotherapy of early glottic cancer.

    PubMed

    Harwood, A R; Hawkins, N V; Keane, T; Cummings, B; Beale, F A; Rider, W D; Bryce, D P

    1980-03-01

    Patients (383) with stage Tis, Tla and Tlb NoMo glottic cancer are reviewed. Radiotherapy cured 93% of Tis patients and 86% of Tla and Tlb cases. Of all recurrences, 63% were cured. No patient with stage Tis died as a result of tumor and only 5% of stage Tla and Tlb died from tumor. Involvement of the anterior commissure or both vocal cords did not influence control rates by radiotherapy. Mobility of the vocal cord and size of radiotherapy field were significant factors influencing control by radiotherapy. Late recurrences and/or second primaries in the larynx following radiotherapy are rare. Second primaries in the respiratory tract (especially lung) are common and are as important a cause of death as laryngeal cancer in T1 cases. It is concluded that moderate dose radiotherapy with surgery for salvage is a highly effective method of management for early glottic cancer. PMID:7359967

  20. Evaluation of the Combined Effect of 2ME2 and 60Co on the Inducement of DNA Damage by IUdR in a Spheroid Model of the U87MG Glioblastoma Cancer Cell Line Using Alkaline Comet Assay

    PubMed Central

    Khoei, Samideh; Delfan, Sara; Neshasteh-Riz, Ali; Mahdavi, Seyed Rabi

    2011-01-01

    Objective: In this study, we investigated the combined effect of 2-Methoxyestradiol (2ME2) and 60Co on the cytogenetic damage of iododeoxyuridine (IUdR) in the spheroid model of U87MG glioblastoma cancer cell lines by alkaline comet assay. Materials and Methods: U87MG cells were cultured as spheroids with diameters of 350 µm. As control, the spheroids of one plate were not treated. Other cultures were pretreated with 2ME2 (250 µM) for one volume doubling time (1 VDT). After this time, the subsequent treatments were performed according to the following groups: Vehicle (this sample was not treated in the 2nd VDT) Treated with 2ME2 (250 µM) for 1 VDT Treated simultaneously with 2ME2 (250 µM) and IUdR (1 µM) for 1 VDT Treated with 2ME2 (250 µM) for 1 VDT then irradiated with 60Co (2 Gy) Treated simultaneously with 2ME2 (250 µM) and IUdR (1 µM) for 1 VDT then irradiated with 60Co (2 Gy) Then the DNA damage was evaluated using the alkaline comet assay method. Results: The results showed that 2ME2 in combination with gamma irradiation of 60Co significantly (p<0.001) increased the DNA damage by IUdR as compared to the control group. Thus the combination of these two agents increased the cytogenetic effects of IUdR in the spheroid culture model of U87MG glioblastoma cell lines. Conclusion: By inhibiting the HIF-1α protein and preventing the G0 phase arrest, 2ME2 causes an increased progression into S phase and increases the IUdR absorption. Then the DNA damage in the spheroid cells increases as the uptake of IUdR is increased. These results suggest that the combined use of 2ME2 and 60Co can increase the radiosensitization effect of IUdR. PMID:23508289

  1. Risk-adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Yusung

    Currently, there is great interest in integrating biological information into intensity-modulated radiotherapy (IMRT) treatment planning with the aim of boosting high-risk tumor subvolumes. Selective boosting of tumor subvolumes can be accomplished without violating normal tissue complication constraints using information from functional imaging. In this work we have developed a risk-adaptive optimization-framework that utilizes a nonlinear biological objective function. Employing risk-adaptive radiotherapy for prostate cancer, it is possible to increase the equivalent uniform dose (EUD) by up to 35.4 Gy in tumor subvolumes having the highest risk classification without increasing normal tissue complications. Subsequently, we have studied the impact of functional imaging accuracy, and found on the one hand that loss in sensitivity had a large impact on expected local tumor control, which was maximal when a low-risk classification for the remaining low risk PTV was chosen. While on the other hand loss in specificity appeared to have a minimal impact on normal tissue sparing. Therefore, it appears that in order to improve the therapeutic ratio a functional imaging technique with a high sensitivity, rather than specificity, is needed. Last but not least a comparison study between selective boosting IMRT strategies and uniform-boosting IMRT strategies yielding the same EUD to the overall PTV was carried out, and found that selective boosting IMRT considerably improves expected TCP compared to uniform-boosting IMRT, especially when lack of control of the high-risk tumor subvolumes is the cause of expected therapy failure. Furthermore, while selective boosting IMRT, using physical dose-volume objectives, did yield similar rectal and bladder sparing when compared its equivalent uniform-boosting IMRT plan, risk-adaptive radiotherapy, utilizing biological objective functions, did yield a 5.3% reduction in NTCP for the rectum. Hence, in risk-adaptive radiotherapy the

  2. Developments in radiotherapy.

    PubMed

    Svensson, Hans; Möller, Torgil R

    2003-01-01

    A systematic assessment of radiotherapy for cancer was conducted by The Swedish Council on Technology Assessment in Health Care (SBU) in 2001. The assessment included a review of future developments in radiotherapy and an estimate of the potential benefits of improved radiotherapy in Sweden. The conclusions reached from this review can be summarized as: Successively better knowledge is available on dose-response relationships for tumours and normal tissues at different fractionation schedules and treated volumes. Optimization of dose levels and fractionation schedules should improve the treatment outcome. Improved treatment results may be expected with even more optimized fractionation schedules. The radiosensitivity of the tumour is dependent on the availability of free oxygen in the cells. The oxygen effect has been studied for a long time and new knowledge has emerged, but there is still no consensus on the best way to minimize its negative effect in the treatment of hypoxic tumours. Development in imaging techniques is rapid, improving accuracy in outlining targets and organs at risk. This is a prerequisite for advanced treatment planning. More accurate treatment can be obtained using all the computer techniques that are successively made available for calculating dose distributions, controlling the accelerator and multileaf collimator (MLC) and checking patient set-up. Optimized treatment plans can be achieved using inverse dose planning and intensity modulation radiation therapy (IMRT). Optimization algorithms based on biological data from clinical trials could be a part of future dose planning. New genetic markers might be developed that give a measure of the radiation responsiveness of tumours and normal tissue. This could lead to more individualized treatments. New types of radiation sources may be expected: protons, light ions, and improved beams (and compounds) for boron neutron capture therapy (BNCT). Proton accelerators with scanned-beam systems and

  3. [Juvenile angiofibroma. Results of radiotherapy].

    PubMed

    Rosset, A; Korzeniowski, S

    1990-01-01

    8 patients with the nasofibromata were treated by radiotherapy in Oncologic Center in Kraków. In most part of these patients tumors exceeded the nasopharynx or gave the massive postoperational recurrencies. Complete regression was obtained in 6 out of 8 cases. The radiation changes are described. The radiotherapy is effective in more advanced and recurrent stages of the juvenile nasofibroma.

  4. [Epoetin alfa in radiotherapy].

    PubMed

    Trodella, L; Balducci, M; Gambacorta, M A; Mantini, G

    1998-01-01

    Sixty per cent of oncologic patients need radiation therapy for cure or palliation. In fact, in most neoplastic diseases, a better local control positively impacts on disease-free survival and overall survival. The efficacy of radiotherapy depends on several factors: while some are tumor-related, others are host-related. Radiobiological phenomena are also important: ionizing radiation is responsible for cell damage (double rupture of DNA chains), mostly an indirect mechanism with the formation of free radicals. Their toxic action is enhanced by the oxygen partial pressure at the cellular level. A number of studies have confirmed that good tissue oxygenation is a function of a high hemoglobin level in the peripheral blood (Hb > or = 13 g/dL). Unfortunately, these values are rarely present in oncologic patients due to the disease-related toxicosis as well as to the therapy induced hematologic toxicity. The treatment of anemia is free of risk for the recent developments in technology which with gene cloning and the technique of recombinant DNA has allowed the production of human recombinant erythropoietin. Erythropoietin is produced by the interstitial cells of renal tubules in response to hypoxia. It prevents apoptosis and promotes erythroid proliferation and differentiation with consequent reticulocyte release and hemoglobin synthesis. It is not completely understood whether the efficacy of radiotherapy depends on hemoglobin values present at the start of irradiation (often less than 12-13 g/dL) or on the higher ones observed during and at the end of radiotherapy. Therefore, preventive systemic erythropoietin therapy in non anemic patients in terms of costs/benefits is at present non sustainable. To the contrary, in patients undergoing radiotherapy to extended fields or aggressive multimodal treatments, for the higher risk of anemia, the early use of this treatment can be hypothesized in case of initial anemia to improve therapy compliance and prevent negative

  5. Fertility impairment in radiotherapy

    PubMed Central

    Kuźba-Kryszak, Tamara; Nowikiewicz, Tomasz; Żyromska, Agnieszka

    2016-01-01

    Infertility as a result of antineoplastic therapy is becoming a very important issue due to the growing incidence of neoplastic diseases. Routinely applied antineoplastic treatments and the illness itself lead to fertility disorders. Therapeutic methods used in antineoplastic treatment may cause fertility impairment or sterilization due to permanent damage to reproductive cells. The risk of sterilization depends on the patient's sex, age during therapy, type of neoplasm, radiation dose and treatment area. It is known that chemotherapy and radiotherapy can lead to fertility impairment and the combination of these two gives an additive effect. The aim of this article is to raise the issue of infertility in these patients. It is of growing importance due to the increase in the number of children and young adults who underwent radiotherapy in the past. The progress in antineoplastic therapy improves treatment results, but at the same time requires a deeper look at existential needs of the patient. Reproductive function is an integral element of self-esteem and should be taken into account during therapy planning. PMID:27647982

  6. Fertility impairment in radiotherapy

    PubMed Central

    Kuźba-Kryszak, Tamara; Nowikiewicz, Tomasz; Żyromska, Agnieszka

    2016-01-01

    Infertility as a result of antineoplastic therapy is becoming a very important issue due to the growing incidence of neoplastic diseases. Routinely applied antineoplastic treatments and the illness itself lead to fertility disorders. Therapeutic methods used in antineoplastic treatment may cause fertility impairment or sterilization due to permanent damage to reproductive cells. The risk of sterilization depends on the patient's sex, age during therapy, type of neoplasm, radiation dose and treatment area. It is known that chemotherapy and radiotherapy can lead to fertility impairment and the combination of these two gives an additive effect. The aim of this article is to raise the issue of infertility in these patients. It is of growing importance due to the increase in the number of children and young adults who underwent radiotherapy in the past. The progress in antineoplastic therapy improves treatment results, but at the same time requires a deeper look at existential needs of the patient. Reproductive function is an integral element of self-esteem and should be taken into account during therapy planning.

  7. Fertility impairment in radiotherapy.

    PubMed

    Biedka, Marta; Kuźba-Kryszak, Tamara; Nowikiewicz, Tomasz; Żyromska, Agnieszka

    2016-01-01

    Infertility as a result of antineoplastic therapy is becoming a very important issue due to the growing incidence of neoplastic diseases. Routinely applied antineoplastic treatments and the illness itself lead to fertility disorders. Therapeutic methods used in antineoplastic treatment may cause fertility impairment or sterilization due to permanent damage to reproductive cells. The risk of sterilization depends on the patient's sex, age during therapy, type of neoplasm, radiation dose and treatment area. It is known that chemotherapy and radiotherapy can lead to fertility impairment and the combination of these two gives an additive effect. The aim of this article is to raise the issue of infertility in these patients. It is of growing importance due to the increase in the number of children and young adults who underwent radiotherapy in the past. The progress in antineoplastic therapy improves treatment results, but at the same time requires a deeper look at existential needs of the patient. Reproductive function is an integral element of self-esteem and should be taken into account during therapy planning. PMID:27647982

  8. [External radiotherapy for hepatocellular carcinoma].

    PubMed

    Girard, N; Mornex, F

    2011-02-01

    For a long time radiotherapy has been excluded from the therapeutic strategy for hepatocellular carcinoma, given its significant toxicity on the non-tumoral liver parenchyma. Conformal radiation is a recent advance in the field of radiotherapy, allowing dose escalation and combination with other therapeutic options for hepatocellular carcinoma, including trans-arterial chemo-embolization. Conformal radiotherapy is associated with interesting features, especially in cirrhotic patients: wide availability, non-invasiveness, possibility to target multiple localizations anywhere within the liver parenchyma, and favorable tolerance profile even in patients with cirrhosis and/or in a poor medical condition. Recently, radiation delivery has been optimized through several technical developments: respiratory gating and intensity-modulated radiotherapy, which allow a better focalization of the ballistics, stereotactic techniques and proton-beam radiotherapy, whose availability is currently limited in Europe. Given the high response rates of hepatocellular carcinoma to radiation, conformal radiotherapy may be regarded as a curative-intent treatment for hepatocellular carcinoma, similar to surgery and per-cutaneous techniques. Yet the impact of radiotherapy has to be evaluated in randomized trials to better integrate in the complex therapeutic algorithm of hepatocellular carcinoma.

  9. Radiotherapy facilities, equipment, and staffing in Poland: 2005–2011

    PubMed Central

    Reinfuss, Marian; Byrski, Edward; Malicki, Julian

    2013-01-01

    Background and purpose To evaluate the current status of radiotherapy facilities, staffing, and equipment, treatment and patients in Poland for the years 2005–2011 following implementation of the National Cancer Programme. Methods A survey was sent to the radiotherapy centres in Poland to collect data on available equipment, staffing, and treatments in the years 2005–2011. Results In 2011, 76,000 patients were treated with radiotherapy at 32 centres vs. 63,000 patients at 23 centres in 2005. Number of patients increased by 21%. In 2011, there were 453 radiation oncologists – specialists (1 in 168 patients), 325 medical physicists (1 in 215 patients), and 883 radiotherapy technicians (1 in 86 patients) vs. 320, 188, and 652, respectively, in 2005. The number of linear accelerators increased by 60%, from 70 units in 2005 to 112 in 2011. The current linac/patient ratio in Poland is 1 linac per 678 patients. Waiting times from diagnosis to the start of treatment has decreased. Conclusion Compared to 2005, there are more treatment facilities, more and better equipment (linacs), and more cancer care specialists. There are still large differences between the 16 Polish provinces in terms of equipment availability and ease of access to treatment. However, radiotherapy services in Poland have improved dramatically since the year 2005. PMID:24416548

  10. Development of targeted radiotherapy systems

    NASA Astrophysics Data System (ADS)

    Ferro, Guillermina; Murphy, Consuelo A.; Villarreal, José E.; Pedraza, Martha; García, Laura; Tendilla, José I.; Paredes, Lydia

    2001-10-01

    Conventional or external beam radiotherapy, has been a viable alternative for cancer treatment. Although this technique is effective, its use is limited if the patient has multiple malignant lesions (metastases). An alternative approach is based on the design of radiopharmaceuticals that, to be administered in the patient, are directed specifically toward the target cell producing a selective radiation delivery. This treatment is known as targeted radiotherapy. We have summarized and discussed some results related to our investigations on the development of targeted radiotherapy systems, including aspects of internal dosimetry.

  11. [Task sharing with radiotherapy technicians in image-guided radiotherapy].

    PubMed

    Diaz, O; Lorchel, F; Revault, C; Mornex, F

    2013-10-01

    The development of accelerators with on-board imaging systems now allows better target volumes reset at the time of irradiation (image-guided radiotherapy [IGRT]). However, these technological advances in the control of repositioning led to a multiplication of tasks for each actor in radiotherapy and increase the time available for the treatment, whether for radiotherapy technicians or radiation oncologists. As there is currently no explicit regulatory framework governing the use of IGRT, some institutional experiments show that a transfer is possible between radiation oncologists and radiotherapy technicians for on-line verification of image positioning. Initial training for every technical and drafting procedures within institutions will improve audit quality by reducing interindividual variability. PMID:24007955

  12. [Hepatic tumors and radiotherapy].

    PubMed

    Rio, E; Mornex, F; Peiffert, D; Huertas, A

    2016-09-01

    Recent technological developments led to develop the concept of focused liver radiation therapy. We must distinguish primary and secondary tumors as the indications are restricted and must be discussed as an alternative to surgical or medical treatments. For hepatocellular carcinoma 5 to 10cm (or more), a conformational radiation with or without intensity modulation is performed. Stereotactic body radiotherapy (SBRT) is being evaluated and is increasingly proposed as an alternative to radiofrequency ablative treatment for primary or secondary tumors (typically less than 5cm). Tumor (and liver) movements induced by respiratory motions must be taken into account. Strict dosimetric criteria must be met with particular attention to the dose-volume histograms to liver and the hollow organs, including cases of SBRT. PMID:27521035

  13. Morbidity of ischemic heart disease in early breast cancer 15-20 years after adjuvant radiotherapy

    SciTech Connect

    Gyenes, G.; Rutqvist, L.E. ); Fornander, T.; Carlens, P.

    1994-03-30

    The purpose of this study was to assess the cardiac side effects, primarily the occurrence of ischemic heart disease, in symptom-free patients with early breast cancer treated with radiotherapy. Thirty-seven survivors of a former randomized study of early breast cancer were examined. Twenty patients irradiated pre- or postoperatively for left sided disease (study group patients) were compared with 17 controls who were either treated for right sided disease, or were nonirradiated patients. Radiotherapy was randomized in the original study; either tangential field [sup 60]Co, or electron-therapy was delivered. Echocardiography and bicycle ergometry stress test with [sup 99m]Tc SestaMIBI myocardial perfusion scintigraphy were carried out and the patients' major risk factors for ischemic heart disease were also listed. Our results showed a significant difference between the scintigraphic findings of the two groups. Five of the 20 study group patients (25%), while none of the 17 controls exhibited some kind of significant defects on scintigraphy, indicating ischemic heart disease (p < 0.05). No deterioration in left ventricular systolic and/or diastolic function could be detected by echocardiography. Radiotherapy for left sided breast cancer with the mentioned treatment technique may present as an independent risk factor in the long-term development of ischemic heart disease, while left ventricular dysfunction could not be related to the previous irradiation. The authors emphasize the need to optimize adjuvant radiotherapy for early breast cancer by considering the dose both to the heart as well as the cancer. 39 refs., 4 tabs.

  14. ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells.

    PubMed

    Meidanchi, Alireza; Akhavan, Omid; Khoei, Samideh; Shokri, Ali A; Hajikarimi, Zahra; Khansari, Nakisa

    2015-01-01

    Nanoparticles of high-Z elements exhibit stronger photoelectric effects than soft tissues under gamma irradiation. Hence, they can be used as effective radiosensitizers for increasing the efficiency of current radiotherapy. In this work, superparamagnetic zinc ferrite spinel (ZnFe2O4) nanoparticles were synthesized by a hydrothermal reaction method and used as radiosensitizers in cancer therapy. The magnetic nanoparticles showed fast separation from solutions (e.g., ~1 min for 2 mg mL(-1) of the nanoparticles in ethanol) by applying an external magnetic field (~1T). The ZnFe2O4 nanoparticles were applied in an in vitro radiotherapy of lymph node carcinoma of prostate cells (as high radioresistant cells) under gamma irradiation of (60)Co source. The nanoparticles exhibited no significant effects on the cancer cells up to the high concentration of 100 μg mL(-1), in the absence of gamma irradiation. The gamma irradiation alone (2Gy dose) also showed no significant effects on the cells. However, gamma irradiation in the presence of 100 μg mL(-1) ZnFe2O4 nanoparticles resulted in ~53% inactivation of the cells (~17 times higher than the inactivation that occurred under gamma irradiation alone) after 24h. The higher cell inactivation was assigned to interaction of gamma radiation with nanoparticles (photoelectric effect), resulting in a high level electron release in the media of the radioresistant cells. Our results indicated that ZnFe2O4 nanoparticles not only can be applied in increasing the efficiency of radiotherapy, but also can be easily separated from the cell environment by using an external magnetic field after the radiotherapy.

  15. ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells.

    PubMed

    Meidanchi, Alireza; Akhavan, Omid; Khoei, Samideh; Shokri, Ali A; Hajikarimi, Zahra; Khansari, Nakisa

    2015-01-01

    Nanoparticles of high-Z elements exhibit stronger photoelectric effects than soft tissues under gamma irradiation. Hence, they can be used as effective radiosensitizers for increasing the efficiency of current radiotherapy. In this work, superparamagnetic zinc ferrite spinel (ZnFe2O4) nanoparticles were synthesized by a hydrothermal reaction method and used as radiosensitizers in cancer therapy. The magnetic nanoparticles showed fast separation from solutions (e.g., ~1 min for 2 mg mL(-1) of the nanoparticles in ethanol) by applying an external magnetic field (~1T). The ZnFe2O4 nanoparticles were applied in an in vitro radiotherapy of lymph node carcinoma of prostate cells (as high radioresistant cells) under gamma irradiation of (60)Co source. The nanoparticles exhibited no significant effects on the cancer cells up to the high concentration of 100 μg mL(-1), in the absence of gamma irradiation. The gamma irradiation alone (2Gy dose) also showed no significant effects on the cells. However, gamma irradiation in the presence of 100 μg mL(-1) ZnFe2O4 nanoparticles resulted in ~53% inactivation of the cells (~17 times higher than the inactivation that occurred under gamma irradiation alone) after 24h. The higher cell inactivation was assigned to interaction of gamma radiation with nanoparticles (photoelectric effect), resulting in a high level electron release in the media of the radioresistant cells. Our results indicated that ZnFe2O4 nanoparticles not only can be applied in increasing the efficiency of radiotherapy, but also can be easily separated from the cell environment by using an external magnetic field after the radiotherapy. PMID:25492003

  16. Patterns of care of radiotherapy in México

    PubMed Central

    Poitevin-Chacón, Adela; Hinojosa-Gómez, José

    2012-01-01

    Aim This survey is performed to learn about the structure of radiotherapy in México. Background Radiation oncology practice is increasing because of the higher incidence of cancer. There is no published data about radiotherapy in México. Materials and methods A questionnaire was sent to the 83 registered centers in the database of the Mexican regulatory agency. One out of the 32 states has no radiotherapy. 27 centers from 14 states provided their answers. Results 829 patients are treated annually with any radiotherapy modality in each center. Two centers have one cobalt machine, 7 have a cobalt and a linac and 10 have more than one linac. Five centers use 2D planning systems, 22 use 3D; 9, conventional simulators; 22, CT based simulation, and 1 center has no simulation. Most of the centers verify beams with films, electronic portal image devices and cone beam CTs are also used. Intensity modulated and image guided radiotherapy are performed in 5 states. Breast, prostate, cervix, lung, rectum and head and neck cancer are the six most common locations. There are 45 public and 38 private centers, 2 dedicated to children. Two gamma knife units, 5 Novalis systems, 1 tomotherapy and 2 cyberknife machines are working. All centers have at least one radiation oncologist, one physicist and one radiotherapist. Conclusions Definitive conclusions cannot be drawn from this limited feedback due to a low participation of centers. This survey about radiotherapy in Mexico shows the heterogeneity of equipment as well as medical and technical staff in the whole country. PMID:24416531

  17. Complications from radiotherapy.

    PubMed

    Dhermain, Frédéric; Barani, Igor J

    2016-01-01

    Radiotherapy (RT) of the brain is associated with significant stigma in the neuro-oncology community. This is primarily because of the potentially severe complications with which it may be associated. These complications, especially in subacute and latent settings, are often unpredictable, potentially progressive, and irreversible. The onset of complications may start from the first fraction of 2 Gy, continuing over several months after end of RT with persistent drowsiness and apathy. It may also extend over many years with progressive onset of neurocognitive impairments such as memory decline, and diminished focus/attention. For long-term survivors, such as young patients irradiated for a favorable low-grade glioma, quality of life can be seriously impacted by RT. It is essential, as in the pediatric field, to propose patient-specific regimens from the very outset of therapy. The use of molecular biomarkers to better predict survival, control of comorbidities along with judicious use of medications such as steroids and antiepileptics, improved targeting with the help of modern imaging and RT techniques, modulation of the dose, and fractionation aimed at limiting integral dose to the healthy brain all have the potential to minimize treatment-related complications while maintaining the therapeutic efficacy for which RT is known. Sparing "radiosensitive" areas such as hippocampi could have a modest but measurable impact with regard to cognitive preservation, an effect that can possibly be enhanced when used in conjunction with memantine and/or donepezil. PMID:26948357

  18. Measurement of the cross sections for the production of the isotopes {sup 74}As, {sup 68}Ge, {sup 65}Zn, and {sup 60}Co from natural and enriched germanium irradiated with 100-MeV protons

    SciTech Connect

    Barabanov, I. R.; Bezrukov, L. B.; Gurentsov, V. I.; Zhuykov, B. L.; Kianovsky, S. V.; Kornoukhov, V. N.; Kohanuk, V. M.; Yanovich, E. A.

    2010-07-15

    The cross sections for the production of the radioactive isotopes {sup 74}As, {sup 68}Ge, {sup 65}Zn, and {sup 60}Co in metallic germanium irradiated with 100-MeV protons were measured, the experiments being performed both with germanium of natural isotopic composition and germanium enriched in the isotope {sup 76}Ge. The targets were irradiated with a proton beam at the facility for the production of radionuclides at the accelerator of the Institute for Nuclear Research (INR, Moscow). The data obtained will further be used to calculate the background of radioactive isotopes formed by nuclear cascades of cosmic-ray muons in new-generation experiments devoted to searches for the neutrinoless double-beta decay of {sup 76}Ge at underground laboratories.

  19. Influence of phantom materials on the energy dependence of LiF:Mg,Ti thermoluminescent dosimeters exposed to 20-300 kV narrow x-ray spectra, 137Cs and 60Co photons.

    PubMed

    Massillon-J L, G; Cabrera-Santiago, A; Minniti, R; O'Brien, M; Soares, C G

    2014-08-01

    LiF:Mg,Ti, are widely used to estimate absorbed-dose received by patients during diagnostic or medical treatment. Conveniently, measurements are usually made in plastic phantoms. However, experimental conditions vary from one group to another and consequently, a lack of consensus data exists for the energy dependence of thermoluminescent (TL) response. This work investigated the energy dependence of TLD-100 TL-response and the effect of irradiating the dosimeters in different phantom materials for a broad range of energy photons in an attempt to understand the parameters that affect the discrepancies reported by various research groups. TLD-100s were exposed to 20-300 kV narrow x-ray spectra, (137)Cs and (60)Co photons. Measurements were performed in air, PMMA, wt1, polystyrene and TLDS as surrounding material. Total air-kerma values delivered were between 50 and 150 mGy for x-rays and 50 mGy for (137)Cs and (60)Co beams; each dosimeter was irradiated individually. Relative response, R, defined as the TL-response per air-kerma and relative efficiency, RE, described as the TL-response per absorbed-dose (obtained through Monte Carlo (MC) and analytically) were used to describe the TL-response. Both R and RE are normalized to the responses in a (60)Co beam. The results indicate that the use of different phantom materials affects the TL-response and this response varies with energy and material type. MC simulations reproduced qualitatively the experimental data: a) R increases, reaches a maximum at ~25 keV and decreases; b) RE decreases, down to a minimum at ~60 keV, increases to a maximum at ~150 keV and after decreases. Independent of the phantom materials, RE strongly depends on how the absorbed dose is evaluated and the discrepancies between RE evaluated analytically and by MC simulation are around 4% and 18%, dependent on the photon energy. The comparison between our results and that reported in the literature suggests that the discrepancy observed

  20. Comment on ‘Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy 125I and 192Ir sources and 60Co cell irradiation’

    NASA Astrophysics Data System (ADS)

    Lindborg, Lennart; Lillhök, Jan; Grindborg, Jan-Erik

    2015-11-01

    The relative standard deviation, σr,D, of calculated multi-event distributions of specific energy for 60Co ϒ rays was reported by the authors F Villegas, N Tilly and A Ahnesjö (Phys. Med. Biol. 58 6149-62). The calculations were made with an upgraded version of the Monte Carlo code PENELOPE. When the results were compared to results derived from experiments with the variance method and simulated tissue equivalent volumes in the micrometre range a difference of about 50% was found. Villegas et al suggest wall-effects as the likely explanation for the difference. In this comment we review some publications on wall-effects and conclude that wall-effects are not a likely explanation.

  1. [Adaptative radiotherapy: The case for MRI-guided radiotherapy].

    PubMed

    Maingon, P

    2016-10-01

    The concept of image-guided radiotherapy benefits from the development of magnetic resonance imaging (MRI) associated with different capacities of tissue analyses such as spectroscopy or diffusion analysis. The production of devices allowing the repositioning of patients through MRI represents a strong added value without delivering any additional dose to the patient while the optimization of the adaptative strategies are facilitated by a better contrast of the soft tissues compared to the scanner. The advantages of MRI are well demonstrated for brain tumours, head and neck carcinomas, pelvic tumors, mediastinal malignancies, gastrointestinal tract diseases. Adaptative radiotherapy inaugurates a new area of radiotherapy with different modalities. Several technological solutions are provided or discussed allowing the patients to benefit from thses new technologies as soon as possible.

  2. [Adaptative radiotherapy: The case for MRI-guided radiotherapy].

    PubMed

    Maingon, P

    2016-10-01

    The concept of image-guided radiotherapy benefits from the development of magnetic resonance imaging (MRI) associated with different capacities of tissue analyses such as spectroscopy or diffusion analysis. The production of devices allowing the repositioning of patients through MRI represents a strong added value without delivering any additional dose to the patient while the optimization of the adaptative strategies are facilitated by a better contrast of the soft tissues compared to the scanner. The advantages of MRI are well demonstrated for brain tumours, head and neck carcinomas, pelvic tumors, mediastinal malignancies, gastrointestinal tract diseases. Adaptative radiotherapy inaugurates a new area of radiotherapy with different modalities. Several technological solutions are provided or discussed allowing the patients to benefit from thses new technologies as soon as possible. PMID:27599686

  3. Voice following radiotherapy.

    PubMed

    Stoicheff, M L

    1975-04-01

    This study was undertaken to provide information on the voice of patients following radiotherapy for glottic cancer. Part I presents findings from questionnaires returned by 227 of 235 patients successfully irradiated for glottic cancer from 1960 through 1971. Part II presents preliminary findings on the speaking fundamental frequencies of 22 irradiated patients. Normal to near-normal voice was reported by 83 percent of the 227 patients; however, 80 percent did indicate persisting vocal difficulties such as fatiguing of voice with much usage, inability to sing, reduced loudness, hoarse voice quality and inability to shout. Amount of talking during treatments appeared to affect length of time for voice to recover following treatments in those cases where it took from nine to 26 weeks; also, with increasing years since treatment, patients rated their voices more favorably. Smoking habits following treatments improved significantly with only 27 percent smoking heavily as compared with 65 percent prior to radiation therapy. No correlation was found between smoking (during or after treatments) and vocal ratings or between smoking and length of time for voice to recover. There was no relationship found between reported vocal ratings and stage of the disease. Data on mean speaking fundamental frequency seem to indicate a trend toward lower frequencies in irradiated patients as compared with normals. A trend was also noted in both irradidated and control groups for lower speaking fundamental frequencies in heavy smokers compared with non-smokers or previous smokers. These trends would indicate some vocal cord thickening or edema in irradiated patients and in heavy smokers. It is suggested that the study of irradiated patients' voices before, during and following treatments by means of audio, aerodynamic and acoustic instrumentation would yield additional information of diagnostic value on recovery of laryngeal function. It is also suggested that the voice pathologist could

  4. Introduction to suspension levels: radiotherapy.

    PubMed

    Horton, P; Lillicrap, S; Lamm, I-L; Lehmann, W

    2013-02-01

    In 2007, the European Commission (EC) commissioned a group of experts to undertake the revision of Report Radiation Protection (RP 91) 'Criteria for acceptability of radiological (including radiotherapy) and nuclear medicine installations' written in 1997. The revised draft report was submitted to the EC in 2010, who issued it for public consultation. The EC has commissioned the same group of experts to consider the comments of the public consultation for further improvement of the revised report. The EC intends to publish the final report under its Radiation Report Series as RP 162. This paper describes the background to the selection of the key performance parameters for radiotherapy equipment and sets out the sources of their criteria of acceptability including suspension levels for a wide range of radiotherapy equipment.

  5. Expanding global access to radiotherapy.

    PubMed

    Atun, Rifat; Jaffray, David A; Barton, Michael B; Bray, Freddie; Baumann, Michael; Vikram, Bhadrasain; Hanna, Timothy P; Knaul, Felicia M; Lievens, Yolande; Lui, Tracey Y M; Milosevic, Michael; O'Sullivan, Brian; Rodin, Danielle L; Rosenblatt, Eduardo; Van Dyk, Jacob; Yap, Mei Ling; Zubizarreta, Eduardo; Gospodarowicz, Mary

    2015-09-01

    Radiotherapy is a critical and inseparable component of comprehensive cancer treatment and care. For many of the most common cancers in low-income and middle-income countries, radiotherapy is essential for effective treatment. In high-income countries, radiotherapy is used in more than half of all cases of cancer to cure localised disease, palliate symptoms, and control disease in incurable cancers. Yet, in planning and building treatment capacity for cancer, radiotherapy is frequently the last resource to be considered. Consequently, worldwide access to radiotherapy is unacceptably low. We present a new body of evidence that quantifies the worldwide coverage of radiotherapy services by country. We show the shortfall in access to radiotherapy by country and globally for 2015-35 based on current and projected need, and show substantial health and economic benefits to investing in radiotherapy. The cost of scaling up radiotherapy in the nominal model in 2015-35 is US$26·6 billion in low-income countries, $62·6 billion in lower-middle-income countries, and $94·8 billion in upper-middle-income countries, which amounts to $184·0 billion across all low-income and middle-income countries. In the efficiency model the costs were lower: $14·1 billion in low-income, $33·3 billion in lower-middle-income, and $49·4 billion in upper-middle-income countries-a total of $96·8 billion. Scale-up of radiotherapy capacity in 2015-35 from current levels could lead to saving of 26·9 million life-years in low-income and middle-income countries over the lifetime of the patients who received treatment. The economic benefits of investment in radiotherapy are very substantial. Using the nominal cost model could produce a net benefit of $278·1 billion in 2015-35 ($265·2 million in low-income countries, $38·5 billion in lower-middle-income countries, and $239·3 billion in upper-middle-income countries). Investment in the efficiency model would produce in the same period an even

  6. Expanding global access to radiotherapy.

    PubMed

    Atun, Rifat; Jaffray, David A; Barton, Michael B; Bray, Freddie; Baumann, Michael; Vikram, Bhadrasain; Hanna, Timothy P; Knaul, Felicia M; Lievens, Yolande; Lui, Tracey Y M; Milosevic, Michael; O'Sullivan, Brian; Rodin, Danielle L; Rosenblatt, Eduardo; Van Dyk, Jacob; Yap, Mei Ling; Zubizarreta, Eduardo; Gospodarowicz, Mary

    2015-09-01

    Radiotherapy is a critical and inseparable component of comprehensive cancer treatment and care. For many of the most common cancers in low-income and middle-income countries, radiotherapy is essential for effective treatment. In high-income countries, radiotherapy is used in more than half of all cases of cancer to cure localised disease, palliate symptoms, and control disease in incurable cancers. Yet, in planning and building treatment capacity for cancer, radiotherapy is frequently the last resource to be considered. Consequently, worldwide access to radiotherapy is unacceptably low. We present a new body of evidence that quantifies the worldwide coverage of radiotherapy services by country. We show the shortfall in access to radiotherapy by country and globally for 2015-35 based on current and projected need, and show substantial health and economic benefits to investing in radiotherapy. The cost of scaling up radiotherapy in the nominal model in 2015-35 is US$26·6 billion in low-income countries, $62·6 billion in lower-middle-income countries, and $94·8 billion in upper-middle-income countries, which amounts to $184·0 billion across all low-income and middle-income countries. In the efficiency model the costs were lower: $14·1 billion in low-income, $33·3 billion in lower-middle-income, and $49·4 billion in upper-middle-income countries-a total of $96·8 billion. Scale-up of radiotherapy capacity in 2015-35 from current levels could lead to saving of 26·9 million life-years in low-income and middle-income countries over the lifetime of the patients who received treatment. The economic benefits of investment in radiotherapy are very substantial. Using the nominal cost model could produce a net benefit of $278·1 billion in 2015-35 ($265·2 million in low-income countries, $38·5 billion in lower-middle-income countries, and $239·3 billion in upper-middle-income countries). Investment in the efficiency model would produce in the same period an even

  7. [Head and neck adaptive radiotherapy].

    PubMed

    Graff, P; Huger, S; Kirby, N; Pouliot, J

    2013-10-01

    Onboard volumetric imaging systems can provide accurate data of the patient's anatomy during a course of head and neck radiotherapy making it possible to assess the actual delivered dose and to evaluate the dosimetric impact of complex daily positioning variations and gradual anatomic changes such as geometric variations of tumors and normal tissues or shrinkage of external contours. Adaptive radiotherapy is defined as the correction of a patient's treatment planning to adapt for individual variations observed during treatment. Strategies are developed to selectively identify patients that require replanning because of an intolerable dosimetric drift. Automated tools are designed to limit time consumption. Deformable image registration algorithms are the cornerstones of these strategies, but a better understanding of their limits of validity is required before adaptive radiotherapy can be safely introduced to daily practice. Moreover, strict evaluation of the clinical benefits is yet to be proven.

  8. Clinical quality standards for radiotherapy

    PubMed Central

    2012-01-01

    Aim of the study The technological progress that is currently being witnessed in the areas of diagnostic imaging, treatment planning systems and therapeutic equipment has caused radiotherapy to become a high-tech and interdisciplinary domain involving staff of various backgrounds. This allows steady improvement in therapy results, but at the same time makes the diagnostic, imaging and therapeutic processes more complex and complicated, requiring every stage of those processes to be planned, organized, controlled and improved so as to assure high quality of services provided. The aim of this paper is to present clinical quality standards for radiotherapy as developed by the author. Material and methods In order to develop the quality standards, a comparative analysis was performed between European and Polish legal acts adopted in the period of 1980-2006 and the universal industrial ISO 9001:2008 standard, defining requirements for quality management systems, and relevant articles published in 1984-2009 were reviewed, including applicable guidelines and recommendations of American, international, European and Polish bodies, such as the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy & Oncology (ESTRO), the International Atomic Energy Agency (IAEA), and the Organisation of European Cancer Institutes (OECI) on quality assurance and management in radiotherapy. Results As a result, 352 quality standards for radiotherapy were developed and categorized into the following three groups: 1 – organizational standards; 2 – physico-technical standards and 3 – clinical standards. Conclusion Proposed clinical quality standards for radiotherapy can be used by any institution using ionizing radiation for medical purposes. However, standards are of value only if they are implemented, reviewed, audited and improved, and if there is a clear mechanism in place to monitor and address failure to meet agreed standards. PMID:23788854

  9. Second Malignant Neoplasms Following Radiotherapy

    PubMed Central

    Kumar, Sanath

    2012-01-01

    More than half of all cancer patients receive radiotherapy as a part of their treatment. With the increasing number of long-term cancer survivors, there is a growing concern about the risk of radiation induced second malignant neoplasm [SMN]. This risk appears to be highest for survivors of childhood cancers. The exact mechanism and dose-response relationship for radiation induced malignancy is not well understood, however, there have been growing efforts to develop strategies for the prevention and mitigation of radiation induced cancers. This review article focuses on the incidence, etiology, and risk factors for SMN in various organs after radiotherapy. PMID:23249860

  10. [Which rules apply to hypofractionated radiotherapy?].

    PubMed

    Supiot, S; Clément-Colmou, K; Paris, F; Corre, I; Chiavassa, S; Delpon, G

    2015-10-01

    Hypofractionated radiotherapy is now more widely prescribed due to improved targeting techniques (intensity modulated radiotherapy, image-guided radiotherapy and stereotactic radiotherapy). Low dose hypofractionated radiotherapy is routinely administered mostly for palliative purposes. High or very high dose hypofractionated irradiation must be delivered according to very strict procedures since every minor deviation can lead to major changes in dose delivery to the tumor volume and organs at risk. Thus, each stage of the processing must be carefully monitored starting from the limitations and the choice of the hypofractionation technique, tumour contouring and dose constraints prescription, planning and finally dose calculation and patient positioning verification.

  11. Intraoperative radiotherapy: the Japanese experience. [Betatron

    SciTech Connect

    Abe, M.; Takahashi, M.

    1981-07-01

    Clinical results of intraoperative radiotherapy (IOR) which have been obtained since 1964 in Japan were reviewed. In this radiotherapy a cancerocidal dose can be delivered safely to the lesions, since critical organs are shifted from the field so that the lesions may be exposed directly to radiation. Intraoperative radiotherapy has spread in Japan and the number of institutions in which this radiotherapy is performed has continued to increase to a total of 26 in 1979. The total number of patients treated was 717. It has been demonstrated that intraoperative radiotherapy has definite effects on locally advanced abdominal neoplasms and unresectable radioresistant tumors.

  12. Radiotherapy of chondrosarcoma of bone

    SciTech Connect

    Harwood, A.R.; Krajbich, J.I.; Fornasier, V.L.

    1980-06-01

    A retrospective analysis of 31 cases of chondrosarcoma of bone treated by radiotherapy is presented. In comparison with other large series, our group of patients were found to have been unfavourably selected with respect to the known prognostic factors: histology site, adequacy of operative treatment, and presenting symptoms. Twelve patients with primary chondrosarcoma were radically irradiated; 6 of these 12 have been alive and well without tumor for periods ranging from three and a half to 16 years and 3 of these are alive and well for 15 years or more following radiotherapy. The other 6 patients responded or desease stabilized following radiotherapy for periods ranging from 16 months to eight years. One poorly differentiated tumor was radically irradiated and did not respond. Eleven patients were irradiated palliatively, generally with low doses of irradiation, and only 4 responded transiently for periods ranging from three to 12 months. Seven patients with mesenchymal and dedifferentiated tumors were radically irradiated. Four responded or disease stabilized, and 1 of these patients was alive and well at 3 years; 3 did not respond. Six died with distant metastasis. It is concluded that chondrosarcoma of bone is a radioresponsive tumor and the place of radiotherapy in the treatment of this disease and the reason for its being labelled a radioresistant tumor are discussed. The problems of assessing response of chondrosarcoma to therapy are also discussed. It is suggested that chemotherapy may have a role in the management of mesenchymal and dedifferentiated chondrosarcoma.

  13. Pancreatic cancer: chemotherapy and radiotherapy

    PubMed Central

    Andrén-Sandberg, Åke

    2011-01-01

    Pancreatic cancer in many cases appears in a non-curatively resectable stage when the diagnosis is made. Palliative treatment become an option in the patients with advanced stage. The present article reviewed chemotherapy and radiotherapy in various advanced stage of pancreatic cancer. PMID:22540056

  14. Radiotherapy T1 glottic carcinoma

    SciTech Connect

    Zablow, A.I.; Erba, P.S.; Sanfillippo, L.J.

    1989-11-01

    From 1970 to 1985, curative radiotherapy was administered to 63 patients with stage I carcinoma of the true vocal cords. Precision radiotherapeutic technique yields cure rates comparable to surgical results. Good voice quality was preserved in a high percentage of patients.

  15. [Conformal radiotherapy: principles and classification].

    PubMed

    Rosenwald, J C; Gaboriaud, G; Pontvert, D

    1999-01-01

    'Conformal radiotherapy' is the name fixed by usage and given to a new form of radiotherapy resulting from the technological improvements observed during, the last ten years. While this terminology is now widely used, no precise definition can be found in the literature. Conformal radiotherapy refers to an approach in which the dose distribution is more closely 'conformed' or adapted to the actual shape of the target volume. However, the achievement of a consensus on a more specific definition is hampered by various difficulties, namely in characterizing the degree of 'conformality'. We have therefore suggested a classification scheme be established on the basis of the tools and the procedures actually used for all steps of the process, i.e., from prescription to treatment completion. Our classification consists of four levels: schematically, at level 0, there is no conformation (rectangular fields); at level 1, a simple conformation takes place, on the basis of conventional 2D imaging; at level 2, a 3D reconstruction of the structures is used for a more accurate conformation; and level 3 includes research and advanced dynamic techniques. We have used our personal experience, contacts with colleagues and data from the literature to analyze all the steps of the planning process, and to define the tools and procedures relevant to a given level. The corresponding tables have been discussed and approved at the European level within the Dynarad concerted action. It is proposed that the term 'conformal radiotherapy' be restricted to procedures where all steps are at least at level 2.

  16. Studies on the adsorption behavior of trace amounts of 90Sr2+, 140La3+, 60Co2+, Ni2+ and Zr4+ cations on synthesized inorganic ion exchangers.

    PubMed

    Nilchi, A; Hadjmohammadi, M R; Rasouli Garmarodi, S; Saberi, R

    2009-08-15

    Three inorganic ion exchangers namely potassium zinc hexacyanoferrate(II) (PZF), magnesium oxide-polyacrylonitrile composite (MgO-PAN) and ammonium molybdophosphate (AMP) were synthesized. The physicochemical properties of these ion exchangers were determined using different techniques including inductively coupled plasma (ICP), CHNSO elemental analysis, infrared spectroscopy (IR), X-ray diffraction (XRD), thermogravimetric (TGA) and pH - titration curve analysis. The solubility of the synthesized ion exchangers in different acidic and alkaline media, their thermal stability and the effect of gamma irradiation were investigated. It was observed that the exchange capacity of the ion exchangers depend upon the pH value of the solution used. Furthermore, the adsorption of (90)Sr(2+), (140)La(3+), (60)Co(2+) and the distribution coefficient of these ion exchangers for Ni(2+)and Zr(4+) were studied. The effect of parameters such as pH and contact time on the adsorption was also investigated and the optimum conditions for separation of these ions were determined. PMID:19188026

  17. Variability in the edible fraction content of 60Co, 99Tc, 110mAg, 137Cs and 241Am between individual crabs and lobsters from Sellafield (north eastern Irish Sea).

    PubMed

    Swift, D J; Nicholson, M D

    2001-01-01

    We investigated the variability of anthropogenic radionuclide content of the edible fractions of individual edible crabs (Cancer pagurus L.) and European lobsters (Homarus gammarus L.) caught commercially in the Sellafield offshore area. Sixteen female and 18 male crabs and 20 female and 17 male lobsters were selected from commercial catches made between 25 May and 5 June 1997. Each gender group was selected to be within the known weight range for commercially caught crustacea from the area. Four artificial radionuclides (60Co, 110mAg, 137Cs or 241Am) were detected by gamma-spectrometry. The edible fraction content of these radionuclides between males and females for either species were not statistically significantly different. 99Tc was analysed by chemical separation and beta-counting. 99Tc concentrations in female crabs tended to be higher (172 +/- 205 (16) Bq kg-1(wet); mean +/- standard deviation (n samples)) than those in males (85 +/- 58 (18) Bq kg-1 (wet)), although this was not a statistically significant difference. For both male and female crabs, 99Tc concentrations tended to decrease with increasing whole live weights. For 99Tc in lobsters the picture is less clear. Female lobsters contained more activity (14800 +/- 7400 (20) Bq kg-1 (wet)) than males (7100 +/- 3900 (17) Bq kg-1 (wet)). The results were used to discuss the implications for sampling and monitoring. PMID:11381940

  18. Microdosimetry of DNA conformations: relation between direct effect of (60)Co gamma rays and topology of DNA geometrical models in the calculation of A-, B- and Z-DNA radiation-induced damage yields.

    PubMed

    Semsarha, Farid; Raisali, Gholamreza; Goliaei, Bahram; Khalafi, Hossein

    2016-05-01

    In order to obtain the energy deposition pattern of ionizing radiation in the nanometric scale of genetic material and to investigate the different sensitivities of the DNA conformations, direct effects of (60)Co gamma rays on the three A, B and Z conformations of DNA have been studied. For this purpose, single-strand breaks (SSB), double-strand breaks (DSB), base damage (BD), hit probabilities and three microdosimetry quantities (imparted energy, mean chord length and lineal energy) in the mentioned DNA conformations have been calculated and compared by using GEometry ANd Tracking 4 (Geant4) toolkit. The results show that A-, B- and Z-DNA conformations have the highest yields of DSB (1.2 Gy(-1) Gbp(-1)), SSB (25.2 Gy(-1) Gbp(-1)) and BD (4.81 Gy(-1) Gbp(-1)), respectively. Based on the investigation of direct effects of radiation, it can be concluded that the DSB yield is largely correlated to the topological characteristics of DNA models, although the SSB yield is not. Moreover, according to the comparative results of the present study, a reliable candidate parameter for describing the relationship between DNA damage yields and geometry of DNA models in the theoretical radiation biology research studies would be the mean chord length (4 V/S) of the models.

  19. Determination of the Sensibility Factors for TLD-100 Powder on the Energy of X-Ray of 50, 250 kVp; 192Ir, 137Cs and 60Co

    SciTech Connect

    Loaiza, Sandra P.; Alvarez, Jose T.

    2006-09-08

    TLD-100 powder is calibrated in terms of absorbed dose to water Dw, using the protocols AAPM TG61, AAPM TG43 and IAEA-TRS 398, for the energy of RX 50, 250 kVp, 137Cs and 60Co respectively. The calibration curves, TLD Response R versus Dw, are fitted by weighted least square by a quadratic polynomials; which are validated with the lack of fit and the Anderson-Darling normality test. The slope of these curves corresponds to the sensibility factor: Fs R/DW, [Fs] = nC Gy-1. The expanded uncertainties U's for these factors are obtained from the ANOVA tables. Later, the Fs' values are interpolated using the effective energy hvefec for the 192Ir. The SSDL sent a set of capsules with powder TLD-100 for two Hospitals. These irradiated them a nominal dose of Dw = 2 Gy. The results determined at SSDL are: for the Hospital A the Dw is overestimated in order to 4.8% and the Hospital B underestimates it in the range from -1.4% to -17.5%.

  20. A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator-based stereotactic body radiotherapy for central early-stage non-small cell lung cancer.

    PubMed

    Merna, Catherine; Rwigema, Jean-Claude M; Cao, Minsong; Wang, Pin-Chieh; Kishan, Amar U; Michailian, Argin; Lamb, James; Sheng, Ke; Agazaryan, Nzhde; Low, Daniel A; Kupelian, Patrick; Steinberg, Michael L; Lee, Percy

    2016-01-01

    We evaluated the feasibility of planning stereotactic body radiotherapy (SBRT) for large central early-stage non-small cell lung cancer with a tri-cobalt-60 (tri-(60)Co) system equipped with real-time magnetic resonance imaging (MRI) guidance, as compared to linear accelerator (LINAC)-based SBRT. In all, 20 patients with large central early-stage non-small cell lung cancer who were treated between 2010 and 2015 with LINAC-based SBRT were replanned using a tri-(60)Co system for a prescription dose of 50Gy in 4 fractions. Doses to organs at risk were evaluated based on established MD Anderson constraints for central lung SBRT. R100 values were calculated as the total tissue volume receiving 100% of the dose (V100) divided by the planning target volume and compared to assess dose conformity. Dosimetric comparisons between LINAC-based and tri-(60)Co SBRT plans were performed using Student׳s t-test and Wilcoxon Ranks test. Blinded reviews by radiation oncologists were performed to assess the suitability of both plans for clinical delivery. The mean planning target volume was 48.3cc (range: 12.1 to 139.4cc). Of the tri-(60)Co SBRT plans, a mean 97.4% of dosimetric parameters per patient met MD Anderson dose constraints, whereas a mean 98.8% of dosimetric parameters per patient were met with LINAC-based SBRT planning (p = 0.056). R100 values were similar between both plans (1.20 vs 1.21, p = 0.79). Upon blinded review by 4 radiation oncologists, an average of 90% of the tri-(60)Co SBRT plans were considered acceptable for clinical delivery compared with 100% of the corresponding LINAC-based SBRT plans (p = 0.17). SBRT planning using the tri-(60)Co system with built-in MRI is feasible and achieves clinically acceptable plans for most central lung patients, with similar target dose conformity and organ at risk dosimetry. The added benefit of real-time MRI-guided therapy may further optimize tumor targeting while improving normal tissue sparing, which warrants further

  1. Intraoperative radiotherapy for breast cancer

    PubMed Central

    Williams, Norman R.; Pigott, Katharine H.; Brew-Graves, Chris

    2014-01-01

    Intra-operative radiotherapy (IORT) as a treatment for breast cancer is a relatively new technique that is designed to be a replacement for whole breast external beam radiotherapy (EBRT) in selected women suitable for breast-conserving therapy. This article reviews twelve reasons for the use of the technique, with a particular emphasis on targeted intra-operative radiotherapy (TARGIT) which uses X-rays generated from a portable device within the operating theatre immediately after the breast tumour (and surrounding margin of healthy tissue) has been removed. The delivery of a single fraction of radiotherapy directly to the tumour bed at the time of surgery, with the capability of adding EBRT at a later date if required (risk-adaptive technique) is discussed in light of recent results from a large multinational randomised controlled trial comparing TARGIT with EBRT. The technique avoids irradiation of normal tissues such as skin, heart, lungs, ribs and spine, and has been shown to improve cosmetic outcome when compared with EBRT. Beneficial aspects to both institutional and societal economics are discussed, together with evidence demonstrating excellent patient satisfaction and quality of life. There is a discussion of the published evidence regarding the use of IORT twice in the same breast (for new primary cancers) and in patients who would never be considered for EBRT because of their special circumstances (such as the frail, the elderly, or those with collagen vascular disease). Finally, there is a discussion of the role of the TARGIT Academy in developing and sustaining high standards in the use of the technique. PMID:25083504

  2. [Regulation of radiotherapy and chemotherapy services by health plan organizations in Brazil].

    PubMed

    Lima, Sheyla Maria Lemos; Portela, Margareth Crisóstomo; Ugá, Maria Alicia Domíngues; de Vasconcellos, Maurício Teixeira Leite

    2014-01-01

    This paper characterizes regulatory procedures applied by private health plan operators on their outpatient radiotherapy and chemotherapy services, especially via contracts, and outlines the health care providers’ perception on regulation. The study relied on primary data, taking into consideration 638 hospitals and outpatient health care units with the services in question. A stratified random sample was selected, resulting in the inclusion of 54 units that are representative of the population, excluding hospitals that only provide radiotherapy. Private chemotherapy services are largely funded by health insurance plans (75.0%), while radiotherapy services are predominantly covered by the public health system (49.0%). Contracts are not applied by third part payers, in their potential, as regulatory and health care coordination instruments. The mechanisms of regulation applied by third part payers are centered on services use control and administrative aspects. It is recognized the need of adjustments for a health care quality focus, and contracts may contribute in this sense.

  3. Adjuvant and Definitive Radiotherapy for Adrenocortical Carcinoma

    SciTech Connect

    Sabolch, Aaron; Feng, Mary; Griffith, Kent; Hammer, Gary; Doherty, Gerard; Ben-Josef, Edgar

    2011-08-01

    Purpose: To evaluate the impact of both adjuvant and definitive radiotherapy on local control of adrenocortical carcinoma. Methods and Materials: Outcomes were analyzed from 58 patients with 64 instances of treatment for adrenocortical carcinoma at the University of Michigan's Multidisciplinary Adrenal Cancer Clinic. Thirty-seven of these instances were for primary disease, whereas the remaining 27 were for recurrent disease. Thirty-eight of the treatment regimens involved surgery alone, 10 surgery plus adjuvant radiotherapy, and 16 definitive radiotherapy for unresectable disease. The effects of patient, tumor, and treatment factors were modeled simultaneously using multiple variable Cox proportional hazards regression for associations with local recurrence, distant recurrence, and overall survival. Results: Local failure occurred in 16 of the 38 instances that involved surgery alone, in 2 of the 10 that consisted of surgery plus adjuvant radiotherapy, and in 1 instance of definitive radiotherapy. Lack of radiotherapy use was associated with 4.7 times the risk of local failure compared with treatment regimens that involved radiotherapy (95% confidence interval, 1.2-19.0; p = 0.030). Conclusions: Radiotherapy seems to significantly lower the risk of local recurrence/progression in patients with adrenocortical carcinoma. Adjuvant radiotherapy should be strongly considered after surgical resection.

  4. Quantitative radiation dose-response relationships for normal tissues in man. II. Response of the salivary glands during radiotherapy

    SciTech Connect

    Mossman, K.L.

    1983-08-01

    A quantitative dose-response curve for salivary gland function in patients during radiotherapy is presented. Salivary-function data used in this study were obtained from four previously published reports. All patients were treated with /sup 60/Co teletherapy to the head and neck using conventional treatment techniques. Salivary dysfunction was determined at specific dose levels by comparing salivary flow rates before therapy with flow rates at specific dose intervals during radiotherapy up to a total dose of 6000 cGy. Fifty percent salivary dysfunction occurred after 1000 cGy and eighty percent dysfunction was observed by the end of the therapy course (6000 cGy). The salivary-function curve was also compared to the previously published dose-response curve for taste function. Comparisons of the two curves indicate that salivary dysfunction precedes taste loss and that the shapes of the dose-response curves are different. A new term, tissue tolerance ratio, defined as the ratio of responses of two tissues given the same radiation dose, was used to make the comparisons between gustatory and salivary gland tissue effects. Measurements of salivary gland function and analysis of dose-response curves may be useful in evaluating chemical modifiers of radiation response.

  5. Quantitative radiation dose-response relationships for normal tissues in man. II. Response of the salivary glands during radiotherapy

    SciTech Connect

    Mossman, K.L.

    1983-08-01

    A quantitative dose-response curve for salivary gland function in patients during radiotherapy is presented. Salivary-function data used in this study were obtained from four previously published reports. All patients were treated wih /sup 60/Co teletherapy to the head and neck using conventional treatment techniques. Salivary dysfunction was determined at specific dose levels by comparing salivary flow rates before therapy with flow rates at specific dose intervals during radiotherapy up to a total dose of 6000 cGy. Fifty percent salivary dysfunction occurred after 1000 cGy and eighty percent dysfunction was observed by the end of the therapy course (6000 cGy). The salivary-function curve was also compared to the previously published dose-response curve for taste function. Comparisons of the two curves indicate that salivary dysfunction precedes taste loss and that the shapes of the dose-response curves are different. A new term, tissue tolerance ratio, defined as the ratio of responses of two tissues given the same radiation dose, was used to make the comparisons between gustatory and salivary gland tissue effects. Measurements of salivary gland function and analysis of dose-response curves may be useful in evaluating chemical modifiers of radiation response.

  6. Teleradiotherapy Network: Applications and Feasibility for Providing Cost-Effective Comprehensive Radiotherapy Care in Low- and Middle-Income Group Countries for Cancer Patients

    PubMed Central

    Heuser, Michael; Samiei, Massoud; Shah, Ragesh; Lutters, Gerd; Bodis, Stephan

    2015-01-01

    Abstract Globally, new cancer cases will rise by 57% within the next two decades, with the majority in the low- and middle-income countries (LMICs). Consequently, a steep increase of about 40% in cancer deaths is expected there, mainly because of lack of treatment facilities, especially radiotherapy. Radiotherapy is required for more than 50% of patients, but the capital cost for equipment often deters establishment of such facilities in LMICs. Presently, of the 139 LMICs, 55 do not even have a radiotherapy facility, whereas the remaining 84 have a deficit of 61.4% of their required radiotherapy units. Networking between centers could enhance the effectiveness and reach of existing radiotherapy in LMICs. A teleradiotherapy network could enable centers to share and optimally utilize their resources, both infrastructure and staffing. This could be in the form of a three-tier radiotherapy service consisting of primary, secondary, and tertiary radiotherapy centers interlinked through a network. The concept has been adopted in some LMICs and could also be used as a “service provider model,” thereby reducing the investments to set up such a network. Teleradiotherapy networks could be a part of the multipronged approach to address the enormous gap in radiotherapy services in a cost-effective manner and to support better accessibility to radiotherapy facilities, especially for LMICs. PMID:25763906

  7. Teleradiotherapy Network: Applications and Feasibility for Providing Cost-Effective Comprehensive Radiotherapy Care in Low- and Middle-Income Group Countries for Cancer Patients.

    PubMed

    Datta, Niloy Ranjan; Heuser, Michael; Samiei, Massoud; Shah, Ragesh; Lutters, Gerd; Bodis, Stephan

    2015-07-01

    Globally, new cancer cases will rise by 57% within the next two decades, with the majority in the low- and middle-income countries (LMICs). Consequently, a steep increase of about 40% in cancer deaths is expected there, mainly because of lack of treatment facilities, especially radiotherapy. Radiotherapy is required for more than 50% of patients, but the capital cost for equipment often deters establishment of such facilities in LMICs. Presently, of the 139 LMICs, 55 do not even have a radiotherapy facility, whereas the remaining 84 have a deficit of 61.4% of their required radiotherapy units. Networking between centers could enhance the effectiveness and reach of existing radiotherapy in LMICs. A teleradiotherapy network could enable centers to share and optimally utilize their resources, both infrastructure and staffing. This could be in the form of a three-tier radiotherapy service consisting of primary, secondary, and tertiary radiotherapy centers interlinked through a network. The concept has been adopted in some LMICs and could also be used as a "service provider model," thereby reducing the investments to set up such a network. Teleradiotherapy networks could be a part of the multipronged approach to address the enormous gap in radiotherapy services in a cost-effective manner and to support better accessibility to radiotherapy facilities, especially for LMICs. PMID:25763906

  8. Radiotherapy in patients with connective tissue diseases.

    PubMed

    Giaj-Levra, Niccolò; Sciascia, Savino; Fiorentino, Alba; Fersino, Sergio; Mazzola, Rosario; Ricchetti, Francesco; Roccatello, Dario; Alongi, Filippo

    2016-03-01

    The decision to offer radiotherapy in patients with connective tissue diseases continues to be challenging. Radiotherapy might trigger the onset of connective tissue diseases by increasing the expression of self-antigens, diminishing regulatory T-cell activity, and activating effectors of innate immunity (dendritic cells) through Toll-like receptor-dependent mechanisms, all of which could potentially lead to breaks of immune tolerance. This potential risk has raised some debate among radiation oncologists about whether patients with connective tissue diseases can tolerate radiation as well as people without connective tissue diseases. Because the number of patients with cancer and connective tissue diseases needing radiotherapy will probably increase due to improvements in medical treatment and longer life expectancy, the issue of interactions between radiotherapy and connective tissue diseases needs to be clearer. In this Review, we discuss available data and evidence for patients with connective tissue diseases treated with radiotherapy.

  9. Management of radiotherapy-induced skin reactions.

    PubMed

    Trueman, Ellen

    2015-04-01

    Radiotherapy is a highly effective cancer treatment that not only offers cure but also excellent palliation of disease related symptoms and complications. Although radiotherapy is primarily an outpatient treatment, delivered within specialist centres, a diverse range of health professionals may be involved in the treatment pathway before, during and after treatment. Radiotherapy can, and does, make a significant contribution to improving a patient's wellbeing through effective symptom management. However, treatment-related side-effects do occur, with an acute skin reaction being one of the most common. It is imperative that radiotherapy-induced skin reactions are correctly assessed and appropriately managed in promoting patient comfort, treatment compliance and enhanced quality of life. This article describes how the use of a recognised assessment tool and evidence-based guidelines can facilitate consistent, high-quality care in the management of radiotherapy-induced skin reactions.

  10. Microionization chamber air-kerma calibration coefficients as a function of photon energy for x-ray spectra in the range of 20-250 kVp relative to {sup 60}Co

    SciTech Connect

    Snow, J. R.; Micka, J. A.; DeWerd, L. A.

    2013-04-15

    Purpose: To investigate the applicability of a wide range of microionization chambers for reference dosimetry measurements in low- and medium-energy x-ray beams. Methods: Measurements were performed with six cylindrical microchamber models, as well as one scanning chamber and two Farmer-type chambers for comparison purposes. Air-kerma calibration coefficients were determined at the University of Wisconsin Accredited Dosimetry Calibration Laboratory for each chamber for a range of low- and medium-energy x-ray beams (20-250 kVp), with effective energies ranging from 11.5 keV to 145 keV, and a {sup 60}Co beam. A low-Z proof-of-concept microchamber was developed and calibrated with and without a high-Z silver epoxy on the collecting electrode. Results: All chambers composed of low-Z materials (Z{<=} 13), including the Farmer-type chambers, the scanning chamber, and the PTW TN31014 and the proof-of-concept microchambers, exhibited air-kerma calibration coefficients with little dependence on the quality of the beam. These chambers typically exhibited variations in calibration coefficients of less than 3% with the beam quality, for medium energy beams. However, variations in air-kerma calibration coefficients of greater than 50% were measured over the range of medium-energy x-ray beams for each of the microchambers containing high-Z collecting electrodes (Z > 13). For these high-Z chambers, which include the Exradin A14SL and A16 chambers, the PTW TN31006 chamber, the IBA CC01 chamber, and the proof-of-concept chamber containing silver, the average variation in air-kerma calibration coefficients between any two calibration beams was nearly 25% over the entire range of beam qualities investigated. Conclusions: Due to the strong energy dependence observed with microchambers containing high-Z components, these chambers may not be suitable dosimeters for kilovoltage x-ray applications, as they do not meet the TG-61 requirements. It is recommended that only microchambers

  11. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, Kevin M.; Doyle, Barney L.

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  12. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  13. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario

    PubMed Central

    Yong, J.H.E.; McGowan, T.; Redmond-Misner, R.; Beca, J.; Warde, P.; Gutierrez, E.; Hoch, J.S.

    2016-01-01

    Background Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. Methods An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. Results From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Conclusions Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption. PMID:27330359

  14. Changes in Pulmonary Function After Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, or Proton Beam Therapy for Non-Small-Cell Lung Cancer

    SciTech Connect

    Lopez Guerra, Jose L.; Gomez, Daniel R.; Zhuang Yan; Levy, Lawrence B.; Eapen, George; Liu, Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing

    2012-07-15

    Purpose: To investigate the extent of change in pulmonary function over time after definitive radiotherapy for non-small-cell lung cancer (NSCLC) with modern techniques and to identify predictors of changes in pulmonary function according to patient, tumor, and treatment characteristics. Patients and Methods: We analyzed 250 patients who had received {>=}60 Gy radio(chemo)therapy for primary NSCLC in 1998-2010 and had undergone pulmonary function tests before and within 1 year after treatment. Ninety-three patients were treated with three-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy, and 60 with proton beam therapy. Postradiation pulmonary function test values were evaluated among individual patients compared with the same patient's preradiation value at the following time intervals: 0-4 (T1), 5-8 (T2), and 9-12 (T3) months. Results: Lung diffusing capacity for carbon monoxide (DLCO) was reduced in the majority of patients along the three time periods after radiation, whereas the forced expiratory volume in 1 s per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, radiotherapy dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume, lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC. Conclusions: Lung diffusing capacity for carbon monoxide is reduced in the majority of patients after radiotherapy with modern techniques. Multiple factors, including gross tumor volume, preradiation lung function, and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology, such as proton beam therapy or

  15. Pattern of radiotherapy care in Bulgaria.

    PubMed

    Hadjieva, Tatiana

    2015-01-01

    The paper reveals the changing pattern of Bulgarian Radiotherapy (RT) care after the successful implementation of 15 projects for 100 million euro under the European Regional Development Fund in Operational Programme for Regional Development 2007-2013. The project enables a total one-step modernization of 14 Bulgarian RT Centres and creation of a new one. At the end of the Programme (mid 2015), 16 new Linacs and 2 modern cobalt machines will be available together with 11 virtual CT simulators, 5 CT simulators, 1 MRI and 1 PET CT for RT planning and all dosimetry facilities needed. Such a modernization has moved Bulgarian RT forward, with 2.7 MV units per one million of population (MV/mln.inh) in comparison with 0.9 MV/mln.inh in 2012. Guild of Bulgarian Radiotherapists includes 70 doctors, 46 physicists and 10 engineers, together with 118 RTTs and 114 nurses and they all have treated 16,447 patients in 2013. Major problems are inadequate reimbursement from the monopolistic Health Insurance Fund (900 euro for 3D conformal RT and 1500 euro for IMRT); fragmentation of RT care with 1-2 MV units per Centre; no payment for patient travel expenses; need for quick and profound education of 26% of doctors and 46% of physicists without RT license, along with continuous education for all others; and resource for 5000-9000 more patients to be treated yearly by RT in order to reach 45-50% from current service of 32%. After 15 years of struggle of RT experts, finally the pattern of Bulgarian RT care at 2014-2015 is approaching the level of modern European RT. PMID:26549991

  16. [Current status and perspectives of radiotherapy for esophageal cancer].

    PubMed

    Wu, S X; Wang, L H

    2016-09-23

    Esophageal cancer is one of the most common cancers in China. More than 80% of esophageal cancer patients are diagnosed at a late stage and are not eligible for surgery. Radiotherapy is one of the most important modalities in esophageal cancer treatment. Here we reviewed the advances in esophageal cancer radiotherapy and radiotherapy-based combined-modality therapy, such as optimization of radiation dose and target volume, application of precise radiotherapy technique and the integration of radiotherapy with chemotherapy and targeted therapy.

  17. [Conformal radiotherapy of brain tumors].

    PubMed

    Haie-Meder, C; Beaudré, A; Breton, C; Biron, B; Cordova, A; Dubray, B; Mazeron, J J

    1999-01-01

    Conformal irradiation of brain tumours is based on the three-dimensional reconstruction of the targeted volumes and at-risk organ images, the three-dimensional calculation of the dose distribution and a treatment device (immobilisation, beam energy, collimation, etc.) adapted to the high precision required by the procedure. Each step requires an appropriate methodology and a quality insurance program. Specific difficulties in brain tumour management are related to GTV and CTV definition depending upon the histological type, the quality of the surgical resection and the medical team. Clinical studies have reported dose escalation trials, mostly in high-grade gliomas and tumours at the base of the skull. Clinical data are now providing a better knowledge of the tolerance of normal tissues. As for small tumours, the implementation of beam intensity modulation is likely to narrow the gap between conformal and stereotaxic radiotherapy. PMID:10572510

  18. [Radiotherapy of benign intracranial tumors].

    PubMed

    Delannes, M; Latorzeff, I; Chand, M E; Huchet, A; Dupin, C; Colin, P

    2016-09-01

    Most of the benign intracranial tumors are meningiomas, vestibular schwannomas, pituitary adenomas, craniopharyngiomas, and glomus tumors. Some of them grow very slowly, and can be observed without specific treatment, especially if they are asymptomatic. Symptomatic or growing tumors are treated by surgery, which is the reference treatment. When surgery is not possible, due to the location of the lesion, or general conditions, radiotherapy can be applied, as it is if there is a postoperative growing residual tumor, or a local relapse. Indications have to be discussed in polydisciplinary meetings, with precise evaluation of the benefit and risks of the treatments. The techniques to be used are the most modern ones, as multimodal imaging and image-guided radiation therapy. Stereotactic treatments, using fractionated or single doses depending on the size or the location of the tumors, are commonly realized, to avoid as much a possible the occurrence of late side effects. PMID:27523417

  19. [Radiotherapy of carcinoma of the salivary glands].

    PubMed

    Servagi-Vernat, S; Tochet, F

    2016-09-01

    Indication, doses, and technique of radiotherapy for salivary glands carcinoma are presented, and the contribution of neutrons and carbon ions. The recommendations for delineation of the target volumes and organs at risk are detailed. PMID:27521038

  20. Imaging Instrumentation and Techniques for Precision Radiotherapy

    NASA Astrophysics Data System (ADS)

    Parodi, Katia; Parodi, Katia; Thieke, Christian; Thieke, Christian

    Over the last decade, several technological advances have considerably improved the achievable precision of dose delivery in radiation therapy. Clinical exploitation of the superior tumor-dose conformality offered by modern radiotherapy techniques like intensity-modulated radiotherapy and ion beam therapy requires morphological and functional assessment of the tumor during the entire therapy chain from treatment planning to beam application and treatment response evaluation. This chapter will address the main rationale and role of imaging in state-of-the-art external beam radiotherapy. Moreover, it will present the status of novel imaging instrumentation and techniques being nowadays introduced in clinical use or still under development for image guidance and, ultimately, dose guidance of precision radiotherapy.

  1. Heavy particle radiotherapy: prospects and pitfalls

    SciTech Connect

    Faju, M.R.

    1980-01-01

    The use of heavy particles in radiotherapy of tumor volumes is examined. Particles considered are protons, helium ions, heavy ions, negative pions, and fast neutrons. Advantages and disadvantages are discussed. (ACR)

  2. [Conformal radiotherapy for vertebral bone metastasis].

    PubMed

    Faivre, J C; Py, J F; Vogin, G; Martinage, G; Salleron, J; Royer, P; Grandgirard, N; Pasquier, D; Thureau, S

    2016-10-01

    Analgesic external beam radiation therapy is a standard of care for patients with uncomplicated painful bone metastases and/or prevention of bone complications. In case of fracture risk, radiation therapy is performed after surgery in a consolidation of an analgesic purpose and stabilizing osteosynthesis. Radiotherapy is mandatory after vertebroplasty or kyphoplasty. Spinal cord compression - the only emergency in radiation therapy - is indicated postoperatively either exclusively for non surgical indication. Analgesic re-irradiation is possible in the case of insufficient response or recurrent pain after radiotherapy. Metabolic radiation, bisphosphonates or denosumab do not dissuade external radiation therapy for pain relief. Systemic oncological treatments can be suspended with a period of wash out given the risk of radiosensitization or recall phenomenon. Better yet, the intensity modulated radiotherapy and stereotactic radiotherapy can be part of a curative strategy for oligometastatic patients and suggest new treatment prospects. PMID:27614498

  3. Efficacy of radiotherapy in optic gliomas.

    PubMed

    Gould, R J; Hilal, S K; Chutorian, A M

    1987-01-01

    Twenty-five children with optic gliomas were evaluated over a seven year period by sequential computed axial tomography in order to determine the efficacy of radiotherapy as a treatment modality. Indices of tumor progression or regression included both size and contrast enhancement characteristics. Twenty of 25 patients followed during this period received radiotherapy. Of these patients, ten had tumor regression, nine were stable, and one was worse. This result contrasts with five untreated patients, four of whom had tumor progression and one who was stable (x2 = 18.37, p less than .001). One of the children with tumor progression later received radiotherapy and demonstrated marked tumor regression. Of the 18 treated patients who could be tested reliably, visual function and/or regression occurred in seven children. None of the untreated patients improved. There were no definite complications of radiotherapy in this small group.

  4. Radiotherapy in the treatment of vertebral hemangiomas

    SciTech Connect

    Faria, S.L.; Schlupp, W.R.; Chiminazzo, H. Jr.

    1985-02-01

    Symptomatic vertebral hemangiomas are not common. Although radiotherapy has been used as treatment, the data are sparse concerning total dose, fractionation and results. The authors report nine patients with vertebral hemangioma treated with 3000-4000 rad, 200 rad/day, 5 fractions per week, followed from 6 to 62 months. Seventy-seven percent had complete or almost complete disappearance of the symptoms. Radiotherapy schedules are discussed.

  5. Blisters - an unusual effect during radiotherapy.

    PubMed

    Höller, U; Schubert, T; Budach, V; Trefzer, U; Beyer, M

    2013-11-01

    The skin reaction to radiation is regularly monitored in order to detect enhanced radiosensitivity of the patient, unexpected interactions (e.g. with drugs) or any inadvertent overdosage. It is important to distinguish secondary disease from radiation reaction to provide adequate treatment and to avoid unnecessary discontinuation of radiotherapy. A case of bullous eruption or blisters during radiotherapy of the breast is presented. Differential diagnoses bullous pemphigoid, pemphigus vulgaris, and bullous impetigo are discussed and treatment described. PMID:24158604

  6. Radiotherapy for Vestibular Schwannomas: A Critical Review

    SciTech Connect

    Murphy, Erin S.; Suh, John H.

    2011-03-15

    Vestibular schwannomas are slow-growing tumors of the myelin-forming cells that cover cranial nerve VIII. The treatment options for patients with vestibular schwannoma include active observation, surgical management, and radiotherapy. However, the optimal treatment choice remains controversial. We have reviewed the available data and summarized the radiotherapeutic options, including single-session stereotactic radiosurgery, fractionated conventional radiotherapy, fractionated stereotactic radiotherapy, and proton beam therapy. The comparisons of the various radiotherapy modalities have been based on single-institution experiences, which have shown excellent tumor control rates of 91-100%. Both stereotactic radiosurgery and fractionated stereotactic radiotherapy have successfully improved cranial nerve V and VII preservation to >95%. The mixed data regarding the ideal hearing preservation therapy, inherent biases in patient selection, and differences in outcome analysis have made the comparison across radiotherapeutic modalities difficult. Early experience using proton therapy for vestibular schwannoma treatment demonstrated local control rates of 84-100% but disappointing hearing preservation rates of 33-42%. Efforts to improve radiotherapy delivery will focus on refined dosimetry with the goal of reducing the dose to the critical structures. As future randomized trials are unlikely, we suggest regimented pre- and post-treatment assessments, including validated evaluations of cranial nerves V, VII, and VIII, and quality of life assessments with long-term prospective follow-up. The results from such trials will enhance the understanding of therapy outcomes and improve our ability to inform patients.

  7. Patterns of Radiotherapy Practice for Patients With Cervical Cancer (1999-2001): Patterns of Care Study in Japan

    SciTech Connect

    Toita, Takafumi Kodaira, Takeshi; Shinoda, Atsunori; Uno, Takashi; Akino, Yuichi; Mitsumori, Michihide; Teshima, Teruki

    2008-03-01

    Purpose: To describe the patterns of definitive radiotherapy practice for patients with uterine cervical cancer from 1999 to 2001 in Japan. Methods and Materials: The Japanese Patterns of Care Study (JPCS) working group conducted a third extramural audit survey of 68 institutions and collected specific information on 324 cervical cancer patients treated with definitive radiotherapy. Results: Almost all patients (96%) were treated with whole pelvic radiotherapy using opposing anteroposterior fields (87%). A midline block was used in 70% of the patients. Intracavitary brachytherapy (ICBT) was applied in 82% of cases. Most patients (89%) were treated with high-dose rate (HDR) ICBT. Calculation of doses to organs at risk (ICRU 38) was performed for rectum in 25% of cases and for bladder in 18% of cases. Only 3% of patients were given intravenous conscious sedation during ICBT applicator insertions. The median total biologically effective dose at point A (EBRT+ICBT) was 74 Gy{sub 10} in cases treated with HDR-ICBT. There was no significant difference in total biologically effective dose between stages. The median overall treatment time was 47 days. Concurrent chemoradiation was applied in 17% of patients. Conclusions: This study describes the general patterns of radiotherapy practice for uterine cervical cancer in Japan. Although methods of external radiotherapy seemed to be appropriate, there was room for improvement in ICBT practice, such as pretreatment. A substantial difference in total radiotherapy dose between Japan and the United States was observed.

  8. Spinal Cord Tolerance for Stereotactic Body Radiotherapy

    SciTech Connect

    Sahgal, Arjun; Ma Lijun; Gibbs, Iris; Gerszten, Peter C.; Ryu, Sam; Soltys, Scott; Weinberg, Vivian; Wong Shun; Chang, Eric; Fowler, Jack; Larson, David A.

    2010-06-01

    Purpose: Dosimetric data are reported for five cases of radiation-induced myelopathy after stereotactic body radiotherapy (SBRT) to spinal tumors. Analysis per the biologically effective dose (BED) model was performed. Methods and Materials: Five patients with radiation myelopathy were compared to a subset of 19 patients with no radiation myelopathy post-SBRT. In all patients, the thecal sac was contoured to represent the spinal cord, and doses to the maximum point, 0.1-, 1-, 2-, and 5-cc volumes, were analyzed. The mean normalized 2-Gy-equivalent BEDs (nBEDs), calculated using an alpha/beta value of 2 for late toxicity with units Gy 2/2, were compared using the t test and analysis of variance test. Results: Radiation myelopathy was observed at the maximum point with doses of 25.6 Gy in two fractions, 30.9 Gy in three fractions, and 14.8, 13.1, and 10.6 Gy in one fraction. Overall, there was a significant interaction between patient subsets and volume based on the nBED (p = 0.0003). Given individual volumes, a significant difference was observed for the mean maximum point nBED (p = 0.01). Conclusions: The maximum point dose should be respected for spine SBRT. For single-fraction SBRT 10 Gy to a maximum point is safe, and up to five fractions an nBED of 30 to 35 Gy 2/2 to the thecal sac also poses a low risk of radiation myelopathy.

  9. Adapting radiotherapy to hypoxic tumours

    NASA Astrophysics Data System (ADS)

    Malinen, Eirik; Søvik, Åste; Hristov, Dimitre; Bruland, Øyvind S.; Rune Olsen, Dag

    2006-10-01

    In the current work, the concepts of biologically adapted radiotherapy of hypoxic tumours in a framework encompassing functional tumour imaging, tumour control predictions, inverse treatment planning and intensity modulated radiotherapy (IMRT) were presented. Dynamic contrast enhanced magnetic resonance imaging (DCEMRI) of a spontaneous sarcoma in the nasal region of a dog was employed. The tracer concentration in the tumour was assumed related to the oxygen tension and compared to Eppendorf histograph measurements. Based on the pO2-related images derived from the MR analysis, the tumour was divided into four compartments by a segmentation procedure. DICOM structure sets for IMRT planning could be derived thereof. In order to display the possible advantages of non-uniform tumour doses, dose redistribution among the four tumour compartments was introduced. The dose redistribution was constrained by keeping the average dose to the tumour equal to a conventional target dose. The compartmental doses yielding optimum tumour control probability (TCP) were used as input in an inverse planning system, where the planning basis was the pO2-related tumour images from the MR analysis. Uniform (conventional) and non-uniform IMRT plans were scored both physically and biologically. The consequences of random and systematic errors in the compartmental images were evaluated. The normalized frequency distributions of the tracer concentration and the pO2 Eppendorf measurements were not significantly different. 28% of the tumour had, according to the MR analysis, pO2 values of less than 5 mm Hg. The optimum TCP following a non-uniform dose prescription was about four times higher than that following a uniform dose prescription. The non-uniform IMRT dose distribution resulting from the inverse planning gave a three times higher TCP than that of the uniform distribution. The TCP and the dose-based plan quality depended on IMRT parameters defined in the inverse planning procedure (fields

  10. Case study thoracic radiotherapy in an elderly patient with pacemaker: The issue of pacing leads

    SciTech Connect

    Kirova, Youlia M.; Menard, Jean; Chargari, Cyrus; Mazal, Alejandro; Kirov, Krassen

    2012-07-01

    To assess clinical outcome of patients with pacemaker treated with thoracic radiation therapy for T8-T9 paravertebral chloroma. A 92-year-old male patient with chloroma presenting as paravertebral painful and compressive (T8-T9) mass was referred for radiotherapy in the Department of Radiation Oncology, Institut Curie. The patient presented with cardiac dysfunction and a permanent pacemaker that had been implanted prior. The decision of Multidisciplinary Meeting was to deliver 30 Gy in 10 fractions for reducing the symptoms and controlling the tumor growth. The patient received a total dose of 30 Gy in 10 fractions using 4-field conformal radiotherapy with 20-MV photons. The dose to pacemaker was 0.1 Gy but a part of the pacing leads was in the irradiation fields. The patient was treated the first time in the presence of his radiation oncologist and an intensive care unit doctor. Moreover, the function of his pacemaker was monitored during the entire radiotherapy course. No change in pacemaker function was observed during any of the radiotherapy fractions. The radiotherapy was very well tolerated without any side effects. The function of the pacemaker was checked before and after the radiotherapy treatment by the cardiologist and no pacemaker dysfunction was observed. Although updated guidelines are needed with acceptable dose criteria for implantable cardiac devices, it is possible to treat patients with these devices and parts encroaching on the radiation field. This case report shows we were able to safely treat our patient through a multidisciplinary approach, monitoring the patient during each step of the treatment.

  11. Radiotherapy Treatment Planning for Testicular Seminoma

    SciTech Connect

    Wilder, Richard B.; Buyyounouski, Mark K.; Efstathiou, Jason A.; Beard, Clair J.

    2012-07-15

    Virtually all patients with Stage I testicular seminoma are cured regardless of postorchiectomy management. For patients treated with adjuvant radiotherapy, late toxicity is a major concern. However, toxicity may be limited by radiotherapy techniques that minimize radiation exposure of healthy normal tissues. This article is an evidence-based review that provides radiotherapy treatment planning recommendations for testicular seminoma. The minority of Stage I patients who choose adjuvant treatment over surveillance may be considered for (1) para-aortic irradiation to 20 Gy in 10 fractions, or (2) carboplatin chemotherapy consisting of area under the curve, AUC = 7 Multiplication-Sign 1-2 cycles. Two-dimensional radiotherapy based on bony anatomy is a simple and effective treatment for Stage IIA or IIB testicular seminoma. Centers with expertise in vascular and nodal anatomy may consider use of anteroposterior-posteroanterior fields based on three-dimensional conformal radiotherapy instead. For modified dog-leg fields delivering 20 Gy in 10 fractions, clinical studies support placement of the inferior border at the top of the acetabulum. Clinical and nodal mapping studies support placement of the superior border of all radiotherapy fields at the top of the T12 vertebral body. For Stage IIA and IIB patients, an anteroposterior-posteroanterior boost is then delivered to the adenopathy with a 2-cm margin to the block edge. The boost dose consists of 10 Gy in 5 fractions for Stage IIA and 16 Gy in 8 fractions for Stage IIB. Alternatively, bleomycin, etoposide, and cisplatin chemotherapy for 3 cycles or etoposide and cisplatin chemotherapy for 4 cycles may be delivered to Stage IIA or IIB patients (e.g., if they have a horseshoe kidney, inflammatory bowel disease, or a history of radiotherapy).

  12. [Needs and financing of radiotherapy in France and Europe].

    PubMed

    Defourny, N; Lievens, Y

    2016-10-01

    Access to high-quality and safe radiotherapy is a prerequisite to assure optimal oncology care in a multidisciplinary environment. In view of supporting long-term radiotherapy planning, actual and predicted radiotherapy needs should be put in context of the nowadays' available resources. The present article reviews the existing data on radiotherapy resources and needs, along with the prevailing reimbursement systems in the different European countries, with a specific emphasis on France. It describes potential incentives of different financing systems on clinical practice and highlights how knowledge of the cost of radiotherapy treatments, by indication and technique, is essential to support correct reimbursement, hence access to radiotherapy. It is expected that such data will help national professional and scientific radiotherapy societies across Europe in their negotiations with policy makers, with the ultimate aim to make radiotherapy accessible to all cancer patients who need it, now and in the decades to come.

  13. [Needs and financing of radiotherapy in France and Europe].

    PubMed

    Defourny, N; Lievens, Y

    2016-10-01

    Access to high-quality and safe radiotherapy is a prerequisite to assure optimal oncology care in a multidisciplinary environment. In view of supporting long-term radiotherapy planning, actual and predicted radiotherapy needs should be put in context of the nowadays' available resources. The present article reviews the existing data on radiotherapy resources and needs, along with the prevailing reimbursement systems in the different European countries, with a specific emphasis on France. It describes potential incentives of different financing systems on clinical practice and highlights how knowledge of the cost of radiotherapy treatments, by indication and technique, is essential to support correct reimbursement, hence access to radiotherapy. It is expected that such data will help national professional and scientific radiotherapy societies across Europe in their negotiations with policy makers, with the ultimate aim to make radiotherapy accessible to all cancer patients who need it, now and in the decades to come. PMID:27599682

  14. A systematic review of antiproton radiotherapy

    NASA Astrophysics Data System (ADS)

    Bittner, Martin-Immanuel; Grosu, Anca-Ligia; Wiedenmann, Nicole; Wilkens, Jan

    2014-01-01

    Antiprotons have been proposed as possible particles for radiotherapy; over the past years, the renewed interest in the potential biomedical relevance led to an increased research activity. It is the aim of this review to deliver a comprehensive overview regarding the evidence accumulated so far, analysing the background and depicting the current status of antiprotons in radiotherapy. A literature search has been conducted, including major scientific and commercial databases. All articles and a number of relevant conference abstracts published in the respective field have been included in this systematic review. The physical basis of antiproton radiotherapy is complex; however, the characterisation of the energy deposition profile supports its potential use in radiotherapy. Also the dosimetry improved considerably over the past few years. Regarding the biological properties, data on the effects on cells are presented; however, definite conclusions regarding the relative biological effectiveness cannot be made at the moment and radiobiological evidence of enhanced effectiveness remains scarce. In addition, there is new evidence supporting the potential imaging properties, for example for online dose verification. Clinical settings which might profit from the use of antiprotons have been further tracked. Judging from the evidence available so far, clinical constellations requiring optimal sparing in the entrance region of the beam and re-irradiations might profit most from antiproton radiotherapy. While several open questions remain to be answered, first steps towards a thorough characterisation of this interesting modality have been made.

  15. A systematic review of antiproton radiotherapy

    NASA Astrophysics Data System (ADS)

    Bittner, Martin-Immanuel; Grosu, Anca-Ligia; Wiedenmann, Nicole; Wilkens, Jan

    2013-01-01

    Antiprotons have been proposed as possible particles for radiotherapy; over the past years, the renewed interest in the potential biomedical relevance led to an increased research activity. It is the aim of this review to deliver a comprehensive overview regarding the evidence accumulated so far, analysing the background and depicting the current status of antiprotons in radiotherapy. A literature search has been conducted, including major scientific and commercial databases. All articles and a number of relevant conference abstracts published in the respective field have been included in this systematic review. The physical basis of antiproton radiotherapy is complex; however, the characterisation of the energy deposition profile supports its potential use in radiotherapy. Also the dosimetry improved considerably over the past few years. Regarding the biological properties, data on the effects on cells are presented; however, definite conclusions regarding the relative biological effectiveness cannot be made at the moment and radiobiological evidence of enhanced effectiveness remains scarce. In addition, there is new evidence supporting the potential imaging properties, for example for online dose verification. Clinical settings which might profit from the use of antiprotons have been further tracked. Judging from the evidence available so far, clinical constellations requiring optimal sparing in the entrance region of the beam and re-irradiations might profit most from antiproton radiotherapy. While several open questions remain to be answered, first steps towards a thorough characterisation of this interesting modality have been made.

  16. Dosimetric Comparison Between 3-Dimensional Conformal and Robotic SBRT Treatment Plans for Accelerated Partial Breast Radiotherapy.

    PubMed

    Goggin, L M; Descovich, M; McGuinness, C; Shiao, S; Pouliot, J; Park, C

    2016-06-01

    treatment times and 50% lower number of delivered monitor units (MU) were achievable with CyberKnife-multi-leaf collimator than with CyberKnife-Iris. The CyberKnife-multi-leaf collimator treatment times were comparable to 3-dimensional conformal radiotherapy, however, the number of MU delivered was approximately 2.5 times larger. The suitability of 10 + 2 mm margins warrants further investigation. PMID:26335703

  17. [Image-guided radiotherapy and partial delegation to radiotherapy technicians: Clermont-Ferrand experience].

    PubMed

    Loos, G; Moreau, J; Miroir, J; Benhaïm, C; Biau, J; Caillé, C; Bellière, A; Lapeyre, M

    2013-10-01

    The various image-guided radiotherapy techniques raise the question of how to achieve the control of patient positioning before irradiation session and sharing of tasks between radiation oncologists and radiotherapy technicians. We have put in place procedures and operating methods to make a partial delegation of tasks to radiotherapy technicians and secure the process in three situations: control by orthogonal kV imaging (kV-kV) of bony landmarks, control by kV-kV imaging of intraprostatic fiducial goldmarkers and control by cone beam CT (CBCT) imaging for prostate cancer. Significant medical overtime is required to control these three IGRT techniques. Because of their competence in imaging, these daily controls can be delegated to radiotherapy technicians. However, to secure the process, initial training and regular evaluation are essential. The analysis of the comparison of the use of kV/kV on bone structures allowed us to achieve a partial delegation of control to radiotherapy technicians. Controlling the positioning of the prostate through the use and automatic registration of fiducial goldmarkers allows better tracking of the prostate and can be easily delegated to radiotherapy technicians. The analysis of the use of daily cone beam CT for patients treated with intensity modulated irradiation is underway, and a comparison of practices between radiotherapy technicians and radiation oncologists is ongoing to know if a partial delegation of this control is possible. PMID:24011600

  18. A dose comparison of proton radiotherapy and photon radiotherapy for pediatric brain tumor

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Cho, J. H.

    2014-12-01

    The purpose of this study was to investigate the effectiveness of photon radiotherapy and to compare the dose of treatment planning between proton radiotherapy and 3D conformal radiation therapy (3D-CRT) for pediatric brain tumor patients. This study was conducted in five pediatric brain tumor patients who underwent craniospinal irradiation treatment from October 2013 to April 2014 in the hospital. The study compared organs at risk (OARs) by assessing the dose distribution of normal tissue from the proton plan and 3D-CRT. Furthermore, this study assessed the treatment plans by looking at the homogeneity index (HI) and conformity index (CI). As a result, the study revealed OARs due to the small volume proton radiotherapy dose distribution in the normal tissue. Also, by comparing HI and CI between the 3D-CRT and proton radiotherapy plan, the study found that the dose of proton radiotherapy plan was homogenized. When conducting 3D-CRT and proton radiotherapy in a dose-volume histogram comparison, the dose of distribution turned out to be low. Consequently, proton radiotherapy is used for protecting the normal tissue, and is used in tumor tissue as a homogenized dose for effective treatment.

  19. A Fortran program for fast and compact processing of clinical radiotherapy data.

    PubMed

    Coles, I P; Dale, R G

    1984-01-01

    A set of Fortran IV programs have been developed to enable a patient registry to operate on a minicomputer of a type frequently used for treatment planning within radiotherapy departments. The system is both comprehensive and flexible, allowing the efficient storage of clinical data in the form of coded units. The coding format used enables inexperienced operators to enter, or extract data from the system with the minimum of keyboard operations.

  20. Time delays in gated radiotherapy.

    PubMed

    Smith, Wendy L; Becker, Nathan

    2009-07-28

    In gated radiotherapy, the accuracy of treatment delivery is determined by the accuracy with which both the imaging and treatment beams are gated. If the time delays (the time between the target entering/leaving the gated region and the first/last image acquired or treatment beam on/off) for the imaging and treatment systems are in the opposite directions, they may increase the required internal target volume (ITV) margin, above that indicated by the tolerance for either system measured individually. We measured a gating system's time delay on 3 fluoroscopy systems, and 3 linear accelerator treatment beams, using a motion phantom of known geometry, varying gating type (amplitude vs. phase), beam energy, dose rate, and period. The average beam on imaging time delays were -0.04 +/- 0.05 s (amplitude, 1 SD), -0.11 +/- 0.04 s (phase); while the average beam off imaging time delays were -0.18 +/- 0.08 s (amplitude) and -0.15 +/- 0.04 s (phase). The average beam on treatment time delays were 0.09 +/- 0.02 s (amplitude, 1 SD), 0.10 +/- 0.03 s (phase); while the average beam off time delays for treatment beams were 0.08 +/- 0.02 s (amplitude) and 0.07 +/- 0.02 s (phase). The negative value indicates the images were acquired early, and the positive values show the treatment beam was triggered late. We present a technique for calculating the margin necessary to account for time delays and found that the difference between the imaging and treatment time delays required a significant increase in the ITV margin in the direction of tumor motion at the gated level.

  1. Operations experience at the Bevalac radiotherapy facility

    SciTech Connect

    Alonso, J.R.; Criswell, T.L.; Howard, J.; Chu, W.T.; Singh, R.P.; Geller, D.; Nyman, M.

    1981-03-01

    During the first years of Bevalac operation the biomedical effort concentrated on radiobiology work, laying the foundation for patient radiotherapy. A dedicated radiotherapy area was created in 1978, and in 1979 full-scale patient treatment was begun. As of now over 500 treatments with carbon, neon and argon beams have been delivered to about 50 patients, some as boosts from other modalities and some as complete heavy ion treatments. Up to 12 patients per day have been treated in this facility. Continuing efforts in refining techniques and operating procedures are increasing efficiency and accuracy of treatments, and are contributing to the alleviation of scheduling difficulties caused by the unique requirements of radiotherapy with human patients.

  2. Radiotherapy enhances the toxicity of aminoglutethimide

    SciTech Connect

    Vanek, N.; Hortobagyi, G.N.; Buzdar, A.U. )

    1990-01-01

    We report a case of radiotherapy-enhanced aminoglutethimide skin toxicity in a patient with metastatic breast cancer. This patient was started on aminoglutethimide 6 days prior to radiation therapy, for painful bone metastasis. On day 7 of radiation therapy, she developed an extensive erythematous maculopapular rash over her face, trunk, and extremities. The rash was confluent over the radiation ports, both anteriorly and posteriorly. Aminoglutethimide was discontinued until completion of radiotherapy, and the rash resolved. Concomitant irradiation apparently enhanced the skin toxicity of aminoglutethimide or possibly aminoglutethimide had a radiosensitizing role in this patient.

  3. Pelvic radiotherapy and sexual function in women

    PubMed Central

    Froeding, Ligita Paskeviciute

    2015-01-01

    Background During the past decade there has been considerable progress in developing new radiation methods for cancer treatment. Pelvic radiotherapy constitutes the primary or (neo) adjuvant treatment of many pelvic cancers e.g., locally advanced cervical and rectal cancer. There is an increasing focus on late effects and an increasing awareness that patient reported outcomes (PROs) i.e., patient assessment of physical, social, psychological, and sexual functioning provides the most valid information on the effects of cancer treatment. Following cure of cancer allow survivors focus on quality of life (QOL) issues; sexual functioning has proved to be one of the most important aspects of concern in long-term survivors. Methods An updated literature search in PubMed was performed on pelvic radiotherapy and female sexual functioning/dysfunction. Studies on gynaecological, urological and gastrointestinal cancers were included. The focus was on the period from 2010 to 2014, on studies using PROs, on potential randomized controlled trials (RCTs) where female sexual dysfunction (FSD) at least constituted a secondary outcome, and on studies reporting from modern radiotherapy modalities. Results The literature search revealed a few RCTs with FSD evaluated as a PRO and being a secondary outcome measure in endometrial and in rectal cancer patients. Very limited information could be extracted regarding FSD in bladder, vulva, and anal cancer patients. The literature before and after 2010 confirms that pelvic radiotherapy, independent on modality, increases the risk significantly for FSD both compared to data from age-matched healthy control women and compared to data on patients treated by surgery only. There was only very limited data available on modern radiotherapy modalities. These are awaited during the next five years. Several newer studies confirm that health care professionals are still reluctant to discuss treatment induced sexual dysfunction with patients. Conclusions

  4. Volumetric-modulated arc radiotherapy for pancreatic malignancies: Dosimetric comparison with sliding-window intensity-modulated radiotherapy and 3-dimensional conformal radiotherapy

    SciTech Connect

    Nabavizadeh, Nima Simeonova, Anna O.; Waller, Joseph G.; Romer, Jeanna L.; Monaco, Debra L.; Elliott, David A.; Tanyi, James A.; Fuss, Martin; Thomas, Charles R.; Holland, John M.

    2014-10-01

    Volumetric-modulated arc radiotherapy (VMAT) is an iteration of intensity-modulated radiotherapy (IMRT), both of which deliver highly conformal dose distributions. Studies have shown the superiority of VMAT and IMRT in comparison with 3-dimensional conformal radiotherapy (3D-CRT) in planning target volume (PTV) coverage and organs-at-risk (OARs) sparing. This is the first study examining the benefits of VMAT in pancreatic cancer for doses more than 55.8 Gy. A planning study comparing 3D-CRT, IMRT, and VMAT was performed in 20 patients with pancreatic cancer. Treatments were planned for a 25-fraction delivery of 45 Gy to a large field followed by a reduced-volume 8-fraction external beam boost to 59.4 Gy in total. OARs and PTV doses, conformality index (CI) deviations from 1.0, monitor units (MUs) delivered, and isodose volumes were compared. IMRT and VMAT CI deviations from 1.0 for the large-field and the boost plans were equivalent (large field: 0.032 and 0.046, respectively; boost: 0.042 and 0.037, respectively; p > 0.05 for all comparisons). Both IMRT and VMAT CI deviations from 1.0 were statistically superior to 3D-CRT (large field: 0.217, boost: 0.177; p < 0.05 for all comparisons). VMAT showed reduction of the mean dose to the boost PTV (VMAT: 61.4 Gy, IMRT: 62.4 Gy, and 3D-CRT: 62.3 Gy; p < 0.05). The mean number of MUs per fraction was significantly lower for VMAT for both the large-field and the boost plans. VMAT delivery time was less than 3 minutes compared with 8 minutes for IMRT. Although no statistically significant dose reduction to the OARs was identified when comparing VMAT with IMRT, VMAT showed a reduction in the volumes of the 100% isodose line for the large-field plans. Dose escalation to 59.4 Gy in pancreatic cancer is dosimetrically feasible with shorter treatment times, fewer MUs delivered, and comparable CIs for VMAT when compared with IMRT.

  5. Three-dimensional spatial and dosimetric characterization of radiotherapy beams using laser read-out of TLDs

    SciTech Connect

    Grupen-Shemansky, M.E.

    1989-01-01

    A fully automated thermoluminescent detector (TLD) read-out apparatus has been designed and constructed for the express purpose of extracting spatially resolved dosimetric information using localized IR laser phosphor stimulation. A composite TLD plate has been designed that withstands the thermal stresses developed during laser heating. This detector and unique read-out scheme may be used to spatially and dosimetrically characterize ionizing radiation fields. The thermal response of TL materials cannot be fully characterized experimentally due to the inability of modern measuring techniques to accurately record the rapidly changing temperatures. Two-dimensional, time transient models have been derived to determine radial and axial temperature profiles in a TL layer when a 4 W CO{sub 2} focused or unfocused Gaussian laser beam is used to heat a single or multiple spots. Numerically derived temperature profiles were then used in a first-order kinetic model for the thermoluminescent emission. The experimental laser heated TLD read-out apparatus was used to image a {sup 60}Co radiotherapy beam. A 2.2 cm by 3.3 cm LiF detector was used to image the penumbra of a 5 cm by 5 cm collimated field of a Theratron-80. Qualitative and quantitative results agreed well with accepted beam depth dose profiles measured with ionization chambers in water bath phantoms.

  6. Development of silicon monolithic arrays for dosimetry in external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Bisello, Francesca; Menichelli, David; Scaringella, Monica; Talamonti, Cinzia; Zani, Margherita; Bucciolini, Marta; Bruzzi, Mara

    2015-10-01

    New tools for dosimetry in external beam radiotherapy have been developed during last years in the framework of the collaboration among the University of Florence, INFN Florence and IBA Dosimetry. The first step (in 2007) was the introduction in dosimetry of detector solutions adopted from high energy physics, namely epitaxial silicon as the base detector material and a guard ring in diode design. This allowed obtaining state of the art radiation hardness, in terms of sensitivity dependence on accumulated dose, with sensor geometry particularly suitable for the production of monolithic arrays with modular design. Following this study, a 2D monolithic array has been developed, based on 6.3×6.3 cm2 modules with 3 mm pixel pitch. This prototype has been widely investigated and turned out to be a promising tool to measure dose distributions of small and IMRT fields. A further linear array prototype has been recently design with improve spatial resolution (1 mm pitch) and radiation hardness. This 24 cm long device is constituted by 4×64 mm long modules. It features low sensitivity changes with dose (0.2%/kGy) and dose per pulse (±1% in the range 0.1-2.3 mGy/pulse, covering applications with flattened and unflattened photon fields). The detector has been tested with very satisfactory results as a tool for quality assurance of linear accelerators, with special regards to small fields, and proton pencil beams. In this contribution, the characterization of the linear array with unflattened MV X-rays, 60Co radiation and 226 MeV protons is reported.

  7. Monte Carlo evaluations of the absorbed dose and quality dependence of Al{sub 2}O{sub 3} in radiotherapy photon beams

    SciTech Connect

    Chen Shaowen; Wang Xuetao; Chen Lixin; Tang Qiang; Liu Xiaowei

    2009-10-15

    Purpose: The purpose of this work was to evaluate the absorbed dose to Al{sub 2}O{sub 3} dosimeter at various depths of water phantom in radiotherapy photon beams by Monte Carlo simulation and evaluate the beam quality dependence. Methods: The simulations were done using EGSnrc. The cylindrical Al{sub 2}O{sub 3} dosimeter ({Phi}4 mmx1 mm) was placed at the central axis of the water phantom ({Phi}16 cmx16 cm) at depths between 0.5 and 8 cm. The incident beams included monoenergetic photon beams ranging from 1 to 18 MeV, {sup 60}Co {gamma} beams, Varian 6 MV beams using phase space files based on a full simulation of the linac, and Varian beams between 4 and 24 MV using Mohan's spectra. The absorbed dose to the dosimeter and the water at the corresponding position in the absence of the dosimeter, as well as absorbed dose ratio factor f{sub md}, was calculated. Results: The results show that f{sub md} depends obviously on the photon energy at the shallow depths. However, as the depth increases, the change in f{sub md} becomes small, beyond the buildup region, the maximum discrepancy of f{sub md} to the average value is not more than 1%. Conclusions: These simulation results confirm the use of Al{sub 2}O{sub 3} dosimeter in radiotherapy photon beams and clearly indicate that more attention should be paid when using such a dosimeter in the buildup region of high-energy radiotherapy photon beams.

  8. Radiotherapy in the management of early breast cancer

    SciTech Connect

    Wang, Wei

    2013-03-15

    Radiotherapy is an indispensible part of the management of all stages of breast cancer. In this article, the common indications for radiotherapy in the management of early breast cancer (stages 0, I, and II) are reviewed, including whole-breast radiotherapy as part of breast-conserving treatment for early invasive breast cancer and pre-invasive disease of ductal carcinoma in situ, post-mastectomy radiotherapy, locoregional radiotherapy, and partial breast irradiation. Key clinical studies that underpin our current practice are discussed briefly.

  9. Bladder Preservation for Localized Muscle-Invasive Bladder Cancer: The Survival Impact of Local Utilization Rates of Definitive Radiotherapy

    SciTech Connect

    Kozak, Kevin R.; Hamidi, Maryam; Manning, Matthew; Moody, John S.

    2012-06-01

    Purpose: This study examines the management and outcomes of muscle-invasive bladder cancer in the United States. Methods and Materials: Patients with muscle-invasive bladder cancer diagnosed between 1988 and 2006 were identified in the Surveillance, Epidemiology, and End Results (SEER) database. Patients were classified according to three mutually exclusive treatment categories based on the primary initial treatment: no local management, radiotherapy, or surgery. Overall survival was assessed with Kaplan-Meier analysis and Cox models based on multiple factors including treatment utilization patterns. Results: The study population consisted of 26,851 patients. Age, sex, race, tumor grade, histology, and geographic location were associated with differences in treatment (all p < 0.01). Patients receiving definitive radiotherapy tended to be older and have less differentiated tumors than patients undergoing surgery (RT, median age 78 years old and 90.6% grade 3/4 tumors; surgery, median age 71 years old and 77.1% grade 3/4 tumors). No large shifts in treatment were seen over time, with most patients managed with surgical resection (86.3% for overall study population). Significant survival differences were observed according to initial treatment: median survival, 14 months with no definitive local treatment; 17 months with radiotherapy; and 43 months for surgery. On multivariate analysis, differences in local utilization rates of definitive radiotherapy did not demonstrate a significant effect on overall survival (hazard ratio, 1.002; 95% confidence interval, 0.999-1.005). Conclusions: Multiple factors influence the initial treatment strategy for muscle-invasive bladder cancer, but definitive radiotherapy continues to be used infrequently. Although patients who undergo surgery fare better, a multivariable model that accounted for patient and tumor characteristics found no survival detriment to the utilization of definitive radiotherapy. These results support continued

  10. Clinical development of new drug-radiotherapy combinations.

    PubMed

    Sharma, Ricky A; Plummer, Ruth; Stock, Julie K; Greenhalgh, Tessa A; Ataman, Ozlem; Kelly, Stephen; Clay, Robert; Adams, Richard A; Baird, Richard D; Billingham, Lucinda; Brown, Sarah R; Buckland, Sean; Bulbeck, Helen; Chalmers, Anthony J; Clack, Glen; Cranston, Aaron N; Damstrup, Lars; Ferraldeschi, Roberta; Forster, Martin D; Golec, Julian; Hagan, Russell M; Hall, Emma; Hanauske, Axel-R; Harrington, Kevin J; Haswell, Tom; Hawkins, Maria A; Illidge, Tim; Jones, Hazel; Kennedy, Andrew S; McDonald, Fiona; Melcher, Thorsten; O'Connor, James P B; Pollard, John R; Saunders, Mark P; Sebag-Montefiore, David; Smitt, Melanie; Staffurth, John; Stratford, Ian J; Wedge, Stephen R

    2016-10-01

    In countries with the best cancer outcomes, approximately 60% of patients receive radiotherapy as part of their treatment, which is one of the most cost-effective cancer treatments. Notably, around 40% of cancer cures include the use of radiotherapy, either as a single modality or combined with other treatments. Radiotherapy can provide enormous benefit to patients with cancer. In the past decade, significant technical advances, such as image-guided radiotherapy, intensity-modulated radiotherapy, stereotactic radiotherapy, and proton therapy enable higher doses of radiotherapy to be delivered to the tumour with significantly lower doses to normal surrounding tissues. However, apart from the combination of traditional cytotoxic chemotherapy with radiotherapy, little progress has been made in identifying and defining optimal targeted therapy and radiotherapy combinations to improve the efficacy of cancer treatment. The National Cancer Research Institute Clinical and Translational Radiotherapy Research Working Group (CTRad) formed a Joint Working Group with representatives from academia, industry, patient groups and regulatory bodies to address this lack of progress and to publish recommendations for future clinical research. Herein, we highlight the Working Group's consensus recommendations to increase the number of novel drugs being successfully registered in combination with radiotherapy to improve clinical outcomes for patients with cancer. PMID:27245279

  11. Breast Cancer Patients’ Experience of External-Beam Radiotherapy

    PubMed Central

    Schnur, Julie B.; Ouellette, Suzanne C.; Bovbjerg, Dana H.; Montgomery, Guy H.

    2013-01-01

    Radiotherapy is a critical component of treatment for the majority of women with breast cancer, particularly those who receive breast conserving surgery. Although medically beneficial, radiotherapy can take a physical and psychological toll on patients. However, little is known about the specific thoughts and feelings experienced by women undergoing breast cancer radiotherapy. Therefore, the study aim was to use qualitative research methods to develop an understanding of these thoughts and feelings based on 180 diary entries, completed during radiotherapy by 15 women with Stage 0-III breast cancer. Thematic analysis identified four primary participant concerns: (a) a preoccupation with time; (b) fantasies (both optimistic and pessimistic) about life following radiotherapy; (c) the toll their side-effect experience takes on their self-esteem; and (d) feeling mystified by radiotherapy. These themes are consistent with previous literature on illness and identity. These findings have implications for the treatment and care of women undergoing breast cancer radiotherapy. PMID:19380502

  12. Results of radiotherapy for Peyronie's disease

    SciTech Connect

    Niewald, Marcus . E-mail: ramnie@uniklinikum-saarland.de; Wenzlawowicz, Knut v.; Fleckenstein, Jochen; Wisser, Lothar; Derouet, Harry; Ruebe, Christian

    2006-01-01

    Purpose: To retrospectively review the results of radiotherapy for Peyronie's disease. Patients and Methods: In the time interval 1983-2000, 154 patients in our clinic were irradiated for Peyronie's disease. Of those, 101 had at least one complete follow-up data set and are the subject of this study. In the majority of patients, penis deviation was between 30 and 50{sup o}, there were one or two indurated foci with a diameter between 5 and 15 mm. Pain was recorded in 48/92 patients. Seventy-two of the 101 patients received radiotherapy with a total dose of 30 Gy, and 25 received 36 Gy in daily fractions of 2.0 Gy. The remaining patients received the following dosage: 34 Gy (1 patient), 38-40 Gy (3 patients). Mean duration of follow-up was 5 years. Results: The best results ever at any time during follow-up were an improvement of deviation in 47%, reduction of number of foci in 32%, reduction of size of foci in 49%, and less induration in 52%. Approximately 50% reported pain relief after radiotherapy. There were 28 patients with mild acute dermatitis and only 4 patients with mild urethritis. There were no long-term side effects. Conclusion: Our results compare well with those of other studies in the literature. In our patient cohort, radiotherapy was an effective therapy option with only very rare and mild side effects.

  13. Radiotherapy reduces sialorrhea in amyotrophic lateral sclerosis.

    PubMed

    Neppelberg, E; Haugen, D F; Thorsen, L; Tysnes, O-B

    2007-12-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder. Sialorrhea is a frequent problem in ALS patients with bulbar symptoms, because of progressive weakness of oral, lingual and pharyngeal muscles. This prospective study aimed to investigate the putative effect of palliative single-dose radiotherapy on problematic sialorrhea in patients with ALS. Twenty patients with ALS and problematic drooling were included; 14 were given radiotherapy with a single fraction of 7.5 Grey (Gy). Five patients were treated with botulinum toxin A (BTX-A) injections (20 U) into the parotid glands; two of these were later given radiotherapy. Symptom assessment, clinical examination and measurements of salivary flow (ml/min) were performed before and after treatment (1-2 weeks, 3 months). Salivary secretion was significantly reduced after radiation treatment, with a mean reduction of 60% (1 week) and 51% (2 weeks). Three months post-treatment, 21% reduction of the salivary secretion was observed compared with salivation before treatment. Mean salivary flow was not reduced after BTX-A treatment in five patients. No serious side-effects were observed with either of the two treatment modalities. Single-dose radiotherapy (7.5 Gy) significantly reduces sialorrhea and is an effective and safe palliative treatment in patients with ALS.

  14. Prostate cancer radiotherapy 2002: the way forward.

    PubMed

    Lukka, Himu; Pickles, Tom; Morton, Gerard; Catton, Charles; Souhami, Luis; Warde, Padraig

    2005-02-01

    In November 2000, the GU Radiation Oncologists of Canada had their first meeting, "Controversies in prostate cancer radiotherapy: consensus development". The success of this meeting prompted a second meeting, held in December 2002 to discuss "The Way Forward" in prostate radiotherapy. Radiation oncologists from across Canada were brought together and integrated with key opinion leaders in prostate cancer treatment from throughout North America. The group debated current controversies including: intensity modulated radiotherapy (IMRT), external beam hypofractionation, high dose-rate brachytherapy, and hormone therapy in the management of prostate cancer. The meeting also sought to identify and prioritize clinical trial opportunities and to highlight steps required to achieve these research goals. In summary, advances involving IMRT have enabled the use of higher radiation doses without increasing morbidity. With renewed interest in hypofractionated radiation schedules, the value of hypofractionation using IMRT was discussed and initial results from ongoing clinical trials were presented. The emerging role for high dose-rate brachytherapy in higher risk patients was also discussed. Based on existing preliminary evidence the group expressed enthusiasm for further investigation of the role for brachytherapy in intermediate to high-risk patients. Despite significant advances in radiotherapy, hormone therapy continues to play an important role in prostate cancer treatment for patients with intermediate and high-risk disease. Although evidence supports the effectiveness of hormone therapy, the optimal timing, and duration of hormonal treatment are unclear. Results from ongoing clinical trials will provide insight into these questions and will assist in the design of future clinical trials.

  15. The Role of Radiotherapy in Acromegaly.

    PubMed

    Hannon, Mark J; Barkan, Ariel L; Drake, William M

    2016-01-01

    Radiotherapy has, historically, played a central role in the management of acromegaly, and the last 30 years have seen substantial improvements in the technology used in the delivery of radiation therapy. More recently, the introduction of highly targeted radiotherapy, or 'radiosurgery', has further increased the therapeutic options available in the management of secretory pituitary tumors. Despite these developments, improvements in primary surgical outcomes, an increase in the range and effectiveness of medical therapy options, and long-term safety concerns have combined to dictate that, although still deployed in selected cases, the use of radiotherapy in the management of acromegaly has declined steadily over the past 2 decades. In this article, we review some of the main studies that have documented the efficacy of pituitary radiotherapy on growth hormone hypersecretion and summarize the data around its potential deleterious effects, including hypopituitarism, cranial nerve damage, and the development of radiation-related intracerebral tumors. We also give practical recommendations to guide its future use in patients with acromegaly, generally, as a third-line intervention after neurosurgical intervention in combination with various medical therapy options.

  16. Assessment and Minimization of Contralateral Breast Dose for Conventional and Intensity Modulated Breast Radiotherapy

    SciTech Connect

    Burmeister, Jay Alvarado, Nicole; Way, Sarah; McDermott, Patrick; Bossenberger, Todd; Jaenisch, Harriett; Patel, Rajiv; Washington, Tara

    2008-04-01

    Breast radiotherapy is associated with an increased risk of contralateral breast cancer (CBC) in women under age 45 at the time of treatment. This risk increases with increasing absorbed dose to the contralateral breast. The use of intensity modulated radiotherapy (IMRT) is expected to substantially reduce the dose to the contralateral breast by eliminating scattered radiation from physical beam modifiers. The absorbed dose to the contralateral breast was measured for 5 common radiotherapy techniques, including paired 15 deg. wedges, lateral 30 deg. wedge only, custom-designed physical compensators, aperture based (field-within-field) IMRT with segments chosen by the planner, and inverse planned IMRT with segments chosen by a leaf sequencing algorithm after dose volume histogram (DVH)-based fluence map optimization. Further reduction in contralateral breast dose through the use of lead shielding was also investigated. While shielding was observed to have the most profound impact on surface dose, the radiotherapy technique proved to be most important in determining internal dose. Paired wedges or compensators result in the highest contralateral breast doses (nearly 10% of the prescription dose on the medial surface), while use of IMRT or removal of the medial wedge results in significantly lower doses. Aperture-based IMRT results in the lowest internal doses, primarily due to the decrease in the number of monitor units required and the associated reduction in leakage dose. The use of aperture-based IMRT reduced the average dose to the contralateral breast by greater than 50% in comparison to wedges or compensators. Combined use of IMRT and 1/8-inch-thick lead shielding reduced the dose to the interior and surface of the contralateral breast by roughly 60% and 85%, respectively. This reduction may warrant the use of IMRT for younger patients who have a statistically significant risk of contralateral breast cancer associated with breast radiotherapy.

  17. On effective dose for radiotherapy based on doses to nontarget organs and tissues

    SciTech Connect

    Uselmann, Adam J. Thomadsen, Bruce R.

    2015-02-15

    Purpose: The National Council for Radiation Protection and Measurement (NCRP) published estimates for the collective population dose and the mean effective dose to the population of the United States from medical imaging procedures for 1980/1982 and for 2006. The earlier report ignored the effective dose from radiotherapy and the latter gave a cursory discussion of the topic but again did not include it in the population exposure for various reasons. This paper explains the methodology used to calculate the effective dose in due to radiotherapy procedures in the latter NCRP report and revises the values based on more detailed modeling. Methods: This study calculated the dose to nontarget organs from radiotherapy for reference populations using CT images and published peripheral dose data. Results: Using International Commission on Radiological Protection (ICRP) 60 weighting factors, the total effective dose to nontarget organs in radiotherapy patients is estimated as 298 ± 194 mSv per patient, while the U.S. population effective dose is 0.939 ± 0.610 mSv per person, with a collective dose of 283 000 ± 184 000 person Sv per year. Using ICRP 103 weighting factors, the effective dose is 281 ± 183 mSv per patient, 0.887 ± 0.577 mSv per person in the U.S., and 268 000 ± 174 000 person Sv per year. The uncertainty in the calculations is largely governed by variations in patient size, which was accounted for by considering a range of patient sizes and taking the average treatment site to nontarget organ distance. Conclusions: The methods used to estimate the effective doses from radiotherapy used in NCRP Report No. 160 have been explained and the values updated.

  18. Radiotherapy infrastructure and human resources in Europe - present status and its implications for 2020.

    PubMed

    Datta, Niloy Ranjan; Samiei, Massoud; Bodis, Stephan

    2014-10-01

    Radiotherapy (RT) is required for nearly half of the newly diagnosed cancer patients. To optimise the quality and availability of RT, guidelines have been proposed by European Society for Radiotherapy and Oncology-QUAntification of Radiation Therapy Infrastructure And Staffing Needs (ESTRO-QUARTS) and the International Atomic Energy Agency (IAEA). This study evaluates the present status of RT capacity in Europe and the projected needs by 2020 as per these recommendations. Thirty-nine of the 53 countries, listed in Europe by the UN Statistical Division, whose cancer incidences, teletherapy and human resources were available in the Global Cancer Incidence, Mortality and Prevalence (GLOBOCAN), International Agency for Research on Cancer (IARC) and DIrectory of RAdiotherapy Centres (DIRAC) (IAEA) databases were evaluated. A total of 3550 teletherapy units (TRT), 7017 radiation oncologists (RO), 3685 medical physicists (MP) and 12,788 radiotherapy technologists (RTT) are presently available for the 3.44 million new cancer cases reported annually in these countries. The present infrastructure and human resources in RT are estimated to provide RT access to 74.3% of the patients requiring RT. The current capacity in TRT, RO, MP and RTT when compared with recommended guidelines has a deficit of 25.6%, 18.3%, 22.7% and 10.6%, respectively. Thus, to respond to requirements by 2020, the existing capacity needs to be augmented by an additional 1698 TRTs, 2429 ROs, 1563 MPs and 2956 RTTs. With an imminent rise in cancer incidence, multifaceted strategic planning at national and international levels within a coordinated comprehensive cancer control programme is highly desirable to give adequate access to all patients who require radiotherapy across Europe. Specific steps to address this issue at national and continental levels involving all major stakeholders are proposed.

  19. HERO (Health Economics in Radiation Oncology): a pan-European project on radiotherapy resources and needs.

    PubMed

    Lievens, Y; Dunscombe, P; Defourny, N; Gasparotto, C; Borras, J M; Grau, C

    2015-02-01

    Radiotherapy continues to evolve at a rapid rate in technology and techniques, with both driving up costs in an era in which health care budgets are of increasing concern at every governmental level. Against this background, it is clear that the radiotherapy community needs to quantify the costs of state of the art practice and then to justify those costs through rigorous cost-effectiveness analyses. The European Society for Radiotherapy and Oncology-Health Economics in Radiation Oncology project is directed towards tackling this issue in the European context. The first step has been to provide a validated picture of the European radiotherapy landscape in terms of the availability of equipment, personnel and guidelines. An 84-item questionnaire was distributed to the 40 countries of the European Cancer Observatory, of which 34 provided partial or complete responses. There was a huge variation in the availability and sophistication of treatment equipment and staffing levels across Europe. The median number of MV units per million inhabitants was 5.3, but there was a seven-fold variation across the European countries. Likewise, although average staffing figures per million inhabitants were 12.8 for radiation oncologists, 7.6 for physicists, 3.5 for dosimetrists, 26.6 for radiation therapists and 14.8 for nurses, there was a 20-fold variation, even after grouping personnel with comparable duties in the radiotherapy process. Guidelines for capital and human resources were declared for most countries, but without explicitly providing metrics for developing capital and human resource inventories in many cases. Although courses delivered annually per resource item – be it equipment or staff – increase with decreasing gross national income (GNI) per capita, differences were observed in equipment and staff availability in countries with a higher GNI/n, indicating that health policy has a significant effect on the provision of services. Although more needs to be done to

  20. HERO (Health Economics in Radiation Oncology): a pan-European project on radiotherapy resources and needs.

    PubMed

    Lievens, Y; Dunscombe, P; Defourny, N; Gasparotto, C; Borras, J M; Grau, C

    2015-02-01

    Radiotherapy continues to evolve at a rapid rate in technology and techniques, with both driving up costs in an era in which health care budgets are of increasing concern at every governmental level. Against this background, it is clear that the radiotherapy community needs to quantify the costs of state of the art practice and then to justify those costs through rigorous cost-effectiveness analyses. The European Society for Radiotherapy and Oncology-Health Economics in Radiation Oncology project is directed towards tackling this issue in the European context. The first step has been to provide a validated picture of the European radiotherapy landscape in terms of the availability of equipment, personnel and guidelines. An 84-item questionnaire was distributed to the 40 countries of the European Cancer Observatory, of which 34 provided partial or complete responses. There was a huge variation in the availability and sophistication of treatment equipment and staffing levels across Europe. The median number of MV units per million inhabitants was 5.3, but there was a seven-fold variation across the European countries. Likewise, although average staffing figures per million inhabitants were 12.8 for radiation oncologists, 7.6 for physicists, 3.5 for dosimetrists, 26.6 for radiation therapists and 14.8 for nurses, there was a 20-fold variation, even after grouping personnel with comparable duties in the radiotherapy process. Guidelines for capital and human resources were declared for most countries, but without explicitly providing metrics for developing capital and human resource inventories in many cases. Although courses delivered annually per resource item – be it equipment or staff – increase with decreasing gross national income (GNI) per capita, differences were observed in equipment and staff availability in countries with a higher GNI/n, indicating that health policy has a significant effect on the provision of services. Although more needs to be done to

  1. Technical advances in external radiotherapy for hepatocellular carcinoma

    PubMed Central

    Park, Shin-Hyung; Kim, Jae-Chul; Kang, Min Kyu

    2016-01-01

    Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy. PMID:27621577

  2. Evidence-based estimates of the demand for radiotherapy.

    PubMed

    Delaney, G P; Barton, M B

    2015-02-01

    There are different methods that may be used to estimate the future demand for radiotherapy services in a population ranging from expert opinion through to complex modelling techniques. This manuscript describes the use of evidence-based treatment guidelines to determine indications for radiotherapy. It also uses epidemiological data to estimate the proportion of the population who have attributes that suggest a benefit from radiotherapy in order to calculate the overall proportion of a population of new cases of cancer who appropriately could be recommended to undergo radiotherapy. Evidence-based methods are transparent and adaptable to different populations but require extensive information about the indications for radiotherapy and the proportion of cancer cases with those indications in the population. In 2003 this method produced an estimate that 52.4% of patients with a registered cancer-type had an indication for radiotherapy. The model was updated in 2012 because of changes in cancer incidence, stage distributions and indications for radiotherapy. The new estimate of the optimal radiotherapy utilisation rate was 48.3%. The decrease was due to changes in the relative frequency of cancer types and some changes in indications for radiotherapy. Actual rates of radiotherapy utilisation in most populations still fall well below this benchmark. PMID:25455408

  3. Technical advances in external radiotherapy for hepatocellular carcinoma

    PubMed Central

    Park, Shin-Hyung; Kim, Jae-Chul; Kang, Min Kyu

    2016-01-01

    Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy.

  4. Technical advances in external radiotherapy for hepatocellular carcinoma.

    PubMed

    Park, Shin-Hyung; Kim, Jae-Chul; Kang, Min Kyu

    2016-08-28

    Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy. PMID:27621577

  5. Stereotactic Image-Guided Intensity Modulated Radiotherapy Using the HI-ART II Helical Tomotherapy System

    SciTech Connect

    Holmes, Timothy W. Hudes, Richard; Dziuba, Sylwester; Kazi, Abdul; Hall, Mark; Dawson, Dana

    2008-07-01

    The highly integrated adaptive radiation therapy (HI-ART II) helical tomotherapy unit is a new radiotherapy machine designed to achieve highly precise and accurate treatments at all body sites. The precision and accuracy of the HI-ART II is similar to that provided by stereotactic radiosurgery systems, hence the historical distinction between external beam radiotherapy and stereotactic procedures based on differing precision requirements is removed for this device. The objectives of this work are: (1) to describe stereotactic helical tomotherapy processes (SRS, SBRT); (2) to show that the precision and accuracy of the HI-ART meet the requirements defined for SRS and SBRT; and (3) to describe the clinical implementation of a stereotactic image-guided intensity modulated radiation therapy (IG-IMRT) system that incorporates optical motion management.

  6. COMET-PE: an incident fluence response expansion transport method for radiotherapy calculations

    NASA Astrophysics Data System (ADS)

    Hayward, Robert M.; Rahnema, Farzad

    2013-05-01

    Accurate dose calculation is a central component of radiotherapy treatment planning. A new method of dose calculation has been developed based on transport theory and validated by comparison to Monte Carlo methods. The coarse mesh transport method has been extended to allow coupled photon-electron transport in 3D. The method combines stochastic pre-computation with a deterministic solver to achieve high accuracy and precision. To enhance the method for radiotherapy calculations, a new angular basis was derived, and an analytical source treatment was developed. Validation was performed by comparison to DOSXYZnrc using a heterogeneous interface phantom composed of water, aluminum, and lung. Calculations of both kinetic energy released per unit mass and dose were compared. Good agreement was found with a maximum error and root mean square relative error of less than 1.5% for all cases. The results show that the new method achieves an accuracy comparable to Monte Carlo.

  7. Hippocampal-sparing whole-brain radiotherapy using Elekta equipment.

    PubMed

    Nevelsky, Alexander; Ieumwananonthachai, Nantakan; Kaidar-Person, Orit; Bar-Deroma, Raquel; Nasrallah, Haitam; Ben-Yosef, Rahamim; Kuten, Abraham

    2013-01-01

    The purpose of this study was to evaluate the feasibility of hippocampal-sparing whole-brain radiotherapy (HS WBRT) using the Elekta Infinity linear accelerator and Monaco treatment planning system (TPS). Ten treatment plans were created for HS-WBRT to a dose of 30 Gy (10 fractions). RTOG 0933 recommendations were applied for treatment planning. Intensity-modulated radiotherapy (IMRT) plans for the Elekta Infinity linear accelerator were created using Monaco 3.1 TPS-based on a nine-field arrangement and step-and-shoot delivery method. Plan evaluation was performed using D2% and D98% for the whole-brain PTV (defined as whole brain excluding hippocampus avoidance region), D100% and maximum dose to the hippocampus, and maximum dose to optic nerves and chiasm. Homogeneity index (HI) defined as (D2%-D98%)/Dmedian was used to quantify dose homogeneity in the PTV. The whole-brain PTV D2% mean value was 37.28 Gy (range 36.95-37.49Gy), and D98% mean value was 25.37 Gy (range 25.40-25.89 Gy). The hippocampus D100% mean value was 8.37 Gy (range 7.48-8.97 Gy) and the hippocampus maximum dose mean value was 14.35 Gy (range 13.48-15.40 Gy). The maximum dose to optic nerves and optic chiasm for all patients did not exceed 37.50 Gy. HI mean value was 0.36 (range 0.34-0.37). Mean number of segments was 105 (range 88-122) and mean number of monitor units was 1724 (range 1622-1914). Gamma evaluation showed that all plans passed 3%, 3 mm criteria with more than 99% of the measured points. These results indicate that Elekta equipment (Elekta Infinity linac and Monaco TPS) can be used for HS WBRT planning according to compliance criteria defined by the RTOG 0933 protocol. PMID:23652251

  8. Volumetric Modulated Arc Therapy for Delivery of Prostate Radiotherapy: Comparison With Intensity-Modulated Radiotherapy and Three-Dimensional Conformal Radiotherapy

    SciTech Connect

    Palma, David Vollans, Emily; James, Kerry; Nakano, Sandy; Moiseenko, Vitali; Shaffer, Richard; McKenzie, Michael; Morris, James; Otto, Karl

    2008-11-15

    Purpose: Volumetric modulated arc therapy (VMAT) is a novel form of intensity-modulated radiotherapy (IMRT) optimization that allows the radiation dose to be delivered in a single gantry rotation of up to 360{sup o}, using either a constant dose rate (cdr-VMAT) or variable dose rate (vdr-VMAT) during rotation. The goal of this study was to compare VMAT prostate RT plans with three-dimensional conformal RT (3D-CRT) and IMRT plans. Patients and Methods: The 3D-CRT, five-field IMRT, cdr-VMAT, and vdr-VMAT RT plans were created for 10 computed tomography data sets from patients undergoing RT for prostate cancer. The parameters evaluated included the doses to organs at risk, equivalent uniform doses, dose homogeneity and conformality, and monitor units required for delivery of a 2-Gy fraction. Results: The IMRT and both VMAT techniques resulted in lower doses to normal critical structures than 3D-CRT plans for nearly all dosimetric endpoints analyzed. The lowest doses to organs at risk and most favorable equivalent uniform doses were achieved with vdr-VMAT, which was significantly better than IMRT for the rectal and femoral head dosimetric endpoints (p < 0.05) and significantly better than cdr-VMAT for most bladder and rectal endpoints (p < 0.05). The vdr-VMAT and cdr-VMAT plans required fewer monitor units than did the IMRT plans (relative reduction of 42% and 38%, respectively; p = 0.005) but more than for the 3D-CRT plans (p = 0.005). Conclusion: The IMRT and VMAT techniques achieved highly conformal treatment plans. The vdr-VMAT technique resulted in more favorable dose distributions than the IMRT or cdr-VMAT techniques, and reduced the monitor units required compared with IMRT.

  9. Adjuvant Radiotherapy with Three-Dimensional Conformal Radiotherapy of Lacrimal Gland Adenoid Cystic Carcinoma

    PubMed Central

    Roshan, Vikas; Mallick, Supriya; Chander, Subhash; Sen, Seema; Chawla, Bhavna

    2015-01-01

    Background & Aim Adenoid cystic carcinoma (ACC) of lacrimal gland is a rare tumour with aggressive behaviour. There is sparse data to address optimum therapy for such tumours. So, the present study was aimed at evaluating the role of adjuvant three dimensional conformal radiotherapy (3D-CRT) in cases of incomplete (R1) resection along with review of literature pertaining to management of lacrimal adenoid cystic carcinoma Materials and Methods We retrospectively reviewed the demographic and treatment data of 10 biopsy proven ACC of lacrimal gland patients, treated from December 2006 to June 2013. They were treated with radiotherapy following surgical resection. Eight patients underwent gross total excision of the tumour mass (enbloc excision) followed by conformal radiotherapy to a dose of 60 Gray/30fractions/ 6 weeks. Two patients with advanced disease were treated with palliative radiotherapy after biopsy. Results The median age was 32 years. There were equal numbers of male and female patients. The median duration of symptoms was 7 months. At a median follow up of 21 months, eight patients had no evidence of disease and had complete tumour response, two patients worsened, and one of the two had systemic failure with bone metastasis. Conclusion Despite a small sample size and short follow, enbloc surgical excision with adjuvant radiotherapy is well tolerated and shows good control in ACC of lacrimal gland. PMID:26557600

  10. [How to maximize skin care during radiotherapy?].

    PubMed

    Fromantin, I; Lesport, G; Le Mée, M

    2015-10-01

    No consensual guidelines exist regarding the management of early effects of radiotherapy. But preventive and curative care strategies could be adapted in the aim to delay erythema, limit complications and improve patients' comfort. Prevention involves encouraging patients to take care of their skin, avoid moisture, frictions, sun exposition and dry soap. When these rules seem insufficient, products (dressings, solution, or cream) could be prescribed, according to the individual risk of each patient. Preventive measures are accentuated when radiodermatitis appears and/or topics indicated for wound healing could be applied. Care (education, dressing, observation) needs a multidisciplinary approach. Improvements of radiotherapy treatments (methods, techniques) have been the most effective evolution on radiodermatitis. PMID:26344433

  11. [Personalized medicine in radiotherapy: practitioners' perception].

    PubMed

    Britel, Manon; Foray, Nicolas; Préau, Marie

    2015-01-01

    This exploratory study was designed to investigate the representations of radiotherapists in relation to personalized medicine. On the basis of current?>' available radiotherapy predictive tests, we tried to understand how these tests could be used in routine radiotherapy practice and in what way this possible change of practices could affect the role of radiotherapists in treatment protocols. In the absence of any available data allowing the construction of a quantitative tool, qualitative data were recorded by individual interviews with radiotherapists. Based on textual data analysis, a second national quantitative phase was conducted using a self-administered questionnaire. Crossover analysis of the two datasets highlighted the interest of radiotherapists in personalized medicine and the use of predictive tests, while indicating certain limitations and concerns in relation to ethical issues related to personalized medicine in oncology and the physician's position. PMID:26752033

  12. Complications of surgery for radiotherapy skin damage

    SciTech Connect

    Rudolph, R.

    1982-08-01

    Complications of modern surgery for radiotherapy skin damage reviewed in 28 patients who had 42 operations. Thin split-thickness skin grafts for ulcer treatment had a 100 percent complication rate, defined as the need for further surgery. Local flaps, whether delayed or not, also had a high rate of complications. Myocutaneous flaps for ulcers had a 43 percent complication rate, with viable flaps lifting off radiated wound beds. Only myocutaneous flaps for breast reconstruction and omental flaps with skin grafts and Marlex mesh had no complications. The deeper tissue penetration of modern radiotherapy techniques may make skin grafts and flaps less useful. In reconstruction of radiation ulcers, omental flaps and myocutaneous flaps are especially useful, particularly if the radiation damage can be fully excised. The pull of gravity appears detrimental to myocutaneous flap healing and, if possible, should be avoided by flap design.

  13. Radiotherapy of unicentric mediastinal Castleman's disease

    PubMed Central

    Li, Yue-Min; Liu, Peng-Hui; Zhang, Yu-Hai; Xia, Huo-Sheng; Li, Liang-Liang; Qu, Yi-Mei; Wu, Yong; Han, Shou-Yun; Liao, Guo-Qing; Pu, Yong-Dong

    2011-01-01

    Castleman's disease is a slowly progressive and rare lymphoproliferative disorder. Here, we report a 55-year-old woman with superior mediastinal Castleman's disease being misdiagnosed for a long term. We found a 4.3 cm mass localized in the superior mediastinum accompanied with severe clinical symptoms. The patient underwent an exploratory laparotomy, but the mass failed to be totally excised. Pathologic examination revealed a mediastinal mass of Castleman's disease. After radiotherapy of 30 Gy by 15 fractions, the patient no longer presented previous symptoms. At 3 months after radiotherapy of 60 Gy by 30 fractions, Computed tomography of the chest showed significantly smaller mass, indicating partial remission. Upon a 10-month follow-up, the patient was alive and free of symptoms. PMID:21527068

  14. Clinical Applications for Diffusion MRI in Radiotherapy

    PubMed Central

    Tsien, Christina; Cao, Yue; Chenevert, Thomas

    2014-01-01

    In this article, we review the clinical applications of diffusion MR imaging in the radiotherapy treatment of several key clinical sites, including those of the CNS, the head and neck, the prostate and cervix. Diffusion-weighted MRI (DWI) is an imaging technique that is rapidly gaining widespread acceptance due to its ease and wide availability. DWI measures the mobility of water within tissue at the cellular level without the need of any exogenous contrast agent. For radiotherapy treatment planning, DWI improves upon conventional imaging techniques, by better characterization of tumor tissue properties required for tumor grading, diagnosis and target volume delineation. Because diffusion weighted MRI is also a sensitive marker for alterations in tumor cellularity, it has potential clinical applications in the early assessment of treatment response following radiation therapy. PMID:24931097

  15. The efficacy of radiotherapy for vertebral hemangiomas.

    PubMed

    Miszczyk, L; Ficek, K; Trela, K; Spindel, J

    2001-01-01

    Vertebral hemangiomas are benign, slowly growing tumors sometimes causing local pain in the spine and/or neurologic disorders. The present paper includes 14 cases of painful vertebral hemangiomas treated by radiotherapy. All patients were irradiated using standard fractionation scheme with a total dose 20-30 Gy. One month after the treatment complete pain relief was noted in 36% of cases, five months later in 67% of cases, but in the remaining cases partial pain relief was noted. No correlation between treatment outcome and different biological and technical factors was found. No dose-response relationship was noted. The results suggest that anti-inflamatory effect of radiation plays the major role in this kind of treatment and that radiotherapy for vertebral hemangiomas is easy, short and highly effective analgetic treatment modality.

  16. Radiotherapy of nonfunctioning and gonadotroph adenomas.

    PubMed

    Kanner, Andrew A; Corn, Benjamin W; Greenman, Yona

    2009-01-01

    Transsphenoidal surgery is the treatment of choice for NFPA but is seldom curative. The management of patients in whom residual tumor is detected after surgery is not clear-cut. Radiation therapy is effective in controlling tumor mass in the majority of patients, but is associated with long term complications that call for restriction of its use to patients at high risk for tumor growth. New radiation techniques may prove to be safer while retaining the effectiveness of conventional radiotherapy, however longer follow-up is necessary to confirm this assumption. For now, it appears to be safe to withhold radiation and carefully follow patients with small tumor remnants, whereas large remnants from invasive tumors should be considered for radiotherapy. Nevertheless, there are no prospective controlled studies that support this empirical approach. PMID:18286373

  17. Second cancers following radiotherapy for cancer

    SciTech Connect

    Curtis, R.E.

    1997-03-01

    The study of second cancer risk after radiotherapy provides a unique opportunity to study carcinogenesis since large groups of humans are deliberately exposed to substantial doses of radiation in order to cure disease. Detailed radiotherapy records for cancer patients allow precise quantification of organ dose, and population-based cancer registries are frequently available to provide access to large groups of patients who are closely followed for long periods. Moreover, cancer patients treated with surgery alone (no radiation) are frequently available to serve as a non-irradiated comparison group. New information can be provided on relatively insensitive organs, and low dose exposures in the range of scientific interest are received by organs outside the radiation treatment fields. This paper will review several recently completed studies that characterize the risk of radiation-induced second cancers. Emphasis will be given to studies providing new information on the dose-response relationship of radiation-induced leukemia, breast cancer and lung cancer.

  18. Low-Dose Radiotherapy in Indolent Lymphoma

    SciTech Connect

    Rossier, Christine; Schick, Ulrike; Miralbell, Raymond; Mirimanoff, Rene O.; Weber, Damien C.; Ozsahin, Mahmut

    2011-11-01

    Purpose: To assess the response rate, duration of response, and overall survival after low-dose involved-field radiotherapy in patients with recurrent low-grade lymphoma or chronic lymphocytic leukemia (CLL). Methods and Materials: Forty-three (24 women, 19 men) consecutive patients with indolent lymphoma or CLL were treated with a total dose of 4 Gy (2 x 2 Gy) using 6- 18-MV photons. The median age was 73 years (range, 39-88). Radiotherapy was given either after (n = 32; 75%) or before (n = 11; 25%) chemotherapy. The median time from diagnosis was 48 months (range, 1-249). The median follow-up period was 20 months (range, 1-56). Results: The overall response rate was 90%. Twelve patients (28%) had a complete response, 15 (35%) had a partial response, 11 (26%) had stable disease, and 5 (11%) had progressive disease. The median overall survival for patients with a positive response (complete response/partial response/stable disease) was 41 months; for patients with progressive disease it was 6 months (p = 0.001). The median time to in-field progression was 21 months (range, 0-24), and the median time to out-field progression was 8 months (range, 0-40). The 3-year in-field control was 92% in patients with complete response (median was not reached). The median time to in-field progression was 9 months (range, 0.5-24) in patients with partial response and 6 months (range, 0.6-6) in those with stable disease (p < 0.05). Younger age, positive response to radiotherapy, and no previous chemotherapy were the best factors influencing the outcome. Conclusions: Low-dose involved-field radiotherapy is an effective treatment in the management of patients with recurrent low-grade lymphoma or CLL.

  19. Radiotherapy equipment--purchase or lease?

    PubMed

    Nisbet, A; Ward, A

    2001-08-01

    Against a background of increasing demand for radiotherapy equipment, this study was undertaken to investigate options for equipment procurement, in particular to compare purchase with lease. The perceived advantages of lease are that equipment can be acquired within budget and cashflow constraints, with relatively low amounts of cash leaving the NHS in the first year, avoiding the necessity of capitalizing the equipment and providing protection against the risk of obsolescence associated with high technology equipment. The perceived disadvantages of leasing are that the Trust does not own the equipment, leasing can be more expensive in revenue terms, the tender process is extended and there may be lease conditions to be met, which may be costly and/or restrictive. There are also a number of technical considerations involved in the leasing of radiotherapy equipment that influence the financial analysis and practical operation of the radiotherapy service. The technical considerations include servicing and planned preventative maintenance, upgrades, spare parts, subsequent purchase of "add ons", modification of equipment, research and development work, commencement of the lease period, return of equipment at the end of the lease period and negotiations at the end of the lease period. A study from Raigmore Hospital, Inverness is described, which involves the procurement of new, state-of-the-art radiotherapy equipment. This provides an overview of the procurement process, including a summary of the advantages and disadvantages of leasing, with the figures from the financial analysis presented and explained. In addition, a detailed description is given of the technical considerations to be taken into account in the financial analysis and negotiation of any lease contract.

  20. Radiotherapy in the treatment of postoperative chylothorax

    PubMed Central

    2013-01-01

    Background Chylothorax is characterized by the presence of chyle in the pleural cavity. The healing rate of non-operative treatment varies enormously; the maximum success rate in series is 70%. We investigate the efficacy and outcomes of radiotherapy for postoperative chylothorax. Methods Chylothorax was identified based on the quantity and quality of the drainage fluid. Radiation was indicated if the daily chyle flow exceeded 450 ml after complete cessation of oral intake. Radiotherapy consisted of opposed isocentric portals to the mediastinum using 15 MV photon beams from a linear accelerator, a single dose of 1–1.5 Gy, and a maximum of five fractions per week. The radiation target area was the anatomical region between TH3 and TH10 depending on the localization of the resected lobe. The mean doses of the ionizing energy was 8.5 Gy ± 3.5 Gy. Results The median start date of the radiation was the fourth day after chylothorax diagnosis. The patients’ mediastinum was radiated an average of six times. Radiotherapy, in combination with dietary restrictions, was successful in all patients. The median time between the end of the radiation and the removal of the chest tube was one day. One patient underwent wound healing by secondary intention. The median time between the end of radiation and discharge was three days, and the overall hospital stay between the chylothorax diagnosis and discharge was 18 days (range: 11–30 days). After a follow-up of six months, no patient experienced chylothorax recurrence. Conclusions Our results suggest that radiotherapy in combination with dietary restriction in the treatment of postoperative chylothorax is very safe, rapid and successful. This novel interventional procedure can obviate repeat major thoracic surgery and shorten hospital stays and could be the first choice in the treatment of postthoracotomy chylothorax. PMID:23566741

  1. [Impact of radiotherapy on female fertility].

    PubMed

    Mazeron, Renaud; Maroun, Pierre; Cao, Kim; Mbagui, Rodrigue; Slocker-Escarpa, Andrea; Chargari, Cyrus; Haie-Meder, Christine

    2015-05-01

    Radiation therapy may have deleterious effects on female fertility. It can cause ovarian dysfunction, uterine damages or disrupt the hypothalamic-pituitary axis. These effects occur at varying dose levels usually relatively low compared to the prescribed doses. Other co-factors influence the effects of radiation therapy on fertility, such as age or therapy with alkylating agents. This review aims to make an update on the current state of knowledge about the impact of radiotherapy on female fertility.

  2. Radiotherapy equipment--purchase or lease?

    PubMed

    Nisbet, A; Ward, A

    2001-08-01

    Against a background of increasing demand for radiotherapy equipment, this study was undertaken to investigate options for equipment procurement, in particular to compare purchase with lease. The perceived advantages of lease are that equipment can be acquired within budget and cashflow constraints, with relatively low amounts of cash leaving the NHS in the first year, avoiding the necessity of capitalizing the equipment and providing protection against the risk of obsolescence associated with high technology equipment. The perceived disadvantages of leasing are that the Trust does not own the equipment, leasing can be more expensive in revenue terms, the tender process is extended and there may be lease conditions to be met, which may be costly and/or restrictive. There are also a number of technical considerations involved in the leasing of radiotherapy equipment that influence the financial analysis and practical operation of the radiotherapy service. The technical considerations include servicing and planned preventative maintenance, upgrades, spare parts, subsequent purchase of "add ons", modification of equipment, research and development work, commencement of the lease period, return of equipment at the end of the lease period and negotiations at the end of the lease period. A study from Raigmore Hospital, Inverness is described, which involves the procurement of new, state-of-the-art radiotherapy equipment. This provides an overview of the procurement process, including a summary of the advantages and disadvantages of leasing, with the figures from the financial analysis presented and explained. In addition, a detailed description is given of the technical considerations to be taken into account in the financial analysis and negotiation of any lease contract. PMID:11511499

  3. Hypothyroidism After Radiotherapy for Nasopharyngeal Cancer Patients

    SciTech Connect

    Wu, Y.-H.; Wang, H-M.; Chen, Hellen Hi-Wen; Lin, C.-Y.; Chen, Eric Yen-Chao; Fan, K.-H.; Huang, S.-F.; Chen, I-How; Liao, C.-T.; Cheng, Ann-Joy; Chang, Joseph Tung-Chieh

    2010-03-15

    Purpose: The aim of this study was to determine the long-term incidence and possible predictive factors for posttreatment hypothyroidism in nasopharyngeal carcinoma (NPC) patients after radiotherapy. Methods and Materials: Four hundred and eight sequential NPC patients who had received regular annual thyroid hormone surveys prospectively after radiotherapy were included in this study. Median patient age was 47.3 years, and 286 patients were male. Thyroid function was prospectively evaluated by measuring thyroid-stimulating hormone (TSH) and serum free thyroxine (FT4) levels. Low FT4 levels indicated clinical hypothyroidism in this study. Results: With a median follow-up of 4.3 years (range, 0.54-19.7 years), the incidence of low FT4 level was 5.3%, 9.0%, and 19.1% at 3, 5, and 10 years after radiotherapy, respectively. Hypothyroidism was more common with early T stage (p = 0.044), female sex (p = 0.037), and three-dimensional conformal therapy with the altered fractionation technique (p = 0.005) after univariate analysis. N stage, chemotherapy, reirradiation, and neck electron boost did not affect the incidence of hypothyroidism. Younger age and conformal therapy were significant factors that determined clinical hypothyroidism after multivariate analysis. Overall, patients presented with a low FT4 level about 1 year after presenting with an elevated TSH level. Conclusion: Among our study group of NPC patients, 19.1% experienced clinical hypothyroidism by 10 years after treatment. Younger age and conformal therapy increased the risk of hypothyroidism. We suggest routine evaluation of thyroid function in NPC patients after radiotherapy. The impact of pituitary injury should be also considered.

  4. Big Data Analytics for Prostate Radiotherapy.

    PubMed

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose-volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the "RadoncSpace") in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches.

  5. Anal Cancer: An Examination of Radiotherapy Strategies

    SciTech Connect

    Glynne-Jones, Rob; Lim, Faye

    2011-04-01

    The Radiation Therapy Oncology Group 9811, ACCORD-03, and ACT II Phase III trials in anal cancer showed no benefit for cisplatin-based induction and maintenance chemotherapy, or radiation dose-escalation >59 Gy. This review examines the efficacy and toxicity of chemoradiation (CRT) in anal cancer, and discusses potential alternative radiotherapy strategies. The evidence for the review was compiled from randomized and nonrandomized trials of radiation therapy and CRT. A total of 103 retrospective/observational studies, 4 Phase I/II studies, 16 Phase II prospective studies, 2 randomized Phase II studies, and 6 Phase III trials of radiotherapy or chemoradiation were identified. There are no meta-analyses based on individual patient data. A 'one-size-fits-all' approach for all stages of anal cancer is inappropriate. Early T1 tumors are probably currently overtreated, whereas T3/T4 lesions might merit escalation of treatment. Intensity-modulated radiotherapy or the integration of biological therapy may play a role in future.

  6. Personalized radiotherapy: concepts, biomarkers and trial design.

    PubMed

    Ree, A H; Redalen, K R

    2015-07-01

    In the past decade, and pointing onwards to the immediate future, clinical radiotherapy has undergone considerable developments, essentially including technological advances to sculpt radiation delivery, the demonstration of the benefit of adding concomitant cytotoxic agents to radiotherapy for a range of tumour types and, intriguingly, the increasing integration of targeted therapeutics for biological optimization of radiation effects. Recent molecular and imaging insights into radiobiology will provide a unique opportunity for rational patient treatment, enabling the parallel design of next-generation trials that formally examine the therapeutic outcome of adding targeted drugs to radiation, together with the critically important assessment of radiation volume and dose-limiting treatment toxicities. In considering the use of systemic agents with presumed radiosensitizing activity, this may also include the identification of molecular, metabolic and imaging markers of treatment response and tolerability, and will need particular attention on patient eligibility. In addition to providing an overview of clinical biomarker studies relevant for personalized radiotherapy, this communication will highlight principles in addressing clinical evaluation of combined-modality-targeted therapeutics and radiation. The increasing number of translational studies that bridge large-scale omics sciences with quality-assured phenomics end points-given the imperative development of open-source data repositories to allow investigators the access to the complex data sets-will enable radiation oncology to continue to position itself with the highest level of evidence within existing clinical practice. PMID:25989697

  7. Accuracy requirements in radiotherapy treatment planning.

    PubMed

    Buzdar, Saeed Ahmad; Afzal, Muhammad; Nazir, Aalia; Gadhi, Muhammad Asghar

    2013-06-01

    Radiation therapy attempts to deliver ionizing radiation to the tumour and can improve the survival chances and/or quality of life of patients. There are chances of errors and uncertainties in the entire process of radiotherapy that may affect the accuracy and precision of treatment management and decrease degree of conformation. All expected inaccuracies, like radiation dose determination, volume calculation, complete evaluation of the full extent of the tumour, biological behaviour of specific tumour types, organ motion during radiotherapy, imaging, biological/molecular uncertainties, sub-clinical diseases, microscopic spread of the disease, uncertainty in normal tissue responses and radiation morbidity need sound appreciation. Conformity can be increased by reduction of such inaccuracies. With the yearly increase in computing speed and advancement in other technologies the future will provide the opportunity to optimize a greater number of variables and reduce the errors in the treatment planning process. In multi-disciplined task of radiotherapy, efforts are needed to overcome the errors and uncertainty, not only by the physicists but also by radiologists, pathologists and oncologists to reduce molecular and biological uncertainties. The radiation therapy physics is advancing towards an optimal goal that is definitely to improve accuracy where necessary and to reduce uncertainty where possible.

  8. Proton beam radiotherapy of iris melanoma

    SciTech Connect

    Damato, Bertil . E-mail: Bertil@damato.co.uk; Kacperek, Andrzej; Chopra, Mona; Sheen, Martin A.; Campbell, Ian R.; Errington, R. Douglas

    2005-09-01

    Purpose: To report on outcomes after proton beam radiotherapy of iris melanoma. Methods and Materials: Between 1993 and 2004, 88 patients with iris melanoma received proton beam radiotherapy, with 53.1 Gy in 4 fractions. Results: The patients had a mean age of 52 years and a median follow-up of 2.7 years. The tumors had a median diameter of 4.3 mm, involving more than 2 clock hours of iris in 32% of patients and more than 2 hours of angle in 27%. The ciliary body was involved in 20%. Cataract was present in 13 patients before treatment and subsequently developed in another 18. Cataract had a 4-year rate of 63% and by Cox analysis was related to age (p = 0.05), initial visual loss (p < 0.0001), iris involvement (p < 0.0001), and tumor thickness (p < 0.0001). Glaucoma was present before treatment in 13 patients and developed after treatment in another 3. Three eyes were enucleated, all because of recurrence, which had an actuarial 4-year rate of 3.3% (95% CI 0-8.0%). Conclusions: Proton beam radiotherapy of iris melanoma is well tolerated, the main problems being radiation-cataract, which was treatable, and preexisting glaucoma, which in several patients was difficult to control.

  9. Cellular signalling effects in high precision radiotherapy

    NASA Astrophysics Data System (ADS)

    McMahon, Stephen J.; McGarry, Conor K.; Butterworth, Karl T.; Jain, Suneil; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2015-06-01

    Radiotherapy is commonly planned on the basis of physical dose received by the tumour and surrounding normal tissue, with margins added to address the possibility of geometric miss. However, recent experimental evidence suggests that intercellular signalling results in a given cell’s survival also depending on the dose received by neighbouring cells. A model of radiation-induced cell killing and signalling was used to analyse how this effect depends on dose and margin choices. Effective Uniform Doses were calculated for model tumours in both idealised cases with no delivery uncertainty and more realistic cases incorporating geometric uncertainty. In highly conformal irradiation, a lack of signalling from outside the target leads to reduced target cell killing, equivalent to under-dosing by up to 10% compared to large uniform fields. This effect is significantly reduced when higher doses per fraction are considered, both increasing the level of cell killing and reducing margin sensitivity. These effects may limit the achievable biological precision of techniques such as stereotactic radiotherapy even in the absence of geometric uncertainties, although it is predicted that larger fraction sizes reduce the relative contribution of cell signalling driven effects. These observations may contribute to understanding the efficacy of hypo-fractionated radiotherapy.

  10. Personalized radiotherapy: concepts, biomarkers and trial design

    PubMed Central

    Redalen, K R

    2015-01-01

    In the past decade, and pointing onwards to the immediate future, clinical radiotherapy has undergone considerable developments, essentially including technological advances to sculpt radiation delivery, the demonstration of the benefit of adding concomitant cytotoxic agents to radiotherapy for a range of tumour types and, intriguingly, the increasing integration of targeted therapeutics for biological optimization of radiation effects. Recent molecular and imaging insights into radiobiology will provide a unique opportunity for rational patient treatment, enabling the parallel design of next-generation trials that formally examine the therapeutic outcome of adding targeted drugs to radiation, together with the critically important assessment of radiation volume and dose-limiting treatment toxicities. In considering the use of systemic agents with presumed radiosensitizing activity, this may also include the identification of molecular, metabolic and imaging markers of treatment response and tolerability, and will need particular attention on patient eligibility. In addition to providing an overview of clinical biomarker studies relevant for personalized radiotherapy, this communication will highlight principles in addressing clinical evaluation of combined-modality-targeted therapeutics and radiation. The increasing number of translational studies that bridge large-scale omics sciences with quality-assured phenomics end points—given the imperative development of open-source data repositories to allow investigators the access to the complex data sets—will enable radiation oncology to continue to position itself with the highest level of evidence within existing clinical practice. PMID:25989697

  11. Multimedia educational services in stereotactic radiotherapy.

    PubMed

    Bazioglou, M; Theodorou, K; Kappas, C

    1999-01-01

    The computer-based learning methods in medicine have been well established as stand-alone learning systems. Recently, these systems were enriched with the use of telematics technology to provide distance learning capabilities. Stereotactic radiotherapy is one of the most representative advanced radiotherapy techniques. Due to the multidisciplinary character of the technique and the rapid evolution of technology implemented, the demands in training have increased. The potential of interactive multimedia and Internet technologies for the achievement of distance learning capabilities in this domain are investigated. The realization of a computer-based educational program in stereotactic radiotherapy in a multimedia format is a new application in the computer-aided distance learning field. The system is built according to a client and server architecture, based on the Internet infrastructure, and composed of server nodes. The impact of the system may be described in terms of: time and transportation costs saving, flexibility in training (scheduling, rate and subject selection), online communication and interaction with experts, cost effective access to material (delivery or access by a large number of users and revision of the material by avoiding high costs of computer-based training systems and database development). PMID:10394345

  12. [3D reconstructions in radiotherapy planning].

    PubMed

    Schlegel, W

    1991-10-01

    3D Reconstructions from tomographic images are used in the planning of radiation therapy to study important anatomical structures such as the body surface, target volumes, and organs at risk. The reconstructed anatomical models are used to define the geometry of the radiation beams. In addition, 3D voxel models are used for the calculation of the 3D dose distributions with an accuracy, previously impossible to achieve. Further uses of 3D reconstructions are in the display and evaluation of 3D therapy plans, and in the transfer of treatment planning parameters to the irradiation situation with the help of digitally reconstructed radiographs. 3D tomographic imaging with subsequent 3D reconstruction must be regarded as a completely new basis for the planning of radiation therapy, enabling tumor-tailored radiation therapy of localized target volumes with increased radiation doses and improved sparing of organs at risk. 3D treatment planning is currently being evaluated in clinical trials in connection with the new treatment techniques of conformation radiotherapy. Early experience with 3D treatment planning shows that its clinical importance in radiotherapy is growing, but will only become a standard radiotherapy tool when volumetric CT scanning, reliable and user-friendly treatment planning software, and faster and cheaper PACS-integrated medical work stations are accessible to radiotherapists.

  13. Errors in Radiotherapy: Motivation for Development of New Radiotherapy Quality Assurance Paradigms

    SciTech Connect

    Fraass, Benedick A.

    2008-05-01

    Modern radiotherapy practice has rapidly evolved during the past decade, making use of many highly complex and/or automated processes for planning and delivery, including new techniques, like intensity-modulated radiotherapy driven by inverse planning optimization methods, or near real-time image-guided adaptive therapy based on fluoroscopic or tomographic imaging on the treatment machine. In spite of the modern technology, or potentially because of it in some instances, errors and other problems continue to have a significant impact on the field. This report reviews example errors and problems, discusses some of the quality assurance issues that these types of problems raise, and motivates the development of more modern and sophisticated approaches to assure quality for our clinical radiotherapy treatment methods.

  14. Genome-wide transcription responses to synchrotron microbeam radiotherapy.

    PubMed

    Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W

    2012-10-01

    The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam.

  15. Proton Radiotherapy for Liver Tumors: Dosimetric Advantages Over Photon Plans

    SciTech Connect

    Wang Xiaochun Krishnan, Sunil; Zhang Xiaodong; Dong Lei; Briere, Tina; Crane, Christopher H.; Martel, Mary; Gillin, Michael; Mohan, Radhe; Beddar, Sam

    2008-01-01

    The purpose of the study is to dosimetrically investigate the advantages of proton radiotherapy over photon radiotherapy for liver tumors. The proton plan and the photon plan were designed using commercial treatment planning systems. The treatment target dose conformity and heterogeneity and dose-volume analyses of normal structures were compared between proton and photon radiotherapy for 9 patients with liver tumors. Proton radiotherapy delivered a more conformal target dose with slightly less homogeneity when compared with photon radiotherapy. Protons significantly reduced the fractional volume of liver receiving dose greater or equal to 30 Gy (V{sub 30}) and the mean liver dose. The stomach and duodenal V{sub 45} were significantly lower with the use of proton radiotherapy. The V{sub 40} and V{sub 50} of the heart and the maximum spinal cord dose were also significantly lower with the use of proton radiotherapy. Protons were better able to spare one kidney completely and deliver less dose to one (generally the left) kidney than photons. The mean dose to the total body and most critical structures was significantly decreased using protons when compared to corresponding photon plans. In conclusion, our study suggests the dosimetric benefits of proton radiotherapy over photon radiotherapy. These dosimetric advantages of proton plans may permit further dose escalation with lower risk of complications.

  16. Dysphagia after radiotherapy: state of the art and prevention.

    PubMed

    Servagi-Vernat, S; Ali, D; Roubieu, C; Durdux, C; Laccourreye, O; Giraud, P

    2015-02-01

    Adjuvant radiotherapy after surgery or exclusive radiotherapy, with or without concurrent chemotherapy is a valuable treatment option in the great majority of patients with head and neck cancer. Recent technical progress in radiotherapy has resulted in a decreased incidence of xerostomia. Another common toxicity of radiotherapy is dysphagia, which alters the nutritional status and quality of life of patients in remission. The objective of this review is to describe the physiology of swallowing function, the pathophysiology of radiation-induced dysphagia and the various strategies currently available to prevent this complication.

  17. Genome-wide transcription responses to synchrotron microbeam radiotherapy.

    PubMed

    Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W

    2012-10-01

    The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam. PMID:22974124

  18. A comparison between cobalt and linear accelerator-based treatment plans for conformal and intensity-modulated radiotherapy.

    PubMed

    Adams, E J; Warrington, A P

    2008-04-01

    The simplicity of cobalt units gives them the advantage of reduced maintenance, running costs and downtime when compared with linear accelerators. However, treatments carried out on such units are typically limited to simple techniques. This study has explored the use of cobalt beams for conformal and intensity-modulated radiotherapy (IMRT). Six patients, covering a range of treatment sites, were planned using both X-ray photons (6/10 MV) and cobalt-60 gamma rays (1.17 and 1.33 MeV). A range of conformal and IMRT techniques were considered, as appropriate. Conformal plans created using cobalt beams for small breast, meningioma and parotid cases were found to compare well with those created using X-ray photons. By using additional fields, acceptable conformal plans were also created for oesophagus and prostate cases. IMRT plans were found to be of comparable quality for meningioma, parotid and thyroid cases on the basis of dose-volume histogram analysis. We conclude that it is possible to plan high-quality radical radiotherapy treatments for cobalt units. A well-designed beam blocking/compensation system would be required to enable a practical and efficient alternative to multileaf collimator (MLC)-based linac treatments to be offered. If cobalt units were to have such features incorporated into them, they could offer considerable benefits to the radiotherapy community.

  19. [Exchange of medical imaging and data information in radiotherapy: needs, methods and current limits].

    PubMed

    Manens, J P

    1997-01-01

    Extension of the image network within radiotherapy departments provides the technical infrastructure which is made necessary by the rapid evolution of techniques in the field of diagnosis and treatment in radiotherapy. The system is aimed at managing the whole set of data (textual data and images) that are needed for planning and control of treatments. The radiotherapy network addresses two objectives: managing both the information necessary for treatment planning (target volumes definition, planning dosimetry) and the control of all parameters involved during the patient's treatment under the treatment unit. The major challenge is to improve the quality of treatment. Multimodal imaging is a major advance as it allows the use of new dosimetry and simulation techniques. The need for standards to exchange medical imaging information is now recognized by all the institutions and a majority of users and manufacturers. It is widely accepted that the lack of standard has been one of the fundamental obstacles in the deployment of operational "Picture Archiving Communication Systems". The International Standard Organisation Open System Interconnection model is the standard reference mode used to describe network protocols. The network is based on the Ethernet and TCP/IP protocol that provides the means to interconnect imaging devices and workstations dedicated to specific image processing or machines used in radiotherapy. The network uses Ethernet cabled on twisted-pair (10 BaseT) or optical fibres in a star-shaped physical layout. Dicom V3.0 supports fundamental network interactions: transfer of images (computerized tomography magnetic resonance imaging query and retrieve of images), printing on network attached cameras, support of HIS/RIS related interfacing and image management. The supplement to the Dicom standard, Dicom RT, specifies five data objects known in Dicom as Information Object Definition for relevant radiotherapy. Dicom RT objects can provide a mean for

  20. [Exchange of medical imaging and data information in radiotherapy: needs, methods and current limits].

    PubMed

    Manens, J P

    1997-01-01

    Extension of the image network within radiotherapy departments provides the technical infrastructure which is made necessary by the rapid evolution of techniques in the field of diagnosis and treatment in radiotherapy. The system is aimed at managing the whole set of data (textual data and images) that are needed for planning and control of treatments. The radiotherapy network addresses two objectives: managing both the information necessary for treatment planning (target volumes definition, planning dosimetry) and the control of all parameters involved during the patient's treatment under the treatment unit. The major challenge is to improve the quality of treatment. Multimodal imaging is a major advance as it allows the use of new dosimetry and simulation techniques. The need for standards to exchange medical imaging information is now recognized by all the institutions and a majority of users and manufacturers. It is widely accepted that the lack of standard has been one of the fundamental obstacles in the deployment of operational "Picture Archiving Communication Systems". The International Standard Organisation Open System Interconnection model is the standard reference mode used to describe network protocols. The network is based on the Ethernet and TCP/IP protocol that provides the means to interconnect imaging devices and workstations dedicated to specific image processing or machines used in radiotherapy. The network uses Ethernet cabled on twisted-pair (10 BaseT) or optical fibres in a star-shaped physical layout. Dicom V3.0 supports fundamental network interactions: transfer of images (computerized tomography magnetic resonance imaging query and retrieve of images), printing on network attached cameras, support of HIS/RIS related interfacing and image management. The supplement to the Dicom standard, Dicom RT, specifies five data objects known in Dicom as Information Object Definition for relevant radiotherapy. Dicom RT objects can provide a mean for

  1. Left-sided breast cancer irradiation using rotational and fixed-field radiotherapy

    SciTech Connect

    Qi, X. Sharon; Liu, Tian X.; Liu, Arthur K.; Newman, Francis; Rabinovitch, Rachel; Kavanagh, Brian; Hu, Y. Angie

    2014-10-01

    The 3-dimensional conformal radiotherapy (3DCRT) technique is the standard for breast cancer radiotherapy. During treatment planning, not only the coverage of the planning target volume (PTV) but also the minimization of the dose to critical structures, such as the lung, heart, and contralateral breast tissue, need to be considered. Because of the complexity and variations of patient anatomy, more advanced radiotherapy techniques are sometimes desired to better meet the planning goals. In this study, we evaluated external-beam radiation treatment techniques for left breast cancer using various delivery platforms: fixed-field including TomoDirect (TD), static intensity-modulated radiotherapy (sIMRT), and rotational radiotherapy including Elekta volumetric-modulated arc therapy (VMAT) and tomotherapy helical (TH). A total of 10 patients with left-sided breast cancer who did or did not have positive lymph nodes and were previously treated with 3DCRT/sIMRT to the entire breast were selected, their treatment was planned with Monaco VMAT, TD, and TH. Dosimetric parameters including PTV coverage, organ-at-risk (OAR) sparing, dose-volume histograms, and target minimum/maximum/mean doses were evaluated. It is found that for plans providing comparable PTV coverage, the Elekta VMAT plans were generally more inhomogeneous than the TH and TD plans. For the cases with regional node involvement, the average mean doses administered to the heart were 9.2 (± 5.2) and 8.8 (± 3.0) Gy in the VMAT and TH plans compared with 11.9 (± 6.4) and 11.8 (± 9.2) Gy for the 3DCRT and TD plans, respectively, with slightly higher doses given to the contralateral lung or breast or both. On average, the total monitor units for VMAT plans are 11.6% of those TH plans. Our studies have shown that VMAT and TH plans offer certain dosimetric advantages over fixed-field IMRT plans for advanced breast cancer requiring regional nodal treatment. However, for early-stage breast cancer fixed

  2. Outcome analysis of 300 prostate cancer patients treated with neoadjuvant androgen deprivation and hypofractionated radiotherapy

    SciTech Connect

    Higgins, Geoffrey S. . E-mail: geoffrey.higgins@luht.scot.nhs.uk; McLaren, Duncan B.; Kerr, Gillian R.; Elliott, Tony; Howard, Grahame

    2006-07-15

    Purpose: Neoadjuvant androgen deprivation and radical radiotherapy is an established treatment for localized prostate carcinoma. This study sought to analyze the outcomes of patients treated with relatively low-dose hypofractionated radiotherapy. Methods and Materials: Three hundred patients with T1-T3 prostate cancer were treated between 1996 and 2001. Patients were prescribed 3 months of neoadjuvant androgen deprivation before receiving 5250 cGy in 20 fractions. Patients' case notes and the oncology database were used to retrospectively assess outcomes. Median follow-up was 58 months. Results: Patients presented with prostate cancer with poorer prognostic indicators than that reported in other series. At 5 years, the actuarial cause-specific survival rate was 83.2% and the prostate-specific antigen (PSA) relapse rate was 57.3%. Metastatic disease had developed in 23.4% of patients. PSA relapse continued to occur 5 years from treatment in all prognostic groups. Independent prognostic factors for relapse included treatment near the start of the study period, neoadjuvant oral anti-androgen monotherapy rather than neoadjuvant luteinizing hormone releasing hormone therapy, and diagnosis through transurethral resection of the prostate rather than transrectal ultrasound. Conclusion: This is the largest reported series of patients treated with neoadjuvant androgen deprivation and hypofractionated radiotherapy in the United Kingdom. Neoadjuvant hormonal therapy did not appear to adequately compensate for the relatively low effective radiation dose used.

  3. Effectiveness of Radiotherapy for Elderly Patients With Glioblastoma

    SciTech Connect

    Scott, Jacob; Tsai, Ya-Yu; Chinnaiyan, Prakash; Yu, Hsiang-Hsuan Michael

    2011-09-01

    Purpose: Radiotherapy plays a central role in the definitive treatment of glioblastoma. However, the optimal management of elderly patients with glioblastoma remains controversial, as the relative benefit in this patient population is unclear. To better understand the role that radiation plays in the treatment of glioblastoma in the elderly, we analyzed factors influencing patient survival using a large population-based registry. Methods and Materials: A total of 2,836 patients more than 70 years of age diagnosed with glioblastoma between 1993 and 2005 were identified from the Surveillance, Epidemiology, and End Results (SEER) registry. Demographic and clinical variables used in the analysis included gender, ethnicity, tumor size, age at diagnosis, surgery, and radiotherapy. Cancer-specific survival and overall survival were evaluated using the Kaplan-Meier method. Univariate and multivariate analysis were performed using Cox regression. Results: Radiotherapy was administered in 64% of these patients, and surgery was performed in 68%. Among 2,836 patients, 46% received surgery and radiotherapy, 22% underwent surgery only, 18% underwent radiotherapy only, and 14% did not undergo either treatment. The median survival for patients who underwent surgery and radiotherapy was 8 months. The median survival for patients who underwent radiotherapy only was 4 months, and for patients who underwent surgery only was 3 months. Those who received neither surgery nor radiotherapy had a median survival of 2 months (p < 0.001). Multivariate analysis showed that radiotherapy significantly improved cancer-specific survival (hazard ratio [HR], 0.43, 95% confidence interval [CI] 0.38-0.49) after adjusting for surgery, tumor size, gender, ethnicity, and age at diagnosis. Other factors associated with Cancer-specific survival included surgery, tumor size, age at diagnosis, and ethnicity. Analysis using overall survival as the endpoint yielded very similar results. Conclusions: Elderly

  4. International Patterns of Practice in Palliative Radiotherapy for Painful Bone Metastases: Evidence-Based Practice?

    SciTech Connect

    Fairchild, Alysa; Barnes, Elizabeth; Ghosh, Sunita; Ben-Josef, Edgar; Roos, Daniel; Hartsell, William; Holt, Tanya; Wu, Jackson; Janjan, Nora; Chow, Edward

    2009-12-01

    Purpose: Multiple randomized controlled trials have demonstrated the equivalence of multifraction and single-fraction (SF) radiotherapy for the palliation of painful bone metastases (BM). However, according to previous surveys, SF schedules remain underused. The objectives of this study were to determine the current patterns of practice internationally and to investigate the factors influencing this practice. Methods and Materials: The members of three global radiation oncology professional organizations (American Society for Radiology Oncology [ASTRO], Canadian Association of Radiation Oncology [CARO], Royal Australian and New Zealand College of Radiologists) completed an Internet-based survey. The respondents described what radiotherapy dose fractionation they would recommend for 5 hypothetical cases describing patients with single or multiple painful BMs from breast, lung, or prostate cancer. Radiation oncologists rated the importance of patient, tumor, institution, and treatment factors, and descriptive statistics were compiled. The chi-square test was used for categorical variables and the Student t test for continuous variables. Logistic regression analysis identified predictors of the use of SF radiotherapy. Results: A total of 962 respondents, three-quarters ASTRO members, described 101 different dose schedules in common use (range, 3 Gy/1 fraction to 60 Gy/20 fractions). The median dose overall was 30 Gy/10 fractions. SF schedules were used the least often by ASTRO members practicing in the United States and most often by CARO members. Case, membership affiliation, country of training, location of practice, and practice type were independently predictive of the use of SF. The principal factors considered when prescribing were prognosis, risk of spinal cord compression, and performance status. Conclusion: Despite abundant evidence, most radiation oncologists continue to prescribe multifraction schedules for patients who fit the eligibility criteria of

  5. A Prospective, Multi-Institutional Study of Adjuvant Radiotherapy After Resection of Malignant Phyllodes Tumors

    PubMed Central

    Barth, Richard J.; Wells, Wendy A.; Mitchell, Sandra E.; Cole, Bernard F.

    2016-01-01

    Background Malignant phyllodes tumors of the breast are unusual neoplasms, with an incidence of approximately 500 cases annually in the United States. Published local recurrence rates after margin-negative breast-conserving resections of borderline malignant and malignant phyllodes tumors are unacceptably high, at 24 and 20%, respectively. It is uncertain whether radiotherapy after resection of phyllodes tumors is beneficial. Methods We prospectively enrolled patients who were treated with a margin-negative breast-conserving resection of borderline malignant or malignant phyllodes tumors to adjuvant radiotherapy. The primary endpoint was local recurrence. Results Forty-six women were treated at 30 different institutions. The mean patient age was 49 years (range, 18–76 years). Thirty patients (65%) had malignant phyllodes tumors; the rest were borderline malignant. The mean tumor diameter was 3.7 cm (range, .8–11 cm). Eighteen patients had a negative margin on the first excision. The median size of the negative margin was .35 cm (range, <.1–2 cm). Twenty-eight patients underwent a re-excision because of positive margins in the initial resection. Two patients died of metastatic phyllodes tumor. During a median follow-up of 56 months (range, 12–129 months), none of the 46 patients developed a local recurrence (local recurrence rate, 0%; 95% confidence interval, 0–8). Conclusions Margin-negative resection combined with adjuvant radiotherapy is very effective therapy for local control of borderline and malignant phyllodes tumors. The local recurrence rate with adjuvant radiotherapy was significantly less than that observed in reported patients treated with margin-negative resection alone. PMID:19424757

  6. Children Undergoing Radiotherapy: Swedish Parents' Experiences and Suggestions for Improvement.

    PubMed

    Ångström-Brännström, Charlotte; Engvall, Gunn; Mullaney, Tara; Nilsson, Kristina; Wickart-Johansson, Gun; Svärd, Anna-Maja; Nyholm, Tufve; Lindh, Jack; Lindh, Viveca

    2015-01-01

    Approximately 300 children, from 0 to 18 years old, are diagnosed with cancer in Sweden every year. Of these children, 80-90 of them undergo radiotherapy treatment for their cancer. Although radiotherapy is an encounter with advanced technology, few studies have investigated the child's and the parent's view of the procedure. As part of an ongoing multicenter study aimed to improve patient preparation and the care environment in pediatric radiotherapy, this article reports the findings from interviews with parents at baseline. The aim of the present study was twofold: to describe parents' experience when their child undergoes radiotherapy treatment, and to report parents' suggestions for improvements during radiotherapy for their children. Sixteen mothers and sixteen fathers of children between 2-16 years old with various cancer diagnoses were interviewed. Data were analyzed using content analysis. The findings showed that cancer and treatment turns people's lives upside down, affecting the entire family. Further, the parents experience the child's suffering and must cope with intense feelings. Radiotherapy treatment includes preparation by skilled and empathetic staff. The parents gradually find that they can deal with the process; and lastly, parents have suggestions for improvements during the radiotherapy treatment. An overarching theme emerged: that despair gradually turns to a sense of security, with a sustained focus on and close interaction with the child. In conclusion, an extreme burden was experienced around the start of radiotherapy, though parents gradually coped with the process.

  7. Updates on clinical studies of selenium supplementation in radiotherapy

    PubMed Central

    2014-01-01

    To establish guidelines for the selenium supplementation in radiotherapy we assessed the benefits and risks of selenium supplementation in radiotherapy. Clinical studies on the use of selenium in radiotherapy were searched in the PubMed electronic database in January 2013. Sixteen clinical studies were identified among the 167 articles selected in the initial search. Ten articles were observational studies, and the other 6 articles reported studies on the effects of selenium supplementation in patients with cancer who underwent radiotherapy. The studies were conducted worldwide including European, American and Asian countries between 1987 and 2012. Plasma, serum or whole blood selenium levels were common parameters used to assess the effects of radiotherapy and the selenium supplementation status. Selenium supplementation improved the general conditions of the patients, improved their quality of life and reduced the side effects of radiotherapy. At the dose of selenium used in these studies (200–500 μg/day), selenium supplementation did not reduce the effectiveness of radiotherapy, and no toxicities were reported. Selenium supplementation may offer specific benefits for several types of cancer patients who undergo radiotherapy. Because high-dose selenium and long-term supplementation may be unsafe due to selenium toxicity, more evidence-based information and additional research are needed to ensure the therapeutic benefits of selenium supplementation. PMID:24885670

  8. Optimal radiotherapy utilisation rate in developing countries: An IAEA study.

    PubMed

    Rosenblatt, Eduardo; Barton, Michael; Mackillop, William; Fidarova, Elena; Cordero, Lisbeth; Yarney, Joel; Lim, Gerard; Abad, Anthony; Cernea, Valentin; Stojanovic-Rundic, Suzana; Strojan, Primoz; Kobachi, Lotfi; Quarneti, Aldo

    2015-07-01

    Optimal radiotherapy utilisation rate (RTU) is the proportion of all cancer cases that should receive radiotherapy. Optimal RTU was estimated for 9 Middle Income Countries as part of a larger IAEA project to better understand RTU and stage distribution. PMID:26164776

  9. Children Undergoing Radiotherapy: Swedish Parents’ Experiences and Suggestions for Improvement

    PubMed Central

    Mullaney, Tara; Nilsson, Kristina; Wickart-Johansson, Gun; Svärd, Anna-Maja; Nyholm, Tufve; Lindh, Jack; Lindh, Viveca

    2015-01-01

    Approximately 300 children, from 0 to 18 years old, are diagnosed with cancer in Sweden every year. Of these children, 80–90 of them undergo radiotherapy treatment for their cancer. Although radiotherapy is an encounter with advanced technology, few studies have investigated the child’s and the parent’s view of the procedure. As part of an ongoing multicenter study aimed to improve patient preparation and the care environment in pediatric radiotherapy, this article reports the findings from interviews with parents at baseline. The aim of the present study was twofold: to describe parents’ experience when their child undergoes radiotherapy treatment, and to report parents’ suggestions for improvements during radiotherapy for their children. Sixteen mothers and sixteen fathers of children between 2–16 years old with various cancer diagnoses were interviewed. Data were analyzed using content analysis. The findings showed that cancer and treatment turns people’s lives upside down, affecting the entire family. Further, the parents experience the child’s suffering and must cope with intense feelings. Radiotherapy treatment includes preparation by skilled and empathetic staff. The parents gradually find that they can deal with the process; and lastly, parents have suggestions for improvements during the radiotherapy treatment. An overarching theme emerged: that despair gradually turns to a sense of security, with a sustained focus on and close interaction with the child. In conclusion, an extreme burden was experienced around the start of radiotherapy, though parents gradually coped with the process. PMID:26509449

  10. Toxicity of oral radiotherapy in patients with acquired immunodeficiency syndrome

    SciTech Connect

    Cooper, J.S.; Fried, P.R.

    1987-03-01

    Although radiotherapy is a standard form of management of head and neck tumors, treatment of the oral cavity in patients who have the acquired immunodeficiency syndrome has produced unacceptable toxicity. Five such patients are described as a warning of enhanced toxicity of oral radiotherapy in this patient population.

  11. WEE1 inhibition sensitizes osteosarcoma to radiotherapy

    PubMed Central

    2011-01-01

    Background The use of radiotherapy in osteosarcoma (OS) is controversial due to its radioresistance. OS patients currently treated with radiotherapy generally are inoperable, have painful skeletal metastases, refuse surgery or have undergone an intralesional resection of the primary tumor. After irradiation-induced DNA damage, OS cells sustain a prolonged G2 cell cycle checkpoint arrest allowing DNA repair and evasion of cell death. Inhibition of WEE1 kinase leads to abrogation of the G2 arrest and could sensitize OS cells to irradiation induced cell death. Methods WEE1 expression in OS was investigated by gene-expression data analysis and immunohistochemistry of tumor samples. WEE1 expression in OS cell lines and human osteoblasts was investigated by Western blot. The effect of WEE1 inhibition on the radiosensitivity of OS cells was assessed by cell viability and caspase activation analyses after combination treatment. The presence of DNA damage was visualized using immunofluorescence microscopy. Cell cycle effects were investigated by flow cytometry and WEE1 kinase regulation was analyzed by Western blot. Results WEE1 expression is found in the majority of tested OS tissue samples. Small molecule drug PD0166285 inhibits WEE1 kinase activity. In the presence of WEE1-inhibitor, irradiated cells fail to repair their damaged DNA, and show higher levels of caspase activation. The inhibition of WEE1 effectively abrogates the irradiation-induced G2 arrest in OS cells, forcing the cells into premature, catastrophic mitosis, thus enhancing cell death after irradiation treatment. Conclusion We show that PD0166285, a small molecule WEE1 kinase inhibitor, can abrogate the G2 checkpoint in OS cells, pushing them into mitotic catastrophe and thus sensitizing OS cells to irradiation-induced cell death. This suggests that WEE1 inhibition may be a promising strategy to enhance the radiotherapy effect in patients with OS. PMID:21529352

  12. Big Data Analytics for Prostate Radiotherapy

    PubMed Central

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose–volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the “RadoncSpace”) in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches. PMID:27379211

  13. Dosimetry audit of radiotherapy treatment planning systems.

    PubMed

    Bulski, Wojciech; Chełmiński, Krzysztof; Rostkowska, Joanna

    2015-07-01

    In radiotherapy Treatment Planning Systems (TPS) various calculation algorithms are used. The accuracy of dose calculations has to be verified. Numerous phantom types, detectors and measurement methodologies are proposed to verify the TPS calculations with dosimetric measurements. A heterogeneous slab phantom has been designed within a Coordinated Research Project (CRP) of the IAEA. The heterogeneous phantom was developed in the frame of the IAEA CRP. The phantom consists of frame slabs made with polystyrene and exchangeable inhomogeneity slabs equivalent to bone or lung tissue. Special inserts allow to position thermoluminescent dosimeters (TLD) capsules within the polystyrene slabs below the bone or lung equivalent slabs and also within the lung equivalent material. Additionally, there are inserts that allow to position films or ionisation chamber in the phantom. Ten Polish radiotherapy centres (of 30 in total) were audited during on-site visits. Six different TPSs and five calculation algorithms were examined in the presence of inhomogeneities. Generally, most of the results from TLD were within 5 % tolerance. Differences between doses calculated by TPSs and measured with TLD did not exceed 4 % for bone and polystyrene equivalent materials. Under the lung equivalent material, on the beam axis the differences were lower than 5 %, whereas inside the lung equivalent material, off the beam axis, in some cases they were of around 7 %. The TLD results were confirmed with the ionisation chamber measurements. The comparison results of the calculations and the measurements allow to detect limitations of TPS calculation algorithms. The audits performed with the use of heterogeneous phantom and TLD seem to be an effective tool for detecting the limitations in the TPS performance or beam configuration errors at audited radiotherapy departments.

  14. Clinical Applications of 3-D Conformal Radiotherapy

    NASA Astrophysics Data System (ADS)

    Miralbell, Raymond

    Although a significant improvement in cancer cure (i.e. 20% increment) has been obtained in the last 2-3 decades, 30-40% of patients still fail locally after curative radiotherapy. In order to improve local tumor control rates with radiotherapy high doses to the tumor volume are frequently necessary. Three-dimensional conformal radiation therapy (3-D CRT) is used to denote a spectrum of radiation planning and delivery techniques that rely on three-dimensional imaging to define the target (tumor) and to distinguish it from normal tissues. Modern, high-precision radiotherapy (RT) techniques are needed in order to implement the goal of optimal tumor destruction delivering minimal dose to the non-target normal tissues. A better target definition is nowadays possible with contemporary imaging (computerized tomography, magnetic resonance imaging, and positron emission tomography) and image registration technology. A highly precise dose distributions can be obtained with optimal 3-D CRT treatment delivery techniques such as stereotactic RT, intensity modulated RT (IMRT), or protontherapy (the latter allowing for in-depth conformation). Patient daily set-up repositioning and internal organ immobilization systems are necessary before considering to undertake any of the above mentioned high-precision treatment approaches. Prostate cancer, brain tumors, and base of skull malignancies are among the sites most benefitting of dose escalation approaches. Nevertheless, a significant dose reduction to the normal tissues in the vicinity of the irradiated tumor also achievable with optimal 3-D CRT may also be a major issue in the treatment of pediatric tumors in order to preserve growth, normal development, and to reduce the risk of developing radiation induced diseases such as cancer or endocrinologic disorders.

  15. Our intraoperative boost radiotherapy experience and applications

    PubMed Central

    Günay, Semra; Alan, Ömür; Yalçın, Orhan; Türkmen, Aygen; Dizdar, Nihal

    2016-01-01

    Objective: To present our experience since November 2013, and case selection criteria for intraoperative boost radiotherapy (IObRT) that significantly reduces the local recurrence rate after breast conserving surgery in patients with breast cancer. Material and Methods: Patients who were suitable for IObRT were identified within the group of patients who were selected for breast conserving surgery at our breast council. A MOBETRON (mobile linear accelerator for IObRT) was used for IObRt during surgery. Results: Patients younger than 60 years old with <3 cm invasive ductal cancer in one focus (or two foci within 2 cm), with a histologic grade of 2–3, and a high possibility of local recurrence were admitted for IObRT application. Informed consent was obtained from all participants. Lumpectomy and sentinel lymph node biopsy was performed and advancement flaps were prepared according to the size and inclination of the conus following evaluation of tumor size and surgical margins by pathology. Distance to the thoracic wall was measured, and a radiation oncologist and radiation physicist calculated the required dose. Anesthesia was regulated with slower ventilation frequency, without causing hypoxia. The skin and incision edges were protected, the field was radiated (with 6 MeV electron beam of 10 Gy) and the incision was closed. In our cases, there were no major postoperative surgical or early radiotherapy related complications. Conclusion: The completion of another stage of local therapy with IObRT during surgery positively effects sequencing of other treatments like chemotherapy, hormonotherapy and radiotherapy, if required. IObRT increases disease free and overall survival, as well as quality of life in breast cancer patients. PMID:26985156

  16. Big Data Analytics for Prostate Radiotherapy.

    PubMed

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose-volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the "RadoncSpace") in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches. PMID:27379211

  17. Surgery Followed by Radiotherapy Versus Radiotherapy Alone for Metastatic Spinal Cord Compression From Unfavorable Tumors

    SciTech Connect

    Rades, Dirk; Huttenlocher, Stefan; Bajrovic, Amira; Karstens, Johann H.; Adamietz, Irenaeus A.; Kazic, Nadja; Rudat, Volker; Schild, Steven E.

    2011-12-01

    Purpose: Despite a previously published randomized trial, controversy exists regarding the benefit of adding surgery to radiotherapy for metastatic spinal cord compression (MSCC). It is thought that patients with MSCC from relatively radioresistant tumors or tumors associated with poor functional outcome after radiotherapy alone may benefit from surgery. This study focuses on these tumors. Methods and Materials: Data from 67 patients receiving surgery plus radiotherapy (S+RT) were matched to 134 patients (1:2) receiving radiotherapy alone (RT). Groups were matched for 10 factors and compared for motor function, ambulatory status, local control, and survival. Additional separate matched-pair analyses were performed for patients receiving direct decompressive surgery plus stabilization of involved vertebrae (DDSS) and patients receiving laminectomy (LE). Results: Improvement of motor function occurred in 22% of patients after S+RT and 16% after RT (p = 0.25). Posttreatment ambulatory rates were 67% and 61%, respectively (p = 0.68). Of nonambulatory patients, 29% and 19% (p = 0.53) regained ambulatory status. One-year local control rates were 85% and 89% (p = 0.87). One-year survival rates were 38% and 24% (p = 0.20). The matched-pair analysis of patients receiving LE showed no significant differences between both therapies. In the matched-pair analysis of patients receiving DDSS, improvement of motor function occurred more often after DDSS+RT than RT (28% vs. 19%, p = 0.024). Posttreatment ambulatory rates were 86% and 67% (p = 0.30); 45% and 18% of patients regained ambulatory status (p = 0.29). Conclusions: Patients with MSCC from an unfavorable primary tumor appeared to benefit from DDSS but not LE when added to radiotherapy in terms of improved functional outcome.

  18. Ichthyosiform scaling secondary to megavoltage radiotherapy

    SciTech Connect

    Ross, E.V. )

    1991-07-01

    Acquired ichthyosis is a rare dermatosis associated with a number of malignancies. Side effects seen on the skin secondary to megavoltage radiotherapy are uncommon but may include fine dry desquamation and tanning. The authors present a case of ichthyosiform scaling limited to the radiation fields in a patient treated for brain metastases of a primary small cell lung carcinoma. The reader is reminded that side effects of megavoltage treatment do occur on the skin. A brief review of these effects is included. 5 references.

  19. Intestinal lymphangiectasia secondary to radiotherapy and chemotherapy

    SciTech Connect

    Rao, S.S.; Dundas, S.; Holdsworth, C.D.

    1987-08-01

    We report a case of intestinal lymphangiectasia secondary to radiotherapy and chemotherapy. The patient also had small bowel bacterial overgrowth and pancreatic insufficiency. Lymphatic ectasia as a histological feature has been described previously in association with postradiotherapy malabsorption, but radiation-induced lymphangiectasia producing clinical manifestations has hitherto not been reported. Replacement of dietary long-chain fats with medium-chain triglycerides, pancreatic enzyme supplements, and a short course of oxytetracycline, resulted in dramatic clinical improvement. The possibility of intestinal lymphangiectasia should be borne in mind in patients with postradiotherapy malabsorption. A low serum albumin and lymphocyte count should draw attention to this possibility.

  20. Breast Molecular Profiling and Radiotherapy Considerations.

    PubMed

    Mahmoud, Omar; Haffty, Bruce G

    2016-01-01

    The last decade has seen major changes in the management of breast cancer. Heterogeneity regarding histology, therapeutic response, dissemination patterns, and patient outcome is evident. Molecular profiling provides an accurate tool to predict treatment outcome compared with classical clinicopathologic features. The genomic profiling unveiled the heterogeneity of breast cancer and identified distinct biologic subtypes. These advanced techniques were integrated into the clinical management; predicting systemic therapy benefit and overall survival. Utilizing genotyping to guide locoregional management decisions needs further characterization. In this chapter we will review available data on molecular classification of breast cancer, their association with locoregional outcome, their radiobiological properties and radiotherapy considerations. PMID:26987532

  1. [Quality and safety management for radiotherapy].

    PubMed

    Pourel, N; Meyrieux, C; Perrin, B

    2016-09-01

    Quality and safety management have been implemented for many years in healthcare structures (hospitals treating cancer, private radiotherapy centres). Their structure and formalization have improved progressively over time. These recommendations aim at describing the link between quality and safety management through its organization scheme based on quality-safety policy, process approach, document management and quality measurement. Dedicated tools, such as experience feedback, a priori risk mapping, to-do-lists and check-lists are shown as examples and recommended as routine practice. PMID:27523420

  2. Effects of radiotherapy on human parotid saliva

    SciTech Connect

    Mossman, K.L.; Shatzman, A.R.; Chencharick, J.D.

    1981-11-01

    Changes in parotide salivary function, as determined by flow rate and protein secretion, were measured in 31 cancer patients given radiotherapy to the head and neck. After the first week of treatment, a 50% decrease in salivary flow rate and a 60% decrease in protein secretion rate were observed. Salivary function remained at or below these levels during the next 3 week of treatment. Proteins in saliva were affected unequally, with the family of glycoproteins exhibiting greater sensitivity than amylase. Chromatography or irradiated (60 Gy) and unirradiated whole parotid saliva suggests that the observed alterations in salivary protein may be due to radiation effects on protein synthesis rather than on the proteins themselves.

  3. Dosimetric comparison of three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and helical tomotherapy for lung stereotactic body radiotherapy

    PubMed Central

    Kinhikar, Rajesh Ashok; Ghadi, Yogesh G.; Sahoo, Priyadarshini; Laskar, Sarbani Ghosh; Deshpande, Deepak D.; Shrivastava, Shyam K.; Agarwal, Jaiprakash

    2015-01-01

    To compare the treatment plans generated with three-dimensional conformal radiation therapy (3DCRT), intensity modulated radiotherapy (IMRT), and helical tomotherapy (HT) for stereotactic body radiotherapy of lung, twenty patients with medically inoperable (early nonsmall cell lung cancer) were retrospectively reviewed for dosimetric evaluation of treatment delivery techniques (3DCRT, IMRT, and HT). A dose of 6 Gy per fraction in 8 fractions was prescribed to deliver 95% of the prescription dose to 95% volume of planning target volume (PTV). Plan quality was assessed using conformity index (CI) and homogeneity index (HI). Doses to critical organs were assessed. Mean CI with 3DCRT, IMRT, and HT was 1.19 (standard deviation [SD] 0.13), 1.18 (SD 0.11), and 1.08 (SD 0.04), respectively. Mean HI with 3DCRT, IMRT, and HT was 1.14 (SD 0.05), 1.08 (SD 0.02), and 1.07 (SD 0.04), respectively. Mean R50% values for 3DCRT, IMRT, and HT was 8.5 (SD 0.35), 7.04 (SD 0.45), and 5.43 (SD 0.29), respectively. D2cm was found superior with IMRT and HT. Significant sparing of critical organs can be achieved with highly conformal techniques (IMRT and HT) without compromising the PTV conformity and homogeneity. PMID:26865754

  4. Radiotherapy dosimetry and the thermoluminescence characteristics of Ge-doped fibres of differing germanium dopant concentration and outer diameter

    NASA Astrophysics Data System (ADS)

    Noor, N. Mohd; Fadzil, M. S. Ahmad; Ung, N. M.; Maah, M. J.; Mahdiraji, G. A.; Abdul-Rashid, H. A.; Bradley, D. A.

    2016-09-01

    We examine the influence of elevated dopant concentration on the thermoluminescence characteristics of novel Ge-doped silica fibres. Basic dosimetric characteristics of the TL media were obtained, including linearity, reproducibility, energy dependence, fading, minimum detectable dose and glow curve analysis, use being made of a 60Co gamma irradiation facility (mean energy 1.25 MeV) and an electron linear accelerator producing photons at an accelerating potential of 6 and 10 MV. The 6 mol% Ge-doped fibres were found to provide TL response superior to that of 8- and 10 mol% Ge-doped fibres, both for fibres with outer diameter of 241 μm and 604 μm. Concerning reproducibility, obtained under three different test conditions, at <10% the 6 mol% Ge dopant concentration was observed to provide the superior coefficient of variation (CV). In regard to energy dependence, the 10 mol% Ge doped cylindrical fibres produced the largest gradient values at 0.364 and 0.327 for the 241 μm and 604 μm diameter cylindrical fibres respectively and thus the greatest energy dependency. Measured 33 days post irradiation; the 6 mol% Ge doped cylindrical fibres showed the least TL signal loss, at 21% for the 241 μm cylindrical fibre and <40% for the 604 μm cylindrical fibres. The results also revealed that the 6 mol% optical fibres provided the lowest minimum detectable dose, at 0.027 Gy for 6 MV photon beams. Evaluations of these characteristics are supporting development of novel Ge-doped optical fibres for dosimetry in radiotherapy.

  5. In vivo dosimetry in external beam radiotherapy

    SciTech Connect

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-15

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  6. External beam radiotherapy for prostate cancer.

    PubMed

    Budiharto, Tom; Haustermans, Karin; Kovacs, Gyoergy

    2010-05-01

    External beam radiotherapy (EBRT) constitutes an important management option for prostate cancer (PCa). Radiation doses >or=74 Gy are warranted. Dose escalation of EBRT using three-dimensional-conformal radiotherapy (RT) or intensity-modulated RT improves the therapeutic index by minimizing normal tissue complication probability and increasing tumor control probability. Although higher doses are associated with better biochemical disease-free survival, no impact on local recurrence or overall survival has been demonstrated. Hypofractionation for PCa may be an attractive therapeutic option, but toxicity data need to be confirmed in randomized phase III trials. Advances in RT technology, such as volumetric modulated arc therapy and image-guided RT, could facilitate the introduction of dose escalation and hypofractionation into clinical practice. Particle beam irradiation and more specific carbon ion RT are also very promising new techniques that are under investigation. Ultimately, these techniques may lead to focal dose escalation by selective boosting of dominant intraprostatic lesions, which is currently under investigation as a solution to overcome increased toxicity of homogenous dose escalation. This review will give a comprehensive overview of all the recent advances in these new radiation therapy techniques.

  7. Cataractogenesis after Cobalt-60 eye plaque radiotherapy

    SciTech Connect

    Kleineidam, M.; Augsburger, J.J. ); Hernandez, C.; Glennon, P.; Brady, L.W. )

    1993-07-15

    This study was designed to estimate the actuarial incidence of typical postirradiation cataracts and to identify prognostic factors related to their development in melanoma-containing eyes treated by Cobalt-60 plaque radiotherapy. A special interest was the impact of calculated radiation dose and dose-rate to the lens. The authors evaluated the actuarial occurrence of post-irradiation cataract in 365 patients with primary posterior uveal melanoma treated by Cobalt-60 plaque radiotherapy between 1976 and 1986. Only 22% (S.E. = 4.6%) of the patients who received a total dose of 6 to 20 Gy at the center of the lens developed a visually significant cataract attributable to the radiation within 5 years after treatment. Using multivariate Cox proportional hazards modeling, the authors identified thickness of the tumor, location of the tumor's anterior margin relative to the equatorward and the ora serrata, and diameter of the eye plaque used as the best combination of covariables for predicting length of time until development of cataract. Surprisingly, the dose of radiation delivered to the lens, which was strongly correlated to all of these covariables, was not a significant predictive factor in multivariate analysis. The results suggest that success of efforts to decrease the occurrence rate of post-irradiation cataracts by better treatment planning might be limited in patients with posterior uveal melanoma. 21 refs., 2 figs., 5 tabs.

  8. [Technical record in radiotherapy (author's transl)].

    PubMed

    Le Dorze, C; Horiot, J C; Laugier, A

    1977-11-01

    The term "technical record in radiotherapy" is used to describe collected information relative to treatment using radiation. The subject of this session of the chapter of Radiotherapy of the Société Française de Radiologie was the intrinsic functions of this record and its extrinsic limitations. The extreme diversity of the current state of the record is a known fact. A majority of participants express the desire for uniformisation of the collection of data or even, as a second stage, to have a common record. A library of technical records was set up under the responsibility of the Centre Georges-François Leclerc at Dijon (J.C. Horiot). One broad conclusion was seen to emerge: the creation of a minimum common record including essential information to which could be added the more specific data of each radiotherapist and at each time of use. Prior agreement will be necessary with regard to the standardisation of apparatus and the expression of the dose. This session was of necessity merely a reflection of future needs and it is to be hoped that the good will which was obvious during the course of the discussion may produce concrete results in the months to come.

  9. Liver-Directed Radiotherapy for Hepatocellular Carcinoma

    PubMed Central

    Keane, Florence K.; Wo, Jennifer Y.; Zhu, Andrew X.; Hong, Theodore S.

    2016-01-01

    Background The incidence of hepatocellular carcinoma (HCC) continues to increase world-wide. Many patients present with advanced disease with extensive local tumor or vascular invasion and are not candidates for traditionally curative therapies such as orthotopic liver transplantation (OLT) or resection. Radiotherapy (RT) was historically limited by its inability to deliver a tumoricidal dose; however, modern RT techniques have prompted renewed interest in the use of liver-directed RT to treat patients with primary hepatic malignancies. Summary The aim of this review was to discuss the use of external beam RT in the treatment of HCC, with particular focus on the use of stereotactic body radiotherapy (SBRT). We review the intricacies of SBRT treatment planning and delivery. Liver-directed RT involves accurate target identification, precise and reproducible patient immobilization, and assessment of target and organ motion. We also summarize the published data on liver-directed RT, and demonstrate that it is associated with excellent local control and survival rates, particularly in patients who are not candidates for OLT or resection. Key Messages Modern liver-directed RT is safe and effective for the treatment of HCC, particularly in patients who are not candidates for OLT or resection. Liver-directed RT, including SBRT, depends on accurate target identification, precise and reproducible patient immobilization, and assessment of target and organ motion. Further prospective studies are needed to fully delineate the role of liver-directed RT in the treatment of HCC. PMID:27493895

  10. Dose masking feature for BNCT radiotherapy planning

    DOEpatents

    Cook, Jeremy L.; Wessol, Daniel E.; Wheeler, Floyd J.

    2000-01-01

    A system for displaying an accurate model of isodoses to be used in radiotherapy so that appropriate planning can be performed prior to actual treatment on a patient. The nature of the simulation of the radiotherapy planning for BNCT and Fast Neutron Therapy, etc., requires that the doses be computed in the entire volume. The "entire volume" includes the patient and beam geometries as well as the air spaces in between. Isodoses derived from the computed doses will therefore extend into the air regions between the patient and beam geometries and thus depict the unrealistic possibility that radiation deposition occurs in regions containing no physical media. This problem is solved by computing the doses for the entire geometry and then masking the physical and air regions along with the isodose contours superimposed over the patient image at the corresponding plane. The user is thus able to mask out (remove) the contour lines from the unwanted areas of the image by selecting the appropriate contour masking region from the raster image.

  11. Predicting toxicity in radiotherapy for prostate cancer.

    PubMed

    Landoni, Valeria; Fiorino, Claudio; Cozzarini, Cesare; Sanguineti, Giuseppe; Valdagni, Riccardo; Rancati, Tiziana

    2016-03-01

    This comprehensive review addresses most organs at risk involved in planning optimization for prostate cancer. It can be considered an update of a previous educational review that was published in 2009 (Fiorino et al., 2009). The literature was reviewed based on PubMed and MEDLINE database searches (from January 2009 up to September 2015), including papers in press; for each section/subsection, key title words were used and possibly combined with other more general key-words (such as radiotherapy, dose-volume effects, NTCP, DVH, and predictive model). Publications generally dealing with toxicity without any association with dose-volume effects or correlations with clinical risk factors were disregarded, being outside the aim of the review. A focus was on external beam radiotherapy, including post-prostatectomy, with conventional fractionation or moderate hypofractionation (<4Gy/fraction); extreme hypofractionation is the topic of another paper in this special issue. Gastrointestinal and urinary toxicity are the most investigated endpoints, with quantitative data published in the last 5years suggesting both a dose-response relationship and the existence of a number of clinical/patient related risk factors acting as dose-response modifiers. Some results on erectile dysfunction, bowel toxicity and hematological toxicity are also presented. PMID:27068274

  12. A scintillating fiber dosimeter for radiotherapy

    NASA Astrophysics Data System (ADS)

    Bartesaghi, G.; Conti, V.; Bolognini, D.; Grigioni, S.; Mascagna, V.; Prest, M.; Scazzi, S.; Mozzanica, A.; Cappelletti, P.; Frigerio, M.; Gelosa, S.; Monti, A.; Ostinelli, A.; Giannini, G.; Vallazza, E.

    2007-10-01

    Radiotherapy, together with chemotherapy and surgery, is one of the main methods applied in the fight against cancer; in order to increase the chances of a successful radiotherapy treatment the dose delivery to the tumor and the surrounding normal tissues has to be computed with high accuracy. Traditional dosimeters are accurate but single channel (ionization chambers and diodes) or non real-time (radiographic films) devices. At present there is no device water equivalent that can perform real-time and bidimensional measurements of a dose distribution. This article describes the development of a real-time dosimeter based on scintillating fibers for photon and electron beams; the fibers are made of polystyrene, that is water equivalent and thus tissue equivalent, allowing a direct dose calculation. Three prototypes (single and multichannel) have been assembled, consisting in small scintillators coupled to white fibers that carry the light to photomultiplier tubes. In this article the prototypes and the readout electronics are described, together with the results of the measurements with electron and photon beams with energy up to 20 MeV (produced by linear accelerators Varian Clinac 1800 and 2100CD).

  13. Cerebral aneurysms following radiotherapy for medulloblastoma

    SciTech Connect

    Benson, P.J.; Sung, J.H.

    1989-04-01

    Three patients, two males and one female aged 21, 14, and 31 years, respectively, developed cerebral saccular aneurysms several years after undergoing radiotherapy for cerebellar medulloblastoma at 2, 5, and 14 years of age, respectively. Following surgery, all three received combined cobalt-60 irradiation and intrathecal colloidal radioactive gold (/sup 198/Au) therapy, and died from rupture of the aneurysm 19, 9, and 17 years after the radiotherapy, respectively. Autopsy examination revealed no recurrence of the medulloblastoma, but widespread radiation-induced vasculopathy was found at the base of the brain and in the spinal cord, and saccular aneurysms arose from the posterior cerebral arteries at the basal cistern or choroidal fissure. The aneurysms differed from the ordinary saccular aneurysms of congenital type in their location and histological features. Their locations corresponded to the areas where intrathecally administered colloidal /sup 198/Au is likely to pool, and they originated directly from a segment of the artery rather than from a branching site as in congenital saccular aneurysms. It is, therefore, concluded that the aneurysms in these three patients were most likely radiation-induced.

  14. Uses of megavoltage digital tomosynthesis in radiotherapy

    NASA Astrophysics Data System (ADS)

    Sarkar, Vikren

    With the advent of intensity modulated radiotherapy, radiation treatment plans are becoming more conformal to the tumor with the decreasing margins. It is therefore of prime importance that the patient be positioned correctly prior to treatment. Therefore, image guided treatment is necessary for intensity modulated radiotherapy plans to be implemented successfully. Current advanced imaging devices require costly hardware and software upgrade, and radiation imaging solutions, such as cone beam computed tomography, may introduce extra radiation dose to the patient in order to acquire better quality images. Thus, there is a need to extend current existing imaging device ability and functions while reducing cost and radiation dose. Existing electronic portal imaging devices can be used to generate computed tomography-like tomograms through projection images acquired over a small angle using the technique of cone-beam digital tomosynthesis. Since it uses a fraction of the images required for computed tomography reconstruction, use of this technique correspondingly delivers only a fraction of the imaging dose to the patient. Furthermore, cone-beam digital tomosynthesis can be offered as a software-only solution as long as a portal imaging device is available. In this study, the feasibility of performing digital tomosynthesis using individually-acquired megavoltage images from a charge coupled device-based electronic portal imaging device was investigated. Three digital tomosynthesis reconstruction algorithms, the shift-and-add, filtered back-projection, and simultaneous algebraic reconstruction technique, were compared considering the final image quality and radiation dose during imaging. A software platform, DART, was created using a combination of the Matlab and C++ languages. The platform allows for the registration of a reference Cone Beam Digital Tomosynthesis (CBDT) image against a daily acquired set to determine how to shift the patient prior to treatment. Finally

  15. SU-E-T-415: An Ionization Chamber Array with High Spatial Resolution for External Beam Radiotherapy

    SciTech Connect

    Togno, M; Wilkens, J; Menichelli, D

    2014-06-01

    Purpose: To characterize an ionization chamber array technology with high spatial resolution and high charge collection efficiency for external beam radiotherapy. Methods: The prototype under test is a linear array of air vented ionization chambers developed by IBA Dosimetry, consisting of 80 pixels with 3.5mm spatial resolution and 4mm{sup 3} sensitive volume. The detector was characterized in a plastic phantom with {sup 60} Co radiation and MV X-rays from an ELEKTA Agility LINAC (with flattened and unflattened beam qualities). Bias voltage was varied in order to evaluate charge collection efficiency. A commercial array of ionization chambers (MatriXX Evolution, IBA Dosimetry) and an amorphous silicon flat panel in direct conversion configuration were used as references. Results: Repeatability (0.4%) and stability under continuous gamma irradiation (0.3%) are very good, in spite of low active volume and sensitivity (∼200pC/Gy). Charge collection efficiency is higher than 99% already at 150V with ∼2mGy dose per pulse, leading to a ±1.1% sensitivity change with dose per pulse in the range 0.09-2mGy (covering all flattened and unflattened applications). Measured dose profiles are in agreement with MatriXX for fields larger than 2×2cm{sup 2}, in which case the linear array offers a much better characterization of the penumbra region. Down to 1×1cm{sup 2}, measured profiles are in very good agreement with the flat panel. Conclusion: The array represents a valuable tool for the characterization of treatment fields in which high spatial resolution is required, together with the dosimetric performance of air vented ionization chambers. Such a technology would be particularly valuable in association with advanced treatment modalities such as rotational radiotherapy, stereotactic treatments (even with unflattened beam qualities) and proton therapy, due to the insensitivity of the chambers on dose per pulse. In the future, a two dimensional prototype based on this

  16. Computational and Physical Quality Assurance Tools for Radiotherapy

    NASA Astrophysics Data System (ADS)

    Graves, Yan Jiang

    Radiation therapy aims at delivering a prescribed amount of radiation dose to cancerous targets while sparing dose to normal organs. Treatment planning and delivery in modern radiotherapy are highly complex. To ensure the accuracy of the delivered dose to a patient, a quality assurance (QA) procedure is needed before the actual treatment delivery. This dissertation aims at developing computational and physical tools to facilitate the QA process. In Chapter 2, we have developed a fast and accurate computational QA tool using a graphics processing unit based Monte Carlo (MC) dose engine. This QA tool aims at identifying any errors in the treatment planning stage and machine delivery process by comparing three dose distributions: planned dose computed by a treatment planning system, planned dose and delivered dose reconstructed using the MC method. Within this tool, several modules have been built. (1) A denoising algorithm to smooth the MC calculated dose. We have also investigated the effects of statistical uncertainty in MC simulations on a commonly used dose comparison metric. (2) A linear accelerator source model with a semi-automatic commissioning process. (3) A fluence generation module. With all these modules, a web application for this QA tool with a user friendly interface has been developed to provide users with easy access to our tool, facilitating its clinical utilizations. Even after an initial treatment plan fulfills the QA requirements, a patient may experience inter-fractional anatomy variations, which compromise the initial plan optimality. To resolve this issue, adaptive radiotherapy (ART) has been proposed, where treatment plan is redesigned based on most recent patient anatomy. In Chapter 3, we have constructed a physical deformable head and neck (HN) phantom with in-vivo dosimetry capability. This phantom resembles HN patient geometry and simulates tumor shrinkage with a high level of realism. The ground truth deformation field can be measured

  17. Laryngeal sensation and pharyngeal delay time after (chemo)radiotherapy.

    PubMed

    Maruo, Takashi; Fujimoto, Yasushi; Ozawa, Kikuko; Hiramatsu, Mariko; Suzuki, Atsushi; Nishio, Naoki; Nakashima, Tsutomu

    2014-08-01

    The objective of the study was to evaluate the association between changes in laryngeal sensation and initiation of swallowing reflex or swallowing function before and after (chemo)radiotherapy. A prospective study was conducted in a tertiary referral university hospital. Thirteen patients who received (chemo)radiotherapy for treatment of laryngeal or hypopharyngeal cancer were included. Laryngeal sensation was evaluated at the tip of the epiglottis before and 1, 3 months, and 1 year after (chemo)radiotherapy. Videofluoroscopy was performed at the same time. Quantitative determinations included changes in laryngeal sensation, computed analysis of pharyngeal delay time, the distance and velocity of hyoid bone movement during the phase of hyoid excursion, and pharyngeal residue rate (the proportion of the bolus that was left as residue in the pharynx at the first swallow). Laryngeal sensation significantly deteriorated 1 month after (chemo)radiotherapy, but there was a tendency to return to pretreatment levels 1 year after treatment. Neither pharyngeal delay time nor displacement of the hyoid bone changed significantly before and after (chemo)radiotherapy. In addition, there was no significant difference in the mean velocity of hyoid bone movement and the amount of stasis in the pharynx at the first swallow before and after (chemo)radiotherapy. After (chemo)radiotherapy, laryngeal sensation deteriorated. But, in this study, videofluoroscopy showed that swallowing reflex and function were maintained.

  18. Review of hematological indices of cancer patients receiving combined chemotherapy & radiotherapy or receiving radiotherapy alone.

    PubMed

    Shahid, Saman

    2016-09-01

    We observed the outcomes of chemotherapy with radiotherapy (CR) or radiotherapy (RT) alone for cancer patients of larynx, breast, blood and brain origins through complete blood count (CBC). Following were more depressed in CR patients: mean corpuscular hemoglobin-MCH & lymphocytes-LYM, hematocrit, mean corpuscular hemoglobin concentration-MCHC, hemoglobin-HB and red blood cells-RBC. In RT patients, following were more depressed: LYM, MCH and MCHC. Overall, in all cancer patients, the lymphocytes were depressed 52%. There existed a significant difference between white blood cells and RBC in both CR and RT patients. A significant moderate negative correlation is found in HB with the dose range 30-78 (Gray) given to the CR cancer patients. More number of CBC parameters affected in patients treated with CR and RT; but in less percentage as compared to patients who treated with RT alone. The cancer patients suffered from anemia along with immune modulations from the treatments. PMID:27423975

  19. Radiotherapy for Graves' disease. The possible role of low-dose radiotherapy.

    PubMed

    Arenas, Meritxell; Sabater, Sebastià; Jiménez, Pedro Lara; Rovirosa, Àngels; Biete, Albert; Linares, Victoria; Belles, Montse; Panés, Julià

    2016-01-01

    Immunomodulatory effects of low-dose radiotherapy (LD-RT) have been used for the treatment of several benign diseases, including arthrodegenerative and inflammatory pathologies. Graves' disease is an autoimmune disease and radiotherapy (RT) is a therapeutic option for ocular complications. The dose recommended in the clinical practice is 20 Gy (2 Gy/day). We hypothesized that lower doses (<10 Gy total dose, <1 Gy/day) could results in higher efficacy if we achieved anti-inflammatory and immunomodulatory effects of LD-RT. We review current evidence on the effects of RT in the treatment of Graves' disease and the possible use of LD-RT treatment strategy. PMID:27601953

  20. Concerning Units.

    ERIC Educational Resources Information Center

    Wadlinger, Robert L.

    1983-01-01

    SI units come in two distinct types: fundamental (kilogram, meter) and descriptive (atom, molecule). Proper/improper uses of atom/molecule from historical cases are presented followed by a re-introduction of a light "wave (cycle)" unit and the clearly defined photon model which is deduced. Also examines omission of the fundamental unit "radon."…

  1. Long-Term Breast Cancer Patient Outcomes After Adjuvant Radiotherapy Using Intensity-Modulated Radiotherapy or Conventional Tangential Radiotherapy

    PubMed Central

    Yang, Jen-Fu; Lee, Meei-Shyuan; Lin, Chun-Shu; Chao, Hsing-Lung; Chen, Chang-Ming; Lo, Cheng-Hsiang; Fan, Chao-Yueh; Tsao, Chih-Cheng; Huang, Wen-Yen

    2016-01-01

    Abstract The aim of the article is to analyze breast cancer patient clinical outcomes after long-term follow-up using intensity-modulated radiotherapy (IMRT) or conventional tangential radiotherapy (cRT). We retrospectively reviewed patients with stage 0–III breast cancer who received breast conserving therapy between April 2004 and December 2007. Of the 234 patients, 103 (44%) were treated with IMRT and 131 (56%) were treated with cRT. A total prescription dose of 45 to 50 Gy (1.8–2 Gy per fraction) was delivered to the whole breast. A 14 Gy boost dose was delivered in 7 fractions. The median follow-up was 8.2 years. Five of 131 (3.8%) cRT-treated patients and 2 of 103 (1.9%) IMRT-treated patients had loco-regional failure. The 8-year loco-regional failure-free survival rates were 96.7% and 97.6% (P = 0.393) in the cRT and IMRT groups, respectively, whereas the 8-year disease-free survival (DFS) rates were 91.2% and 93.1%, respectively (P = 0.243). Patients treated with IMRT developed ≥ grade 2 acute dermatitis less frequently than patients treated with cRT (40.8% vs 56.5%; P = 0.017). There were no differences in late toxicity. IMRT reduces ≥ grade 2 acute skin toxicity. Local control, DFS, and overall survival were equivalent with IMRT and cRT. IMRT can be considered a standard technique for breast cancer treatment. PMID:26986158

  2. Stromal-epithelial dynamics in response to fractionated radiotherapy

    NASA Astrophysics Data System (ADS)

    Qayyum, Muqeem Abdul

    Radiotherapy is central to the management of a number of human cancers, either as an adjuvant or primary treatment modality. The principal objective in irradiating tumors is to permanently inhibit their proliferative ability. More than half of all malignancies are primarily treated with radiation, but the heterotypic nature of tumor cells greatly complicates their response to radiotherapy. The need for reliable parameters to predict tumor and normal tissue response to radiation is therefore a prime concern of clinical oncology. Post-operative radiotherapy has commonly been used for early stage breast cancer to treat residual disease. There is continued debate as to what might be the proper dose per fraction as well as the total dose of radiation that needs to be prescribed to prevent disease recurrence. Countries outside the US have adopted increased dose fractionation (i.e., hypofractionation) schemes for early stage breast cancer as a standard of practice; however there is a lack of confidence in these approaches in the United States. The tumor microenvironment plays a significant role in regulating the progression of carcinomas, although the mechanisms are not entirely clear. The primary objective of this work was to characterize, through mechanobiological and radiobiological modeling, a test bed for radiotherapy fractionation techniques assessment. Our goal is to understand how the tumor microenvironment responds to dose fractionation schemes for Breast Conserving Therapy (BCT). Although carcinomas are the major concern for oncology, in this project, the goal is to understand how the stromal microenvironment influences behavior of the cancer cell populations. By classifying 3-D cellular co-cultures as having a reactive or quiescent stroma using the mechanobiology profile (culture stiffness,cellular activation, differentiation, and proliferation) we aim to differentiate the effectiveness of various fractionation schemes. The benefits of understanding heterotypic

  3. Excellent Local Control With Stereotactic Radiotherapy Boost After External Beam Radiotherapy in Patients With Nasopharyngeal Carcinoma

    SciTech Connect

    Hara, Wendy; Loo, Billy W.; Goffinet, Don R.; Chang, Steven D.; Adler, John R.; Pinto, Harlan A.; Fee, Willard E.; Kaplan, Michael J.; Fischbein, Nancy J.; Le, Quynh-Thu

    2008-06-01

    Purpose: To determine long-term outcomes in patients receiving stereotactic radiotherapy (SRT) as a boost after external beam radiotherapy (EBRT) for locally advanced nasopharyngeal carcinoma (NPC). Methods and Materials: Eight-two patients received an SRT boost after EBRT between September 1992 and July 2006. Nine patients had T1, 30 had T2, 12 had T3, and 31 had T4 tumors. Sixteen patients had Stage II, 19 had Stage III, and 47 had Stage IV disease. Patients received 66 Gy of EBRT followed by a single-fraction SRT boost of 7-15 Gy, delivered 2-6 weeks after EBRT. Seventy patients also received cisplatin-based chemotherapy delivered concurrently with and adjuvant to radiotherapy. Results: At a median follow-up of 40.7 months (range, 6.5-144.2 months) for living patients, there was only 1 local failure in a patient with a T4 tumor. At 5 years, the freedom from local relapse rate was 98%, freedom from nodal relapse 83%, freedom from distant metastasis 68%, freedom from any relapse 67%, and overall survival 69%. Late toxicity included radiation-related retinopathy in 3, carotid aneurysm in 1, and radiographic temporal lobe necrosis in 10 patients, of whom 2 patients were symptomatic with seizures. Of 10 patients with temporal lobe necrosis, 9 had T4 tumors. Conclusion: Stereotactic radiotherapy boost after EBRT provides excellent local control for patients with NPC. Improved target delineation and dose homogeneity of radiation delivery for both EBRT and SRT is important to avoid long-term complications. Better systemic therapies for distant control are needed.

  4. Recent advancements in toxicity prediction following prostate cancer radiotherapy.

    PubMed

    Ospina, J D; Fargeas, A; Dréan, G; Simon, A; Acosta, O; de Crevoisier, R

    2015-01-01

    In external beam radiotherapy for prostate cancer limiting toxicities for dose escalation are bladder and rectum toxicities. Normal tissue complication probability models aim at quantifying the risk of developping adverse events following radiotherapy. These models, originally proposed in the context of uniform irradiation, have evolved to implementations based on the state-of-the-art classification methods which are trained using empirical data. Recently, the use of image processing techniques combined with population analysis methods has led to a new generation of models to understand the risk of normal tissue complications following radiotherapy. This paper overviews those methods in the case of prostate cancer radiation therapy and propose some lines of future research.

  5. Radiotherapy cost-calculation and its impact on capacity planning.

    PubMed

    Lievens, Yolande; Slotman, Berend Jan

    2003-08-01

    The rapid rise in health care expenses has resulted in an increased interest in the cost of treatments from a cost-effectiveness point of view for management purposes and in a reimbursement setting. The economics of radiotherapy within the global context of health care, and more specifically of cancer therapy, are discussed in this review. Furthermore, the calculation of radiotherapy costs from an institutional perspective using activity-based costing and on capacity planning in radiotherapy - at the departmental as well as at the national level - by integrating cost, epidemiological and scientifico-technological data are focused on. PMID:19807460

  6. Synergistic Effects of Gold Nanocages in Hyperthermia and Radiotherapy Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Ai-wei; Guo, Wei-hua; Qi, Ya-fei; Wang, Jian-zhen; Ma, Xiang-xing; Yu, De-xin

    2016-06-01

    Gold nanocages (GNCs) are a promising material that not only converts near infrared (NIR) light to heat for the ablation of tumors but also acts as a radiosensitizer. The combination of hyperthermia and radiotherapy has a synergistic effect that can lead to significant tumor cell necrosis. In the current study, we synthesized GNCs that offered the combined effects of hyperthermia and radiotherapy. This combination strategy resulted in increased tumor cell apoptosis and significant tumor tissue necrosis. We propose that GNCs can be used for clinical treatment and to potentially overcome resistance to radiotherapy by clearly increasing the antitumor effect.

  7. Intensity-Modulated Radiotherapy for Sinonasal Cancer: Improved Outcome Compared to Conventional Radiotherapy

    SciTech Connect

    Dirix, Piet; Vanstraelen, Bianca; Jorissen, Mark; Vander Poorten, Vincent; Nuyts, Sandra

    2010-11-15

    Purpose: To evaluate clinical outcome and toxicity of postoperative intensity-modulated radiotherapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 2003 and 2008, 40 patients with cancer of the paranasal sinuses (n = 34) or nasal cavity (n = 6) received postoperative IMRT to a dose of 60 Gy (n = 21) or 66 Gy (n = 19). Treatment outcome and toxicity were retrospectively compared with that of a previous patient group (n = 41) who were also postoperatively treated to the same doses but with three-dimensional conformal radiotherapy without intensity modulation, from 1992 to 2002. Results: Median follow-up was 30 months (range, 4-74 months). Two-year local control, overall survival, and disease-free survival were 76%, 89%, and 72%, respectively. Compared to the three-dimensional conformal radiotherapy treatment, IMRT resulted in significantly improved disease-free survival (60% vs. 72%; p = 0.02). No grade 3 or 4 toxicity was reported in the IMRT group, either acute or chronic. The use of IMRT significantly reduced the incidence of acute as well as late side effects, especially regarding skin toxicity, mucositis, xerostomia, and dry-eye syndrome. Conclusions: Postoperative IMRT for sinonasal cancer significantly improves disease-free survival and reduces acute as well as late toxicity. Consequently, IMRT should be considered the standard treatment modality for malignancies of the nasal cavity and paranasal sinuses.

  8. Integrating Geriatric Assessment into Decision-Making after Prostatectomy: Adjuvant Radiotherapy, Salvage Radiotherapy, or None?

    PubMed Central

    Goineau, Aurore; d’Aillières, Bénédicte; de Decker, Laure; Supiot, Stéphane

    2015-01-01

    Despite current advancements in the field, management of older prostate cancer patients still remains a big challenge for Geriatric Oncology. The International Society of Geriatric Oncology (ISGO) has recently updated its recommendations in this area, and these have been widely adopted, notably by the European Association of Urology. This article outlines the principles that should be observed in the management of elderly patients who have recently undergone prostatectomy for malignancy or with a biochemical relapse following prostatectomy. Further therapeutic intervention should not be considered in those patients who are classified as frail in the geriatric assessment. In patients presenting better health conditions, salvage radiotherapy is to be preferred to adjuvant radiotherapy, which is only indicated in certain exceptional cases. Radiotherapy of the operative bed presents a higher risk to the elderly. Additionally, hormone therapy clearly shows higher side effects in older patients and therefore it should not be administered to asymptomatic patients. We propose a decision tree based on the ISGO recommendations, with specific modifications for patients in biochemical relapse. PMID:26528437

  9. Tadalafil for Prevention of Erectile Dysfunction After Radiotherapy for Prostate Cancer The Radiation Therapy Oncology Group [0831] Randomized Clinical Trial

    PubMed Central

    Pisansky, Thomas M.; Pugh, Stephanie L.; Greenberg, Richard E.; Pervez, Nadeem; Reed, Daniel R.; Rosenthal, Seth A.; Mowat, Rex B.; Raben, Adam; Buyyounouski, Mark K.; Kachnic, Lisa A.; Bruner, Deborah W.

    2015-01-01

    IMPORTANCE Tadalafil is used to treat erectile dysfunction after prostate cancer treatment, but its role as a preventive agent is undefined. OBJECTIVES To determine primarily whether tadalafil preserved erectile function in men treated with radiotherapy for prostate cancer, and secondarily to determine whether participant- or partner-reported overall sexual function and sexual and marital satisfaction were affected. DESIGN, SETTING, AND PARTICIPANTS Stratified, placebo-controlled, double-blind, parallel-group study with 1:1 randomization at 76 community-based and tertiary medical sites in the United States and Canada. Two hundred forty-two participants with intact erectile function scheduled to receive radiotherapy for prostate cancer were recruited between November 2009 and February 2012 with follow-up through March 2013. INTERVENTIONS One hundred twenty-one participants were assigned 5 mg of tadalafil daily and 121 were assigned placebo for 24 weeks starting with external radiotherapy (63%) or brachytherapy (37%). Participant-reported International Index of Erectile Function response before radiotherapy and at weeks 2 and 4, between weeks 20 and 24, between weeks 28 and 30, and 1 year thereafter. Participants and partners could respond also to the Sexual Adjustment Questionnaire and to the Locke Marital Adjustment Test before radiotherapy, between weeks 20 and 24 and weeks 28 and 30, and at 1 year. MAIN OUTCOMES AND MEASURES Primary outcome was off-drug spontaneous erectile function 28 to 30 weeks after radiotherapy started. Secondary end points were spontaneous erection at 1 year; overall sexual function and satisfaction; marital adjustment; and partner-reported satisfaction and marital adjustment at 28 to 30 weeks and 1 year, predictors of tadalafil response; and adverse events. RESULTS Among 221 evaluable participants, 80 (79%; 95% CI, 70%–88%) assigned to receive tadalafil retained erectile function between weeks 28 and 30 compared with 61 (74%; 95% CI, 63

  10. Radiotherapy in the Era of Precision Medicine.

    PubMed

    Yard, Brian; Chie, Eui Kyu; Adams, Drew J; Peacock, Craig; Abazeed, Mohamed E

    2015-10-01

    Current predictors of radiation response are largely limited to clinical and histopathologic parameters, and extensive systematic analyses of the correlation between radiation sensitivity and genomic parameters remain lacking. In the era of precision medicine, the lack of -omic determinants of radiation response has hindered the personalization of radiation delivery to the unique characteristics of each patient׳s cancer and impeded the discovery of new therapies that can be administered concurrently with radiation therapy. The cataloging of the -omic determinants of radiation sensitivity of cancer has great potential in enhancing efficacy and limiting toxicity in the context of a new approach to precision radiotherapy. Herein, we review concepts and data that contribute to the delineation of the radiogenomic landscape of cancer.

  11. Breast cellulitis after conservative surgery and radiotherapy

    SciTech Connect

    Rescigno, J.; McCormick, B.; Brown, A.E.; Myskowski, P.L. )

    1994-04-30

    Cellulitis is a previously unreported complication of conservative surgery and radiation therapy for early stage breast cancer. Patients who presented with breast cellulitis after conservative therapy are described. Eleven patients that developed cellulitis of the breast over a 38-month period of observation are the subject of this report. Clinical characteristics of patients with cellulitis and their treatment and outcome are reported. Potential patient and treatment-related correlates for the development of cellulitis are analyzed. The risk of cellulitis persists years after initial breast cancer therapy. The clinical course of the patients was variable: some patients required aggressive, long-duration antibiotic therapy, while others had rapid resolution with antibiotics. Three patients suffered from multiple episodes of cellulitis. Patients with breast cancer treated with conservative surgery and radiotherapy are at risk for breast cellulitis. Systematic characterization of cases of cellulitis may provide insight into diagnosis, prevention, and more effective therapy for this uncommon complication. 15 refs., 1 fig., 2 tabs.

  12. Biologically Optimized Treatments for Hadron Radiotherapy

    NASA Astrophysics Data System (ADS)

    Nazaryan, Vahagn; Keppel, Cynthia; Britten, Richard; George, Jerry; Nie, Xiliang

    2008-10-01

    Near future advances in proton radiotherapy technology will increasingly require complex, conformal treatment planning. However, the current state of knowledge of the biological efficiency of proton beams may be inadequate to facilitate precision, and reduced margins. A new project at the Hampton University Proton Therapy Institute and the Eastern Virginia Medical School aims to facilitate the expected benefits of increasingly conformal treatment capabilities. Specifically, we seek to establish with measurements the biological depth dose profile of protons with incident energies in the range 62-210 MeV, and to utilize these also to provide vastly improved model algorithms for patient treatment planning based on biological, rather than simply physical, depth dose profiles. A progress report on a model for proton biological efficiency calculations as an input algorithm for treatment planning with protons will be presented. The planned measurements will be discussed.

  13. High-LET charged particle radiotherapy

    SciTech Connect

    Castro, J.R. . Research Medicine and Radiation Biophysics Div. California Univ., San Francisco, CA . Dept. of Radiation Oncology)

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years.

  14. Radiotherapy With Protons And Ion Beams

    SciTech Connect

    Jaekel, Oliver

    2010-04-26

    The use of proton and ion beams has been proposed more than 60 years ago in 1946 by Robert Wilson. In 1955 the first patients were treated with proton beams in Berkeley. Since then radiotherapy with proton and ion beams has constantly been developed at research centers. Within the last decade, however, a considerable number of hospital based facilities came into operation. In this paper an overview over the basic physical and biological properties of proton and ion beams is given. The basic accelerator concepts are outlined and the design of treatment facilities is described. Then the medical physics aspects of the beam delivery, dosimetry and treatment planning are discussed before the clinical concepts are briefly reviewed.

  15. Proton beam radiotherapy of uveal melanoma

    PubMed Central

    Damato, Bertil; Kacperek, Andrzej; Errington, Doug; Heimann, Heinrich

    2013-01-01

    Proton beam radiotherapy of uveal melanoma can be administered as primary treatment, as salvage therapy for recurrent tumor, and as neoadjuvant therapy prior to surgical resection. The physical properties of proton beams make it possible to deliver high-doses of radiation to the tumor with relative sparing of adjacent tissues. This form of therapy is effective for a wider range of uveal melanoma than any other modality, providing exceptionally-high rates of local tumor control. This is particularly the case with diffuse iris melanomas, many of which are unresectable. The chances of survival, ocular conservation, visual preservation and avoidance of iatrogenic morbidity depend greatly on the tumor size, location and extent. When treating any side-effects and/or complications, it is helpful to consider whether these are the result of collateral damage or persistence of the irradiated tumor (‘toxic tumor syndrome’). PMID:24227980

  16. Radiotherapy With Protons And Ion Beams

    NASA Astrophysics Data System (ADS)

    Jäkel, Oliver

    2010-04-01

    The use of proton and ion beams has been proposed more than 60 years ago in 1946 by Robert Wilson. In 1955 the first patients were treated with proton beams in Berkeley. Since then radiotherapy with proton and ion beams has constantly been developed at research centers. Within the last decade, however, a considerable number of hospital based facilities came into operation. In this paper an overview over the basic physical and biological properties of proton and ion beams is given. The basic accelerator concepts are outlined and the design of treatment facilities is described. Then the medical physics aspects of the beam delivery, dosimetry and treatment planning are discussed before the clinical concepts are briefly reviewed.

  17. Radiotherapy Dose Fractionation under Parameter Uncertainty

    NASA Astrophysics Data System (ADS)

    Davison, Matt; Kim, Daero; Keller, Harald

    2011-11-01

    In radiotherapy, radiation is directed to damage a tumor while avoiding surrounding healthy tissue. Tradeoffs ensue because dose cannot be exactly shaped to the tumor. It is particularly important to ensure that sensitive biological structures near the tumor are not damaged more than a certain amount. Biological tissue is known to have a nonlinear response to incident radiation. The linear quadratic dose response model, which requires the specification of two clinically and experimentally observed response coefficients, is commonly used to model this effect. This model yields an optimization problem giving two different types of optimal dose sequences (fractionation schedules). Which fractionation schedule is preferred depends on the response coefficients. These coefficients are uncertainly known and may differ from patient to patient. Because of this not only the expected outcomes but also the uncertainty around these outcomes are important, and it might not be prudent to select the strategy with the best expected outcome.

  18. TOPICAL REVIEW: Anatomical imaging for radiotherapy

    NASA Astrophysics Data System (ADS)

    Evans, Philip M.

    2008-06-01

    The goal of radiation therapy is to achieve maximal therapeutic benefit expressed in terms of a high probability of local control of disease with minimal side effects. Physically this often equates to the delivery of a high dose of radiation to the tumour or target region whilst maintaining an acceptably low dose to other tissues, particularly those adjacent to the target. Techniques such as intensity modulated radiotherapy (IMRT), stereotactic radiosurgery and computer planned brachytherapy provide the means to calculate the radiation dose delivery to achieve the desired dose distribution. Imaging is an essential tool in all state of the art planning and delivery techniques: (i) to enable planning of the desired treatment, (ii) to verify the treatment is delivered as planned and (iii) to follow-up treatment outcome to monitor that the treatment has had the desired effect. Clinical imaging techniques can be loosely classified into anatomic methods which measure the basic physical characteristics of tissue such as their density and biological imaging techniques which measure functional characteristics such as metabolism. In this review we consider anatomical imaging techniques. Biological imaging is considered in another article. Anatomical imaging is generally used for goals (i) and (ii) above. Computed tomography (CT) has been the mainstay of anatomical treatment planning for many years, enabling some delineation of soft tissue as well as radiation attenuation estimation for dose prediction. Magnetic resonance imaging is fast becoming widespread alongside CT, enabling superior soft-tissue visualization. Traditionally scanning for treatment planning has relied on the use of a single snapshot scan. Recent years have seen the development of techniques such as 4D CT and adaptive radiotherapy (ART). In 4D CT raw data are encoded with phase information and reconstructed to yield a set of scans detailing motion through the breathing, or cardiac, cycle. In ART a set of

  19. [Palliative radiotherapy for metastatic bone tumor].

    PubMed

    Yoshida, Kenji; Hiratsuka, Junichi

    2006-04-01

    Bone metastases are one of the most common conditions requiring radiation therapy today. Its main aim is relief of bone pain, prevention of pathological bone fractures as well as its healing, with anticipated effect upon improving mobility, function, and quality of life. For localized bone pain, external beam radiation therapy (EBRT) will be successful in reducing pain in some 80% of patients. However, optimal fraction dose and total doses of EBRT required for pain relief have been unknown. According to the recent reports, carbon ion radiotherapy seems to be a safe and effective modality in the management of metastatic bone tumor not eligible for conventional EBRT. For scattered painful metastases, the systemic administration of radioisotopes is thought to be effective. PMID:16582516

  20. Radiotherapy Dose Fractionation under Parameter Uncertainty

    SciTech Connect

    Davison, Matt; Kim, Daero; Keller, Harald

    2011-11-30

    In radiotherapy, radiation is directed to damage a tumor while avoiding surrounding healthy tissue. Tradeoffs ensue because dose cannot be exactly shaped to the tumor. It is particularly important to ensure that sensitive biological structures near the tumor are not damaged more than a certain amount. Biological tissue is known to have a nonlinear response to incident radiation. The linear quadratic dose response model, which requires the specification of two clinically and experimentally observed response coefficients, is commonly used to model this effect. This model yields an optimization problem giving two different types of optimal dose sequences (fractionation schedules). Which fractionation schedule is preferred depends on the response coefficients. These coefficients are uncertainly known and may differ from patient to patient. Because of this not only the expected outcomes but also the uncertainty around these outcomes are important, and it might not be prudent to select the strategy with the best expected outcome.

  1. [Indications for radiotherapy of rectal cancer].

    PubMed

    Winkler, R; Franke, H D; Dörner, A

    1990-01-01

    Surgery and radiotherapy complete each other in local control of suffering from rectal carcinoma. A radiotherapeutic effect on tumor is secured often. The adjuvant radiotherapy is the most interesting indication, though the most controversial as present too. Analysing all data and with experiences of an own irradiation study we have not any doubt that the indication is qualified for a combined therapy, if the therapeutic aim with priority is to prevent a local relapse as the most frequent and complained of form of therapeutic failure. In this problem, radical irradiation forms, as pre- and accumulating irradiation (sandwich-technique) and after-irradiation, render superior to an exclusive pre irradiation. In result of this study we practise a preirradiation of 25 Gy with immediately following operation and an accumulating irradiation to 50 Gy in proved high-risk-stage (T greater than or equal to 3 NoMo,Tx N1-3 Mo). If there is a primary local incurability by tumor invasion into the neighbourhood a pre-irradiation is done with 50 Gy and following explorative laparatomy within 4-6 weeks. Nearly 60% of these tumors become operable after that. Likewise we practise in unirradiated patients with locoregional tumor recurrence. Also here the extirpation quota of patients with general or systemic incurability, that a stoma construction is required in, we carry out a transanal tumor reduction and irradiate with 50 Gy after that. Especially this therapeutic principle has proved its worth in patients that are past eighty. Here with acceptable living quality and avoiding a stoma construction a survival can be reached that corresponds to the statistical survival of this stage of life. PMID:2101452

  2. Magnetic resonance imaging for prostate cancer radiotherapy.

    PubMed

    Dinh, Cuong V; Steenbergen, Peter; Ghobadi, Ghazaleh; Heijmink, Stijn W T J P; Pos, Floris J; Haustermans, Karin; van der Heide, Uulke A

    2016-03-01

    For radiotherapy of prostate cancer, MRI is used increasingly for delineation of the prostate gland. For focal treatment of low-risk prostate cancer or focal dose escalation for intermediate and high-risk cancer, delineation of the tumor is also required. While multi-parametric MRI is well established for detection of tumors and for staging of the disease, delineation of the tumor inside the prostate is not common practice. Guidelines, such as the PI-RADS classification, exist for tumor detection and staging, but no such guidelines are available for tumor delineation. Indeed, interobserver studies show substantial variation in tumor contours. Computer-aided tumor detection and delineation may help improve the robustness of the interpretation of multi-parametric MRI data. Comparing the performance of an earlier developed model for tumor segmentation with expert delineations, we found a significant correlation between tumor probability in a voxel and the number of experts identifying this voxel as tumor. This suggests that the model agrees with 'the wisdom of the crowd', and thus could serve as a reference for individual physicians in their decision making. With multi-parametric MRI it becomes feasible to revisit the GTV-CTV concept in radiotherapy of prostate cancer. While detection of index lesions is quite reliable, contouring variability and the low sensitivity to small lesions suggest that the remainder of the prostate should be treated as CTV. Clinical trials that investigate the options for dose differentiation, for example with dose escalation to the visible tumor or dose reduction to the CTV, are therefore warranted.

  3. Radiotherapy and temozolomide for anaplastic astrocytic gliomas

    PubMed Central

    Nayak, Lakshmi; Panageas, Katherine S.; Reiner, Anne S.; Huse, Jason T.; Pentsova, Elena; Braunthal, Stephanie G.; Abrey, Lauren E.; DeAngelis, Lisa M.

    2015-01-01

    We previously reported results of a phase II non-comparative trial that randomized patients with glioblastoma following radiotherapy to one of two different temozolomide schedules, followed by 13-cis-retinoic acid (RA) maintenance. Here we report the results of an exploratory cohort of patients accrued with anaplastic astrocytic tumors. Patients with newly diagnosed anaplastic astrocytoma (AA) or anaplastic oligo-astrocytoma (AOA) were treated with concurrent radiotherapy (60 Gy over 6 weeks) and temozolomide (75 mg/m2), and six adjuvant 28-day cycles of either dose-dense (150 mg/m2, days 1–7, 15–21) or metronomic (50 mg/m2, days 1–28) temozolomide. Subsequently, maintenance RA (100 mg/m2, days 1–21/28) was administered until disease progression. All outcome measures were descriptive without intention to compare between treatment arms. Survival was measured by the Kaplan–Meier method. There were 31 patients (21 men, 10 women) with median age 48 years (range 28–74), median KPS 90 (range 60–100). Extent of resection was gross-total in 35 %, subtotal 23 %, and biopsy 42 %. Histology was AA in 90 %, and AOA in 10 %. MGMT promoter methylation was methylated in 20 %, unmethylated in 50 %, and uninformative in 30 % of 30 tested. Median progression-free survival was 2.1 years (95 % CI 0.95–Not Reached), and overall survival 2.9 years (95 % CI 2.0–Not Reached). We report outcomes among a homogeneously treated population with anaplastic astrocytic tumors. Survival was unexpectedly short compared to other reports. These data may be useful as a contemporary historic control for other ongoing or future randomized trials. PMID:25920709

  4. Radiotherapy and temozolomide for anaplastic astrocytic gliomas.

    PubMed

    Nayak, Lakshmi; Panageas, Katherine S; Reiner, Anne S; Huse, Jason T; Pentsova, Elena; Braunthal, Stephanie G; Abrey, Lauren E; DeAngelis, Lisa M; Lassman, Andrew B

    2015-05-01

    We previously reported results of a phase II non-comparative trial that randomized patients with glioblastoma following radiotherapy to one of two different temozolomide schedules, followed by 13-cis-retinoic acid (RA) maintenance. Here we report the results of an exploratory cohort of patients accrued with anaplastic astrocytic tumors. Patients with newly diagnosed anaplastic astrocytoma (AA) or anaplastic oligo-astrocytoma (AOA) were treated with concurrent radiotherapy (60 Gy over 6 weeks) and temozolomide (75 mg/m(2)), and six adjuvant 28-day cycles of either dose-dense (150 mg/m(2), days 1-7, 15-21) or metronomic (50 mg/m(2), days 1-28) temozolomide. Subsequently, maintenance RA (100 mg/m(2), days 1-21/28) was administered until disease progression. All outcome measures were descriptive without intention to compare between treatment arms. Survival was measured by the Kaplan-Meier method. There were 31 patients (21 men, 10 women) with median age 48 years (range 28-74), median KPS 90 (range 60-100). Extent of resection was gross-total in 35%, subtotal 23%, and biopsy 42%. Histology was AA in 90%, and AOA in 10%. MGMT promoter methylation was methylated in 20%, unmethylated in 50%, and uninformative in 30% of 30 tested. Median progression-free survival was 2.1 years (95% CI 0.95-Not Reached), and overall survival 2.9 years (95 % CI 2.0-Not Reached). We report outcomes among a homogeneously treated population with anaplastic astrocytic tumors. Survival was unexpectedly short compared to other reports. These data may be useful as a contemporary historic control for other ongoing or future randomized trials. PMID:25920709

  5. Use of Postmastectomy Radiotherapy in Older Women

    SciTech Connect

    Smith, Benjamin D. Haffty, Bruce G.; Smith, Grace L.; Hurria, Arti; Buchholz, Thomas A.; Gross, Cary P.

    2008-05-01

    Purpose: Clinical trials and guidelines published between 1997 and 2001 concluded that postmastectomy radiotherapy (PMRT) improves overall survival for women with high-risk breast cancer. However, the effect of these findings on current practice is not known. Using the Surveillance, Epidemiology, and End Results-Medicare cohort, we sought to characterize the adoption of PMRT from 1992 to 2002 and identify risk factors for PMRT omission among high-risk older patients. Methods and Materials: We identified 28,973 women aged {>=}66 years who had been treated with mastectomy for invasive breast cancer between 1992 and 2002. Trends in the adoption of PMRT for low- (T1-T2N0), intermediate- (T1-T2N1), and high- (T3-T4 and/or N2-N3) risk patients were characterized using a Monte Carlo permutation algorithm. Multivariate logistic regression identified the risk factors for PMRT omission and calculated the adjusted use rates. Results: Postmastectomy radiotherapy use increased gradually and consistently for low-risk (+2.16%/y) and intermediate-risk (+7.20%/y) patients throughout the study interval. In contrast, PMRT use for high-risk patients increased sharply between 1996 and 1997 (+30.99%/y), but subsequently stabilized. Between 1998 and 2002, only 53% of high-risk patients received PMRT. The risk factors for PMRT omission included advanced age, moderate to severe comorbidity, smaller tumor size, fewer positive lymph nodes, and geographic region, with adjusted use rates ranging from 63.5% in San Francisco to 44.9% in Connecticut. Conclusion: Among the high-risk patients, PMRT use increased sharply in 1997 after the initial clinical trial publication. Despite subsequent guidelines recommending the use of PMRT, no further increase in PMRT use has occurred, and nearly 50% of high-risk patients still do not receive PMRT.

  6. Magnetic Resonance Imaging in Postprostatectomy Radiotherapy Planning

    SciTech Connect

    Sefrova, Jana; Odrazka, Karel; Paluska, Petr; Belobradek, Zdenek; Brodak, Milos; Dolezel, Martin; Prosvic, Petr; Macingova, Zuzana; Vosmik, Milan; Hoffmann, Petr; Louda, Miroslav; Nejedla, Anna

    2012-02-01

    Purpose: To investigate whether the use of magnetic resonance imaging (MRI) in prostate bed treatment planning could influence definition of the clinical target volume (CTV) and organs at risk. Methods and Materials: A total of 21 consecutive patients referred for prostate bed radiotherapy were included in the present retrospective study. The CTV was delineated according to the European Organization for Research and Treatment of Cancer recommendations on computed tomography (CT) and T{sub 1}-weighted (T{sub 1}w) and T{sub 2}-weighted (T{sub 2}w) MRI. The CTV magnitude, agreement, and spatial differences were evaluated on the planning CT scan after registration with the MRI scans. Results: The CTV was significantly reduced on the T{sub 1}w and T{sub 2}w MRI scans (13% and 9%, respectively) compared with the CT scans. The urinary bladder was drawn smaller on the CT scans and the rectum was smaller on the MRI scans. On T{sub 1}w MRI, the rectum and urinary bladder were delineated larger than on T{sub 2}w MRI. Minimal agreement was observed between the CT and T{sub 2}w images. The main spatial differences were measured in the superior and superolateral directions in which the CTV on the MRI scans was 1.8-2.9 mm smaller. In the posterior and inferior border, no difference was seen between the CT and T{sub 1}w MRI scans. On the T{sub 2}w MRI scans, the CTV was larger in these directions (by 1.3 and 1.7 mm, respectively). Conclusions: The use of MRI in postprostatectomy radiotherapy planning resulted in a reduction of the CTV. The main differences were found in the superior part of the prostate bed. We believe T{sub 2}w MRI enables more precise definition of prostate bed CTV than conventional planning CT.

  7. Targeted Radiotherapy of Estrogen Receptor Positive Tumors

    SciTech Connect

    Raghavan Rajagopalan

    2006-08-31

    The overall objectives of the proposal were to develop estrogen receptor (ER) binding small molecule radiopharmaceuticals for targeted radiotherapy of ER positive (ER+) tumors. In particular, this proposal focused on embedding a {sup 186,188}Re or a {sup 32}P radionuclide into an estrogen steroidal framework by isosteric substitution such that the resulting structure is topologically similar to the estrogen (estrogen mimic). The estrogen mimic molecules expected to bind to the ER and exhibit biodistribution akin to that of native estrogen due to structural mimicry. It is anticipated that the {sup 186,188}Re- or a {sup 32}P-containing estrogen mimics will be useful for targeted molecular radiotherapy of ER+ tumors. It is well established that the in vivo target tissue uptake of estrogen like steroidal molecules is related to the binding of the steroids to sex hormone binding globulin (SHBG). SHBG is important in the uptake of estrogens and testosterone in target tissues by SHBG receptors on the cell surface. However, hitherto the design of estrogen like small molecule radiopharmaceuticals was focused on optimizing ER binding characteristics without emphasis on SHBG binding properties. Consequently, even the molecules with good ER affinity in vitro, performed poorly in biodistribution studies. Based on molecular modeling studies the proposal focused on developing estrogen mimics 1-3 which were topologically similar to native estrogens, and form hydrogen bonds in ER and SHBG in the same manner as those of native estrogens. To this end the technical objectives of the proposal focused on synthesizing the rhenium-estrone and estradiol mimics 1 and 2 respectively, and phosphorous estradiol mimic 3 and to assess their stability and in vitro binding characteristics to ER and SHBG.

  8. EBT2 film as a depth-dose measurement tool for radiotherapy beams over a wide range of energies and modalities

    SciTech Connect

    Arjomandy, Bijan; Tailor, Ramesh; Zhao Li; Devic, Slobodan

    2012-02-15

    Purpose: One of the fundamental parameters used for dose calculation is percentage depth-dose, generally measured employing ionization chambers. There are situations where use of ion chambers for measuring depth-doses is difficult or problematic. In such cases, radiochromic film might be an alternative. The EBT-2 model GAFCHROMIC film was investigated as a potential tool for depth-dose measurement in radiotherapy beams over a broad range of energies and modalities. Methods: Pieces of the EBT-2 model GAFCHROMIC EBT2 film were exposed to x-ray, electron, and proton beams used in radiotherapy. The beams employed for this study included kilovoltage x-rays (75 kVp), {sup 60}Co gamma-rays, megavoltage x-rays (18 MV), electrons (7 and 20 MeV), and pristine Bragg-peak proton beams (126 and 152 MeV). At each beam quality, film response was measured over the dose range of 0.4-8.0 Gy, which corresponds to optical densities ranging from 0.05 to 0.4 measured with a flat-bed document scanner. To assess precision in depth-dose measurements with the EBT-2 model GAFCHROMIC film, uncertainty in measured optical density was investigated with respect to variation in film-to-film and scanner-bed uniformity. Results: For most beams, percentage depth-doses measured with the EBT-2 model GAFCHROMIC film show an excellent agreement with those measured with ion chambers. Some discrepancies are observed in case of (i) kilovoltage x-rays at larger depths due to beam-hardening, and (ii) proton beams around Bragg-peak due to quenching effects. For these beams, an empirical polynomial correction produces better agreement with ion-chamber data. Conclusions: The EBT-2 model GAFCHROMIC film is an excellent secondary dosimeter for measurement of percentage depth-doses for a broad range of beam qualities and modalities used in radiotherapy. It offers an easy and efficient way to measure beam depth-dose data with a high spatial resolution.

  9. Evaluation of air photoactivation at linear accelerators for radiotherapy.

    PubMed

    Tana, Luigi; Ciolini, Riccardo; Ciuffardi, Eva; Romei, Chiara; d'Errico, Francesco

    2015-06-01

    High-energy x-rays produced by radiotherapy accelerators operating at potentials above 10 MV may activate the air via (γ, n) reactions with both oxygen and nitrogen. While the activation products are relatively short-lived, personnel entering the accelerator room may inhale some radioactive air, which warrants internal dosimetry assessments. This work illustrates a method based on the use of ammonium nitrate solutions for the evaluation of photon-induced air activation and for the estimate of internal doses to radiotherapy personnel. Air activation and internal dosimetry assessments based on our method are presented for some widespread radiotherapy linear accelerator models. Our results indicate that the equivalent dose to the lungs of radiotherapy personnel is negligible for beam energies below 18 MeV.

  10. [Clinical to planning target volume margins in prostate cancer radiotherapy].

    PubMed

    Ramiandrisoa, F; Duvergé, L; Castelli, J; Nguyen, T D; Servagi-Vernat, S; de Crevoisier, R

    2016-10-01

    The knowledge of inter- and intrafraction motion and deformations of the intrapelvic target volumes (prostate, seminal vesicles, prostatectomy bed and lymph nodes) as well as the main organs at risk (bladder and rectum) allow to define rational clinical to planning target volume margins, depending on the different radiotherapy techniques and their uncertainties. In case of image-guided radiotherapy, prostate margins and seminal vesicles margins can be between 5 and 10mm. The margins around the prostatectomy bed vary from 10 to 15mm and those around the lymph node clinical target volume between 7 and 10mm. Stereotactic body radiotherapy allows lower margins, which are 3 to 5mm around the prostate. Image-guided and stereotactic body radiotherapy with adequate margins allow finally moderate or extreme hypofractionation. PMID:27614515

  11. Molecular Imaging and Radiotherapy: Theranostics for Personalized Patient Management

    PubMed Central

    Velikyan, Irina

    2012-01-01

    This theme issue presents current achievements in the development of radioactive agents, pre-clinical and clinical molecular imaging, and radiotherapy in the context of theranostics in the field of oncology. PMID:22768022

  12. [Metabolic tailoring in radiotherapy for head and neck cancer].

    PubMed

    Servagi-Vernat, S; Giraud, P

    2014-10-01

    Radiotherapy based on functional imaging consists to deliver a heterogeneity dose based on biological proprieties. This approach is termed biologically conformal radiotherapy or dose painting with biological target volume inside the gross tumor volume. Diffusion-weighted magnetic resonance imaging (MRI) and dynamic contrast-enhanced MRI can also be used to define a specific biological target volume. Three main tracers are used: ((18)F)-fluorodeoxyglucose to target the hypermetabolism, ((18)F)-fluoromizonidazole and ((18)F)- fluoroazomycin arabinoside to target areas of hypoxia. In this review, we give a practical approach to achieving a treatment-guided radiotherapy molecular and the main issues raised by this imaging technique. Despite the provision of all the technological tools to the radiotherapist, this new therapeutic approach is still evaluated in clinical studies to demonstrate a real clinical benefit compared to radiotherapy based on anatomic imaging.

  13. Adenocarcinoma of the ethmoid following radiotherapy for bilateral retinoblastoma

    SciTech Connect

    Rowe, L.D.; Lane, R.; Snow, J.B. Jr.

    1980-01-01

    Adenocarcinoma of the ethmoid sinus is rare, representing only 4 to 8% of malignancies of the paranasal sinuses. An extraordinary case of papillary adenocarcinoma of the ethmoid sinus arising 30 years following high-dose radiotherapy for bilateral retinoblastoma is presented. Second fatal mesenchymal and epithelial primaries have been described in 8.5% of patients with bilateral retinoblastomas previously treated with radiotherapy; however, papillary adenocarcinoma arising within the paranasal sinuses has not been reported. Aggressive treatment including partial maxillectomy, radical pansinusectomy, radical neck dissection followed by regional radiotherapy and systemic chemotherapy failed to prevent the development of fatal hepatic metastases. The high incidence of second fatal primary neoplasms in patients with bilateral retinoblastomas receiving radiation suggests an innate susceptibility that may add to the risk of radiotherapy.

  14. Antiinflammatory agents protect opossum esophagus during radiotherapy. [Cobalt 60

    SciTech Connect

    Northway, M.G.; Eastwood, G.L.; Libshitz, H.I.; Feldman, M.S.; Mamel, J.J.; Szwarc, I.A.

    1982-10-01

    Eighteen opossums received 2250 rad /sup 60/Co to the entire esophagus and lower esophageal sphincter. Animals received treatment with 600 mg aspirin, 25 mg/kg hydrocortisone, or saline before irradiation and twice daily for 1 week after irradiation. At 10 days postirradiation, animals were evaluated for signs of acute esophagitis by esophagoscopy and barium esophagram. Each animal was then killed and the esophagus removed and evaluated histologically. Animals treated with either aspirin or hydrocortisone had significantly milder esophagitis than control irradiated animals.

  15. Stereotactic body radiotherapy in lung cancer: an update *

    PubMed Central

    Abreu, Carlos Eduardo Cintra Vita; Ferreira, Paula Pratti Rodrigues; de Moraes, Fabio Ynoe; Neves, Wellington Furtado Pimenta; Gadia, Rafael; Carvalho, Heloisa de Andrade

    2015-01-01

    Abstract For early-stage lung cancer, the treatment of choice is surgery. In patients who are not surgical candidates or are unwilling to undergo surgery, radiotherapy is the principal treatment option. Here, we review stereotactic body radiotherapy, a technique that has produced quite promising results in such patients and should be the treatment of choice, if available. We also present the major indications, technical aspects, results, and special situations related to the technique. PMID:26398758

  16. [Radiotherapy and implantable medical device: example of infusion pumps].

    PubMed

    Abrous-Anane, S; Benhassine, S; Lopez, S; Cristina, K; Mazeron, J-J

    2013-12-01

    Indication for radiotherapy is often questioned for patients equipped with implantable medical devices like infusion pumps as the radiation tolerance is poor or not known. We report here on the case of a patient who we treated with pelvic radiotherapy for cervical cancer and who had an infusion pump in iliac fossa. We conducted a series of tests on five identical pumps that insured that the treatment protocol is harmless to the implanted device.

  17. Radiochromic Film Dosimetry and its Applications in Radiotherapy

    SciTech Connect

    Williams, Matthew; Metcalfe, Peter

    2011-05-05

    Radiochromic film can be a fast and inexpensive means for performing accurate quantitative radiation dosimetry. The development of new radiochromic compositions that have greater dose sensitivity and fewer environmental dependencies has led to an ever increasing use of the film in radiotherapy applications. In this report the various physical and dosimetric properties of radiochromic film are presented and the strategies to adequately manage these properties when using radiochromic film for radiotherapy applications are discussed.

  18. Complete response of myeloid sarcoma with cardiac involvement to radiotherapy

    PubMed Central

    Yang, Wen-Chi; Yao, Ming; Chen, Yu-Hsuan

    2016-01-01

    We present a rare case of intracardiac myeloid sarcoma (MS) of acute myeloid leukemia (AML) and who responds completely well to low-dose radiotherapy. This 19-year-old young man initially presented with AML and received standard chemotherapy followed by allogeneic hematopoietic stem cell transplantation (HSCT). However, he developed intracardiac isolated MS relapse with the presentation of exertional dyspnea and superior vena cava (SVC) syndrome 3 years later. He then received radiotherapy with 24 Gy at a 12 daily fractions using forward “field in field” intensity modulated radiotherapy technique. He dramatically had improved clinical symptoms, and complete remission was achieved one month after completing radiotherapy. Our result is in line with anecdotal case reports showed that radiotherapy with 15 Gy in 10 fractions or with 24 Gy in 12 fractions resulted in good response and less toxicity of 2 cases of MS with cardiac involvement. These results indicate that a modest radiotherapy dose, 24 Gy, achieves good local control of MS with cardiac involvement. PMID:27293853

  19. Radiotherapy for idiopathic inflammatory orbital pseudotumor. Indications and results

    SciTech Connect

    Sergott, R.C.; Glaser, J.S.; Charyulu, K.

    1981-05-01

    Supervoltage radiotherapy was used in 21 orbits of 19 patients with idiopathic inflammatory orbital pseudotumor. Seventeen orbits (15 patients) were initially treated with systemic corticosteroids, but recurrence of orbital inflammation during dosage tapering was the most frequent indication for radiotherapy. Fifteen orbits (14 patients) responded favorably, as judged by reduced proptosis, decreased lid edema and conjunctival injection, improved ocular motility, and increased visual acuity. Six orbits (five patients) did not improve with radiotherapy. Patients who were successfully treated with radiotherapy have been free of recurrence for a mean follow-up period of 25.05 months; these patients have not required further corticosteroid treatment or additional radiotherapy. Low-dose (1,000 to 2,000 rad) supervoltage radiotherapy seems to have a definite role in the management of idiopathic orbital pseudotumor in the following instances: (1) when corticosteroids fail or systemic complications are unacceptable (2) when signs and symptoms recur during decreasing corticosteroid dosage, and (3) when systemic corticosteroids are medically contraindicated.

  20. Treatment of ameloblastoma and ameloblastic carcinoma with radiotherapy.

    PubMed

    Kennedy, William R; Werning, John W; Kaye, Frederic J; Mendenhall, William M

    2016-10-01

    The purpose of this study is to report our institutional experience using radiotherapy in the treatment of ameloblastoma and ameloblastic carcinoma. Three patients with ameloblastoma and 3 patients with ameloblastic carcinoma were treated with radiotherapy alone (2 patients) or surgery and postoperative radiotherapy (4 patients) at the University of Florida between 1973 and 2007. Follow-up ranged from 4.0 to 13.1 years with a median of 7.8 years. Radiotherapy complications were scored using the Common Terminology Criteria for Adverse Events, version 4.0. Local control was achieved in 4 of the 6 patients. One patient treated with RT alone for an unresectable ameloblastoma developed a local recurrence and metastases in both the cervical lymph nodes and lungs, but had excellent response to dual BRAF/MEK inhibition with dabrafenib and trametinib. Another patient treated with surgery and postoperative radiotherapy for an ameloblastic carcinoma recurred locally without metastasis, but was not salvaged. No significant treatment-related complications were observed. For patients with local recurrence or inadequate margins after surgery, adjuvant radiotherapy provides the potential for disease control. In the setting of metastatic disease, targeted therapies may provide an additional opportunity for salvage. PMID:26796877

  1. Radiation-induced heart disease in lung cancer radiotherapy

    PubMed Central

    Ming, Xin; Feng, Yuanming; Yang, Chengwen; Wang, Wei; Wang, Ping; Deng, Jun

    2016-01-01

    Abstract Background: Radiation-induced heart disease (RIHD), which affects the patients’ prognosis with both acute and late side effects, has been published extensively in the radiotherapy of breast cancer, lymphoma and other benign diseases. Studies on RIHD in lung cancer radiotherapy, however, are less extensive and clear even though the patients with lung cancer are delivered with higher doses to the heart during radiation treatment. Methods: In this article, after extensive literature search and analysis, we reviewed the current evidence on RIHD in lung cancer patients after their radiation treatments and investigated the potential risk factors for RIHD as compared to other types of cancers. Result: Cardiac toxicity has been found highly relevant in lung cancer radiotherapy. So far, the crude incidence of cardiac complications in the lung cancer patients after radiotherapy has been up to 33%. Conclusion: The dose to the heart, the lobar location of tumor, the treatment modality, the history of heart and pulmonary disease and smoking were considered as potential risk factors for RIHD in lung cancer radiotherapy. As treatment techniques improve over the time with better prognosis for lung cancer survivors, an improved prediction model can be established to further reduce the cardiac toxicity in lung cancer radiotherapy. PMID:27741117

  2. Monte Carlo role in radiobiological modelling of radiotherapy outcomes

    NASA Astrophysics Data System (ADS)

    El Naqa, Issam; Pater, Piotr; Seuntjens, Jan

    2012-06-01

    Radiobiological models are essential components of modern radiotherapy. They are increasingly applied to optimize and evaluate the quality of different treatment planning modalities. They are frequently used in designing new radiotherapy clinical trials by estimating the expected therapeutic ratio of new protocols. In radiobiology, the therapeutic ratio is estimated from the expected gain in tumour control probability (TCP) to the risk of normal tissue complication probability (NTCP). However, estimates of TCP/NTCP are currently based on the deterministic and simplistic linear-quadratic formalism with limited prediction power when applied prospectively. Given the complex and stochastic nature of the physical, chemical and biological interactions associated with spatial and temporal radiation induced effects in living tissues, it is conjectured that methods based on Monte Carlo (MC) analysis may provide better estimates of TCP/NTCP for radiotherapy treatment planning and trial design. Indeed, over the past few decades, methods based on MC have demonstrated superior performance for accurate simulation of radiation transport, tumour growth and particle track structures; however, successful application of modelling radiobiological response and outcomes in radiotherapy is still hampered with several challenges. In this review, we provide an overview of some of the main techniques used in radiobiological modelling for radiotherapy, with focus on the MC role as a promising computational vehicle. We highlight the current challenges, issues and future potentials of the MC approach towards a comprehensive systems-based framework in radiobiological modelling for radiotherapy.

  3. Applications of Nanomaterials in Radiotherapy for Malignant Tumors.

    PubMed

    Wang, Yanchao; Liang, Ruichao; Fang, Fang

    2015-08-01

    Malignant tumors are tremendous heath problems facing by the medical world. In order to achieve the purpose of curing malignant tumor, numerous therapeutic strategies have been developed. Radiotherapy is one of the main therapeutic strategies for malignant tumors. Current imaging strategies cannot display exact infiltrating margins, radio-resistance generated by irradiated tissue, and intercurrent damage to healthy tissues during radiotherapy. Therefore, novel strategies to solve these problems are urgently needed. Nanomaterials have specific physical and biological properties that can help clinician to distinguish margins of infiltrating tumors as a novel contrast agent. Besides, nanoparticles can significantly enhance the effect of radiotherapy by generating reactive oxygen species (ROS) or influence cell cycle. In addition, nanomaterials can also help in diminishing the intercurrent damage caused by radiotherapy. So nanomaterials have very promising prospect in the radiotherapy of malignant tumors. This review mainly focuses on the applications of nanomaterials in radiotherapy for malignant tumors; especially it applies to lesion imaging and their radiosensitizing effects. PMID:26369108

  4. Nutritional consequences of the radiotherapy of head and neck cancer

    SciTech Connect

    Chencharick, J.D.; Mossman, K.L.

    1983-03-01

    Nutrition-related complications of radiotherapy were evaluated in 74 head and neck cancer patients. Subjective changes of mouth dryness, taste, dysphagia, appetite, and food preferences were determined by questionnaire before and at weekly intervals during curative radiotherapy. Changes in body weight during therapy were also recorded. In addition, 24-hour dietary histories were taken from eight patients at the beginning and end of treatment. Results of the study indicate that patients were subjectively aware of nutritional problems prior to therapy and that therapy exacerbated these problems. As many as 25% of the patients experienced oral complications such as taste loss and/or dry mouth prior to initiation of radiotherapy. By the end of radiotherapy, over 80% of the patients were aware of oral and nutritional problems. Patients had an average weight loss of 5 kg prior to therapy; this loss of weight did not change during therapy. Diet histories of eight patients indicate significant caloric deficiencies early and late in radiotherapy. The oral and nutritional problems experienced by patients, even prior to therapy, support the idea that nutritional evaluation and maintenance are important not only during therapy, but prior to radiotherapy as well. Nutritional evaluation should be made a routine, integral part of therapy for every cancer patient.

  5. Dosimetric Study of Current Treatment Options for Radiotherapy in Retinoblastoma

    SciTech Connect

    Eldebawy, Eman; Parker, William; Abdel Rahman, Wamied; Freeman, Carolyn R.

    2012-03-01

    Purpose: To determine the best treatment technique for patients with retinoblastoma requiring radiotherapy to the whole eye. Methods and Materials: Treatment plans for 3 patients with retinoblastoma were developed using 10 radiotherapy techniques including electron beams, photon beam wedge pair (WP), photon beam three-dimensional conformal radiotherapy (3D-CRT), fixed gantry intensity-modulated radiotherapy (IMRT), photon volumetric arc therapy (VMAT), fractionated stereotactic radiotherapy, and helical tomotherapy (HT). Dose-volume analyses were carried out for each technique. Results: All techniques provided similar target coverage; conformity was highest for VMAT, nine-field (9F) IMRT, and HT (conformity index [CI] = 1.3) and lowest for the WP and two electron techniques (CI = 1.8). The electron techniques had the highest planning target volume dose gradient (131% of maximum dose received [D{sub max}]), and the CRT techniques had the lowest (103% D{sub max}) gradient. The volume receiving at least 20 Gy (V{sub 20Gy}) for the ipsilateral bony orbit was lowest for the VMAT and HT techniques (56%) and highest for the CRT techniques (90%). Generally, the electron beam techniques were superior in terms of brain sparing and delivered approximately one-third of the integral dose of the photon techniques. Conclusions: Inverse planned image-guided radiotherapy delivered using HT or VMAT gives better conformity index, improved orbital bone and brain sparing, and a lower integral dose than other techniques.

  6. Complete response of myeloid sarcoma with cardiac involvement to radiotherapy.

    PubMed

    Yang, Wen-Chi; Yao, Ming; Chen, Yu-Hsuan; Kuo, Sung-Hsin

    2016-06-01

    We present a rare case of intracardiac myeloid sarcoma (MS) of acute myeloid leukemia (AML) and who responds completely well to low-dose radiotherapy. This 19-year-old young man initially presented with AML and received standard chemotherapy followed by allogeneic hematopoietic stem cell transplantation (HSCT). However, he developed intracardiac isolated MS relapse with the presentation of exertional dyspnea and superior vena cava (SVC) syndrome 3 years later. He then received radiotherapy with 24 Gy at a 12 daily fractions using forward "field in field" intensity modulated radiotherapy technique. He dramatically had improved clinical symptoms, and complete remission was achieved one month after completing radiotherapy. Our result is in line with anecdotal case reports showed that radiotherapy with 15 Gy in 10 fractions or with 24 Gy in 12 fractions resulted in good response and less toxicity of 2 cases of MS with cardiac involvement. These results indicate that a modest radiotherapy dose, 24 Gy, achieves good local control of MS with cardiac involvement. PMID:27293853

  7. External Beam Radiotherapy for Colon Cancer: Patterns of Care

    SciTech Connect

    Dunn, Emily F.; Kozak, Kevin R.; Moody, John S.

    2010-04-15

    Purpose: Despite its common and well characterized use in other gastrointestinal malignancies, little is known about radiotherapy (RT) use in nonmetastatic colon cancer in the United States. To address the paucity of data regarding RT use in colon cancer management, we examined the RT patterns of care in this patient population. Methods and Materials: Patients with nonmetastatic colon cancer, diagnosed between 1988 and 2005, were identified in the Surveillance, Epidemiology, and End Results (SEER) database. Univariate and multivariate methods were used to identify factors associated with RT use. Results: On univariate analysis, tumor location, age, sex, race, T stage, N stage, and geographic location were each associated with differences in RT use (all p < 0.01). In general, younger patients, male patients, and patients with more advanced disease were more likely to receive RT. On multivariate analysis, tumor location, age, gender, T and N stage, time of diagnosis and geographic location were significantly associated with RT use (all p < 0.001). Race, however, was not associated with RT use. On multivariate analysis, patients diagnosed in 1988 were 2.5 times more likely to receive RT than those diagnosed in 2005 (p = 0.001). Temporal changes in RT use reflect a responsiveness to evolving evidence related to the therapeutic benefits of adjuvant RT. Conclusions: External beam RT is infrequently used for colon cancer, and its use varies according to patient and tumor characteristics. RT use has declined markedly since the late 1980s; however, it continues to be used for nonmetastatic disease in a highly individualized manner.

  8. Unit Cells

    ERIC Educational Resources Information Center

    Olsen, Robert C.; Tobiason, Fred L.

    1975-01-01

    Describes the construction of unit cells using clear plastic cubes which can be disassembled, and one inch cork balls of various colors, which can be cut in halves, quarters, or eighths, and glued on the inside face of the cube, thus simulating a unit cell. (MLH)

  9. UNIT, PETROLOGY.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THIS TEACHER'S GUIDE FOR A UNIT ON PETROLOGY IS SUITABLE FOR ADAPTATION AT EITHER THE UPPER ELEMENTARY OR THE JUNIOR HIGH SCHOOL LEVELS. THE UNIT BEGINS WITH A STORY THAT INTRODUCES VOLCANIC ACTION AND IGNEOUS ROCK FORMATION. SELECTED CONCEPTS ARE LISTED FOLLOWED BY SUGGESTED ACTIVITIES. A BIBLIOGRAPHY, FILM LIST, VOCABULARY LIST, AND QUESTION AND…

  10. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  11. SU-D-BRD-03: A Gateway for GPU Computing in Cancer Radiotherapy Research

    SciTech Connect

    Jia, X; Folkerts, M; Shi, F; Yan, H; Yan, Y; Jiang, S; Sivagnanam, S; Majumdar, A

    2014-06-01

    Purpose: Graphics Processing Unit (GPU) has become increasingly important in radiotherapy. However, it is still difficult for general clinical researchers to access GPU codes developed by other researchers, and for developers to objectively benchmark their codes. Moreover, it is quite often to see repeated efforts spent on developing low-quality GPU codes. The goal of this project is to establish an infrastructure for testing GPU codes, cross comparing them, and facilitating code distributions in radiotherapy community. Methods: We developed a system called Gateway for GPU Computing in Cancer Radiotherapy Research (GCR2). A number of GPU codes developed by our group and other developers can be accessed via a web interface. To use the services, researchers first upload their test data or use the standard data provided by our system. Then they can select the GPU device on which the code will be executed. Our system offers all mainstream GPU hardware for code benchmarking purpose. After the code running is complete, the system automatically summarizes and displays the computing results. We also released a SDK to allow the developers to build their own algorithm implementation and submit their binary codes to the system. The submitted code is then systematically benchmarked using a variety of GPU hardware and representative data provided by our system. The developers can also compare their codes with others and generate benchmarking reports. Results: It is found that the developed system is fully functioning. Through a user-friendly web interface, researchers are able to test various GPU codes. Developers also benefit from this platform by comprehensively benchmarking their codes on various GPU platforms and representative clinical data sets. Conclusion: We have developed an open platform allowing the clinical researchers and developers to access the GPUs and GPU codes. This development will facilitate the utilization of GPU in radiation therapy field.

  12. Visual Outcome in Meningiomas Around Anterior Visual Pathways Treated With Linear Accelerator Fractionated Stereotactic Radiotherapy

    SciTech Connect

    Stiebel-Kalish, Hadas; Reich, Ehud; Gal, Lior; Rappaport, Zvi Harry; Nissim, Ouzi; Pfeffer, Raphael; Spiegelmann, Roberto

    2012-02-01

    Purpose: Meningiomas threatening the anterior visual pathways (AVPs) and not amenable for surgery are currently treated with multisession stereotactic radiotherapy. Stereotactic radiotherapy is available with a number of devices. The most ubiquitous include the gamma knife, CyberKnife, tomotherapy, and isocentric linear accelerator systems. The purpose of our study was to describe a case series of AVP meningiomas treated with linear accelerator fractionated stereotactic radiotherapy (FSRT) using the multiple, noncoplanar, dynamic conformal rotation paradigm and to compare the success and complication rates with those reported for other techniques. Patients and Methods: We included all patients with AVP meningiomas followed up at our neuro-ophthalmology unit for a minimum of 12 months after FSRT. We compared the details of the neuro-ophthalmologic examinations and tumor size before and after FSRT and at the end of follow-up. Results: Of 87 patients with AVP meningiomas, 17 had been referred for FSRT. Of the 17 patients, 16 completed >12 months of follow-up (mean 39). Of the 16 patients, 11 had undergone surgery before FSRT and 5 had undergone FSRT as first-line management. Tumor control was achieved in 14 of the 16 patients, with three meningiomas shrinking in size after RT. Two meningiomas progressed, one in an area that was outside the radiation field. The visual function had improved in 6 or stabilized in 8 of the 16 patients (88%) and worsened in 2 (12%). Conclusions: Linear accelerator fractionated RT using the multiple noncoplanar dynamic rotation conformal paradigm can be offered to patients with meningiomas that threaten the anterior visual pathways as an adjunct to surgery or as first-line treatment, with results comparable to those reported for other stereotactic RT techniques.

  13. GammaPod-A new device dedicated for stereotactic radiotherapy of breast cancer

    SciTech Connect

    Yu, Cedric X.; Shao Xinyu; Deng Jianchun; Duan Zhengcheng; Zhang Jin; Zheng, Mike; Yu, Ying S.; Regine, William

    2013-05-15

    Purpose: This paper introduces a new external beam radiotherapy device named GammaPod that is dedicated for stereotactic radiotherapy of breast cancer. Methods: The design goal of the GammaPod as a dedicated system for treating breast cancer is the ability to deliver ablative doses with sharp gradients under stereotactic image guidance. Stereotactic localization of the breast is achieved by a vacuum-assisted breast immobilization cup with built-in stereotactic frame. Highly focused radiation is achieved at the isocenter due to the cross-firing from 36 radiation arcs generated by rotating 36 individual Cobalt-60 beams. The dedicated treatment planning system optimizes an optimal path of the focal spot using an optimization algorithm borrowed from computational geometry such that the target can be covered by 90%-95% of the prescription dose and the doses to surrounding tissues are minimized. The treatment plan is intended to be delivered with continuous motion of the treatment couch. In this paper the authors described in detail the gamma radiation unit, stereotactic localization of the breast, and the treatment planning system of the GammaPod system. Results: A prototype GammaPod system was installed at University of Maryland Medical Center and has gone through a thorough functional, geometric, and dosimetric testing. The mechanical and functional performances of the system all meet the functional specifications. Conclusions: An image-guided breast stereotactic radiotherapy device, named GammaPod, has been developed to deliver highly focused and localized doses to a target in the breast under stereotactic image guidance. It is envisioned that the GammaPod technology has the potential to significantly shorten radiation treatments and even eliminate surgery by ablating the tumor and sterilizing the tumor bed simultaneously.

  14. Evaluation of the field-in-field technique with lung blocks for breast tangential radiotherapy.

    PubMed

    Tanaka, Hidekazu; Hayashi, Shinya; Kajiura, Yuichi; Kitahara, Masashi; Matsuyama, Katsuya; Kanematsu, Masayuki; Hoshi, Hiroaki

    2015-08-01

    Several studies have reported the advantages of the field-in-field (FIF) technique in breast radiotherapy, including dose reduction in the lungs by using lung field blocks. We evaluated the FIF technique with lung blocks for breast tangential radiotherapy. Sixteen patients underwent free breathing (FB) computed tomography (CT), followed by two CT procedures performed during breath hold after light inhalation (IN) and light exhalation (EX). Three radiotherapy plans were created using the FIF technique based on the FB-CT images: one without lung blocks (LB0) and two with lung blocks whose monitor units (MUs) were 5 (LB5) and 10 (LB10), respectively. These plans were copied to the IN-CT and EX-CT images. V20Gy, V30Gy, and V40Gy of the ipsilateral lung and V100%, V95%, and the mean dose (Dmean) to the planning target volume (PTV) were analyzed. The extent of changes in these parameters on the IN-plan and EX-plan compared with the FB-plan was evaluated. V20Gy, V30Gy, and V40Gy were significantly smaller for FB-LB5 and FB-LB10 than for FB-LB0; similar results were obtained for the IN-plan and EX-plan. V100%, V95%, and Dmean were also significant smaller for FB-LB5 and FB-LB10 than for FB-LB0. The extent of changes in V20Gy, V30Gy, and V40Gy on the IN-plan and EX-plan compared with the FB-plan was not statistically significant. Lung blocks were useful for dose reduction in the lung and a simultaneous PTV decrease. This technique should not be applied in the general population.

  15. Radiotherapy systems using proton and carbon beams.

    PubMed

    Jongen, Y

    2008-01-01

    Radiotherapy using proton beams (proton therapy) is rapidly taking an important role among the techniques used in cancer therapy. At the end of 2007, 65.000 patients had been treated for cancer by proton beams in one of the 34 proton therapy facilities operating in the world. When compared to the now classical IMRT, and for a similar dose to the tumor, proton therapy provides a lower integral dose to the healthy organs surrounding the tumor. It is generally accepted that any reduction of the dose to healthy organs reduces the probability of radiation induced complications and of secondary malignancies. Proton therapy equipment can be obtained today from well established medical equipment companies such as Varian, Hitachi or Mitsubishi. But it is a Belgian company, Ion Beam Applications of Louvain-la-Neuve that is the undisputed leader in this market, with more than 55% of the world installed base. In addition to the now classical proton therapy equipments, using synchrotrons or cyclotrons as accelerators, new solutions have been proposed, claiming to be more compact and less expensive. A small startup company from Boston (Still Rivers) is proposing a very high magnetic field, gantry mounted superconducting synchrocyclotron. The us Company Tomotherapy is working to develop a new accelerator concept invented at Lawrence Livermore National Laboratory: the Dielectric Wall Accelerator. Besides proton beam therapy, which is progressively becoming an accepted part of radiation therapy, interest is growing for another form of radiotherapy using ions heavier than protons. Carbon ions have, even to a higher degree, the ballistic selectivity of protons. In addition, carbon ions stopping in the body exhibit a very high Linear Energy Transfer (LET). From this high LET results a very high Relative Biological Efficiency (RBE). This high RBE allows carbon ions to treat efficiently tumors who are radio-resistant and which are difficult to treat with photons or protons. The largest

  16. Cost-effectiveness of surgery plus radiotherapy versus radiotherapy alone for metastatic epidural spinal cord compression

    SciTech Connect

    Thomas, Kenneth C.; Nosyk, Bohdan; Fisher, Charles G.; Dvorak, Marcel; Patchell, Roy A.; Regine, William F.; Loblaw, Andrew; Bansback, Nick; Guh, Daphne; Sun, Huiying; Anis, Aslam . E-mail: aslam.anis@ubc.ca

    2006-11-15

    Purpose: A recent randomized clinical trial has demonstrated that direct decompressive surgery plus radiotherapy was superior to radiotherapy alone for the treatment of metastatic epidural spinal cord compression. The current study compared the cost-effectiveness of the two approaches. Methods and Materials: In the original clinical trial, clinical effectiveness was measured by ambulation and survival time until death. In this study, an incremental cost-effectiveness analysis was performed from a societal perspective. Costs related to treatment and posttreatment care were estimated and extended to the lifetime of the cohort. Weibull regression was applied to extrapolate outcomes in the presence of censored clinical effectiveness data. Results: From a societal perspective, the baseline incremental cost-effectiveness ratio (ICER) was found to be $60 per additional day of ambulation (all costs in 2003 Canadian dollars). Using probabilistic sensitivity analysis, 50% of all generated ICERs were lower than $57, and 95% were lower than $242 per additional day of ambulation. This analysis had a 95% CI of -$72.74 to 309.44, meaning that this intervention ranged from a financial savings of $72.74 to a cost of $309.44 per additional day of ambulation. Using survival as the measure of effectiveness resulted in an ICER of $30,940 per life-year gained. Conclusions: We found strong evidence that treatment of metastatic epidural spinal cord compression with surgery in addition to radiotherapy is cost-effective both in terms of cost per additional day of ambulation, and cost per life-year gained.

  17. Planning tools for modulated electron radiotherapy

    SciTech Connect

    Surucu, Murat; Klein, Eric E.; Mamalui-Hunter, Maria; Mansur, David B.; Low, Daniel A.

    2010-05-15

    Purpose: To develop tools to plan modulated electron radiotherapy (MERT) and to compare the MERT plans to conventional or intensity modulated radiotherapy (IMRT) treatment plans. Methods: Monte Carlo dose calculations of electron fields shaped with the inherent photon multileaf collimators (MLCs) were investigated in this study. Treatment plans for four postmastectomy breast cancer patients were generated using MERT. The distances from the patient skin surfaces to the distal planning target volume surfaces were computed along the beam axis direction to determine the physical depth. Electron beam energies were selected to provide target coverage at these depths and energy bins were generated. A custom built MERT treatment planning graphical user interface (MERTgui) was used to shape the electron bins into deliverable electron segments. Monte Carlo dose distribution simulations were performed using the MLC-defined segments generated from the MERTgui. A custom built superposition gui was used to combine doses for each segment using relative weights and final MERT treatment plans were compared to the conventional or IMRT treatment plans. In addition, a demonstration of combined MERT and IMRT treatment plans was performed. Results: The MERT treatment plans provided acceptable target organ coverage in all cases. Relative to 3D conventional or IMRT treatment plans, the MERT plans predicted lower heart doses in all cases; average of the heart D{sub 20} of all plans was reduced from 14.1 to 3.3 Gy. The contralateral breast and contralateral lung doses decreased substantially with MERT planning compared to IMRT (on average, contralateral breast heart D{sub 20} was reduced from 8.7 to 0.7 Gy and contralateral lung D{sub 20} was reduced from 8.4 to 1.2 Gy with MERT). Ipsilateral lung D{sub 20} was lower with MERT than with the conventional plans (44.6 vs 29.2 Gy with MERT), but greater when compared against IMRT treatment plans (25.4 vs 28.9 Gy with MERT). A MERT and IMRT

  18. New Methods for Targeted Alpha Radiotherapy

    NASA Astrophysics Data System (ADS)

    Robertson, J. David

    2014-03-01

    Targeted radiotherapies based on alpha emitters are a promising alternative to beta emitting radionuclides. Because of their much shorter range, targeted α-radiotherapy (TAT) agents have great potential for application to small, disseminated tumors and micro metastases and treatment of hematological malignancies consisting of individual, circulating neoplastic cells. A promising approach to TAT is the use of the in vivo α-generator radionuclides 223 = 11.4 d) and 225Ac 1/2 = 10.0 d). In addition to their longer half-lives, these two isotopes have the potential of dramatically increasing the therapeutic efficacy of TAT as they each emit four α particles in their decay chain. This principle has recently been exploited in the development of Xofigo®, the first TAT agent approved for clinical use by the U.S. FDA. Xofigo, formulated as 223RaCl2, is used for treatment of metastatic bone cancer in men with castration-resistant prostate cancer. TAT with 223Ra works, however, only in the case of bone cancer because radium, as a chemical analogue of calcium, efficiently targets bone. In order to bring the benefits of TAT with 223Ra or 225Ac to other tumor types, a new delivery method must be devised. Retaining the in vivo α generator radionuclides at the target site through the decay process is one of the major challenges associated with the development of TAT. Because the recoil energy of the daughter radionuclides from the α-emission is ~ 100 keV - a value which is four orders of magnitude greater than the energy of a covalent bond - the daughters will not remain bound to the bioconjugate at the targeting site. Various approaches have been attempted to achieve retention of the α-generator daughter radionuclides at the target site, including incorporation of the in vivo generator into liposomes and fullerenes. Unfortunately, to date single wall liposomes and fullerenes are able to retain less than 10% of the daughter radionuclides. We have recently demonstrated that a

  19. Predicting radiotherapy-induced cardiac perfusion defects

    SciTech Connect

    Das, Shiva K.; Baydush, Alan H.; Zhou Sumin; Miften, Moyed; Yu Xiaoli; Craciunescu, Oana; Oldham, Mark; Light, Kim; Wong, Terence; Blazing, Michael; Borges-Neto, Salvador; Dewhirst, Mark W.; Marks, Lawrence B.

    2005-01-01

    The purpose of this work is to compare the efficacy of mathematical models in predicting the occurrence of radiotherapy-induced left ventricular perfusion defects assessed using single-photon emission computed tomography (SPECT). The basis of this study is data from 73 left-sided breast/chestwall patients treated with tangential photon fields. The mathematical models compared were three commonly used parametric models [Lyman normal tissue complication probability (LNTCP), relative serialty (RS), generalized equivalent uniform dose (gEUD)] and a nonparametric model (Linear discriminant analysis--LDA). Data used by the models were the left ventricular dose--volume histograms, or SPECT-based dose-function histograms, and the presence/absence of SPECT perfusion defects 6 months postradiation therapy (21 patients developed defects). For the parametric models, maximum likelihood estimation and F-tests were used to fit the model parameters. The nonparametric LDA model step-wise selected features (volumes/function above dose levels) using a method based on receiver operating characteristics (ROC) analysis to best separate the groups with and without defects. Optimistic (upper bound) and pessimistic (lower bound) estimates of each model's predictive capability were generated using ROC curves. A higher area under the ROC curve indicates a more accurate model (a model that is always accurate has area=1). The areas under these curves for different models were used to statistically test for differences between them. Pessimistic estimates of areas under the ROC curve using dose-volume histogram/dose-function histogram inputs, in order of increasing prediction accuracy, were LNTCP (0.79/0.75), RS (0.80/0.77), gEUD (0.81/0.78), and LDA (0.84/0.86). Only the LDA model benefited from SPECT-based regional functional information. In general, the LDA model was statistically superior to the parametric models. The LDA model selected as features the left ventricular volumes above

  20. Quantifying cognitive decrements caused by cranial radiotherapy.

    PubMed

    Christie, Lori-Ann; Acharya, Munjal M; Limoli, Charles L

    2011-01-01

    With the exception of survival, cognitive impairment stemming from the clinical management of cancer is a major factor dictating therapeutic outcome. For many patients afflicted with CNS and non-CNS malignancies, radiotherapy and chemotherapy offer the best options for disease control. These treatments however come at a cost, and nearly all cancer survivors (~11 million in the US alone as of 2006) incur some risk for developing cognitive dysfunction, with the most severe cases found in patients subjected to cranial radiotherapy (~200,000/yr) for the control of primary and metastatic brain tumors. Particularly problematic are pediatric cases, whose long-term survival plagued with marked cognitive decrements results in significant socioeconomic burdens. To date, there are still no satisfactory solutions to this significant clinical problem. We have addressed this serious health concern using transplanted stem cells to combat radiation-induced cognitive decline in athymic rats subjected to cranial irradiation. Details of the stereotaxic irradiation and the in vitro culturing and transplantation of human neural stem cells (hNSCs) can be found in our companion paper (Acharya et al., JoVE reference). Following irradiation and transplantation surgery, rats are then assessed for changes in cognition, grafted cell survival and expression of differentiation-specific markers 1 and 4-months after irradiation. To critically evaluate the success or failure of any potential intervention designed to ameliorate radiation-induced cognitive sequelae, a rigorous series of quantitative cognitive tasks must be performed. To accomplish this, we subject our animals to a suite of cognitive testing paradigms including novel place recognition, water maze, elevated plus maze and fear conditioning, in order to quantify hippocampal and non-hippocampal learning and memory. We have demonstrated the utility of these tests for quantifying specific types of cognitive decrements in irradiated animals

  1. Reducing stray radiation dose to patients receiving passively scattered proton radiotherapy for prostate cancer

    PubMed Central

    Taddei, Phillip J; Fontenot, Jonas D; Zheng, Yuanshui; Mirkovic, Dragan; Lee, Andrew K; Titt, Uwe; Newhauser, Wayne D

    2014-01-01

    Proton beam radiotherapy exposes healthy tissue to stray radiation emanating from the treatment unit and secondary radiation produced within the patient. These exposures provide no known benefit and may increase a patient's risk of developing a radiogenic second cancer. The aim of this study was to explore strategies to reduce stray radiation dose to a patient receiving a 76 Gy proton beam treatment for cancer of the prostate. The whole-body effective dose from stray radiation, E, was estimated using detailed Monte Carlo simulations of a passively scattered proton treatment unit and an anthropomorphic phantom. The predicted value of E was 567 mSv, of which 320 mSv was attributed to leakage from the treatment unit; the remainder arose from scattered radiation that originated within the patient. Modest modifications of the treatment unit reduced E by 212 mSv. Surprisingly, E from a modified passive-scattering device was only slightly higher (109 mSv) than from a nozzle with no leakage, e.g., that which may be approached with a spot-scanning technique. These results add to the body of evidence supporting the suitability of passively scattered proton beams for the treatment of prostate cancer, confirm that the effective dose from stray radiation was not excessive, and, importantly, show that it can be substantially reduced by modest enhancements to the treatment unit. PMID:18369278

  2. Concomitant use of radiotherapy and two topoisomerase inhibitors to treat adult T-cell leukemia with a radiotherapy-resistant bulky disease: a case series.

    PubMed

    Obama, Kosuke

    2014-01-01

    Concomitant chemoradiotherapy is established as the standard treatment to improve the prognosis of several types of solid tumor, but has not been the general practice for hematological malignancies. Here, I report two cases of adult T-cell leukemia (ATL) with a radiotherapy-resistant bulky disease treated with concomitant radiotherapy and two topoisomerase inhibitors: etoposide (VP-16) and irinotecan (CPT-11). Patient 1 was a 78-year-old man with chemotherapy-resistant inguinal bulky mass. Radiotherapy (total 40 Gy) for this inguinal lesion was started; however, the bulky disease was found to be resistant to radiotherapy and progressed. VP-16 and CPT-11 were administered in addition to radiotherapy (after a total of 20 Gy of radiotherapy). Patient 2 was a 71-year-old man with a solitary bulky mass in left cervical lesion. Various previous chemotherapy and radiotherapy approaches had not been able to control the disease. Six months after first radiotherapy, the bulky disease rapidly progressed with the occurrence of pain. Second radiotherapy (30 Gy) was started with simultaneous administration of CPT-11 and VP-16. In both cases, the bulky disease gradually regressed and completely disappeared by the end of radiotherapy. Thus, flexible adaptation of concomitant chemoradiotherapy including two topoisomerase inhibitors may offer a potential therapeutic option for radiotherapy-resistant bulky diseases, even in hematological malignancies.

  3. Photosynthetic units.

    PubMed

    Schmid, G H; Gaffron, H

    1968-08-01

    Leaf tissues of aurea mutants of tobacco and Lespedeza have been shown to have higher photosynthetic capacity per molecule of chlorophyll, a higher saturation intensity, a simpler lamellar structure, and the same quantum yield as their dark green parents. Here we report on the values of photosynthetic units for both types of plants and some algae. The unit has been assumed to be about as uniform and steady in the plant world as the quantum efficiency. The number on which all theoretical discussions have been based so far is 2400 per O(2) evolved or CO(2) reduced. With dark green plants and algae our determinations of units by means of 40 microsec flashes superimposed on a steady rate of background photosynthesis at 900 ergs cm(-2) sec(-1) of red light yielded mostly numbers between 2000 and 2700. However, the photosynthetic unit turned out to be very variable, even in these objects. In aurea mutants the unit was distinctly smaller, averaging 600 chl/CO(2). By choosing the right combination of colors for flash and background light, units as low as 300 chl/CO(2) or 40 chl/e(-) could be measured consistently. We found five well-defined groups of units composed of multiples of its smallest member. These new findings are discussed in terms of structural entities that double or divide under the influence of far-red light.

  4. Radiotherapy physics research in the UK: challenges and proposed solutions

    PubMed Central

    Mackay, R I; Burnet, N G; Green, S; Illidge, T M; Staffurth, J N

    2012-01-01

    In 2011, the Clinical and Translational Radiotherapy Research Working Group (CTRad) of the National Cancer Research Institute brought together UK radiotherapy physics leaders for a think tank meeting. Following a format that CTRad had previously and successfully used with clinical oncologists, 23 departments were asked to complete a pre-meeting evaluation of their radiotherapy physics research infrastructure and the strengths, weaknesses, opportunities and threats within their own centre. These departments were brought together with the CTRad Executive Group and research funders to discuss the current state of radiotherapy physics research, perceived barriers and possible solutions. In this Commentary, we summarise the submitted materials, presentations and discussions from the meeting and propose an action plan. It is clear that there are challenges in both funding and staffing of radiotherapy physics research. Programme and project funding streams sometimes struggle to cater for physics-led work, and increased representation on research funding bodies would be valuable. Career paths for academic radiotherapy physicists need to be examined and an academic training route identified within Modernising Scientific Careers; the introduction of formal job plans may allow greater protection of research time, and should be considered. Improved access to research facilities, including research linear accelerators, would enhance research activity and pass on developments to patients more quickly; research infrastructure could be benchmarked against centres in the UK and abroad. UK National Health Service departments wishing to undertake radiotherapy research, with its attendant added value for patients, need to develop a strategy with their partner higher education institution, and collaboration between departments may provide enhanced opportunities for funded research. PMID:22972972

  5. Radiotherapy physics research in the UK: challenges and proposed solutions.

    PubMed

    Mackay, R I; Burnet, N G; Green, S; Illidge, T M; Staffurth, J N

    2012-10-01

    In 2011, the Clinical and Translational Radiotherapy Research Working Group (CTRad) of the National Cancer Research Institute brought together UK radiotherapy physics leaders for a think tank meeting. Following a format that CTRad had previously and successfully used with clinical oncologists, 23 departments were asked to complete a pre-meeting evaluation of their radiotherapy physics research infrastructure and the strengths, weaknesses, opportunities and threats within their own centre. These departments were brought together with the CTRad Executive Group and research funders to discuss the current state of radiotherapy physics research, perceived barriers and possible solutions. In this Commentary, we summarise the submitted materials, presentations and discussions from the meeting and propose an action plan. It is clear that there are challenges in both funding and staffing of radiotherapy physics research. Programme and project funding streams sometimes struggle to cater for physics-led work, and increased representation on research funding bodies would be valuable. Career paths for academic radiotherapy physicists need to be examined and an academic training route identified within Modernising Scientific Careers; the introduction of formal job plans may allow greater protection of research time, and should be considered. Improved access to research facilities, including research linear accelerators, would enhance research activity and pass on developments to patients more quickly; research infrastructure could be benchmarked against centres in the UK and abroad. UK National Health Service departments wishing to undertake radiotherapy research, with its attendant added value for patients, need to develop a strategy with their partner higher education institution, and collaboration between departments may provide enhanced opportunities for funded research.

  6. Waiting time for radiotherapy in women with cervical cancer

    PubMed Central

    do Nascimento, Maria Isabel; Azevedo e Silva, Gulnar

    2016-01-01

    ABSTRACT OBJECTIVE To describe the waiting time for radiotherapy for patients with cervical cancer. METHODS This descriptive study was conducted with 342 cervical cancer cases that were referred to primary radiotherapy, in the Baixada Fluminense region, RJ, Southeastern Brazil, from October 1995 to August 2010. The waiting time was calculated using the recommended 60-day deadline as a parameter to obtaining the first cancer treatment and considering the date at which the diagnosis was confirmed, the date of first oncological consultation and date when the radiotherapy began. Median and proportional comparisons were made using the Kruskal Wallis and Chi-square tests. RESULTS Most of the women (72.2%) began their radiotherapy within 60 days from the diagnostic confirmation date. The median of this total waiting time was 41 days. This median worsened over the time period, going from 11 days (1995-1996) to 64 days (2009-2010). The median interval between the diagnostic confirmation and the first oncological consultation was 33 days, and between the first oncological consultation and the first radiotherapy session was four days. The median waiting time differed significantly (p = 0.003) according to different stages of the tumor, reaching 56 days, 35 days and 30 days for women whose cancers were classified up to IIA; from IIB to IIIB, and IVA-IVB, respectively. CONCLUSIONS Despite most of the women having had access to radiotherapy within the recommended 60 days, the implementation of procedures to define the stage of the tumor and to reestablish clinical conditions took a large part of this time, showing that at least one of these intervals needs to be improved. Even though the waiting times were ideal for all patients, the most advanced cases were quickly treated, which suggests that access to radiotherapy by women with cervical cancer has been reached with equity. PMID:26786473

  7. Development of three-dimensional radiotherapy techniques in breast cancer

    NASA Astrophysics Data System (ADS)

    Coles, Charlotte E.

    Radiotherapy following conservation surgery decreases local relapse and death from breast cancer. Currently, the challenge is to minimise the morbidity caused by this treatment without losing efficacy. Despite many advances in radiation techniques in other sites of the body, the majority of breast cancer patients are still planned and treated using 2-dimensional simple radiotherapy techniques. In addition, breast irradiation currently consumes 30% of the UK's radiotherapy workload. Therefore, any change to more complex treatment should be of proven benefit. The primary objective of this research is to develop and evaluate novel radiotherapy techniques to decrease irradiation of normal structures and improve localisation of the tumour bed. I have developed a forward-planned intensity modulated (IMRT) breast radiotherapy technique, which has shown improved dosimetry results compared to standard breast radiotherapy. Subsequently, I have developed and implemented a phase III randomised controlled breast IMRT trial. This National Cancer Research Network adopted trial will answer an important question regarding the clinical benefit of breast IMRT. It will provide DNA samples linked with high quality clinical outcome data, for a national translational radiogenomics study investigating variation in normal tissue toxicity. Thus, patients with significant late normal tissue side effects despite good dose homogeneity will provide the best model for finding differences due to underlying genetics. I evaluated a novel technique using high definition free-hand 3-dimensional (3D) ultrasound in a phantom study, and the results suggested that this is an accurate and reproducible method for tumour bed localisation. I then compared recognised methods of tumour bed localisation with the 3D ultrasound method in a clinical study. The 3D ultrasound technique appeared to accurately represent the shape and spatial position of the tumour cavity. This tumour bed localisation research

  8. Inflammatory breast carcinoma treated by radical radiotherapy

    SciTech Connect

    Chu, A.M.; Wood, W.C.; Doucette, J.A.

    1980-06-01

    Sixty-two patients with localized clinical inflammatory breast carcinoma were treated with curative, radical radiotherapy doses to the breast and draining lymphatics. Fifty patients have died from disease, 7 are alive with disease, and 5 are free of disease at time of reporting, thus indicating the fulminant nature of this rare form of breast cancer. Median survival is approximately 18 months. A five-year actuarial survival and relapse-free survival of 14% and 6%, respectively, are obtained. Local and regional recurrence was noted in 43 of 62 patients (69%). Twelve patients (19%) failed in the locally irradiated area only, 31 patients (50%) failed in both local, regional, and distant sites, and 14 patients (23%) failed with distant metastases only. Due to the complex dosimetry required in the treatment of breast cancer, retrospective analysis was made of actual tumor doses delivered before 1972. The breast was oftentimes calculated to receive 20 to 35% less than the stated dose. Doses in excess of 6000 rads tumor dose seem necessary since 14 of the 15 patients with persistent disesase had received less than this dose. However, once tumor exceeded 10 cm increasing dose within clinical therapeutic ranges failed to control disease, although the recurrence-free interval was somewhat prolonged. Since 1976, twice-a-day fractionation has been used in larger tumors, and this appears to have decreased the local recurrence rate to 33% (2/6) patients. Preliminary results of adjuvant multiple drug therapy appear encouraging.

  9. Systemic Targeted Alpha Radiotherapy for Cancer

    PubMed Central

    Allen, BJ

    2013-01-01

    Background: The fundamental principles of internal targeted alpha therapy forcancer were established many decades ago.The high linear energy transfer (LET) ofalpha radiation to the targeted cancer cellscauses double strand breaks in DNA. Atthe same time, the short range radiation spares adjacent normal tissues. This targeted approach complements conventional external beam radiotherapy and chemotherapy. Such therapies fail on several fronts, such as lack of control of some primary cancers (e.g. glioblastoma multiforme) and to inhibit the development of lethal metastaticcancer after successful treatment of the primary cancer. Objective: This review charts the developing role of systemic high LET, internalradiation therapy. Method: Targeted alpha therapy is a rapidly advancing experimental therapy thatholds promise to deliver high cytotoxicity to targeted cancer cells. Initially thoughtto be indicated for leukemia and micrometastases, there is now evidence that solidtumors can also be regressed. Results: Alpha therapy may be molecular or physiological in its targeting. Alphaemitting radioisotopes such as Bi-212, Bi-213, At-211 and Ac-225 are used to labelmonoclonal antibodies or proteins that target specific cancer cells. Alternatively, Radium-233 is used for palliative therapy of breast and prostate cancers because of its bone seeking properties. Conclusion: Preclinical studies and clinical trials of alpha therapy are discussedfor leukemia, lymphoma, melanoma, glioblastoma multiforme, bone metastases, ovarian cancer, pancreatic cancer and other cancers. PMID:25505750

  10. Chemically enhanced radiotherapy: visions for the future

    PubMed Central

    Susheela, Sridhar P.

    2016-01-01

    Radiotherapy (RT) is an important part of cancer management, with more than a third of all cancer cures being attributable to RT. Despite the advances in RT over the past century, the overall outcomes in a majority of malignancies are still unsatisfactory. There has been a constant endeavor to enhance the outcome of RT, and this has been in the form of altered fractionation, oxymimetic radiosensitizers, the use of concurrent chemotherapy, anti-angiogenic therapy and anti-growth factor receptor targeted therapies. This article presents a vision for the future, with emphasis upon emerging prospects which could enhance RT outcomes. Positive speculations regarding the use of immunological aspects, the use of nanoscale technology and the adoption of metronomic concurrent chemotherapy have been presented. Also, the potential with the use of low dose hyperradiosensitivity in enhancing chemotherapy outcomes too has been discussed. In this era of evidence based clinical practise, there exists a strong obsession towards the ‘present’ with ‘contempt towards the future’. Accepting the shortcomings of the existing modalities, there must be a strong zeal towards discovering better methodologies to enhance radiotherapeutic outcomes for the sake of a better future. PMID:26904574

  11. Clinical advantages of carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Tsujii, Hirohiko; Kamada, Tadashi; Baba, Masayuki; Tsuji, Hiroshi; Kato, Hirotoshi; Kato, Shingo; Yamada, Shigeru; Yasuda, Shigeo; Yanagi, Takeshi; Kato, Hiroyuki; Hara, Ryusuke; Yamamoto, Naotaka; Mizoe, Junetsu

    2008-07-01

    Carbon-ion radiotherapy (C-ion RT) possesses physical and biological advantages. It was started at NIRS in 1994 using the Heavy Ion Medical Accelerator in Chiba (HIMAC); since then more than 50 protocol studies have been conducted on almost 4000 patients with a variety of tumors. Clinical experiences have demonstrated that C-ion RT is effective in such regions as the head and neck, skull base, lung, liver, prostate, bone and soft tissues, and pelvic recurrence of rectal cancer, as well as for histological types including adenocarcinoma, adenoid cystic carcinoma, malignant melanoma and various types of sarcomas, against which photon therapy could be less effective. Furthermore, when compared with photon and proton RT, a significant reduction of overall treatment time and fractions has been accomplished without enhancing toxicities. Currently, the number of irradiation sessions per patient averages 13 fractions spread over approximately three weeks. This means that in a carbon therapy facility a larger number of patients than is possible with other modalities can be treated over the same period of time.

  12. Hypnotherapy in radiotherapy patients: A randomized trial

    SciTech Connect

    Stalpers, Lukas J.A. . E-mail: l.stalpers@amc.uva.nl; Costa, Hanna C. da; Merbis, Merijn A.E.; Fortuin, Andries A.; Muller, Martin J.; Dam, Frits van

    2005-02-01

    Purpose: To determine whether hypnotherapy reduces anxiety and improves the quality of life in cancer patients undergoing curative radiotherapy (RT). Methods and materials: After providing written informed consent, 69 patients were randomized between standard curative RT alone (36 controls) and RT plus hypnotherapy (33 patients). Patients in the hypnotherapy group received hypnotherapy at the intake, before RT simulation, before the first RT session, and halfway between the RT course. Anxiety was evaluated by the State-Trait Anxiety Inventory DY-1 form at six points. Quality of life was measured by the Rand Medical Outcomes Study 36-item Health Survey (SF-36) at five points. Additionally, patients answered a questionnaire to evaluate their experience and the possible benefits of this research project. Results: No statistically significant difference was found in anxiety or quality of life between the hypnotherapy and control groups. However, significantly more patients in the hypnotherapy group indicated an improvement in mental (p < 0.05) and overall (p < 0.05) well-being. Conclusion: Hypnotherapy did not reduce anxiety or improve the quality of life in cancer patients undergoing curative RT. The absence of statistically significant differences between the two groups contrasts with the hypnotherapy patients' own sense of mental and overall well-being, which was significantly greater after hypnotherapy. It cannot be excluded that the extra attention by the hypnotherapist was responsible for this beneficial effect in the hypnotherapy group. An attention-only control group would be necessary to control for this effect.

  13. Fractionated Stereotactic Radiotherapy for Facial Nerve Schwannomas.

    PubMed

    Shi, Wenyin; Jain, Varsha; Kim, Hyun; Champ, Colin; Jain, Gaurav; Farrell, Christopher; Andrews, David W; Judy, Kevin; Liu, Haisong; Artz, Gregory; Werner-Wasik, Maria; Evans, James J

    2016-02-01

    Purpose Data on the clinical course of irradiated facial nerve schwannomas (FNS) are lacking. We evaluated fractionated stereotactic radiotherapy (FSRT) for FNS. Methods Eight consecutive patients with FNS treated at our institution between 1998 and 2011 were included. Patients were treated with FSRT to a median dose of 50.4 Gy (range: 46.8-54 Gy) in 1.8 or 2.0 Gy fractions. We report the radiographic response, symptom control, and toxicity associated with FSRT for FNS. Results The median follow-up time was 43 months (range: 10-75 months). All patients presented with symptoms including pain, tinnitus, facial asymmetry, diplopia, and hearing loss. The median tumor volume was 1.57 cc. On the most recent follow-up imaging, five patients were noted to have stable tumor size; three patients had a net reduction in tumor volume. Additionally, six patients had improvement in clinical symptoms, one patient had stable clinical findings, and one patient had worsened House-Brackmann grade due to cystic degeneration. Conclusion FSRT treatment of FNS results in excellent control of growth and symptoms with a small rate of radiation toxicity. Given the importance of maintaining facial nerve function, FSRT could be considered as a primary management modality for enlarging or symptomatic FNS. PMID:26949592

  14. A dosimetry intercomparison phantom for intraoperative radiotherapy.

    PubMed

    Armoogum, Kris; Watson, Colin

    2008-01-01

    Intraoperative radiotherapy (IORT) using very low kV x-rays is a promising new treatment modality and has proven to be effective for managing breast and neurological tumours. We have treated in excess of 75 patients using four Zeiss Intrabeam x-ray sources (XRS). To date there has been no published data of any dosimetric intercomparison of this type of x-ray source used at other cancer centres worldwide. This paper describes the design of a simple dosimetry intercomparison phantom for use with these very low kV x-ray sources. A prototype polymethyl methacrylate (PMMA) phantom has been manufactured, the dimensions of which were determined by the dimensions of the XRS, the beam energy and the attenuating properties of PMMA. The phantom is used in conjunction with Gafchromic XR Type-R film (GC-XRR) and its purpose is to measure the absorbed dose at a fixed distance from the effective point source at the tip of the XRS. The utility of this phantom is further enhanced through the use of an interlock, which eliminates the need to use the mobile gantry. We have used this phantom to conduct a qualitative dosimetric intercomparison of four Zeiss Intrabeam x-ray sources with positive results. This phantom is low cost, easy to manufacture, simple to use and could be adopted as a standard method of dosimetric intercomparison for Intrabeam x-ray sources as this mode of IORT becomes more widespread. PMID:18705612

  15. Software for 3D radiotherapy dosimetry. Validation

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Maras, Piotr; Karwowski, Andrzej C.

    2014-08-01

    The subject of this work is polyGeVero® software (GeVero Co., Poland), which has been developed to fill the requirements of fast calculations of 3D dosimetry data with the emphasis on polymer gel dosimetry for radiotherapy. This software comprises four workspaces that have been prepared for: (i) calculating calibration curves and calibration equations, (ii) storing the calibration characteristics of the 3D dosimeters, (iii) calculating 3D dose distributions in irradiated 3D dosimeters, and (iv) comparing 3D dose distributions obtained from measurements with the aid of 3D dosimeters and calculated with the aid of treatment planning systems (TPSs). The main features and functions of the software are described in this work. Moreover, the core algorithms were validated and the results are presented. The validation was performed using the data of the new PABIGnx polymer gel dosimeter. The polyGeVero® software simplifies and greatly accelerates the calculations of raw 3D dosimetry data. It is an effective tool for fast verification of TPS-generated plans for tumor irradiation when combined with a 3D dosimeter. Consequently, the software may facilitate calculations by the 3D dosimetry community. In this work, the calibration characteristics of the PABIGnx obtained through four calibration methods: multi vial, cross beam, depth dose, and brachytherapy, are discussed as well.

  16. Online Adaptive Replanning Method for Prostate Radiotherapy

    SciTech Connect

    Ahunbay, Ergun E.; Peng Cheng; Holmes, Shannon; Godley, Andrew; Lawton, Colleen; Li, X. Allen

    2010-08-01

    Purpose: To report the application of an adaptive replanning technique for prostate cancer radiotherapy (RT), consisting of two steps: (1) segment aperture morphing (SAM), and (2) segment weight optimization (SWO), to account for interfraction variations. Methods and Materials: The new 'SAM+SWO' scheme was retroactively applied to the daily CT images acquired for 10 prostate cancer patients on a linear accelerator and CT-on-Rails combination during the course of RT. Doses generated by the SAM+SWO scheme based on the daily CT images were compared with doses generated after patient repositioning using the current planning target volume (PTV) margin (5 mm, 3 mm toward rectum) and a reduced margin (2 mm), along with full reoptimization scans based on the daily CT images to evaluate dosimetry benefits. Results: For all cases studied, the online replanning method provided significantly better target coverage when compared with repositioning with reduced PTV (13% increase in minimum prostate dose) and improved organ sparing when compared with repositioning with regular PTV (13% decrease in the generalized equivalent uniform dose of rectum). The time required to complete the online replanning process was 6 {+-} 2 minutes. Conclusion: The proposed online replanning method can be used to account for interfraction variations for prostate RT with a practically acceptable time frame (5-10 min) and with significant dosimetric benefits. On the basis of this study, the developed online replanning scheme is being implemented in the clinic for prostate RT.

  17. Automated radiotherapy treatment plan integrity verification

    SciTech Connect

    Yang Deshan; Moore, Kevin L.

    2012-03-15

    Purpose: In our clinic, physicists spend from 15 to 60 min to verify the physical and dosimetric integrity of radiotherapy plans before presentation to radiation oncology physicians for approval. The purpose of this study was to design and implement a framework to automate as many elements of this quality control (QC) step as possible. Methods: A comprehensive computer application was developed to carry out a majority of these verification tasks in the Philips PINNACLE treatment planning system (TPS). This QC tool functions based on both PINNACLE scripting elements and PERL sub-routines. The core of this technique is the method of dynamic scripting, which involves a PERL programming module that is flexible and powerful for treatment plan data handling. Run-time plan data are collected, saved into temporary files, and analyzed against standard values and predefined logical rules. The results were summarized in a hypertext markup language (HTML) report that is displayed to the user. Results: This tool has been in clinical use for over a year. The occurrence frequency of technical problems, which would cause delays and suboptimal plans, has been reduced since clinical implementation. Conclusions: In addition to drastically reducing the set of human-driven logical comparisons, this QC tool also accomplished some tasks that are otherwise either quite laborious or impractical for humans to verify, e.g., identifying conflicts amongst IMRT optimization objectives.

  18. Automated delineation of radiotherapy volumes: are we going in the right direction?

    PubMed

    Whitfield, G A; Price, P; Price, G J; Moore, C J

    2013-01-01

    Rapid and accurate delineation of target volumes and multiple organs at risk, within the enduring International Commission on Radiation Units and Measurement framework, is now hugely important in radiotherapy, owing to the rapid proliferation of intensity-modulated radiotherapy and the advent of four-dimensional image-guided adaption. Nevertheless, delineation is still generally clinically performed with little if any machine assistance, even though it is both time-consuming and prone to interobserver variation. Currently available segmentation tools include those based on image greyscale interrogation, statistical shape modelling and body atlas-based methods. However, all too often these are not able to match the accuracy of the expert clinician, which remains the universally acknowledged gold standard. In this article we suggest that current methods are fundamentally limited by their lack of ability to incorporate essential human clinical decision-making into the underlying models. Hybrid techniques that utilise prior knowledge, make sophisticated use of greyscale information and allow clinical expertise to be integrated are needed. This may require a change in focus from automated segmentation to machine-assisted delineation. Similarly, new metrics of image quality reflecting fitness for purpose would be extremely valuable. We conclude that methods need to be developed to take account of the clinician's expertise and honed visual processing capabilities as much as the underlying, clinically meaningful information content of the image data being interrogated. We illustrate our observations and suggestions through our own experiences with two software tools developed as part of research council-funded projects.

  19. A dose optimization method for electron radiotherapy using randomized aperture beams.

    PubMed

    Engel, Konrad; Gauer, Tobias

    2009-09-01

    The present paper describes the entire optimization process of creating a radiotherapy treatment plan for advanced electron irradiation. Special emphasis is devoted to the selection of beam incidence angles and beam energies as well as to the choice of appropriate subfields generated by a refined version of intensity segmentation and a novel random aperture approach. The algorithms have been implemented in a stand-alone programme using dose calculations from a commercial treatment planning system. For this study, the treatment planning system Pinnacle from Philips has been used and connected to the optimization programme using an ASCII interface. Dose calculations in Pinnacle were performed by Monte Carlo simulations for a remote-controlled electron multileaf collimator (MLC) from Euromechanics. As a result, treatment plans for breast cancer patients could be significantly improved when using randomly generated aperture beams. The combination of beams generated through segmentation and randomization achieved the best results in terms of target coverage and sparing of critical organs. The treatment plans could be further improved by use of a field reduction treatment plans could be further improved by use of a field reduction algorithm. Without a relevant loss in dose distribution, the total number of MLC fields and monitor units could be reduced by up to 20%. In conclusion, using randomized aperture beams is a promising new approach in radiotherapy and exhibits potential for further improvements in dose optimization through a combination of randomized electron and photon aperture beams.

  20. Boosting runtime-performance of photon pencil beam algorithms for radiotherapy treatment planning.

    PubMed

    Siggel, M; Ziegenhein, P; Nill, S; Oelfke, U

    2012-10-01

    Pencil beam algorithms are still considered as standard photon dose calculation methods in Radiotherapy treatment planning for many clinical applications. Despite their established role in radiotherapy planning their performance and clinical applicability has to be continuously adapted to evolving complex treatment techniques such as adaptive radiation therapy (ART). We herewith report on a new highly efficient version of a well-established pencil beam convolution algorithm which relies purely on measured input data. A method was developed that improves raytracing efficiency by exploiting the capability of modern CPU architecture for a runtime reduction. Since most of the current desktop computers provide more than one calculation unit we used symmetric multiprocessing extensively to parallelize the workload and thus decreasing the algorithmic runtime. To maximize the advantage of code parallelization, we present two implementation strategies - one for the dose calculation in inverse planning software, and one for traditional forward planning. As a result, we could achieve on a 16-core personal computer with AMD processors a superlinear speedup factor of approx. 18 for calculating the dose distribution of typical forward IMRT treatment plans. PMID:22071169

  1. Dosimetric comparison of intensity modulated radiotherapy techniques and standard wedged tangents for whole breast radiotherapy.

    PubMed

    Fong, Andrew; Bromley, Regina; Beat, Mardi; Vien, Din; Dineley, Jude; Morgan, Graeme

    2009-02-01

    Prior to introducing intensity modulated radiotherapy (IMRT) for whole breast radiotherapy (WBRT) into our department we undertook a comparison of the dose parameters of several IMRT techniques and standard wedged tangents (SWT). Our aim was to improve the dose distribution to the breast and to decrease the dose to organs at risk (OAR): heart, lung and contralateral breast (Contra Br). Treatment plans for 20 women (10 right-sided and 10 left-sided) previously treated with SWT for WBRT were used to compare (a) SWT; (b) electronic compensators IMRT (E-IMRT); (c) tangential beam IMRT (T-IMRT); (d) coplanar multi-field IMRT (CP-IMRT); and (e) non-coplanar multi-field IMRT (NCP-IMRT). Plans for the breast were compared for (i) dose homogeneity (DH); (ii) conformity index (CI); (iii) mean dose; (iv) maximum dose; (v) minimum dose; and dose to OAR were calculated (vi) heart; (vii) lung and (viii) Contra Br. Compared with SWT, all plans except CP-IMRT gave improvement in at least two of the seven parameters evaluated. T-IMRT and NCP-IMRT resulted in significant improvement in all parameters except DH and both gave significant reduction in doses to OAR. As on initial evaluation NCP-IMRT is likely to be too time consuming to introduce on a large scale, T-IMRT is the preferred technique for WBRT for use in our department. PMID:19453534

  2. [Current Status of Stereotactic Ablative Radiotherapy (SABR) for Early-stage 
Non-small Cell Lung Cancer].

    PubMed

    Shi, Anhui; Zhu, Guangying

    2016-06-20

    High level evidence from randomized studies comparing stereotactic ablative radiotherapy (SABR) to surgery is lacking. Although the results of pooled analysis of two randomized trials for STARS and ROSEL showed that SABR is better tolerated and might lead to better overall survival than surgery for operable clinical stage I non-small cell lung cancer (NSCLC), SABR, however, is only recommended as a preferred treatment option for early stage NSCLC patients who cannot or will not undergo surgery. We, therefore, are waiting for the results of the ongoing randomized studies [Veterans affairs lung cancer surgery or stereotactic radiotherapy in the US (VALOR) and the SABRTooth study in the United Kingdom (SABRTooths)]. Many retrospective and case control studies showed that SABR is safe and effective (local control rate higher than 90%, 5 years survival rate reached 70%), but there are considerable variations in the definitions and staging of lung cancer, operability determination, and surgical approaches to operable lung cancer (open vs video-assisted). Therefore, it is difficult to compare the superiority of radiotherapy and surgery in the treatment of early staged lung cancer. Most studies demonstrated that the efficacy of the two modalities for early staged lung cancer is equivalent; however, due to the limited data, the conclusions from those studies are difficult to be evidence based. Therefore, the controversies will be focusing on the safety and invasiveness of the two treatment modalities. This article will review the ongoing debate in light of these goals. PMID:27335303

  3. A new active method for the measurement of slow-neutron fluence in modern radiotherapy treatment rooms

    NASA Astrophysics Data System (ADS)

    Gómez, F.; Iglesias, A.; Sánchez Doblado, F.

    2010-02-01

    This work focuses on neutron monitoring at clinical linac facilities during high-energy modality radiotherapy treatments. Active in-room measurement of neutron fluence is a complex problem due to the pulsed nature of the fluence and the presence of high photon background, and only passive methods have been considered reliable until now. In this paper we present a new active method to perform real-time measurement of neutron production around a medical linac. The device readout is being investigated as an estimate of patient neutron dose exposure on each radiotherapy session. The new instrument was developed based on neutron interaction effects in microelectronic memory devices, in particular using neutron-sensitive SRAM devices. This paper is devoted to the description of the instrument and measurement techniques, presenting the results obtained together with their comparison and discussion. Measurements were performed in several standard clinical linac facilities, showing high reliability, being insensitive to the photon fluence and EM pulse present inside the radiotherapy room, and having detector readout statistical relative uncertainties of about 2% on measurement of neutron fluence produced by 1000 monitor units irradiation runs.

  4. Dosimetric advantages of O-ring design radiotherapy system for skull-base tumors.

    PubMed

    Ogura, Kengo; Mizowaki, Takashi; Ishida, Yuichi; Hiraoka, Masahiro

    2014-01-01

    The purpose of this study was to investigate whether a new O-ring design radiotherapy delivery system has advantages in radiotherapy planning for skull-base tumors. Twenty-five patients with skull-base tumors were included in this study. Two plans were made using conventional (Plan A) or new (Plan B) techniques. Plan A consisted of four dynamic conformal arcs (DCAs): two were horizontal, and the other two were from cranial directions. Plan B was created by converting horizontal arcs to those from caudal directions making use of the O-ring design radiotherapy system. The micromultileaf collimators were fitted to cover at least 99% of the planning target volume with prescribed doses, 90% of the dose at the isocenter. The two plans were compared in terms of target homogeneity, conformity, and irradiated volume of normal tissues, using a two-sided paired t-test. For evaluation regarding target coverage, the homogeneity indices defined by the International Commission on Radiation Units and Measurements 83 were 0.099 ± 0.010 (mean ± standard deviation) and 0.092 ± 0.010, the conformity indices defined by the Radiation Therapy Oncology Group were 1.720 ± 0.249 and 1.675 ± 0.239, and the Paddick's conformity indices were 0.585 ± 0.078 and 0.602 ± 0.080, in Plans A and B, respectively. For evaluation of irradiated normal tissue, the Paddick's gradient indices were 3.118 ± 0.283 and 2.938 ± 0.263 in Plans A and B, respectively. All of these differences were statistically significant (p-values < 0.05). The mean doses of optic nerves, eyes, brainstem, and hippocampi were also significantly lower in Plan B. The DCA technique from caudal directions using the new O-ring design radiotherapy system can improve target homogeneity and conformity compared with conventional DCA techniques, and can also decrease the volume of surrounding normal tissues that receives moderate doses. PMID:24710448

  5. Dosimetric advantages of O-ring design radiotherapy system for skull-base tumors.

    PubMed

    Ogura, Kengo; Mizowaki, Takashi; Ishida, Yuichi; Hiraoka, Masahiro

    2014-03-06

    The purpose of this study was to investigate whether a new O-ring design radiotherapy delivery system has advantages in radiotherapy planning for skull-base tumors. Twenty-five patients with skull-base tumors were included in this study. Two plans were made using conventional (Plan A) or new (Plan B) techniques. Plan A consisted of four dynamic conformal arcs (DCAs): two were horizontal, and the other two were from cranial directions. Plan B was created by converting horizontal arcs to those from caudal directions making use of the O-ring design radiotherapy system. The micromultileaf collimators were fitted to cover at least 99% of the planning target volume with prescribed doses, 90% of the dose at the isocenter. The two plans were compared in terms of target homogeneity, conformity, and irradiated volume of normal tissues, using a two-sided paired t-test. For evaluation regarding target coverage, the homogeneity indices defined by the International Commission on Radiation Units and Measurements 83 were 0.099 ± 0.010 (mean ± standard deviation) and 0.092 ± 0.010, the conformity indices defined by the Radiation Therapy Oncology Group were 1.720 ± 0.249 and 1.675 ± 0.239, and the Paddick's conformity indices were 0.585 ± 0.078 and 0.602 ± 0.080, in Plans A and B, respectively. For evaluation of irradiated normal tissue, the Paddick's gradient indices were 3.118 ± 0.283 and 2.938 ± 0.263 in Plans A and B, respectively. All of these differences were statistically significant (p-values < 0.05). The mean doses of optic nerves, eyes, brainstem, and hippocampi were also significantly lower in Plan B. The DCA technique from caudal directions using the new O-ring design radiotherapy system can improve target homogeneity and conformity compared with conventional DCA techniques, and can also decrease the volume of surrounding normal tissues that receives moderate doses.

  6. A software tool of digital tomosynthesis application for patient positioning in radiotherapy.

    PubMed

    Yan, Hui; Dai, Jian-Rong

    2016-03-08

    Digital Tomosynthesis (DTS) is an image modality in reconstructing tomographic images from two-dimensional kV projections covering a narrow scan angles. Comparing with conventional cone-beam CT (CBCT), it requires less time and radiation dose in data acquisition. It is feasible to apply this technique in patient positioning in radiotherapy. To facilitate its clinical application, a software tool was developed and the reconstruction processes were accelerated by graphic process-ing unit (GPU). Two reconstruction and two registration processes are required for DTS application which is different from conventional CBCT application which requires one image reconstruction process and one image registration process. The reconstruction stage consists of productions of two types of DTS. One type of DTS is reconstructed from cone-beam (CB) projections covering a narrow scan angle and is named onboard DTS (ODTS), which represents the real patient position in treatment room. Another type of DTS is reconstructed from digitally reconstructed radiography (DRR) and is named reference DTS (RDTS), which represents the ideal patient position in treatment room. Prior to the reconstruction of RDTS, The DRRs are reconstructed from planning CT using the same acquisition setting of CB projections. The registration stage consists of two matching processes between ODTS and RDTS. The target shift in lateral and longitudinal axes are obtained from the matching between ODTS and RDTS in coronal view, while the target shift in longitudinal and vertical axes are obtained from the matching between ODTS and RDTS in sagittal view. In this software, both DRR and DTS reconstruction algorithms were implemented on GPU environments for acceleration purpose. The comprehensive evaluation of this software tool was performed including geometric accuracy, image quality, registration accuracy, and reconstruction efficiency. The average correlation coefficient between DRR/DTS generated by GPU-based algorithm

  7. A software tool of digital tomosynthesis application for patient positioning in radiotherapy.

    PubMed

    Yan, Hui; Dai, Jian-Rong

    2016-01-01

    Digital Tomosynthesis (DTS) is an image modality in reconstructing tomographic images from two-dimensional kV projections covering a narrow scan angles. Comparing with conventional cone-beam CT (CBCT), it requires less time and radiation dose in data acquisition. It is feasible to apply this technique in patient positioning in radiotherapy. To facilitate its clinical application, a software tool was developed and the reconstruction processes were accelerated by graphic process-ing unit (GPU). Two reconstruction and two registration processes are required for DTS application which is different from conventional CBCT application which requires one image reconstruction process and one image registration process. The reconstruction stage consists of productions of two types of DTS. One type of DTS is reconstructed from cone-beam (CB) projections covering a narrow scan angle and is named onboard DTS (ODTS), which represents the real patient position in treatment room. Another type of DTS is reconstructed from digitally reconstructed radiography (DRR) and is named reference DTS (RDTS), which represents the ideal patient position in treatment room. Prior to the reconstruction of RDTS, The DRRs are reconstructed from planning CT using the same acquisition setting of CB projections. The registration stage consists of two matching processes between ODTS and RDTS. The target shift in lateral and longitudinal axes are obtained from the matching between ODTS and RDTS in coronal view, while the target shift in longitudinal and vertical axes are obtained from the matching between ODTS and RDTS in sagittal view. In this software, both DRR and DTS reconstruction algorithms were implemented on GPU environments for acceleration purpose. The comprehensive evaluation of this software tool was performed including geometric accuracy, image quality, registration accuracy, and reconstruction efficiency. The average correlation coefficient between DRR/DTS generated by GPU-based algorithm

  8. Improved outcome of nasopharyngeal carcinoma treated with conventional radiotherapy

    SciTech Connect

    Palazzi, Mauro . E-mail: mauro.palazzi@istitutotumori.mi.it; Guzzo, Marco; Tomatis, Stefano Ph.D.; Cerrotta, Annamaria; Potepan, Paolo; Quattrone, Pasquale; Cantu, Giulio

    2004-12-01

    Purpose: To describe the outcome of patients with nonmetastatic nasopharyngeal carcinoma (NPC) treated with conventional radiotherapy at a single institution. Methods and materials: From 1990 to 1999, 171 consecutive patients with NPC were treated with conventional (two-dimensional) radiotherapy. Tumor histology was undifferentiated in 82% of cases. Tumor-node-metastasis Stage (American Joint Committee on Cancer/International Union Against Cancer 1997 system) was I in 6%, II in 36%, III in 22%, and IV in 36% of patients. Mean total radiation dose was 68.4 Gy. Chemotherapy was given to 62% of the patients. The median follow-up for surviving patients was 6.3 years (range, 3.1-13.1 years). Results: The 5-year overall survival, disease-specific survival, and disease-free survival rates were 72%, 74%, and 62%, respectively. The 5-year local, regional, and distant control rates were 84%, 80%, and 83% respectively. Late effects of radiotherapy were prospectively recorded in 100 patients surviving without relapse; 44% of these patients had Grade 3 xerostomia, 33% had Grade 3 dental damage, and 11% had Grade 3 hearing loss. Conclusions: This analysis shows an improved outcome for patients treated from 1990 to 1999 compared with earlier retrospective series, despite the use of two-dimensional radiotherapy. Late toxicity, however, was substantial with conventional radiotherapy.

  9. Bilateral Rhegmatogenous Retinal Detachment during External Beam Radiotherapy.

    PubMed

    Hidaka, Takako; Chuman, Hideki; Nao-I, Nobuhisa

    2016-01-01

    Herein, we report a case of nontraumatic bilateral rhegmatogenous retinal detachment (RRD) during external beam radiotherapy for nonocular tumor, presented as an observational case study in conjunction with a review of the relevant literature. A 65-year-old male was referred to our hospital due to bilateral RRD. He underwent a biopsy for a tumor of the left frontal lobe 4 months prior to presentation, and the tumor had been diagnosed as primary central nerve system B-cell type lymphoma. He received chemotherapy and external beam radiotherapy for 1 month. There were no traumatic episodes. Bilateral retinal detachment occurred during a series of radiotherapies. Simultaneous nontraumatic bilateral retinal detachment is rare. The effects of radiotherapy on ocular functionality, particularly in cases involving retinal adhesion and vitreous contraction, may include RRD. Thus, it is necessary to closely monitor the eyes of patients undergoing radiotherapy, particularly those undergoing surgery for retinal detachment and those with a history of photocoagulation for retinal tears, a relevant family history, or risk factors known to be associated with RRD. PMID:27462261

  10. Low-dose prophylactic craniospinal radiotherapy for intracranial germinoma

    SciTech Connect

    Schoenfeld, Gordon O.; Amdur, Robert J. . E-mail: amdurrj@ufl.edu; Schmalfuss, Ilona M.; Morris, Christopher G.; Keole, Sameer R.; Mendenhall, William M.; Marcus, Robert B.

    2006-06-01

    Purpose: To report outcomes of patients with localized intracranial germinoma treated with low-dose craniospinal irradiation (CSI) followed by a boost to the ventricular system and primary site. Methods and Materials: Thirty-one patients had pathologically confirmed intracranial germinoma and no spine metastases. Low-dose CSI was administered in 29 patients: usually 21 Gy of CSI, 9.0 Gy of ventricular boost, and a 19.5-Gy tumor boost, all at 1.5 Gy per fraction. Our neuroradiologist recorded three-dimensional tumor size on magnetic resonance images before, during, and after radiotherapy. Results: With a median follow-up of 7.0 years, 29 of 31 patients (94%) are disease free. One failure had nongerminomatous histology; the initial diagnosis was a sampling error. Of 3 patients who did not receive CSI, 1 died. No patient developed myelopathy, visual deficits, dementia, or skeletal growth problems. In locally controlled patients, tumor response according to magnetic resonance scan was nearly complete within 6 months after radiotherapy. Conclusions: Radiotherapy alone with low-dose prophylactic CSI cures almost all patients with localized intracranial germinoma. Complications are rare when the daily dose of radiotherapy is limited to 1.5 Gy and the total CSI dose to 21 Gy. Patients without a near-complete response to radiotherapy should undergo resection to rule out a nongerminomatous element.

  11. Intra-Arterial Infusion Chemotherapy Using Cisplatin With Radiotherapy for Stage III Squamous Cell Carcinoma of the Cervix

    SciTech Connect

    Kaneyasu, Yuko Nagai, Nobutaka; Nagata, Yasushi; Hashimoto, Yasutoshi; Yuki, Shintaro; Murakami, Yuji; Kenjo, Masahiro; Kakizawa, Hideaki; Toyota, Naoyuki; Fujiwara, Hisaya; Kudo, Yoshiki; Ito, Katsuhide

    2009-10-01

    Purpose: To examine the effectiveness of concomitant intra-arterial infusion chemotherapy (IAIC) using cisplatin (CDDP) with radiotherapy for Stage III squamous cell carcinoma of the cervix. Materials and Methods: We analyzed 29 cases of Stage III squamous cell carcinoma of the uterine cervix treated with radiotherapy and IAIC of CDDP from 1991 to 2006. External-beam therapy was given to the whole pelvis using four opposing parallel fields with an 18-MV linear accelerator unit. A central shield was used after 30-40 Gy with external whole-pelvic irradiation, and the total dose was 50 Gy. High-dose-rate brachytherapy was given with {sup 192}Ir microSelectron. The dose at Point A was 6 Gy per fraction, 2 fractions per week, and the total number of fractions was either 3 or 4. Two or three courses of IAIC were given concomitantly with CDDP 120 mg or carboplatin 300 mg. Results: We confirmed excellent medicine distribution directly by using computed tomographic angiography. The 5-year overall survival rate for Stage III patients was 62%, the cause-specific survival rate was 70%, and the local relapse-free survival rate was 89%. Local recurrence, distant metastasis, and occurrences of both were 7%, 38%, and 3%, respectively. The incidence of severe acute hematologic adverse reactions (Grade {>=}3) was 27% for all patients; however, all recovered without interruption of radiotherapy. Severe nonhematologic effects (Grade {>=}3) were 3%, including nausea and ileus. Only 1 patient's radiotherapy was interrupted for a period of 1 week because of ileus. Severe late complication rates (Grade {>=}3) for the bladder, rectum, and intestine were 3%, 3%, and 10%, respectively. Conclusion: A combination of IAIC and systemic chemotherapy should be considered to improve the prognosis of patients with Stage III squamous cell carcinoma of the cervix.

  12. Optimization approaches for planning external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Gozbasi, Halil Ozan

    Cancer begins when cells grow out of control as a result of damage to their DNA. These abnormal cells can invade healthy tissue and form tumors in various parts of the body. Chemotherapy, immunotherapy, surgery and radiotherapy are the most common treatment methods for cancer. According to American Cancer Society about half of the cancer patients receive a form of radiation therapy at some stage. External beam radiotherapy is delivered from outside the body and aimed at cancer cells to damage their DNA making them unable to divide and reproduce. The beams travel through the body and may damage nearby healthy tissue unless carefully planned. Therefore, the goal of treatment plan optimization is to find the best system parameters to deliver sufficient dose to target structures while avoiding damage to healthy tissue. This thesis investigates optimization approaches for two external beam radiation therapy techniques: Intensity-Modulated Radiation Therapy (IMRT) and Volumetric-Modulated Arc Therapy (VMAT). We develop automated treatment planning technology for IMRT that produces several high-quality treatment plans satisfying provided clinical requirements in a single invocation and without human guidance. A novel bi-criteria scoring based beam selection algorithm is part of the planning system and produces better plans compared to those produced using a well-known scoring-based algorithm. Our algorithm is very efficient and finds the beam configuration at least ten times faster than an exact integer programming approach. Solution times range from 2 minutes to 15 minutes which is clinically acceptable. With certain cancers, especially lung cancer, a patient's anatomy changes during treatment. These anatomical changes need to be considered in treatment planning. Fortunately, recent advances in imaging technology can provide multiple images of the treatment region taken at different points of the breathing cycle, and deformable image registration algorithms can

  13. Carbon ion radiotherapy of skull base chondrosarcomas

    SciTech Connect

    Schulz-Ertner, Daniela . E-mail: Daniela.Ertner@med.uni-heidelberg.de; Nikoghosyan, Anna; Hof, Holger; Didinger, Bernd; Combs, Stephanie E.; Jaekel, Oliver; Karger, Christian P.; Edler, Lutz; Debus, Juergen

    2007-01-01

    Purpose: To evaluate the effectiveness and toxicity of carbon ion radiotherapy in chondrosarcomas of the skull base. Patients and Methods: Between November 1998 and September 2005, 54 patients with low-grade and intermediate-grade chondrosarcomas of the skull base have been treated with carbon ion radiation therapy (RT) using the raster scan technique at the Gesellschaft fuer Schwerionenforschung in Darmstadt, Germany. All patients had gross residual tumors after surgery. Median total dose was 60 CGE (weekly fractionation 7 x 3.0 CGE). All patients were followed prospectively in regular intervals after treatment. Local control and overall survival rates were calculated using the Kaplan-Meier method. Toxicity was assessed according to the Common Terminology Criteria (CTCAE v.3.0) and Radiation Therapy Oncology Group (RTOG)/European Organization for Research and Treatment of Cancer (EORTC) score. Results: Median follow-up was 33 months (range, 3-84 months). Only 2 patients developed local recurrences. The actuarial local control rates were 96.2% and 89.8% at 3 and 4 years; overall survival was 98.2%at 5 years. Only 1 patient developed a mucositis CTCAE Grade 3; the remaining patients did not develop any acute toxicities >CTCAE Grade 2. Five patients developed minor late toxicities (RTOG/EORTC Grades 1-2), including bilateral cataract (n = 1), sensory hearing loss (n = 1), a reduction of growth hormone (n = 1), and asymptomatic radiation-induced white matter changes of the adjacent temporal lobe (n = 2). Grade 3 late toxicity occurred in 1 patient (1.9%) only. Conclusions: Carbon ion RT is an effective treatment for low- and intermediate-grade chondrosarcomas of the skull base offering high local control rates with low toxicity.

  14. Stereotactic Radiotherapy for Locally Recurrent Nasopharyngeal Carcinoma

    SciTech Connect

    Leung, T.-W.; Wong, Victy Y.W.; Tung, Stewart Y.

    2009-11-01

    Purpose: To study the treatment outcome in patients with locally recurrent nasopharyngeal carcinoma (NPC) who were treated with stereotactic radiotherapy (SRT). Methods and Materials: Thirty patients with non-metastatic, locally recurrent NPC who were treated with curative intent between 1998 and 2002 were retrospectively analyzed. The International Union Against Cancer T-stage distribution at recurrence (rT) was as follows: rT1-14, rT2-7, rT3-3, and rT4-6. All patients were treated with SRT with a daily fractional dose of 2.5-4.5 Gy (median, 3 Gy) in 8-22 fractions (median, 18 fractions). Total equivalent dose (TED) was calculated by the linear-quadratic formula without a time factor correction. Results: The 5-year actuarial overall survival rate, disease-specific survival rate, and local failure-free survival (LFFS) rate for the whole group were 40%, 41.4%, and 56.8%, respectively. The 3-year LFFS rates of rT1-2 and rT3-4 diseases were 65% and 66.7%, respectively. Seven of nine patients who received a TED <55 Gy recurred locally compared with 4 of 21 patients who received >=55 Gy. Their corresponding 5-year LFFS rates were 22.2% and 75.8% (p = 0.005). The TED was the only factor significant in affecting the local control on univariate analyses. Conclusion: SRT is an effective treatment for locally recurrent NPC. TED >=55 Gy should be given to secure a higher local control rate. The late complication rates were acceptable for patients with rT1-2 disease. For patients with rT3-4 disease, more works need to be done to further decrease the late complications.

  15. Stereotactic Body Radiotherapy for Primary Hepatocellular Carcinoma

    SciTech Connect

    Andolino, David L.; Johnson, Cynthia S.; Maluccio, Mary; Kwo, Paul; Tector, A. Joseph; Zook, Jennifer; Johnstone, Peter A.S.; Cardenes, Higinia R.

    2011-11-15

    Purpose: To evaluate the safety and efficacy of stereotactic body radiotherapy (SBRT) for the treatment of primary hepatocellular carcinoma (HCC). Methods and Materials: From 2005 to 2009, 60 patients with liver-confined HCC were treated with SBRT at the Indiana University Simon Cancer Center: 36 Child-Turcotte-Pugh (CTP) Class A and 24 CTP Class B. The median number of fractions, dose per fraction, and total dose, was 3, 14 Gy, and 44 Gy, respectively, for those with CTP Class A cirrhosis and 5, 8 Gy, and 40 Gy, respectively, for those with CTP Class B. Treatment was delivered via 6 to 12 beams and in nearly all cases was prescribed to the 80% isodose line. The records of all patients were reviewed, and treatment response was scored according to Response Evaluation Criteria in Solid Tumors v1.1. Toxicity was graded according to the Common Terminology Criteria for Adverse Events v4.0. Local control (LC), time to progression (TTP), progression-free survival (PFS), and overall survival (OS) were calculated according to the method of Kaplan and Meier. Results: The median follow-up time was 27 months, and the median tumor diameter was 3.2 cm. The 2-year LC, PFS, and OS were 90%, 48%, and 67%, respectively, with median TTP of 47.8 months. Subsequently, 23 patients underwent transplant, with a median time to transplant of 7 months. There were no {>=}Grade 3 nonhematologic toxicities. Thirteen percent of patients experienced an increase in hematologic/hepatic dysfunction greater than 1 grade, and 20% experienced progression in CTP class within 3 months of treatment. Conclusions: SBRT is a safe, effective, noninvasive option for patients with HCC {<=}6 cm. As such, SBRT should be considered when bridging to transplant or as definitive therapy for those ineligible for transplant.

  16. The Three Dimensional Conformal Radiotherapy for Hyperkeratotic Plantar Mycosis Fungoides

    PubMed Central

    Lee, Sun Young; Kwon, Hyoung Cheol; Cho, Yong-Sun; Nam, Kyung-Hwa; Ihm, Chull-Wan

    2011-01-01

    The localized early-stage of Mycosis fungoides (MF) (stage IA-IIA) is usually treated with topical agents, such as nitrogen mustard, steroids, and phototherapy (UVB/PUVA) as first line therapy; response to these initial treatments is usually good. However, hyperkeratotic plantar lesions are clinically rare and have decreased responsiveness to topical agents. For such cases, physicians may consider local radiotherapy. Here, a case of an 18-year-old Korean woman who was treated with three-dimensional conformal radiotherapy (3D-CRT) for hyperkeratotic plantar lesions that were refractory to UVA-1, methotrexate, and topical steroids is reported. Complete remission was attained after radiotherapy. During the one-year follow-up period, there has been no evidence of disease recurrence and no chronic complications have been observed. PMID:22028574

  17. Graves disease with ophthalmopathy following radiotherapy for Hodgkin's disease

    SciTech Connect

    Jacobson, D.R.; Fleming, B.J.

    1984-12-01

    The number of patients achieving long-term survival following neck irradiation for Hodgkin's disease and other malignancies is increasing. Paralleling this increase in survivors is the development of late complications of the therapy itself. Eleven patients have previously been reported who developed Graves ophthalmopathy 18 months to seven years after receiving neck radiotherapy for nonthyroidal malignancies. The seven patients who had HLA typing were all HLA-B8 negative, despite the reported association of the HLA-B8 antigen with Graves disease. A patient who is HLA-B8 positive who developed Graves ophthalmopathy and hyperthyroidism nine years after receiving mantle radiotherapy for Hodgkin's disease is reported. It is recommended that Graves disease be included among the thyroid diseases that receive consideration during follow-up of patients who have received mantle radiotherapy.

  18. Radiotherapy for intraarticular venous malformations of the knee.

    PubMed

    Fujita, Takeshi; Okimoto, Tomoaki; Ito, Katsuyoshi; Tanabe, Masahiro; Matsunaga, Naofumi

    2014-11-01

    Intraarticular venous malformation (IAVM) of the knee is a rare vascular disease that manifests with pain, swelling, and hemarthrosis. A young man with left knee pain and swelling was admitted to our institution for the treatment of the IAVM of the left knee which was diagnosed by a local orthopedic doctor via arthroscopy. A total dose of 40 Gy of radiotherapy was delivered with a daily dose of 2.0 Gy using 6 MV X-ray beams and a linear accelerator through anteroposterior portals. Fifteen months after radiotherapy, follow-up examination using radiologic imaging showed distinct shrinkage of the venous malformations. Swelling and pain of the left knee had decreased, and range of motion of the left knee was maintained. This report describes a case involving a 38-year-old man with IAVM of the left knee in whom favorable outcomes were obtained in response to radiotherapy. PMID:25017778

  19. Radiotherapy of metastatic seminoma in the dog. Case reports

    SciTech Connect

    McDonald, R.K.; Walker, M.; Legendre, A.M.; vanEe, R.T.; Gompf, R.E.

    1988-04-01

    Four dogs with metastatic seminoma were treated with cesium 137 teleradiotherapy. Minimum total tumor dose ranged from 17 to 40 gray (Gy) and was usually given through bilateral opposing sublumbar ports in eight to ten fractions, with three fractions given weekly. The tumor regressed in all four dogs. The first dog (case 1) was free of tumor and died of non-tumor related causes at 57 months. The second dog (case 2) was free of tumor but was euthanatized at 37 months for a limb fracture. The third dog (case 3) was euthanatized for undertermined pulmonary disease 43 months after radiotherapy. The fourth dog (case 4) was euthanatized 6 months following radiotherapy because of transitional cell carcinoma and renal failure. No evidence of seminoma was found at necropsy. Radiotherapy was shown to be effective treatment for seminoma with regional metastasis.

  20. Dose factor entry and display tool for BNCT radiotherapy

    DOEpatents

    Wessol, Daniel E.; Wheeler, Floyd J.; Cook, Jeremy L.

    1999-01-01

    A system for use in Boron Neutron Capture Therapy (BNCT) radiotherapy planning where a biological distribution is calculated using a combination of conversion factors and a previously calculated physical distribution. Conversion factors are presented in a graphical spreadsheet so that a planner can easily view and modify the conversion factors. For radiotherapy in multi-component modalities, such as Fast-Neutron and BNCT, it is necessary to combine each conversion factor component to form an effective dose which is used in radiotherapy planning and evaluation. The Dose Factor Entry and Display System is designed to facilitate planner entry of appropriate conversion factors in a straightforward manner for each component. The effective isodose is then immediately computed and displayed over the appropriate background (e.g. digitized image).

  1. Could Radiotherapy Effectiveness Be Enhanced by Electromagnetic Field Treatment?

    PubMed Central

    Francisco, Artacho-Cordón; del Mar, Salinas-Asensio María; Irene, Calvente; Sandra, Ríos-Arrabal; Josefa, León; Elisa, Román-Marinetto; Nicolás, Olea; Isabel, Núñez María

    2013-01-01

    One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy. PMID:23867611

  2. Role of additional radiotherapy in advanced stages of Hodgkin's disease.

    PubMed

    Meerwaldt, J H; Coleman, C N; Fischer, R I; Lister, T A; Diehl, V

    1992-09-01

    Although radiotherapy is widely used as additional treatment following chemotherapy, its precise role has never been clearly proven. Relapses tend to occur in previously involved bulky sites. Non-randomized studies may suggest a positive effect of the addition of radiotherapy. This effect however, might also be caused by selection. Randomized studies have not resulted in a survival advantage for the patients treated with additional radiotherapy compared to no further treatment or additional chemotherapy. The SWOG study 7808 suggest a 20% benefit in remission duration for the nodular sclerosis histology subgroup. Definitive conclusions have to wait for more mature results of randomized studies including the ongoing EORTC study and the possibility to perform an overview of all studies. PMID:1280464

  3. Endometrial adenocarcinoma, adjuvant radiotherapy tailored to prognostic factors.

    PubMed

    Meerwaldt, J H; Hoekstra, C J; van Putten, W L; Tjokrowardojo, A J; Koper, P C

    1990-02-01

    The optimal adjuvant radiotherapy for surgically treated endometrial cancer has not yet been defined. We report on 389 patients treated between 1970 and 1985 with adjuvant radiotherapy. The treatment was tailored to the known prognostic factors: myometrial invasion and grade of differentiation of the tumor. Ten-year overall survival was 67%, 10-year relapse-free survival 77%; 23% relapse, of which 21% distant and 6% locoregional relapse. In a multivariate analysis, stage (pT), grade, and myometrial invasion were prognostic factors. The number of locoregional failures was very small (n = 23). This small number, the fact that radiation treatment was tailored to prognostic factors, and the absence of a nontreated control group precluded an analysis of the effect of the adjuvant irradiation. Large randomized studies with a control (no treatment) arm should be performed to determine the value of adjuvant radiotherapy. PMID:2303362

  4. Frontiers in Radiotherapy for Early-Stage Invasive Breast Cancer

    PubMed Central

    Fisher, Christine M.; Rabinovitch, Rachel

    2014-01-01

    The development of breast-conserving treatment for early-stage breast cancer is one of the most important success stories in radiation oncology in the latter half of the twentieth century. Lumpectomy followed by radiotherapy provides an appealing alternative to mastectomy for many women. In recent years, there has been a shift in clinical investigational focus toward refinements in the methods of delivering adjuvant radiotherapy that provide shorter, more convenient schedules of external-beam radiotherapy and interstitial treatment. Expedited courses of whole-breast treatment have been demonstrated to be equivalent to traditional lengthier courses in terms of tumor control and cosmetic outcome and to provide an opportunity for cost efficiencies. PMID:25113764

  5. Prostaglandin inhibitor and radiotherapy in advanced head and neck cancers

    SciTech Connect

    Pillsbury, H.C. III; Webster, W.P.; Rosenman, J.

    1986-05-01

    Radiotherapy is the usual mode of treatment for unresectable head and neck cancer. To improve cure rates, extend survival, and reduce morbidity, we use accelerated hyperfractionation radiotherapy and an adjuvant drug to inhibit prostaglandin synthesis. In this study, 19 patients received 300 rad/day of radiotherapy in two equally divided doses to a total dose averaging 6,200 rad. Either indomethacin, 25 mg, or placebo was given four times a day in a double-blind fashion during therapy. Radiation mucositis was graded as 0 to 4+; pain, nutritional status, and tumor status were monitored daily and recorded biweekly. Evaluation of the data showed delayed mucositis in the experimental group for grades 1 to 3, with a significant difference at grade 3 compared with controls. The significance of a long-term comparison of cure rates would be doubtful considering the heterogeneity of the primary sites and regional disease in this group coupled with the small size of our study.

  6. Role of additional radiotherapy in advanced stages of Hodgkin's disease.

    PubMed

    Meerwaldt, J H; Coleman, C N; Fischer, R I; Lister, T A; Diehl, V

    1992-09-01

    Although radiotherapy is widely used as additional treatment following chemotherapy, its precise role has never been clearly proven. Relapses tend to occur in previously involved bulky sites. Non-randomized studies may suggest a positive effect of the addition of radiotherapy. This effect however, might also be caused by selection. Randomized studies have not resulted in a survival advantage for the patients treated with additional radiotherapy compared to no further treatment or additional chemotherapy. The SWOG study 7808 suggest a 20% benefit in remission duration for the nodular sclerosis histology subgroup. Definitive conclusions have to wait for more mature results of randomized studies including the ongoing EORTC study and the possibility to perform an overview of all studies.

  7. Radiotherapy-induced skin reactions: prevention and cure.

    PubMed

    Morgan, Kàren

    This article describes the prophylactic use of Mepitel Film in three breast-cancer patients undergoing adjuvant radiotherapy. Each patient had significant risk factors for developing severe radiotherapy-induced skin reactions. This article details the experience encountered by these patients through their treatment courses, with observations by the review radiographers responsible for the care and support of these patients during their radiotherapy and the patients themselves. The film was found to be easy to use by the clinical team and resulted in a significant reduction in adverse side effects to the skin, with an associated improvement in patient satisfaction. There was found to be a financial benefit with the use of Mepitel Film when compared to the foam dressings often required for wound management if the patients had suffered moist desquamation. PMID:25203851

  8. Whole pelvic radiotherapy for prostate cancer using 3D conformal and intensity-modulated radiotherapy

    SciTech Connect

    Ashman, Jonathan B.; Zelefsky, Michael J. . E-mail: zelefskm@mskcc.org; Hunt, Margie S.; Leibel, Steven A.; Fuks, Zvi

    2005-11-01

    Purpose: To investigate the correlations between observed clinical morbidity and dosimetric parameters for whole pelvic radiotherapy (WPRT) for prostate cancer using either three-dimensional conformal radiotherapy (3D-CRT) or intensity-modulated radiotherapy (IMRT). Methods and Materials: Between December 1996 and January 2002, 27 patients with prostate adenocarcinoma were treated with conformal WPRT as part of their definitive treatment. WPRT was delivered with 3D-CRT in 14 patients and with IMRT in 13 patients. For each of the patients treated with IMRT, optimized conventional two-dimensional (2D) and 3D-CRT plans were retrospectively generated for the whole pelvic phase of the treatment. Dose-volume histograms for the bowel, bladder, and rectum were compared for the three techniques. Acute toxicities were evaluated for all 27 patients, and late toxicities were evaluated for 25 patients with sufficient follow-up. Toxicities were scored according to the Radiation Therapy Oncology Group morbidity grading scales. Median follow-up was 30 months. Results: Three-dimensional-CRT resulted in a 40% relative reduction (p < 0.001) in the volume of bowel receiving 45 Gy compared with 2D, and IMRT provided a further 60% reduction relative to 3D-CRT (p < 0.001). Compared with either 2D or 3D-CRT, IMRT reduced the volume of rectum receiving 45 Gy by 90% (p < 0.001). Overall, 9 patients (33%) experienced acute Grade 2 gastrointestinal (GI) toxicity, and only 1 of these patients was treated with IMRT. Antidiarrhea medication was required for 6 patients (22%). However, 5 of these 6 patients also received chemotherapy, and none were treated with IMRT. No Grade 3 or higher acute or late GI toxicities were observed. No cases of late radiation enteritis were observed. Acute and late genitourinary toxicity did not appear significantly increased by the addition of conformal WPRT. Conclusions: Compared to conventional 2D planning, conformal planning for WPRT resulted in significant

  9. Unilateral Radiotherapy for the Treatment of Tonsil Cancer

    SciTech Connect

    Chronowski, Gregory M.; Garden, Adam S.; Morrison, William H.; Frank, Steven J.; Schwartz, David L.; Shah, Shalin J.; Beadle, Beth M.; Gunn, G. Brandon; Kupferman, Michael E.; Ang, Kian K.; Rosenthal, David I.

    2012-05-01

    Purpose: To assess, through a retrospective review, clinical outcomes of patients with squamous cell carcinoma of the tonsil treated at the M. D. Anderson Cancer Center with unilateral radiotherapy techniques that irradiate the involved tonsil region and ipsilateral neck only. Methods and Materials: Of 901 patients with newly diagnosed squamous cell carcinoma of the tonsil treated with radiotherapy at our institution, we identified 102 that were treated using unilateral radiotherapy techniques. All patients had their primary site of disease restricted to the tonsillar fossa or anterior pillar, with <1 cm involvement of the soft palate. Patients had TX (n = 17 patients), T1 (n = 52), or T2 (n = 33) disease, with Nx (n = 3), N0 (n = 33), N1 (n = 23), N2a (n = 21), or N2b (n = 22) neck disease. Results: Sixty-one patients (60%) underwent diagnostic tonsillectomy before radiotherapy. Twenty-seven patients (26%) underwent excision of a cervical lymph node or neck dissection before radiotherapy. Median follow-up for surviving patients was 38 months. Locoregional control at the primary site and ipsilateral neck was 100%. Two patients experienced contralateral nodal recurrence (2%). The 5-year overall survival and disease-free survival rates were 95% and 96%, respectively. The 5-year freedom from contralateral nodal recurrence rate was 96%. Nine patients required feeding tubes during therapy. Of the 2 patients with contralateral recurrence, 1 experienced an isolated neck recurrence and was salvaged with contralateral neck dissection only and remains alive and free of disease. The other patient presented with a contralateral base of tongue tumor and involved cervical lymph node, which may have represented a second primary tumor, and died of disease. Conclusions: Unilateral radiotherapy for patients with TX-T2, N0-N2b primary tonsil carcinoma results in high rates of disease control, with low rates of contralateral nodal failure and a low incidence of acute toxicity

  10. Comparative analysis of SmartArc-based dual arc volumetric-modulated arc radiotherapy (VMAT) versus intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma.

    PubMed

    Lee, Tsair-Fwu; Chao, Pei-Ju; Ting, Hui-Min; Lo, Su-Hua; Wang, Yu-Wen; Tuan, Chiu-Ching; Fang, Fu-Min; Su, Te-Jen

    2011-11-15

    The purpose of this study was to evaluate and quantify the planning performance of SmartArc-based volumetric-modulated arc radiotherapy (VMAT) versus fixed-beam intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC) using a sequential mode treatment plan. The plan quality and performance of dual arc-VMAT (DA-VMAT) using the Pinnacle3 Smart-Arc system (clinical version 9.0; Philips, Fitchburg, WI, USA) were evaluated and compared with those of seven-field (7F)-IMRT in 18 consecutive NPC patients. Analysis parameters included the conformity index (CI) and homogeneity index (HI) for the planning target volume (PTV), maximum and mean dose, normal tissue complication probability (NTCP) for the specified organs at risk (OARs), and comprehensive quality index (CQI) for an overall evaluation in the 11 OARs. Treatment delivery time, monitor units per fraction (MU/fr), and Gamma(3 mm, 3%) evaluations were also analyzed. DA-VMAT achieved similar target coverage and slightly better homogeneity than conventional 7F-IMRT with a similar CI and HI. NTCP values were only significantly lower in the left parotid gland (for xerostomia) for DA-VMAT plans. The mean value of CQI at 0.98 ± 0.02 indicated a 2% benefit in sparing OARs by DA-VMAT. The MU/fr used and average delivery times appeared to show improved efficiencies in DA-VMAT. Each technique demonstrated high accuracy in dose delivery in terms of a high-quality assurance (QA) passing rate (> 98%) of the Gamma(3 mm, 3%) criterion. The major difference between DA-VMAT and 7F-IMRT using a sequential mode for treating NPC cases appears to be improved efficiency, resulting in a faster delivery time and the use of fewer MU/fr.

  11. Functional Image-Guided Radiotherapy Planning in Respiratory-Gated Intensity-Modulated Radiotherapy for Lung Cancer Patients With Chronic Obstructive Pulmonary Disease

    SciTech Connect

    Kimura, Tomoki; Nishibuchi, Ikuno; Murakami, Yuji; Kenjo, Masahiro; Kaneyasu, Yuko; Nagata, Yasushi

    2012-03-15

    Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung. Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.

  12. Radiotherapy for Hepatocellular Carcinoma: New Indications and Directions for Future Study.

    PubMed

    Ohri, Nitin; Dawson, Laura A; Krishnan, Sunil; Seong, Jinsil; Cheng, Jason C; Sarin, Shiv K; Kinkhabwala, Milan; Ahmed, Mansoor M; Vikram, Bhadrasain; Coleman, C Norman; Guha, Chandan

    2016-09-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide; its incidence is increasing in the United States. Depending on disease extent and underlying liver status, patients may be treated with local, locoregional, and/or systemic therapy. Recent data indicates that radiotherapy (RT) can play a meaningful role in the management of HCC. Here, we review published experiences using RT for HCC, including the use of radiosensitizers and stereotactic RT. We discuss methods for performing preclinical studies of RT for HCC and biomarkers of response. As a part of the HCC Working Group, an informal committee of the National Cancer Institute's Radiation Research Program, we suggest how RT should be implemented in the management of HCC and identify future directions for the study of RT in HCC. PMID:27377923

  13. A comprehensive radiotherapy planning system implemented in Fortran on a small interactive computer.

    PubMed

    Redpath, A T; Vickery, B L; Duncan, W

    1977-01-01

    A suite of Fortran programs for carrying out the various dose computational aspects of radiotherapy has been developed on an enhanced RAD8 computing system. The hardward configuration of the computer is described and the main features of the programs in the suite are discussed. The include: (a) beam data input systems for use with linear accelerators and cobalt units; (b) static and rotational teletherapy planning, with computer optimization in the static planning; (c) irregular field calculations with isodose visualization; (d) interstitial calculations including routines which will reconstruct a radium needle implant in three dimensions in addition to presenting the isodose distribution in any desired plane. The problems of implementing the programs on another computer system are discussed.

  14. Vertebral compression fracture after stereotactic body radiotherapy for spinal metastases.

    PubMed

    Sahgal, Arjun; Whyne, Cari M; Ma, Lijun; Larson, David A; Fehlings, Michael G

    2013-07-01

    The use of stereotactic body radiotherapy for metastatic spinal tumours is increasing. Serious adverse events for this treatment include vertebral compression fracture (VCF) and radiation myelopathy. Although VCF is a fairly low-risk adverse event (approximately 5% risk) after conventional radiotherapy, crude risk estimates for VCF after spinal SBRT range from 11% to 39%. In this Review, we summarise the evidence and predictive factors for VCF induced by spinal SBRT, review the pathophysiology of VCF in the metastatic spine, and discuss strategies used to prevent and manage this potentially disabling complication. PMID:23816297

  15. Radiotherapy-induced skin reactions: assessment and management.

    PubMed

    Bostock, Samantha; Bryan, Julie

    Patients undergoing radiotherapy often experience a skin reaction to their treatment. In an attempt to assist clinicians in the recognition and care of these radiotherapy-induced skin reactions, an assessment and management tool has been designed for use. This patient-focused assessment tool has been distributed across the counties that the authors' trust serves. It has standardised the care of patients with these skin reactions, so that the patients can be treated with the same interventions whether they visit their GP, hospital or district nurse.

  16. The Tumour Microenvironment after Radiotherapy: Mechanisms of Resistance and Recurrence

    PubMed Central

    Barker, Holly E.; Paget, James T. E.; Khan, Aadil A.; Harrington, Kevin J.

    2016-01-01

    Radiotherapy plays a central part in curing cancer. For decades, most research on improving treatment outcomes has focussed on modulating radiation-induced biological effects on cancer cells. Recently, we have better understood that components within the tumour microenvironment have pivotal roles in determining treatment outcomes. In this Review, we describe vascular, stromal and immunological changes induced in the tumour microenvironment by irradiation and discuss how they may promote radioresistance and tumour recurrence. Subsequently, we highlight how this knowledge is guiding the development of new treatment paradigms in which biologically targeted agents will be combined with radiotherapy. PMID:26105538

  17. The use of antioxidants in radiotherapy-induced skin toxicity.

    PubMed

    Amber, Kyle T; Shiman, Michael I; Badiavas, Evangelos V

    2014-01-01

    Radiation-induced skin damage is one of the most common complications of radiotherapy. In order to combat these side effects, patients often turn to alternative therapies, which often include antioxidants. Antioxidants such as those in the polyphenol chemical class, xanthine derivatives, tocepherol, sucralfate, and ascorbate have been studied for their use in either preventing or treating radiotherapy-induced skin damage. Apart from their known role as free radical scavengers, some of these antioxidants appear to alter cytokine release affecting cutaneous and systemic changes. We review the role of antioxidants in treating and preventing radiation-induced skin damage as well as the possible complications of using such therapy.

  18. Radiotherapy for a phalanx bone metastasis of a lung adenocarcinoma.

    PubMed

    Sumodhee, Shakeel; Huchot, Eric; Peret, Gaelle; Marchal, Christian; Paganin, Fabrice; Magnin, Valerie

    2014-09-01

    Phalanx bone metastasis as the initial presenting sign of lung cancer is a rare presentation. Lung cancer is known to metastasize to the bone, but rarely to the fingers. A 61-year-old male smoker presented with pain in the left ring finger. Severe pain discouraged the patient from using his left hand. An X-ray of the left hand showed a lytic bone lesion. The patient was treated with finger radiotherapy. Analgesics were no longer needed and the patient was able to reuse his left hand in his everyday life. Palliative radiotherapy relieved our patient and improved his quality of life. PMID:25493086

  19. Radiotherapy-induced skin reactions: assessment and management.

    PubMed

    Bostock, Samantha; Bryan, Julie

    Patients undergoing radiotherapy often experience a skin reaction to their treatment. In an attempt to assist clinicians in the recognition and care of these radiotherapy-induced skin reactions, an assessment and management tool has been designed for use. This patient-focused assessment tool has been distributed across the counties that the authors' trust serves. It has standardised the care of patients with these skin reactions, so that the patients can be treated with the same interventions whether they visit their GP, hospital or district nurse. PMID:26911177

  20. Radiotherapy dosimetry of the breast : Factors affecting dose to the patient

    NASA Astrophysics Data System (ADS)

    Venables, Karen

    The work presented in this thesis developed from the quality assurance for the START trial. This provided a unique opportunity to perform measurements in a breast shaped, soft tissue equivalent phantom in over 40 hospitals, representing 75% of the radiotherapy centres in the UK. A wide range of planning systems using beam library, beam model and convolution based algorithms have been compared. The limitations of current algorithms as applied to breast radiotherapy have been investigated by analysing the results of the START quality assurance programme, performing further measurements of surface dose and setting up of a Monte Carlo system to calculate dose distributions and superficial doses. Measurements in both 2D and 3D breast phantoms indicated that the average measured dose at the centre of the breast was lower than that calculated on the planning system by approximately 2%. Surface dose measurements showed good agreement between measurements and Monte Carlo calculations with values ranging from 6% of the maximum dose for a small field (5cmx5cm) at normal incidence to 37% for a large field (9cmx20cm) at an angle of 75°. Calculation on CT plans with pixel by pixel correction for the breast density indicated that monitor units are lower by an average 3% compared to a bulk density corrected plan assuming a density of 1g.cm-3. The average dose estimated from TLD in build-up caps placed on the patient surface was 0.99 of the prescribed dose. This shows that the underestimation of dose due to the assumption of unit density tissue is partially cancelled by the overestimation of dose by the algorithms. The work showed that simple calculation algorithms can be used for calculation of dose to the breast, however they are less accurate for patients who have undergone a mastectomy and in regions close to inhomogeneities where more complex algorithms are needed.

  1. Design and dosimetric characteristics of a new endocavitary contact radiotherapy system using an electronic brachytherapy source

    SciTech Connect

    Richardson, Susan; Garcia-Ramirez, Jose; Lu Wei; Myerson, Robert J.; Parikh, Parag

    2012-11-15

    Purpose: To present design aspects and acceptance tests performed for clinical implementation of electronic brachytherapy treatment of early stage rectal adenocarcinoma. A dosimetric comparison is made between the historically used Philips RT-50 unit and the newly developed Axxent{sup Registered-Sign} Model S700 electronic brachytherapy source manufactured by Xoft (iCad, Inc.). Methods: Two proctoscope cones were manufactured by ElectroSurgical Instruments (ESI). Two custom surface applicators were manufactured by Xoft and were designed to fit and interlock with the proctoscope cones from ESI. Dose rates, half value layers (HVL), and percentage depth dose (PDD) measurements were made with the Xoft system and compared to historical RT-50 data. A description of the patient treatment approach and exposure rates during the procedure is also provided. Results: The electronic brachytherapy system has a lower surface dose rate than the RT-50. The dose rate to water on the surface from the Xoft system is approximately 2.1 Gy/min while the RT-50 is 10-12 Gy/min. However, treatment times with Xoft are still reasonable. The HVLs and PDDs between the two systems were comparable resulting in similar doses to the target and to regions beyond the target. The exposure rate levels around a patient treatment were acceptable. The standard uncertainty in the dose rate to water on the surface is approximately {+-}5.2%. Conclusions: The Philips RT-50 unit is an out-of-date radiotherapy machine that is no longer manufactured with limited replacement parts. The use of a custom-designed proctoscope and Xoft surface applicators allows delivery of a well-established treatment with the ease of a modern radiotherapy device. While the dose rate is lower with the use of Xoft, the treatment times are still reasonable. Additionally, personnel may stand farther away from the Xoft radiation source, thus potentially reducing radiation exposure to the operator and other personnel.

  2. Marginal Recurrence Requiring Salvage Radiotherapy After Stereotactic Body Radiotherapy for Spinal Metastases

    SciTech Connect

    Koyfman, Shlomo A.; Djemil, Toufik; Burdick, Michael J.; Woody, Neil; Balagamwala, Ehsan H.; Reddy, Chandana A.; Angelov, Lilyana; Suh, John H.; Chao, Samuel T.

    2012-05-01

    Introduction: We sought to quantify and identify risk factors associated with margin recurrence (MR) requiring salvage radiotherapy after stereotactic body radiation therapy (SBRT) for spinal metastases. Methods: We retrospectively reviewed patients with spinal metastases who were treated with single-fraction SBRT between 2006 and 2009. Gross tumor was contoured, along with either the entire associated vertebral body(ies) or the posterior elements, and included in the planning target volume. No additional margins were used. MR was defined as recurrent tumor within one vertebral level above or below the treated lesion that required salvage radiotherapy. Only patients who presented for 3-month post-SBRT follow-up were included in the analysis. Fine and Gray competing risk regression models were generated to identify variables associated with higher risks of MR. MR was plotted using cumulative incidence analysis. Results: SBRT was delivered to 208 lesions in 149 patients. Median follow-up was 8.6 months, and median survival was 12.8 months. The median prescribed dose was 14 Gy (10-16 Gy). MR occurred in 26 (12.5%) treated lesions, at a median time of 7.7 months after SBRT. Patients with paraspinal disease at the time of SBRT (20.8% vs. 7.6% of patients; p = 0.02), and those treated with <16 Gy (16.3% vs. 6.3% of patients, p = 0.14) had higher rates of MR. Both variables were associated with significantly higher risk of MR on multivariate analysis. Conclusion: SBRT for spinal metastases results in a low overall rate of MR. The presence of paraspinal disease at the time of SBRT and a dose of <16 Gy were associated with higher risks of MR.

  3. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    SciTech Connect

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-08-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  4. [Conservation Units.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    Instructional units deal with each aspect of conservation: forests, wildlife, rangelands, water, minerals, and soil. The area of the secondary school curriculum with which each is correlated is indicated. Lists of general and specific objectives are followed by suggested teaching procedures, including ideas for introducing the topic, questions to…

  5. [Conservation Units.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    Each of the six instructional units deals with one aspect of conservation: forests, water, rangeland, minerals (petroleum), and soil. The area of the elementary school curriculum with which each correlates is indicated. Lists of general and specific objectives are followed by suggested teaching procedures, including ideas for introducing the…

  6. Large Cohort Dose-Volume Response Analysis of Parotid Gland Function After Radiotherapy: Intensity-Modulated Versus Conventional Radiotherapy

    SciTech Connect

    Dijkema, Tim Terhaard, Chris H.J.; Roesink, Judith M.; Braam, Petra M.; Gils, Carla H. van; Moerland, Marinus A.; Raaijmakers, Cornelis P.J.

    2008-11-15

    Purpose: To compare parotid gland dose-volume response relationships in a large cohort of patients treated with intensity-modulated (IMRT) and conventional radiotherapy (CRT). Methods and materials: A total of 221 patients (64 treated with IMRT, 157 with CRT) with various head-and-neck malignancies were prospectively evaluated. The distribution of tumor subsites in both groups was unbalanced. Stimulated parotid flow rates were measured before and 6 weeks, 6 months, and 1 year after radiotherapy. Parotid gland dose-volume histograms were derived from computed tomography-based treatment planning. The normal tissue complication probability (NTCP) model proposed by Lyman was fit to the data. A complication was defined as stimulated parotid flow ratio <25% of the pretreatment flow rate. The relative risk of complications was determined for IMRT vs. CRT and adjusted for the mean parotid gland dose using Poisson regression modeling. Results: One year after radiotherapy, NTCP curves for IMRT and CRT were comparable with a TD{sub 50} (uniform dose leading to a 50% complication probability) of 38 and 40 Gy, respectively. Until 6 months after RT, corrected for mean dose, different complication probabilities existed for IMRT vs. CRT. The relative risk of a complication for IMRT vs. CRT after 6 weeks was 1.42 (95% CI 1.21-1.67), after 6 months 1.41 (95% CI; 1.12-1.77), and at 1 year 1.21 (95% CI 0.87-1.68), after correcting for mean dose. Conclusions: One year after radiotherapy, no difference existed in the mean dose-based NTCP curves for IMRT and CRT. Early after radiotherapy (up to 6 months) mean dose based (Lyman) models failed to fully describe the effects of radiotherapy on the parotid glands.

  7. Tomographic Imaging on a Cobalt Radiotherapy Machine

    NASA Astrophysics Data System (ADS)

    Marsh, Matthew Brendon

    Cancer is a global problem, and many people in low-income countries do not have access to the treatment options, such as radiation therapy, that are available in wealthy countries. Where radiation therapy is available, it is often delivered using older Co-60 equipment that has not been updated to modern standards. Previous research has indicated that an updated Co-60 radiation therapy machine could deliver treatments that are equivalent to those performed with modern linear accelerators. Among the key features of these modern treatments is a tightly conformal dose distribution-- the radiation dose is shaped in three dimensions to closely match the tumour, with minimal irradiation of surrounding normal tissues. Very accurate alignment of the patient in the beam is therefore necessary to avoid missing the tumour, so all modern radiotherapy machines include imaging systems to verify the patient's position before treatment. Imaging with the treatment beam is relatively cost-effective, as it avoids the need for a second radiation source and the associated control systems. The dose rate from a Co-60 therapy source, though, is more than an order of magnitude too high to use for computed tomography (CT) imaging of a patient. Digital tomosynthesis (DT), a limited-arc imaging method that can be thought of as a hybrid of CT and conventional radiography, allows some of the three-dimensional selectivity of CT but with shorter imaging times and a five- to fifteen-fold reduction in dose. In the present work, a prototype Co-60 DT imaging system was developed and characterized. A class of clinically useful Co-60 DT protocols has been identified, based on the filtered backprojection algorithm originally designed for CT, with images acquired over a relatively small arc. Parts of the reconstruction algorithm must be modified for the DT case, and a way to reduce the beam intensity will be necessary to reduce the imaging dose to acceptable levels. Some additional study is required to

  8. Stereotactic radiotherapy of meningiomas compressing optical pathways

    SciTech Connect

    Hamm, Klaus-Detlef . E-mail: khamm@erfurt.helios-kliniken.de; Henzel, Martin; Gross, Markus W.; Surber, Gunnar; Kleinert, Gabriele; Engenhart-Cabillic, Rita

    2006-11-15

    Purpose: Microsurgical resection is usually the treatment of choice for meningiomas, especially for those that compress the optical pathways. However, in many cases of skull-base meningiomas a high risk of neurological deficits and recurrences exist in cases where the complete tumor removal was not possible. In such cases (fractionated) stereotactic radiotherapy (SRT) can offer an alternative treatment option. We evaluated the local control rate, symptomatology, and toxicity. Patients and Methods: Between 1997 and 2003, 183 patients with skull-base meningiomas were treated with SRT, among them were 65 patients with meningiomas that compressed optical pathways (64 benign, 1 atypical). Of these 65 cases, 20 were treated with SRT only, 27 were subtotally resected before SRT, and 18 underwent multiple tumor resections before SRT. We investigated the results until 2005, with a median follow-up of 45 months (range, 22-83 months). The tumor volume (TV = gross tumor volume) ranged from 0.61 to 90.20 cc (mean, 18.9 cc). Because of the risk of new visual disturbances, the dose per fraction was either 2 or 1.8 Gy for all patients, to a total dose of 50 to 60 Gy. Results: The overall survival and the progression-free survival rates for 5 years were assessed to 100% in this patient group. To date, no progression for these meningiomas have been observed. Quantitatively, tumor shrinkage of more than 20%, or more than 2 mm in diameter, was proved in 35 of the 65 cases after SRT. In 29 of the 65 patients, at least 1 of the symptoms improved. On application of the Common Toxicity Criteria (CTC), acute toxicity (Grade 3) was seen in 1 case (worsening of conjunctivitis). Another 2 patients developed late toxicity by LENT-SOMA score, 1 x Grade 1 and 1 x Grade 3 (field of vision loss). Conclusion: As a low-risk and effective treatment option for tumor control, SRT with 1.8 to 2.0 Gy per fraction can also be recommended in case of meningiomas that compress optical pathways. An

  9. Collision prediction software for radiotherapy treatments

    SciTech Connect

    Padilla, Laura; Pearson, Erik A.; Pelizzari, Charles A.

    2015-11-15

    Purpose: This work presents a method of collision predictions for external beam radiotherapy using surface imaging. The present methodology focuses on collision prediction during treatment simulation to evaluate the clearance of a patient’s treatment position and allow for its modification if necessary. Methods: A Kinect camera (Microsoft, Redmond, WA) is used to scan the patient and immobilization devices in the treatment position at the simulator. The surface is reconstructed using the SKANECT software (Occipital, Inc., San Francisco, CA). The treatment isocenter is marked using simulated orthogonal lasers projected on the surface scan. The point cloud of this surface is then shifted to isocenter and converted from Cartesian to cylindrical coordinates. A slab models the treatment couch. A cylinder with a radius equal to the normal distance from isocenter to the collimator plate, and a height defined by the collimator diameter is used to estimate collisions. Points within the cylinder clear through a full gantry rotation with the treatment couch at 0° , while points outside of it collide. The angles of collision are reported. This methodology was experimentally verified using a mannequin positioned in an alpha cradle with both arms up. A planning CT scan of the mannequin was performed, two isocenters were marked in PINNACLE, and this information was exported to AlignRT (VisionRT, London, UK)—a surface imaging system for patient positioning. This was used to ensure accurate positioning of the mannequin in the treatment room, when available. Collision calculations were performed for the two treatment isocenters and the results compared to the collisions detected the room. The accuracy of the Kinect-Skanect surface was evaluated by comparing it to the external surface of the planning CT scan. Results: Experimental verification results showed that the predicted angles of collision matched those recorded in the room within 0.5°, in most cases (largest deviation

  10. Radiotherapy for Extramedullary Plasmacytoma of the Head and Neck

    SciTech Connect

    Creach, Kimberly M.; Foote, Robert L. Neben-Wittich, Michelle A.; Kyle, Robert A.

    2009-03-01

    Purpose: To define the effectiveness of radiotherapy in the treatment of patients with extramedullary plasmacytoma of the head and neck (EMPHN). Methods and Materials: We searched the Mayo Clinic Rochester Department of Radiation Oncology electronic Tumor Registry and identified 18 consecutive patients with a diagnosis of solitary EMPHN. Sixteen patients were treated with radiotherapy at initial diagnosis and 2 received salvage radiotherapy for local failure after surgery. Median dose administered was 50.4 Gy. Median follow-up was 6.8 years. Results: One patient (6%) developed a marginal recurrence 12 months after treatment. Six patients (33%) developed multiple myeloma (2 patients) or plasmacytomas at distant sites (4 patients) at a median of 3.1 years after diagnosis (range, 0.02 to 9.6 years). Median and 5- and 10-year overall survival rates from the date of diagnosis are 12.5 years, 88%, and 55%, respectively. Two patients (11%) developed a radiation-induced malignancy at 6.5 and 6.9 years after treatment. Conclusions: Radiotherapy provides excellent local and regional tumor control and survival in patients with EMPHN. To the best of our knowledge, this is the first report of presumed radiation-induced malignancy in this patient population.

  11. Treatment of Retinoblastoma: The Role of External Beam Radiotherapy

    PubMed Central

    Park, Younghee

    2015-01-01

    The risk of radiotherapy-related secondary cancers in children with constitutional retinoblastoma 1 (RB1) mutations has led to reduced use of external beam radiotherapy (EBRT) for RB. Presently, tumor reduction with chemotherapy with or without focal surgery (chemosurgery) is most commonly undertaken; EBRT is avoided as much as possible and is considered only as the last treatment option prior to enucleation. Nevertheless, approximately 80% of patients are diagnosed at a locally advanced stage, and only 20-25% of early stage RB patients can be cured with a chemosurgery strategy. As a whole, chemotherapy fails in more than two-thirds of eyes with advanced stage disease, requiring EBRT or enucleation. Radiotherapy is still considered necessary for patients with large tumor(s) who are not candidates for chemosurgery but who have visual potential. When radiation therapy is indicated, the lowest possible radiation dose combined with systemic or local chemotherapy and focal surgery may yield the best clinical outcomes in terms of local control and treatment-related toxicity. Proton beam therapy is one EBRT method that can be used for treatment of RB and reduces the radiation dose delivered to the adjacent orbital bone while maintaining an adequate dose to the tumor. To maximize the therapeutic success of treatment of advanced RB, the possibility of integrating radiotherapy at early stages of treatment may need to be discussed by a multidisciplinary team, rather than considering EBRT as only a last treatment option. PMID:26446627

  12. INL Advanced Radiotherapy Research Program Annual Report 2004

    SciTech Connect

    James Venhuizen

    2005-06-01

    This report summarizes the activities and major accomplishments for the Idaho National Laboratory Advanced Radiotherapy Research Program for calendar year 2004. Topics covered include boron analysis in biological samples, computational dosimetry and treatment planning software development, medical neutron source development and characterization, and collaborative dosimetry studies at the RA-1 facility in Buenos Aires, Argentina.

  13. Impaired B lymphocyte reactivity in patients after radiotherapy

    SciTech Connect

    Sieber, G.; Zierach, P.; Herrmann, F.; Brust, V.J.; Ruehl, H.

    1985-04-01

    The effect of therapeutic irradiation upon B lymphocyte function was investigated in patients with various malignancies. The test system used was a reverse hemolytic plaque assay, which made it possible to study the activation and differentiation of B lymphocytes into immunoglobulin-secreting cells (ISC). Peripheral blood lymphocytes from normal individuals and patients before and after radiotherapy were stimulated in vitro with the polyclonal B cell activator pokeweed mitogen, and the number of ISC was estimated. B cell reactivity was markedly reduced in those patients who had received irradiation within the last six months. In patients in whom radiotherapy had been terminated more than 12 months before the lymphocytes were tested, B cell reactivity was comparable to that of patients prior to radiotherapy. By means of marker analyses, there was a reduction of B lymphocytes and T lymphocytes in the peripheral blood with a preponderance of T helper cells. Several mechanisms--e.g., reduced or defective B cell differentiation, altered regulatory T-helper or suppressor cell function or activation of suppressive monocytes--could be responsible for impaired B cell reactivity after radiotherapy.

  14. INEEL Advanced Radiotherapy Research Program Annual Report for 2002

    SciTech Connect

    J. R. Venhuizen

    2003-05-01

    This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

  15. INEEL Advanced Radiotherapy Research Program Annual Report 2002

    SciTech Connect

    Venhuizen, J.R.

    2003-05-23

    This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

  16. Second neoplasms following radiotherapy or chemotherapy for cancer

    SciTech Connect

    Penn, I.

    1982-02-01

    While radiotherapy and antineoplastic chemotherapy often control malignancies they may, paradoxically, cause new cancers to develop as long-term complications. Although almost any type of neoplasm can occur, radiation-induced malignancies are most likely to affect the myelopoietic tissues and the thyroid gland. The former tissues are also most frequently involved by chemotherapy. The combination of intensive radiotherapy and intensive chemotherapy is particularly leukemogenic. Acute myeloid leukemia has occurred with increased frequency following treatment of Hodgkin's disease, non-Hodgkin's lymphoma, multiple myeloma, ovarian cancer, polycythemia vera, carcinoma of the thyroid gland, and carcinoma of the breast. Radiation-induced malignancies usually occur in the field of irradiation. Tumors developing in an irradiated field include a substantial number of soft tissue sarcomas or osteosarcomas. There is a 20-fold increase of second cancers following treatment of childhood malignancies, mostly sarcomas of bone and soft tissues, but including leukemia, and carcinomas of the thyroid gland, skin, and breast. The latent period between radiotherapy and the appearance of a second cancer ranges from 2 years to several decades, often being 10-15 years. With chemotherapy the mean latent period is shorter, approximately 4 years. The mechanism of oncogenesis by radiotherapy or chemotherapy is poorly understood and probably involves a complex interplay of somatic mutation, co-oncogenic effects, depression of host immunity, stimulation of cellular proliferation, and genetic susceptibility.

  17. Second primary tumors following radiotherapy for childhood cancer

    SciTech Connect

    Hawkins, M.M. )

    1990-11-01

    Among a cohort of 9,279 survivors of childhood neoplasms other than retinoblastoma treated in Britain before 1980, the cumulative risk of a second primary tumor (SPT) by 25 years from 3-year survival was 3.7%. This corresponds to about five times the number expected from rates of cancer occurring in the general population. In the absence of both radiotherapy and chemotherapy, there was four times the expected number of subsequent cancers. The risk of an SPT associated with radiotherapy but not chemotherapy and both radiotherapy and chemotherapy were 6 and 9 times that expected, respectively. There is evidence that radiotherapy was involved in the development of many of the SPT's observed. However, case-control investigations are required to examine the relationship between relative risk of an SPT and therapy in detail. Secondary leukemia appears to occur more frequently among more recently diagnosed children with cancer. It is important to continue to monitor the occurrence of SPT's with a view to identifying the least carcinogenic therapies that are consistent with not compromising survival prospects.

  18. Boost in radiotherapy: external beam sunset, brachytherapy sunrise

    PubMed Central

    2009-01-01

    Radiobiological limitations for dose escalation in external radiotherapy are presented. Biological and clinical concept of brachytherapy boost to increase treatment efficacy is discussed, and different methods are compared. Oncentra Prostate 3D conformal real-time ultrasound-guided brachytherapy is presented as a solution for boost or sole therapy.

  19. Response of lymphangiectasis to radiotherapy. [X-ray

    SciTech Connect

    Kurczynski, E.; Horwitz, S.J.

    1981-07-15

    A 14-year-old girl with lymphangiectasis of the skull causing rapid extensive destruction of the left orbit, zygoma, mandible, sphenoid, and occiput underwent radiotherapy with 2000 rad to the entire skull, mandible, and upper cervical vertebrae. Three years later, progression of the disease has ceased, and the involved bone is slowly remineralizing.

  20. Radiotherapy-related intracranial aneurysms: A role for conservative management

    PubMed Central

    Parag, Sayal; Arif, Zafar; Chittoor, Rajaraman

    2016-01-01

    Background: Radiotherapy-related intracranial aneurysms are a recognized but rare phenomenon and often present following rupture leading to subarachnoid hemorrhage. Treatment poses a particular dilemma and both endovascular, and surgical approaches have been used with varied success. We present the case of a radiotherapy-related aneurysm treated conservatively with a favorable outcome. Case Description: A 37-year-old man was diagnosed with a left temporal lobe mass for which he underwent an uneventful craniotomy and debulking. Histology revealed Grade III anaplastic astrocytoma following which he received radiotherapy. Three years later, he presented with subacute headache and transient dysphasia. Computed tomography and catheter angiography revealed a fusiform aneurysm of the supramarginal branch of the left middle cerebral artery with probable intra-aneurysmal thrombus. Adjacent vessels also showed mild vasculitic changes. Trial balloon occlusion of the parent vessel resulted in profound dysphasia and was therefore abandoned. Bypass surgery or stent placement was deemed to have too high a risk of neurological deficit, and keeping in mind, the diagnosis of anaplastic astrocytoma, conservative management was pursued with partial thrombosis noted on serial imaging and stable appearances subsequently at 42 months’ follow-up. Conclusion: Conservative management can be pursued in selective cases of radiotherapy-related aneurysms, particularly if the risk of treating is too high and in the context of intracranial malignancy with limited lifespan. PMID:27313964