Science.gov

Sample records for 60hz electromagnetic field

  1. Retardation of embryogenesis by extremely low frequency 60 Hz electromagnetic fields.

    PubMed

    Cameron, I L; Hunter, K E; Winters, W D

    1985-01-01

    Fertilized Medaka fish eggs were used to determine if electromagnetic fields, designed to simulate those beneath a high voltage power line, have biological effects on vertebrate embryo development. The newly fertilized eggs were exposed to a 60 Hz electrical field of 300 mA/m2 current density, a 60 Hz magnetic field of 1.0 gauss RMS, or to the combined electric plus magnetic fields for 48 hours. No gross abnormalities were observed in any of the embryos as they developed, but significant development delays were seen in those embryos exposed to either the magnetic or to the combined electromagnetic fields; delays were not seen in the embryos exposed to the electrical field. Thus, a 60 Hz magnetic field like that encountered in a man made powerline environment was shown to retard development of fish embryos.

  2. Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: an in vivo study

    PubMed Central

    Rodríguez-De la Fuente, Abraham O.; Alcocer-González, Juan M.; Heredia-Rojas, J. Antonio; Rodríguez-Padilla, Cristina; Rodríguez-Flores, Laura E.; Santoyo-Stephano, Martha A.; Castañeda-Garza, Esperanza; Taméz-Guerra, Reyes S.

    2012-01-01

    Exposure to EMFs (electromagnetic fields) results in a number of important biological changes, including modification of genetic expression. We have investigated the effect of 60 Hz sinusoidal EMFs at a magnetic flux density of 80 μT on the expression of the luciferase gene contained in a plasmid labelled as pEMF (EMF plasmid). This gene construct contains the specific sequences for the induction of hsp70 (heat-shock protein 70) expression by EMFs, as well as the reporter for the luciferase gene. The pEMF vector was electrotransferred into quadriceps muscles of BALB/c mice that were later exposed to EMFs. Increased luciferase expression was observed in mice exposed to EMFs 2 h daily for 7 days compared with controls (P<0.05). These data along with other reports in the literature suggest that EMFs can have far-reaching effects on the genome. PMID:23124775

  3. Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: an in vitro study.

    PubMed

    Rodríguez de la Fuente, Abraham O; Alcocer-González, Juan M; Antonio Heredia-Rojas, J; Balderas-Candanosa, Isaías; Rodríguez-Flores, Laura E; Rodríguez-Padilla, Cristina; Taméz-Guerra, Reyes S

    2009-03-01

    We have evaluated the effect of 60 Hz sinusoidal magnetic fields (MF) at 8 and 8 microT on expression of the luciferase gene contained in a gene construct labelled as Electromagnetic Field-plasmid (pEMF). The vector included the hsp70 promotor containing the 3 nCTCTn sequences previously described for the induction of hsp70 expression by magnetic fields, as well as the reporter of the luciferase gene. We also replicated the study of Lin et al. [Lin H, Blank M, Rossol-Haseroth K, Goodman R. Regulating genes with electromagnetic response elements. J Cell Biochem 2001;81(1):143-48]. The pEMF plasmid was transfected into HeLa and BMK16 cell lines that were later exposed to either MF or thermal shock (TS). An increased luciferase expression was found in both the cells exposed to MF and TS compared with their control groups (P < 0.05). Furthermore, the combined effect of MF and TS was also analyzed. A synergistic effect between two factors was observed for this co-exposure condition in terms of luciferase gene expression.

  4. No effect of 60 Hz electromagnetic fields on MYC or {beta}-actin expression in human leukemic cells

    SciTech Connect

    Lacy-Hulbert, A.; Wilkins, R.C.; Hesketh, T.R.

    1995-10-01

    Epidemiological studies have shown weak correlations between exposure to extremely low-frequency electromagnetic fields (ELF EMFs) and the incidence of several cancers, particularly childhood leukemias, although negative studies have also been reported. These observations have prompted a broad range of in vitro cellular studies in which effects of ELF EMFs have been observed. However, no reported response has been replicated widely in independent laboratories. One potentially important response is the rapid activation of proto-oncogenes and other genes in human leukemic (HL60) cells and a wide variety of other eukaryotic cells, because of the role of these genes in cell proliferation. We describe quantitative Northern analysis of MYC and {beta}actin mRNAs from HL60 cells exposed to fields under conditions very similar to those reported previously to activate these genes, namely 60 Hz sinusoidal magnetic fields of 0.57, 5.7 or 57 {mu}T for 20 min. In addition we have used a new design of field-exposure system and introduced a number of other modifications to the protocol to optimize any response. We have also developed a novel method providing enhanced accuracy for the quantitative measurement of mRNA. No significant effect of ELF EMFs on gene expression was observed using any of these systems and analytical methods. 70 refs., 2 figs., 1 tab.

  5. Effects of 60 Hz electromagnetic fields on early growth in three plant species and a replication of previous results.

    PubMed

    Davies, M S

    1996-01-01

    In an attempt to replicate the findings of Smith et al., seeds of Raphanus sativus L. (radish), Sinapsis alba L. (mustard), and Hordeum vulgare L. (barley) were grown for between 9 and 21 days in continuous electromagnetic fields (EMFs) at "ion-cyclotron resonance" conditions for stimulation of Ca(2+) (B(H) = 78.3 mu T, B(HAC) = 40 mu T peak-peak at 60 Hz, B(V) = 0). On harvesting, radish showed results similar to those of Smith et al. Dry stem weight and plant height were both significantly greater (Mann-Whitney tests, Ps < 0.05) in EMF-exposed plants than in control plants in each EMF experiment. Wet root weight was significantly greater in EMF-exposed plants in two out of three experiments, as were dry leaf weight, dry whole weight, and stem diameter. Dry root weight, wet leaf weight, and wet whole weight were significantly greater in EMF-exposed plants in one of three experiments. All significant differences indicated an increase in weight or size in the EMF-exposed plants. In each of the sham experiments, no differences between exposed and control plants were evident. Mustard plants failed to respond to the EMFs in any of the plant parameters measured. In one experiment, barley similarly failed to respond; but in another showed significantly greater wet root weight and significantly smaller stem diameter and dry seed weight at the end of the experiment in exposed plants compared to control plants. Although these results give no clue about the underlying bioelectromagnetic mechanism, they demonstrate that, at least for one EMF-sensitive biosystem, results can be independently replicated in another laboratory. Such replication is crucial in establishing the validity of bioelectromagnetic science.

  6. Effects of 60 Hz electromagnetic fields on early growth in three plant species and a replication of previous results

    SciTech Connect

    Davis, M.S.

    1996-05-01

    In an attempt to replicate the findings of Smith et al., seeds of Raphanus sativus L. (radish), Sinapsis alba L. (mustard), and Hordeum vulgare L. (barley) were grown for between 9 and 21 days in continuous electromagnetic fields (EMFs) at ion-cyclotron resonance conditions for stimulation of Ca{sup 2+} (B{sub H} = 78.3 {micro}T, B{sub HAC} = 40 {micro}T peak-peak at 60 Hz, B{sub v} = 0). On harvesting, radish showed results similar to those of Smith et al. Dry stem weight and plant height were both significantly greater (Mann-Whitney tests, Ps < 0.05) in EMF-exposed plants than in control plants in each EMF experiment. Wet root weight was significantly greater in EMF-exposed plants in two out of three experiments, as were dry leaf weight, dry whole weight, and stem diameter. Dry root weight, wet leaf weight, and wet whole weight were significantly greater in EMF-exposed plants in one of three experiments. All significant differences indicated an increase in weight or size in the EMF-exposed plants. In each of the sham experiments, no differences between exposed and control plants were evident. Mustard plants failed to respond to the EMFs in any of the plant parameters measured. In one experiment, barley similarly failed to respond; but in another showed significantly greater wet root weight and significantly smaller stem diameter and dry seed weight at the end of the experiment in exposed plants compared to control plants. Although these results give no clue about the underlying bioelectromagnetic mechanism, they demonstrate that, at least for one EMF-sensitive biosystem, results can be independently replicated in another laboratory. Such replication is crucial in establishing the validity of bioelectromagnetic science.

  7. Effects on micronuclei formation of 60-Hz electromagnetic field exposure with ionizing radiation, hydrogen peroxide, or c-Myc overexpression.

    PubMed

    Jin, Yeung Bae; Kang, Ga-Young; Lee, Jae Seon; Choi, Jong-Il; Lee, Ju-Woon; Hong, Seung-Cheol; Myung, Sung Ho; Lee, Yun-Sil

    2012-04-01

    Epidemiological studies have demonstrated a possible correlation between exposure to extremely low-frequency magnetic fields (ELF-MF) and cancer. However, this correlation has yet to be definitively confirmed by epidemiological studies. The principal objective of this study was to assess the effects of 60 Hz magnetic fields in a normal cell line system, and particularly in combination with various external factors, via micronucleus (MN) assays. Mouse embryonic fibroblast NIH3T3 cells and human lung fibroblast WI-38 cells were exposed for 4 h to a 60 Hz, 1 mT uniform magnetic field with or without ionizing radiation (IR, 2 Gy), H(2)O(2) (100 μM) and cellular myelocytomatosis oncogene (c-Myc) activation. The results obtained showed no significant differences between the cells exposed to ELF-MF alone and the unexposed cells. Moreover, no synergistic effects were observed when ELF-MF was combined with IR, H(2)O(2), and c-Myc activation. Our results demonstrate that ELF-MF did not enhance MN frequency by IR, H(2)O(2) and c-Myc activation.

  8. Intracellular Ca2+ Mobilization and Beta-hexosaminidase Release Are Not Influenced by 60 Hz-electromagnetic Fields (EMF) in RBL 2H3 Cells

    PubMed Central

    Hwang, Yeon Hee; Song, Ho Sun; Kim, Hee Rae; Ko, Myoung Soo; Jeong, Jae Min; Kim, Yong Ho; Ryu, Jeong Soo; Sohn, Uy Dong; Gimm, Yoon-Myoung; Myung, Sung Ho

    2011-01-01

    The effects of extremely low frequency electromagnetic fields (EMF) on intracellular Ca2+ mobilization and cellular function in RBL 2H3 cells were investigated. Exposure to EMF (60 Hz, 0.1 or 1 mT) for 4 or 16 h did not produce any cytotoxic effects in RBL 2H3 cells. Melittin, ionomycin and thapsigargin each dose-dependently increased the intracellular Ca2+ concentration. The increase of intracellular Ca2+ induced by these three agents was not affected by exposure to EMF (60 Hz, 1 mT) for 4 or 16 h in RBL 2H3 cells. To investigate the effect of EMF on exocytosis, we measured beta-hexosaminidase release in RBL 2H3 cells. Basal release of beta-hexosaminidase was 12.3±2.3% in RBL 2H3 cells. Exposure to EMF (60 Hz, 0.1 or 1 mT) for 4 or 16 h did not affect the basal or 1 µM melittin-induced beta-hexosaminidase release in RBL 2H3 cells. This study suggests that exposure to EMF (60 Hz, 0.1 or 1 mT), which is the limit of occupational exposure, has no influence on intracellular Ca2+ mobilization and cellular function in RBL 2H3 cells. PMID:22128265

  9. Effects of 3 Hz and 60 Hz Extremely Low Frequency Electromagnetic Fields on Anxiety-Like Behaviors, Memory Retention of Passive Avoidance and Electrophysiological Properties of Male Rats

    PubMed Central

    Rostami, Amin; Shahani, Minoo; Zarrindast, Mohammad Reza; Semnanian, Saeed; Rahmati Roudsari, Mohammad; Rezaei Tavirani, Mostafa; Hasanzadeh, Hadi

    2016-01-01

    Introduction: The effects of electromagnetic fields on biological organisms have been a controversial and also interesting debate over the past few decades, despite the wide range of investigations, many aspects of extremely low frequency electromagnetic fields (ELF/EMFs) effects including mechanism of their interaction with live organisms and also their possible biological applications still remain ambiguous. In the present study, we investigated whether the exposures of ELF/EMF with frequencies of 3 Hz and 60 Hz can affect the memory, anxiety like behaviors, electrophysiological properties and brain’s proteome in rats. Methods: Male rats were exposed to 3 Hz and 60 Hz ELF/EMFs in a protocol consisting of 2 cycles of 2 h/day exposure for 4 days separated with a 2-day interval. Short term memory and anxiety like behaviors were assessed immediately, 1 and 2 weeks after the exposures. Effects of short term exposure were also assessed using electrophysiological approach immediately after 2 hours exposure. Results: Behavioral test revealed that immediately after the end of exposures, locomotor activity of both 3 Hz and 60 Hz exposed groups significantly decreased compared to sham group. This exposure protocol had no effect on anxiety like behavior during the 2 weeks after the treatment and also on short term memory. A significant reduction in firing rate of locus coeruleus (LC) was found after 2 hours of both 3 Hz and 60 Hz exposures. Proteome analysis also revealed global changes in whole brain proteome after treatment. Conclusion: Here, some evidence regarding the fact that such exposures can alter locomotor activity and neurons firing rate in male rats were presented. PMID:27330708

  10. Effects of 60 Hz magnetic fields on teenagers and adults

    PubMed Central

    2013-01-01

    Background As use of electrical devices has increased, social concerns about the possible effects of 60 Hz electromagnetic fields on human health have increased. Accordingly, the number of people who complain of various symptoms such as headache and insomnia has risen. Many previous studies of the effects of extremely low frequency (ELF) magnetic field exposure on children have focused on the occurrence of childhood leukaemia and central nervous system cancers. However, very few provocation studies have examined the health effects of ELF magnetic fields on teenagers. Methods In this double-blind study, we simultaneously investigated physiological changes (heart rate, respiration rate, and heart rate variability), subjective symptoms, and magnetic field perception to determine the reliable effects of 60 Hz 12.5 μT magnetic fields on teenagers. Two volunteer groups of 30 adults and 30 teenagers were tested with exposure to sham and real magnetic fields for 32 min. Results ELF magnetic field exposure did not have any effects on the physiological parameters or eight subjective symptoms in either group. Neither group correctly perceived the magnetic fields. Conclusions Physiological data were analysed, subjective symptoms surveyed, and the percentages of those who believed they were being exposed were measured. No effects were observed in adults or teenagers resulting from 32 min of 60 Hz 12.5 μT magnetic field exposure. PMID:23705754

  11. Are the stray 60-Hz electromagnetic fields associated with the distribution and use of electric power a significant cause of cancer?

    PubMed Central

    Jackson, J D

    1992-01-01

    The putative causal relation between ambient low-frequency (50 or 60 Hz) electromagnetic fields (necessarily present in living and working environments because of our ever increasing use of electrical devices) and cancer, especially leukemia, can be tested on the large scale by examining historical data on the growth of the generation and consumption of electric power since 1900 and corresponding data on cancer death and incidence rates. The United States per capita generation and residential consumption of electric power have grown roughly exponentially since 1900; total per capita generation has increased by a factor of 10 since 1940, and per capita residential consumption has increased by a factor of 20 in the same period. The ubiquitous stray fields from power distribution lines and internal and external wiring in buildings have grown in the same proportions. In contrast to the explosive increase in the generation and use of electricity, the age-adjusted cancer death rate for the population as a whole shows only a slight rise since 1900. When respiratory cancers (largely caused by tobacco use) are subtracted, the remaining death rate has actually fallen since 1940. That the death rate may have fallen because of better diagnosis and treatment, despite a rising incidence rate, is not substantiated, especially for leukemia, including childhood leukemia, where the incidence rate has been constant or declining slightly for the past 25 yr. The absence of any appreciable change in the national cancer incidence rates during a period in which residential use of electric power has increased dramatically shows that the associated stray 50- or 60-Hz electromagnetic fields pose no significant hazard to the average individual. PMID:1565645

  12. Are the stray 60-Hz electromagnetic fields associated with the distribution and use of electric power a significant cause of cancer?

    PubMed

    Jackson, J D

    1992-04-15

    The putative causal relation between ambient low-frequency (50 or 60 Hz) electromagnetic fields (necessarily present in living and working environments because of our ever increasing use of electrical devices) and cancer, especially leukemia, can be tested on the large scale by examining historical data on the growth of the generation and consumption of electric power since 1900 and corresponding data on cancer death and incidence rates. The United States per capita generation and residential consumption of electric power have grown roughly exponentially since 1900; total per capita generation has increased by a factor of 10 since 1940, and per capita residential consumption has increased by a factor of 20 in the same period. The ubiquitous stray fields from power distribution lines and internal and external wiring in buildings have grown in the same proportions. In contrast to the explosive increase in the generation and use of electricity, the age-adjusted cancer death rate for the population as a whole shows only a slight rise since 1900. When respiratory cancers (largely caused by tobacco use) are subtracted, the remaining death rate has actually fallen since 1940. That the death rate may have fallen because of better diagnosis and treatment, despite a rising incidence rate, is not substantiated, especially for leukemia, including childhood leukemia, where the incidence rate has been constant or declining slightly for the past 25 yr. The absence of any appreciable change in the national cancer incidence rates during a period in which residential use of electric power has increased dramatically shows that the associated stray 50- or 60-Hz electromagnetic fields pose no significant hazard to the average individual.

  13. Influence of a 60 Hz, 3 microT, electromagnetic field on the reflex maturation of Wistar rats offspring from mothers fed a regional basic diet during pregnancy.

    PubMed

    Anselmo, Caroline W S F; Santos, Ana A A; Freire, Conciana M A; Ferreira, Lúcia M P; Cabral Filho, José E; Catanho, Maria Teresa J A; Medeiros, Maria Do Carmo

    2006-01-01

    The aim of the present study was to observe how the exposition of the pregnant rats to the electromagnetic field (EMF), with frequency of 60 Hz, magnetic field of 3 microT for 2 h per day and/or using the so-called regional basic diet (RBD) influenced the reflex maturation in their offspring. Four groups were formed: Group A (casein), B (casein and EMF), C (RBD) and D (RBD and EMF). The diet manipulation occurred during the pregnancy. The reflexes--assessed daily between 12:00 and 14:00--were: palm grasp (PG), righting reflex (RR), cliff avoidance (CA), vibrissae placing (VP), negative geotaxis (NG), auditory startle (AS) and free-fall righting (FFR). The association between EMF and deficient diet caused a delay in all reflexes when compared with Group A. When the diets were compared with both groups exposed to EMF, the delay occurred in the RR, VP, NG and CA in Group D. In the Groups C and A, the delay was observed in RR, CA, VP, NG, AS and PG. In relation to the EMF, Group B differed from Group A in CA, AS, FFR and PG and Group D differed from C in the PG. In conclusion, all the reflexes studied in this research were delayed by the association of the EMF with undernutrition during pregnancy.

  14. Absence of DNA damage after 60-Hz electromagnetic field exposure combined with ionizing radiation, hydrogen peroxide, or c-Myc overexpression.

    PubMed

    Jin, Yeung Bae; Choi, Seo-Hyun; Lee, Jae Seon; Kim, Jae-Kyung; Lee, Ju-Woon; Hong, Seung-Cheol; Myung, Sung Ho; Lee, Yun-Sil

    2014-03-01

    The principal objective of this study was to assess the DNA damage in a normal cell line system after exposure to 60 Hz of extremely low frequency magnetic field (ELF-MF) and particularly in combination with various external factors, via comet assays. NIH3T3 mouse fibroblast cells, WI-38 human lung fibroblast cells, L132 human lung epithelial cells, and MCF10A human mammary gland epithelial cells were exposed for 4 or 16 h to a 60-Hz, 1 mT uniform magnetic field in the presence or absence of ionizing radiation (IR, 1 Gy), H(2)O(2) (50 μM), or c-Myc oncogenic activation. The results obtained showed no significant differences between the cells exposed to ELF-MF alone and the unexposed cells. Moreover, no synergistic or additive effects were observed after 4 or 16 h of pre-exposure to 1 mT ELF-MF or simultaneous exposure to ELF-MF combined with IR, H(2)O(2), or c-Myc activation.

  15. Endocrinological effects of strong 60-Hz electric fields on rats

    SciTech Connect

    Free, M.J.; Kaune, W.T.; Phillips, R.D.; Cheng, H.C.

    1981-01-01

    Adult male rats were exposed or sham-exposed to 60-Hz electric fields without spark discharges, ozone, or significant levels or other secondary variables. No effects were discharges, ozone, or significant levels of other secondary variables. No effects were observed on body weights or plasma hormone levels after 30 days of exposure at an effective field strength of 68 kV/m. After 120 days of exposure (effective field strength = 64 kV/m), effects were inconsistent, with signficant reductions in body weight and plasma levels of follicle-stimulating hormone and corticosterone occurring in one replicate experiment but not in the other. Plasma testosterone levels were significantly reduced after 120 days of exposure in one experiment, with a similar but not statistically significant reduction in a replicate experiment. Weanling rats, exposed or sham-exposed in electric fields with an effective field strength of 80 kV/m from 20 to 56 days of age, exhibited identical or closely similar growth trends in body and organ weights. Hormone levels in exposed and sham-exposed groups were also similar. However, there was an apparent phase shift between the two groups in the cyclic variations of concentrations of hormones at different stages of development, particularly with respect to follicle-stimulating hormone and corticosterone. We concluded that 60-Hz electric fields may bring about subtle changes in the endocrine system of rats, and that these changes may be related to alterations in episodic rhythms.

  16. Influence of 60-Hz magnetic fields on sea urchin development

    SciTech Connect

    Zimmerman, S.; Zimmerman, A.M.; Winters, W.D.; Cameron, I.L. )

    1990-01-01

    Continuous exposure of sea urchin (Strongylocentrotus purpuratus) embryos at 18 degrees C to a cyclic 60-Hz magnetic field at 0.1 mT rms beginning 4 min after insemination caused a significant developmental delay during the subsequent 23 hours. No delay in development was recorded for periods up to 18 hours after fertilization. At 18 h, most embryos were in the mesenchyme blastula stage. At 23 h, most control embryos were in mid-gastrula whereas most magnetic-field-exposed embryos were in the early gastrula stage. Thus an estimated 1-h delay occurred between these developmental stages. The results are discussed in terms of possible magnetic-field modification of transcription as well as interference with cell migration during gastrulation. The present study extends and supports the growing body of information about potential effects of exposures to extremely-low-frequency (ELF) magnetic fields on developing organisms.

  17. Cardiovascular response of rats exposed to 60-Hz electric fields

    SciTech Connect

    Hilton, D.I.; Phillips, R.D.

    1980-01-01

    Recently, it has been reported that exposure to high-strength electric fields can influence electrocardiogram (ECG) patterns, heart rates, and blood pressures in various species of animals. Our studies were designed to evaluate these reported effects and to help clarify some of the disagreement present in the literature. Various cardiovascular variables were measured in Sprague-Dawley rats exposed or sham-exposed to 60-Hz electric fields at 80 to 100 kV/m for periods up to four months. No significant differences in heart rates, ECG patterns, blood pressures, or vascular reactivity were observed between exposed and sham-exposed rats after 8 hours, 40 hours, 1 month, or 4 months of exposure. Our studies cannot be directly compared to the work of other investigators because of differences in animal species and electric-field characteristics. However, our failure to detect any cardiovascular changes may have been the result of (1) eliminating secondary field effects such as shocks, audible noise, corona, and ozone; (2) minimizing steady-state microcurrents between the mouth of the animal and watering devices; and (3) minimizing electric-field-induced vibration of the electrodes and animal cages.

  18. [The present state of knowledge concerning the effect of electromagnetic fields of 50/60 Hz on the circulatory system and the autonomic nervous system].

    PubMed

    Indulski, J A; Bortkiewicz, A; Zmyślony, M

    1997-01-01

    Diseases of the circulatory system together with neoplastic diseases are recognised as the major health problem in the contemporary world. Their origin and aggravation may be related to the exposure to electromagnetic fields (EMFs) since theoretically, disorders in the functioning of the circulatory system are most likely due to electric impulses generated in it by external magnetic fields. The nervous system, including its autonomic part which regulates, among others, the functioning of the circulatory system, because of its electric nature is another system which may be disturbed by EMFs. From the 1960s, biological studies on the effects of power-line frequency EMFs have been carried out in many countries. In view of the applied study model, four main directions of these studies can be identified: in vitro and in vivo animal experiments, experimental studies on humans, clinical and epidemiological studies. Experimental studies on animals and humans have yielded ambiguous and very often contradictory results. Some of them indicate that EMF contributes to slowing down the cardiac rhythm and the stroke volume of the left ventricle, other results suggest their acceleration, and still other show no differences. The results of clinical studies performed in many countries in different groups of workers exposed to power-line frequency EMFs have not produced the evidence for drawing unequivocal conclusions. Again some studies reveal that those exposed show disorders in neurovegetative and blood pressure regulations (hypotension or hypertension) as well as in cardiac rhythm (bradycardia or tachycardia). Other studies do not confirm harmful effect of EMF on the circulatory system. Therefore, it is not feasible to find out, on the basis of these studies, whether and how chronic exposure to power-line frequency EMFs influences the functioning of the circulatory system, the more so as ECG standard recording has been to date the only diagnostic method, and according to the

  19. Effects of 60-Hz fields, estradiol and xenoestrogens on human breast cancer cells

    SciTech Connect

    Dees, C.; Travis, C.; Garrett, S.; Henley, D.

    1996-10-01

    If exposure to xenoestrogens or electromagnetic fields (EMFs) such as 60 Hz contributes to the etiology of breast cancer, it is likely that they must stimulate the growth of breast cells, damage genetic material or enhance the effects of other mitogenic or mutagenic agents (co-promotion). Therefore, the ability of xenoestrogens or exposure to 60-Hz fields to stimulate the entry of growth-arrested human breast cancer cells into the cell cycle was determined using cyclin-dependent kinase 2 (Cdk2) activity, synthesis of cyclin D1 and cdc2 activity. Exposure of estrogen receptor-positive MCF-7 or T-47D cells to estrogen and xenoestrogens (DDT and Red No.3) increased Cdk2 and cyclin B1-cdc2 activity and cyclin D1 synthesis. Exposure of breast cancer cells to 12 mG or 1 or 9 G electromagnetic fields at 60 Hz failed to stimulate Cdk2 or cyclin B1-cdc2 activity or cyclin D1 synthesis. Simultaneous co-exposure of cells to 60-Hz fields and chemical promoters did not enhance Cdk2 activation above the levels produced by the chemical promoter alone. Estrogen and xenoestrogens also stimulated binding of the estrogen receptor to the estrogen receptor element but the EMF did not. Phorbol 12-myristate 13-acetate (PMA) induced phosphorylation of p53 and pRb105 in MCF-7 cells, but EMF exposure had no effect. DNA-damaging chemotherapeutic agents and Red Dye No. 3 were found to increase p53 site-specific DNA binding in breast cancer cells, but EMF exposure did not. These studies suggest that estrogen and xenoestrogens stimulate growth-arrested breast cancer cells to enter the growth cycle, but EMF exposure does not. Site-specific p53-DNA binding was increased in MCF-7 cells treated with DNA-damaging agents, but not by EMF exposure. EMF exposure does not appear to act as a promoter or DNA-damaging agent for human breast cancer cells in vitro. 34 refs., 10 figs.

  20. Detection thresholds for 60 Hz electric fields by nonhuman primates

    SciTech Connect

    Orr, J.L.; Rogers, W.R.; Smith, H.D.

    1995-12-31

    Because responses of animals to detection of the presence of an electric field (EF) are a possible mechanism for production of biological effects, it is important to know what EF intensities are detectable. Operant methods were used to train six baboons (Papio cynocephalus) to perform a psychophysical task involving detection of EF presence. During the response phase of a trial, a subject responded on one push button to report the presence of the EF and on a different push button to report the absence of the EF. Correct reports of EF presence or absence produced delivery of food rewards. The subjects became proficient at performing this psychophysical detection task; during 35 days of testing, false alarm rates averaged 9%. The average EF detection threshold was 12 kV/m; the range of means among subjects was 5--15 kV/m. Two special test procedures confirmed that the subjects were responding directly to EF presence or absence and not to artifacts that might be associated with EF generation. The EF detection threshold of nonhuman primates is similar to thresholds reported for rats and humans.

  1. Entamoeba invadens: influence of 60 Hz magnetic fields on growth and differentiation.

    PubMed

    Rodríguez-De la Fuente, Abraham O; Heredia-Rojas, J Antonio; Mata-Cárdenas, Benito David; Vargas-Villarreal, Javier; Rodríguez-Flores, Laura E; Balderas-Candanosa, Isaías; Alcocer-González, Juan M

    2008-06-01

    Exposure to extremely low-frequency (ELF) electromagnetic fields appears to result in a number of important biological changes. In the present study, we evaluated the effects of 60 Hz sinusoidal magnetic fields (MF) at magnetic flux densities of 1.0, 1.5 and 2.0 mT on growth and differentiation of the protozoan Entamoeba invadens. We demonstrated an inhibitory growth effect when trophozoite cultures were exposed to 1.5 and 2.0 mT. Furthermore, we found that there was not a synergistic effect in cultures co-exposed to MF and Metronidazole, a cytotoxic drug against amoebic cells. In addition, MF exposure inhibited the encystation process of E. invadens.

  2. A 0.5 G, 60 Hz magnetic field suppresses melatonin production in pinealocytes.

    PubMed

    Rosen, L A; Barber, I; Lyle, D B

    1998-01-01

    The objective of this study was to develop a model for testing various hypotheses concerning possible mechanisms whereby electromagnetic fields might induce suppression of nighttime melatonin production in rodents. A published method for digesting freshly obtained pineal glands to the single cell level was modified, yielding better than 95% viability. An in vitro exposure facility developed for the Food and Drug Administration was used for 12-h overnight exposures of primary pinealocyte cultures to 0.05 mT, 60 Hz, vertical AC and 0.06 microT, DC fields. After exposure, cells were separated from the supernatant by centrifugation. Supernatant melatonin was measured by ELISA assays. Data from 10 experiments demonstrated an average 46% reduction in norepinephrine-induced production of melatonin in the pinealocytes. The results support the hypothesis that EM exposure can produce pineal gland melatonin suppression by affecting individual cells.

  3. Effects of 60 Hz electric fields on operant and social stress behaviors of nonhuman primates

    SciTech Connect

    Rogers, W.R.; Lucas, J.H.; Moore, G.T.; Orr, J.L.

    1985-01-01

    An overall description of this research program is presented. The objectives are to investigate using nonhuman primates, possible behavioral effects associated with exposure to high-intensity, 60 Hz, electric fields. 6 tabs.

  4. Effects on g2/m phase cell cycle distribution and aneuploidy formation of exposure to a 60 Hz electromagnetic field in combination with ionizing radiation or hydrogen peroxide in l132 nontumorigenic human lung epithelial cells.

    PubMed

    Jin, Hee; Yoon, Hye Eun; Lee, Jae-Seon; Kim, Jae-Kyung; Myung, Sung Ho; Lee, Yun-Sil

    2015-03-01

    The aim of the present study was to assess whether exposure to the combination of an extremely low frequency magnetic field (ELF-MF; 60 Hz, 1 mT or 2 mT) with a stress factor, such as ionizing radiation (IR) or H2O2, results in genomic instability in non-tumorigenic human lung epithelial L132 cells. To this end, the percentages of G2/M-arrested cells and aneuploid cells were examined. Exposure to 0.5 Gy IR or 0.05 mM H2O2 for 9 h resulted in the highest levels of aneuploidy; however, no cells were observed in the subG1 phase, which indicated the absence of apoptotic cell death. Exposure to an ELF-MF alone (1 mT or 2 mT) did not affect the percentages of G2/M-arrested cells, aneuploid cells, or the populations of cells in the subG1 phase. Moreover, when cells were exposed to a 1 mT or 2 mT ELF-MF in combination with IR (0.5 Gy) or H2O2 (0.05 mM), the ELF-MF did not further increase the percentages of G2/M-arrested cells or aneuploid cells. These results suggest that ELF-MFs alone do not induce either G2/M arrest or aneuploidy, even when administered in combination with different stressors.

  5. Brown-colored deposits on hair of female rats chronically exposed to 60-Hz electric fields

    SciTech Connect

    Leung, F.C.; Rommereim, D.N.; Miller, R.A.; Anderson, L.E. )

    1990-01-01

    An increased incidence and severity of a brownish coloration of hair has been observed around the nose and on the ears of female rats that were chronically exposed to 60-Hz electric fields. Microscopic examination of the colored areas revealed a red-brown globular deposit on hair shafts in affected areas without signs of physical injury.

  6. Effects of 60-Hz electric fields on embryo and chick development, growth, and behavior. Final report

    SciTech Connect

    Not Available

    1985-07-01

    The objective of this study was to utilize an avian model to determine the effects of 60-Hz electric fields on embryo and chick development. A specially designed incubator allowed simultaneous incubation of control eggs and eggs exposed to 60-Hz electric fields. Two series of experimental voltages were utilized for this study. In Series 1, the subject eggs were exposed to 20, 40, 60, 80, and 100 kV/m fields and, in Series 2, eggs were exposed to 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, and 100 kV/m. Data were collected on mortality, malformation, and growth (weight) of 7- and 14-day-old embryos after continuous exposure to electric fields. Eggs were also incubated, exposed to electric fields, and hatched in order to collect data on chick weights at one day and at 2, 4, and 6 weeks after hatching. Behavior tests on newly hatched chicks that had been exposed to electric fields during development were also performed. The results indicated no consistent effect of 60-Hz electric fields, varying from 0.1 to 100 kV/m, on mortality, malformations, weights, bone growth (metatarsal length), or behavior of embryos or chicks. This study strongly suggests that within the scope of this project, there is no consistent direct effect of 60 Hz electric fields on the health and well-being of avian embryos. A dose-response analysis was also utilized in which all the data in each series, for each age of the embryos, were simultaneously evaluated in a statistical model. This analysis demonstrated that there is no significant dose-response of electric fields on 7- and 14-day-old embryo and 1-day-old chick weights. 24 refs., 21 figs., 56 tabs.

  7. Development toxicology study in rats exposed to 60-Hz horizontal magnetic fields. Final report

    SciTech Connect

    Anderson, L.E.

    1997-09-01

    A replicate study using large numbers of animals was conducted to determine if 60 Hz magnetic fields would produce developmental toxicity in rats. Systems used previously for electric field exposures were retrofitted to provide magnetic field exposures to small laboratory animals. Large coils, separated from the rat cages, were energized by computer-controlled function generators providing a relatively pure, 1,000--{micro}T (10 G), 60-Hz, horizontal magnetic field for the high exposure group. Leakage fields to a second system provided a second exposure group with average exposures of 0.61 {micro}T (6.1 mG). Ambient fields within a third (control) system were 0.09 {micro}T (0.9 mG). Replicate experiments were conducted in which female rats were mated, and sperm-positive females were randomly distributed among the three exposure groups: (0.09, 0.61, and 1,000 {micro}T). Pregnant animals were exposed to 60 Hz horizontal magnetic fields for 20 hr/day from mating until very near term, 20 days later.

  8. Effects of 60 Hz electric fields on operant and social stress behaviors of nonhuman primates

    SciTech Connect

    Rogers, W.R.; Coelho, A.M. Jr.; Easley, S.P.; Lucas, J.H.; Moore, G.T.; Orr, J.L.; Smith, H.D.; Taylor, L.L.; Tuttle, M.L.

    1987-10-24

    The objective of this program is to investigate, using the baboon as a nonhuman primate surrogate for the human, possible behavioral effects associated with exposure to high intensity 60 Hz electric fields. Results from this program, along with information from experiments conducted elsewhere, will be used by the Department of Energy (DOE) to estimate and evaluate the likelihood of deleterious consequences resulting from exposure of humans to the electric fields associated with power transmission over high voltage lines. This research program consists of four major research projects, all of which have been successfully completed. The first project evaluated the potentially aversive character of exposure to 60 Hz electric fields by determining the threshold intensity that produces escape or avoidance responses. The second project estimated the threshold intensity for detection threshold was 12 kV/m; the range of means was 6 to 16 kV/m. The third project assessed, in separate experiments conducted at 30 and 60 kV/m, effects of chronic exposure to electric fields on the performance of two operant conditioning tasks, fixed ratio (FR), and differential reinforcement of low rate (DRL). In the same two experiments, the fourth project investigated, using the systematic quantitative observational sampling methods of primatology, the possible stress-inducing effects of chronic exposure to 60 Hz electric fields on the behavior of baboons living in small social groups. 131 refs., 87 figs., 123 tabs.

  9. Effects of 60-Hz electric fields on specific humoral and cellular components of the immune system

    SciTech Connect

    Morris, J.E.; Phillips, R.D.

    1982-01-01

    Humoral and cellular functions of the immune system of Swiss-Webster mice were evaluated after exposure to 60-Hz electric fields at 100 kV/m. No significant differences were observed in primary antibody response to keyhole limpet hemocyanin (precipitating antibody levels) between exposed (30 or 60 days) and control mice, nor were there significant changes in mitogen-stimulation response of spleen cells from mice similarly exposed for 90 or 150 days when compared to sham-exposed animals.

  10. Comparison of cardiac and 60 Hz magnetically induced electric fields measured in anesthetized rats

    SciTech Connect

    Miller, D.L.; Creim, J.A.

    1997-06-01

    Extremely low frequency magnetic fields interact with an animal by inducing internal electric fields, which are in addition to the normal endogenous fields present in living animals. Male rats weighing about 560 g each were anesthetized with ketamine and xylazine. Small incisions were made in the ventral body wall at the chest and upper abdomen to position a miniature probe for measuring internal electric fields. The calibration constant for the probe size was 5.7 mm, with a flat response from at least 12 Hz to 20 kHz. A cardiac signal, similar to the normal electrocardiogram with a heart rate of about 250 bpm, was readily obtained at the chest. Upon analysis of its spectrum, the cardiac field detected by the probe had a broad maximum at 32--95 Hz. When the rates were exposed to a 1 mT, 60 Hz magnetic field, a spike appeared in the spectrum at 60 Hz. The peak-to-peak magnitudes of electric fields associated with normal heart function were comparable to fields induced by a 1 mT magnetic field at 60 Hz for those positions measured on the body surface. Within the body, or in different directions relative to the applied field, the induced fields were reduced. The cardiac field increased near the heart, becoming much larger than the induced field. Thus, the cardiac electric field, together with the other endogenous fields, combine with induced electric fields and help to provide reference levels for the induced-field dosimetry of ELF magnetic field exposures of living animals.

  11. Immunological and biochemical effects of 60 Hz electric and magnetic fields in humans

    SciTech Connect

    Fotopoulos, S.S.; Graham, C.

    1990-01-01

    Demand for electric energy increased at an annual average rate of 7.5% between 1912 and 1971. In order to meet this demand, utility companies have increased the number and size of their generating units and the operating voltages employed in overhead transmission lines. Recently public concern has been expressed about possible risks to human health, function, and well-being arising from exposure to the electric and magnetic fields associated with overhead transmission line voltage. The Department of Energy funded the present project to investigate the effects of 60-Hz electric and magnetic fields on critically important immunological, biochemical, and hematological variables. Inclusion of such variables will be of great value in assessing the effects of 60-Hz fields on human health and welfare, and will provide results comparable to ongoing animal studies. The scope of this project includes six major goals: development of systems for incorporating biochemistry, hematology, and immunology data collection into the procedures already developed for the performance and physiology study funded by the New York State Overhead Power Lines Project; development of sample tracking and quality assurance procedures for project data; methods development and setting up of all procedures for performing assays; collecting data; carrying out assays according to the procedures defined; and statistically evaluating and interpreting the effects of 60-Hz exposure on hematological, biochemical, and immunological parameters. 3 tabs.

  12. 60-Hz electric-field effects on pineal melatonin rhythms: time course for onset and recovery

    SciTech Connect

    Wilson, B.W.; Chess, E.K.; Anderson, L.E.

    1986-01-01

    Rats exposed for 3 weeks to uniform 60-Hz electric fields of 39 kV/m (effective field strength) failed to show normal pineal gland circadian rhythms in serotonin N-acetyl transferase activity and melatonin concentrations. The time required for recovery of the melatonin rhythm after cessation of field exposure was determined to be less than 3 days. The rapid recovery suggests that the overall metabolic competence of the pineal is not permanently compromised by electric-field exposure, and that the circadian rhythm effect may be neuronally mediated.

  13. Behavioral studies with mice exposed to DC and 60-Hz magnetic fields

    SciTech Connect

    Davis, H.P.; Mizumori, S.J.Y.; Allen, H.; Rosenzweig, M.R.; Bennett, E.L.; Tenforde, T.S.

    1984-01-01

    Behavioral measures were evaluated in adult CD-1 and LAF-1 mice continuously exposed for 72 h to a 1.5-Tesla (1 T = 10/sup 4/ Gauss) homogeneous DC magnetic field, and in LAF-1 mice continuously exposed for 72 h to a sinusoidal 60-Hz, 1.65-mT (rms) homogeneous AC field. Three types of behavioral tests were employed: (1) memory of an electroshock-motivated passive avoidance task was assessed in animals that had been trained immediately prior to the field exposure. The strength of memory was varied either by altering the strength of the electric footshock during training, or by administering a cerebral protein synthesis inhibitor, anisomycin, at the time of training. (2) General locomotor activity was measured using a quadrant-crossing test immediately after termination of the magnetic field exposure. (3) Sensitivity of the experimental subjects to the seizure-inducing neuropharmacological agent, pentylenetetrazole, was assessed immediately after the field exposure on the basis of three criteria: (a) the percentage of subjects exhibiting a generalized seizure, (b) the mean time to seizure, and (c) the mean seizure level. The results of these studies revealed no behavior alterations in exposed mice relative to controls in any of the experimental tests with the 1.5-T DC field or the 60-Hz, 1.65-mT (rms) AC field. 57 references, 6 figures, 1 table.

  14. Relationship between field strength and arousal response in mice exposed to 60-Hz electric fields

    SciTech Connect

    Rosenberg, R.S.; Duffy, P.H.; Sacher, G.A.; Ehret, C.F.

    1983-01-01

    White-footed mice, Peromyscus leucopus, were exposed to 60-Hz electric fields to study the relationship between field strength and three measures of the transient arousal response previously reported to occur with exposures at 100 kV/m. Five groups of 12 mice each were given a series of four 1-h exposures, separated by an hour, with each group exposed at one of the following field strengths: 75, 50, 35, 25, and 10 kV/m; 8 additional mice were sham-exposed with no voltage applied to the field generator. All mice were experimentally naive before the start of the experiment, and all exposures occurred during the inactive (lights-on) phase of the circadian cycle. The first exposure produced immediate increases in arousal measures, but subsequent exposures had no significant effect on any measure. These arousal responses were defined by significant increases of gross motor activity, carbon dioxide production, and oxygen consumption, and were frequently recorded with field strengths of 50 kV/m or higher. Significant arousal responses rarely occurred with exposures at lower field strengths. Responses of mice exposed at 75 and 50 kV/m were similar to previously described transient arousal responses in mice exposed to 100-kV/m electric fields. Less than half of the mice in each of the field strength groups below 50 kV/m showed arousal response based on Z (standard) scores, but the arousals of the mice that did respond were similar to those of mice exposed at higher field strengths. Polynomial regression was used to calculate the field strength producing the greatest increases for each of the arousal measures. The results show that the amplitude of the transient arousal response is related to the strength of the electric field, but different measures of arousal may have different relationships to field strength.

  15. Diurnal patterns in brain biogenic amines of rats exposed to 60-Hz electric fields

    SciTech Connect

    Vasquez, B.J.; Anderson, L.E.; Lowery, C.I.; Adey, W.R.

    1988-01-01

    Levels of brain neurotransmitters and their metabolites, as well as concentrations of enzymes associated with their synthesis and metabolism, fluctuate during the day in patterns defined as circadian. The present study examined these rhythms in albino rats exposed to 60-Hz electric fields. Thirty-six animals were exposed to a 39 kV/m field for 4 weeks, 20 h/day, in a parallel-plate electrode system. A group of 36 sham animals was similarly handled and housed in a nonenergized exposure system. On the sampling day, animals were sacrificed at 4-h intervals throughout the 24-h day. Brains were removed, dissected, and kept frozen until chemically analyzed. The levels of biogenic amines and their acidic metabolites in the striatum, hypothalamus, and hippocampus were determined by high-performance liquid chromatography with electrochemical detection (HPLC-ECD) methods. Repeated exposure to 60-Hz electric fields produced significant alterations in the diurnal rhythms of several biogenic amines: dihydroxyphenylacetic acid (DOPAC, the primary metabolite of dopamine in the rat) in the striatum, and norepinephrine, dopamine, and 5-hydroxyindoleacetic acid (5-HIAA; serotonin metabolite) in the hypothalamus. Levels of serotonin in the striatum and hypothalamus showed clear circadian patterns that was not affected by the field. No diurnal or field-related changes were observed in the hippocampal amines.

  16. Cytohistological analysis of roots whose growth is affected by a 60-Hz electric field

    SciTech Connect

    Brulfert, A.; Miller, M.W.; Robertson, D.; Dooley, D.A.; Economou, P.

    1985-01-01

    Roots of Pisum sativum were exposed for 48 h to 60-Hz electric fields of 430 V/m in an aqueous inorganic growth medium. The growth in length of the exposed roots was 44% of that for control roots. Root tips were analyzed for mitotic index and cell cycle duration. Mature, differentiated root sections from tissue produced after electrode energization were analyzed for cell lengths and number of files. The major reason for the observation that exposed roots are shorter than control roots is that cell elongation in the former is greatly diminished relative to controls. 15 references, 1 figures, 4 tables.

  17. Attempts to produce taste-aversion learning in rats exposed to 60-Hz electric fields

    SciTech Connect

    Creim, J.A.; Lovely, R.H.; Kaune, W.T.; Phillips, R.D.

    1984-01-01

    A measure of taste-aversion (TA) learning was used in three experiments to 1) determine whether exposure to intense 60-Hz electric fields can produce TA learning in male Sprague-Dawley rats, and (2) establish a dose-response function for the behavior in question. In Experiment 1, four groups of eight rats each were distributed into one of two exposures (69 +/- 5 kV/m or 133 +/- 10 kV/m) or into one of two sham-exposure groups. Conditioning trials paired 0.1% sodium saccharin in water with 3 h of exposure to a 60-Hz electric field. Following five conditioning trials, a 20-min, two-bottle preference test between water and saccharin-flavored water failed to reveal TA conditioning in exposed groups. In Experiment 2, four groups of eight rats each (34 +/- 2 kV/m or 133 +/- 10 kV/m and two sham-exposed groups) were treated as before. Electric-field exposure had no effect on TA learning. Experiment 3 tested for a possible synergy between a minimal dose (for TA learning) of cyclophosphamide (6 mg/kg) and 5 h of exposure to 133 +/- 10 kV/m electric fields in a dark environment under conditions otherwise similar to those of Experiments 1 and 2. The results indicated no TA learning as reflected in the relative consumption of saccharin. 16 references, 6 figures, 1 table.

  18. Large granular lymphocytic (LGL) leukemia in rats exposed to intermittent 60 Hz magnetic fields.

    PubMed

    Anderson, L E; Morris, J E; Miller, D L; Rafferty, C N; Ebi, K L; Sasser, L B

    2001-04-01

    An animal model for large granular lymphocytic (LGL) leukemia in male Fischer 344 rats was utilized to determine whether magnetic field exposure can be shown to influence the progression of leukemia. We previously reported that exposure to continuous 60 Hz, 1 mT magnetic fields did not significantly alter the clinical progression of LGL leukemia in young male rats following injection of spleen cells from donor leukemic rats. Results presented here extend those studies with the following objectives: (a) to replicate the previous study of continuous 60 Hz magnetic field exposures, but using fewer LGL cells in the inoculum, and (b) to determine if intermittent 60 Hz magnetic fields can alter the clinical progression of leukemia. Rats were randomly assigned to four treatment groups (18/group) as follows: (1) 1 mT (10 G) continuous field, (2) 1 mT intermittent field (off/on at 3 min intervals), (3) ambient controls ( < 0.1 microT), and (4) positive control (5 Gy whole body irradiation from cobalt-60 four days prior to initiation of exposure). All rats were injected intraperitoneally with 2.2 x 10(6) fresh, viable LGL leukemic spleen cells at the beginning of the study. The fields were activated for 20 h per day, 7 days per week, and all exposure conditions were superimposed over the natural ambient magnetic field. The rats were weighed and palpated for splenomegaly weekly. Splenomegaly developed 9-11 weeks after transplantation of the leukemia cells. Hematological evaluations were performed at 6, 8, 10, 12, 14, and 16 weeks of exposure. Peripheral blood hemoglobin concentration, red blood cells, and packed cell volume declined, and total white blood cells and LGL cells increased dramatically in all treatment groups after onset of leukemia. Although the positive control group showed different body weight curves and developed signs of leukemia earlier than other groups, differences were not detected between exposure groups and ambient controls. Furthermore, there were no

  19. Effects of a 60 Hz magnetic field on central cholinergic systems of the rat

    SciTech Connect

    Lai, H.; Carino, M.A.; Horita, A.; Guy, A.W. )

    1993-03-15

    The authors studied the effects of an acute exposure to a 60 Hz magnetic field on sodium-dependent, high-affinity choline uptake in the brain of the rat. Decreases in uptake were observed in the frontal cortex and hippocampus after the animals were exposed to a magnetic field at flux densities [>=] 0.75 mT. These effects of the magnetic field were blocked by pretreating the animals with the narcotic antagonist naltrexone, but not by the peripheral opioid antagonist, naloxone methiodide. These data indicate that the magnetic-field-induced decreases in high-affinity choline uptake in the rat brain were mediated by endogenous opioids in the central nervous systems.

  20. Chronic exposure to a 60-Hz electric field: effects on neuromuscular function in the rat

    SciTech Connect

    Jaffe, R.A.; Laszewski, B.L.; Carr, D.B.

    1981-01-01

    Neuromuscular function in adult male rats was studied following 30 days of exposure to a 60-Hz electric field at 100 kV/m (unperturbed field strength). Isometric force transducters were attached to the tendons of the plantaris (predominantly fast twitch), and soleus (predominantly slow twitch) muscles in the urethan-anesthetized rat. Square-wave stimuli were delivered to the distal stump of the transected sciatic nerve. Several measurements were used to characterize neuromuscular function, including twitch characteristics, chronaxie, tetanic and posttetanic potentiation, and fatigue and recovery. The results from three independent series of experiments are reported. Only recovery from fatigue in slow-twitch muscles was consistently and significantly affected (enhanced) by electric-field exposure. This effect does not appear to be mediated by field-induced changes in either neuromuscular transmission, or in the contractile mechanism itself. It is suggested that the effect may be mediated secondary to an effect on mechanisms regulating muscle blood flow or metabolism.

  1. Chronic exposure to a 60-Hz electric field: effects on neuromuscular function in the rat.

    PubMed

    Jaffe, R A; Laszewski, B L; Carr, D B

    1981-01-01

    Neuromuscular function in adult male rats was studied following 30 days of exposure to a 60-Hz electric field at 100 kV/m (unperturbed field strength). Isometric force transducers were attached to the tendons of the plantaris (predominantly fast twitch), and soleus (predominantly slow twitch) muscles in the urethan-anesthetized rat. Square-wave stimuli were delivered to the distal stump of the transected sciatic nerve. Several measurements were used to characterized neuromuscular function, including twitch characteristics, chronaxie, tetanic and posttetanic potentiation, and fatigue and recovery. The results from three independent series of experiments are reported. Only recovery from fatigue in slow-twitch muscles was consistently and significantly affected (enhanced) by electric-field exposure. This effect does not appear to be mediated by field-induced changes in either neuromuscular transmission, or in the contractile mechanism itself. It is suggested that the effect may be mediated secondary to an effect on mechanisms regulating muscle blood flow or metabolism.

  2. Electric fields induced in chicken eggs by 60-Hz magnetic fields and the dosimetric importance of biological membranes

    SciTech Connect

    Miller, D.L. )

    1991-01-01

    Chicken eggs are convenient models for observing the effects of inhomogeneities and variations, such as those found in biological membranes and in cellular conductivities, on the distribution of internal electric fields as induced by exposure to magnetic fields. The vitelline membrane separates the yolk, which has a conductivity of 0.26 S/m, from the white, which has a conductivity of 0.85 S/m. A miniaturized probe with 2.4-mm resolution was used to measure induced fields in eggs placed in a uniform, 1-mT magnetic field at 60 Hz. The E fields induced in eggs with homogenized contents agreed with expectations based on simple theory. Results were similar to intact eggs unless the probe moved the yolk off-center, which greatly perturbed the induced fields. A more reproducible arrangement, which consisted of saline-agar filled dishes with a hole cut for test samples, was developed to enhance definition of electrical parameters. With this test system, the vitelline membrane was found to be responsible for most of the perturbation of the induced field, because it electrically isolates the yolk from the surrounding white. From a theoretical viewpoint, this dosimetry for the macroscopic egg yolk is analogous to the interaction of fields with microscopic cells. These findings may have important implications for research on biological effects of ELF electromagnetic fields, especially for studies of avian embryonic development.

  3. Effect of chronic 60-Hz electric field exposure on mammary tumorigenesis in the rat

    SciTech Connect

    Anderson, L.E.; Leung, F.C.; Rommereim, D.N.; Buschbom, R.L.; Wilson, B.W.; Stevens, R.G.

    1989-07-01

    Female rats were administered a single dosage of 7 or 10 mg of DMBA intragastrically between 50 and 55 days of age and palpated weekly for mammary tumors in two experiments. Rats were either exposed to a 40 kV/m 60-Hz electric field or sham-exposed in utero through 18 or 23 weeks of age. There was no difference between electric field exposed and sham-exposed in incidence of first tumor. When the results of the two experiments were combined, the electric field exposed groups had significantly more tumors per tumor-bearing animal than the sham-groups. These results may have implications for the role of electric power use in the etiology and promotion of breast cancer. 21 refs., 1 fig., 1 tab.

  4. Effects of 60 Hz electrical fields on operant and social stress behaviors of nonhuman primates: Summary

    SciTech Connect

    Rogers, W.R.; Coelho, A.M. Jr.; Easley, S.P.; Orr, J.L.

    1988-04-06

    The objective of this program is to investigate, using the baboon as a nonhuman primate surrogate for the human, behavioral effects associated with exposure to 60-Hz electric fields. Results from this program, along with information from experiments conducted elsewhere, could be used to estimate and evaluate the likelihood of deleterious consequences resulting from exposure of humans to the electric fields associated with power transmission over high voltage lines. This program is being conducted at Southwest Research Institute as part of an international collaborative information exchange and scientific research effort involving the United State Department of Energy, Japan's Ministry of International Trade and Industry, and Japan's Central Research Institute of the Electric Power Industry. Since August of 1984, four major research projects were successfully completed. 48 refs., 12 figs., 2 tabs.

  5. Chronic exposure to 60-Hz electric fields: effects on pineal function in the rat

    SciTech Connect

    Wilson, B.W.; Anderson, L.E.; Hilton, D.I.; Philips, R.D.

    1980-01-01

    As a component of studies to search for effects of 60-Hz electric field exposure on mammalian endocrine function, concentrations of melatonin, 5-methoxytryptophol, and serotonin-N-acetyl transferase activity were measured in the pineal glands of rats exposed or sham-exposed at 65 kV/m for 30 days.In two replicate experiments there were statistically significant differences between exposed and control rats in that the normal nocturnal increase in pineal melatonin content was depressed in the exposed animals. Concentrations of 5-methoxytryptophol were increased in the pineal glands of the exposed groups when compared to sham-exposed controls. An alteration was also observed in serotonin-N-acetyl transferase activity, with lower levels measured in pineal glands from exposed animals.

  6. Biological studies of swine exposed to 60-Hz electric fields. Volume 2: Behavior. Final report

    SciTech Connect

    Not Available

    1985-12-01

    The behavioral responses in three generations of miniature swine chronically exposed to a 30-kV/m, 60-Hz electric field have been assessed in a series of screening experiments. Tests were conducted on mature swine as well as on very young swine and weanlings and included measures of: (1) preference for exposure to or shielding from the electric field; (2) early neuromuscular development; (3) exploratory behavior; (4) simple learning and memory function; and (5) short-term memory. Repeated evaluations of behavioral parameters show few statistically significant effects. In the parental (F/sub 0/) generation, exposed sows showed a preference to remain out of the field, particularly during the dark period. Adult first-generation (F/sub 1/) sows, however, failed to demonstrate such a preference to stay out of the field. In other behavioral assessments, the singular significant effect in F/sub 1/ swine was the increased number of vocalizations in both male and female swine during the exploratory behavior test. This result, also inconsistent across generations, was not repeated in the second-generation (F/sub 2/) exploratory tests, where exposed female swine made significantly fewer vocalizations than their sham-exposed counterparts. The study provides no other evidence of an overall behavioral effect in swine of prenatal exposure to electric fields. 13 refs., 5 figs., 11 tabs.

  7. Biological effects of 60-Hz electric fields on small and large laboratory animals

    SciTech Connect

    Phillips, R.D.

    1981-01-01

    Rats and mice were exposed to 60-Hz electric fields up to 330 kV/m for durations as long as four months. No significant effects were found in the following major areas: metabolic status and growth; organ and tissue morphology; brain morphology; cardiovascular function; serum chemistry; reproduction; prenatal growth and development; teratology; bone growth; peripheral nerve function; humoral and cell-mediated immunity; susceptibility to viral infection; cell and membrane function; illness/malaise; and cytogenetics. Statistically significant effects of electric field exposures were observed in the following areas: bone fracture repair; neonatal development; neuromuscular function; endocrinology; hematology; neurochemistry; urine volume and chemistry; sympathetic nervous system; behavior. It is likely that many of the effects observed are secondary to chronic stimulation of the animal by the field. Our research efforts have shifted to an in-depth investigation of nervous system functions, with emphasis in behavior, neurochemistry, neurophysiology, and dosimetry. Current and future research in these areas will focus on: relationship of effects to field strength and duration of exposure; recovery from observed effects; fundamental understanding of observed effects; fundamental understanding of interaction of field with animal (dosimetry); and biological significance of observed effects. (ERB)

  8. Effects of 60-Hz electric fields on cellular elongation and radial expansion growth in cucurbit roots.

    PubMed

    Brayman, A A; Miller, M W; Cox, C

    1987-01-01

    Serial longitudinal and transverse sections were prepared from roots of Cucumis sativus and Cucurbita maxima that had been exposed/sham-exposed to 60-Hz electric fields for 0-2 days. Field exposures were selected to produce a 10-20% or a 70-80% growth inhibition in whole roots of both species. Cortical cell length and diameter were measured using a microscope and eyepiece micrometer; measurements were conducted "blind." In both species, inhibition of cellular elongation was associated with exposure to electric fields (EF). Cellular radial expansion was apparently unaffected by exposure to electric fields. The diameters of radially unexpanded or fully expanded C. sativus cortical cells were about 25-30% smaller than those of comparable cells in C. maxima roots. Previous studies of the relationship between rates of root growth and applied EF strength showed that the response thresholds of C. sativus and C. maxima differed by a similar relative amount. These results are consistent with the postulate that EF-induced effects in roots are elicited by induced transmembrane potentials.

  9. Effects of 60-Hz electric fields on serotonin metabolism in the rat pineal gland

    SciTech Connect

    Anderson, L.E.; Hilton, D.I.; Phillips, R.D.; Wilson, B.W.; Chess, E.K.

    1982-06-01

    Serotonin and two of its metabolites, melatonin and 5-methoxytryptophol, exhibit circadian rhythmicity in the pineal gland. We recently reported a marked reduction in the normal night-time increase in melatonin concentration in the pineal glands of rats exposed to 60-Hz electric fields. Concomitant with the apparent abolition of melatonin rhythmicity, serotonin-N-acetyl transferase (SNAT) activity was suppressed. We have now conducted studies to determine if abolition of the rhythm in melatonin production in electric-field-exposed rats arises solely from interference in SNAT activity, or if the availability of pineal serotonin is a factor that is affected by exposure. Pineal serotonin concentrations were compared in rats that were either exposed or sham exposed to 65 kV/m for 30 days. Sham-exposed animals exhibited normal diurnal rhythmicity for pineal concentrations of both melatonin and serotonin; melatonin levels increased markedly during the dark phase with a concurrent decrease in serotonin levels. In the exposed animals, however, normal serotonin rhythmicity was abolished; serotonin levels in these animals did not increase during the light period. The conclusion that electric field exposure results in a biochemical alteration in SNAT enzyme activity can be inferred from the loss of both serotonin and melatonin rhythmicity, as well as by direct measurement of SNAT activity itself. 35 references, 3 figures, 1 table.

  10. Biophoton emission of MDCK cell with hydrogen peroxide and 60 Hz AC magnetic field.

    PubMed

    Cheun, B S; Yi, S H; Baik, K Y; Lim, J K; Yoo, J S; Shin, H W; soh, K S

    2007-10-01

    We studied biophoton characteristics of Madin-Darby canine kidney (MDCK) cells under the influence of H2O2 by employing a photomultiplier tube (PMT) and a fluorescence microscope. H2O2 was used for producing reactive oxygen species (ROS) in the measurement. Images from a fluorescence microscope show an increase of photon intensity emitted from the sample due to H2O2. By using a PMT we measured quantitative change in biophoton emission with application of H2O2 to the MDCK cell culture, found that the increase of the biophoton is dependent upon the amount of H2O2. The agreement between the results of the PMT and the fluorescence microscope suggests the possibility of quantitative measurement of the influence of ROS on living tissue or cell. In addition we applied a 60 HzAC magnetic field on the cells to investigate the change in reaction between MDCK cell and ROS. It showed that a decay of chemiluminescence intensity has taken a different path following exposure to the magnetic field. As a result, the PMT measurement might be considered as a useful tool for studying biochemical characteristics in relation to ROS.

  11. Vacuum pumping properties of a high voltage 60 Hz crossed field discharge

    NASA Astrophysics Data System (ADS)

    Ames, E. E.

    The principle of electron trapping in a.d.c. Penning discharge is used in the design of standard vacuum pumping equipment. The feasibility of achieving vacuum pumping using high 60 Hz a.c. voltages and permanent magnets arranged to form a crossed field configuration is investigated here. The applications are to use the voltages inherently available in high voltage vacuum insulated power apparatus to cause a vacuum pumping action. This would create a self maintained vacuum without employing an auxiliary vacuum pump. The objective is to maintain a vacuum in the face of outgassing in systems of large surface area over long periods of time, and not necessarily to obtain a fast pump down of the system. Vacuum insulation of underground power cables would require pumps to maintain the vacuum while the cable remains underground for long periods of time. Other applications are in vacuum circuit breaker, lightning arrester, and surge arrester designs. Two devices were designed, built and tested which utilize high 6 Hz a.c. voltages and permanent magnets to generate a crossed field discharge.

  12. Inhibitory effects of powerline-frequency (60-Hz) magnetic fields on pentylenetetrazol-induced seizures and mortality in rats.

    PubMed

    Ossenkopp, K P; Cain, D P

    1991-08-29

    The possibility that exposure to powerline frequency (60-Hz) magnetic fields might affect the form or intensity of epileptic seizures, induced by administration of pentylenetetrazol (PTZ) in rats, was examined. Male adult rats were exposed to either 60-Hz magnetic fields with intensities of up to 1.85 gauss (185 microT) or to a sham field condition, for 1 h prior to injections of PTZ (45-75 mg/kg). The subsequent seizures were monitored and recorded on videotape and any subsequent mortalities were noted. Exposure to 60-Hz magnetic fields prior to administration of PTZ was found to significantly (P less than 0.005) reduce the lethality of the drug-induced seizures. The LD50 for the sham-exposed group was 65.88 mg/kg, whereas for the 60-Hz magnetic field-exposed rats, the LD50 was 85.33 mg/kg. In some experiments exposure to the 1.0 and 1.5 gauss magnetic fields also produced significant (P less than 0.05) reductions in seizure durations. These findings suggest that acute exposure to low intensity 60-Hz magnetic fields has an inhibitory effect on the lethality and expression of PTZ-induced seizures in rats. Some possible mechanisms, which could account for these observed effects of magnetic field exposure on seizures, are discussed.

  13. Studies on prenatal and postnatal development in rats exposed to 60-Hz electric fields

    SciTech Connect

    Sikov, M.R.; Montgomery, L.D.; Smith, L.G.; Phillips, R.D.

    1984-01-01

    A series of three experiments was performed to determine the effects of 30-day exposures to uniform 60-Hz electric fields (100 kV/m) on reproduction and on growth and development in the fetuses and offspring of rats. In the first experiment, exposure of females for 6 days prior to and during the mating period did not affect their reproductive performance, and continued exposure through 20 days of gestation (dg) did not affect the viability, size, or morphology of their fetuses. In the second experiment, exposure of the pregnant rat was begun on 0 dg and continued until the resulting offspring reached 8 days of age. In the third experiment, exposure began at 17 dg and continued through 25 days of postnatal life. In the second and third experiments, no statistically significant differences suggesting impairment of the growth or survival of exposed offspring were detected. In the second experiment, a significantly greater percentage of the exposed offspring showed movement, standing, and grooming at 14 days of age than among-sham-exposed offspring. There was a significant decrease at 14 days in the percentage of exposed offspring displaying the righting reflex in the second experiment and negative geotropism in the third experiment. These differences were all transient and were not found when the animals were tested again at 21 days of age. Evaluation of the reproductive integrity of the offspring of the second experiment did not disclose any deficits.

  14. Nonhuman primates will not respond to turn off strong 60 Hz electric fields

    SciTech Connect

    Rogers, W.R.; Orr, J.L.; Smith, H.D.

    1995-12-31

    Using a set of six baboons (Papio cynocephalus), the authors conducted a series of seven experiments designed to evaluate the potentially aversive character of a 60 Hz electric field (EF). Initially, the subjects were trained, using food rewards as the reinforcer, to respond only when a cue light was illuminated. Next, an EF was presented along with the cue light; responses produced delivery of a food pellet and turned off both the cue light and the EF. Then, stimulus and reward conditions were varied. The authors determined that (1) presence of a strong EF does not affect operant responding for food rewards, (2) subjects will not respond at normal rates when the only reinforcer is termination of a strong EF, (3) presence of a strong EF can serve as a discriminative stimulus, (4) presence of a strong EF does not affect extinction of an appetite-motivated task, and (5) presentation of an EF can become a secondary reinforcer. The pattern of results was consistent across all experiments, suggesting that an EF of as much as 65 kV/m is not aversive to nonhuman primates. Separately, the authors demonstrated that the average EF detection threshold for baboons is 12 kV/m. Thus, EF exposure at intensities well above the detection threshold and at species-scaled EF strengths greater than those found environmentally does not appear to be aversive.

  15. Immune function and host defense in rodents exposed to 60-Hz magnetic fields.

    PubMed

    House, R V; Ratajczak, H V; Gauger, J R; Johnson, T R; Thomas, P T; Mccormick, D L

    1996-12-01

    This study was conducted to evaluate the influence of subchronic exposure to pure, linearly polarized 60-Hz magnetic fields (MF) on the host immune response in mice. The experimental design was as follows: three groups were exposed continuously (18.5 hr/day) to MF at field strengths of 0.02, 2, or 10 gauss (G), one group was exposed intermittently (1 hr on/1 hr off) to MF at a field strength of 10 G, and one group served as a sham control. Experimental endpoints included spleen and thymus weights and cellularity, antibody-forming cell (AFC) response, delayed-type hypersensitivity (DTH) response, splenic lymphocyte subset analysis, susceptibility to infection with Listeria monocytogenes, and natural killer (NK) cell activity. No differences in body weight, lymphoid organ weight, or lymphoid organ cellularity were observed in any MF-exposed group in comparison to sham controls. Likewise, no statistically significant differences were found in comparisons of AFC responses. Isolated statistically significant differences from control were observed in MF-exposed mice in the DTH assay, although no clear dose-related pattern of altered activity was seen. Splenic lymphocyte subset parameters examined were within normal limits in all groups, and no differences between control and MF-exposed mice were found. Host resistance to bacterial infection was not altered at any MF exposure examined in this study. Finally, although apparently dose-related, statistically significant alterations were observed in an initial study of NK cell function, repeat studies failed to demonstrate a consistent pattern of alteration.

  16. [Effects of 50 to 60 Hz and of 20 to 50 kHz magnetic fields on the operation of implanted cardiac pacemakers].

    PubMed

    Frank, R; Souques, M; Himbert, C; Hidden-Lucet, F; Petitot, J C; Fontaine, G; Lambrozo, J; Magne, I; Bailly, J M

    2003-04-01

    The effect of 50 Hz and 60 Hz (frequencies of current distribution) and 20 kHz to 50 kHz (frequencies of induction cooktop) magnetic interference on implanted pacemakers have been assessed with the present generation of device technology. Sixty patients implanted in 1998 and 1999 with dual chamber pacemakers from 9 different manufacturers were monitored with telemetry while passing through, and standing between a system of two coils. They generated a 50 Hz or a 60 Hz magnetic field at 50 microT. Then, patients used a cooktop at different power. The recordings were made with the standard setting of "medically correct" sensing parameters chosen for the patients. Then pacemakers were reprogrammed to the unipolar mode, with the highest atrial (A) and ventricular (V) sensitivity that did not induce muscular inhibition while moving. Between each exposure (50 Hz, 60 Hz or 20 kHz to 50 kHz), the pacemaker programmation was controlled. At the end of the tests, pacemakers will be reprogrammed with the standard setting. The medical observer being blind to the existence or not of the magnetic field. No pacemaker was influenced by the vicinity of the magnetic field at medically correct settings. At unipolar high sensitivity, no inhibition nor reprogramming was observed. Transient reversion to interference mode was observed in 6 cases, 3 transient acceleration due to atrial detection of the interference, and one T wave detection by the ventricular lead. All were observed with the 60 Hz, and only 3 with the 50 Hz magnetic field. One device (Biotronik) shifted out of its special program (hysteresis research) during the tests with the induction cooktop, but it maintained its standard program, and the event could not be repeated despite further testing. Actual pacemakers do not present any electromagnetic interference with 50 Hz and 60 Hz or induction cooktop frequency working. They are insensitive with medically correct settings. Unusual high sensitivity leads only to noise

  17. Reproduction, growth, and development of rats during chronic exposure to multiple field strengths of 60-Hz electric fields

    SciTech Connect

    Rommereim, D.N.; Rommereim, R.L.; Sikov, M.R.; Buschbom, R.L.; Anderson, L.E. )

    1990-04-01

    A study with multiple exposure groups and large group sizes was performed to establish whether exposure to 60-Hz electric fields would result in reproductive and developmental toxicity. A response model was developed from previous results and tested in groups of rats exposed to electric fields at various field strengths. Female rats were mated, and sperm-positive animals randomly distributed among four groups: sham-exposed or exposed to 10, 65, or 130 kV/m, 60-Hz vertical electric fields. Animals were exposed for 19 hr/day throughout the experiment. During gestation, exposure to the higher field strengths resulted in slightly depressed weight gains of dams. Offspring were born in the field and remained with their dams through the suckling period. Numbers of pups per litter and pup mortality did not differ among the exposure groups. Dams exposed at 65 kV/m lost slightly more weight through the lactation period than the control group. Male pups exposed to higher field strengths gained slightly less weight from 4 to 21 days of age than did sham-exposed animals. At weaning, two F1 females per litter (randomly selected) continued on the same exposure regimen were mated at 11 weeks of age to unexposed males, and euthanized at 20 days of gestation. Uterine contents were evaluated, and all live fetuses were weighed and examined for external, visceral, and skeletal malformations. Fertility and gestational weight gain of F1 females were not affected by exposure, nor was prenatal viability or fetal body weight. No significant increase in the incidence of litters with malformations was observed. Although no developmental toxicity was detected, exposures produced physical changes in the dams, evidenced as a rust-colored deposit on the muzzle and ears (chromodacryorrhea) that increased in incidence and severity at 65 and 130 kV/m.

  18. Catecholamine release from cultured bovine adrenal medullary chromaffin cells in the presence of 60-Hz magnetic fields.

    PubMed

    Craviso, Gale L; Chatterjee, Indira; Publicover, Nelson G

    2003-04-01

    Effects of powerline frequency (50/60 Hz) electric and magnetic fields on the central nervous system may involve altered neurotransmitter release. This possibility was addressed by determining whether 60-Hz linearly polarized sinusoidal magnetic fields (MFs) alter the release of catecholamines from cultured bovine adrenal chromaffin cells, a well-characterized model of neural-type cells. Dishes of cells were placed in the center of each of two four-coil Merritt exposure systems that were enclosed within mu-metal chambers in matched incubators for simultaneous sham and MF exposure. Following 15-min MF exposure of the cells to flux densities of 0.01, 0.1, 1.0 or 2 mT, norepinephrine and epinephrine release were quantified by high-performance liquid chromatography (HPLC) coupled with electrochemical detection. No significant differences in the release of either norepinephrine or epinephrine were detected between sham-exposed cells and cells exposed to MFs in either the absence or presence of Bay K-8644 (2 microM) or dimethylphenylpiperazinium (DMPP, 10 microM). Consistent with these null findings is the lack of effect of MF exposure on calcium influx. We conclude that catecholamine release from chromaffin cells is not sensitive to 60-Hz MFs at magnetic flux densities in the 0.01-2 mT range.

  19. Constraints of thermal noise on the effects of weak 60-Hz magnetic fields acting on biological magnetite.

    PubMed Central

    Adair, R K

    1994-01-01

    Previous calculations of limits imposed by thermal noise on the effects of weak 60-Hz magnetic fields on biological magnetite are generalized and extended to consider multiple signals, the possibility of anomalously large magnetosome structures, and the possibility of anomalously small cytoplasm viscosities. The results indicate that the energies transmitted to the magnetite elements by fields less than 5 microT, characteristic of the electric power distribution system, will be much less than thermal noise energies. Hence, the effects of such weak fields will be masked by that noise and cannot be expected to affect biology or, therefore, the health of populations. PMID:8159681

  20. Chronic exposure to a 60-Hz electric field: effects on synaptic transmission and peripheral nerve function in the rat.

    PubMed

    Jaffe, R A; Laszewski, B L; Carr, D B; Phillips, R D

    1980-01-01

    Several reports have suggested that the nervous system can be affected by exposure to electric fields and that these effects may have detrimental health consequences for the exposed organism. The purpose of this study was to investigate the effects of chronic (30-day) exposure of rats to a 60Hz, 100-kV/m electric field on synaptic transmission and peripheral-nerve function. One hundred forty-four rats, housed in individual polycarbonate cages were exposed to uniform, vertical, 60-Hz electric fields in a system free of corona discharge and ozone formation and in which the animals did not receive spark discharges or other shocks during exposure. Following 30 days of exposure to the electric field, superior cervical sympathetic ganglia, vagus and sciatic nerves were removed from rats anesthetized with urethan, placed in a temperature-controlled chamber, and superfused with a modified mammalian Ringer's solution equilibrated with 95% O2 and 5% CO2. Several measures and tests were used to characterize synaptic transmission and peripheral-nerve function. These included amplitude, area, and configuration of the postsynaptic or whole-nerve compound-action potential; conduction velocity; accommodation; refractory period; strength-duration curves; conditioning-test (C-T) response, frequency response; post-tetanic response; and high-frequency-induced fatigue. The results of a series of neurophysiologic tests and measurements indicate that only synaptic transmission is significantly and consistently affected by chronic (30-day) exposure to a 60-Hz, 100-kV/m electric field. Specifically, and increase in synaptic excitability was detected in replicated measurements of the C-T response ratio. In addition, there are trends in other data that can be interpreted to suggest a generalized increase in neuronal excitability in exposed animals.

  1. Effects of 60 Hz electric fields on operant and social stress behavior of nonhuman primates. Quarterly technical progress report No. 20, September 28-December 20, 1985

    SciTech Connect

    Rogers, W.R.

    1986-01-03

    This research program will evaluate the aversive character of exposure to 60 Hz electric fields by determining the threshold intensity which produces avoidance or escape responses, will estimate the threshold intensity for detection of 60 Hz electric fields, will assess effects of chronic exposure to 60 Hz electric fields on the performance of two operant conditioning tasks, fixed ratio and differential reinforcement of low rate responding, will investigate, using the systematic quantitative observational sampling methods of primatology, the possible stress-inducing effects of chronic exposure to 60 Hz electric fields on the behavior of baboons living in small social groups. In all experiments, the electric fields will be described, characterized, and controlled to account for recognized artifacts associated with high intensity 60 Hz electric fields and the health of all subjects will be described using the methods of primate veterinary medicine.

  2. Effects of 60 Hz electric fields on operant and social stress behaviors of nonhuman primates. Project technical status report, November 23, 1985-January 17, 1986. [Papio cynocephalus

    SciTech Connect

    Not Available

    1986-01-24

    The objective was to investigate, using baboons (superspecies Papio cynocephalus) as surrogates, possible behavioral effects associated with exposure to high intensity 60 Hz electric fields. This program consists of four major projects. The first will evaluate the potential aversive character of exposure to 60 Hz electric fields by determining the threshold intensity which produces avoidance or escape responses. The second project will estimate the threshold intensity for detection of 60 Hz electric fields. The third will assess effects of chronic exposure to 60 Hz electric fields on the performance of two operant conditioning tasks, fixed ratio (FR) and differential reinforcement of low rate responding (DRL). The fourth will investigate the possible stress-inducing effects of chronic exposure to 60 Hz electric fields on the behavior of baboons living in small social groups.

  3. Effects of 60 Hz electric fields on operant and social stress behaviors of nonhuman primates: Projects 3 and 4

    SciTech Connect

    Rogers, W.R.; Coelho, A.M. Jr.; Easley, S.P.; Orr, J.L.; Smith, H.D.; Taylor, L.L.; Tuttle, M.L.

    1987-01-01

    The objective of this program is to investigate, using the baboon as a nonhuman primate surrogate for the human, possible hehavioral effects associated with exposure to high intensity 60 Hz electric fields. Results from this program, along with information from experiments conducted elsewhere, will be used by the Department of Energy (DOE) to estimate and evaluate the likelihood of deleterious consequences resulting from exposure of humans to the electric fields associated with power transmission over high voltage lines. This research program consists of four major research projects, all of which have been successfully completed. The third project assessed, in separate experiments conducted at 30 and 60 kV/m, effects of chronic exposure to electric fields on the performance of two operant conditioning tasks, fixed ratio (FR), and differential reinforcement of low rate (DRL). In the same two experiments, the fourth project investigated, using the systematic quantitative observational sampling methods of primatology, the possible stress-inducing effects of chronic exposure to 60 Hz electric fields on the behavior of baboons living in small social groups. This volume contains only appendices for projects 3 and 4. 81 figs., 67 tabs.

  4. Effects of intermittent 60-Hz high voltage electric fields on metabolism, activity, and temperature in mice

    SciTech Connect

    Rosenbergy, R.S; Duffy, P.H.; Sacher, G.A.

    1981-01-01

    Transient effects of 100-kV/m extremely low frequency electric fields were studied in the white footed deermouse, Peromyscus leucopus. Gross motor activity, carbon dioxide production, oxygen consumption, and core body temperature were monitored before, during, and after intermittent field exposures (four hour-long exposures, at one-hour intervals). Thirty-four mice were exposed in cages with plastic floors floating above ground potential, and 21 mice were exposed in cages with grounded metal floor plates. The first field exposure produced an immediate, transient increase of activity and gas measures during the inactive phase of the circadian cycle. All measures returned to baseline levels before the second exposure and were not significantly changed throughout the remainder of the exposures. The rapid habituation of field-induced arousal suggests that significant metabolic changes will not be measured in experiments in which the interval between exposure and measurement is greater than two hours.

  5. Case-control study of childhood cancer and exposure to 60-Hz magnetic fields

    SciTech Connect

    Savitz, D.A.; Wachtel, H.; Barnes, F.A.; John, E.M.; Tvrdik, J.G.

    1988-07-01

    Concern with health effects of extremely low frequency magnetic fields has been raised by epidemiologic studies of childhood cancer in relation to proximity to electric power distribution lines. This case-control study was designed to assess the relation between residential exposure to magnetic fields and the development of childhood cancer. Eligible cases consisted of all 356 residents of the five-county 1970 Denver, Colorado Standard Metropolitan Statistical Area aged 0-14 years who were diagnosed with any form of cancer between 1976 and 1983. Controls were selected by random digit dialing to approximate the case distribution by age, sex, and telephone exchange area. Exposure was characterized through in-home electric and magnetic field measurements under low and high power use conditions and wire configuration codes, a surrogate measure of long-term magnetic field levels. Measured magnetic fields under low power use conditions had a modest association with cancer incidence; a cutoff score of 2.0 milligauss resulted in an odds ratio of 1.4 (95% confidence interval (CI) = 0.6-2.9) for total cancers and somewhat larger odds ratios (ORs) for leukemias (OR = 1.9), lymphomas (OR = 2.2), and soft tissue sarcomas (OR = 3.3). Neither magnetic fields (OR = 1.0) nor electric fields (OR = 0.9) under high power use conditions were related to total cancers. Wire codes associated with higher magnetic fields were more common among case than control homes. The odds ratio to contrast very high and high to very low, low, and buried wire codes was 1.5 (95% CI = 1.0-2.3) for total cases, with consistency across cancer subgroups except for brain cancer (OR = 2.0) and lymphomas (OR = 0.8). Contrasts of very high to buried wire code homes produced larger, less precise odds ratios of 2.3 for total cases, 2.9 for leukemias, and 3.3 for lymphomas.

  6. Melatonin metabolite levels in workers exposed to 60-Hz magnetic fields: work in substations and with 3-phase conductors.

    PubMed

    Burch, J B; Reif, J S; Noonan, C W; Yost, M G

    2000-02-01

    Melatonin suppression by 50/60-Hz magnetic fields represents a plausible biological mechanism for explaining increased health risks in workers. Personal exposure to magnetic fields and ambient light, and excretion of the melatonin metabolite 6-hydroxymelatonin sulfate (6-OHMS), were measured over 3 consecutive workdays in electric utility workers. There was a magnetic field-dependent reduction in adjusted mean nocturnal and post-work 6-OHMS levels among men working more than 2 hours per day in substation and 3-phase environments and no effect among those working 2 hours or less. No changes were observed among men working in 1-phase environments. The results suggest that circular or elliptical magnetic field polarization, or another factor linked to substations and 3-phase electricity, is associated with magnetic field induced melatonin suppression in humans.

  7. Cancer promotion in a mouse-skin model by a 60-Hz magnetic field: I. Experimental design and exposure system

    SciTech Connect

    Stuchly, M.A.; Lecuyer, D.W.; McLean, J. )

    1991-01-01

    The rationale for selection of an animal model, the experimental design, and the design and evaluation of an exposure system used in studies of 60-Hz magnetic fields are described. The studies were conceived to assay development of cancer and immune responsiveness in mice exposed to magnetic fields. The exposure system utilized a quadrupole-coil configuration to minimize stray magnetic fields. Four square-wound coil provided a uniform field within a volume occupied by 16 animal cages. The magnetic field had a mean flux density of 2 mT that varied less than {plus minus} 10% within the volume occupied by animals' cages. The flux density decreased to less than 0.1 microT at a distance of 2 m from the coils. In each exposure system 32 animals could be housed in plastic cages.

  8. Effects of 60-Hz electric and magnetic fields on operant and social behavior and on neuroendocrine system of nonhuman primates

    SciTech Connect

    Rogers, W.R.; Coelho, A.M.; Easley, S.P.; Orr, J.L.; Reiter, R.J.; Rhodes, J.W.

    1992-09-24

    A series of pioneering electric and magnetic field experiments were completed using nonhuman primates and a unique, well-engineered, and reliable exposure facility. Effects of operant behavior, social behavior, and serum melatonin concentration were examined using 60 Hz field combinations of other 6 W/m and 0.6 G or 30 W/m and 1.0 G. Observations noted in the course of this study include: Combines electric and magnetic field exposure does not have any important effect on short-term memory; the transitory increases in social behavior observed in previous electric fields did not occur; combined electric and magnetic field exposure might lead to reduced behavioral frequency in baboon social groups; three experiments clearly establish that one set of exposure conditions does not produce molatonin suppression in nonhuman primates; and a small pilot experiment suggests that a different exposure protocol might result in melatonin suppression.

  9. Growth rate and mitotic index analysis of Vicia faba L. roots exposed to 60-Hz electric fields

    SciTech Connect

    Inoue, M.; Miller, M.W.; Cox, C.; Carstesen, E.L.

    1985-01-01

    Growth, mitotic index, and growth rate recovery were determined for Vicia faba L. roots exposed to 60-Hz electric fields of 200, 290, and 360 V/m in an aqueous inorganic nutrient medium (conductivity 0.07-0.09 S/m). Root growth rate decreased in proportion to the increasing strength; the electric field threshold for a growth rate effect was about 230 V/m. The induced transmembrane potential at the threshold exposure was about 4-7 mV. The mitotic index was not affected by an electric field exposure sufficient to reduce root growth rate to about 35% of control. Root growth rate recovery from 31-96% of control occurred in 4 days after cessation of the 360 V/m exposure. The results support the postulate that the site of action of the applied electric fields is the cell membrane. 10 references, 4 figures, 4 tables.

  10. Immunological and biochemical effects of 60-Hz electric and magnetic fields in humans

    SciTech Connect

    Graham, C.; Cohen, H.D.

    1988-01-08

    Public concern has been expressed about possible health risks arising from exposure to powerline electric and magnetic fields. This project is addressing this concern through a research program designed to evaluate the effects of exposure to known field conditions on multiple measures of human function. The present phase of project activities began in October 1985, and will end in September 1988. Two of the three tasks to be accomplished in this phase have now been completed. During the present reporting period, project staff designed and began preparations for Task 3. These plans were reviewed at the two project review meetings held in the present reporting period, and data collection on the Task 3 study is scheduled to begin in the next reporting period. Project goals during this reporting period were to: complete analysis of intermittent exposure study; attend the annual DOE/EPRI contractors review meeting; participate in project review meetings; and design and prepare for Task 3. Data collection for this study ended in the previous reporting period. The following activities were performed to complete the required statistical analyses: electrophysiological data were screened for artifacts, scored, and entered into the compute data base; urine samples were assayed for cortisol, dopamine, epinephrine, and norepinephrine; performance data were verified and entered into the data base; subjective data were verified and entered into the data base; and multivariate and univariate statistical tests were performed to evaluate the effects of the exposure conditions on the above measures.

  11. Effects of exposure to a 60-kV/m, 60-Hz electric field on the social behavior of baboons

    SciTech Connect

    Easley, S.P.; Coelho, A.M. Jr.; Rogers, W.R. )

    1991-01-01

    The authors found in a previously reported study that exposure to a 30-kV/m, 60-Hz electric field had significant effects on the social behavior of baboons. However, it was not established whether or not the effects were related specifically to the 30-kV/m intensity of the field. A new experiment was conducted to determine whether or not exposure to a 60-Hz electric field at 60 kV/m would produce like changes in the baboons' social behavior. They exposed one group of eight male baboons to an electric field 12 hours a day, 7 days a week, for 6 weeks. A second group of eight animals was maintained under sham-exposure (control) conditions. Rates of performing on each of six categories of social behavior and on four categories of nonsocial behavior were used as criteria for comparing exposed with unexposed subjects and for within-group comparisons during three six-week experimental periods: Pre-Exposure, Exposure, and Post-Exposure. The results indicate that (1) during the exposure period, exposed animals exhibited statistically significant differences from controls in means of performance rates based on several behavioral categories; (2) across all three periods, within-group comparisons revealed that behaviors of exposed baboons were significantly affected by exposure to the electric field; (3) changes in performance levels probably reflect a stress response to the electric field; and (4) the means of response rates of animals exposed at 60 kV/m were higher, but not double, those of animals exposed at 30 kV/m. As in the 30-kV/m experiment, animals exposed at 60 kV/m exhibited significant differences in performances of Passive Affinity, Tension, and Stereotypy. Mean rates of performing these categories were 122% (Passive Affinity), 48% (Tension), and 40% (Stereotypy) higher in the exposed group than in the control group during exposure to the 60-kV/m field.

  12. Effect of 60 Hz magnetic fields on the activation of hsp70 promoter in cultured INER-37 and RMA E7 cells.

    PubMed

    Heredia-Rojas, J Antonio; Rodríguez de la Fuente, Abraham Octavio; Alcocer González, Juan Manuel; Rodríguez-Flores, Laura E; Rodríguez-Padilla, Cristina; Santoyo-Stephano, Martha A; Castañeda-Garza, Esperanza; Taméz-Guerra, Reyes S

    2010-10-01

    It has been reported that 50-60 Hz magnetic fields (MF) with flux densities ranging from microtesla to millitesla are able to induce heat shock factor or heat shock proteins in various cells. In this study, we investigated the effect of 60 Hz sinusoidal MF at 8 and 80 μT on the expression of the luciferase gene contained in a plasmid labeled as electromagnetic field-plasmid (pEMF). This gene construct contains the specific sequences previously described for the induction of hsp70 expression by MF, as well as the reporter for the luciferase gene. The pEMF vector was transfected into INER-37 and RMA E7 cell lines that were later exposed to either MF or thermal shock (TS). Cells that received the MF or TS treatments and their controls were processed according to the luciferase assay system for evaluate luciferase activity. An increased luciferase gene expression was observed in INER-37 cells exposed to MF and TS compared with controls (p < 0.05), but MF exposure had no effect on the RMA E7 cell line.

  13. BIGEL analysis of gene expression in HL60 cells exposed to X rays or 60 Hz magnetic fields

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, E. K.; Zhang, X. F.; Han, L. H.; Harrison, G. H.; Davis, C. C.; Zhou, X. J.; Ioffe, V.; McCready, W. A.; Abraham, J. M.; Meltzer, S. J.

    1998-01-01

    We screened a panel of 1,920 randomly selected cDNAs to discover genes that are differentially expressed in HL60 cells exposed to 60 Hz magnetic fields (2 mT) or X rays (5 Gy) compared to unexposed cells. Identification of these clones was accomplished using our two-gel cDNA library screening method (BIGEL). Eighteen cDNAs differentially expressed in X-irradiated compared to control HL60 cells were recovered from a panel of 1,920 clones. Differential expression in experimental compared to control cells was confirmed independently by Northern blotting of paired total RNA samples hybridized to each of the 18 clone-specific cDNA probes. DNA sequencing revealed that 15 of the 18 cDNA clones produced matches with the database for genes related to cell growth, protein synthesis, energy metabolism, oxidative stress or apoptosis (including MYC, neuroleukin, copper zinc-dependent superoxide dismutase, TC4 RAS-like protein, peptide elongation factor 1alpha, BNIP3, GATA3, NF45, cytochrome c oxidase II and triosephosphate isomerase mRNAs). In contrast, BIGEL analysis of the same 1,920 cDNAs revealed no differences greater than 1.5-fold in expression levels in magnetic-field compared to sham-exposed cells. Magnetic-field-exposed and control samples were analyzed further for the presence of mRNA encoding X-ray-responsive genes by hybridization of the 18 specific cDNA probes to RNA from exposed and control HL60 cells. Our results suggest that differential gene expression is induced in approximately 1% of a random pool of cDNAs by ionizing radiation but not by 60 Hz magnetic fields under the present experimental conditions.

  14. BIGEL analysis of gene expression in HL60 cells exposed to X rays or 60 Hz magnetic fields

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, E. K.; Zhang, X. F.; Han, L. H.; Harrison, G. H.; Davis, C. C.; Zhou, X. J.; Ioffe, V.; McCready, W. A.; Abraham, J. M.; Meltzer, S. J.

    1998-01-01

    We screened a panel of 1,920 randomly selected cDNAs to discover genes that are differentially expressed in HL60 cells exposed to 60 Hz magnetic fields (2 mT) or X rays (5 Gy) compared to unexposed cells. Identification of these clones was accomplished using our two-gel cDNA library screening method (BIGEL). Eighteen cDNAs differentially expressed in X-irradiated compared to control HL60 cells were recovered from a panel of 1,920 clones. Differential expression in experimental compared to control cells was confirmed independently by Northern blotting of paired total RNA samples hybridized to each of the 18 clone-specific cDNA probes. DNA sequencing revealed that 15 of the 18 cDNA clones produced matches with the database for genes related to cell growth, protein synthesis, energy metabolism, oxidative stress or apoptosis (including MYC, neuroleukin, copper zinc-dependent superoxide dismutase, TC4 RAS-like protein, peptide elongation factor 1alpha, BNIP3, GATA3, NF45, cytochrome c oxidase II and triosephosphate isomerase mRNAs). In contrast, BIGEL analysis of the same 1,920 cDNAs revealed no differences greater than 1.5-fold in expression levels in magnetic-field compared to sham-exposed cells. Magnetic-field-exposed and control samples were analyzed further for the presence of mRNA encoding X-ray-responsive genes by hybridization of the 18 specific cDNA probes to RNA from exposed and control HL60 cells. Our results suggest that differential gene expression is induced in approximately 1% of a random pool of cDNAs by ionizing radiation but not by 60 Hz magnetic fields under the present experimental conditions.

  15. BIGEL analysis of gene expression in HL60 cells exposed to X rays or 60 Hz magnetic fields.

    PubMed

    Balcer-Kubiczek, E K; Zhang, X F; Han, L H; Harrison, G H; Davis, C C; Zhou, X J; Ioffe, V; McCready, W A; Abraham, J M; Meltzer, S J

    1998-12-01

    We screened a panel of 1,920 randomly selected cDNAs to discover genes that are differentially expressed in HL60 cells exposed to 60 Hz magnetic fields (2 mT) or X rays (5 Gy) compared to unexposed cells. Identification of these clones was accomplished using our two-gel cDNA library screening method (BIGEL). Eighteen cDNAs differentially expressed in X-irradiated compared to control HL60 cells were recovered from a panel of 1,920 clones. Differential expression in experimental compared to control cells was confirmed independently by Northern blotting of paired total RNA samples hybridized to each of the 18 clone-specific cDNA probes. DNA sequencing revealed that 15 of the 18 cDNA clones produced matches with the database for genes related to cell growth, protein synthesis, energy metabolism, oxidative stress or apoptosis (including MYC, neuroleukin, copper zinc-dependent superoxide dismutase, TC4 RAS-like protein, peptide elongation factor 1alpha, BNIP3, GATA3, NF45, cytochrome c oxidase II and triosephosphate isomerase mRNAs). In contrast, BIGEL analysis of the same 1,920 cDNAs revealed no differences greater than 1.5-fold in expression levels in magnetic-field compared to sham-exposed cells. Magnetic-field-exposed and control samples were analyzed further for the presence of mRNA encoding X-ray-responsive genes by hybridization of the 18 specific cDNA probes to RNA from exposed and control HL60 cells. Our results suggest that differential gene expression is induced in approximately 1% of a random pool of cDNAs by ionizing radiation but not by 60 Hz magnetic fields under the present experimental conditions.

  16. Study of the behavioral and biological effects of high strength 60 HZ electric fields. Quarterly technical progress report No. 15, 12 May 1984-3 August 1984

    SciTech Connect

    Not Available

    1984-08-15

    Progress is reported in the construction of a test facility for studying the effects of high intensity, 60 Hz electric fields on baboons. Effects to be studied include operant out social behaviors. (ACR)

  17. Cancer promotion in a mouse-skin model by a 60-Hz magnetic field: II. Tumor development and immune response.

    PubMed

    McLean, J R; Stuchly, M A; Mitchel, R E; Wilkinson, D; Yang, H; Goddard, M; Lecuyer, D W; Schunk, M; Callary, E; Morrison, D

    1991-01-01

    This paper describes preliminary findings on the influence of 60-Hz (2-mT) magnetic fields on tumor promotion and co-promotion in the skins of mice. The effect of magnetic fields on natural killer (NK) cell activity in spleen and blood was also examined. Groups of 32 juvenile female mice were exposed to the magnetic field as described in part I. The dorsal skin of all animals was treated with a subthreshold dose of the carcinogen 7,12-dimethyl-benz(a)anthracene (DMBA). One week after the treatment, two groups were sham exposed (group A) or field exposed at 2 mT (group B) 6 h/day for 21 weeks, to test whether the field would act as a tumor promoter. No tumors developed in these two groups of mice. To test whether the magnetic field would modify tumor development by directly affecting tumor growth or by suppressing immune surveillance, two additional groups of mice were treated weekly with the tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA) and then either sham exposed (group C) or field exposed (group D). The time to appearance of tumors was shorter (but not statistically so) in the group exposed to magnetic fields and TPA. Some differences in NK cell activity and spleen size were observed between the sham- and field-exposed groups.

  18. Electric field of the power terrestrial sources observed by microsatellite Chibis-M in the Earth's ionosphere in frequency range 1-60 Hz

    NASA Astrophysics Data System (ADS)

    Dudkin, Fedir; Korepanov, Valery; Dudkin, Denis; Pilipenko, Vyacheslav; Pronenko, Vira; Klimov, Stanislav

    2015-07-01

    The power line emission (PLE) 50/60 Hz and the Schumann resonance (SR) harmonics were detected by the use of a compact electrical field sensor of length 0.42 m during microsatellite Chibis-M mission in years 2012-2014. The initial orbit of Chibis-M has altitude 500 km and inclination 52°. We present the space distribution of PLE and its connections with the possible overhead power lines. PLE has been recorded both in the shade and sunlit parts of the orbits as opposed to SR which have been recorded only in the nightside of the Earth. The cases of an extra long distance of PLE propagation in the Earth's ionosphere and increased value of SR Q factor have been also observed. These results should stimulate the ionosphere model refinement for ultralow frequency and extremely low frequency electromagnetic wave propagation as well as a study on new possibility of the ionosphere diagnostics.

  19. Biological studies of swine exposed to 60-Hz electric fields. Volume 1. Overview and summary. Final report

    SciTech Connect

    Not Available

    1985-12-01

    Over a three-year period, three generations of female miniature swine and their offspring were exposed to a 30-kV/m, 60-Hz electric field. Such a field approximates the 12-kV/m field that a human would experience under a 765-kV line. After swine exposures varying from 6 to 36 months, project personnel analyzed a wide range of biological parameters including growth, blood cell and serum biochemistry, blood immunoglobulin levels, behavior, peripheral nerve function, cell-mediated immunity, cytogenetics, and reproduction and development. There were no significant differences in health effects between the exposed and sham-exposed swine, except in the area of fetal development. The first breeding produced no significant difference between exposed and control offspring. When those offspring were bred after 18 months of exposure, the fetuses of exposed sows had an increased incidence of morphological malformations and lower body weight than fetuses from control sows. The live-born had lower body weights and increased birth defects. Several factors suggest that electric fields per se may not have caused these reproductive changes. For example, similar types of malformations occurred in control pigs. Also, in second-generation sows, the incidence of fetal malformations was similar for both exposed and control groups. It is possible that other factors such as housing, inbreeding, disease, or treatment of disease may have produced the observed effects. 64 refs., 13 figs., 25 tabs.

  20. Effects of exposure to 30 kV/m, 60-Hz electric fields on the social behavior of baboons

    SciTech Connect

    Coelho, A.M. Jr.; Easley, S.P.; Rogers, W.R. )

    1991-01-01

    The authors tested the hypothesis that exposure to a 30-kV/m, 60-Hz electric field produces significant change (stress) in the social behavior of adult male baboons (Papio cynocephalus anubis). One group of eight baboons was exposed to an electric field (12 hours per day, 7 days per week for 6 weeks) while a second group of eight baboons was maintained in a sham-exposure (control) condition. Exposed subjects and control subjects were compared over three, six-week experimental periods (pre-exposure, exposure, and post-exposure). Performance rates of six categories of social behaviors (passive affinity, active affinity, approach, tension, threat, and attack) and four categories of nonsocial behaviors (forage, manipulate, posture, and stereotypy) were used to compare the two groups. The results of our study indicate that (1) there were no significant differences between the two groups during the pre-exposure or post-exposure periods; (2) during the exposure period, experimental and control groups exhibited statistically significant differences in the mean performance rates of three behavior categories; (3) within-group comparisons across periods indicate that the experimentally exposed group exhibited statistically significant changes in passive affinity, tension, and stereotypy; and (4) changes in behavior performance among the exposed subjects reflect a stress response to the electric field.

  1. A 60 Hz electric and magnetic field exposure facility for nonhuman primates: Design and operational data during experiments

    SciTech Connect

    Rogers, W.R.; Lucas, J.H.; Cory, W.E.; Orr, J.L.; Smith, H.D.

    1995-12-31

    A unique exposure facility was designed and constructed to generate large-scale vertical electric fields (EF) of up to 65 kV/m and horizontal magnetic fields (MF) of up to 100 {micro}T (1G), so that the behavioral and neuroendocrine effects of 60 Hz EF or combined electric and magnetic field (E/MF) exposure could be examined using nonhuman primates as subjects. Facility design and operational problems and their solutions are presented, and representative operational data from four sets of experiments are provided. A specially designed, optically isolated, 4 cm spherical-dipole EF probe and a commercially available MF probe were used to map the EF and MF within the fiberglass animal cages. In addition, amplifiers, signal conditioners, and A/D converters provided EF, MF, and transformer signals to a microcomputer at 15 min intervals. The apparatus produced homogeneous, stable E/MF at the desired intensities, and the fiberglass cages did not produce appreciable distortion or attenuation. Levels of recognized EF artifacts such as corona and ozone were negligible. The facility worked as intended, providing a well-characterized and artifact-controlled environment for experiments with baboons (Papio cynocephalus).

  2. Inhibitory effects of 60-Hz magnetic fields on opiate-induced "analgesia" in the land snail, Cepaea nemoralis, under natural conditions.

    PubMed

    Tysdale, D M; Lipa, S M; Ossenkopp, K P; Kavaliers, M

    1991-01-01

    There is accumulating laboratory evidence that magnetic fields can affect a variety of opioid-mediated behavioral and physiological functions in both vertebrates and invertebrates. The present study examined the effects of various durations (0.50, 1.0 and 2.0 h) of exposure to a low intensity (1.0 gauss rms) 60-Hz magnetic field on opioid-mediated aversive thermal ("nociceptive") responses and morphine-induced "analgesia" in the land snail, Cepaea nemoralis, under natural environmental conditions. Exposure to the powerline-related 60-Hz magnetic fields significantly attenuated morphine-induced analgesia and the basal nociceptive responses of Cepaea, with the degree of attenuation being related to the duration of exposure to the magnetic fields. These results with Cepaea show that 60-Hz magnetic fields can affect opioid-mediated behavioral responses outside the laboratory under natural environmental conditions.

  3. Study of the behavioral and biological effects of high-strength 60-Hz electric fields. Quarterly progress report, 11 October 1981-10 January 1982. [Research plan

    SciTech Connect

    Rogers, W.R.

    1982-01-01

    The primary objective of this research is to study the effects of high intensity, 60 Hz electric fields on baboon behavior to obtain information which will assist in the determination of the degree of risk of deleterious consequences for humans exposed to such fields. The generalization of results obtained with the baboon to predictions concerning humans will be aided by the development of computer models relating the surface electric field intensities and internal current densities produced in baboons and humans by exposure to high intensity, 60 Hz electric fields. Research plans are described.

  4. Study of the behavioral and biological effects of high-strength 60-Hz electric fields. Quarterly technical progress report number 10, 18 December 1982-18 March 1983

    SciTech Connect

    Not Available

    1983-04-20

    The objective of this contract is to use the baboon as a surrogate for the human in studies of the possible deleterious effects of exposure to high strength, 60 Hz electric fields. The specific aims of this contract are to (1) design and construct an exposure facility in which baboons can be exposed to an electric field up to 60 kV/m in intensity for experiments and (2) to develop computer models relating the fields and currents produced in both baboons and humans by exposure to high strength, 60 Hz electric fields.

  5. Biological studies of swine exposed to 60-Hz electric fields. Volume 4: growth, reproduction, and development. Final report

    SciTech Connect

    Not Available

    1985-12-01

    Swine were exposed to uniform, vertical, 60-Hz, 30-kV/m electric fields for 20 hours/day, 7 days/week. The parental generation (F/sub 0/ gilts) was bred after 4 months on study; some were killed for teratologic study at 100 days of gestation (dg), and the others produced a first-generation (F/sub 1/) of offspring. The pooled incidence of terata in these litters was similar in the exposed and sham-exposed groups. The F/sub 0/ females, which produced the F/sub 1/ generation, were rebred after 18 months of exposure and were killed at 100 dg: malformation incidence in exposed litters (75%) was significantly greater than in sham-exposed litters (29%). Types of malformations were not dissimilar between the two groups. The F/sub 1/ gilts were bred at 18 months of age; there were indications of impaired copulatory behavior and decreased fertility in the exposed animals. Defective offspring were found in significantly more of the exposed litters (71%) than in sham-exposed litters (33%). The F/sub 1/ sows were bred again 10 months later, and teratologic evaluations were performed on their second litters at 100 dg. The percentage of litters with malformed fetuses was essentially identical in the exposed and sham-exposed groups (70 and 73%, respectively). The change in malformation incidences between generations and between the first and second breedings makes it difficult to unequivocally conclude that chronic exposure to a strong electric field caused developmental effects in swine, although it appears there may be an association. It is also possible that other factors, such as housing, inbreeding, disease or its treatment may have contributed to the results. 22 refs., 9 figs., 28 tabs.

  6. Investigation of effects of 60-Hz electric and magnetic fields on operant and social behavior and on the neuroendocrine system of nonhuman primates

    SciTech Connect

    Rhodes, J.W.

    1992-09-24

    The objective of this program is to investigate behavioral and neuroendocrine effects associated with exposure to 60-Hz electric and magnetic fields (E/MF), using the baboon (Papio cynocephalus) as a nonhuman primate surrogate for the human. Results from this program, along with information from experiments conducted elsewhere, could be used to estimate and evaluate the likelihood of deleterious consequences of human exposure to the electric and magnetic fields associated with electric power transmission. This report covers a series of three experiments (Experiments III, IV, and IVA) on the effect of combined 60-Hz E/MF on operant behavior. These experiments were a continuation of previous investigations of 60-Hz electric field exposure on baboons.

  7. Effects of 60 Hz Magnetic Field Exposure on the Pineal and Hypothalamic-Pituitary-Gonadal Axis in the Siberian Hamster (Phodopus Sungorus)

    SciTech Connect

    Wilson, Bary W. ); Matt, Kathleen S.; Morris, James E. ); Sasser, Lyle B. ); Miller, Douglas L. ); Anderson, Larry E. )

    1999-11-15

    Experiments using the dwarf Siberian hamster Phodopus sungorus were carried out to determine possible neuroendocrine consequences of one-time and repeated exposures to 60 Hz magnetic fields (MF). Animals were maintained in either a short-light (SL, 8 h light:16 h dar) or long-light (LL, 16 h light:8h dark) photoperiod.

  8. Effects of a 30 kV/m, 60 Hz electric field on the social behavior of baboons: A crossover experiment

    SciTech Connect

    Easley, S.P.; Coelho, A.M. Jr.; Rogers, W.R. )

    1992-01-01

    Using a crossover experimental design, we evaluated our earlier findings that exposure to a 30 kV/m, 60 Hz electric field for 12 hours per day, 7 days per week for 6 weeks produced significant changes in the performance rates of social behaviors among young adult male baboons. In the crossover experiment, the former control group was exposed to a 30 kV/m, 60 Hz electric field for 3 weeks. Only an extremely small, incidental magnetic field was generated by the exposure apparatus. We found that electric-field exposure again produced increases in the performance rates that index Passive Affinity, Tension, and Stereotypy. These findings, combined with results from our other electric-field experiments, indicate that exposure to strong electric fields, in the absence of associated magnetic fields, consistently produces effects that are expressed as increases in rates of performance of social behaviors in young adult male baboons.

  9. Investigation of effects of 60-Hz electric and magnetic fields on operant and social behavior and on the neuroendocrine system of nonhuman primates

    SciTech Connect

    Orr, J.L.

    1990-04-01

    The objective of this program is to investigate, using the baboon as a nonhuman primate surrogate for the human, behavioral and neuroendocrine effects associated with exposure to 60-Hz electric and magnetic fields. Results from this program, along with information from experiments conducted elsewhere, could be used to estimate and evaluate the likelihood of deleterious consequences resulting from exposure of humans to the electric and magnetic fields associated with electric power transmission. Activities this quarter extended those of the first project year: the modification of the facility to include 60-Hz magnetic fields, and development of the capability for studies of neuroendocrine parameters by obtaining blood samples from baboons during electric and magnetic field exposure. 18 figs., 7 tabs.

  10. Investigation of effects of 60-Hz electric and magnetic fields on operant and social behavior and on the neuroendocrine systems of nonhuman primates

    SciTech Connect

    Orr, J.L.

    1990-01-01

    The objective of this program is to investigate, using the baboon as a nonhuman primate surrogate for the human, behavioral and neuroendocrine effects associated with exposure to 60-Hz electric and magnetic fields. Results from this program, along with information from experiments conducted elsewhere, could be used to estimate and evaluate the likelihood of deleterious consequences resulting from exposure of humans to the electric and magnetic fields associated with electric power transmission. Activities this quarter extended those of the first project year which focused on two technical areas: the modification of the facility to include 60-Hz magnetic fields, and development of the capability for studies of neuroendocrine parameters by obtaining blood samples from baboons during electric and magnetic field exposure. 25 figs., 11 tabs.

  11. Investigation of effects of 60-Hz electric and magnetic fields on operant and social behavior and on the neuroendocrine system of nonhuman primates

    SciTech Connect

    Smith, H.D.

    1993-01-22

    The objective of this program is to investigate behavioral and neuroendocrine effects associated with exposure to 60-Hz electric and magnetic fields (E/MF), using the baboon (Papio cynocephalus) as a nonhuman primate surrogate for the human. Results from this program, along with information from experiments conducted elsewhere, could be used to estimate and evaluate the likelihood of deleterious consequences of human exposure to the electric and magnetic fields associated with electric power transmission.

  12. Investigation of effects of 60-Hz electric and magnetic fields on operant and social behavior and on the neuroendocrine system of nonhuman primates. Annual report, FY1992

    SciTech Connect

    Smith, H.D

    1993-01-22

    The objective of this program is to investigate behavioral and neuroendocrine effects associated with exposure to 60-Hz electric and magnetic fields (E/MF), using the baboon (Papio cynocephalus) as a nonhuman primate surrogate for the human. Results from this program, along with information from experiments conducted elsewhere, could be used to estimate and evaluate the likelihood of deleterious consequences of human exposure to the electric and magnetic fields associated with electric power transmission.

  13. Modelling fields induced in humans by 50/60 Hz magnetic fields: reliability of the results and effects of model variations

    NASA Astrophysics Data System (ADS)

    Caputa, K.; Dimbylow, P. J.; Dawson, T. W.; Stuchly, M. A.

    2002-04-01

    This paper presents a comparison of anatomically realistic human models and numerical codes in the dosimetry of power frequency magnetic fields. The groups at the University of Victoria and the National Radiological Protection Board have calculated the induced electric fields in both their 'UVic' and 'NORMAN' models using independently developed codes. A detailed evaluation has been performed for a uniform magnetic field at 60 Hz. Comparisons of all dosimetric metrics computed in each particular model agree within 2% or less. Since in situ measurements cannot be performed in humans, and achievable accuracy of measurements in models and animals is not likely to be better than 10-15%, the comparisons presented should provide confidence limits on computational dosimetry. An evaluation of the effect of model size, shape and resolution has also been performed and further illuminated the reasons for differences in induced electric fields for various human body models.

  14. Regularly scheduled, day-time, slow-onset 60 Hz electric and magnetic field exposure does not depress serum melatonin concentration in nonhuman primates

    SciTech Connect

    Rogers, W.R.; Smith, H.D.; Orr, J.L.; Reiter, R.J.; Barlow-Walden, L.

    1995-12-31

    Experiments conducted with laboratory rodents indicate that exposure to 60 Hz electric fields or magnetic fields can suppress nocturnal melatonin concentrations in pineal gland and blood. In three experiments employing three field-exposed and three sham-exposed nonhuman primates, each implanted with an indwelling venous cannula to allow repeated blood sampling, the authors studied the effects of either 6 kV/m and 50 {micro}T (0.5 G) or 30 kV/m and 100 {micro}T (1.0 G) on serum melatonin patterns. The fields were ramped on and off slowly, so that no transients occurred. Extensive quality control for the melatonin assay, computerized control and monitoring of field intensities, and consistent exposure protocols were used. No changes in nocturnal serum melatonin concentration resulted from 6 weeks of day-time exposure with slow field onset/offset and a highly regular exposure protocol. These results indicate that, under the conditions tested, day-time exposure to 60 Hz electric and magnetic fields in combination does not result in melatonin suppression in primates.

  15. Assessment of genetic damage in peripheral blood of human volunteers exposed (whole-body) to a 200 muT, 60 Hz magnetic field.

    PubMed

    Albert, Genevieve C; McNamee, James P; Marro, Leonora; Bellier, Pascale V; Prato, Frank S; Thomas, Alex W

    2009-02-01

    To investigate the extent of damage in nucleated cells in peripheral blood of healthy human volunteers exposed to a whole-body 60 Hz, 200 microT magnetic field. In this study, 10 male and 10 female healthy human volunteers received a 4 h whole-body exposure to a 200 microT, 60 Hz magnetic field. In addition, five males and five females were treated in a similar fashion, but were exposed to sham conditions. For each subject, a blood sample was obtained prior to the exposure period and aliquots were used as negative- (pre-exposure) and positive- [1.5 Gray (Gy) (60)Cobalt ((60)Co) gamma-irradiation] controls. At the end of the 4 h exposure period, a second blood sample was obtained. The extent of DNA damage was assessed in peripheral human blood leukocytes from all samples using the alkaline comet assay. To detect possible clastogenic effects, the incidence of micronuclei was assessed in phytohemagglutinin (PHA)-stimulated lymphocytes using the cytokinesis-block micronucleus assay. There was no evidence of either increased DNA damage, as indicated by the alkaline comet assay, or increased incidence of micronuclei (MN) in the magnetic field exposed group. However, an in vitro exposure of 1.5 Gy gamma-irradiation caused a significant increase in both DNA damage and MN induction. This study found no evidence that an acute, whole-body exposure to a 200 microT, 60 Hz magnetic field for 4 hours could cause DNA damage in human blood.

  16. Investigation of effects of 60-Hz electric and magnetic fields on operant and social behavior and on the neuroendocrine system of nonhuman primates

    SciTech Connect

    Rhodes, J.W.

    1992-07-14

    This volume contains detailed experimental data to accompany quarterly report, dated July 14, 1992, by this group entitled Investigation of Effects of 60-Hz Electric Fields on Operant and Social Behavior and on the Neuroendocrine System of Nonhuman Primates.'' This volume is a collection of Appendices which are entitled: Appendix A- Field Mapping Data Forms, Appendix B- Exposure Area (East Side) Electric Field Data, Appendix C- Exposure Area (East Side) Magnetic Field Data, Appendix D- Sham Area (West Side) Magnetic Field Data, Appendix E- Memoranda Concerning Field Onset During Experiment IV and the Crossover Experiment, Appendix F- Exposure Area (East Side) Electric Field Data, Appendix G- Exposure Area (East Side) Magnetic Field Data, Appendix H- Sham Area (west Side) Magnetic Field Data, Appendix I- Compiled Data and Anovas for Experiment III Social Data, Appendix J -Written Comments Provided by Statistician Dr. Robert Mason, and Appendix K- Reference Text Provided by Dr. Coelho.

  17. Investigation of effects of 60-Hz electric and magnetic fields on operant and social behavior and on the neuroendocrine system of nonhuman primates

    SciTech Connect

    Rogers, W.R.; Rhodes, J.W.

    1992-09-01

    A cohort of sixteen male baboons were assigned to electric and magnetic field (E/MF) exposure and sham-exposure. The social behavior subjects were simultaneously exposed to 60 Hz E/MF. Ten behavioral categories were measured. Each behavioral category was comprised of multiple molecular behaviors that could be objectively identified and counted. Six of the behavior categories were social'', in that interactions between subjected were involved. The remaining four were non-social'' and pertained to individual behaviors such as movements or postural stances.

  18. Investigation of effects of 60-Hz electric and magnetic fields on operant and social behavior and on the neuroendocrine system of nonhuman primates

    SciTech Connect

    Orr, J.L.

    1989-10-01

    The objective of this program is to investigate, using the baboon as a nonhuman primate surrogate for the human, behavioral and neuroendocrine effects associated with exposure to 60-Hz electric and magnetic fields. Results from this program could be used to estimate and evaluate the likelihood of deleterious consequences resulting from exposure of humans to the electric and magnetic fields associated with electric power transmission. This program is being conducted at Southwest Research Institute (SwRI) as part of an international collaborative information exchange and scientific research effort. This annual report marks the completion of the first year of the four year research program. This project year has focused on two technical areas: the modification of the facility to include 60-Hz magnetic fields, and development of the capability for studies of neuroendocrine parameters by obtaining blood samples from baboons during electric and magnetic field exposure. Activities in the social behavior, operant behavior, and laboratory animal sciences during this project year have been in preparation for the start of Experiment 3. 7 figs., 10 tabs.

  19. 60 Hz electric field changes the membrane potential during burst phase in pancreatic β-cells: in silico analysis.

    PubMed

    Neves, Gesilda F; Silva, José R F; Moraes, Renato B; Fernandes, Thiago S; Tenorio, Bruno M; Nogueira, Romildo A

    2014-06-01

    The production, distribution and use of electricity can generate low frequency electric and magnetic fields (50-60 Hz). Considering that some studies showed adverse effects on pancreatic β-cells exposed to these fields; the present study aimed to analyze the effects of 60 Hz electric fields on membrane potential during the silent and burst phases in pancreatic β-cells using a mathematical model. Sinusoidal 60 Hz electric fields with amplitude ranging from 0.5 to 4 mV were applied on pancreatic β-cells model. The sinusoidal electric field changed burst duration, inter-burst intervals (silent phase) and spike sizes. The parameters above presented dose-dependent response with the voltage amplitude applied. In conclusion, theoretical analyses showed that a 60 Hz electric field with low amplitudes changes the membrane potential in pancreatic β-cells.

  20. Exposure of baboons to combined 60 Hz electric and magnetic fields does not produce work stoppage or affect operant performance on a match-to-sample task

    SciTech Connect

    Orr, J.L.; Rogers, W.R.; Smith, H.D.

    1995-12-31

    The authors examined the effects of combined 60 Hz electric and magnetic field (EMF) exposure on performance of delayed match-to-sample (MTS) procedure involving the flash rate of a light as the stimulus. Six baboons (Papio cynocephalus) fully acquired the task; four others functioned accurately only when cued. All ten subjects were assigned to EMF-exposed or sham-exposed groups of five and were used to test for a work-stoppage effect that was previously observed with initial exposure to electric fields (EF) of 30 or 60 kV/m. Here, the authors report the results of two experiments, each consisting of 6 week preexposure, exposure, and postexposure periods. They found no evidence of work stoppage with fields of 6 kV/m and 50 {micro}T (0.5 G) or with 30 kV/m and 100 {micro}T (1.0 G). In neither experiment was there evidence of an adverse effect of 60 Hz EMF exposure on MTS performance.

  1. Rapid-onset/offset, variably scheduled 60 Hz electric and magnetic field exposure reduces nocturnal serum melatonin concentration in nonhuman primates

    SciTech Connect

    Rogers, W.R.; Smith, H.D.; Reiter, R.J.; Barlow-Walden, L.

    1995-12-31

    Experiments with rodents indicate that power-frequency electric field (EF) or magnetic field (MF) exposure can suppress the normal nocturnal increase in melatonin concentration in pineal gland and blood. In a separate set of three experiments conducted with nonhuman primates, the authors did not observe melatonin suppression as a result of 6 weeks of day-time exposure to combined 60 Hz electric and magnetic fields (E/MF) with regularly schedule ``slow`` E/MF onsets/offsets. The study described here used a different exposure paradigm in which two baboons were exposed to E/MF with ``rapid`` E/MF onsets/offsets accompanied by EF transients not found with slowly ramped E/MF onset/offset; profound reductions in nocturnal serum melatonin concentration were observed in this experiment. If replicated in a more extensive experiment, the observation of melatonin suppression only in the presence of E/MF transients would suggest that very specific exposure parameters determine the effects of 60 Hz E/MF on melatonin.

  2. (Investigation of effects of 60-Hz electric and magnetic fields on operant and social behavior and on the neuroendocrine system of nonhuman primates)

    SciTech Connect

    Orr, J.L.

    1989-03-24

    The objective of this program is to investigate, using the baboon as a nonhuman primate surrogate for the human, behavioral and neuroendocrine effects associated with exposure to 60-Hz electric and magnetic fields. Results from this program, along with information from experiments conducted elsewhere, could be used to estimate and evaluate the likelihood of deleterious consequences resulting from exposure of humans to the electric and magnetic fields associated with electric power transmission. The test facility is being modified to include combined electric and magnetic field capability. This will be accomplished by the installation of a magnetic field exposure system and modification of the electric field exposure equipment. The purpose of this document is to provide information on the design. 14 figs., 5 tabs.

  3. Effects of 60-Hz electric and magnetic fields on operant and social behavior and on nueroendocrine system of nonhuman primates

    SciTech Connect

    Rogers, W.R.

    1993-01-22

    This series of experiments, using a well-characterized exposure facility and employing a variety of control procedures to study behavior and the neuroendocrine system of nonhuman primates, does not provide any evidence that exposure to power-frequency electric fields, or electric and magnetic fields in combination, for 12 hours per day for six weeks produces any deleterious effects in young-adult males. The primate experiments summarized here confirm the general conclusion indicated by experiments with rodents; although biological and behavioral changes can occur, there are no clear results establishing the occurrence of adverse effects in experiments involving relatively short-term exposure to environmentally-relevant electric or magnetic fields. Given the general agreement of the primate and rodent results, conclusions from the laboratory animal studies therefore presumably generalize well to humans.

  4. Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth

    SciTech Connect

    Reiter, R.J.; Anderson, L.E.; Buschbom, R.I.; Wilson, B.W.

    1988-02-01

    Rats exposed to 60-Hz electric fields of either 10, 65, or 130 kV/m from conception to 23 days of age exhibited reduced peak nighttime pineal melatonin contents compared to unexposed controls. As a group, the exposed rats also exhibited a phase delay, estimated at approximately 1.4 hours, in the occurrence of the nocturnal melatonin peak. No clear dose-response relationship was noticed over the range of electric field strengths used as treatments in these experiments. These are the first studies concerned with the effects of electric field exposure on the pineal melatonin rhythm in immature rats and the findings are generally consistent with those obtained using adult rats, where electric field exposure has been shown to abolish the nighttime rhythm in pineal melatonin concentrations. 15 refs., 1 fig., 1 tab.

  5. Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth

    SciTech Connect

    Reiter, R.J.; Anderson, L.E.; Buschbom, R.L.; Wilson, B.W.

    1988-01-01

    Rats exposed to 60-Hz electric fields of either 10, 65, or 130 kV/m from conception to 23 days of age exhibited reduced peak nighttime pineal melatonin contents compared to unexposed controls. As a group, the exposed rats also exhibited a phase delay, estimated at approximately 1.4 hours, in the occurrence of the nocturnal melatonin peak. No clear dose-response relationship was noticed over the range of electric field strengths used as treatments in these experiments. These are the first studies concerned with the effects of electric field exposure on the pineal melatonin rhythm in immature rats. The findings are generally consistent with those obtained using adult rats, where electric field exposure has been shown to abolish the nighttime rhythm in pineal melatonin concentrations.

  6. (Study of the behavioral and biological effects of high intensity 60 Hz electric fields): Quarterly technical progress report No. 29

    SciTech Connect

    Orr, J.L.

    1989-07-14

    Activities this quarter involved all phases of the project plus a meeting of the Joint Committee in Tokyo. Detailed mapping of the exposure facility is scheduled to be completed during the week of August 14, 1989. Both electric and magnetic fields should be available for tests of the components of the tether and blood sampling system for the neuroendocrine pilot study in September 1989. The groups for the social behavior study are stabilizing appropriately. Details on the formation of the groups and their status has been provided. Dr. Coelho has included information related to aspects of the social experiment ranging from age estimation in baboons through the cardiovascular consequences of psychosocial stress. In addition, a draft manuscript is included on the data from the previous experiments which describes the effects of 30 and 60 kV/m electric fields on the social behavior of baboons. Tests of the blood handling procedures and analysis methods have been completed. With the exception of the catecholamine analyses, the handling procedures and variability in replicate measurements are satisfactory. Logistic and practical considerations now weigh strongly against including the analysis of the blood samples for catecholamines. Preliminary tests indicate that a sampling procedure which will work for the other compounds is probably not satisfactory for the catecholamines.

  7. Effects of concurrent exposure to 60 Hz electric and magnetic fields on the social behavior of baboons

    SciTech Connect

    Coelho, A.M. Jr.; Easley, S.P.; Rogers, W.R. |

    1995-12-31

    Previous research has demonstrated that 30 or 60 kV/m electric fields (EF) reliably produce temporary increases in the performance of three categories of baboon social behavior: Passive Affinity, Tension, and Stereotypy. The experimental design included 6 week preexposure, exposure, and postexposure periods with experimental and control groups, each with eight subjects. Here, the authors report two experiments that evaluated the effects of combined EF and magnetic fields (MF) on baboon social behavior. One experiment demonstrated that exposure to 6 kV/m EF and 50 {micro}T (0.5 G) MF produced Period {times} Group interactions for Stereotypy and Attack, but the previously observed increases in Passive Affinity, Tension, and Stereotypy did not occur. A second experiment demonstrated that exposure to 30 kV/m EF and 100 {micro}T 1.0 G MF did not produce the same magnitude of increases in Passive Affinity, Tension, and Stereotypy observed previously with 30 kV/m EF alone. The exposed group exhibited decreased performance rates for several behavior categories during exposure with further declines during postexposure. The control group showed fewer downward trends across periods.

  8. Investigation of Potential Behavioral Effects of Exposure to 60 Hz Electromagnetic Fields.

    DTIC Science & Technology

    1985-12-01

    chlorpromazine was not altered by exposure to microwaves. A lhough, the above current literature indicates that under many con- ditions the effects of various...Oct 20-23, 1975, Vol. 1, DHEW Publ. ( FDA )77-8010, pp. 311-322, Washington, D.C.: U. S. Government Printing Office, 1975. % % 6. deLorge, J. Operant...In: Symposium on Biological Effects and Measurement of Radio Frequency/Microwaves, D. G. Hazzard (Ed.), pp. 62-68, HEW Publ ( FDA )77-8026, Washington

  9. Protein kinase C activity is altered in HL60 cells exposed to 60 Hz AC electric fields

    SciTech Connect

    Holian, O.; Reyes, H.M.; Attar, B.M.; Walter, R.J.; Astumian, R.D.; Lee, R.C.

    1996-12-31

    The authors examined the effects of electric fields (EFs) on the activity and subcellular distribution of protein kinase C (PKC) of living HL60 cells. Sixty Hertz AC sinusoidal EFs (1.5--1,000 mV/cm p-p) were applied for 1 h to cells (10{sup 7}/ml) in Teflon chambers at 37 C in the presence or absence of 2 {micro}M phorbol 12-myristate 13-acetate (PMA). PMA stimulation alone evoked intracellular translocation of PKC from the cytosolic to particulate fractions. In cells that were exposed to EFs (100--1,000 mV/cm) without PMA, a loss of PKC activity from the cytosol, but no concomitant rise in particulate PKC activity, was observed. In the presence of PMA, EFs (33--330 mV/cm) also accentuated the expected loss of PKC activity from the cytosol and augmented the rise in PKC activity in the particulate fraction. These data show that EFs alone or combined with PMA promote down-regulation of cytosolic PKC activity similar to that evoked by mitogens and tumor promoters but that it does not elicit the concomitant rise in particulate activity seen with those agents.

  10. Investigation of effects of 60-Hz electric and magnetic fields on operant and social behavior and on the neuroendocrine system of nonhuman primates

    SciTech Connect

    Smith, H.D.

    1992-11-02

    The objective of this program is to investigate behavioral and neuroendocrine effects associated with exposure to 60-Hz electric and magnetic fields (E/MF), using the baboon surrogate for the human. Baboon social groups were scanned and electronically monitored during Experiments IV and IVA. The social scan, form that the technicians used to identify baboon locations and proximity to other baboons: was used to gain a simple snapshot of the position of the baboons in their cage. The scans were taken hourly every morning and evening for a total of eight scans per side per day. This report covers in detail the scan and activity data-gathering process. A set of appendices is attached which include printouts of the data sets and adjunct material pertinent to interpreting the data. The supporting material is comprised of calendars and listings of major events that occurred during the scan and activity data collection.

  11. Experimental evidence for 60 Hz magnetic fields operating through the signal transduction cascade. Effects on calcium influx and c-MYC mRNA induction.

    PubMed

    Liburdy, R P; Callahan, D E; Harland, J; Dunham, E; Sloma, T R; Yaswen, P

    1993-11-22

    We tested the hypothesis that early alterations in calcium influx induced by an imposed 60 Hz magnetic field are propagated down the signal transduction (ST) cascade to alter c-MYC mRNa induction. To test this we measured both ST parameters in the same cells following 60 Hz magnetic field exposures in a specialized annular ring device (220 G (22 mT), 1.7 mV/cm maximal E(induced), 37 degrees C, 60 min). Ca2+ influx is a very early ST marker that precedes the specific induction of mRNA transcripts for the proto-oncogene c-MYC, an immediate early response gene. In three experiments influx of 45Ca2+ in the absence of mitogen was similar to that in cells treated with suboptimal levels of Con-A (1 micrograms/ml). However, calcium influx was elevated 1.5-fold when lymphocytes were exposed to Con-A plus magnetic fields; this co-stimulatory effect is consistent with previous reports from our laboratory [FEBS Lett. 301 (1992) 53-59; FEBS Lett. 271 (1990) 157-160; Ann. N.Y. Acad. Sci. 649 (1992) 74-95]. The level of c-MYC mRNA transcript copies in non-activated cells and in suboptimally-activated cells was also similar, which is consistent with the above calcium influx findings. Significantly, lymphocytes exposed to the combination of magnetic fields plus suboptimal Con-A responded with an approximate 3.0-fold increase in band intensity of c-MYC mRNA transcripts. Importantly, transcripts for the housekeeping gene GAPDH were not influenced by mitogen or magnetic fields. We also observed that lymphocytes that failed to exhibit increased calcium influx in response to magnetic fields plus Con-A, also failed to exhibit an increase in total copies of c-MYC mRNA. Thus, calcium influx and c-MYC mRNA expression, which are sequentially linked via the signal transduction cascade in contrast to GAPDH, were both increased by magnetic fields. These findings support the above ST hypothesis and provide experimental evidence for a general biological framework for understanding magnetic field

  12. Increased mortality in land snails (Cepaea nemoralis) exposed to powerline (60-Hz) magnetic fields and effects of the light-dark cycle.

    PubMed

    Ossenkopp, K P; Kavaliers, M; Lipa, S

    1990-06-22

    The effects of various durations (0.5, 2, 12, 48, or 120 h) of day- and night-time exposures to a 1.0 gauss (rms) 60-Hz magnetic field or sham field on mortality levels in the nocturnally-crepuscularly active land snail, Cepaea nemoralis, were examined. These snails were injected with morphine or saline vehicle and tested for reaction to an aversive thermal stimulus as part of another study. Mortality levels were monitored over a 2-week period following the initial exposure to the fields and were shown not to be differentially affected by the drug injection procedures. Mortality levels increased linearly as a function of increased length of exposure to the magnetic fields (P less than 0.001) but not when exposed to the sham fields. As well, night-time exposures resulted in greater mortality levels than day-time exposures (P less than 0.025). These results indicate that day-night rhythms are important in determining the magnitude of the magnetic field exposure effect. It is speculated that the magnetic fields may disrupt endogenous opioid- and calcium-modulated homeostatic mechanisms and augment stress effects, modifying a variety of systems including immunocompetence.

  13. Investigation of effects of 60-Hz electric and magnetic fields on operant and social behavior and on the neuroendocrine system of nonhuman primates

    SciTech Connect

    Rhodes, J.W.

    1992-07-14

    The objective of this program is to investigate behavioral and neuroendocrine effects associated with exposure to 60-Hz electric and magnetic fields, using the baboon (Papio cynocephalus). Results from this program are used to estimate consequences of human exposure to the electric and magnetic fields associated with electric power transmission. Electric and magnetic field measurements for Experiment IIIA (Confirmatory), Experiment IV and Social Behavior portion of Experiment III are presented. The systems for the production and monitoring of the fields performed satisfactorily during Experiment IIIA and during all but the last part of Experiment IV. In Experiment III, two-way repeated analyses of variance revealed statistically significant Group (Exposed and Sham Exposed) and Period (Baseline. Exposure, and Post-Exposure) main effects. Two significant Period by Group interactions were also found. Seven of the ten behavioral categories showed a main effect of Period. Two-sample t-test comparisons of the two groups for each period indicated that performance rates in two behavioral categories (Stereotypy and Posture) were significantly lower in the Exposure Group. In general, the Exposed subjects exhibited a trend of progressively lower performance rates across the three periods. Specific accomplishments reported in this document were: measurement of electric and magnetic fields for Experiments IIIA and IV, completed analysis of the Social Behavioral data from Experiment III, and a detailed discussion of statistical methods employed on the Social Behavioral portion of Experiment III, and hematology data were collected and recorded for Operant and Social Behavioral subjects for Experiment IV.

  14. Non-Hodgkin's lymphoma among electric utility workers in Ontario: the evaluation of alternate indices of exposure to 60 Hz electric and magnetic fields.

    PubMed

    Villeneuve, P J; Agnew, D A; Miller, A B; Corey, P N

    2000-04-01

    To examine associations between non-Hodgkin's lymphoma (NHL) and exposures to 60 Hz magnetic and electric fields in electric utility workers with a series of indices that capture a variety of aspects of field strength. The study population consisted of 51 cases of NHL and 203 individually matched controls identified from within a cohort of male electric utility workers in Ontario. Odds ratios were calculated for several exposure indices with conditional logistic regression models. Aspects of exposure to electric and magnetic fields that were modelled included: the percentage of time spent above selected threshold field intensities, mean transitions in field strength, SD, and the arithmetic and geometric mean field intensities. For the most part, there was a lack of an association between exposure indices of magnetic fields and the incidence of NHL. Subjects in the upper tertile of percentage of time spent above electric field intensities of 10 and 40 V/m had odds ratios of 3.05 (95% confidence interval (95% CI) 1. 07 to 8.80) and 3.57 (1.30 to 9.80), respectively, when compared with those in the lowest tertile. Moreover, the percentages of time spent above these electric field thresholds were significant predictors of case status over and above the association explained by duration of employment and the arithmetic or geometric mean exposure. These data suggest that exposures above electric field threshold intensities of 10 and 40 V/m are important predictors of NHL. Consequently, the findings support the hypothesis that electric fields may play a promoting part in the aetiology of this cancer. Further occupational studies that include assessment of exposure to electric fields and measures of field strength above similar threshold cut off points are needed to confirm these findings.

  15. Residential exposures to indoor air pollutants could yield childhood leukemia risk levels similar to those associated with 60 Hz magnetic fields

    SciTech Connect

    Easterly, C.E.

    1992-12-31

    Over a decade ago Easterly suggested that electromagnetic fields may be able to participate in a cooperative process leading to the expression of cancer. Evidence derived from the literature is presented to support the suggestion that potentially cooperative factors other than electromagnetic fields are present in homes in sufficient quantities to result in approximately the same risk levels as are being measured in epidemiology studies of childhood leukemia and electromagnetic fields. Generally these odds ratios vary from 1.5 to 2.5.

  16. Residential exposures to indoor air pollutants could yield childhood leukemia risk levels similar to those associated with 60 Hz magnetic fields

    SciTech Connect

    Easterly, C.E.

    1992-01-01

    Over a decade ago Easterly suggested that electromagnetic fields may be able to participate in a cooperative process leading to the expression of cancer. Evidence derived from the literature is presented to support the suggestion that potentially cooperative factors other than electromagnetic fields are present in homes in sufficient quantities to result in approximately the same risk levels as are being measured in epidemiology studies of childhood leukemia and electromagnetic fields. Generally these odds ratios vary from 1.5 to 2.5.

  17. Evaluation of the possible copromoting effect of a 60 Hz magnetic field during chemically induced carcinogenesis in skin of SENCAR mice. Final report

    SciTech Connect

    DiGiovanni, J.; Walborg, E.F.; Anderson, L.E.; Sasser, L.B.; Morris, J.E.; Miller, D.L. |

    1997-11-01

    It has been hypothesized that exposure to extremely low frequency (ELF) magnetic fields can enhance tumorigenesis through a copromotional mechanism. Equivocal support for this hypothesis was provided by experiments performed by Stuchly et al. using a mouse skin model; i.e. the induction of skin tumors in SENCAR mice exposed to a single subcarcinogenic dose of 7,12-dimethylbenz(a)anthracene (DMBA) and promotion by repetitive doses of 12-O-tetradecanoylphorbol-13-acetate (TPA). The mice were exposed to a 2 mT (60 Hz) magnetic field during the entire promotion phase of the experiment. The Stuchly study, which utilized single weekly doses of TPA, demonstrated a statistically significant increase in skin tumors after 16--18 weeks of promotion; however, by 23 weeks of promotion, the difference was not statistically significant. The study was designed to provide definitive evidence to confirm or refute a copromotional role of ELF magnetic field exposure on DMBA/TPA-induced skin carcinogenesis in SENCAR mice. This study was modeled after the study of Stuchly et al., (1992), including the animal model and exposure conditions. However, three different promoting doses of TPA, within the linear dose response range for induction of skin tumors, were utilized.

  18. Chronically indwelling venous cannula and automatic blood sampling system for use with nonhuman primates exposed to 60 Hz electric and magnetic fields

    SciTech Connect

    Rogers, W.R.; Lucas, J.H.; Smith, H.D.; Orr, J.L.; Mikiten, B.C.

    1995-12-31

    An automated blood sampling system was developed for use with tethered baboons (Papio cynocephalus) during concurrent exposure to 60 Hz 30 kV/m electric fields and 0.1 mT (1.0 G) magnetic fields. The system was controlled by a FORTH-based microcomputer, which operated a pump, a fraction collector, and two pinch valves. A swivel mechanism at the end of the tether allowed the baboons to move freely in their cages. The hardware and software were designed for fail-safe operation. Heparinized saline was infused at a rate of 0.5 ml/min until a sample cycle was initiated. Then, blood was drawn from the animal into a storage tube at a rate of 12.5 ml/min, a sample of undiluted blood was taken from the end of the storage tube near the baboon, and the blood remaining in the storage tube was then flushed back into the animal. Use of the storage tube prevented the peristaltic pump rollers from pressing on tubing containing blood, and return of the blood diluted with saline limited the blood wasted per sample to less than 0.5 ml. The system functioned reliably in three experiments, collecting samples as scheduled 97% of the time. Although it was initially designed for and used successfully with primates in an electric and magnetic field environment, this type of system could be employed in many areas of biomedical research or medical treatment.

  19. Initial studies on the effects of combined 60 Hz electric and magnetic field exposure on the immune system of nonhuman primates

    SciTech Connect

    Murthy, K.K.; Rogers, W.R.; Smith, H.D.

    1995-12-31

    In a pilot immunology experiment, peripheral blood samples from six baboons (Papio cynocephalus) housed as a social group were collected during week 5 of preexposure, exposure, and postexposure periods that were each 6 weeks in duration. The subjects were exposed to vertical 6 kV/m and horizontal 50 {micro}T (0.5 G) fields for 12 h per day. Lymphocytes collected during the exposure period displayed statistically significant (P < .05) reductions in CD3{sup +} and CD4{sup +} counts, interleukin 2 receptor expression, and proliferative response to pokeweed mitogen. A second experiment was conducted using samples from seven subjects exposed to 30 kV/m and 100 {micro}T (1.0 G) and eight sham-exposed subjects. Statistically significant Period {times} Group interactions occurred for total white blood cell count and CD4{sup +} to CD8{sup +} ratio, but the pattern of results was not suggestive of an exposure-related effect. Although components of the nonhuman primate immune system appear to be affected by 60 Hz electric and magnetic field exposure in one of two experiments, additional experiments are required to evaluate this possibility.

  20. Investigation of effects of 60-Hz electric and magnetic fields on operant and social behavior and on the neuroendocrine system of nonhuman primates. Quarterly report 40, Operant behavior: Experiments 3, 4, and 4A

    SciTech Connect

    Rhodes, J.W.

    1992-09-24

    The objective of this program is to investigate behavioral and neuroendocrine effects associated with exposure to 60-Hz electric and magnetic fields (E/MF), using the baboon (Papio cynocephalus) as a nonhuman primate surrogate for the human. Results from this program, along with information from experiments conducted elsewhere, could be used to estimate and evaluate the likelihood of deleterious consequences of human exposure to the electric and magnetic fields associated with electric power transmission. This report covers a series of three experiments (Experiments III, IV, and IVA) on the effect of combined 60-Hz E/MF on operant behavior. These experiments were a continuation of previous investigations of 60-Hz electric field exposure on baboons.

  1. Initial exposure to 30 kV/m or 60 kV/m 60 Hz electric fields produces temporary cessation of operant behavior of nonhuman primates

    SciTech Connect

    Rogers, W.R.; Orr, J.L.; Smith, H.D.

    1995-12-31

    In two separate experiments, the authors examined the effects of a 60 Hz electric field (EF) on performance of an operant schedule consisting of two signaled components: fixed-ratio (FR30) and differential reinforcement of low-rate (DRL20). In each experiment, 12 naive baboons (Papio cynocephalus) were assigned randomly to either an EF-exposed experimental group or a sham-exposed control group. A homogeneous vertical EF of 30 kV/m was used in one experiment; 60 kV/m was used in the other. The experimental design for both experiments included 6 week preexposure, exposure, and postexposure periods. The planned analyses indicated no evidence of statistically significant (P < .05) effects of EF exposure. However, exploratory analyses comparing performance during the last week of preexposure and the first week of exposure revealed statistically significant acute effects (work stoppage): The mean response rates of the EF-exposed groups were greatly reduced on day 1 of exposure but were normal by the end of day 2 of EF exposure. The authors hypothesize that introduction of a highly unusual stimulus, the EF, temporarily interfered with normal operant behavior to produce a primary work stoppage. Supplementary cross-over experiments added at the end of each main experiment indicated that work stoppage occurred again when formerly EF-exposed subjects served as sham-exposed controls, while other subjects received their first EF exposure. Presumably, reoccurrence of other stimuli correlated with initial exposure to the EF became sufficient to subsequently cause secondary work stoppage in the absence of direct EF exposure. The primary and secondary work-stoppage effects were reproducible.

  2. Ntp technical report on toxicity, reproductive, and developmental studies of 60-Hz magnetic fields, administered by whole body exposure to F344/N rats, Sprague-Dawley rats, and B6C3F1 mice. Toxicity report series

    SciTech Connect

    Boorman, G.A.

    1996-09-01

    Electric and magnetic fields are associated with the production, transmission, and use of electricity; thus the potential for human exposure is high. These electric and magnetic fields are predominantly of low frequency (60 Hz) and generally of low intensity. The prevailing view among physicists is that exposure to these low-frequency, low-intensity fields does not pose a health hazard. However, this view has been challenged by reports linking magnetic field exposure to the development of leukemia and other cancers. Because multiple epidemiologic studies suggested a potential for increased cancer rates with increasing exposure, and because of public concern, the effects of 60-Hz magnetic field exposure were examined in F344/N rats and B6C3F1 mice in 8-week full-body-exposure studies. Animals were evaluated for hematology and clinical chemistry (rats only) parameters, pineal gland hormone concentrations, and histopathology. Additional studies were performed in Sprague-Dawley rats to examine teratologic and reproductive effects of magnetic field exposure.

  3. Investigation of effects of 60-Hz electric and magnetic fields on operant and social behavior and on the neuroendocrine system of nonhuman primates. Quarterly report 37 - Part 2, Appendices

    SciTech Connect

    Rhodes, J.W.

    1992-07-14

    This volume contains detailed experimental data to accompany quarterly report, dated July 14, 1992, by this group entitled ``Investigation of Effects of 60-Hz Electric Fields on Operant and Social Behavior and on the Neuroendocrine System of Nonhuman Primates.`` This volume is a collection of Appendices which are entitled: Appendix A- Field Mapping Data Forms, Appendix B- Exposure Area (East Side) Electric Field Data, Appendix C- Exposure Area (East Side) Magnetic Field Data, Appendix D- Sham Area (West Side) Magnetic Field Data, Appendix E- Memoranda Concerning Field Onset During Experiment IV and the Crossover Experiment, Appendix F- Exposure Area (East Side) Electric Field Data, Appendix G- Exposure Area (East Side) Magnetic Field Data, Appendix H- Sham Area (west Side) Magnetic Field Data, Appendix I- Compiled Data and Anovas for Experiment III Social Data, Appendix J -Written Comments Provided by Statistician Dr. Robert Mason, and Appendix K- Reference Text Provided by Dr. Coelho.

  4. Investigation of effects of 60-Hz electric and magnetic fields on operant and social behavior and on the neuroendocrine system of nonhuman primates. Social behavior portions of Experiments III and IV: Quarterly report No. 39

    SciTech Connect

    Rogers, W.R.; Rhodes, J.W.

    1992-09-01

    A cohort of sixteen male baboons were assigned to electric and magnetic field (E/MF) exposure and sham-exposure. The social behavior subjects were simultaneously exposed to 60 Hz E/MF. Ten behavioral categories were measured. Each behavioral category was comprised of multiple molecular behaviors that could be objectively identified and counted. Six of the behavior categories were ``social``, in that interactions between subjected were involved. The remaining four were ``non-social`` and pertained to individual behaviors such as movements or postural stances.

  5. Effects of 60 Hz electric fields on operant and social stress behaviors of nonhuman primates. Annual report, August 5, 1984-October 25, 1985

    SciTech Connect

    Rogers, W.R.; Lucas, J.H.; Moore, G.T.; Orr, J.L.

    1985-01-01

    Operant behavioral methods have been used to assess the aversiveness of intense electric fields. One aspect of the aversiveness of a stimulus is the ability to act as a negative reinforcer. A negative reinforcer is a stimulus whose response contingent termination maintains behavior. Baboons were trained to perform an operant task to obtain food rewards, determined that the addition of an intense electric field did not disrupt performance, measured the background level of responding in the absence of any primary reinforcers, assessed the ability of electric field termination to maintain operant responding, and verified that the electric field could serve as a discriminative stimulus.

  6. Long-term effects of 60-Hz electric vs. magnetic fields on IL-1 and other immune parameters in sheep: Phase 4 study. Final report

    SciTech Connect

    Hefeneider, S.H.; McCoy, S.L.; Hausman, F.A.

    1998-10-01

    This study was designed to assess the effect of exposure to long-term low-frequency electric and magnetic fields (EMF) from an environmental 500-kV transmission line on immune function in sheep. The primary hypothesis tested was that the reduction in IL-1 activity observed in two previous short-term studies (9 months) was due to exposure to EMF from this transmission line. The secondary hypothesis was that long-term exposure (27 months) would impact immune function and animal health. To characterize the components of the EMF environment responsible for the previously observed reduction in IL-1 activity, the experiment was designed not only to examine the effect of exposure to electric and magnetic fields, but also to examine the magnetic field component alone. This was done by constructing a third pen (MF) which was shielded with wire to effectively eliminate the electric field while not significantly affecting the magnitude of the magnetic field.

  7. Effects of 60-Hz electric and magnetic fields on operant and social behavior and on neuroendocrine system of nonhuman primates. Draft final report, October 1, 1988--December 31, 1992

    SciTech Connect

    Rogers, W.R.; Coelho, A.M.; Easley, S.P.; Orr, J.L.; Reiter, R.J.; Rhodes, J.W.

    1992-09-24

    A series of pioneering electric and magnetic field experiments were completed using nonhuman primates and a unique, well-engineered, and reliable exposure facility. Effects of operant behavior, social behavior, and serum melatonin concentration were examined using 60 Hz field combinations of other 6 W/m and 0.6 G or 30 W/m and 1.0 G. Observations noted in the course of this study include: Combines electric and magnetic field exposure does not have any important effect on short-term memory; the transitory increases in social behavior observed in previous electric fields did not occur; combined electric and magnetic field exposure might lead to reduced behavioral frequency in baboon social groups; three experiments clearly establish that one set of exposure conditions does not produce molatonin suppression in nonhuman primates; and a small pilot experiment suggests that a different exposure protocol might result in melatonin suppression.

  8. Long-term effects of 60-Hz electric vs. magnetic fields on IL-1 and other immune parameters in sheep: Phase 5 study. Final report

    SciTech Connect

    Hefeneider, S.H.; McCoy, S.L.; Hausman, F.A.

    1998-10-01

    This study was designed to assess the effect of exposure to long-term low-frequency electric and magnetic fields (EMF) from a 500-kV transmission line on immune function in sheep. The primary hypothesis was that the reduction in IL-1 activity observed in two previous short-term studies (9 months) was due to EMF exposure from this transmission line. The secondary hypothesis was that long-term exposure (27 months) would impact immune function and animal health. To characterize the components of EMF responsible for the previously observed reduction in IL-1 activity, the experiment was designed not only to examine the effect of exposure to electric and magnetic fields, but also to examine the magnetic field component alone.

  9. Effects of 60-Hz electric and magnetic fields on operant and social behavior and on nueroendocrine system of nonhuman primates. Final report, October 1, 1988--December 31, 1992

    SciTech Connect

    Rogers, W.R.

    1993-01-22

    This series of experiments, using a well-characterized exposure facility and employing a variety of control procedures to study behavior and the neuroendocrine system of nonhuman primates, does not provide any evidence that exposure to power-frequency electric fields, or electric and magnetic fields in combination, for 12 hours per day for six weeks produces any deleterious effects in young-adult males. The primate experiments summarized here confirm the general conclusion indicated by experiments with rodents; although biological and behavioral changes can occur, there are no clear results establishing the occurrence of adverse effects in experiments involving relatively short-term exposure to environmentally-relevant electric or magnetic fields. Given the general agreement of the primate and rodent results, conclusions from the laboratory animal studies therefore presumably generalize well to humans.

  10. Effects of 60 Hz electric fields on operant and social stress behaviors of nonhuman primates. Technical status report, June 8-August 2, 1985

    SciTech Connect

    Not Available

    1985-08-02

    Progress made at calibrating the electric field distribution within and around cages used for behavorial testing of baboons is described. It is concluded that all of the parts of the ''system'' are rather constant in their readings. The only component which seems to show appreciable variability is the 4 cm probe. Although the optically coupled 4 cm spherical dipole probe usually performs well, it is becoming apparent that sometimes it can produce misleading results. Although we do not yet understand the situation completely, it appears as though there are at least two variables affecting the probe, battery voltage and humidity. 2 figs., 9 tabs.

  11. Investigation of effects of 60-Hz electric and magnetic fields on operant and social behavior and on the neuroendocrine system of nonhuman primates: Neuroendocrine portion of Experiment IV

    SciTech Connect

    Rogers, W.R.; Rhodes, J.W.

    1992-08-31

    This quarterly report covers the neuroendocrine Portion of Experiment IV. Serum melatonin concentration was measured in individual baboons, each implanted with a chronically indwelling venous cannula. As in Experiment III the system of six automatic blood samplers was used to achieve undisturbed, 24 hr per day, simultaneous blood sampling from six individual subjects. The objective of the neuroendocrine portion of Experiment IV was to determine if 30 kV/m electric and 1.0 G magnetic field (E/MF) exposure produced a 50% decline in nocturnal serum melatonin concentration. Other groups of subjects were tested concurrently during Experiment IV to assess E/MF effects on group social and individual operant behavior. The results of these experiments will be covered respectively in the next two quarterly reports. The results of Experiment IV, as was the case with the result of Experiments III and IIIA, provide little or no evidence that E/MF exposure, under the conditions of these experiments, affects nocturnal serum melatonin concentrations of nonhuman primates. Together the negative results of Experiments III, IIA and IV indicate that day-time exposure of primates to slow-onset/offset, regularly-scheduled E/MF does not produce melatonin suppression, strongly suggesting that such exposure would not affect human melatonin either. However, before concluding that E/MF exposure in general has no effect on primate melatonin, nightime exposure needs to be examined, and the possibility, suggested by the Pilot Experiment, that fast onset/offset, irregularly-scheduled E/MF can completely suppress melatonin needs to be investigated.

  12. Investigation of effects of 60-Hz electric and magnetic fields on operant and social behavior and on the neuroendocrine system of nonhuman primates. Quarterly report 37 - Part 1, Text

    SciTech Connect

    Rhodes, J.W.

    1992-07-14

    The objective of this program is to investigate behavioral and neuroendocrine effects associated with exposure to 60-Hz electric and magnetic fields, using the baboon (Papio cynocephalus). Results from this program are used to estimate consequences of human exposure to the electric and magnetic fields associated with electric power transmission. Electric and magnetic field measurements for Experiment IIIA (Confirmatory), Experiment IV and Social Behavior portion of Experiment III are presented. The systems for the production and monitoring of the fields performed satisfactorily during Experiment IIIA and during all but the last part of Experiment IV. In Experiment III, two-way repeated analyses of variance revealed statistically significant Group (Exposed and Sham Exposed) and Period (Baseline. Exposure, and Post-Exposure) main effects. Two significant Period by Group interactions were also found. Seven of the ten behavioral categories showed a main effect of Period. Two-sample t-test comparisons of the two groups for each period indicated that performance rates in two behavioral categories (Stereotypy and Posture) were significantly lower in the Exposure Group. In general, the Exposed subjects exhibited a trend of progressively lower performance rates across the three periods. Specific accomplishments reported in this document were: measurement of electric and magnetic fields for Experiments IIIA and IV, completed analysis of the Social Behavioral data from Experiment III, and a detailed discussion of statistical methods employed on the Social Behavioral portion of Experiment III, and hematology data were collected and recorded for Operant and Social Behavioral subjects for Experiment IV.

  13. Involvement of protein kinase C in the modulation of morphine-induced analgesia and the inhibitory effects of exposure to 60-hz magnetic fields in the land snail, Cepaea nemoralis

    SciTech Connect

    Kavaliers, M.; Ossenkopp, K.P. )

    1990-02-26

    One of the more consistent and dramatic effects of exposure to magnetic fields is the attenuation of morphine-induced analgesia. Results of previous studies have implicated alterations in calcium channel functioning and Ca{sup ++} flux in the mediation of these effects. It is generally accepted that Ca{sup ++}-activated-phospholipid-dependent protein kinase (Protein kinase C; PKC) plays an important role in relaying trans-membrane signaling in diverse Ca{sup ++} dependent cellular processes. In experiment 1 we observed that morphine-induced analgesia in the land snail, Cepaea nemoralis, as measured by the latency of an avoidance behavior to a warmed surface, was reduced by the PKC activator, SC-9, and was enhanced by the PKC inhibitors, H-7 and H-9. In contrast, HA-10004, a potent inhibitor of other protein kinases, but only a very weak inhibitor of PKC, had no effect on morphine-induced analgesia. In experiment 2 exposure of snails for 30 minutes to a 1.0 gauss (rms) 60-Hz magnetic field reduced morphine-induced analgesia. This inhibitory effect of the magnetic field was reduced by the PKC inhibitors, H-7 and H-9, and was augmented by the PKC activator SC-9. These results suggest that: (i) PKC is involved in the modulation of morphine-induced analgesia and, (ii) the inhibitory effects of magnetic fields involve PKC.

  14. What Are Electromagnetic Fields?

    MedlinePlus

    ... sources of electromagnetic fields Besides natural sources the electromagnetic spectrum also includes fields generated by human-made sources: ... ability to break bonds between molecules. In the electromagnetic spectrum, gamma rays given off by radioactive materials, cosmic ...

  15. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  16. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  17. Covariant electromagnetic field lines

    NASA Astrophysics Data System (ADS)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  18. Biomedical effects associated with energy-transmission systems: effects of 60-Hz electric fields on circadian and ultradian physiological and behavioral functions in small rodents. Period covered: January 1, 1980-December 31, 1980

    SciTech Connect

    Ehret, C.F.; Rosenberg, R.S.; Sacher, G.A.; Duffy, P.H.; Groh, K.R.; Russell, J.J.

    1980-01-01

    The effects of extremely low frequency (ELF) electric fields on transient patterns of circadian rhythms of physiological and behavioral end points are being investigated. This project is developing a data base to determine the exposure conditions that disturb the highly characteristic waveforms of ultradian, circadian, and infradian rhythms. The project has taken the following approach: (1) small rodents are exposed to well-defined ELF horizontal or vertical electric fields at nominal field strengths as high as 100 kV/m in individual residential facilities; (2) exposures follow a variety of schedules ranging from brief (one minute) to continuous, and including variations of circadian periodicities; (3) end points such as metabolism, activity, core body temperature, operant performance, and weight gain are continuously recorded for long intervals by microprocessor-controlled data acquisition systems; (4) the characteristic waveforms are analyzed by several statistical procedures for deviations from their unperturbed ultradian and circadian patterns; and (5) when and if exposures induce distrubances of the patterns, a search for concomitant neurochemical changes will begin. The following conclusions were reached: under a variety of exposure conditions the circadian regulatory system of the rat remained intact; brief ELF exposures at field strengths above 35 kV/m, presented during the inactive phase of the circadian cycle, produced a transient arousal in mice, characterized by increases in motor activity, carbon dioxide production, and oxygen consumption; the transient arousal habituated rapidly; no significant effects were seen in the second, third, or fourth exposure of mice using a one hour on, one hour off protocol; and there were no circadian aftereffects of the intermittent ELF stimulus in mice, based on measuresof rhythms of activity and gas metabolism.

  19. Investigation of effects of 60-Hz electric and magnetic fields on operant and social behavior and on the neuroendocrine system of nonhuman primates: Neuroendocrine portion of Experiment IV. Quarterly report No. 38

    SciTech Connect

    Rogers, W.R.; Rhodes, J.W.

    1992-08-31

    This quarterly report covers the neuroendocrine Portion of Experiment IV. Serum melatonin concentration was measured in individual baboons, each implanted with a chronically indwelling venous cannula. As in Experiment III the system of six automatic blood samplers was used to achieve undisturbed, 24 hr per day, simultaneous blood sampling from six individual subjects. The objective of the neuroendocrine portion of Experiment IV was to determine if 30 kV/m electric and 1.0 G magnetic field (E/MF) exposure produced a 50% decline in nocturnal serum melatonin concentration. Other groups of subjects were tested concurrently during Experiment IV to assess E/MF effects on group social and individual operant behavior. The results of these experiments will be covered respectively in the next two quarterly reports. The results of Experiment IV, as was the case with the result of Experiments III and IIIA, provide little or no evidence that E/MF exposure, under the conditions of these experiments, affects nocturnal serum melatonin concentrations of nonhuman primates. Together the negative results of Experiments III, IIA and IV indicate that day-time exposure of primates to slow-onset/offset, regularly-scheduled E/MF does not produce melatonin suppression, strongly suggesting that such exposure would not affect human melatonin either. However, before concluding that E/MF exposure in general has no effect on primate melatonin, nightime exposure needs to be examined, and the possibility, suggested by the Pilot Experiment, that fast onset/offset, irregularly-scheduled E/MF can completely suppress melatonin needs to be investigated.

  20. Investigation of effects of 60-Hz electric and magnetic fields on operant and social behavior and on the neuroendocrine system of nonhuman primates. Quarterly report, Scan and activity data for experiments 4 and 4A, [July 1, 1992--September 30, 1992

    SciTech Connect

    Smith, H.D.

    1992-11-02

    The objective of this program is to investigate behavioral and neuroendocrine effects associated with exposure to 60-Hz electric and magnetic fields (E/MF), using the baboon surrogate for the human. Baboon social groups were scanned and electronically monitored during Experiments IV and IVA. The social scan, form that the technicians used to identify baboon locations and proximity to other baboons: was used to gain a simple snapshot of the position of the baboons in their cage. The scans were taken hourly every morning and evening for a total of eight scans per side per day. This report covers in detail the scan and activity data-gathering process. A set of appendices is attached which include printouts of the data sets and adjunct material pertinent to interpreting the data. The supporting material is comprised of calendars and listings of major events that occurred during the scan and activity data collection.

  1. [Electromagnetic fields hypersensitivity].

    PubMed

    Sobiczewska, Elzbieta; Szmigielski, Stanisław

    2009-01-01

    The development of industry, particularly of new technologies in communication systems, gives rise to the number and diversty of electromagnetic field (EMF) sources in the environment. These sources, including power-frequent, radiofrequent and microwaves, make human life richer, safer and easier. But at the same time, there is growing concern about possible health risks connected with EMF exposure. An increasing number of persons have recently reported on a variety of health problems induced, in their opinion, by exposure to EMF. It is important to note that EMF levels to which these individuals are exposed are generally well below the recommended exposure limits and are certainly far below those known to produce any adverse effects. These persons call themselves "electromagnetic hypersensitivity individuals" And complain about experiencing various types of non-specific symptoms, including dermatological, neurological and vegetative. In the present paper, the problem of electromagnetic hypersensitivity phenomenon is discussed based on the recently published literature.

  2. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  3. Proca and electromagnetic fields

    SciTech Connect

    Hillion, P.; Quinnerz, S.

    1986-07-01

    In the framework of the proper orthochronous Lorentz group, the old connection is revived between the electromagnetic field characterized by a self-dual tensor and a traceless second-rank spinor obeying the Proca equation. The relationship between this spinor and the Hertz potential also considered as a self-dual tensor is emphasized. The extension of this formalism to meet the covariance under the full Lorentz group is also discussed.

  4. Carter separable electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, D.

    2000-02-01

    The purely electromagnetic analogue in flat space of Kerr's metric in general relativity is only rarely considered. Here we carry out in flat space a programme similar to Carter's investigation of metrics in general relativity in which the motion of a charged particle is separable. We concentrate on the separability of the motion (be it classical, relativistic or quantum) of a charged particle in electromagnetic fields that lie in planes through an axis of symmetry. In cylindrical polar coordinates (t,R,φ,z) the four-vector potential takes the form [formmu2] is the unit toroidal vector. The forms of the functions Φ(R,z) and A(R,z) are sought that allow separable motion. This occurs for relativistic motion only when AR,Φ and A2-Φ2 are all of the separable form ζ(λ)-η(μ)]/(λ-μ), where ζ and η are arbitrary functions, and λ and μ are spheroidal coordinates or degenerations thereof. The special forms of A and Φ that allow this are deduced. They include the Kerr metric analogue, with E+iB=-∇{q[(r-ia).(r-ia)]-1/2}. Rather more general electromagnetic fields allow separation when the motion is non-relativistic. The investigation is extended to fields that lie in parallel planes. Connections to Larmor's theorem are remarked upon.

  5. Electromagnetic fields and male breast cancer.

    PubMed

    Tynes, T

    1993-01-01

    The aetiology of male breast cancer is still considered to be rather unclear. Epidemiological studies have recently shown an excess risk of male breast cancer in "electrical workers" with potential exposure to electromagnetic (EM) fields. Interest on the possible association between pineal function and breast cancer has come into focus. The pineal hormone melatonin has been shown to reduce the incidence of experimentally-induced breast cancer in rats, the hormone is oncostatic and cytotoxic to breast, ovarian, and bladder cancer cell lines in vitro. Treatment of cancer patients with orally administered melatonin has been tried. Pineal function in humans is suppressed by light-at-night (LAN). Animal studies have shown that exposure to 60-Hz electric fields may also suppress the nocturnal rise in pineal melatonin production in adult rats. Breast cancer is the leading cause of cancer death among women in industrialised world. No good explanation has so far been provided for the increased incidence of this site during the last decades, although changes in fertility factors have had some effect. If new epidemiological and experimental data give support to the hypothesis that exposure to LAN and EM fields may increase breast cancer risk, this may have regulatory and political consequences for future use of electric power.

  6. Electromagnetic Fields and Cancer

    MedlinePlus

    ... are in the ionizing radiation part of the electromagnetic spectrum and can damage DNA or cells directly. Low- ... in the non-ionizing radiation part of the electromagnetic spectrum and are not known to damage DNA or ...

  7. Interactions between electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Schwan, H. P.

    1985-02-01

    We applied for this grant to support a workshop at Erice, Italy. This workshop has been commonly called Erice School and the main subject of this workshop is the interaction of electromagnetic fields with biological cells and molecules. The grant from ONR enabled us to invite American scientists to participants in this workshop and deliver scientific papers. The duration of the Erice School was ten days. Therefore, we had sufficient time to discuss the problems of electromagnetic radiations. Vigorous discussions took place during official sessions and during private conversations. The participants of this workshop are mostly those who have been active in the research on bioelectromagnetics, but there are some numbers of speakers who discussed the basic electrical and magnetic properties of polyelectrolytes, biological membranes and tissue. The workshop was unique in that there were participants with a variety of training backgrounds. This enabled us to exchange the information between applied scientists and basic scientists. Also, active exchanges of opinions took place between biological scientists and physical scientists.

  8. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  9. Nonlinear electromagnetic fields and symmetries

    NASA Astrophysics Data System (ADS)

    Barjašić, Irena; Gulin, Luka; Smolić, Ivica

    2017-06-01

    We extend the classical results on the symmetry inheritance of the canonical electromagnetic fields, described by the Maxwell's Lagrangian, to a much wider class of models, which include those of the Born-Infeld, power Maxwell and the Euler-Heisenberg type. Symmetry inheriting fields allow the introduction of electromagnetic scalar potentials and these are proven to be constant on the Killing horizons. Finally, using the relations obtained along the analysis, we generalize and simplify the recent proof for the symmetry inheritance of the 3-dimensional case, as well as give the first constraint for the higher dimensional electromagnetic fields.

  10. Effects of electromagnetic fields on fecundity in the chicken.

    PubMed

    Krueger, W F; Giarola, A J; Bradley, J W; Shrekenhamer, A

    1975-02-28

    Egg production was reduced when young laying hens were kept in contact with metal cages while being continuously exposed to the following cw fields: a vhf field at a frequency of 260 MHz, with an incident power that decreased from 100 to 4mW during the experiment; a uhf field at a frequency of 915 MHz, with an incident power of 800 mW during the first 2.5 weeks, zero during the following week, and 200 mW for the remainder of the experiment; a uhf field at 2.435 GHz, with an incident power of 800 mW; an elf electric field at a frequency of 60 Hz, with a calculated value of field strength of 1600 V/m; an elf magnetic field at 60 Hz, with a value of magnetic flux density of 1.4G. With the exception of the hens exposed to the uhf field at 915 MHz, all other treated groups laid significantly less eggs than the controls (p smaller than or equal to 0.01). This reduction (similar 15% less than the controls) began with the first 4-week production period. The egg production curves for the hens exposed to the vhf field at 260 MHz and to the uhf field at 2.435 GHz were approximately the same beginning with the sixth week of production, and they maintained comparable production levels for the remainder of the experiment. An 8% total drop in production also was experienced in the group of birds exposed to the 915-MHz field, which pulsed because of equipment failure. Egg production rate curves for the birds in the elf electric and magnetic fields were substantially different from those exhibited by birds in the other electromagnetic fields. The birds in the E-field regained a production level comparable to the controls after 11 weeks production, whereas those in the B-field dropped to 31% production, which was approximately 40% poorer than the controls by the twelfth week of production. Fertility of cocks and hens was not affected by continuous low-power vhf and uhf near-zone electromagnetic exposure or elf electric or magnetic field treatment. Fertility was exceptionally good

  11. Electromagnetic Field Effects in Explosives

    NASA Astrophysics Data System (ADS)

    Tasker, D. G.; Whitley, V. H.; Lee, R. J.

    2009-12-01

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: enhancement of performance; and control of initiation and growth of reaction. Two series of experiments were performed to determine the effects of 1-T magnetic fields on explosive initiation and growth in the modified gap test and on the propagation of explosively generated plasma into air. The results have implications for the control of reactions in explosives and for the use of electromagnetic particle velocity gauges.

  12. Electromagnetic fields and public health.

    PubMed Central

    Aldrich, T E; Easterly, C E

    1987-01-01

    A review of the literature is provided for the topic of health-related research and power frequency electromagnetic fields. Minimal evidence for concern is present on the basis of animal and plant research. General observation would accord with the implication that there is no single and manifest health effect as the result of exposure to these fields. There are persistent indications, however, that these fields have biologic activity, and consequently, there may be a deleterious component to their action, possibly in the presence of other factors. Power frequency electromagnetic field exposures are essentially ubiquitous in modern society, and their implications in the larger perspective of public health are unclear at this time. Electromagnetic fields represent a methodological obstacle for epidemiologic studies and a quandary for risk assessment; there is need for more data. PMID:3319560

  13. Power line emission 50/60 Hz and Schumann resonances observed by microsatellite Chibis-M in the Earth's ionosphere

    NASA Astrophysics Data System (ADS)

    Dudkin, Denys; Pilipenko, Vyacheslav; Dudkin, Fedir; Pronenko, Vira; Klimov, Stanislav

    2015-04-01

    The overhead power lines are the sources of intense wideband electromagnetic (EM) emission, especially in ELF-VLF range, because of significant length (up to a few thousand kilometers) and strong 50/60 Hz currents with noticeable distortion. The radiation efficiency of the power line emission (PLE) increases with the harmonic order, so they are well observed by ground-based EM sensors. However their observations by low orbiting satellites (LEO) are very rare, particularly at basic harmonic 50/60 Hz, because of the ionospheric plasma opacity in ELF band. The Schumann resonance (SR) is the narrow-band EM noise that occurs due to the global thunderstorm activity in the Earth-ionosphere cavity. The first five eigenmodes of the SR are 7.8, 14.3, 20.8, 27.3 and 33.8 Hz and, thus, SR harmonics are also strongly absorbed by the Earth ionosphere. The published numerical simulations show that the penetration depth of such an ELF emission into the Earth's ionosphere is limited to 50-70 km for electric field and 120-240 km for magnetic field. From this follows, that PLE and SR can hardly ever be detected by LEO satellites, i.e. above the F-layer of ionosphere. In spite of this fact, these emissions were recently observed with use of the electric field antennas placed on the satellites C/NOFS (USA) and Chibis-M (Russia). Microsatellite Chibis-M was launched on January 24, 2012, at 23:18:30 UTC from the cargo ship "Progress M-13M" to circular orbit with altitude ~500 km and inclination ~52° . Chibis-M mass is about 40 kg where one third is a scientific instrumentation. The dimensions of the microsatellite case are 0.26x0.26x0.54 m with the outside mounted solar panels, service and scientific instrumentation. The main scientific objective of Chibis-M is the theoretical model verification for the atmospheric gamma-ray bursts. It requires the study of the accompanying EM processes such as the plasma waves produced by the lightning discharges in the VLF band. Chibis-M decayed on 15

  14. String theory in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Makeenko, Yuri M.; Semenoff, Gordon W.; Szabo, Richard J.

    2003-02-01

    A review of various aspects of superstrings in background electromagnetic fields is presented. Topics covered include the Born-Infeld action, spectrum of open strings in background gauge fields, the Schwinger mechanism, finite-temperature formalism and Hagedorn behaviour in external fields, Debye screening, D-brane scattering, thermodynamics of D-branes, and noncommutative field and string theories on D-branes. The electric field instabilities are emphasized throughout and contrasted with the case of magnetic fields. A new derivation of the velocity-dependent potential between moving D-branes is presented, as is a new result for the velocity corrections to the one-loop thermal effective potential.

  15. Explanations, Education, and Electromagnetic Fields.

    ERIC Educational Resources Information Center

    Friedman, Sharon M.

    Explaining complex scientific and environmental subjects in the mass media is difficult to do, particularly under such constraints as short deadlines and lack of space or time. When a scientific controversy and human health risk are involved, this becomes an even harder task to accomplish. The subject of electromagnetic fields (EMF) involves…

  16. Influence of exposure to electromagnetic field on the cardiovascular system.

    PubMed

    Jeong, J H; Kim, J S; Lee, B C; Min, Y S; Kim, D S; Ryu, J S; Soh, K S; Seo, K M; Sohn, U D

    2005-01-01

    1 We examined whether extremely low frequency electromagnetic fields (ELF-EMF) affect the basal level of cardiovascular parameters and influence of drugs acting on the sympathetic nervous system. 2 Male rats were exposed to sham control and EMF (60 Hz, 20 G) for 1 (MF-1) or 5 days (MF-5). We evaluated the alterations of blood pressure (BP), pulse pressure (PP), heart rate (HR), and the PR interval, QRS interval and QT interval on the electrocardiogram and dysrhythmic ratio in basal level and dysrhythmia induced by beta-adrenoceptor agonists. 3 In terms of the basal levels, there were no statistically significant differences among control, MF-1 and MF-5 in PR interval, QRS interval, mean BP, HR and PP. However, the QT interval, representing ventricular repolarization, was significantly reduced by MF-1 (P < 0.05). 4 (-)-Dobutamine (beta1-adrenoceptor-selective agonist)-induced tachycardia was significantly suppressed by ELF-EMF exposure in MF-1 for the increase in HR (DeltaHR), the decrease in QRS interval (DeltaQRS) and the decrease in QT (DeltaQT) interval. Adrenaline (nonselective beta-receptor agonist)-induced dysrhythmia was also significantly suppressed by ELF-EMF in MF-1 for the number of missing beats, the dysrhythmic ratio, and the increase in BP and PP. 5 These results indicated that 1-day exposure to ELF-EMF (60 Hz, 20 G) could suppress the increase in HR by affecting ventricular repolarization and may have a down-regulatory effect on responses of the cardiovascular system induced by sympathetic agonists.

  17. Health hazards and electromagnetic fields.

    PubMed

    Saunders, T

    2003-11-01

    Biological rhythms, physical wellbeing and mental states are dependent on our electrical brainwave system interacting with the extremely weak electromagnetic fields generated by the Earth's telluric and Cosmic radiations. In a single generation, since the evolution of humankind over millions of years, we are exposed to a wide range of powerful, artificially generated electromagnetic radiation which adversely affects the subtle balance in nature's energy fields and has become the source of so-called 'diseases of civilization'. This also includes electromagnetic sensitivity. Generally, there is a lack of awareness and understanding of the impact electromagnetic fields can have upon health and wellbeing.Our ancestors were acutely aware that certain locations, were perceived to have a positive energy field which was beneficial to health and vitality. Over time, these areas are now referred to as sacred sites for spiritual ceremony and as healing centres. In contrast, there are other geographical locations that can have a negative effect upon health and these are known as geopathic stress zones. It is believed that such zones can interfere with the brain's normal function that inhibits the release of melatonin and other endocrine secretions needed to replenish the immune system. Geopathic stress can affect animals and plant life as well as human beings and significantly contributes to sick building syndrome (SBS). Whilst there is an increasing body of opinion amongst eminent researchers and scientists who are addressing these issues, the establishment professions are slow to change. However, very gradually, modern allopathic medicine and attitudes are beginning to recognise the extraordinary wisdom and efficacy of ancient traditions such as acupuncture, light, colour and other therapies based on the understanding and treatment of the interaction of a person's electromagnetic subtle body and the immediate environment. These and many other 'complementary' therapies may

  18. Distinct Epidermal Keratinocytes Respond to Extremely Low-Frequency Electromagnetic Fields Differently

    PubMed Central

    Huang, Chao-Ying; Chuang, Chun-Yu; Shu, Wun-Yi; Chang, Cheng-Wei; Chen, Chaang-Ray; Fan, Tai-Ching; Hsu, Ian C.

    2014-01-01

    Following an increase in the use of electric appliances that can generate 50 or 60 Hz electromagnetic fields, concerns have intensified regarding the biological effects of extremely low-frequency electromagnetic fields (ELF-EMFs) on human health. Previous epidemiological studies have suggested the carcinogenic potential of environmental exposure to ELF-EMFs, specifically at 50 or 60 Hz. However, the biological mechanism facilitating the effects of ELF-EMFs remains unclear. Cellular studies have yielded inconsistent results regarding the biological effects of ELF-EMFs. The inconsistent results might have been due to diverse cell types. In our previous study, we indicated that 1.5 mT, 60 Hz ELF-EMFs will cause G1 arrest through the activation of the ATM-Chk2-p21 pathway in human keratinocyte HaCaT cells. The aim of the current study was to investigate whether ELF-EMFs cause similar effects in a distinct epidermal keratinocyte, primary normal human epidermal keratinocytes (NHEK), by using the same ELF-EMF exposure system and experimental design. We observed that ELF-EMFs exerted no effects on cell growth, cell proliferation, cell cycle distribution, and the activation of ATM signaling pathway in NHEK cells. We demonstrated that the 2 epidermal keratinocytes responded to ELF-EMFs differently. To further validate this finding, we simultaneously exposed the NHEK and HaCaT cells to ELF-EMFs in the same incubator for 168 h and observed the cell growths. The simultaneous exposure of the two cell types results showed that the NHEK and HaCaT cells exhibited distinct responses to ELF-EMFs. Thus, we confirmed that the biological effects of ELF-EMFs in epidermal keratinocytes are cell type specific. Our findings may partially explain the inconsistent results of previous studies when comparing results across various experimental models. PMID:25409520

  19. Distinct epidermal keratinocytes respond to extremely low-frequency electromagnetic fields differently.

    PubMed

    Huang, Chao-Ying; Chuang, Chun-Yu; Shu, Wun-Yi; Chang, Cheng-Wei; Chen, Chaang-Ray; Fan, Tai-Ching; Hsu, Ian C

    2014-01-01

    Following an increase in the use of electric appliances that can generate 50 or 60 Hz electromagnetic fields, concerns have intensified regarding the biological effects of extremely low-frequency electromagnetic fields (ELF-EMFs) on human health. Previous epidemiological studies have suggested the carcinogenic potential of environmental exposure to ELF-EMFs, specifically at 50 or 60 Hz. However, the biological mechanism facilitating the effects of ELF-EMFs remains unclear. Cellular studies have yielded inconsistent results regarding the biological effects of ELF-EMFs. The inconsistent results might have been due to diverse cell types. In our previous study, we indicated that 1.5 mT, 60 Hz ELF-EMFs will cause G1 arrest through the activation of the ATM-Chk2-p21 pathway in human keratinocyte HaCaT cells. The aim of the current study was to investigate whether ELF-EMFs cause similar effects in a distinct epidermal keratinocyte, primary normal human epidermal keratinocytes (NHEK), by using the same ELF-EMF exposure system and experimental design. We observed that ELF-EMFs exerted no effects on cell growth, cell proliferation, cell cycle distribution, and the activation of ATM signaling pathway in NHEK cells. We demonstrated that the 2 epidermal keratinocytes responded to ELF-EMFs differently. To further validate this finding, we simultaneously exposed the NHEK and HaCaT cells to ELF-EMFs in the same incubator for 168 h and observed the cell growths. The simultaneous exposure of the two cell types results showed that the NHEK and HaCaT cells exhibited distinct responses to ELF-EMFs. Thus, we confirmed that the biological effects of ELF-EMFs in epidermal keratinocytes are cell type specific. Our findings may partially explain the inconsistent results of previous studies when comparing results across various experimental models.

  20. Delineation of electric and magnetic field effects of extremely low frequency electromagnetic radiation on transcription

    SciTech Connect

    Greene, J.J.; Skowronski, W.J.; Mullins, J.M.; Nardone, R.M.; Penafiel, M.; Meister, R. )

    1991-01-31

    The relative effects of the electric and magnetic field components of extremely low frequency electromagnetic radiation (ELF) on transcription were examined in human leukemia HL-60 cells. Delineation of the individual field contributions was achieved by irradiating cells in separate concentric compartments of a culture dish within a solenoid chamber. This exposure system produced a homogeneous magnetic field with a coincident electric field whose strength varied directly with distance from the center of the culture dish. Irradiation of HL-60 cells with sine wave ELF at 60 Hz and a field strength of 10 Gauss produced a transient increase in the transcriptional rates which reached a maximum of 50-60% enhancement at 30-120 minutes of irradiation and declined to near basal levels by 18 hours. Comparison of transcription responses to ELF of cells in different concentric compartments revealed that the transcriptional effects were primarily the result of the electric field component with little or no contribution from the magnetic field.

  1. Improvement of both dystonia and tics with 60 Hz pallidal deep brain stimulation.

    PubMed

    Hwynn, Nelson; Tagliati, Michele; Alterman, Ron L; Limotai, Natlada; Zeilman, Pamela; Malaty, Irene A; Foote, Kelly D; Morishita, Takashi; Okun, Michael S

    2012-09-01

    Deep brain stimulation has been utilized in both dystonia and in medication refractory Tourette syndrome. We present an interesting case of a patient with a mixture of disabling dystonia and Tourette syndrome whose coexistent dystonia and tics were successfully treated with 60 Hz-stimulation of the globus pallidus region.

  2. Neuroendocrine mediated effects of electromagnetic-field exposure: Possible role of the pineal gland

    SciTech Connect

    Wilson, W.B.; Stevens, R.G.; Anderson, L.E. )

    1989-01-01

    Reports from recent epidemiological studies have suggested a possible association between extremely low frequently (ELF; including 50- or 60-Hz) electric- and magnetic-field exposure, and increased risk of certain cancers, depression, and miscarriage. ELF field-induced pineal gland dysfunction is a possible etiological factor in these effects. Work in our laboratory and elsewhere has shown that ELF electromagnetic-field exposure can alter the normal circadian rhythm of melatonin synthesis and release in the pineal gland. Consequences of reduced or inappropriately timed melatonin release on the endocrine, neuronal, and immune systems are discussed. Laboratory data linking ELF field exposure to changes in pineal circadian rhythms in both animal and humans are reviewed. The authors suggest that the pineal gland, in addition to being a convenient locus for measuring dyschronogenic effects of ELF field exposure, may play a central role in biological response to these fields via alterations in the melatonin signal.

  3. Extremely low frequency electromagnetic fields

    SciTech Connect

    Wilson, B.W. . Chemical Sciences Dept.); Stevens, R.G. ); Anderson, L.E. . Life Sciences Center)

    1990-01-01

    The authors focus on that which seems to be the central scientific issue emerging from current ELF research in epidemiology and in the laboratory; namely, can ELF electromagnetic fields interact with biological systems in such a way as to increase cancer risk The authors examine how cancer risk might be related to two reproducible biological effects of ELF exposure: effects on the pineal gland and circadian biology, and effects on calcium homeostasis in cells. Because they are concerned with the possible biological mechanisms of carcinogenesis, epidemiological studies are only briefly reviewed.

  4. 78 FR 33633 - Human Exposure to Radiofrequency Electromagnetic Fields

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... to Radiofrequency Electromagnetic Fields; Reassessment of Exposure to Radiofrequency Electromagnetic..., and 95 Human Exposure to Radiofrequency Electromagnetic Fields AGENCY: Federal Communications... electromagnetic fields. More specifically, the Commission clarifies evaluation procedures and references...

  5. Quantization of Electromagnetic Fields in Cavities

    NASA Technical Reports Server (NTRS)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  6. Electromagnetic fields in cased borehole

    SciTech Connect

    Lee, Ki Ha; Kim, Hee Joon; Uchida, Toshihiro

    2001-07-20

    Borehole electromagnetic (EM) measurements, using fiberglass-cased boreholes, have proven useful in oil field reservoir characterization and process monitoring (Wilt et al., 1995). It has been presumed that these measurements would be impossible in steel-cased wells due to the very large EM attenuation and phase shifts. Recent laboratory and field studies have indicated that detection of EM signals through steel casing should be possible at low frequencies, and that these data provide a reasonable conductivity image at a useful scale. Thus, we see an increased application of this technique to mature oilfields, and an immediate extension to geothermal industry as well. Along with the field experiments numerical model studies have been carried out for analyzing the effect of steel casing to the EM fields. The model used to be an infinitely long uniform casing embedded in a homogeneous whole space. Nevertheless, the results indicated that the formation signal could be accurately recovered if the casing characteristics were independently known (Becker et al., 1998; Lee el al., 1998). Real steel-cased wells are much more complex than the simple laboratory models used in work to date. The purpose of this study is to develop efficient numerical methods for analyzing EM fields in realistic settings, and to evaluate the potential application of EM technologies to cross-borehole and single-hole environment for reservoir characterization and monitoring.

  7. Accounting for human variability and sensitivity in setting standards for electromagnetic fields.

    PubMed

    Bailey, William H; Erdreich, Linda S

    2007-06-01

    Biological sensitivity and variability are key issues for risk assessment and standard setting. Variability encompasses general inter-individual variations in population responses, while sensitivity relates to unusual or extreme responses based on genetic, congenital, medical, or environmental conditions. For risk assessment and standard setting, these factors affect estimates of thresholds for effects and dose-response relationships and inform efforts to protect the more sensitive members of the population, not just the typical or average person. While issues of variability and sensitivity can be addressed by experimental and clinical studies of electromagnetic fields, investigators have paid little attention to these important issues. This paper provides examples that illustrate how default assumptions regarding variability can be incorporated into estimates of 60-Hz magnetic field exposures with no risk of cardiac stimulation and how population thresholds and variability of peripheral nerve stimulation responses at 60-Hz can be estimated from studies of pulsed gradient magnetic fields in magnetic resonance imaging studies. In the setting of standards for radiofrequency exposures, the International Commission for Non-Ionizing Radiation Protection uses inter-individual differences in thermal sensitivity as one of the considerations in the development of "safety factors." However, neither the range of sensitivity nor the sufficiency or excess of the 10-fold and the additional 5-fold safety factors have been assessed quantitatively. Data on the range of responses between median and sensitive individuals regarding heat stress and cognitive function should be evaluated to inform a reassessment of these safety factors and to identify data gaps.

  8. Extremely low frequency electromagnetic field measurements at the Hylaty station and methodology of signal analysis

    NASA Astrophysics Data System (ADS)

    Kulak, Andrzej; Kubisz, Jerzy; Klucjasz, Slawomir; Michalec, Adam; Mlynarczyk, Janusz; Nieckarz, Zenon; Ostrowski, Michal; Zieba, Stanislaw

    2014-06-01

    We present the Hylaty geophysical station, a high-sensitivity and low-noise facility for extremely low frequency (ELF, 0.03-300 Hz) electromagnetic field measurements, which enables a variety of geophysical and climatological research related to atmospheric, ionospheric, magnetospheric, and space weather physics. The first systematic observations of ELF electromagnetic fields at the Jagiellonian University were undertaken in 1994. At the beginning the measurements were carried out sporadically, during expeditions to sparsely populated areas of the Bieszczady Mountains in the southeast of Poland. In 2004, an automatic Hylaty ELF station was built there, in a very low electromagnetic noise environment, which enabled continuous recording of the magnetic field components of the ELF electromagnetic field in the frequency range below 60 Hz. In 2013, after 8 years of successful operation, the station was upgraded by extending its frequency range up to 300 Hz. In this paper we show the station's technical setup, and how it has changed over the years. We discuss the design of ELF equipment, including antennas, receivers, the time control circuit, and power supply, as well as antenna and receiver calibration. We also discuss the methodology we developed for observations of the Schumann resonance and wideband observations of ELF field pulses. We provide examples of various kinds of signals recorded at the station.

  9. Exposure of human cells to electromagnetic fields. Final report, 1 January 1988-31 December 1989

    SciTech Connect

    Henderson, A.S.

    1990-02-27

    This study addressed the following basic question: How does extremely low-level non-ionizing radiation affect human cells, and if there are cellular responses that can be directly related to signal parameters such as frequency, amplitude and time of exposure. The focus of these studies was to identify transcriptional changes in human cultured cells, HL60, which result from exposure of these cells to defined extremely low frequency electromagnetic fields (elf EMFS). Our experiments show a pronounced measurable response observed as transcript increase, with associated changes in protein synthesis. The major findings relative to transcriptional changes are fourfold: (1) transcript changes in human cells correlate with previous findings of transcriptional and translational changes in Drosophila salivary gland cells; (2) the frequency of the signal in the amplitude (with resulting changes in E- and B-fields) in log increments from 0.5 to 500 uV at 60 Hz gives both amplitude and time-dependent windows, and (4) genes not usually expressed in HL-60 are unaffected by exposure to elf EMFs. Changes in the overall protein synthetic pattern have also been observed following exposure of HL60 cells to 60 Hz signals.

  10. Noninvasive valve monitor using alternating electromagnetic field

    DOEpatents

    Eissenberg, David M.; Haynes, Howard D.; Casada, Donald A.

    1993-01-01

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  11. Noninvasive valve monitor using alternating electromagnetic field

    DOEpatents

    Eissenberg, D.M.; Haynes, H.D.; Casada, D.A.

    1993-03-16

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  12. Medical applications of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lai, Henry C.; Singh, Narendra P.

    2010-04-01

    In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.

  13. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1997-06-24

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 26 figs.

  14. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1998-02-10

    An apparatus and method for generating homogeneous electromagnetic fields within a volume is disclosed. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 39 figs.

  15. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James T.

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  16. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1998-05-05

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 55 figs.

  17. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James Terry

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  18. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James T.

    1997-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially cancelling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  19. Effects of electromagnetic field exposure on the heart: a systematic review.

    PubMed

    Elmas, Onur

    2016-01-01

    The use of electrical devices has gradually increased throughout the last century, and scientists have suggested that electromagnetic fields (EMF) generated by such devices may have harmful effects on living creatures. This work represents a systematic review of collective scholarly literature examining the effects of EMFs on the heart. Although most works describing effects of EMF exposure have been carried out using city electric frequencies (50-60 Hz), a consensus has not been reached about whether long- or short-term exposure to 50-60 Hz EMF negatively affects the heart. Studies have indicated that EMFs produced at cell-phone frequencies cause no-effect on the heart. Differences between results of studies may be due to a compensatory response developed by the body over time. At greater EMF strengths or shorter exposures, the ability of the body to develop compensation mechanisms is reduced and the potential for heart-related effects increases. It is noteworthy that diseases of heart tissues such as myocardial ischemia can also be successfully treated using EMF. Despite the substantial volume of data that has been collected on heart-related effects of EMFs, additional studies are needed at the cellular and molecular level to fully clarify the subject. Until the effects of EMF on heart tissue are more fully explored, electronic devices generating EMFs should be approached with caution.

  20. Nanomechanical electric and electromagnetic field sensor

    DOEpatents

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  1. Effects on the nervous system by exposure to electromagnetic fields: experimental and clinical studies

    SciTech Connect

    Hansson, H.A.

    1988-01-01

    Exposure to electromagnetic fields may cause various types of effects on nervous tissue, in severe cases even irreversible damage. The exposure conditions, i.e. frequency including type and extent of modulation, time, intensity, wave form, as well as shape, size and position of exposed subject and possible treatment with drugs, are factors determining if damage, acute or chronic, ultimately result. Long term exposure of newborn rabbits, rats and mice to electromagnetic fields of power frequency (10-14 kV/m; 50 or 60 Hz; sinusoidal wave form; 21-24 h per day) may cause affection and even damage to the nervous system. Large nerve cells showed reactive changes such as lamellar bodies and cytoskeletal alteration to an extent varying with exposure conditions. Reactive neuroglial changes as well as increase in neuroglial marker proteins could concomitantly be demonstrated. The changes seemed to be reversible although we only have incomplete data available. Exposure in vitro of frog sciatic nerve to 16-60 Hz sinusoidal low current (50-1000 nA) for 17 h induced cytoskeletal changes. Exposure of rabbits to pulsed microwaves of moderate to high intensity during 1 h per day during three days resulted in no obvious initial changes in behavior. Minimal acute damage could be demonstrated. However, after two to four months and later on both structural, immunohistochemical and biochemical changes could be documented. Radar technicians accidently and/or occupationally exposed to microwaves showed psychoneurological signs of affection as well as changes in cerebrospinal fluid protein pattern. No related changes have been noticed among matched controls.

  2. Interaction of electromagnetic fields and biological tissues

    NASA Astrophysics Data System (ADS)

    Darshan Shrivastava, Bhakt; Barde, Ravindra; Mishra, Ashutosh; Phadke, S.

    2014-09-01

    This paper deals with the electromagnetic field interact in biological tissues. It is actually one of the important challenges for the electromagnetic field for the recent years. The experimental techniques are use in Broad-band Dielectric Measurement (BDM) with LCR meters. The authors used Bones and scales of Fish taken from Narmada River (Rajghat Dist. Barwani) as biological tissues. Experimental work carried out done in inter-university consortium (IUC) Indore. The major difficulties that appear are related to the material properties, to the effect of the electromagnetic problem and to the thermal model of the biological tissues.

  3. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  4. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  5. Induction of cell activation processes by low frequency electromagnetic fields.

    PubMed

    Simkó, Myrtill

    2004-10-20

    Electromagnetic fields (EMF) such as those from electric power transmission and distribution lines (50/60 Hz) have been associated with increased risk of childhood leukemia, cancer of the nervous system, and lymphomas. Several in vitro studies on EMF effects were performed to clarify the existing controversies, define the risks, and determine the possible mechanisms of adverse effects. In some of these reports, the effects were related to other mechanisms of carcinogenesis. Modification in cell proliferation was observed after EMF exposure and a few reports on cytotoxic effects have also been published. This limited review gives an overview of the current results of scientific research regarding in vitro studies on the effects of power line frequency EMF, but also cell biological mechanisms and their potential involvement in genotoxicity and cytotoxicity are discussed. Cell cycle control and signal transduction processes are included to elucidate the biochemical background of possible interactions. Exposure to EMF has been also linked to the incidence of leukemia and other tumors in some epidemiological studies and is considered as "possibly carcinogenic to humans", but there is no well-established biological mechanism that explains such a relation. Furthermore, EMF is also shown as a stimulus for immune relevant cells (e.g., macrophages) to release free radicals. It is known that chronic activation of macrophages is associated with the onset of phagocytosis and leads to increased formation of reactive oxygen species, which themselves may cause DNA damage and are suggested to lead to carcinogenesis. To demonstrate a possible interaction between EMF and cellular systems, we present a mechanistic model describing cell activation as a major importance for cellular response.

  6. Program For Displaying Computed Electromagnetic Fields

    NASA Technical Reports Server (NTRS)

    Hom, Kam W.

    1995-01-01

    EM-ANIMATE computer program specialized visualization displays and animates output data on near fields and surface currents computed by electromagnetic-field program - in particular MOM3D (LAR-15074). Program based on windows and contains user-friendly, graphical interface for setting viewing options, selecting cases, manipulating files, and like. Written in FORTRAN 77. EM-ANIMATE also available as part of package, COS-10048, includes MOM3D, IRIS program computing near-field and surface-current solutions of electromagnetic-field equations.

  7. Controlling the Electromagnetic Field Confinement with Metamaterials

    PubMed Central

    Bonache, Jordi; Zamora, Gerard; Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Martín, Ferran

    2016-01-01

    The definition of a precise illumination region is essential in many applications where the electromagnetic field should be confined in some specific volume. By using conventional structures, it is difficult to achieve an adequate confinement distance (or volume) with negligible levels of radiation leakage beyond it. Although metamaterial structures and metasurfaces are well-known to provide high controllability of their electromagnetic properties, this feature has not yet been applied to solve this problem. We present a method of electromagnetic field confinement based on the generation of evanescent waves by means of metamaterial structures. With this method, the confinement volume can be controlled, namely, it is possible to define a large area with an intense field without radiation leakage. A prototype working in the microwave region has been implemented, and very good agreement between the measurements and the theoretical prediction of field distribution has been obtained. PMID:27886230

  8. Controlling the Electromagnetic Field Confinement with Metamaterials

    NASA Astrophysics Data System (ADS)

    Bonache, Jordi; Zamora, Gerard; Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Martín, Ferran

    2016-11-01

    The definition of a precise illumination region is essential in many applications where the electromagnetic field should be confined in some specific volume. By using conventional structures, it is difficult to achieve an adequate confinement distance (or volume) with negligible levels of radiation leakage beyond it. Although metamaterial structures and metasurfaces are well-known to provide high controllability of their electromagnetic properties, this feature has not yet been applied to solve this problem. We present a method of electromagnetic field confinement based on the generation of evanescent waves by means of metamaterial structures. With this method, the confinement volume can be controlled, namely, it is possible to define a large area with an intense field without radiation leakage. A prototype working in the microwave region has been implemented, and very good agreement between the measurements and the theoretical prediction of field distribution has been obtained.

  9. Deficits in high- (>60 Hz) gamma-band oscillations during visual processing in schizophrenia

    PubMed Central

    Grützner, Christine; Wibral, Michael; Sun, Limin; Rivolta, Davide; Singer, Wolf; Maurer, Konrad; Uhlhaas, Peter J.

    2013-01-01

    Current theories of the pathophysiology of schizophrenia have focused on abnormal temporal coordination of neural activity. Oscillations in the gamma-band range (>25 Hz) are of particular interest as they establish synchronization with great precision in local cortical networks. However, the contribution of high gamma (>60 Hz) oscillations toward the pathophysiology is less established. To address this issue, we recorded magnetoencephalographic (MEG) data from 16 medicated patients with chronic schizophrenia and 16 controls during the perception of Mooney faces. MEG data were analysed in the 25–150 Hz frequency range. Patients showed elevated reaction times and reduced detection rates during the perception of upright Mooney faces while responses to inverted stimuli were intact. Impaired processing of Mooney faces in schizophrenia patients was accompanied by a pronounced reduction in spectral power between 60–120 Hz (effect size: d = 1.26) which was correlated with disorganized symptoms (r = −0.72). Our findings demonstrate that deficits in high gamma-band oscillations as measured by MEG are a sensitive marker for aberrant cortical functioning in schizophrenia, suggesting an important aspect of the pathophysiology of the disorder. PMID:23532620

  10. Aliasing of 60-Hz Artifact as a Result of Compressed Time Base.

    PubMed

    Bolen, Robert D; Edwards, Jonathan C; Halford, Jonathan J

    2017-09-01

    Digital EEG has brought about greater flexibility in data interpretation but has also resulted in new and unique artifacts. As digital EEG has evolved, an increase in intensive care unit monitoring has occurred, bringing more sources of artifact to light. Aliasing as a result of a combination of compressed time base and display monitor resolution can result in appearance of spurious waveforms that can potentially skew interpretation. A portion of a digital EEG from an intensive care unit patient acquired at a sample rate of 1,024 Hz was reviewed at a time base of 15 mm/second on a monitor with a resolution of 1,920 × 1,080. At a time base of 15 mm/second, a 60-Hz artifact resulted in the appearance of a 4-Hz delta artifact that resolved when the time base was changed to a more standard 30 mm/second. A software malfunction of the digital antialiasing filter for display resulted in the appearance of a novel 4-Hz artifact.

  11. Effects of power frequency electromagnetic fields on melatonin and sleep in the rat.

    PubMed

    Dyche, Jeff; Anch, A Michael; Fogler, Kethera A J; Barnett, David W; Thomas, Cecil

    2012-01-01

    Studies investigating the effect of power frequency (50-60 Hz) electromagnetic fields (EMF) on melatonin synthesis in rats have been inconsistent with several showing suppression of melatonin synthesis, others showing no effect and a few actually demonstrating small increases. Scant research has focused on the ensuing sleep patterns of EMF exposed rats. The present study was designed to examine the effects of extremely low power frequency electromagnetic fields (EMF) on the production of melatonin and the subsequent sleep structure in rats. Eighteen male Sprague-Dawley rats were exposed to a 1000 milligauss (mG) magnetic field for 1 month. Urine was collected for the final 3 days of the exposure period for analysis of 6-sulphatoxymelatonin, the major catabolic product of melatonin found in urine. Subsequent sleep was analyzed over a 24-hour period. Melatonin production was mildly increased in exposed animals. Although there were no statistically significant changes in sleep structure, exposed animals showed slight decreases in REM (rapid eye movement) sleep as compared to sham (non-exposed) animals. Power frequency magnetic fields induced a marginally statistically significant increase in melatonin levels in exposed rats compared to control. Subsequent sleep analysis indicated little effect on the sleep architecture of rats, at least not within the first day after 1 month's continuous exposure. Varying results in the literature are discussed and future research suggested.

  12. Effects of power frequency electromagnetic fields on melatonin and sleep in the rat

    PubMed Central

    Dyche, Jeff; Anch, A. Michael; Fogler, Kethera A. J.; Barnett, David W.; Thomas, Cecil

    2012-01-01

    Background Studies investigating the effect of power frequency (50–60 Hz) electromagnetic fields (EMF) on melatonin synthesis in rats have been inconsistent with several showing suppression of melatonin synthesis, others showing no effect and a few actually demonstrating small increases. Scant research has focused on the ensuing sleep patterns of EMF exposed rats. The present study was designed to examine the effects of extremely low power frequency electromagnetic fields (EMF) on the production of melatonin and the subsequent sleep structure in rats. Methods Eighteen male Sprague-Dawley rats were exposed to a 1000 milligauss (mG) magnetic field for 1 month. Urine was collected for the final 3 days of the exposure period for analysis of 6-sulphatoxymelatonin, the major catabolic product of melatonin found in urine. Subsequent sleep was analyzed over a 24-hour period. Results Melatonin production was mildly increased in exposed animals. Although there were no statistically significant changes in sleep structure, exposed animals showed slight decreases in REM (rapid eye movement) sleep as compared to sham (non-exposed) animals. Conclusions Power frequency magnetic fields induced a marginally statistically significant increase in melatonin levels in exposed rats compared to control. Subsequent sleep analysis indicated little effect on the sleep architecture of rats, at least not within the first day after 1 month's continuous exposure. Varying results in the literature are discussed and future research suggested. PMID:22529876

  13. Characterizing and Designing Localized Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Borzdov, Georgy N.

    2004-11-01

    An approach to characterizing and designing localized electromagnetic fields in complex media and free space, based on the use of differentiable manifolds, differentiable mappings, and the rotation group, is discussed. Families of exact time-harmonic solutions to Maxwell's equations -- standing waves defined by spherical harmonics, and localized fields defined by the rotation group -- are presented.

  14. Differential form representation of stochastic electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haider, Michael; Russer, Johannes A.

    2017-09-01

    In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.

  15. Tissue interactions with nonionizing electromagnetic fields. Final report, March 1979-February 1986

    SciTech Connect

    Adey, W.R.; Bawin, S.M.; Byus, C.V.; Cain, C.D.; Lin-Liu, S.; Luben, R.A.; Lyle, D.B.; Sagan, P.M.; Sheppard, A.R.; Stell, M.A.

    1986-08-01

    This report provides an overview of this research program focused on basic research in nervous system responses to electric fields at 60 Hz. The emphasis in this project was to determine the fundamental mechanisms underlying some phenomena of electric field interactions in neural systems. The five studies of the initial program were tests of behavioral responses in the rat based upon the hypothesis that electric field detection might follow psychophysical rules known from prior research with light, sound and other stimuli; tests of electrophysiological responses to ''normal'' forms of stimulation in rat brain tissue exposed in vitro to electric fields, based on the hypothesis that the excitability of brain tissue might be affected by fields in the extracellular environment; tests of electrophysiological responses of spontaneously active pacemaker neurons of the Aplysia abdominal ganglion, based on the hypothesis that electric field interactions at the cell membrane might affect the balance among the several membrane-related processes that govern pacemaker activity; studies of mechanisms of low frequency electromagnetic field interactions with bone cells in the context of field therapy of ununited fractures; and manipulation of cell surface receptor proteins in studies of their mobility during EM field exposure.

  16. Electromagnetic fields in bone repair and adaptation

    NASA Astrophysics Data System (ADS)

    McLeod, Kenneth J.; Rubin, Clinton T.; Donahue, Henry J.

    1995-01-01

    The treatment of delayed union of bone fractures has served for the past 20 years as the principal testing ground for determining whether nonionizing electromagnetic fields can have any substantial, long-term effects in clinical medicine. Recent double-blinded clinical trials have confirmed the significance of the reported effects on bone healing and have led to the suggestion that electromagnetic fields may also be useful in the treatment of other orthopedic problems such as fresh fractures, stabilization of prosthetic implants, or even the prevention or treatment of osteoporosis. However, the design of appropriate treatment regimens for these new applications would be greatly facilitated if it were understood how the biological cells within bone tissue sense these low-frequency, and remarkably low level, electromagnetic fields. Here we address the engineering and physical science aspects of this problem. We review the characteristics of clinically used electromagnetic fields and discuss which components of these fields may actually be responsible for altering the activity of the bone cells. We then consider several physical mechanisms which have been proposed to explain how the cells within the bone or fracture tissue detect this field component.

  17. Electromagnetic field interactions with biological systems

    SciTech Connect

    Frey, A.H. )

    1993-02-01

    This is a report on Symposia organized by the International Society for Bioelectricity and presented at the 1992 FASEB Meeting. The presentations summarized here were intended to provide a sampling of new and fruitful lines of research. The theme topics for the Symposia were cancer, neural function, cell signaling, pineal gland function, and immune system interactions. Living organisms are complex electrochemical systems that evolved over billions of years in a world with a relatively simple weak magnetic field and with few electromagnetic energy emitters. As is characteristic of living organisms, they interacted with and adapted to this environment of electric and magnetic fields. In recent years there has been a massive introduction of equipment that emits electromagnetic fields in an enormous range of new frequencies, modulations, and intensities. As living organisms have only recently found themselves immersed in this new and virtually ubiquitous environment, they have not had the opportunity to adapt to it. This gives biologists the opportunity to use these electromagnetic fields as probes to study the functioning of living systems. This is a significant opportunity, as new approaches to studying living systems so often provide the means to make great leaps in science. In recent years, a diversity of biologists have carried out experiments using electromagnetic fields to study the function of living cells and systems. This approach is now becoming quite fruitful and is yielding data that are advancing our knowledge in diverse areas of biology. 25 refs., 6 figs., 3 tabs.

  18. Laboratory Studies of the Short-term Responses of Freshwater Fish to Electromagnetic Fields

    SciTech Connect

    Bevelhimer, Mark S; Cada, Glenn F; Fortner, Allison M; Schweizer, Peter E; Riemer, Kristina P

    2013-01-01

    Hydrokinetic energy technologies are being proposed as an environmentally preferred means of generating electricity from river and tidal currents. Among the potential issues that must be investigated in order to resolve environmental concerns are the effects on aquatic organisms of electromagnetic fields created by underwater generators and transmission cables. The behavioral responses of common freshwater fishes to static and variable electromagnetic fields (EMF) that may be emitted by hydrokinetic projects were evaluated in laboratory experiments. Various fish species were exposed to either static (DC) EMF fields created by a permanent bar magnet or variable (AC) EMF fields created by a switched electromagnet for 48 h, fish locations were recorded with a digital imaging system, and changes in activity level and distribution relative to the magnet position were quantified at 5-min intervals. Experiments with fathead minnows, redear sunfish, striped bass, lake sturgeon, and channel catfish produced mixed results. Except for fathead minnows there was no effect on activity level. Only redear sunfish and channel catfish exhibited a change in distribution relative to the position of the magnet with an apparent attraction to the EMF source. In separate experiments, rapid behavioral responses of paddlefish and lake sturgeon to onset of the AC field were recorded with high-speed video. Paddlefish did not react to a variable, 60-Hz magnetic field like that which would be emitted by an AC generator or cable, but lake sturgeon consistently responded to the variable, AC-generated magnetic field with a variety of altered swimming behaviors. These results will be useful for determining under what circumstances cables or generators need to be positioned to minimize interactions with sensitive species.

  19. Photon Propagation in Slowly Varying Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Karbstein, F.

    2017-03-01

    Effective theory of soft photons in slowly varying electromagnetic background fields is studied at one-loop order in QED. This is of relevance for the study of all-optical signatures of quantum vacuum nonlinearity in realistic electromagnetic background fields as provided by high-intensity lasers. The central result derived in this article is a new analytical expression for the photon polarization tensor in two linearly polarized counterpropagating pulsed Gaussian laser beams. Treating the peak field strengths of both laser beams as free parameters, this field configuration can be considered as interpolating between the limiting cases of a purely right- or left-moving laser beam (if one of the peak field strengths is set equal to zero) and the standing-wave type scenario with two counter-propagating beams of equal strength.

  20. Radiated fields from an electromagnetic pulse simulator

    NASA Astrophysics Data System (ADS)

    Pelletier, M.; Delisle, G. Y.; Kashyap, S.

    Simulators of electromagnetic pulses allow generation within a limited time of very high-intensity fields such as those produced in a nuclear explosion. These fields can be radiated out of the test zone at a lower but nevertheless significant level; if the intensity of these fields is sufficiently high, damage to humans and electronic equipment can result. An evaluation of the potential danger of these simulator emissions requires knowledge of the amplitude, duration, and the energy of the radiated impulses. A technique is presented for calculating the fields radiated by a parallel-plane electromagnetic pulse simulator. The same method can also be applied to a rhombic type simulator. Sample numerical results are presented along with the calculations of the energy and power density and a discussion of the formation of the field in the frequency domain.

  1. Electromagnetic fields and infant incubators.

    PubMed

    Bearer, C F

    1994-01-01

    Two models of infant incubators were studied to determine the strength of the magnetic field generated by the heater and fan motors. Measurements were taken at intervals along the center line of the incubator. The results show that fields greater than 100 milligauss and 25 milligauss were measured in the C-86 and C-100 model Isolettes, respectively.

  2. Effects on the nervous system by exposure to electromagnetic fields: experimental and clinical studies.

    PubMed

    Hansson, H A

    1988-01-01

    Exposure to electromagnetic fields may cause various types of effects on nervous tissue, in severe cases even irreversible damage. The exposure conditions, i.e. frequency including type and extent of modulation, time, intensity, wave form, as well as shape, size and position of exposed subject and possible treatment with drugs, are factors determining if damage, acute or chronic, ultimately result. Long term exposure of newborn rabbits, rats and mice to electromagnetic fields of power frequency (10-14 kV/m; 50 or 60 Hz; sinusoidal wave form; 21-24 h per day) may cause affection and even damage to the nervous system. Large nerve cells showed reactive changes such as lamellar bodies and cytoskeletal alteration to an extent varying with exposure conditions. Reactive neuroglial changes as well as increase in neuroglial marker proteins could concomitantly be demonstrated. The changes seemed to be reversible although we only have incomplete data available. Exposure in vitro of frog sciatic nerve to 16-60 Hz sinusoidal low current (50-1000 nA) for 17 h induced cytoskeletal changes. Exposure of rabbits to pulsed microwaves of moderate to high intensity (3.1 GHz; 300 Hz modulation; peak duration 1.4 usec with maximal peak intensity about 1000 times average; 55 mW/cm; SAR in the brain cortex about 20 W/kg; increase of temperature as measured by lightguide-equipped instruments in right brain hemisphere about 1-2 degrees C) during 1 h per day during three days resulted in no obvious initial changes in behaviour. Minimal acute dam- age could be demonstrated. However, after two to four months and later on both structural, immunohistochemical and biochemical changes could be documented. Radar technicians accidently and/or occupationally exposed to microwaves showed psychoneurological signs of affection as well as changes in cerebrospinal fluid protein pattern. No related changes have been noticed among matched controls. Exposure of nervous tissue to electromagnetic fields ranging

  3. Electromagnetic field parameters and instrumentation

    NASA Astrophysics Data System (ADS)

    Sheppard, A. R.; Jones, R. A.; Stell, M. E.; Adey, W. R.; Bawin, S.

    1986-07-01

    We studied the effects of the electric and magnetic components of a Loran-C type waveform on three biological systems. Neurochemical assays of brain neurotransmitter substances indicate field-related changes in the levels of norepinephrine in the hippocampus and in the number and affinities of the opiate receptors in the cortex. Behavioral data showed that rats trained in an operant conditioning task did not reliably detect any electric field strength used. Biochemical data demonstrated that the Loran-C field did not modify basal ornithine decarboxylase activity in primary bone cells.

  4. LEM—electromagnetic fields measurement laboratory

    NASA Astrophysics Data System (ADS)

    Annino, A.; Falciglia, F.; Musumeci, F.; Oliveri, M.; Privitera, G.; Triglia, A.

    2000-04-01

    The widespread presence of electromagnetic waves and the relative problems regarding them have favored the constitution of the LEM at the DMFCI in Catania University, where competence has been developing in this sector for about 10 years. Full operativeness has been reached as far as the electromagnetic field measurements in anthropized environments are concerned. Other research will be undertaken as soon as further funds are available. Some problems connected with the perfecting of measurements instruments and the results of emission measurements of cellular telephones are presented.

  5. Gene transcription and electromagnetic fields

    SciTech Connect

    Henderson, A.S.

    1992-01-01

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  6. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    SciTech Connect

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-04-15

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  7. Coherent polarization driven by external electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Apostol, M.; Ganciu, M.

    2010-11-01

    The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.

  8. Electromagnetic field of a linear antenna

    NASA Astrophysics Data System (ADS)

    Derby, Norman; Olbert, Stanislaw

    2008-11-01

    Animated computer simulations of the electric field of a radiating antenna can capture the attention of students in introductory electromagnetism courses and stimulate active discussions. The simulations raise questions not usually addressed in textbooks. In certain cases, some of the field lines appear to move toward the antenna, the speed of the field lines can change as they move, and the field lines exhibit strange behavior (circling or splitting) at certain points. Because their fields can be expressed in terms of elementary functions, animations of point dipole antennas are common, but animations showing the fields of antennas with more realistic lengths are not as common because analytical expressions for these fields are not as well known. We show that it is possible to derive analytical expressions in terms of elementary functions for the electromagnetic field of linear antennas of finite length. We draw attention to an open-source method for displaying the fine details within the field patterns and then give a general discussion of singular points and their motions, derive expressions for their location and phase velocity, and apply these results to some of the phenomena that are visible in visualizations of the fields of various antennas.

  9. Electromagnetic field induced biological effects in humans.

    PubMed

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  10. Basic Discoveries in Electromagnetic Field Visualization

    NASA Astrophysics Data System (ADS)

    Shindo, Daisuke

    2014-01-01

    Basic discoveries in the electromagnetic field visualization are presented, mentioning the late Dr. A. Tonomura's significant achievements in this field. First, the discovery of the electron biprism interferences by G. Möllenstedt and his colleagues was noted. Having studied Möllenstedt's interference experiments, A. Tonomura and his colleagues have extended the electron holography system to clearly prove the physical reality of vector potentials, the so-called Aharonov-Bohm effect. They also succeeded in observing the dynamic motions of magnetic flux quanta (fluxons) in a superconducting Nb film. In a joint research with A. Tonomura, we succeeded in visualizing a fluxon pinned by an insulating particle in a high-Tc Y-Ba-Cu-O superconductor by combining electron holography and scanning ion microscopy. As the study of a scalar potential, the visualization of the orbits of electron-induced secondary electrons around positively charged biological specimens was noted. Finally, although the electromagnetic field analysis using electron holography on the basis of Maxwell's equations seems to be promising, it is pointed out that there have been some controversies on the interpretation and treatment of electromagnetic field.

  11. Electromagnetic field radiation model for lightning strokes to tall structures

    SciTech Connect

    Motoyama, H.; Janischewskyj, W.; Hussein, A.M.; Chisholm, W.A.; Chang, J.S.; Rusan, R.

    1996-07-01

    This paper describes observation and analysis of electromagnetic field radiation from lightning strokes to tall structures. Electromagnetic field waveforms and current waveforms of lightning strokes to the CN Tower have been simultaneously measured since 1991. A new calculation model of electromagnetic field radiation is proposed. The proposed model consists of the lightning current propagation and distribution model and the electromagnetic field radiation model. Electromagnetic fields calculated by the proposed model, based on the observed lightning current at the CN Tower, agree well with the observed fields at 2km north of the tower.

  12. [Safety and electromagnetic compatibility in sanitary field].

    PubMed

    Bini, M; Feroldi, P; Ferri, C; Ignesti, A; Olmi, R; Priori, S; Riminesi, C; Tobia, L

    2012-01-01

    In sanitary field and especially in a hospital, multiple sources of non ionizing radiation are used for diagnostic and therapeutic aims. In sanitary sector both workers and users are present at the same time, and in some cases general population could need higher protection than workers in relationship to the exposition to electromagnetic fields. In order to protect health and safety of patients, general population and workers of hospitals and with the aim to identify, analyze, evaluate and study its level of significance, electrical, magnetic and electromagnetic sources Research Italian project Si.C.E.O. (Safety And Electromagnetic Compatibility In Sanitary Field) was instituted. Target of our research project was to deepen risk of exposition elements with analysis of outdoor (e.g. power lines, transmission cabinets) and indoor (e.g. equipment for physical therapy) sources, located in sanitary structures and to verify the level exposition of workers and common population end the respect of specific regulation, and finally to define technical and organizational measures really useful for protection and reduction of risk.

  13. On electromagnetic field problems in inhomogeneous media

    NASA Technical Reports Server (NTRS)

    Mohsen, A.

    1973-01-01

    Analysis of electromagnetic fields in inhomogeneous media is of practical interest in general scattering and propagation problems and in the study of lenses. For certain types of inhomogeneities, the fields may be represented in terms of two scalars. In a general orthogonal coordinate system, these potentials satisfy second order differential equations. Exact solutions of these equations are known only for a few particular cases and in general, an approximate or numerical technique must be employed. The present work reviews and generalizes some of the main methods of attack of the problem. The results are presented in a form appropriate for numerical computation.

  14. A New Theory of the Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2017-01-01

    This author has previously introduced a new theory of the Electromagnetic Field and its interaction with matter. There was from the start a problem with Einstein's formulation of Invariants and its use in describing The EM field. The photon produced by first varying a stationary Electric field in one observer's reference frame is not the same as a photon produced from varying the a stationary Magnetic Field. The Magnetic field photon is thought of as being ``off the mass shell''. The Quantum information seems to carry with it an ordering of these events. You see this ordering in Wick's theory and in Feynman diagrams. This author is proposing that other fields can vary first in another Observers reference frame, not just the ``Scalar Field'' or the ``Fermion Field'', but many other forms of Energy. If the ``Nuclear Field'' varies first, it results in Quantum information that produces a photon that has the Nuclear Field in it and also the Magnetic Field, this is the strange effect seen in Nuclear Magnetic Resonance. This author proposed that there is a large number of photons with different properties, because of this ordering of events that occurs in Quantum Information. One of these photons is the Neutrino which appears to be a three field photon. This is Kriske's Field Theory.

  15. Optimization methods in control of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Angell, Thomas S.; Kleinman, Ralph E.

    1991-05-01

    This program is developing constructive methods for certain constrained optimization problems arising in the design and control of electromagnetic fields and in the identification of scattering objects. The problems addressed fall into three categories: (1) the design of antennas with optimal radiation characteristics measured in terms of directivity; (2) the control of the electromagnetic scattering characteristics of an object, in particular the minimization of its radar cross section, by the choice of material properties; and (3) the determination of the shape of scattering objects with various electromagnetic properties from scattered field data. The main thrust of the program is toward the development of constructive methods based on the use of complete families of solutions of the time-harmonic Maxwell equations in the infinite domain exterior to the radiating or scattering body. During the course of the work an increasing amount of attention has been devoted to the use of iterative methods for the solution of various direct and inverse problems. The continued investigation and development of these methods and their application in parameter identification has become a significant part of the program.

  16. Self field electromagnetism and quantum phenomena

    NASA Astrophysics Data System (ADS)

    Schatten, Kenneth H.

    1994-07-01

    Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.

  17. [Combined biological effect of electromagnetic fields and chemical substances (toxic)].

    PubMed

    Kamedula, M; Kamedula, T

    1996-01-01

    The authors present results of own measurements and examinations as well as the literature data on the occurrence and effect of direct, low and high frequency electromagnetic fields and chemicals. In real working conditions and in experimental conditions, the following relations can be observed: 1) concomitant occurrence of electromagnetic fields and chemicals, e.g. processes of electrolysis, inductive and dielectric heating; 2) experimental studies of combined effect of electromagnetic fields and chemicals on e.g. cancer development: 3) drug effect modified by electromagnetic fields; 4) effect of chemicals produced in materials under the influence of electromagnetic fields. There are only a few publications on medical examinations of workers exposed simultaneously to electromagnetic fields and chemicals. However, even in those reported studies, an attempt to distinguish changes in the health state due to electromagnetic fields, and due to chemicals has field. The studies of the effect of electromagnetic fields which modify the effect of carcinogenic substances have not yielded unequivocal results. Electromagnetic fields may modify significantly the effect of some psychotropic and hormonal drugs. Under the influence of pyrolisis, induced by thermal effect of electromagnetic fields, toxic substances or substances with harmful biological effect may occur in some materials.

  18. Giant field enhancement in electromagnetic Helmholtz nanoantenna

    NASA Astrophysics Data System (ADS)

    Chevalier, Paul; Bouchon, Patrick; Greffet, Jean-Jacques; Pelouard, Jean-Luc; Haïdar, Riad; Pardo, Fabrice

    2014-11-01

    Inspired by the acoustic Helmholtz resonator, we propose a slit-box electromagnetic nanoantenna able to concentrate the energy of an incident beam into surfaces a thousand times smaller than with a classical lens. This design produces a giant electric field enhancement throughout the slit. The intensity enhancement reaches 104 in the visible range up to 108 in the THz range even with focused beams, thanks to an omnidirectional reception. These properties could target applications requiring extreme light concentration, such as surface-enhanced infrared absorption, nonlinear optics, and biophotonics.

  19. Biomarkers of induced electromagnetic field and cancer.

    PubMed

    Behari, J; Paulraj, R

    2007-01-01

    The present article delineates the epidemiological and experimental studies of electromagnetic field which affects various tissues of human body. These affects lead to cell proliferation, which may lead to cancer formation. Certain biomarkers have been identified which are one way or the other responsible for tumor promotion or co-promotion. These are (i) melatonin, a hormone secreted by pineal gland, (ii) Ca2+, which is essential in the regulation of the resting membrane potential and in the sequence of events in synaptic excitation and neurotransmitter, release are affected by electromagnetic field, (iii) ornithine decarboxylase (ODC), a rate-limiting enzyme in the biosynthesis of polyamines, considered as a useful biological marker; over expression of ODC can cause cell transformation and enhancement of tumor promotion. (iv) protein kinase is an enzyme, which transfers phosphate groups from ATP to hydroxyl groups in the amino acid chains of acceptor proteins, and (v) Na+-K+ ATPase, which transports sodium and potassium ions across the membrane has a critical role in living cells. The various possible mechanisms depending upon non equilibrium thermodynamics, co-operativism, stochastic and resonance are discussed as possible models of signal transduction in cytosol, thereby controlling the transcription phenomena. Finally a mechanism comprising the extremely low frequency and radio frequency (RF)/microwave (MW) modulated field is compared.

  20. Geometrization conditions for perfect fluids, scalar fields, and electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Torre, Charles; Krongos, Dionisios

    2016-03-01

    The classical Rainich conditions are a system of geometric conditions, expressed purely in terms of the spacetime metric, which are necessary and sufficient for the metric to define a solution to the Einstein-Maxwell equations with a non-null electromagnetic field. We obtain analogous ``geometrization'' conditions for other matter sources. Specifically, we find geometric conditions which are necessary and sufficient for a metric to define a solution to the Einstein equations with a perfect fluid source, and to define a solution to the Einstein-scalar field equations. These conditions work in any dimension, allow for a cosmological constant, and allow for an arbitrary self-interaction potential in the scalar field case. We also generalize the classical Rainich conditions to include a cosmological constant and we obtain geometrization conditions which are applicable to the case of null electromagnetic fields. This work was supported in part by Grant No. OCI-1148331 from the National Science Foundation.

  1. Transient electromagnetic fields near large earthing systems

    SciTech Connect

    Grcev, L.D.; Menter, F.E.

    1996-05-01

    Electromagnetic compatibility studies require knowledge of transient voltages that may be developed near earthing systems during lightning discharge, since such voltages may be coupled to sensitive electronic circuits. For such purpose accurate evaluation of transient electric field near to and/or at the surface of the grounding conductors is necessary. In this paper, a procedure for computation of transient fields near large earthing systems, as a response to a typical lightning current impulse, based on computational methodology developed in the field of antennas, is presented. Computed results are favorably compared with published measurement results. The model is applied to check the common assumption that the soil ionization can be neglected in case of large earthing systems. Presented results show that the soil ionization threshold is met and exceeded during typical lightning discharge in a large earthing system.

  2. Near-field radiofrequency electromagnetic exposure assessment.

    PubMed

    Rubtsova, Nina; Perov, Sergey; Belaya, Olga; Kuster, Niels; Balzano, Quirino

    2015-09-01

    Personal wireless telecommunication devices, such as radiofrequency (RF) electromagnetic field (EMF) sources operated in vicinity of human body, have possible adverse health effects. Therefore, the correct EMF assessment is necessary in their near field. According to international near-field measurement criteria, the specific absorption rate (SAR) is used for absorbed energy distribution assessment in tissue simulating liquid phantoms. The aim of this investigation is to validate the relationship between the H-field of incident EMF and absorbed energy in phantoms. Three typical wireless telecommunication system frequencies are considered (900, 1800 and 2450 MHz). The EMF source at each frequency is an appropriate half-wave dipole antenna and the absorbing medium is a flat phantom filled with the suitable tissue simulating liquid. Two methods for SAR estimation have been used: standard procedure based on E-field measured in tissue simulating medium and a proposed evaluation by measuring the incident H-field. Compared SAR estimations were performed for various distances between sources and phantom. Also, these research data were compared with simulation results, obtained by using finite-difference time-domain method. The acquired data help to determine the source near-field space characterized by the smallest deviation between SAR estimation methods. So, this region near the RF source is suitable for correct RF energy absorption assessment using the magnetic component of the RF fields.

  3. Neuronal cellular responses to extremely low frequency electromagnetic field exposure: implications regarding oxidative stress and neurodegeneration.

    PubMed

    Reale, Marcella; Kamal, Mohammad A; Patruno, Antonia; Costantini, Erica; D'Angelo, Chiara; Pesce, Miko; Greig, Nigel H

    2014-01-01

    Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs) on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD), have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF)-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1 mT; frequency, 50-Hz) on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2(-), which were countered by compensatory changes in antioxidant catylase (CAT) activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a decline in CAT

  4. Super strong electromagnetic fields and their applications

    SciTech Connect

    Bulanov, Sergei V.

    2007-07-11

    The progress in the ultra-intense laser technologies continues to open up new fields of physics. The laser accelerator development enters a new matured stage at which it becomes possible to manipulate in a controllable way the parameters of accelerated charged particle beams. In the electron acceleration the particle injection by breaking wake waves left by the laser pulse in underdense plasmas or by interacting two laser pulses results in the quasi-mono-energetic beam production. When the ions are accelerated during the laser-matter interaction the tailored multi-layer foil targets provide conditions for the high quality proton beam generation. When the laser pulse radiation pressure is dominant, the laser energy is transformed efficiently into the energy of fast ions. Ultrahigh intense electromagnetic fields can be generated due to the laser pulse compression, carrier frequency upshifting, and focusing by a counterpropagating breaking plasma wave, relativistic flying mirrors.

  5. Electromagnetic fields with vanishing scalar invariants

    NASA Astrophysics Data System (ADS)

    Ortaggio, Marcello; Pravda, Vojtěch

    2016-06-01

    We determine the class of p-forms {\\boldsymbol{F}} that possess vanishing scalar invariants (VSIs) at arbitrary order in an n-dimensional spacetime. Namely, we prove that {\\boldsymbol{F}} is a VSI if and only if if it is of type N, its multiple null direction {\\boldsymbol{\\ell }} is ‘degenerate Kundt’, and {\\pounds }{\\boldsymbol{\\ell }}{\\boldsymbol{F}}=0. The result is theory-independent. Next, we discuss the special case of Maxwell fields, both at the level of test fields and of the full Einstein-Maxwell equations. These describe electromagnetic non-expanding waves propagating in various Kundt spacetimes. We further point out that a subset of these solutions possesses a universal property, i.e. they also solve (virtually) any generalized (non-linear and with higher derivatives) electrodynamics, possibly also coupled to Einstein’s gravity.

  6. Ankle variability is amplified in older adults due to lower EMG power from 30-60 Hz.

    PubMed

    Kwon, MinHyuk; Baweja, Harsimran S; Christou, Evangelos A

    2012-12-01

    The purpose of this study was to determine the neuromuscular mechanisms of the involved muscles that contribute to the greater positional variability at the ankle joint in older adults compared with young adults. Eleven young adults (25.6±4.9 years) and nine older adults (76.9±5.9 years) were asked to accurately match and maintain a horizontal target line with 5° dorsiflexion of their ankle for 20 s. The loads were 5 and 15% of the one repetition maximum load (1 RM). The visual gain was kept constant at 1° for all trials. Positional variability was quantified as the standard deviation (SD) of the detrended position signal. The neural activation of the tibialis anterior and soleus muscles was quantified as the normalized EMG amplitude, power spectrum density (PSD; EMG oscillations) and coactivation of the two muscles. As expected, positional variability was greater in older adults (older: 0.11±0.06° vs. young: 0.04±0.02°; p=.003). The only significant neural difference occurred for the PSD of the tibialis anterior muscle, where young adults exhibited significantly greater power than older adults from 30-60 Hz. The amplified positional variability of ankle joint in older adults was associated with lower power from 30-60 Hz oscillations in the tibialis anterior muscle (r(2)=.3, p=.01). These results provide novel evidence that older adults exhibit greater positional variability with the ankle joint relative to young adults likely due to their inability to activate the tibialis anterior muscle from 30-60 Hz. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Myocardial function improved by electromagnetic field induction of stress protein hsp70.

    PubMed

    George, Isaac; Geddis, Matthew S; Lill, Zachary; Lin, Hana; Gomez, Teodoro; Blank, Martin; Oz, Mehmet C; Goodman, Reba

    2008-09-01

    Studies on myocardial function have shown that hsp70, stimulated by an increase in temperature, leads to improved survival following ischemia-reperfusion (I-R). Low frequency electromagnetic fields (EMFs) also induce the stress protein hsp70, but without elevating temperature. We have examined the hemodynamic changes in concert with EMF pre-conditioning and the induction of hsp70 to determine whether improved myocardial function occurs following I-R injury in Sprague-Dawley rats. Animals were exposed to EMF (60 Hz, 8 microT) for 30 min prior to I-R. Ischemia was then induced by ligation of left anterior descending coronary artery (LAD) for 30 min, followed by 30 min of reperfusion. Blood and heart tissue levels for hsp70 were determined by Western blot and RNA transcription by rtPCR. Significant upregulation of the HSP70 gene and increased hsp70 levels were measured in response to EMF pre-exposures. Invasive hemodynamics, as measured using a volume conductance catheter, demonstrated significant recovery of systolic contractile function after 30 min of reperfusion following EMF exposure. Additionally, isovolemic relaxation, a measure of ventricular diastolic function, was markedly improved in EMF-treated animals. In conclusion, non-invasive EMF induction of hsp70 preserved myocardial function and has the potential to improve tolerance to ischemic injury.

  8. Electromagnetic field patterning or crystal light

    NASA Astrophysics Data System (ADS)

    Słupski, Piotr; Wymysłowski, Artur; Czarczyński, Wojciech

    2016-12-01

    Using the orbital angular momentum of light for the development of a vortex interferometer, the underlying physics requires microwave/RF models,1 as well as quantum mechanics for light1, 2 and fluid flow for semiconductor devices.3, 4 The combination of the aforementioned physical models yields simulations and results such as optical lattices,1 or an Inverse Farday effect.5 The latter is explained as the absorption of optical angular momentum, generating extremely high instantenous magnetic fields due to radiation friction. An algorithmic reduction across the computational methods used in microwaves, lasers, quantum optics and holography is performed in order to explain electromagnetic field interactions in a single computational framework. This work presents a computational model for photon-electron interactions, being a simplified gauge theory described using differentials or disturbances (photons) instead of integrals or fields. The model is based on treating the Z-axis variables as a Laplace fluid with spatial harmonics, and the XY plane as Maxwell's equations on boundaries. The result is a unified, coherent, graphical computational method of describing the photon qualitatively, quantitatively and with proportion. The model relies on five variables and is described using two equations, which use emitted power, cavity wavelength, input frequency, phase and time. Phase is treated as a rotated physical dimension under gauge theory of Feynmann's QED. In essence, this model allows the electromagnetic field to be treated with it's specific crystallography. The model itself is described in Python programming language. PACS 42.50.Pq, 31.30.J-, 03.70.+k, 11.10.-z, 67.10.Hk

  9. On Acceptable Exposures to Short Pulses of Electromagnetic Fields

    DTIC Science & Technology

    2015-09-01

    NAWCWD TP 8791 On Acceptable Exposures to Short Pulses of Electromagnetic Fields by Francis X. Canning, PhD Physics...prepared in response to a request to study the effects of exposure to short pulses of electromagnetic fields. The author is a physicist at the Naval... Exposures to Short Pulses of Electromagnetic Fields (U) 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S

  10. Evaluation of uncertainty in the measurement of environmental electromagnetic fields.

    PubMed

    Vulević, B; Osmokrović, P

    2010-09-01

    With regard to Non-ionising radiation protection, the relationship between human exposure to electromagnetic fields and health is controversial. Electromagnetic fields have become omnipresent in the daily environment. This paper assesses the problem of how to compare a measurement result with a limit fixed by the standard for human exposure to electric, magnetic and electromagnetic fields (0 Hz-300 GHz). The purpose of the paper is an appropriate representation of the basic information about evaluation of measurement uncertainty.

  11. Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field

    DOE R&D Accomplishments Database

    Bethe, H. A.

    1972-09-01

    The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.

  12. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  13. Properties of electromagnetic field focusing probe.

    PubMed

    Yamanashi, W S; Yassa, N A; Hill, D L; Patil, A A; Lester, P D

    1988-11-01

    The electromagnetic field focusing (EFF) apparatus consists of a radio frequency generator, solenoidal coil, and a hand-held or catheter probe. Applications such as aneurysm treatment, angioplasty, and neurosurgery in various models have been reported. The probe is operated in the near field (within one wavelength of an electromagnetic field source) of a coil inducing eddy currents in biological tissues, producing maximal convergence of the induced current at the probe tip. The probe produces very high temperatures depending on the wattage selected for the given radio frequency of output power. The high temperature can be used in cutting, cauterizing, or vaporizing. The EFF probe is comparable to different types of lasers and to bipolar and monopolar cautery. The EFF probe can be used with catheters or endoscopes. Objectives of this study were to determine what the thermal properties of the EFF probe are and how instrument parameters can be varied to obtain different temperatures in the tissue near the probe tip. In this study an F2 catheter was used as an insulated sheath and the tip of the guide wire was used as the probe tip. Different powers, wave forms, coil-to-probe distances, and probe-tip lengths were tested on a phantom that simulates tissue electrical properties. Some of the experiments were conducted under normal saline to simulate treatment of tissue with body fluids such as blood vessels or brain tissue under normal physiologic conditions. It is concluded that the EFF probe has the advantages of easy manipulation, relative safety, cost effectiveness, and a high degree of spatial control.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. The electromagnetic field equations for moving media

    NASA Astrophysics Data System (ADS)

    Ivezić, T.

    2017-05-01

    In this paper a formulation of the field equation for moving media is developed by the generalization of an axiomatic geometric formulation of the electromagnetism in vacuum (Ivezić T 2005 Found. Phys. Lett. 18 401). First, the field equations with bivectors F (x) and ℳ(x) are presented and then these equations are written with the 4D vectors E(x), B(x), P (x) and M(x). The latter contain both the 4D velocity vector u of a moving medium and the 4D velocity vector v of the observers who measure E and B fields. They do not appear in previous literature. All these equations are also written in the standard basis and compared with Maxwell’s equations with 3D vectors. In this approach the Ampère-Maxwell law and Gauss’s law are inseparably connected in one law and the same happens with Faraday’s law and the law that expresses the absence of magnetic charge. It is shown that Maxwell’s equations with 3D vectors and the field equations with 4D geometric quantities are not equivalent in 4D spacetime

  15. Visualizing electromagnetic fields in metals by MRI

    NASA Astrophysics Data System (ADS)

    Chandrashekar, Chandrika Sefcikova; Shellikeri, Annadanesh; Chandrashekar, S.; Taylor, Erika A.; Taylor, Deanne M.

    2017-02-01

    Based upon Maxwell's equations, it has long been established that oscillating electromagnetic (EM) fields incident upon a metal surface, decay exponentially inside the conductor, leading to a virtual absence of EM fields at sufficient depths. Magnetic resonance imaging (MRI) utilizes radiofrequency (r.f.) EM fields to produce images. Here we present a visualization of a virtual EM vacuum inside a bulk metal strip by MRI, amongst several findings. At its simplest, an MRI image is an intensity map of density variations across voxels (pixels) of identical size (=Δ x Δ y Δ z ). By contrast in bulk metal MRI, we uncover that despite uniform density, intensity variations arise from differing effective elemental volumes (voxels) from different parts of the bulk metal. Further, we furnish chemical shift imaging (CSI) results that discriminate different faces (surfaces) of a metal block according to their distinct nuclear magnetic resonance (NMR) chemical shifts, which holds much promise for monitoring surface chemical reactions noninvasively. Bulk metals are ubiquitous, and MRI is a premier noninvasive diagnostic tool. Combining the two, the emerging field of bulk metal MRI can be expected to grow in importance. The findings here may impact further development of bulk metal MRI and CSI.

  16. Inelastic deformation of conductive bodies in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Altenbach, Holm; Morachkovsky, Oleg; Naumenko, Konstantin; Lavinsky, Denis

    2016-09-01

    Inelastic deformation of conductive bodies under the action of electromagnetic fields is analyzed. Governing equations for non-stationary electromagnetic field propagation and elastic-plastic deformation are presented. The variational principle of minimum of the total energy is applied to formulate the numerical solution procedure by the finite element method. With the proposed method, distributions of vector characteristics of the electromagnetic field and tensor characteristics of the deformation process are illustrated for the inductor-workpiece system within a realistic electromagnetic forming process.

  17. Effects of exposure to extremely low-frequency electromagnetic fields on the differentiation of Th17 T cells and regulatory T cells.

    PubMed

    Lee, Yun-Jung; Hyung, Kyeong Eun; Yoo, Jong-Sun; Jang, Ye Won; Kim, Soo Jeong; Lee, Do Ik; Lee, Sang Joon; Park, So-Young; Jeong, Ji Hoon; Hwang, Kwang Woo

    2016-10-01

    The potential risks that electromagnetic fields (EMF) pose to human physiology have been debated for several decades, especially considering that EMF is almost omnipresent and some occupations involve regular exposure to particularly strong fields. In the present study, the effects of 60 Hz 0.3 mT EMF on CD4+ T cells were evaluated. Production of T cell related cytokines, IFN-γ and IL-2, was not altered in CD4+ T cells that were exposed to EMF, and cell proliferation was also unaffected. The expression of genes present in a subset of Th17 cells was upregulated following EMF exposure, and the production of effector cytokines of the IL-17A subset also increased. To determine signaling pathways that underlie these effects, phosphorylation of STAT3 and SMAD3, downstream molecules of cytokines critical for Th17 induction, was analyzed. Increased SMAD3 phosphorylation level in cells exposed to EMF, suggesting that SMAD3 may be at least in part causing the increased Th17 cell production. Differentiation of Treg, another CD4+ T cell subset induced by SMAD3 signaling, was also elevated following EMF exposure. These results suggest that 60 Hz 0.3 mT EMF exposure amplifies TGF-β signaling and increases the generation of specific T cell subsets.

  18. Mortality in workers exposed to electromagnetic fields.

    PubMed Central

    Milham, S

    1985-01-01

    In an occupational mortality analysis of 486,000 adult male death records filed in Washington State in the years 1950-1982, leukemia and the non-Hodgkin's lymphomas show increased proportionate mortality ratios (PMRs) in workers employed in occupations with intuitive exposures to electromagnetic fields. Nine occupations of 219 were considered to have electric or magnetic field exposures. These were: electrical and electronic technicians, radio and telegraph operators, radio and television repairmen, telephone and power linemen, power station operators, welders, aluminum reduction workers, motion picture projectionists and electricians. There were 12,714 total deaths in these occupations. Eight of the nine occupations had PMR increases for leukemia [International Classification of Diseases (ICD), seventh revision 204] and seven of the nine occupations had PMR increases for the other lymphoma category (7th ICD 200.2, 202). The highest PMRs were seen for acute leukemia: (67 deaths observed, 41 deaths expected; PMR 162), and in the other lymphomas (51 deaths observed, 31 deaths expected; PMR 164). No increase in mortality was seen for Hodgkin's disease or multiple myeloma. These findings offer some support for the hypothesis that electric and magnetic fields may be carcinogenic. PMID:4085433

  19. Mortality in workers exposed to electromagnetic fields

    SciTech Connect

    Milham, S. Jr.

    1985-10-01

    In an occupational mortality analysis of 486,000 adult male death records filed in Washington State in the years 1950-1982, leukemia and the non-Hodgkin's lymphomas show increased proportionate mortality ratios (PMRs) in workers employed in occupations with intuitive exposures to electromagnetic fields. Nine occupations of 219 were considered to have electric or magnetic field exposures. These were: electrical and electronic technicians, radio and telegraph operators, radio and television repairmen, telephone and power linemen, power station operators, welders, aluminum reduction workers, motion picture projectionists and electricians. There were 12,714 total deaths in these occupations. Eight of the nine occupations had PMR increases for leukemia (International Classification of Diseases (ICD), seventh revision 204) and seven of the nine occupations had PMR increases for the other lymphoma category (7th ICD 200.2, 202). The highest PMRs were seen for acute leukemia: (67 deaths observed, 41 deaths expected; PMR 162), and in the other lymphomas (51 deaths observed, 31 deaths expected; PMR 164). No increase in mortality was seen for Hodgkin's disease or multiple myeloma. These findings offer some support for the hypothesis that electric and magnetic fields may be carcinogenic.

  20. Electromagnetic polarizabilities: Lattice QCD in background fields

    SciTech Connect

    W. Detmold, B.C. Tiburzi, A. Walker-Loud

    2012-04-01

    Chiral perturbation theory makes definitive predictions for the extrinsic behavior of hadrons in external electric and magnetic fields. Near the chiral limit, the electric and magnetic polarizabilities of pions, kaons, and nucleons are determined in terms of a few well-known parameters. In this limit, hadrons become quantum mechanically diffuse as polarizabilities scale with the inverse square-root of the quark mass. In some cases, however, such predictions from chiral perturbation theory have not compared well with experimental data. Ultimately we must turn to first principles numerical simulations of QCD to determine properties of hadrons, and confront the predictions of chiral perturbation theory. To address the electromagnetic polarizabilities, we utilize the background field technique. Restricting our attention to calculations in background electric fields, we demonstrate new techniques to determine electric polarizabilities and baryon magnetic moments for both charged and neutral states. As we can study the quark mass dependence of observables with lattice QCD, the lattice will provide a crucial test of our understanding of low-energy QCD, which will be timely in light of ongoing experiments, such as at COMPASS and HI gamma S.

  1. Calcium protects differentiating neuroblastoma cells during 50 Hz electromagnetic radiation.

    PubMed

    Tonini, R; Baroni, M D; Masala, E; Micheletti, M; Ferroni, A; Mazzanti, M

    2001-11-01

    Despite growing concern about electromagnetic radiation, the interaction between 50- to 60-Hz fields and biological structures remains obscure. Epidemiological studies have failed to prove a significantly correlation between exposure to radiation fields and particular pathologies. We demonstrate that a 50- to 60-Hz magnetic field interacts with cell differentiation through two opposing mechanisms: it antagonizes the shift in cell membrane surface charges that occur during the early phases of differentiation and it modulates hyperpolarizing K channels by increasing intracellular Ca. The simultaneous onset of both mechanisms prevents alterations in cell differentiation. We propose that cells are normally protected against electromagnetic insult. Pathologies may arise, however, if intracellular Ca regulation or K channel activation malfunctions.

  2. Electromagnetic field at finite temperature: A first order approach

    NASA Astrophysics Data System (ADS)

    Casana, R.; Pimentel, B. M.; Valverde, J. S.

    2006-10-01

    In this work we study the electromagnetic field at finite temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field.

  3. Electromagnetically induced transparency in modulated laser fields

    NASA Astrophysics Data System (ADS)

    Jiao, Yuechun; Yang, Zhiwei; Zhang, Hao; Zhang, Linjie; Raithel, Georg; Zhao, Jianming; Jia, Suotang

    2017-02-01

    We study electromagnetically induced transparency (EIT) in a room-temperature cesium vapor cell using wavelength-modulated probe laser light. In the utilized cascade level scheme, the probe laser drives the lower transition 6S {}1/2(F = 4) → 6P {}3/2 (F’ = 5), while the coupling laser drives the Rydberg transition 6P {}3/2 → 57S {}1/2. The probe laser has a fixed average frequency and is modulated at a frequency of a few kHz, with a variable modulation amplitude in the range of tens of MHz. The probe transmission is measured as a function of the detuning of the coupling laser from the Rydberg resonance. The first-harmonic demodulated EIT signal has two peaks that are, in the case of large modulation amplitude, separated by the peak-to-peak modulation amplitude of the probe laser times a scaling factor {λ }{{p}}/{λ }{{c}}, where {λ }{{p}} and {λ }{{c}} are the probe- and coupling-laser wavelengths. The scaling factor is due to Doppler shifts in the EIT geometry. Second-harmonic demodulated EIT signals, obtained with small modulation amplitudes, yield spectral lines that are much narrower than corresponding lines in the modulation-free EIT spectra. The resultant spectroscopic resolution enhancement is conducive to improved measurements of radio-frequency (RF) fields based on Rydberg-atom EIT, an approach in which the response of Rydberg atoms to RF fields is exploited to characterize RF fields. Here, we employ wavelength modulation spectroscopy to reduce the uncertainty of atom-based frequency and field measurement of an RF field in the VHF radio band.

  4. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  5. Assessment of Electromagnetic Fields at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ficklen, Carter B.

    1995-01-01

    This report presents the results of an assessment of ElectroMagnetic Fields (EMF) completed at NASA Langley Research Center as part of the Langley Aerospace Research Summer Scholars Program. This project was performed to determine levels of electromagnetic fields, determine the significance of the levels present, and determine a plan to reduce electromagnetic field exposure, if necessary. This report also describes the properties of electromagnetic fields and their interaction with humans. The results of three major occupational epidemiological studies is presented to determine risks posed to humans by EMF exposure. The data for this report came from peer-reviewed journal articles and government publications pertaining to the health effects of electromagnetic fields.

  6. Fluxes of electromagnetic field energy in HTSC transformers

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Dzhafarov, E. A.

    2016-12-01

    The transfer of electric power in an HTSC electromagnetic system is considered using the Poynting vector. An analysis of the process of transfer of electromagnetic field energy in HTSC transformers with and without an iron core is given. It is shown that the power of an HTSC transformer increases when its magnetic core is made from amorphous electrical steel. Schemes of HTSC transformers with a localized magnetic field are given with cylindrical and disk symmetrical interleaved windings providing the cost-saving process of transfer of large electromagnetic energy at a high degree of its uniformity and improve the factor of nonuniformity of electromagnetic flux density.

  7. Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    PubMed Central

    Consales, Claudia; Merla, Caterina; Marino, Carmela; Benassi, Barbara

    2012-01-01

    Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system. PMID:22991514

  8. ELF Communications System Ecological Monitoring Program: Electromagnetic Field Measurements and Engineering Support--1989

    DTIC Science & Technology

    1990-10-01

    1985. It also allowed measurements to be taken with the NRTF-Clam Lake operating both at its secondary frequency of 44 Hz and at its primary frequency...EM fields affect vertebrate metabolism , nor which aspects of 3 exposure (i.e., intensity, duration, or both) could be important. The unmitigated 60 Hz...nominally on the same order of magnitude as the 76 Hz field values at the treatment sites during 150 ampere operation. Prior to 1990 metabolic studies

  9. 78 FR 33654 - Reassessment of Exposure to Radiofrequency Electromagnetic Fields Limits and Policies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Electromagnetic Fields Limits and Policies AGENCY: Federal Communications Commission. ACTION: Proposed rule... electromagnetic fields. The Commission's further proposals reflect an effort to provide more efficient, practical... RF electromagnetic fields. The Commission underscores that in conducting this review it will...

  10. Interpreting marine controlled source electromagnetic field behaviour with streamlines

    NASA Astrophysics Data System (ADS)

    Pethick, A. M.; Harris, B. D.

    2013-10-01

    Streamlines represent particle motion within a vector field as a single line structure and have been used in many areas of geophysics. We extend the concept of streamlines to interactive three dimensional representations of the coupled vector fields generated during marine controlled source electromagnetic surveys. These vector fields have measurable amplitudes throughout many hundreds of cubic kilometres. Electromagnetic streamline representation makes electromagnetic interactions within complex geo-electrical setting comprehensible. We develop an interface to rapidly compute and interactively visualise the electric and magnetic fields as streamlines for 3D marine controlled source electromagnetic surveys. Several examples highlighting how interactive use has value in marine controlled source electromagnetic survey design, interpretation and teaching are provided. The first videos of electric, magnetic and Poynting vector field streamlines are provided along with the first published example of the airwave represented as streamlines. We demonstrate that the electric field airwave is a circulating vortex moving down and out from the air-water interface towards the ocean floor. The use of interactive streamlines is not limited to marine controlled source electromagnetic methods. Streamlines provides a high level visualisation tool for interpreting the electric and magnetic field behaviour generated by a wide range of electromagnetic survey configurations for complex 3D geo-electrical settings.

  11. [Dynamics of biomacromolecules in coherent electromagnetic radiation field].

    PubMed

    Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I

    2014-01-01

    It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.

  12. An experiment to study strong electromagnetic fields at RHIC

    SciTech Connect

    Fatyga, M. ); Norbury, J.W. . Dept. of Physics)

    1990-01-01

    We present a description of an experiment which can be used to search for effects of strong electromagnetic fields on the production of e{sup +}e{sup {minus}} pairs in the elastic scattering of two heavy ions at RHIC. A very brief discussion of other possible studies of electromagnetic phenomena at RHIC is also presented.

  13. The van Cittert-Zernike theorem for electromagnetic fields.

    PubMed

    Ostrovsky, Andrey S; Martínez-Niconoff, Gabriel; Martínez-Vara, Patricia; Olvera-Santamaría, Miguel A

    2009-02-02

    The van Cittert-Zernike theorem, well known for the scalar optical fields, is generalized for the case of vector electromagnetic fields. The deduced theorem shows that the degree of coherence of the electromagnetic field produced by the completely incoherent vector source increases on propagation whereas the degree of polarization remains unchanged. The possible application of the deduced theorem is illustrated by an example of optical simulation of partially coherent and partially polarized secondary source with the controlled statistical properties.

  14. Algebraic structure of general electromagnetic fields and energy flow

    SciTech Connect

    Hacyan, Shahen

    2011-08-15

    Highlights: > Algebraic structure of general electromagnetic fields in stationary spacetime. > Eigenvalues and eigenvectors of the electomagnetic field tensor. > Energy-momentum in terms of eigenvectors and Killing vector. > Explicit form of reference frame with vanishing Poynting vector. > Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.

  15. [Electromagnetic fields in melting divisions of nickel production].

    PubMed

    Nikitina, V N; Liashko, G G; Nikanov, A N; Nikitina, N Iu

    2004-01-01

    The authors evaluated electromagnetic situation in melting divisions, on transformer substation. Studies covered alternating electric and magnetic fields of industrial frequencies and direct magnetic fields in fire mode of nickel production on workplaces during working shifts. Results proved that induction of the magnetic fields varies widely. Magnetic fields influence is accidental and remains additional factor affecting human body.

  16. [Computational radiofrequency electromagnetic field dosimetry in evaluation of biological effects].

    PubMed

    Perov, S Iu; Kudryashov, Iu B; Rubtsova, N B

    2012-01-01

    Given growing computational resources, radiofrequency electromagnetic field dosimetry is becoming more vital in the study of biological effects of non-ionizing electromagnetic radiation. The study analyzes numerical methods which are used in theoretical dosimetry to assess the exposure level and specific absorption rate distribution. The advances of theoretical dosimetry are shown. Advantages and disadvantages of different methods are analyzed in respect to electromagnetic field biological effects. The finite-difference time-domain method was implemented in detail; also evaluated were possible uncertainties of complex biological structure simulation for bioelectromagnetic investigations.

  17. Effects of Electromagnetic Fields on Fish and Invertebrates

    SciTech Connect

    Schultz, Irvin R.; Woodruff, Dana L.; Marshall, Kathryn E.; Pratt, William J.; Roesijadi, Guritno

    2010-10-13

    In this progress report, we describe the preliminary experiments conducted with three fish and one invertebrate species to determine the effects of exposure to electromagnetic fields. During fiscal year 2010, experiments were conducted with coho salmon (Onchrohychus kisutch), California halibut (Paralicthys californicus), Atlantic halibut (Hippoglossus hippoglossus), and Dungeness crab (Cancer magister). The work described supports Task 2.1.3: Effects on Aquatic Organisms, Subtask 2.1.3.1: Electromagnetic Fields.

  18. [Pulsed electromagnetic fields (PEMF)--results in evidence based medicine].

    PubMed

    Pieber, Karin; Schuhfried, Othmar; Fialka-Moser, Veronika

    2007-01-01

    Therapy with electromagnetic fields has a very old tradition in medicine. The indications are widespread, whereas little is known about the effects. Controlled randomizied studies with positive results for pulsed electromagnetic fields (PEMF) are available for osteotomies, the healing of skin wounds, and osteoarthritis. Comparison of the studies is difficult because of the different doses applied and intervals of therapy. Therefore recommendations regarding an optimal dosis and interval are, depending on the disease, quite variable.

  19. Electromagnetic fields and potentials generated by massless charged particles

    SciTech Connect

    Azzurli, Francesco; Lechner, Kurt

    2014-10-15

    We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard–Wiechert field the electromagnetic field acquires singular δ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string. - Highlights: • First exact solution of Maxwell’s equations for massless charges in arbitrary motion. • Explicit expressions of electromagnetic fields and potentials. • Derivations are rigorous and based on distribution theory. • The form of the field depends heavily on whether the motion is bounded or unbounded. • The electromagnetic field contains unexpected Dirac-delta-function contributions.

  20. Neuronal Cellular Responses to Extremely Low Frequency Electromagnetic Field Exposure: Implications Regarding Oxidative Stress and Neurodegeneration

    PubMed Central

    Reale, Marcella; Kamal, Mohammad A.; Patruno, Antonia; Costantini, Erica; D'Angelo, Chiara; Pesce, Miko; Greig, Nigel H.

    2014-01-01

    Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs) on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD), have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF)-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1mT; frequency, 50-Hz) on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2−, which were countered by compensatory changes in antioxidant catylase (CAT) activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a decline in CAT

  1. Biological effects of prolonged exposure to ELF electromagnetic fields in rats: III. 50 Hz electromagnetic fields.

    PubMed

    Zecca, L; Mantegazza, C; Margonato, V; Cerretelli, P; Caniatti, M; Piva, F; Dondi, D; Hagino, N

    1998-01-01

    Groups of adult male Sprague Dawley rats (64 rats each) were exposed for 8 months to electromagnetic fields (EMF) of two different field strength combinations: 5microT - 1kV/m and 100microT - 5kV/m. A third group was sham exposed. Field exposure was 8 hrs/day for 5 days/week. Blood samples were collected for hematology determinations before the onset of exposure and at 12 week intervals. At sacrifice, liver, heart, mesenteric lymph nodes, bone marrow, and testes were collected for morphology and histology assessments, while the pineal gland and brain were collected for biochemical determinations. At both field strength combinations, no pathological changes were observed in animal growth rate, in morphology and histology of the collected tissue specimens (liver, heart, mesenteric lymph nodes, testes, bone marrow), and in serum chemistry. An increase in norepinephrine levels occurred in the pineal gland of rats exposed to the higher field strength. The major changes in the brain involved the opioid system in frontal cortex, parietal cortex, and hippocampus. From the present findings it may be hypothesized that EMF may cause alteration of some brain functions.

  2. [The influence of electromagnetic fields on flora and fauna].

    PubMed

    Rochalska, Małgorzata

    2009-01-01

    This paper presents the influence of natural and artificial electromagnetic fields (EMF) on fauna and flora. The mechanisms of Earth's magnetic field detection and the use of this skill by migratory animals to faultlessly reach the destination of their travel are discussed, as well as the positive effects of electric and magnetic fields on plants relative to their physiology, yielding and health. EMF influence on social insects and animal organisms, including possible DNA damages and DNA repair systems, is presented. The influence of high frequency electromagnetic fields on birds nesting is also discussed.

  3. Nonlinear electromagnetic fields as a source of universe acceleration

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2016-04-01

    A model of nonlinear electromagnetic fields with a dimensional parameter β is proposed. From PVLAS experiment the bound on the parameter β was obtained. Electromagnetic fields are coupled with the gravitation field and we show that the universe accelerates due to nonlinear electromagnetic fields. The magnetic universe is considered and the stochastic magnetic field is a background. After inflation the universe decelerates and approaches to the radiation era. The range of the scale factor, when the causality of the model and a classical stability take place, was obtained. The spectral index, the tensor-to-scalar ratio, and the running of the spectral index were estimated which are in approximate agreement with the Planck, WMAP, and BICEP2 data.

  4. Basic Materials for Electromagnetic Field Standards

    DTIC Science & Technology

    2003-03-04

    choliner- gic processes // Labor Hygiene and Biological Effects of electromagnetic waves of ra- diofrequencies. Proceedings of 3rd All-Union Symposium...Microwave on Blood asparthate Amine transferase Enzymatic System. J. Radiation biology and ecol - ogy (Russian academy of sciences) 2001. Vol. 41. No.1...under Increased Temperature. J. Radiation biology and ecol - ogy (Russian academy of sciences) 2002. Vol. 42. No.1, pp. 191–193. 13. T.P. Semenova

  5. Effect of ambient levels of power-line-frequency electric fields on a developing vertebrate

    SciTech Connect

    Blackman, C.F.; House, D.E.; Benane, S.G.; Joines, W.T.; Spiegel, R.J.

    1988-01-01

    Fertilized eggs of Gallus domesticus were exposed continuously during their 21-day incubation period to either 50- or 60-Hz sinusoidal electric fields at an average intensity of 10 Vrms/m. The exposure apparatus was housed in an environmental room maintained at 37 degrees C and 55-60% relative humidity (RH). Within 1.5 days after hatching, the chickens were removed from the apparatus and tested. The test consisted of examining the effect of 50- or 60-Hz electromagnetic fields at 15.9 Vrms/m and 73 nTrms (in a local geomagnetic field of 38 microT, 85 degrees N) on efflux of calcium ions from the chicken brain. For eggs exposed to 60-Hz electric fields during incubation, the chicken brains demonstrated a significant response to 50-Hz fields but not to 60-Hz fields, in agreement with the results from commercially incubated eggs. In contrast, the brains from chicks exposed during incubation to 50-Hz fields were not affected by either 50- or 60-Hz fields. These results demonstrate that exposure of a developing organism to ambient power-line-frequency electric fields at levels typically found inside buildings can alter the response of brain tissue to field-induced calcium-ion efflux. The physiological significance of this finding has yet to be established.

  6. MESA: a new configuration for measuring electromagnetic field fluctuations.

    PubMed

    Harte, T M; Black, D L; Hollinshead, M T

    1999-11-01

    This paper describes how the multi-energy sensor array has been refitted to meet the needs of measuring geomagnetic and other types of electromagnetic phenomena in an environment. This portable laptop computer system was designed to measure the interaction of multiple frequencies with the psychological and physiological processes that underlie human exposure to electromagnetic fields across the spectra. New sensors and analytical software have been implemented in the new configuration.

  7. Suppression and control of leakage field in electromagnetic helical microwiggler

    SciTech Connect

    Ohigashi, N.; Tsunawaki, Y.; Imasaki, K.

    1995-12-31

    Shortening the period of electromagnetic wiggler introduces both the radical increase of the leakage field and the decrease of the field in the gap region. The leakage field is severer problem in planar electromagnetic wiggler than in helical wiggler. Hence, in order to develop a short period electromagnetic wiggler, we have adopted {open_quotes}three poles per period{close_quotes} type electromagnetic helical microwiggler. In this work, we inserted the permanent magnet (PM) blocks with specific magnetized directions in the space between magnetic poles, for suppressing the leakage field flowing out from a pole face to the neighboring pole face. These PM-blocks must have higher intrinsic coersive force than saturation field of pole material. The gap field due to each pole is adjustable by controlling the leakage fields, that is, controlling the position of each iron screw set in each retainer fixing the PM-blocks. At present time, a test wiggler with period 7.8mm, periodical number 10 and gap length 4.6mm has been manufactured. Because the ratio of PM-block aperture to gap length is important parameter to suppress the leakage field, the parameter has been surveyed experimentally for PM-blocks with several dimensions of aperture. The field strength of 3-5kG (K=0.2-0.4) would be expected in the wiggler.

  8. Analytical model for electromagnetic cascades in rotating electric field

    SciTech Connect

    Nerush, E. N.; Bashmakov, V. F.; Kostyukov, I. Yu.

    2011-08-15

    Electromagnetic cascades attract a lot of attention as an important quantum electrodynamics effect that will reveal itself in various electromagnetic field configurations at ultrahigh intensities. We study cascade dynamics in rotating electric field analytically and numerically. The kinetic equations for the electron-positron plasma and gamma-quanta are formulated. The scaling laws are derived and analyzed. For the cascades arising far above the threshold the dependence of the cascade parameters on the field frequency is derived. The spectra of high-energy cascade particles are calculated. The analytical results are verified by numerical simulations.

  9. Electromagnetic Fields Produced by Inclined Return Stroke Channel

    NASA Astrophysics Data System (ADS)

    Nemamcha, Abdelmalek; Houabes, Mourad

    2014-05-01

    In this paper further theoretical investigations to understand and elucidate recently raised questions on the characteristics of lightning return-strokes curried out. Using Antenna Theory (AT) model, which is extended to take into account the channel inclination, the electromagnetic fields expressions for vertical dipole are completed, and an inclined channel is properly modeled, vertical electric and azimuthally magnetic fields are computed at different distances (close, intermediate and far distance ranges). The computations show that amplitudes and wave forms of the electromagnetic fields at close and intermediate lightning environment are considerably affected by the channel inclination.

  10. Electromagnetic homeostasis and the role of low-amplitude electromagnetic fields on life organization.

    PubMed

    De Ninno, Antonella; Pregnolato, Massimo

    2017-01-01

    The appearance of endogenous electromagnetic fields in biological systems is a widely debated issue in modern science. The electrophysiological fields have very tiny intensities and it can be inferred that they are rapidly decreasing with the distance from the generating structure, vanishing at very short distances. This makes very hard their detection using standard experimental methods. However, the existence of fast-moving charged particles in the macromolecules inside both intracellular and extracellular fluids may envisage the generation of localized electric currents as well as the presence of closed loops, which implies the existence of magnetic fields. Moreover, the whole set of oscillatory frequencies of various substances, enzymes, cell membranes, nucleic acids, bioelectrical phenomena generated by the electrical rhythm of coherent groups of cells, cell-to-cell communication among population of host bacteria, forms the increasingly complex hierarchies of electromagnetic signals of different frequencies which cover the living being and represent a fundamental information network controlling the cell metabolism. From this approach emerges the concept of electromagnetic homeostasis: that is, the capability of the human body to maintain the balance of highly complex electromagnetic interactions within, in spite of the external electromagnetic noisy environment. This concept may have an important impact on the actual definitions of heal and disease.

  11. Health Effects of Electromagnetic Fields: A Review of Literature.

    ERIC Educational Resources Information Center

    White, George L.; And Others

    1995-01-01

    Current evidence suggests that the effects of electromagnetic fields (EMF) disturb cell homeostasis at very low intensities by influencing discrete intracellular magnetic fields. The article reviews current research about the health effects of EMF, examining historical implications, childhood studies, adult studies, and popular press reports, and…

  12. Health Effects of Electromagnetic Fields: A Review of Literature.

    ERIC Educational Resources Information Center

    White, George L.; And Others

    1995-01-01

    Current evidence suggests that the effects of electromagnetic fields (EMF) disturb cell homeostasis at very low intensities by influencing discrete intracellular magnetic fields. The article reviews current research about the health effects of EMF, examining historical implications, childhood studies, adult studies, and popular press reports, and…

  13. External Field QED on Cauchy Surfaces for Varying Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Deckert, D.-A.; Merkl, F.

    2016-08-01

    The Shale-Stinespring Theorem (J Math Mech 14:315-322, 1965) together with Ruijsenaar's criterion (J Math Phys 18(4):720-737, 1977) provide a necessary and sufficient condition for the implementability of the evolution of external field quantum electrodynamics between constant-time hyperplanes on standard Fock space. The assertion states that an implementation is possible if and only if the spatial components of the external electromagnetic four-vector potential {A_μ} are zero. We generalize this result to smooth, space-like Cauchy surfaces and, for general {A_μ}, show how the second-quantized Dirac evolution can always be implemented as a map between varying Fock spaces. Furthermore, we give equivalence classes of polarizations, including an explicit representative, that give rise to those admissible Fock spaces. We prove that the polarization classes only depend on the tangential components of {A_μ} w.r.t. the particular Cauchy surface, and show that they behave naturally under Lorentz and gauge transformations.

  14. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields.

    PubMed

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields.

  15. The effect of pulsed electromagnetic field therapy on food sensitivity.

    PubMed

    Monro, Jean A; Puri, Basant K

    2015-01-01

    Owing to the involvement of the immune system in the etiology of food sensitivity, and because pulsed electromagnetic field therapy is associated with beneficial immunologic changes, it was hypothesized that pulsed electromagnetic fields may have a beneficial effect on food sensitivity. A small pilot study was carried out in patients suffering from food sensitivity, with the antigen leukocyte antibody test being employed to index the degree of food sensitivity in terms of the number of foods to which each patient reacted. It was found that a 1-week course of pulsed electromagnetic field therapy, consisting of one hour's treatment per day, resulted in a reduction in the mean number of reactive foods of 10.75 (p < 0.05). On the basis of these results, a larger study is warranted.

  16. Quantum processes in short and intensive electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Titov, A. I.; Kämpfer, Burkhard; Hosaka, Atsushi; Takabe, Hideaki

    2016-05-01

    This work provides an overview of our recent results in studying two most important and widely discussed quantum processes: electron-positron pairs production off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g. laser) wave field or generalized Breit-Wheeler process, and a single a photon emission off an electron interacting with the laser pules, so-called non-linear Compton scattering. We show that the probabilities of particle production in both processes are determined by interplay of two dynamical effects, where the first one is related to the shape and duration of the pulse and the second one is non-linear dynamics of the interaction of charged fermions with a strong electromagnetic field. We elaborate suitable expressions for the production probabilities and cross sections, convenient for studying evolution of the plasma in presence of strong electromagnetic fields.

  17. Electromagnetic Propulsion System for Spacecraft using Geomagnetic fields and Superconductors

    NASA Astrophysics Data System (ADS)

    Dadhich, Anang

    This thesis concentrates on developing an innovative method to generate thrust force for spacecraft in localized geomagnetic fields by various electromagnetic systems. The proposed electromagnetic propulsion system is an electromagnet, like normal or superconducting solenoid, having its own magnetic field which interacts with the planet's magnetic field to produce a reaction thrust force. The practicality of the system is checked by performing simulations in order the find the varying radius, velocity, and acceleration changes. The advantages, challenges, various optimization techniques, and viability of such a propulsion system in present day and future are discussed. The propulsion system such developed is comparable to modern MPD Thrusters and electric engines, and has various applications like spacecraft propulsion, orbit transfer and stationkeeping.

  18. The electromagnetic bio-field: clinical experiments and interferences

    PubMed Central

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-01-01

    Introduction: One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. Material and methods: The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. Results: The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. Conclusions: The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express. PMID:22802878

  19. The electromagnetic bio-field: clinical experiments and interferences.

    PubMed

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-06-12

    One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express.

  20. Histopathological and ultrastructural studies on the effects of electromagnetic fields on the liver of preincubated white Leghorn chicken embryo.

    PubMed

    Lahijani, Maryam Shams; Tehrani, Daryush Minaei; Sabouri, Elliam

    2009-01-01

    There are several reports indicating a linkage between exposures to 50-60 Hz electromagnetic fields and abnormalities in the early stages of embryonic development of chicken embryos. The present study was designed to demonstrate whether electromagnetic fields could be an environmental factor invoking histopathological and ultra-structural changes in livers of preincubated chicken embryos exposed to EMFs. Following other researchers and our previous results from different groups of Developmental Biology at the Animal Sciences, Faculty of Biological Sciences, Shahid-Beheshti University, effects of most effective intensities (1.33, 2.66, 5.52, and 7.32 mT) of electromagnetic fields (EMFs, 50 Hz ) on livers of pre-incubated white leghorn chicken embryos were investigated . 150 healthy, fresh, and fertilized eggs (55-65 gr) were divided into 6 groups of experimental(1-4, n = 30), control (n = 60), and sham (n = 50). Experimental eggs (inside coil) were exposed to 4 different intensities (1.33, 2.66, 5.52, and 7.32 mT). Sham groups were located inside same coil, with no exposure, for 24 h before incubation. Control, sham, and experimental groups (1-4) were then incubated in an incubator (38 +/- 0.5 degrees C, 60% humidity) for 17 days. At the end of this period, livers of experimental, sham, and control groups were processed for light and transmission electrom microscopes (TEM and SEM) studies. So, livers of 17-day old chicken embryos were removed by C-sections, fixed in formalin 10%, stained with H&E and reticulin, and studied under light microscope. Others were prepared for electron microscopes (TEM and SEM) investigations. Morphological observations indicated exencephalic embryos, embryos with asymmetrical faces, crossed beak, shorter upper beak, deformed hind limbs, gastroschesis, anophthalmia, and microphthalmia. H&E and reticulin stainings, TEMS, and SEMs studies indicated EMFs would create hepato-cytes with fibrotic bands, severe steatohepatitis, vacuolizations

  1. On electromagnetic fields and their applications in the early universe

    NASA Astrophysics Data System (ADS)

    Ahonen, Jarkko Tapani

    1998-07-01

    The field equations of the electromagnetic field, combined with models of the early universe, make it possible to study electromagnetic phenomena at the early stages of the universe. Electromagnetic fields provide us with a tool to estimate electrical conductivity and transport coefficients (heat conductivity and viscosity) in the primordial plasma of the hot early universe. Electrical conductivity plays an important role, for example, in the dissipation of the axion field (a weakly interacting dark matter candidate) and in the creation and dissipation of the primordial magnetic field. On the other hand, heat conductivity and shear viscosity are important, for example, in connection with primordial density perturbations, i.e., galaxy formation, early phase transitions, and primordial magnetic fields. First, in paper I, we derived the equations of motion for the axion field coupled with an electromagnetic field. It was found that energy from the axion field can be transferred to the electromagnetic field. Therefore the damping of the axion field depends on electrical conductivity but that the electromagnetic dissipation cannot, however, significantly damp the axion field. In paper II we developed the tools with which to estimate electrical conductivity in the primordial plasma. We used the Boltzmann collision equation to study how a beam of charged particles will be scattered in the early hot universe. We integrated the collision integral numerically by a simple Monte Carlo integration routine. We discovered that the charged leptons give the largest contribution to the electrical conductivity; the quark contribution was found to be negligible. In Paper III, we estimated with an Abelian Higgs model what kind of a primordial magnetic field can be created in first order phase transition bubble collisions. Assuming that the Abelian model reflects the properties of the full electroweak case, we found that the seed field created is of the right order of magnitude in order

  2. Kinetic theory of plasma equilibrium in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Gorbunov, L. M.; Gradov, O. M.; Ziunder, D.; Ramazashvili, R. R.

    1981-04-01

    The present study examines the equilibrium of a direct-current-carrying plasma in an electromagnetic field under the assumption that the particles escaping from the plasma have a Maxwellian distribution. It is shown that an equilibrium state is possible only in the case of a definite relationship between the amplitude of the incident wave and the concentration of escaping particles. Attention is given to spatial variations of the electromagnetic field, and of the plasma density and flow velocity. The application of these effects in microwave devices is discussed.

  3. Effect of ambient levels of power-line-frequency electric fields on a developing vertebrate (journal version)

    SciTech Connect

    Blackman, C.F.; House, D.E.; Benane, S.G.; Joines, W.T.; Spiegel, R.J.

    1988-01-01

    Fertilized eggs of Gallus domesticus were exposed continuously during their 21-day incubation period to either 50 or 60-Hz sinusoidal electric fields at an average intensity of 10 Vrms/m. Within 1.5 days after hatching, the chickens were removed from the apparatus and tested. The test consisted of examining the effect of 50- or 60-Hz electromagnetic fields at 15.9 Vrms/m and 73 nTrms (in a local geomagnetic field of 38 uT, 85 deg N) on efflux of calcium ions from the chicken brain. For eggs exposed to 60-Hz electric fields during incubation, the chicken brains demonstrated a significant response to 50-Hz fields but not to 60-Hz fields, in agreement with the results from commercially incubated eggs. In contrast, the brains from chicks exposed during incubation to 50-Hz fields were not affected by either 50- or 60-Hz fields. These results demonstrate that exposure of a developing organism to ambient power-line-frequency electric fields at levels typically found inside buildings can alter the response of brain tissue to radiation-induced calcium-ion efflux.

  4. Near-field thermal electromagnetic transport: An overview

    NASA Astrophysics Data System (ADS)

    Edalatpour, Sheila; DeSutter, John; Francoeur, Mathieu

    2016-07-01

    A general near-field thermal electromagnetic transport formalism that is independent of the size, shape and number of heat sources is derived. The formalism is based on fluctuational electrodynamics, where fluctuating currents due to thermal agitation are added to Maxwell's curl equations, and is thus valid for heat sources in local thermodynamic equilibrium. Using a volume integral formulation, it is shown that the proposed formalism is a generalization of the classical electromagnetic scattering framework in which thermal emission is implicitly assumed to be negligible. The near-field thermal electromagnetic transport formalism is afterwards applied to a problem involving three spheres with size comparable to the wavelength, where all multipolar interactions are taken into account. Using the thermal discrete dipole approximation, it is shown that depending on the dielectric function, the presence of a third sphere slightly affects the spatial distribution of power absorbed compared to the two-sphere case. A transient analysis shows that despite a non-uniform spatial distribution of power absorbed, the sphere temperature remains spatially uniform at any instant due to the fact that the thermal resistance by conduction is much smaller than the resistance by radiation. The formalism proposed in this paper is general, and could be used as a starting point for adapting solution methods employed in traditional electromagnetic scattering problems to near-field thermal electromagnetic transport.

  5. Optimal control of electromagnetic field using metallic nanoclusters

    NASA Astrophysics Data System (ADS)

    Grigorenko, Ilya; Haas, Stephan; Balatsky, Alexander; Levi, A. F. J.

    2008-04-01

    The dielectric properties of metallic nanoclusters in the presence of an applied electromagnetic field are investigated using the non-local linear response theory. In the quantum limit we find a nontrivial dependence of the induced field and charge distributions on the spatial separation between the clusters and on the frequency of the driving field. Using a genetic algorithm, these quantum functionalities are exploited to custom-design sub-wavelength lenses with a frequency-controlled switching capability.

  6. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, Ki H.; Xie, Gan Q.

    1994-01-01

    A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.

  7. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, K.H.; Xie, G.Q.

    1994-12-13

    A method is described for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The travel times corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter [alpha] for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography. 13 figures.

  8. Deformation methods in modelling of the inner magnetospheric electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Toivanen, P. K.

    2007-12-01

    Various deformation methods have been widely used in animation image processing. In common terms, they are mathematical presentations of deformations of an image drawn on an elastic material under stretching or compression of the material. Such a method has also been used in modelling of the magnetospheric magnetic fields, and recently been generalized to include also the electric fields. In this presentations, the theory of the deformation method and an application in a form of a new global magnetospheric electromagnetic field model are previewed. The main focus of the presentation is on the inner magnetospheric current systems and associated electromagnetic fields during quiet and disturbed periods. Finally, a short look at the modern deformation methods in image processing is taken. These methods include the Free Form Deformations and Moving Least Squares Deformations, and their future applications in magnetospheric field modelling are discussed.

  9. Environmental magnetic fields: Influences on early embryogenesis

    SciTech Connect

    Cameron, I.L.; Hardman, W.E.; Winters, W.D.; Zimmerman, S.; Zimmerman, A.M. )

    1993-04-01

    A 10-mG, 50 to 60-Hz magnetic field is in the intensity and frequency range that people worldwide are often exposed to in homes and in the workplace. Studies about the effects of 50- to 100-Hz electromagnetic fields on various species of animal embryos (fish, chick, fly, sea urchin, rat, and mouse) indicate that early stages of embryonic development are responsive to fluctuating magnetic fields. Chick, sea urchin, and mouse embryos are responsive to magnetic field intensities of 10-100 mG. Results from studies on sea urchin embryos indicate that exposure to conditions of rotating 60-Hz magnetic fields, e.g., similar to those in our environment, interferes with cell proliferation at the morula stage in a manner dependent on field intensity. The cleavage stages, prior to the 64-cell stage, were not delayed by this rotating 60-Hz magnetic field suggesting that the ionic surges, DNA replication, and translational events essential for early cleavage stages were not significantly altered. Studies of histone synthesis in early sea urchin embryos indicated that the rotating 60-Hz magnetic field decreased zygotic expression of early histone genes at the morula stage and suggests that this decrease in early histone production was limiting to cell proliferation. Whether these comparative observations from animal development studies will be paralleled by results from studies of human embryogenesis, as suggested by some epidemiology studies, has yet to be established. 38 refs.

  10. Ionization of atoms in strong low-frequency electromagnetic field

    SciTech Connect

    Krainov, V. P.

    2010-08-15

    The ionization of atoms in a low-frequency linearly polarized electromagnetic field (the photon energy is much lower than the ionization potential of an atom) is considered under new conditions, in which the Coulomb interaction of an electron with the atomic core in the final state of the continuum cannot be considered in perturbation theory in the interaction of the electron with the electromagnetic field. The field is assumed to be much weaker that the atomic field. In these conditions, the classical motion of the electron in the final state of the continuum becomes chaotic (so-called dynamic chaos). Using the well-known Chirikov method of averaging over chaotic variations of the phase of motion, the problem can be reduced to non-linear diffusion on the energy scale. We calculate the classical electron energy in the final state, which is averaged over fast chaotic oscillations and takes into account both the Coulomb field and the electromagnetic field. This energy is used to calculate the probability of ionization from the ground state of the atom to a lower-lying state in the continuum using the Landau-Dykhne approximation (to exponential accuracy). This ionization probability noticeably depends on the field frequency. Upon a decrease in frequency, a transition to the well-known tunnel ionization limit with a probability independent of the field frequency is considered.

  11. Electromagnetic time reversal focusing of near field waves in metamaterials

    NASA Astrophysics Data System (ADS)

    Chabalko, Matthew J.; Sample, Alanson P.

    2016-12-01

    Precise control of electromagnetic energy on a deeply subwavelength scale in the near field regime is a fundamentally challenging problem. In this letter we demonstrate the selective focusing of electromagnetic energy via the electromagnetic time reversal in the near field of a metamaterial. Our analysis begins with fundamental mathematics, and then is extended to the experimental realm where focusing in space and time of the magnetic fields in the near field of a 1-Dimensional metamaterial is shown. Under time reversal focusing, peak instantaneous fields at receiver locations are at minimum ˜200% greater than other receivers. We then leverage the strong selective focusing capabilities of the system to show individual and selective powering of light emitting diodes connected to coil receivers placed in the near field of the metamaterial. Our results show the possibility of improving display technologies, near field imaging systems, increasing channel capacity of near field communication systems, and obtaining a greater control of energy delivery in wireless power transfer systems.

  12. Relativistic Particle in Electromagnetic Fields with a Generalized Uncertainty Principle

    NASA Astrophysics Data System (ADS)

    Merad, M.; Zeroual, F.; Falek, M.

    2012-05-01

    In this paper, we propose to solve the relativistic Klein-Gordon and Dirac equations subjected to the action of a uniform electromagnetic field with a generalized uncertainty principle in the momentum space. In both cases, the energy eigenvalues and their corresponding eigenfunctions are obtained. The limit case is then deduced for a small parameter of deformation.

  13. Transducer measures temperature differentials in presence of strong electromagnetic fields

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Measurement of temperature rise of cooling water under pressure and in strong electromagnetic fields is accomplished by a transducer using a magnetically shielded thermocouple arrangement. The thermocouple junctions are immersed in oil to isolate them from electric currents in the water.

  14. What Message Should Health Educators Give regarding Electromagnetic Fields?

    ERIC Educational Resources Information Center

    Al-Khamees, Nedaa A.

    2008-01-01

    The possibility of extremely low frequency electromagnetic fields (ELF EMF) causing a number of medical conditions and common symptoms remains a concern and presents somewhat of a quandary to health educators in view of conflicting results. This study investigated the relationship of a number of EMF sources to reported symptoms in an attempt to,…

  15. What Message Should Health Educators Give regarding Electromagnetic Fields?

    ERIC Educational Resources Information Center

    Al-Khamees, Nedaa A.

    2008-01-01

    The possibility of extremely low frequency electromagnetic fields (ELF EMF) causing a number of medical conditions and common symptoms remains a concern and presents somewhat of a quandary to health educators in view of conflicting results. This study investigated the relationship of a number of EMF sources to reported symptoms in an attempt to,…

  16. Electromagnetic Field in Lyra Manifold: A First Order Approach

    NASA Astrophysics Data System (ADS)

    Casana, R.; de Melo, C. A. M.; Pimentel, B. M.

    2005-12-01

    We discuss the coupling of the electromagnetic field with a curved and torsioned Lyra manifold using the Duffin-Kemmer-Petiau theory. We will show how to obtain the equations of motion and energy-momentum and spin density tensors by means of the Schwinger Variational Principle.

  17. Oscillator strength sum rules with an external electromagnetic field

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, R.; Sabin, John R.; Öhrn, Yngve; Oddershede, J.

    1998-04-01

    We demonstrate that the Bethe, and therefore the Thomas-Reiche-Kuhn, sum rule is unaffected by the presence of an applied external electromagnetic field in the exact case. We use the consequence that the first-order perturbation contribution must also vanish to derive a necessary condition for the completeness of computational one-electron basis sets.

  18. Does three-dimensional electromagnetic field inherit the spacetime symmetries?

    NASA Astrophysics Data System (ADS)

    Cvitan, M.; Dominis Prester, P.; Smolić, I.

    2016-04-01

    We prove that the electromagnetic field in a (1+2)-dimensional spacetime necessarily inherits the symmetries of the spacetime metric in a large class of generalized Einstein-Maxwell theories. The Lagrangians of the studied theories have general diff-covariant gravitational part and include both the gravitational and the gauge Chern-Simons terms.

  19. Effects of pulsed electromagnetic fields on benign prostate hyperplasia.

    PubMed

    Giannakopoulos, Xenophon K; Giotis, Christos; Karkabounas, Spyridon Ch; Verginadis, Ioannis I; Simos, Yannis V; Peschos, Dimitrios; Evangelou, Angelos M

    2011-12-01

    Benign prostate hyperplasia (BPH) has been treated with various types of electromagnetic radiation methods such as transurethral needle ablation (TUNA), interstitial laser therapy (ILC), holmium laser resection (HoLRP). In the present study, the effects of a noninvasive method based on the exposure of patients with BPH to a pulsative EM Field at radiofrequencies have been investigated. Twenty patients with BPH, aging 68-78 years old (y.o), were enrolled in the study. Patients were randomly divided into two groups: the treatment group (10 patients, 74.0 ± 5.7 y.o) treated with the α-blocker Alfusosin, 10 mg/24 h for at least 4 weeks, and the electromagnetic group (10 patients, 73.7 ± 6.3 y.o) exposed for 2 weeks in a very short wave duration, pulsed electromagnetic field at radiofrequencies generated by an ion magnetic inductor, for 30 min daily, 5 consecutive days per week. Patients of both groups were evaluated before and after drug and EMF treatment by values of total PSA and prostatic PSA fraction, acid phosphate, U/S estimation of prostate volume and urine residue, urodynamic estimation of urine flow rate, and International Prostate Symptom Score (IPSS). There was a statistically significant decrease before and after treatment of IPSS (P < 0.02), U/S prostate volume (P < 0.05), and urine residue (P < 0.05), as well as of mean urine flow rate (P < 0.05) in patients of the electromagnetic group, in contrast to the treatment group who had only improved IPSS (P < 0.05). There was also a significant improvement in clinical symptoms in patients of the electromagnetic group. Follow-up of the patients of this group for one year revealed that results obtained by EMFs treatment are still remaining. Pulsed electromagnetic field at radiofrequencies may benefit patients with benign prostate hyperplasia treated by a non-invasive method.

  20. Electromagnetic Fields Associated with Commercial Solar Photovoltaic Electric Power Generating Facilities.

    PubMed

    Tell, R A; Hooper, H C; Sias, G G; Mezei, G; Hung, P; Kavet, R

    2015-01-01

    The southwest region of the United States is expected to experience an expansion of commercial solar photovoltaic generation facilities over the next 25 years. A solar facility converts direct current generated by the solar panels to three-phase 60-Hz power that is fed to the grid. This conversion involves sequential processing of the direct current through an inverter that produces low-voltage three-phase power, which is stepped up to distribution voltage (∼12 kV) through a transformer. This study characterized magnetic and electric fields between the frequencies of 0 Hz and 3 GHz at two facilities operated by the Southern California Edison Company in Porterville, CA and San Bernardino, CA. Static magnetic fields were very small compared to exposure limits established by IEEE and ICNIRP. The highest 60-Hz magnetic fields were measured adjacent to transformers and inverters, and radiofrequency fields from 5-100 kHz were associated with the inverters. The fields measured complied in every case with IEEE controlled and ICNIRP occupational exposure limits. In all cases, electric fields were negligible compared to IEEE and ICNIRP limits across the spectrum measured and when compared to the FCC limits (≥0.3 MHz).

  1. QED effective action in magnetic field backgrounds and electromagnetic duality

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo

    2011-09-01

    In the in-out formalism we advance a method of the inverse scattering matrix for calculating effective actions in pure magnetic field backgrounds. The one-loop effective actions are found in a localized magnetic field of Sauter type and approximately in a general magnetic field by applying the uniform semiclassical approximation. The effective actions exhibit the electromagnetic duality between a constant electric field and a constant magnetic field and between E(x)=Esech2(x/L) and B(x)=Bsech2(x/L).

  2. Electromagnetic fields from mobile phone base station - variability analysis.

    PubMed

    Bienkowski, Pawel; Zubrzak, Bartlomiej

    2015-09-01

    The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.

  3. [Clinical monitoring in areas of exposure to radiofrequency electromagnetic fields].

    PubMed

    Suvorov, I M

    2013-01-01

    Clinical syndromes induced by high intensity radiofrequency electromagnetic field chronic exposure are described. Persons injured by occupational exposure have been observed central nervous system changes in diencephalic syndrome form, cardio-vascular system changes revealed in atherosclerosis, isch(a)emic heart disease and coronary insufficiency rapid progressive expansion. General public living in territory of radar station exposure zone different functional disorders have been identified: vegetative dystonia (asthenovegetative syndrome), thrombocytopenia, decrease of blood coagulation index, and thyroid gland function changes. Observed diseases clinical variability may be determined by electromagnetic exposure characteristics.

  4. Theta-gamma coupling in hippocampus during working memory deficits induced by low frequency electromagnetic field exposure.

    PubMed

    Zhang, Yameng; Zhang, Yan; Yu, Hejuan; Yang, Yamin; Li, Weitao; Qian, Zhiyu

    2017-10-01

    The dramatically increased use of electricity is raising major concerns as to the consequences of the interaction between electromagnetic field (EMF) and neurobiology. The aim of this study is to investigate the effects of magnetic field on working memory in the hippocampal region by analyzing local field potentials (LFPs) and spikes pattern in vivo. In present study, mice were exposed to EMF (50Hz, 1mT), static magnetic field (SMF, 1mT), or placed in the exposure tube but without EMF exposure (SHAM), respectively. During the exposure for 7 consecutive days, mice were subjected to perform working memory (WM) tasks in Y-maze, and multichannel electrophysiology signals from hippocampus of mice were recorded during the test, from which LFPs, spike firing rates, band power at different frequencies, and theta-gamma modulation index (MI) were analyzed in details. From our results, correct choice rate during WM task was found significantly decreased in EMF group after 3-day exposure, which was consistent with noticeable decline in firing rate. Starting from Day 3 after EMF exposure, the power of theta (4-12Hz) and gamma (LG, 30-60Hz) before reference point (RP) in Y-maze were also found to be descending, together with decrease of oscillatory activities of theta and gamma frequencies. The results indicated that MI between theta and gamma could play a significant role in modulating the spikes discharge and encoding WM. Therefore, the analysis of theta-gamma coupling and its oscillation strength may provide a new perspective for mechanistic investigation of EMF-induced WM deficits. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Numerical Analysis of Electromagnetic Fields in Multiscale Model

    NASA Astrophysics Data System (ADS)

    Ma, Ji; Fang, Guang-You; Ji, Yi-Cai

    2015-04-01

    Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. Supported in part by China Postdoctoral Science Foundation under Grant No. 201M550839, and in part by the Key Research Program of the Chinese Academy of Sciences under Grant No. KGZD-EW-603

  6. Electromagnetic Field Effects in Semiconductor Crystal Growth

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.

    1996-01-01

    This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.

  7. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  8. Proton Radiography as an electromagnetic field and density perturbation diagnostic

    SciTech Connect

    Mackinnon, A; Patel, P; Town, R; Edwards, M; Phillips, T; Lerner, S; Price, D; Hicks, D; Key, M; Hatchett, S; Wilks, S; King, J; Snavely, R; Freeman, R; Boehlly, T; Koenig, M; Martinolli, E; Lepape, S; Benuzzi-Mounaix, A; Audebert, P; Gauthier, J; Borghesi, M; Romagnani, L; Toncian, T; Pretzler, G; Willi, O

    2004-04-15

    Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with MeV protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter . PACS numbers: 52.50.Jm, 52.40.Nk, 52.40.Mj, 52.70.Kz

  9. Momentum of the electromagnetic field in transparent dielectric media

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2007-09-01

    We present arguments in favor of the proposition that the momentum of light inside a transparent dielectric medium is the arithmetic average of the Minkowski and Abraham momenta. Using the Lorentz transformation of the fields (and of the coordinates) from a stationary to a moving reference frame, we show the consistent transformation of electromagnetic energy and momentum between the two frames. We also examine the momentum of static (i.e., time-independent) electromagnetic fields, and show that the close connection that exists between the Poynting vector and the momentum density extends all the way across the frequency spectrum to this zero-frequency limit. In the specific example presented in this paper, the static field inside a non-absorbing dielectric material turns out to have the Minkowski momentum.

  10. Effects of electromagnetic fields (EMF) on the chemiluminescence (CL) of murine peritoneal exudate cells

    SciTech Connect

    Caren, L.D. )

    1992-02-26

    Stimulated PEC generate microbicidal free oxygen radicals which are potentially mutagenic and possibly carcinogenic. The effects of combined alternating electric and magnetic fields on oxygen radical production were measured in this study. A Helmholtz coil and parallel plate electrodes were utilized to provide uniform field characteristics. Effects were studied at combined field frequencies of 60, 600, and 6,000 Hz. Thioglycollate-elicited PEC were exposed to EMF or placed in a far corner of the lab (controls). Following the addition of zymosan, luminol-enhanced CL was measured. No differences in CL were found for exposures to 60 Hz for 18 hr; 600 Hz for 10 hr; or 6,000 Hz for 0.75 hr. PEC exposed to 6,000 Hz for 11 hr showed a 25% increase in CL over control PEC. At 600 and 6,000 Hz, the temperature of the air and a dish of saline in the EMF apparatus was 26C, vs. 25C where the controls were kept. At 60 Hz, there was no temperature difference. These preliminary experiments indicate that under these conditions, EMF fields do not have a significant effect on this immune function.

  11. Controlling Electromagnetic Field by Graded Meta-materials

    NASA Astrophysics Data System (ADS)

    Sun, Lei

    Metamaterials , i.e. artificial materials with electromagnetic properties not readily available in nature, have become a major research topic in both scientific and engineering communities. Being different from conventional materials, metamaterials possess peculiar electromagnetic properties, e.g. negative refractive index, depending on their structures. In particular, metamaterials form a basis for achieving cloaking device that makes an object invisible or transparency to the probing electromagnetic wave. This topic has significant impact on various fields ranging from optics, medicine, biology to nanotechnology. Several cloaking techniques have been proposed by different research groups, namely, anomalous localized resonance, transformation optics, and scattering cancellation, etc. Each of them has its own advantages and disadvantages. For instance, the limitation in working frequency is a primary disadvantage of them. This thesis is concentrated on controlling electromagnetic field by graded metamaterials, i.e, metamaterials with graded structures, with the objective to realize the broadband electromagnetic transparency by extending the working frequency. Regarding the limitations of existing cloaking techniques, we propose the graded model based on the scattering cancellation technique, because it does not rely on resonant phenomena, and is fairly robust to relatively high variations of the shape and electromagnetic properties of the cloaked object. We modify the original Mie theory and Rayleigh scattering theory to deal with the graded metamaterial structures, and calculate the scattering cross section of graded isotropic and anisotropic spherical structures, an alytically and numerically. For the graded isotropic spherical structure, we achieve the exact analytic expressions for both full-wave and Rayleigh scattering cross sections, within our modified Mie theory and Rayleigh scattering theory. The numerical studies on the scattering cross sections clearly

  12. Consequences of Coupled Electromagnetic-Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Smalley, Larry

    2002-01-01

    In the late 1980s there was a flurry of activities involving the newly discovered high Tc superconductors in the development of new devices such as more efficient current transmission, transformers, generators, and motors. One such developmental project by Podkletnov in 1992 noted some small, anomalous gravitational behaviors. A following unpublished paper by Podkletnov 1995 provided data with larger effects using a larger (approx. 25 cm) superconducting disk. Unfortunately this disk was extremely fragile and was broken beyond repair. To date, these experiments have not been successfully repeated because of the difficulties of producing stable, durable (and fired) superconducting disks. This problem with firing these disks has been solved by Li. What remains is to install the disk in "motor", at superconducting temperatures in the presence of appropriately tailored magnetic fields.

  13. Designing localized electromagnetic fields in a source-free space.

    PubMed

    Borzdov, George N

    2002-06-01

    An approach to characterizing and designing localized electromagnetic fields, based on the use of differentiable manifolds, differentiable mappings, and the group of rotation, is presented. By way of illustration, novel families of exact time-harmonic solutions to Maxwell's equations in the source-free space--localized fields defined by the rotation group--are obtained. The proposed approach provides a broad spectrum of tools to design localized fields, i.e., to build-in symmetry properties of oscillating electric and magnetic fields, to govern the distributions of their energy densities (both size and form of localization domains), and to set the structure of time-average energy fluxes. It is shown that localized fields can be combined as constructive elements to obtain a complex field structure with desirable properties, such as one-, two-, or three-dimensional field gratings. The proposed approach can be used in designing localized electromagnetic fields to govern motion and state of charged and neutral particles. As an example, motion of relativistic electrons in one-dimensional and three-dimensional field gratings is treated.

  14. Radiotelephone with reduced electromagnetic field in human head

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    1995-01-01

    The quarter-wave monopole base driven over a circular ground plane with a finite radius has applications in over-the-horizon radar and on surveillance aircraft. A new use, for which the analysis is given in this paper, is as an over-the-head-mounted antenna for cellular telephones. With this design, the electromagnetic field in the head and the associated specific absorption rate of electromagnetic energy are greatly reduced when compared with the conventional hand-held transceiver. A complete analysis is carried out of the electromagnetic field on the surface of the head and throughout its interior when the head is modeled as a cylinder with the electrical properties of the brain enclosed in a wall with the thickness and electrical properties of the skull. Graphs and tables are provided that give the field in the air on the surface of the head and in the skull and brain. The far field is also determined. The results are compared with those obtained with the hand-held radiotelephone (King, 1995).

  15. Electromagnetic fields in the exterior of an oscillating relativistic star - II. Electromagnetic damping

    NASA Astrophysics Data System (ADS)

    Rezzolla, Luciano; Ahmedov, Bobomurat J.

    2016-07-01

    An important issue in the asteroseismology of compact and magnetized stars is the determination of the dissipation mechanism which is most efficient in damping the oscillations when these are produced. In a linear regime and for low-multipolarity modes, these mechanisms are confined to either gravitational-wave or electromagnetic losses. We here consider the latter and compute the energy losses in the form of Poynting fluxes, Joule heating and Ohmic dissipation in a relativistic oscillating spherical star with a dipolar magnetic field in vacuum. While this approach is not particularly realistic for rapidly rotating stars, it has the advantage that it is fully analytic and that it provides expressions for the electric and magnetic fields produced by the most common modes of oscillation both in the vicinity of the star and far away from it. In this way, we revisit and extend to a relativistic context the classical estimates of McDermott et al. Overall, we find that general-relativistic corrections lead to electromagnetic damping time-scales that are at least one order of magnitude smaller than in Newtonian gravity. Furthermore, with the only exception of g (gravity) modes, we find that f (fundamental), p (pressure), i (interface) and s (shear) modes are suppressed more efficiently by gravitational losses than by electromagnetic ones.

  16. [New mechanisms of biological effects of electromagnetic fields].

    PubMed

    Buchachenko, A L; Kuznetsov, D A; Berdinskiĭ, V L

    2006-01-01

    The production of ATP in mitochondria depends on the magnesium nuclear spin and magnetic moment of a Mg2+ ion in creatine kinase and ATPase. This suggests that enzymatic synthesis of ATP is an ion-radical process and thus depends on the external magnetic field (magnetobiology originates from this fact) and microwave fields, which control the spin states of ion-radical pairs and affect the ATP synthesis. The chemical mechanism of ATP synthesis and the origin of biological effects of electromagnetic (microwave) fields are discussed.

  17. Invariant superoscillatory electromagnetic fields in 3D-space

    NASA Astrophysics Data System (ADS)

    Makris, K. G.; Papazoglou, D. G.; Tzortzakis, S.

    2017-01-01

    We derive exact solutions of Maxwell’s equations based on superoscillatory superpositions of vectorial Bessel beams. These novel beams are diffraction-free and can support subwavelength features in their transverse electromagnetic fields, without the presence of any evanescent waves. These features can be propagated into the far field. Approximate solutions in closed form are also derived based on asymptotic expansions of Bessel functions for simple prescribed subwavelength patterns. The superoscillatory characteristics of both electric, magnetic field components (transverse and longitudinal), and the Poynting vector, as well as, the effect of nonparaxiality are systematically investigated.

  18. Effects of noise and electromagnetic fields on reproductive outcomes.

    PubMed Central

    Meyer, R E; Aldrich, T E; Easterly, C E

    1989-01-01

    Much public health research has been directed to studies of cancer risks due to chemical agents. Recently, increasing attention has been given to adverse reproductive outcomes as another, shorter-term biologic indicator of public health impact. Further, several low-level ubiquitous physical agents have been implicated recently as possibly affecting human health. These physical factors (noise and electromagnetic fields) represent difficult topics for research with epidemiologic study methods. This paper provides a brief review of the published data related to the risk of adverse reproductive outcomes and exposure to noise or electromagnetic fields. The discussion includes ideas for possible biologic mechanisms, considerations for exposure assessment, and suggestions for epidemiologic research. PMID:2667980

  19. Soft hairs on isolated horizon implanted by electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Mao, Pujian; Wu, Xiaoning; Zhang, Hongbao

    2017-03-01

    Inspired by the recent proposal of soft hair on black holes in Hawking et al (2016 Phys. Rev. Lett. 116 231301), we have shown that an isolated horizon carries soft hairs implanted by electromagnetic fields. The solution space and the asymptotic symmetries of Einstein–Maxwell theory have been worked out explicitly near the isolated horizon. The conserved current has been computed and an infinite number of near horizon charges have been introduced from the electromagnetic fields associated with the asymptotic U(1) symmetry near the horizon, which indicates the fact that the isolated horizon carries a large amount of soft electric hairs. The soft electric hairs, i.e. asymptotic U(1) charges, are shown to be equivalent to the electric multipole moments of isolated horizons. It is further argued that the isolated horizon supertranslation is from the ambiguity of its foliation and an analogue of memory effect on horizon can be expected.

  20. Acoustic effect of an electromagnetic pulsed UHF field

    SciTech Connect

    Kapyrin, Yu.V.; Moiseev, V.I.; Petrenko, V.V.

    1988-06-01

    During the course of studies on the Fakel linear accelerator it was found that the metal structures of the electrodynamic components of the accelerator are subjected to ultrasonic vibrations, the intensity and spectral composition of which depend on the operating regimes of its high-frequency system and on the conditions of resonance energy exchange between the electromagnetic field and the particle beam. From the results of calculations and measurements, the authors of this paper propose, without ruling out the contribution of other sources, that the ultrasonic signals observed in the irises and regular square waveguides of an accelerator can be attributed to the A ponderomotive effect of powerful pulses of the high-frequency electromagnetic field.

  1. Asseleration of ions in turbulent electromagnetic field during dipolarization events

    NASA Astrophysics Data System (ADS)

    Zhukova, Elena; Popov, Victor

    2017-04-01

    In spite of the long time interest for the acceleration of hight energetic ions in the Earth's magnetotail, considerable uncertainty remains as to the quantitative influence of different acceleration mechanism and their modifications. Both theoretical and numerical studies predict a hardening of the energy spectra of the particles wandering into the current sheet. Such energetic ion fluxes in the near-Earth tail were usually observed during magnetic dipolarizations or presence of turbulent electromagnetic field in the central region of current sheet that can effectively interact with the charged particles and energize them. The results demonstrate particle acceleration by separate two mechanisms and by their joint action. Both acceleration mechanisms lead to the formation of powered tails in proton distribution functions. Generally acceleration on magnetic dipolarization can be more effective in comparison with turbulent electromagnetic field.

  2. Immunorehabilitating effect of ultrahigh frequency electromagnetic fields in immunocompromised animals.

    PubMed

    Pershin, S B; Bobkova, A S; Derevnina, N A; Sidorov, V D

    2013-06-01

    We observed immunorehabilitation effects of ultrahigh frequency electromagnetic fields (microwaves) in immunocompromised animals. It was shown that microwave irradiation of the thyroid gland area could abolish actinomycin D- and colchicine-induced immunosuppression and did not affect immunosuppression caused by 5-fluorouracil. These findings suggest that changes in the hormonal profile of the organism during microwave exposure can stimulate the processes of transcription and mitotic activity of lymphoid cells.

  3. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    SciTech Connect

    Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes; Sierra, L. C. Gaitan

    2008-08-11

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  4. Systemic Effects of Electromagnetic Fields in Patients with Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Cañedo-Dorantes, L.; Valle, L.; Uruchurtu, E.; Medel, A.; García-Mayen, F.; Serrano-Luna, G.

    2003-09-01

    Healing of acute myocardial infarction (AMI) is associated with inflammatory response, which promotes healing and scar formation. Activation of a local inflammatory response in patients with sequel of AMI could have an important role to enhance angiogenesis and regeneration of hibernating myocardial tissue. Chronic arterial leg ulcers have a similar etiology, and healing has been promoted by exposure to extremely low frequency electromagnetic fields (ELF). We report the evolution of three AMI patients with sequel of AMI that were exposed to ELF.

  5. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    NASA Astrophysics Data System (ADS)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  6. Low-frequency electromagnetic field in a Wigner crystal

    SciTech Connect

    Stupka, Anton

    2013-03-15

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  7. Effects of Pulsed Electromagnetic Fields on Osteoporosis Model

    NASA Astrophysics Data System (ADS)

    Xiaowei, Yang; Liming, Wang; Guan, Z. C.; Yaou, Zhang; Xiangpeng, Wang

    The purpose of this paper was to investigate the preventive effects and long term effects of extremely low frequency pulsed electromagnetic fields (PEMFs), generated by circular coils and pulsed electromagnetic fields stimulators, on osteoporosis in bilaterally ovariectomized rats. In preventive experiment, thirty three-month old female Sprague-Dawley rats were randomly divided into three different groups: sham (SHAM), ovariectomy (OVX), PEMFs stimulation (PEMFs). All rats were subjected to bilaterally ovariectomy except those in SHAM group. The PEMFs group was exposed to pulsed electromagnetic fields with frequency 15 Hz, peak magnetic induction density 2.2mT and exposure time 2 hours per day. The bone mineral density (BMD) of vertebra and left femur were measured by dual energy X-ray absorptiometry at eighth week, twelfth week and sixteenth week after surgery. In long term effects experiment, forty four rats were randomly divided into sham (14 rats, SHAM), ovariectomy group (10 rats, OVX), 15Hz PEMFs group(10 rats, 15Hz) and 30Hz PEMFs group(10 rats, 30Hz) at twenty-sixth week after surgery. Rats in PEMFs groups were stimulated sixteen weeks. In preventive experiment, the Corrected BMD of vertebra and femur was significantly higher than that of OVX group after 16 weeks (P<0.001, P<0.001 respectively). In long term effects experiment, the vertebral BMD of 15Hz PEMFs group and 30Hz PEMFs group was significantly higher than that of OVX groups (P<0.01, P<0.05 respectively). The experimental results demonstrated that extremely low intensity, low frequency, single pulsed electromagnetic fields significantly slowed down the loss of corrected vertebral and femoral BMD in bilaterally ovariectomized rats and suggest that PEMFs may be beneficial in the treatment of osteoporosis.

  8. Electromagnetic field interacting with a semi-infinite plasma.

    PubMed

    Apostol, M; Vaman, G

    2009-07-01

    Plasmon and polariton modes are derived for an ideal semi-infinite (half-space) plasma by using a general, unifying procedure based on the equation of motion of the polarization and the electromagnetic potentials. Known results are reproduced in a much more direct manner, and new ones are derived. The approach consists of representing the charge disturbances by a displacement field in the positions of the moving particles (electrons). The propagation of an electromagnetic wave in this plasma is treated by using the retarded electromagnetic potentials. The resulting integral equations are solved, and the reflected and refracted fields are computed, as well as the reflection coefficient. Generalized Fresnel relations are thereby obtained for any incidence angle and polarization. Bulk and surface plasmon-polariton modes are identified. As is well known, the field inside the plasma is either damped (evanescent) or propagating (transparency regime), and the reflection coefficient exhibits an abrupt enhancement on passing from the propagating regime to the damped one (total reflection).

  9. Offshore windmills and the effects of electromagnetic fields on fish.

    PubMed

    Ohman, Marcus C; Sigray, Peter; Westerberg, Håkan

    2007-12-01

    With the large scale developments of offshore windpower the number of underwater electric cables is increasing with various technologies applied. A wind farm is associated with different types of cables used for intraturbine, array-to-transformer, and transformer-to-shore transmissions. As the electric currents in submarine cables induce electromagnetic fields there is a concern of how they may influence fishes. Studies have shown that there are fish species that are magneto-sensitive using geomagnetic field information for the purpose of orientation. This implies that if the geomagnetic field is locally altered it could influence spatial patterns in fish. There are also physiological aspects to consider, especially for species that are less inclined to move as the exposure could be persistent in a particular area. Even though studies have shown that magnetic fields could affect fish, there is at present limited evidence that fish are influenced by the electromagnetic fields that underwater cables from windmills generate. Studies on European eel in the Baltic Sea have indicated some minor effects. In this article we give an overview on the type of submarine cables that are used for electric transmissions in the sea. We also describe the character of the magnetic fields they induce. The effects of magnetic fields on fish are reviewed and how this may relate to the cables used for offshore wind power is discussed.

  10. Electromagnetic fields in medicine - The state of art.

    PubMed

    Pasek, Jarosław; Pasek, Tomasz; Sieroń-Stołtny, Karolina; Cieślar, Grzegorz; Sieroń, Aleksander

    2016-01-01

    Intense development of methods belonging to physical medicine has been noted recently. There are treatment methods, which in many cases lead to reduction treatment time and positively influence on quality of life treatment patients. The present physical medicine systematically extends their therapeutic possibilities. This above applies to illnesses and injuries of locomotor system, diseases affecting of soft tissues, as well as chronic wounds. The evidence on this are the results of basic and clinical examinations relating the practical use of electromagnetic fields in medicine. In this work the authors introduced the procedure using the current knowledge relating to physical characteristic and biological effects of the magnetic fields. In the work the following methods were used: static magnetic fields, spatial magnetic fields, the variable magnetic fields both with laser therapy (magnetolaserotherapy) and variable magnetic fields both with light optical non-laser (magnetoledtherapy) talked.

  11. Further studies of 60-Hz exposure effects on human function. Final report summary, July 3, 1989--September 15, 1993

    SciTech Connect

    Graham, C.; Cohen, H.D.

    1994-03-29

    The objective of the exploratory study was to determine whether the electric or magnetic field, presented separately in an intermittent fashion, would produce the same pattern of heart rate increases and decreases seen in the original intermittent exposure study. In addition, time of day and baseline heart rate were explored in an attempt to clarify design issues that arose from previous studies. Twenty-four healthy young men 21 to 35 years of age participated in the study. Half were exposed to a 9-kV/m electric field, and half to a 200-mG magnetic field. Within each of these groups, half were exposed in the morning and half in the afternoon.

  12. [Polish regulations on maximum admissible intensities for electric and magnetic frequencies of 60 Hz and the European Union recommendations for electrical power engineering].

    PubMed

    Groszko, Marian

    2003-01-01

    Electric and magnetic fields of 50 Hz from electric power devices affect not only workers, but also the general population, as these devices are also located in populated areas, hence the duality of regulations on maximum admissible intensities. This paper presents these regulations and discusses in detail the changes of 2001. Based on the Polish regulations, hygienic evaluation of electric power devices has been attempted. The Polish regulations on the 50 Hz electromagnetic fields were compared with relevant international regulations of CENELEC and the European Union recommendations. Our maximum admissible intensities have been found to conform with the international standards.

  13. Reconstruction of velocity fields in electromagnetic flow tomography

    PubMed Central

    Lehtikangas, Ossi; Karhunen, Kimmo

    2016-01-01

    Electromagnetic flow meters (EMFMs) are the gold standard in measuring flow velocity in process industry. The flow meters can measure the mean flow velocity of conductive liquids and slurries. A drawback of this approach is that the velocity field cannot be determined. Asymmetric axial flows, often encountered in multiphase flows, pipe elbows and T-junctions, are problematic and can lead to serious systematic errors. Recently, electromagnetic flow tomography (EMFT) has been proposed for measuring velocity fields using several coils and a set of electrodes attached to the surface of the pipe. In this work, a velocity field reconstruction method for EMFT is proposed. The method uses a previously developed finite-element-based computational forward model for computing boundary voltages and a Bayesian framework for inverse problems. In the approach, the vz-component of the velocity field along the longitudinal axis of the pipe is estimated on the pipe cross section. Different asymmetric velocity fields encountered near pipe elbows, solids-in-water flows in inclined pipes and in stratified or multiphase flows are tested. The results suggest that the proposed reconstruction method could be used to estimate velocity fields in complicated pipe flows in which the conventional EMFMs have limited accuracy. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185961

  14. Reconstruction of velocity fields in electromagnetic flow tomography.

    PubMed

    Lehtikangas, Ossi; Karhunen, Kimmo; Vauhkonen, Marko

    2016-06-28

    Electromagnetic flow meters (EMFMs) are the gold standard in measuring flow velocity in process industry. The flow meters can measure the mean flow velocity of conductive liquids and slurries. A drawback of this approach is that the velocity field cannot be determined. Asymmetric axial flows, often encountered in multiphase flows, pipe elbows and T-junctions, are problematic and can lead to serious systematic errors. Recently, electromagnetic flow tomography (EMFT) has been proposed for measuring velocity fields using several coils and a set of electrodes attached to the surface of the pipe. In this work, a velocity field reconstruction method for EMFT is proposed. The method uses a previously developed finite-element-based computational forward model for computing boundary voltages and a Bayesian framework for inverse problems. In the approach, the vz-component of the velocity field along the longitudinal axis of the pipe is estimated on the pipe cross section. Different asymmetric velocity fields encountered near pipe elbows, solids-in-water flows in inclined pipes and in stratified or multiphase flows are tested. The results suggest that the proposed reconstruction method could be used to estimate velocity fields in complicated pipe flows in which the conventional EMFMs have limited accuracy. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  15. Spectrum of classes of point emitters of electromagnetic wave fields.

    PubMed

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  16. Electromagnetic field properties in the vicinity of a massive wormhole

    SciTech Connect

    Novikov, I. D.; Shatskiy, A. A.

    2011-12-15

    It is proved that not only massless but also traversable massive wormholes can have electromagnetic 'hair.' An analysis is also presented of the passage from a traversable wormhole to the limit of a Reissner-Nordstroem black hole, with the corresponding disappearance of 'hair.' A general method is developed for solving stationary axisymmetric Maxwell's equations in the field of a massive, spherically symmetric wormhole. As a particular example of application of the method, a solution is found to the axisymmetric magnetostatic problem for a current loop in the field of the Bronnikov-Ellis-Morris-Thorne wormhole.

  17. Electromagnetic field redistribution in hybridized plasmonic particle-film system

    NASA Astrophysics Data System (ADS)

    Fang, Yurui; Huang, Yingzhou

    2013-04-01

    Combining simulation and experiment, we demonstrate that a metal nanoparticle dimer on a gold film substrate can confine more energy in the particle/film gap because of the hybridization of the dimer resonant lever and the continuous state of the film. The hybridization may even make the electric field enhancement in the dimer/film gap stronger than in the gap between particles. The resonant peak can be tuned by varying the size of the particles and the film thickness. This electromagnetic field redistribution has tremendous applications in sensor, photocatalysis and solar cell, etc., especially considering ultrasensitive detection of tracing molecule on substrates.

  18. Electromagnetic Field Quantization in Time-Dependent Linear Media

    SciTech Connect

    Pedrosa, I. A.; Rosas, Alexandre

    2009-07-03

    We present a quantization scheme for the electromagnetic field in time-dependent homogeneous nondispersive conducting and nonconducting linear media without sources. Using the Coulomb gauge, we demonstrate this quantization can be mapped into a damped (attenuated) time-dependent quantum harmonic oscillator. Remarkably, we find that the time dependence of the permittivity, for epsilon>0, gives rise to an attenuation of the radiation field. Afterwards, we obtain the exact wave functions for this problem and consider an exponential time accretion of the permittivity as a particular case.

  19. On a remarkable electromagnetic field in the Einstein Universe

    NASA Astrophysics Data System (ADS)

    Kopiński, Jarosław; Natário, José

    2017-06-01

    We present a time-dependent solution of the Maxwell equations in the Einstein universe, whose electric and magnetic fields, as seen by the stationary observers, are aligned with the Clifford parallels of the 3-sphere S^3. The conformal equivalence between Minkowski's spacetime and (a region of) the Einstein cylinder is then exploited in order to obtain a knotted, finite energy, radiating solution of the Maxwell equations in flat spacetime. We also discuss similar electromagnetic fields in expanding closed Friedmann models, and compute the matter content of such configurations.

  20. Electromagnetic field occupational exposure: non-thermal vs. thermal effects.

    PubMed

    Israel, M; Zaryabova, V; Ivanova, M

    2013-06-01

    There are a variety of definitions for "non-thermal effects" included in different international standards. They start by the simple description that they are "effects of electromagnetic energy on a body that are not heat-related effects", passing through the very general definition related to low-level effects: "biological effects ascribed to exposure to low-level electric, magnetic and electromagnetic fields, i.e. at or below the corresponding dosimetric reference levels in the frequency range covered in this standard (0 Hz-300 GHz)", and going to the concrete definition of "the stimulation of muscles, nerves, or sensory organs, vertigo or phosfenes". Here, we discuss what kind of effect does the non-thermal one has on human body and give data of measurements in different occupations with low-frequency sources of electromagnetic field such as electric power distribution systems, transformers, MRI systems and : video display units (VDUs), whereas thermal effects should not be expected. In some of these workplaces, values above the exposure limits could be found, nevertheless that they are in the term "non-thermal effects" on human body. Examples are workplaces in MRI, also in some power plants. Here, we will not comment on non-thermal effects as a result of RF or microwave exposure because there are not proven evidence about the existance of such effects and mechanisms for them are not clear.

  1. Synergistic health effects between chemical pollutants and electromagnetic fields.

    PubMed

    Ledoigt, Gérard; Sta, Chaima; Goujon, Eric; Souguir, Dalila; El Ferjani, Ezzeddine

    2015-01-01

    Humans and ecosystems are exposed to highly variable and unknown cocktail of chemicals and radiations. Although individual chemicals are typically present at low concentrations, they can interact with each other resulting in additive or potentially synergistic mixture effects. This was also observed with products obtained by radiation actions such as sunlight or electromagnetic fields that can change the effects of chemicals, such as pesticides, and metal trace elements on health. Concomitant presence of various pesticides and their transformation products adds further complexity to chemical risk assessment since chronic inflammation is a key step for cancer promotion. Degradation of a parent molecule can produce several by-products which can trigger various toxic effects with different impacts on health and environment. For instance, the cocktail of sunlight irradiated sulcotrione pesticide has a greater cytotoxicity and genotoxicity than parent molecule, sulcotrione, and questions about the impact of photochemical process on environment. Adjuvants were shown to modify the biological features of pesticides. Addition of other elements, metals or biological products, can differently enhance cell toxicity of pesticides or electromagnetic radiations suggesting a synergy in living organisms. Electromagnetic fields spreading, pesticide by-products and mixtures monitoring become greater for environmental contamination evaluations.

  2. Neuroprotective effects of extremely low-frequency electromagnetic fields on a Huntington's disease rat model: effects on neurotrophic factors and neuronal density.

    PubMed

    Tasset, I; Medina, F J; Jimena, I; Agüera, E; Gascón, F; Feijóo, M; Sánchez-López, F; Luque, E; Peña, J; Drucker-Colín, R; Túnez, I

    2012-05-03

    There is evidence to suggest that the neuroprotective effect of exposure of extremely low-frequency electromagnetic fields (ELF-EMF) may be due, at least in part, to the effect of these fields on neurotrophic factors levels and cell survival, leading to an improvement in behavior. This study was undertaken to investigate the neuroprotective effects of ELFEF in a rat model of 3-nitropropionic acid (3NP)-induced Huntington's disease. Behavior patterns were evaluated, and changes in neurotrophic factor, cell damage, and oxidative stress biomarker levels were monitored in Wistar rats. Rats were given 3NP over four consecutive days (20 mg/kg body weight), whereas ELFEF (60 Hz and 0.7 mT) was applied over 21 days, starting after the last injection of 3NP. Rats treated with 3NP exhibited significantly different behavior in the open field test (OFT) and the forced swim test (FST), and displayed significant differences in neurotrophic factor levels and oxidative stress biomarkers levels, together with a neuronal damage and diminished neuronal density, with respect neuronal controls. ELFEF improved neurological scores, enhanced neurotrophic factor levels, and reduced both oxidative damage and neuronal loss in 3NP-treated rats. ELFEF alleviates 3NP-induced brain injury and prevents loss of neurons in rat striatum, thus showing considerable potential as a therapeutic tool.

  3. Noise induced calcium oscillations in a cell exposed to electromagnetic fields.

    PubMed

    Zhang, Yuhong; Zhao, Yongli; Chen, Yafei; Yuan, Changqing; Zhan, Yong

    2015-01-01

    The effects of noise on the calcium oscillations in a cell exposed to electromagnetic fields are described by a dynamic model. Noise is a very important factor to be considered in the dynamic research on the calcium oscillations in a cell exposed to electromagnetic fields. Some meaningful results have been obtained here based on the discussion. The results show that the pattern of intracellular calcium oscillations exposure to electromagnetic fields can be influenced by noise. Furthermore, the intracellular calcium oscillations exposure to electromagnetic fields can also be induced by noise. And the work has also studied the relationships between the voltage sensitive calcium channel's open probability and electromagnetic field. The result can provide new insights into constructive roles and potential applications of selecting appropriate electromagnetic field frequency during the research of biological effect of electromagnetic field.

  4. Plasma effects in electromagnetic field interaction with biological tissue

    NASA Astrophysics Data System (ADS)

    Sharma, R. P.; Batra, Karuna; Excell, Peter S.

    2011-02-01

    Theoretical analysis is presented of the nonlinear behavior of charge carriers in biological tissue under the influence of varying low-intensity electromagnetic (EM) field. The interaction occurs because of the nonlinear force arising due to the gradient of the EM field intensity acting on free electrons in the conduction band of proteins in metabolically active biological cell membrane receptors leading to a redistribution of charge carriers. Field dependence of the resulting dielectric constant is investigated by a suitable modification to include an additional electronic contribution term to the three-term Debye model. The exogenous EM field propagating in this nonlinear cellular medium satisfies the nonlinear Schrödinger equation and can be affected significantly. Resulting field effect can be substantially augmented and effective rectification/demodulation can occur. Possible implications of this modification on biological processes in white and grey matter are discussed.

  5. Effects of Bluetooth device electromagnetic field on hearing: pilot study.

    PubMed

    Balachandran, R; Prepageran, N; Prepagaran, N; Rahmat, O; Zulkiflee, A B; Hufaida, K S

    2012-04-01

    The Bluetooth wireless headset has been promoted as a 'hands-free' device with a low emission of electromagnetic radiation. To evaluate potential changes in hearing function as a consequence of using Bluetooth devices, by assessing changes in pure tone audiography and distortion production otoacoustic emissions. Prospective study. Thirty adult volunteers were exposed to a Bluetooth headset device (1) on 'standby' setting for 6 hours and (2) at full power for 10 minutes. Post-exposure hearing was evaluated using pure tone audiography and distortion production otoacoustic emission testing. There were no statistically significant changes in hearing, as measured above, following either exposure type. Exposure to the electromagnetic field emitted by a Bluetooth headset, as described above, did not decrease hearing thresholds or alter distortion product otoacoustic emissions.

  6. Work and energy for particles in electromagnetic field

    NASA Astrophysics Data System (ADS)

    Babajanyan, S. G.

    2017-07-01

    Defining the energy and work for particles interacting with electromagnetic field (EMF) is an open problem, because—due to the gauge-freedom—there exist various non-equivalent possibilities. It is argued that a consistent definition can be provided via the Lorenz gauge. To this end, I work out a system of two electromagnetically coupled classical particles. One of them is much heavier and models the source of work. The definition of energy in the Lorenz gauge is causal and consistent, because it leads to an approximate conservation law due to which the work done by the heavy particle (source of work) can be defined either via the kinetic energy of the heavy particle, or via the full time-dependent energy (kinetic + potential in the Lorenz gauge) of the light particle.

  7. Effects of repeated 9 and 30-day exposure to extremely low-frequency electromagnetic fields on social recognition behavior and estrogen receptors expression in olfactory bulb of Wistar female rats.

    PubMed

    Bernal-Mondragón, C; Arriaga-Avila, V; Martínez-Abundis, E; Barrera-Mera, B; Mercado-Gómez, O; Guevara-Guzmán, R

    2017-02-01

    We investigated the short- and long-term effects of extremely low-frequency electromagnetic fields (EMF) on social recognition behavior and expression of α- and β-estrogen receptors (ER). Rats were exposed to 60-Hz electromagnetic fields for 9 or 30 days and tested for social recognition behavior. Immunohistochemistry and western blot assays were performed to evaluate α- and β-ER expression in the olfactory bulb of intact, ovariectomized (OVX), and ovariectomized+estradiol (E2) replacement (OVX+E2). Ovariectomization showed impairment of social recognition after 9 days of EMF exposure and a complete recovery after E2 replacement and so did those after 30 days. Short EMF exposure increased expression of β-ER in intact, but not in the others. Longer exposure produced a decrease in intact but an increase in OVX and OVX+E2. Our findings suggest a significant role for β-estrogen receptors and a lack of effect for α-estrogen receptors on a social recognition task. EMF: extremely low frequency electromagnetic fields; ERs: estrogen receptors; OB: olfactory bulb; OVX: ovariectomized; OVX + E2: ovariectomized + estradiol replacement; IEI: interexposure interval; β-ER: beta estrogen receptor; E2: replacement of estradiol; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; WB: Western blot; PBS: phosphate-buffer saline; PB: phosphate-buffer.

  8. Biological effects from electromagnetic field exposure and public exposure standards.

    PubMed

    Hardell, Lennart; Sage, Cindy

    2008-02-01

    During recent years there has been increasing public concern on potential health risks from power-frequency fields (extremely low frequency electromagnetic fields; ELF) and from radiofrequency/microwave radiation emissions (RF) from wireless communications. Non-thermal (low-intensity) biological effects have not been considered for regulation of microwave exposure, although numerous scientific reports indicate such effects. The BioInitiative Report is based on an international research and public policy initiative to give an overview of what is known of biological effects that occur at low-intensity electromagnetic fields (EMFs) exposure. Health endpoints reported to be associated with ELF and/or RF include childhood leukaemia, brain tumours, genotoxic effects, neurological effects and neurodegenerative diseases, immune system deregulation, allergic and inflammatory responses, breast cancer, miscarriage and some cardiovascular effects. The BioInitiative Report concluded that a reasonable suspicion of risk exists based on clear evidence of bioeffects at environmentally relevant levels, which, with prolonged exposures may reasonably be presumed to result in health impacts. Regarding ELF a new lower public safety limit for habitable space adjacent to all new or upgraded power lines and for all other new constructions should be applied. A new lower limit should also be used for existing habitable space for children and/or women who are pregnant. A precautionary limit should be adopted for outdoor, cumulative RF exposure and for cumulative indoor RF fields with considerably lower limits than existing guidelines, see the BioInitiative Report. The current guidelines for the US and European microwave exposure from mobile phones, for the brain are 1.6 W/Kg and 2 W/Kg, respectively. Since use of mobile phones is associated with an increased risk for brain tumour after 10 years, a new biologically based guideline is warranted. Other health impacts associated with exposure to

  9. The universal C*-algebra of the electromagnetic field II. Topological charges and spacelike linear fields

    NASA Astrophysics Data System (ADS)

    Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

    2017-02-01

    Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of "spacelike linearity". Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.

  10. Electromagnetic field of a charge traveling into an anisotropic medium.

    PubMed

    Galyamin, Sergey N; Tyukhtin, Andrey V

    2011-11-01

    We analyze the electromagnetic field generated by a point charge intersecting the interface between vacuum and a nonmagnetic anisotropic medium with a plasma-type dispersion of the dielectric permittivity tensor. After penetrating the medium, the charge moves along its main axis. The total field is presented as a sum of a self-field (i.e., a charge field in a corresponding unbounded medium) and a scattered field associated with the boundary influence. We show that the self-field in the considered anisotropic medium is divided into a quasistatic field and a wave field (the so-called "plasma trace" is absent in the case under consideration). Under certain conditions, the Vavilov-Cherenkov radiation generated in the medium is reversed (i.e., the energy flux density vector forms an obtuse angle with the direction of the charge motion). Accordingly, so-called reversed Cherenkov-transition radiation (RCTR) can be generated. We analytically and numerically investigate both the scattered field and the total one, and we show that RCTR exists in the vacuum region if the charge velocity exceeds a certain threshold value associated with total internal reflection. Computations of the Fourier harmonics of the field as well as the total field itself demonstrate that RCTR in vacuum can be a dominant effect. Some properties of RCTR can be useful for diagnostics of particle bunches and determination of medium characteristics.

  11. Electromagnetic field of a charge traveling into an anisotropic medium

    NASA Astrophysics Data System (ADS)

    Galyamin, Sergey N.; Tyukhtin, Andrey V.

    2011-11-01

    We analyze the electromagnetic field generated by a point charge intersecting the interface between vacuum and a nonmagnetic anisotropic medium with a plasma-type dispersion of the dielectric permittivity tensor. After penetrating the medium, the charge moves along its main axis. The total field is presented as a sum of a self-field (i.e., a charge field in a corresponding unbounded medium) and a scattered field associated with the boundary influence. We show that the self-field in the considered anisotropic medium is divided into a quasistatic field and a wave field (the so-called “plasma trace” is absent in the case under consideration). Under certain conditions, the Vavilov-Cherenkov radiation generated in the medium is reversed (i.e., the energy flux density vector forms an obtuse angle with the direction of the charge motion). Accordingly, so-called reversed Cherenkov-transition radiation (RCTR) can be generated. We analytically and numerically investigate both the scattered field and the total one, and we show that RCTR exists in the vacuum region if the charge velocity exceeds a certain threshold value associated with total internal reflection. Computations of the Fourier harmonics of the field as well as the total field itself demonstrate that RCTR in vacuum can be a dominant effect. Some properties of RCTR can be useful for diagnostics of particle bunches and determination of medium characteristics.

  12. Electromagnetic field of a charge traveling into an anisotropic medium

    SciTech Connect

    Galyamin, Sergey N.; Tyukhtin, Andrey V.

    2011-11-15

    We analyze the electromagnetic field generated by a point charge intersecting the interface between vacuum and a nonmagnetic anisotropic medium with a plasma-type dispersion of the dielectric permittivity tensor. After penetrating the medium, the charge moves along its main axis. The total field is presented as a sum of a self-field (i.e., a charge field in a corresponding unbounded medium) and a scattered field associated with the boundary influence. We show that the self-field in the considered anisotropic medium is divided into a quasistatic field and a wave field (the so-called 'plasma trace' is absent in the case under consideration). Under certain conditions, the Vavilov-Cherenkov radiation generated in the medium is reversed (i.e., the energy flux density vector forms an obtuse angle with the direction of the charge motion). Accordingly, so-called reversed Cherenkov-transition radiation (RCTR) can be generated. We analytically and numerically investigate both the scattered field and the total one, and we show that RCTR exists in the vacuum region if the charge velocity exceeds a certain threshold value associated with total internal reflection. Computations of the Fourier harmonics of the field as well as the total field itself demonstrate that RCTR in vacuum can be a dominant effect. Some properties of RCTR can be useful for diagnostics of particle bunches and determination of medium characteristics.

  13. Instability-driven electromagnetic fields in coronal plasmas

    SciTech Connect

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; Sinenian, N.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hager, J. D.; Betti, R.; Hu, S. X.; Delettrez, J.; Meyerhofer, D. D.

    2013-04-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature and density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.

  14. Instability-driven electromagnetic fields in coronal plasmas

    DOE PAGES

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; ...

    2013-04-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature andmore » density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.« less

  15. Human disease resulting from exposure to electromagnetic fields.

    PubMed

    Carpenter, David O

    2013-01-01

    Electromagnetic fields (EMFs) include everything from cosmic rays through visible light to the electric and magnetic fields associated with electricity. While the high frequency fields have sufficient energy to cause cancer, the question of whether there are human health hazards associated with communication radiofrequency (RF) EMFs and those associated with use of electricity remains controversial. The issue is more important than ever given the rapid increase in the use of cell phones and other wireless devices. This review summarizes the evidence stating that excessive exposure to magnetic fields from power lines and other sources of electric current increases the risk of development of some cancers and neurodegenerative diseases, and that excessive exposure to RF radiation increases risk of cancer, male infertility, and neurobehavioral abnormalities. The relative impact of various sources of exposure, the great range of standards for EMF exposure, and the costs of doing nothing are also discussed.

  16. ELECTRON HOLOGRAPHY OF ELECTROMAGNETIC FIELDS - RECENT THEORETICAL ADVANCES.

    SciTech Connect

    BELEGGIA,M.; POZZI, G.; TONOMURA, A.

    2007-01-01

    It has been shown in this work that the Fourier space approach can be fruitfully applied to the calculation of the fields and the associated electron optical phase shift of several magnetic and electrostatic structures, like superconducting vortices in conventional and high-T{sub c} superconductors, reverse biased p-n junctions, magnetic domains and nanoparticles. In all these cases, this novel approach has led to unexpected but extremely interesting results, very often expressed in analytical form, which allow the quantitative and reliable interpretation of the experimental data collected by means of electron holography or of more conventional Lorentz microscopy techniques. Moreover, it is worth recalling that whenever long-range electromagnetic fields are involved, a physical model of the object under investigation is necessary in order to take into account correctly the perturbation of the reference wave induced by the tail of the field protruding into the vacuum. For these reasons, we believe that the Fourier space approach for phase computations we have introduced and discussed in this chapter will represent an invaluable tool for the investigation of electromagnetic fields at the meso- and nano-scale.

  17. Cosmological magnetic fields from inflation in extended electromagnetism

    SciTech Connect

    Beltran Jimenez, Jose; Maroto, Antonio L.

    2011-01-15

    In this work we consider an extended electromagnetic theory in which the scalar state which is usually eliminated by means of the Lorenz condition is allowed to propagate. This state has been shown to generate a small cosmological constant in the context of standard inflationary cosmology. Here we show that the usual Lorenz gauge-breaking term now plays the role of an effective electromagnetic current. Such a current is generated during inflation from quantum fluctuations and gives rise to a stochastic effective charge density distribution. Because of the high electric conductivity of the cosmic plasma after inflation, the electric charge density generates currents which give rise to both vorticity and magnetic fields on sub-Hubble scales. Present upper limits on vorticity coming from temperature anisotropies of the CMB are translated into lower limits on the present value of cosmic magnetic fields. We find that, for a nearly scale invariant vorticity spectrum, magnetic fields B{sub {lambda}>}10{sup -12} G are typically generated with coherence lengths ranging from subgalactic scales up to the present Hubble radius. Those fields could act as seeds for a galactic dynamo or even account for observations just by collapse and differential rotation of the protogalactic cloud.

  18. A review on Electromagnetic fields (EMFs) and the reproductive system

    PubMed Central

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-01-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted. PMID:27648194

  19. A review on Electromagnetic fields (EMFs) and the reproductive system.

    PubMed

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-07-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted.

  20. Increased voluntary drive is associated with changes in common oscillations from 13 to 60 Hz of interference but not rectified electromyography.

    PubMed

    Neto, Osmar P; Baweja, Harsimran S; Christou, Evangelos A

    2010-09-01

    The purpose of this study was to compare the capability of interference and rectified electromyography (EMG) to detect changes in the beta (13-30-HZ) and Piper (30-60-HZ) bands when voluntary force is increased. Twenty adults exerted a constant force abduction of the index finger at 15% and 50% of maximum. The common oscillations at various frequency bands (0-500 HZ) were estimated from the first dorsal interosseous muscle using cross wavelets of interference and rectified EMG. For the interference EMG signals, normalized power significantly (P < 0.01) increased with force in the beta (9.0 +/- 0.9 vs. 15.5 +/- 2.1%) and Piper (13.6 +/- 0.9 vs. 21 +/- 1.7%) bands. For rectified EMG signals, however, the beta and Piper bands remained unchanged (P > 0.4). Although rectified EMG is used in many clinical studies to identify changes in the oscillatory drive to the muscle, our findings suggest that only interference EMG can accurately capture the increase in oscillatory drive from 13 to 60 HZ with voluntary force.

  1. Dynamics of Cometary Dust Particles in Electromagnetic Radiation Fields

    NASA Astrophysics Data System (ADS)

    Herranen, Joonas; Markkanen, Johannes; Penttilä, Antti; Muinonen, Karri

    2016-10-01

    The formation of cometary dust tails and comae is based on solar radiation pressure. The pressure effects of electromagnetic radiation were originally conceptualized in Kepler's observations of the tails of comets and formulated mathematically by Maxwell in 1873. Today, the dynamics of cometary dust are known to be governed by gravity, electromagnetic forces, drag, solar wind, and solar radiation pressure.Solar radiation pressure has its roots in absorption, emission, and scattering of electromagnetic radiation. Due to modern advances in so-called integral equation methods in electromagnetics, a new approach of studying the effect of radiation pressure on cometary dust dynamics can be constructed. We solve the forces and torques due to radiation pressure for an arbitrarily shaped dust particle using volume integral equation methods.We then present a framework for solving the equations of motion of cometary dust particles due to radiative interactions. The solution is studied in a simplified cometary environment, where the radiative effects are studied at different orbits. The rotational and translational equations of motion are solved directly using a quaternion-based integrator. The rotational and translational equations of motion affect dust particle alignment and concentration. This is seen in the polarization of the coma. Thus, our direct dynamical approach can be used in modelling the observed imaging photo-polarimetry of the coma.In future studies, the integrator can be further extended to an exemplary comet environment, taking into account the drag, and the electric and magnetic fields. This enables us to study the dynamics of a single cometary dust particle based on fundamental physics.Acknowledgments. Research supported, in part, bythe European Research Council (ERC, grant Nr. 320773).

  2. Above-threshold ionization in two electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Bardfield, Rina Shoshana

    1997-11-01

    Above-threshold ionization (ATI) is a process in which a target atom absorbs more than the minimum number of photons from an applied electromagnetic field than are required for ionization, and is characterized by several peaks in the photoelectron spectrum which are separated from each other by the energy of a single photon (Agostini et al. 1979). The experiments of interest in this work involve ATI at microwave frequencies (Gallagher 1988, Gallagher and Scholz 1989), where the frequency of the field is too low to be able to see individual peaks in the spectrum. What is seen is that, in the presence of a weak assisting field, a very large number of microwave photons are absorbed. This problem cannot be treated using standard methods, due both to the intensity of the microwave field and to the large numbers of photons absorbed. The focus of this work is on the development of new analytical techniques to examine the interaction of an atomic system with two simultaneous electromagnetic fields. Specifically, the work focuses on above-threshold ionization in combined microwave and laser fields, where the microwave field is a very strong, very low frequency field, so that standard techniques, such as perturbation theory, do not apply. The work is based on two theoretical methods especially designed for use in intense field problems. These are the Strong Field Approximation (SFA) (Reiss 1980, 1992, 1996), which describes the ionization of an atom by an intense field in which the detached electron remains free in the field after ionization occurs, and the Momentum Translation Approximation (MTA) (Reiss 1970a, 1970b, 1989), which describes the dressing of a bound atomic state by a strong field in which the field can alter the state of the electron without necessarily causing transitions. The laser field, which is much weaker, is treated by traditional techniques. The theory is developed in general terms using S-matrix methods, with particular cases being modeled using

  3. An Optimization of Pulsed ElectroMagnetic Fields Study

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2006-01-01

    To date, in our research we have focused on the use of normal human neuronal progenitor (NHNP) cells because of their importance in human nervous system regeneration, development and maintenance, but we have developed 2-D and 3-D bioreactors that can accommodate any cell line. In this Project, we will include the use of tissues important for physiological regeneration: Human osteoblasts or chondrocytes, and vascular cells. Our initial results with the NHNP cells were quite startling using extremely low-level electromagnetic fields (5 microtesla at 10Hz; 6mA). The low-amplitude, rapidly time-varying electromagnetic fields exert a very potent effect on the proliferation, morphology, and gene expression of the cells in culture, both in standard 2-dimensional culture plates as well as cells organized into 3-dimensional tissue-like assemblies (TLAs) in a 3D bioreactor. We have replicated our preliminary results many, many times, have analyzed the gene expression using gene arrays (followed by Luminex analysis for protein production), and have monitored cell proliferation, orientation, morphology, and glucose metabolism, and we are confident that we have a stable and reliable model to study the control of high-level cellular processes by application of low-amplitude, time varying electromagnetic fields (TVEMF) (1, 2). In additional studies at the University of Michigan, we have been able to generate functional in vitro engineered mammalian skeletal muscle, and have employed nerve-muscle co-culture techniques to promote axonal sprouting. We believe that nearly all tissues, in particular, neural, are susceptible to the influences of low-level TVEMF.

  4. An Optimization of Pulsed ElectroMagnetic Fields Study

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2006-01-01

    To date, in our research we have focused on the use of normal human neuronal progenitor (NHNP) cells because of their importance in human nervous system regeneration, development and maintenance, but we have developed 2-D and 3-D bioreactors that can accommodate any cell line. In this Project, we will include the use of tissues important for physiological regeneration: Human osteoblasts or chondrocytes, and vascular cells. Our initial results with the NHNP cells were quite startling using extremely low-level electromagnetic fields (5 microtesla at 10Hz; 6mA). The low-amplitude, rapidly time-varying electromagnetic fields exert a very potent effect on the proliferation, morphology, and gene expression of the cells in culture, both in standard 2-dimensional culture plates as well as cells organized into 3-dimensional tissue-like assemblies (TLAs) in a 3D bioreactor. We have replicated our preliminary results many, many times, have analyzed the gene expression using gene arrays (followed by Luminex analysis for protein production), and have monitored cell proliferation, orientation, morphology, and glucose metabolism, and we are confident that we have a stable and reliable model to study the control of high-level cellular processes by application of low-amplitude, time varying electromagnetic fields (TVEMF) (1, 2). In additional studies at the University of Michigan, we have been able to generate functional in vitro engineered mammalian skeletal muscle, and have employed nerve-muscle co-culture techniques to promote axonal sprouting. We believe that nearly all tissues, in particular, neural, are susceptible to the influences of low-level TVEMF.

  5. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields.

    PubMed

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers' exposure to the electromagnetic field have been considered: workers' body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards.

  6. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields

    PubMed Central

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers’ exposure to the electromagnetic field have been considered: workers’ body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards. PMID:26323781

  7. Electromagnetic generation of sound in metals in a magnetic field

    NASA Astrophysics Data System (ADS)

    Aronov, I. E.; Fal'ko, V. L.

    1992-11-01

    A wide range of phenomena of the electromagnetic generation of sound in metals in a magnetic field is reviewed. All phenomena of mutual conversion of waves and of sound generation are due to the interaction of conduction electrons with phonons. A wide variety of resonance effects in a magnetic field determines numerous mechanisms for direct sound generation by an external microwave. The basic equations and boundary conditions for the problem of electron-phonon interaction in metals are presented in the quasiclassical approximation. In the low-temperature region under the conditions of the anomalous skin effect the wave conversion is caused, besides by inductive interaction, also by electron-phonon interaction via the deformation potential. The major conversion mechanism of an electromagnetic wave into sound results in various resonance effects in a magnetic field in conditions of strong spatial dispersion. We present an exact solution of the problem for an alkali metal in a magnetic field normal to the surface. We analyze the asymptotic approximations related with the skin-effect anomaly, the coupling of electromagnetic and acoustic waves in metals, and the role of surface scattering. We study the effect of resonance renormalization of electron-phonon interaction in metals with a complex dispersion law, which results in a partial compensation of resonance singularities and appears in Doppler-shifted cyclotron resonances. The doppleron-phonon resonance and its polarization effects are investigated. The electromagnetic generation of sound in metals in a magnetic field parallel to the surface is due to the additional mechanism of selecting “effective” electrons, where resonance effects are observed. We study geometric and cyclotron resonances, and the resonance coupling of a sound wave with a cyclotron wave. The amplitude and phase of the generated sound depend on the character of electron scattering on the metal boundary because in specular scattering a group of

  8. RF Electromagnetic Field Treatment of Tetragonal Kesterite CZTSSe Light Absorbers.

    PubMed

    Semenenko, Mykola O; Babichuk, Ivan S; Kyriienko, Oleksandr; Bodnar, Ivan V; Caballero, Raquel; Leon, Maximo

    2017-12-01

    In this work, we propose a method to improve electro-optical and structural parameters of light-absorbing kesterite materials. It relies on the application of weak power hydrogen plasma discharges using electromagnetic field of radio frequency range, which improves homogeneity of the samples. The method allows to reduce strain of light absorbers and is suitable for designing solar cells based on multilayered thin film structures. Structural characteristics of tetragonal kesterite Cu2ZnSn(S, Se)4 structures and their optical properties were studied by Raman, infrared, and reflectance spectroscopies. They revealed a reduction of the sample reflectivity after RF treatment and a modification of the energy band structure.

  9. Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.

    2000-01-01

    This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.

  10. RF Electromagnetic Field Treatment of Tetragonal Kesterite CZTSSe Light Absorbers

    NASA Astrophysics Data System (ADS)

    Semenenko, Mykola O.; Babichuk, Ivan S.; Kyriienko, Oleksandr; Bodnar, Ivan V.; Caballero, Raquel; Leon, Maximo

    2017-06-01

    In this work, we propose a method to improve electro-optical and structural parameters of light-absorbing kesterite materials. It relies on the application of weak power hydrogen plasma discharges using electromagnetic field of radio frequency range, which improves homogeneity of the samples. The method allows to reduce strain of light absorbers and is suitable for designing solar cells based on multilayered thin film structures. Structural characteristics of tetragonal kesterite Cu2ZnSn(S, Se)4 structures and their optical properties were studied by Raman, infrared, and reflectance spectroscopies. They revealed a reduction of the sample reflectivity after RF treatment and a modification of the energy band structure.

  11. Phenomenological local field enhancement factor distributions around electromagnetic hot spots

    NASA Astrophysics Data System (ADS)

    Le Ru, E. C.; Etchegoin, P. G.

    2009-05-01

    We propose a general phenomenological description of the enhancement factor distribution for surface-enhanced Raman scattering (SERS) and other related phenomena exploiting large local field enhancements at hot spots. This description extends naturally the particular case of a single (fixed) hot spot, and it is expected to be "universal" for many classes of common SERS substrates containing a collection of electromagnetic hot spots with varying geometrical parameters. We further justify it from calculations with generalized Mie theory. The description studied here provides a useful starting point for a qualitative (and semiquantitative) understanding of experimental data and, in particular, the analysis of the statistics of single-molecule SERS events.

  12. Healing of Chronic Wounds through Systemic Effects of Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Cañedo, L.; Trigos, I.; García-Cantú, R.; Godina-Nava, J. J.; Serrano, G.

    2002-08-01

    Extremely low frequency electromagnetic fields (ELF) were configured to interact with peripheral blood mononuclear cells (PBMC). These ELF were applied in the arm to five patients with chronic wounds resistant to medical and surgical treatment. Wound healing began in all patients during the first two weeks after ELF exposure permiting their previously unresponsive chronic wounds to function as internal controls. All lesions were cured or healed >70% in less than four months. Systemic effects were explained by ELF activation of PBMC and their transportation through the blood to the affected site. This therapy is effective in selected patients with chronic wounds.

  13. Basics of quantum field theory of electromagnetic interaction processes in single-layer graphene

    NASA Astrophysics Data System (ADS)

    Hieu Nguyen, Van

    2016-09-01

    The content of this work is the study of electromagnetic interaction in single-layer graphene by means of the perturbation theory. The interaction of electromagnetic field with Dirac fermions in single-layer graphene has a peculiarity: Dirac fermions in graphene interact not only with the electromagnetic wave propagating within the graphene sheet, but also with electromagnetic field propagating from a location outside the graphene sheet and illuminating this sheet. The interaction Hamiltonian of the system comprising electromagnetic field and Dirac fermions fields contains the limits at graphene plane of electromagnetic field vector and scalar potentials which can be shortly called boundary electromagnetic field. The study of S-matrix requires knowing the limits at graphene plane of 2-point Green functions of electromagnetic field which also can be shortly called boundary 2-point Green functions of electromagnetic field. As the first example of the application of perturbation theory, the second order terms in the perturbative expansions of boundary 2-point Green functions of electromagnetic field as well as of 2-point Green functions of Dirac fermion fields are explicitly derived. Further extension of the application of perturbation theory is also discussed.

  14. Electromagnetic field tapering using all-dielectric gradient index materials

    PubMed Central

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-01-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes. PMID:27464989

  15. Conserved currents for electromagnetic fields in the Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Grant, Alexander; Flanagan, Eanna

    2017-01-01

    For any classical linear Lagrangian field theory, the symplectic product provides a conserved current that is bilinear on the space of solutions. Given a linear mapping from the space of solutions into itself, a ``symmetry operator'', one can therefore generate quadratic conserved currents for any linear classical field theory. We apply this procedure to the case of electromagnetism on a Kerr background, showing that this procedure can generate the conserved currents given by Andersson, Bäckdahl, and Blue, as well as two new conserved currents. These currents reduce to the sum of (positive powers of) the Carter constants of the photons in the geometric optics limit, and generalize the current for scalar fields discovered by Carter. We furthermore show that the fluxes of these new currents through null infinity and the horizon are finite.

  16. Electromagnetic field tapering using all-dielectric gradient index materials.

    PubMed

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-07-28

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.

  17. Electromagnetic field tapering using all-dielectric gradient index materials

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-07-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.

  18. Time dependent electromagnetic fields and 4-dimensional Stokes' theorem

    NASA Astrophysics Data System (ADS)

    Andosca, Ryan; Singleton, Douglas

    2016-11-01

    Stokes' theorem is central to many aspects of physics—electromagnetism, the Aharonov-Bohm effect, and Wilson loops to name a few. However, the pedagogical examples and research work almost exclusively focus on situations where the fields are time-independent so that one need only deal with purely spatial line integrals (e.g., ∮ A . d x ) and purely spatial area integrals (e.g., ∫ ( ∇ × A ) . d a = ∫ B . d a ). Here, we address this gap by giving some explicit examples of how Stokes' theorem plays out with time-dependent fields in a full 4-dimensional spacetime context. We also discuss some unusual features of Stokes' theorem with time-dependent fields related to gauge transformations and non-simply connected topology.

  19. Weak scattering of scalar and electromagnetic random fields

    NASA Astrophysics Data System (ADS)

    Tong, Zhisong

    This dissertation encompasses several studies relating to the theory of weak potential scattering of scalar and electromagnetic random, wide-sense statistically stationary fields from various types of deterministic or random linear media. The proposed theory is largely based on the first Born approximation for potential scattering and on the angular spectrum representation of fields. The main focus of the scalar counterpart of the theory is made on calculation of the second-order statistics of scattered light fields in cases when the scattering medium consists of several types of discrete particles with deterministic or random potentials. It is shown that the knowledge of the correlation properties for the particles of the same and different types, described with the newly introduced pair-scattering matrix, is crucial for determining the spectral and coherence states of the scattered radiation. The approach based on the pair-scattering matrix is then used for solving an inverse problem of determining the location of an "alien" particle within the scattering collection of "normal" particles, from several measurements of the spectral density of scattered light. Weak scalar scattering of light from a particulate medium in the presence of optical turbulence existing between the scattering centers is then approached using the combination of the Born's theory for treating the light interaction with discrete particles and the Rytov's theory for light propagation in extended turbulent medium. It is demonstrated how the statistics of scattered radiation depend on scattering potentials of particles and the power spectra of the refractive index fluctuations of turbulence. This theory is of utmost importance for applications involving atmospheric and oceanic light transmission. The second part of the dissertation includes the theoretical procedure developed for predicting the second-order statistics of the electromagnetic random fields, such as polarization and linear momentum

  20. Robust multiscale field-only formulation of electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y. C.

    2017-01-01

    We present a boundary integral formulation of electromagnetic scattering by homogeneous bodies that are characterized by linear constitutive equations in the frequency domain. By working with the Cartesian components of the electric E and magnetic H fields and with the scalar functions (r .E ) and (r .H ) where r is a position vector, the problem can be cast as having to solve a set of scalar Helmholtz equations for the field components that are coupled by the usual electromagnetic boundary conditions at material boundaries. This facilitates a direct solution for the surface values of E and H rather than having to work with surface currents or surface charge densities as intermediate quantities in existing methods. Consequently, our formulation is free of the well-known numerical instability that occurs in the zero-frequency or long-wavelength limit in traditional surface integral solutions of Maxwell's equations and our numerical results converge uniformly to the static results in the long-wavelength limit. Furthermore, we use a formulation of the scalar Helmholtz equation that is expressed as classically convergent integrals and does not require the evaluation of principal value integrals or any knowledge of the solid angle. Therefore, standard quadrature and higher order surface elements can readily be used to improve numerical precision for the same number of degrees of freedom. In addition, near and far field values can be calculated with equal precision, and multiscale problems in which the scatterers possess characteristic length scales that are both large and small relative to the wavelength can be easily accommodated. From this we obtain results for the scattering and transmission of electromagnetic waves at dielectric boundaries that are valid for any ratio of the local surface curvature to the wave number. This is a generalization of the familiar Fresnel formula and Snell's law, valid at planar dielectric boundaries, for the scattering and transmission

  1. Radio frequency electromagnetic fields: cancer, mutagenesis, and genotoxicity.

    PubMed

    Heynick, Louis N; Johnston, Sheila A; Mason, Patrick A

    2003-01-01

    We present critiques of epidemiologic studies and experimental investigations, published mostly in peer-reviewed journals, on cancer and related effects from exposure to nonionizing electromagnetic fields in the nominal frequency range of 3 kHz to 300 GHz of interest to Subcommittee 4 (SC4) of the International Committee on Electromagnetic Safety (ICES). The major topics discussed are presented under the headings Epidemiologic and Other Findings on Human Exposure, Mammals Exposed In Vivo, Mammalian Live Tissues and Cell Preparations Exposed In Vitro, and Mutagenesis and Genotoxicity in Microorganisms and Fruit Flies. Under each major topic, we present minireviews of papers on various specific endpoints investigated. The section on Epidemiologic and Other Findings on Human Exposure is divided into two subsections, the first on possible carcinogenic effects of exposure from emitters not in physical contact with the populations studied, for example, transmitting antennas and other devices. Discussed in the second subsection are studies of postulated carcinogenic effects from use of mobile phones, with prominence given to brain tumors from use of cellular and cordless telephones in direct physical contact with an ear of each subject. In both subsections, some investigations yielded positive findings, others had negative findings, including papers directed toward experimentally verifying positive findings, and both were reported in a few instances. Further research on various important aspects may resolve such differences. Overall, however, the preponderance of published epidemiologic and experimental findings do not support the supposition that in vivo or in vitro exposures to such fields are carcinogenic.

  2. Quantum Mechanics Action of ELF Electromagnetic Fields on Living Organisms

    NASA Astrophysics Data System (ADS)

    Godina-Nava, J. J.

    2010-10-01

    There is presently an intense discussion if extremely low frequency electromagnetic field (ELF-EMF) exposure has consequences for human health. This include exposure to structures and appliances from this range of frequency in the electromagnetic (EM) spectrum. Biological effects of such exposures have been noted frequently, although the implications for specific health effects is not that clear. The basic interactions mechanisms between such fields and living matter is unknown. Numerous hypotheses have been suggested, although none is convincingly supported by experimental data. Various cellular components, processes, and systems can be affected by EMF exposure. Since it is unlikely that EMF can induce DNA damage directly, most studies have examined EMF effects on the cell membrane level, general and specific gene expression, and signal transduction pathways. Even more, a large number of studies have been performed regarding cell proliferation, cell cycle regulation, cell differentiation, metabolism, and various physiological characteristics of cells. The aim of this letter is present the hypothesis of a possible quantum mechanic effect generated by the exposure of ELF EMF, an event which is compatible with the multitude of effects observed after exposure. Based on an extensive literature review, we suggest that ELF EMF exposure is able to perform such activation restructuring the electronic level of occupancy of free radicals in molecules interacting with DNA structures.

  3. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-09-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.

  4. Electromagnetic dissipation during asymmetric reconnection with a moderate guide field

    NASA Astrophysics Data System (ADS)

    Genestreti, Kevin; Burch, James; Cassak, Paul; Torbert, Roy; Phan, Tai; Ergun, Robert; Giles, Barbara; Russell, Chris; Wang, Shan; Akhavan-Tafti, Mojtaba; Varsani, Ali

    2017-04-01

    We calculate the work done on the plasma by the electromagnetic (EM) field, ⃗Jṡ⃗E', and analyze the related electron currents and electric fields, focusing on a single asymmetric guide field electron diffusion region (EDR) event observed by MMS on 8 December 2015. For this event, each of the four MMS spacecraft observed dissipation of EM energy at the in-plane magnetic null point, though large-scale generation/dissipation was observed inconsistently on the magnetospheric side of the boundary. The current at the null was carried by a beam-like population of magnetosheath electrons traveling anti-parallel to the guide field, whereas the current on the Earthward side of the boundary was carried by crescent-shaped electron distributions. We also analyze the terms in Ohm's law, finding a large residual electric field throughout the EDR, inertial and pressure divergence fields at the null, and pressure divergence fields at the magnetosphere-side EDR. Our analysis of the terms in Ohm's law suggests that the EDR had significant three-dimensional structure.

  5. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    PubMed Central

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-01-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2–3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100–250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation. PMID:27634482

  6. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, Robert P.

    1993-01-01

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release said chemical agent from the liposomes at a temperature of between about +10 and 65.degree. C. The invention further relates to the use of said liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  7. The dielectric response to the magnetic field of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shouvik; Mukhopadhyay, Sourabh; Datta, Prasanta Kumar

    2017-04-01

    Light-matter interaction in transparent dielectrics is revisited, including the magnetic force on bound charges in the Lorentz oscillator model. The parameter ranges of incident radiation and the medium on which the magnetic field of the electromagnetic radiation will have a significant effect are traced using Floquet theory. The analysis reveals that the threshold intensity for a significant response of the magnetic field of the radiation at the second harmonic of the incident radiation can be reduced to {10}12 {{W}}{{cm}}-2 for off resonant and even lower for resonant interaction. This phenomenon has already been observed indirectly in experiments [1, 2]. Induced magnetizing current due to the magnetic force is shown to originate from a modified dielectric response, which may be useful in future magneto-optic devices, solar energy harvesting, and studying the ultrafast dynamics in doped dielectrics.

  8. Acceleration of adiabatic quantum dynamics in electromagnetic fields

    SciTech Connect

    Masuda, Shumpei; Nakamura, Katsuhiro

    2011-10-15

    We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.

  9. Electromagnetic field limits set by the V-Curve.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Hudson, Howard Gerald

    2014-07-01

    When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the electric field at the component location must be kept below a certain level in order to prevent the component from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way to set the electric field limit because it requires minimal information about the problem configuration. In this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases in input impedance when operating in a bounded region, and mismatches dictated by transmission line losses. In addition, we consider mitigating effects resulting from limited antenna sizes.

  10. Photon merging and splitting in electromagnetic field inhomogeneities

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Karbstein, Felix; Seegert, Nico

    2016-04-01

    We investigate photon merging and splitting processes in inhomogeneous, slowly varying electromagnetic fields. Our study is based on the three-photon polarization tensor following from the Heisenberg-Euler effective action. We put special emphasis on deviations from the well-known constant field results, also revisiting the selection rules for these processes. In the context of high-intensity laser facilities, we analytically determine compact expressions for the number of merged/split photons as obtained in the focal spots of intense laser beams. For the parameter range of typical petawatt class laser systems as pump and probe, we provide estimates for the numbers of signal photons attainable in an actual experiment. The combination of frequency upshifting, polarization dependence and scattering off the inhomogeneities renders photon merging an ideal signature for the experimental exploration of nonlinear quantum vacuum properties.

  11. Theory of a ring laser. [electromagnetic field and wave equations

    NASA Technical Reports Server (NTRS)

    Menegozzi, L. N.; Lamb, W. E., Jr.

    1973-01-01

    Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.

  12. Geometric entropy and edge modes of the electromagnetic field

    NASA Astrophysics Data System (ADS)

    Donnelly, William; Wall, Aron C.

    2016-11-01

    We calculate the vacuum entanglement entropy of Maxwell theory in a class of curved spacetimes by Kaluza-Klein reduction of the theory onto a two-dimensional base manifold. Using two-dimensional duality, we express the geometric entropy of the electromagnetic field as the entropy of a tower of scalar fields, constant electric and magnetic fluxes, and a contact term, whose leading-order divergence was discovered by Kabat. The complete contact term takes the form of one negative scalar degree of freedom confined to the entangling surface. We show that the geometric entropy agrees with a statistical definition of entanglement entropy that includes edge modes: classical solutions determined by their boundary values on the entangling surface. This resolves a long-standing puzzle about the statistical interpretation of the contact term in the entanglement entropy. We discuss the implications of this negative term for black hole thermodynamics and the renormalization of Newton's constant.

  13. Near-field electromagnetic theory for thin solar cells.

    PubMed

    Niv, A; Gharghi, M; Gladden, C; Miller, O D; Zhang, X

    2012-09-28

    Current methods for evaluating solar cell efficiencies cannot be applied to low-dimensional structures where phenomena from the realm of near-field optics prevail. We present a theoretical approach to analyze solar cell performance by allowing rigorous electromagnetic calculations of the emission rate using the fluctuation-dissipation theorem. Our approach shows the direct quantification of the voltage, current, and efficiency of low-dimensional solar cells. This approach is demonstrated by calculating the voltage and the efficiency of a GaAs slab solar cell for thicknesses from several microns down to a few nanometers. This example highlights the ability of the proposed approach to capture the role of optical near-field effects in solar cell performance.

  14. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, R.P.

    1993-03-02

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C. The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  15. Interaction of extremely-low-frequency electromagnetic fields with humans

    SciTech Connect

    Tenforde, T.S.

    1991-07-01

    At a macroscopic level, the effects of extremely low frequency (ELF) electromagnetic fields on humans are well understood based on fundamental physical principles, but far less is known about the nature of the interactions at a cellular or molecular level. Current evidence suggests the effects of ELF on cellular biochemistry are due to interactions with the cell membrane. Elucidation of the mechanism that underlies this transmembrane signaling is critical for a molecular-level understanding of ELF field effects. Further research is also required to clarify a possible link between ELF exposure and increased cancer risk, since estimated ELF exposure in occupational or residential settings is much lower that the levels used in laboratory studies. There is a clear need for additional epidemiological research in which qualitative dosimetry is used to characterize ELF exposure and careful attention is given to possible effects of confounding variables. 24 refs.

  16. Relativistic particle acceleration by obliquely propagating electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Villalón, Elena; Burke, William J.

    1987-12-01

    The relativistic equations of motion are analyzed for charged particles in a magnetized plasma and externally imposed electromagnetic fields (ω, k), which have wave vectors k that are at arbitrary angles. The particle energy is obtained from a set of nonlinear differential equations, as a function of time, initial conditions, and cyclotron harmonic numbers. For a given cyclotron resonance, the energy oscillates in time within the limits of a potential well; stochastic acceleration occurs if the widths of different Hamiltonian potentials overlap. The net energy gain for a given harmonic increase with the angle of propagation, and decreases as the magnitude of the wave magnetic field increases. Potential applications of these results to the acceleration of ionsopheric electrons are presented.

  17. Electromagnetic fields and the induction of DNA strand breaks.

    PubMed

    Ruiz-Gómez, Miguel J; Martínez-Morillo, Manuel

    2009-01-01

    The International Agency for Research on Cancer (IARC) has classified the extremely low-frequency (ELF) electromagnetic fields (EMF) as "possible carcinogenic" based on the reported effects. The purpose of this work is to review and compare the recent findings related to the induction of DNA strand breaks (DNA-SB) by magnetic field (MF) exposure. We found 29 studies (genotoxic and epigenetic) about the induction of DNA-SB by MF. 50% showed effect of MF and 50% showed no DNA-SB. Nevertheless, considering only genotoxic or only epigenetic studies, 37.5% and 69.2% found induction of DNA-SB by MF, respectively. In relation to these data it seems that MF could act as a co-inductor of DNA damage rather than as a genotoxic agent per se. Nevertheless, the published results, in some cases conflicting with negative findings, do not facilitate to obtain a common consensus about MF effects and biophysical interaction mechanisms.

  18. Electromagnetic plasma wave emissions from the auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1977-01-01

    The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  19. Theory of a ring laser. [electromagnetic field and wave equations

    NASA Technical Reports Server (NTRS)

    Menegozzi, L. N.; Lamb, W. E., Jr.

    1973-01-01

    Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.

  20. Electromagnetic field stimulation potentiates endogenous myelin repair by recruiting subventricular neural stem cells in an experimental model of white matter demyelination.

    PubMed

    Sherafat, Mohammad Amin; Heibatollahi, Motahareh; Mongabadi, Somayeh; Moradi, Fatemeh; Javan, Mohammad; Ahmadiani, Abolhassan

    2012-09-01

    Electromagnetic fields (EMFs) may affect the endogenous neural stem cells within the brain. The aim of this study was to assess the effects of EMFs on the process of toxin-induced demyelination and subsequent remyelination. Demyelination was induced using local injection of lysophosphatidylcholine within the corpus callosum of adult female Sprague-Dawley rats. EMFs (60 Hz; 0.7 mT) were applied for 2 h twice a day for 7, 14, or 28 days postlesion. BrdU labeling and immunostaining against nestin, myelin basic protein (MBP), and BrdU were used for assessing the amount of neural stem cells within the tissue, remyelination patterns, and tracing of proliferating cells, respectively. EMFs significantly reduced the extent of demyelinated area and increased the level of MBP staining within the lesion area on days 14 and 28 postlesion. EMFs also increased the number of BrdU- and nestin-positive cells within the area between SVZ and lesion as observed on days 7 and 14 postlesion. It seems that EMF potentiates proliferation and migration of neural stem cells and enhances the repair of myelin in the context of demyelinating conditions.

  1. Assessment of the Genotoxic Effects of High Peak-Power Pulsed Electromagnetic Fields

    DTIC Science & Technology

    2003-06-01

    the Genotoxic Effects of High Peak-Power Pulsed Electromagnetic Fields 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5d. TASK NUMBER 6. AUTHOR(S) Dr... Genotoxic Effects of High Peak-Power Pulsed Electromagnetic Fields (EMFs) (From 1 June 2002 to 31 May 2003 for 12 months) Nikolai Konstantinovich Chemeris...International Science and Technology Center (ISTC), Moscow. 2 ISTC 2350 Assessment of the Genotoxic Effects of High Peak-Power Pulsed Electromagnetic Fields

  2. A. A. Ukhtomskii's dominance principle of brain activity in the perception of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Kholodov, Yu. A.

    1994-01-01

    Preliminary instruction of the subject plays an important role in the perception of weak electromagnetic fields acting on the hand. Active attention to a potential effect amplifies a brain state that can be called caution dominance and arises spontaneously with a “placebo” or an electromagnetic field. The radar principle of brain operation is discussed among the physiological mechanisms through which electromagnetic fields act on an organism.

  3. A. A. Ukhtomskii`s dominance principle of brain activity in the perception of electromagnetic fields

    SciTech Connect

    Kholodov, Yu.A.

    1994-07-01

    Preliminary instruction of the subject plays an important role in the perception of weak electromagnetic fields acting on the hand. Active attention to a potential effect amplifies a brain state that can be called caution dominance and arises spontaneously with a {open_quotes}placebo{close_quotes} or an electromagnetic field. The radar principle of brain operation is discussed among the physiological mechanisms through which electromagnetic fields act on an organism.

  4. Cell membrane thermal gradients induced by electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Garner, Allen L.; Deminsky, Maxim; Bogdan Neculaes, V.; Chashihin, V.; Knizhnik, Andrey; Potapkin, Boris

    2013-06-01

    While electromagnetic fields induce structural changes in cell membranes, particularly electroporation, much remains to be understood about membrane level temperature gradients. For instance, microwaves induce cell membrane temperature gradients (∇T) and bioeffects with little bulk temperature change. Recent calculations suggest that nanosecond pulsed electric fields (nsPEFs) may also induce such gradients that may additionally impact the electroporation threshold. Here, we analytically and numerically calculate the induced ∇T as a function of pulse duration and pulse repetition rate. We relate ∇T to the thermally induced cell membrane electric field (Em) by assuming the membrane behaves as a thermoelectric such that Em ˜ ∇T. Focusing initially on applying nsPEFs to a uniform membrane, we show that reducing pulse duration and increasing pulse repetition rate (or using higher frequency for alternating current (AC) fields) maximizes the magnitude and duration of ∇T and, concomitantly, Em. The maximum ∇T initially occurs at the interface between the cell membrane and extracellular fluid before becoming uniform across the membrane, potentially enabling initial molecular penetration and subsequent transport across the membrane. These results, which are equally applicable to AC fields, motivate further studies to elucidate thermoelectric behavior in a model membrane system and the coupling of the Em induced by ∇T with that created directly by the applied field.

  5. Simultaneous Electromagnetic Tracking and Calibration for Dynamic Field Distortion Compensation.

    PubMed

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2016-08-01

    Electromagnetic (EM) tracking systems are highly susceptible to field distortion. The interference can cause measurement errors up to a few centimeters in clinical environments, which limits the reliability of these systems. Unless corrected for, this measurement error imperils the success of clinical procedures. It is therefore fundamental to dynamically calibrate EM tracking systems and compensate for measurement error caused by field distorting objects commonly present in clinical environments. We propose to combine a motion model with observations of redundant EM sensors and compensate for field distortions in real time. We employ a simultaneous localization and mapping technique to accurately estimate the pose of the tracked instrument while creating the field distortion map. We conducted experiments with six degrees-of-freedom motions in the presence of field distorting objects in research and clinical environments. We applied our approach to improve the EM tracking accuracy and compared our results to a conventional sensor fusion technique. Using our approach, the maximum tracking error was reduced by 67% for position measurements and by 64% for orientation measurements. Currently, clinical applications of EM trackers are hampered by the adverse distortion effects. Our approach introduces a novel method for dynamic field distortion compensation, independent from preoperative calibrations or external tracking devices, and enables reliable EM navigation for potential applications.

  6. Very Broadband Rayleigh-Wave Dispersion (0.06 - 60 Hz) and Shear-Wave Velocity Structure Under Yucca Flat, Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Schramm, K. A.; Bilek, S. L.; Patton, H. J.; Abbott, R. E.; Stead, R.; Pancha, A.; White, R.

    2009-12-01

    Earth structure plays an important role in the generation of seismic waves for all sources. Nowhere is this more evident than at near-surface depths where man-made sources, such as explosions, are conducted. For example, short-period Rayleigh waves (Rg) are excited and propagate in the upper 2 km of Earth's crust. The importance of Rg in the generation of S waves from explosion sources through near-source scattering depends greatly on the shear-wave velocity structure at very shallow depths. Using three distinct datasets, we present a very broadband Rayleigh-wave phase velocity dispersion curve for the Yucca Flat (YF) region of the Nevada Test Site (NTS). The first dataset consists of waveforms of historic NTS explosions recorded on regional seismic networks and will provide information for the lowest frequencies (0.06-0.3 Hz). The second dataset is comprised of waveforms from a non-nuclear explosion on YF recorded at near-local distances and will be used for mid-range frequencies (0.2-1.5 Hz). The third dataset contains high-frequency waveforms recorded from refraction microtremor surveys on YF. This dataset provides information between 1.5 and 60 Hz. Initial results from the high frequency dataset indicate velocities range from 0.45-0.9 km/s at 1.5 Hz and 0.25-0.45 km/s at 60 Hz. The broadband nature of the dispersion curve will allow us to invert for the shear-wave velocity structure to 10 km depth, with focus on shallow depths where nuclear tests were conducted in the YF region. The velocity model will be used by researchers as a tool to aid the development of new explosion source models that incorporate shear wave generation. The new model can also be used to help improve regional distance yield estimation and source discrimination for small events.

  7. Effects of Pulse Electromagnetic Field on Corrosion Resistance of Al-5 % Cu Alloy

    NASA Astrophysics Data System (ADS)

    Wang, B.; Tang, L. D.; Qi, J. G.; Wang, J. Z.

    2013-03-01

    It was investigated that corrosion resistance of Al-5 % Cu alloy was influenced by pulse electromagnetic field (PEMF). The morphologies were observed by scanning election microscopy (SEM). The corrosion behaviors were investigated by potentiodynamic polarization tests and immersion tests. The results indicated that corrosion resistance of samples could be increased by using pulse electromagnetic field, moreover, the optimum parameter of pulse electromagnetic field in this experiment was showed as follows: 500 V, 3 Hz, 30 s. Decreasing the quantity of eutectic in grain boundaries and refining the grains were main causations for increasing corrosion resistance of Al-5 % Cu alloy with pulse electromagnetic field.

  8. Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations

    SciTech Connect

    Galilo, Bogdan V.; Nedelko, Sergei N.

    2011-11-01

    The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.

  9. Quantum diffusion of electromagnetic fields of ultrarelativistic spin-half particles

    NASA Astrophysics Data System (ADS)

    Peroutka, Balthazar; Tuchin, Kirill

    2017-10-01

    We compute electromagnetic fields created by a relativistic charged spin-half particle in empty space at distances comparable to the particle Compton wavelength. The particle is described as a wave packet evolving according to the Dirac equation. It produces the electromagnetic field that is essentially different from the Coulomb field due to the quantum diffusion effect.

  10. Probing intergalactic magnetic fields with simulations of electromagnetic cascades

    NASA Astrophysics Data System (ADS)

    Alves Batista, Rafael; Saveliev, Andrey; Sigl, Günter; Vachaspati, Tanmay

    2016-10-01

    We determine the effect of intergalactic magnetic fields on the distribution of high-energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called "Large Sphere Observer" method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the Q -statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the S -statistics. Both methods provide a quantitative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths B ≳10-15 G and magnetic coherence lengths Lc≳100 Mpc . We show that the S -statistics has a better performance than the Q -statistics when assessing magnetic helicity from the simulated halos.

  11. Setting prudent public health policy for electromagnetic field exposures.

    PubMed

    Carpenter, David O; Sage, Cindy

    2008-01-01

    Electromagnetic fields (EMF) permeate our environment, coming both from such natural sources as the sun and from manmade sources like electricity, communication technologies and medical devices. Although life on earth would not be possible without sunlight, increasing evidence indicates that exposures to the magnetic fields associated with electricity and to communication frequencies associated with radio, television, WiFi technology, and mobile cellular phones pose significant hazards to human health. The evidence is strongest for leukemia from electricity-frequency fields and for brain tumors from communication-frequency fields, yet evidence is emerging for an association with other diseases as well, including neurodegenerative diseases. Some uncertainty remains as to the mechanism(s) responsible for these biological effects, and as to which components of the fields are of greatest importance. Nevertheless, regardless of whether the associations are causal, the strengths of the associations are sufficiently strong that in the opinion of the authors, taking action to reduce exposures is imperative, especially for the fetus and children. Inaction is not compatible with the Precautionary Principle, as enunciated by the Rio Declaration. Because of ubiquitous exposure, the rapidly expanding development of new EMF technologies and the long latency for the development of such serious diseases as brain cancers, the failure to take immediate action risks epidemics of potentially fatal diseases in the future.

  12. Electromagnetic Form Factors of Hadrons in Quantum Field Theories

    SciTech Connect

    Dominguez, C. A.

    2008-10-13

    In this talk, recent results are presented of calculations of electromagnetic form factors of hadrons in the framework of two quantum field theories (QFT), (a) Dual-Large N{sub c} QCD (Dual-QCD{sub {infinity}}) for the pion, proton, and {delta}(1236), and (b) the Kroll-Lee-Zumino (KLZ) fully renormalizable Abelian QFT for the pion form factor. Both theories provide a QFT platform to improve on naive (tree-level) Vector Meson Dominance (VMD). Dual-QCD{sub {infinity}} provides a tree-level improvement by incorporating an infinite number of zero-width resonances, which can be subsequently shifted from the real axis to account for the time-like behaviour of the form factors. The renormalizable KLZ model provides a QFT improvement of VMD in the framework of perturbation theory. Due to the relative mildness of the {rho}{pi}{pi} coupling, and the size of loop suppression factors, the perturbative expansion is well defined in spite of this being a strong coupling theory. Both approaches lead to considerable improvements of VMD predictions for electromagnetic form factors, in excellent agreement with data.

  13. [Methods of dosimetry in evaluation of electromagnetic fields' biological action].

    PubMed

    Rubtsova, N B; Perov, S Iu

    2012-01-01

    Theoretical and experimental dosimetry can be used for adequate evaluation of the effects of radiofrequency electromagnetic fields. In view of the tough electromagnetic environment in aircraft, pilots' safety is of particular topicality. The dosimetric evaluation is made from the quantitative characteristics of the EMF interaction with bio-objects depending on EM energy absorption in a unit of tissue volume or mass calculated as a specific absorbed rate (SAR) and measured in W/kg. Theoretical dosimetry employs a number of computational methods to determine EM energy, as well as the augmented method of boundary conditions, iterative augmented method of boundary conditions, moments method, generalized multipolar method, finite-element method, time domain finite-difference method, and hybrid methods combining several decision plans modeling the design philosophy of navigation, radiolocation and human systems. Because of difficulties with the experimental SAR estimate, theoretical dosimetry is regarded as the first step in analysis of the in-aircraft conditions of exposure and possible bio-effects.

  14. Electromagnetic field strength levels surrounding electronic article surveillance (EAS) systems.

    PubMed

    Harris, C; Boivin, W; Boyd, S; Coletta, J; Kerr, L; Kempa, K; Aronow, S

    2000-01-01

    Electronic article surveillance (EAS) is used in many applications throughout the world to prevent theft. EAS systems produce electromagnetic (EM) energy around exits to create an EM interrogation zone through which protected items must pass before leaving the establishment. Specially designed EAS tags are attached to these items and must either be deactivated or removed prior to passing through the EAS EM interrogation zone to prevent the alarm from sounding. Recent reports in the scientific literature have noted the possibility that EM energy transmitted by EAS systems may interfere with the proper operation of sensitive electronic medical devices. The Food and Drug Administration has the regulatory responsibility to ensure the safety and effectiveness of medical devices. Because of the possibility of electromagnetic interference (EMI) between EAS systems and electronic medical devices, in situ measurements of the electric and magnetic fields were made around various types of EAS systems. Field strength levels were measured around four types of EAS systems: audio frequency magnetic, pulsed magnetic resonant, radio frequency, and microwave. Field strengths from these EAS systems varied with magnetic fields as high as 1073.6 Am(-1) (in close proximity to the audio frequency magnetic EAS system towers), and electric fields up to 23.8 Vm(-1) (in close proximity to the microwave EAS system towers). Medical devices are only required to withstand 3 Vm(-1) by the International Electrotechnical Commission's current medical device standards. The modulation scheme of the signal transmitted by some types of EAS systems (especially the pulsed magnetic resonant) has been shown to be more likely to cause EMI with electronic medical devices. This study complements other work in the field by attaching specific characteristics to EAS transmitted EM energy. The quantitative data could be used to relate medical device EMI with specific field strength levels and signal waveforms

  15. Using strong electromagnetic fields to control x-ray processes.

    SciTech Connect

    Young, L.; Buth, C.; Dunford, R. W.; Ho, P.; Kanter, E. P.; Kraessig, B.; Peterson, E. R.; Rohringer, N.; Santra, R.; Southworth, S. H.

    2010-06-01

    Exploration of a new ultrafast-ultrasmall frontier in atomic and molecular physics has begun. Not only is is possible to control outer-shell electron dynamics with intense ultrafast optical lasers, but now control of inner-shell processes has become possible by combining intense infrared/optical lasers with tunable sources of X-ray radiation. This marriage of strong-field laser and X-ray physics has led to the discovery of methods to control reversibly resonant X-ray absorption in atoms and molecules on ultrafast timescales. Using a strong optical dressing field, resonant X-ray absorption in atoms can be markedly suppressed, yielding an example of electromagnetically induced transparency for x rays. Resonant X-ray absorption can also be controlled in molecules using strong non-resonant, polarized laser fields to align the framework of a molecule, and therefore its unoccupied molecular orbitals to which resonant absorption occurs. At higher laser intensities, ultrafast field ionization produces an irreversible change in X-ray absorption. Finally, the advent of X-ray free electron lasers enables first exploration of non-linear X-ray processes.

  16. [Effects of radiofrequency electromagnetic fields on mammalian spermatogenesis].

    PubMed

    Susa, Martina; Pavicić, Ivan

    2007-12-01

    This article reviews studies about the effects of radiofrequency electromagnetic (RF EM) fields on male reproductive system and reproductive health in mammals. According to current data, there are almost 4 million active mobile phone lines in Croatia while this number has risen to 2 billion in the world. Increased use of mobile technology raises scientific and public concern about possible hazardous effects of RF fields on human health. The effects of radiofrequencies on reproductive health and consequences for the offspring are still mainly unknown. A number of in vivo and in vitro studies indicated that RF fields could interact with charged intracellular macromolecular structures. Results of several laboratory studies on animal models showed how the RF fields could affect the mammalian reproductive system and sperm cells. Inasmuch as, in normal physiological conditions spermatogenesis is a balanced process of division, maturation and storage of cells, it is particularly vulnerable to the chemical and physical environmental stimuli. Especially sensitive could be the cytoskeleton, composed of charged proteins; actin, intermedial filaments and microtubules. Cytoskeleton is a functional and structural part of the cell that has important role in the sperm motility, and is actively involved in the morphologic changes that occur during mammalian spermiogenesis.

  17. Equations of a moving mirror and the electromagnetic field

    NASA Astrophysics Data System (ADS)

    Octavio Castaños, Luis; Weder, Ricardo

    2015-06-01

    We consider a system composed of a mobile slab and the electromagnetic field. We assume that the slab is made of a material that has the following properties when it is at rest: it is linear, isotropic, non-magnetizable, and ohmic with zero free charge density. Using instantaneous Lorentz transformations, we deduce the set of self-consistent equations governing the dynamics of the system and we obtain approximate equations to first order in the velocity and the acceleration of the slab. As a consequence of the motion of the slab, the field must satisfy a wave equation with damping and slowly varying coefficients plus terms that are small when the time-scale of the evolution of the mirror is much larger than that of the field. Also, the motion of the slab and its interaction with the field introduce two effects in the slab’s equation of motion. The first one is a position- and time-dependent mass related to the effective mass taken in phenomenological treatments of this type of systems. The second one is a velocity-dependent force that can give rise to friction and that is related to the much sought cooling of mechanical objects.

  18. Could Radiotherapy Effectiveness Be Enhanced by Electromagnetic Field Treatment?

    PubMed Central

    Francisco, Artacho-Cordón; del Mar, Salinas-Asensio María; Irene, Calvente; Sandra, Ríos-Arrabal; Josefa, León; Elisa, Román-Marinetto; Nicolás, Olea; Isabel, Núñez María

    2013-01-01

    One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy. PMID:23867611

  19. Coherent electromagnetic field imaging through Fourier transform heterodyne

    SciTech Connect

    Cooke, B.J.; Laubscher, B.E.; Olivas, N.L.; Goeller, R.M.; Cafferty, M.; Briles, S.D.; Galbraith, A.E. |; Grubler, A.C. |

    1998-12-31

    The authors present a detection process capable of directly imaging the transverse amplitude, phase, and if desired, Doppler shift of coherent electromagnetic fields. Based on coherent detection principles governing conventional heterodyned RADAR/LIDAR systems, Fourier Transform Heterodyne (FTH) incorporates transverse spatial encoding of the local oscillator for image capture. Appropriate selection of spatial encoding functions, or basis set, allows image retrieval by way of classic Fourier manipulations. Of practical interest: (1) imaging is accomplished on a single element detector requiring no additional scanning or moving components, and (2) a wide variety of appropriate spatial encoding functions exist that may be adaptively configured in real-time for applications requiring optimal detection. In this paper, they introduce the underlying principles governing FTH imaging, followed by demonstration of concept via a simple experimental setup based on a HeNe laser and a 69 element spatial phase modulator.

  20. Finite element modeling of electromagnetic fields and waves using NASTRAN

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.; Schroeder, Erwin

    1989-01-01

    The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.

  1. Electromagnetic field-induced stimulation of Bruton's tyrosine kinase.

    PubMed

    Kristupaitis, D; Dibirdik, I; Vassilev, A; Mahajan, S; Kurosaki, T; Chu, A; Tuel-Ahlgren, L; Tuong, D; Pond, D; Luben, R; Uckun, F M

    1998-05-15

    Here we present evidence that exposure of DT40 lymphoma B-cells to low energy electromagnetic fields (EMF) results in activation of phospholipase C-gamma 2 (PLC-gamma2), leading to increased inositol phospholipid turnover. PLC-gamma2 activation in EMF-stimulated cells is mediated by stimulation of the Bruton's tyrosine kinase (BTK), a member of the Src-related TEC family of protein tyrosine kinases, which acts downstream of LYN kinase and upstream of PLC-gamma2. B-cells rendered BTK-deficient by targeted disruption of the btk gene did not show enhanced PLC-gamma2 activation in response to EMF exposure. Introduction of the wild-type (but not a kinase domain mutant) human btk gene into BTK-deficient B-cells restored their EMF responsiveness. Thus, BTK exerts a pivotal and mandatory function in initiation of EMF-induced signaling cascades in B-cells.

  2. Electromagnetic field energy density in homogeneous negative index materials.

    PubMed

    Shivanand; Webb, Kevin J

    2012-05-07

    An exact separation of both electric and magnetic energies into stored and lost energies is shown to be possible in the special case when the wave impedance is independent of frequency. A general expression for the electromagnetic energy density in such a dispersive medium having a negative refractive index is shown to be accurate in comparison with numerical results. Using an example metamaterial response that provides a negative refractive index, it is shown that negative time-averaged stored energy can occur. The physical meaning of this negative energy is explained as the energy temporarily borrowed by the field from the material. This observation for negative index materials is of interest when approaching properties for a perfect lens. In the broader context, the observation of negative stored energy is of consequence in the study of dispersive materials.

  3. Electromagnetic pulse (EMP), Part I: Effects on field medical equipment

    SciTech Connect

    Vandre, R.H.; Klebers, J.; Tesche, F.M.; Blanchard, J.P. )

    1993-04-01

    The electromagnetic pulse (EMP) from a high-altitude nuclear detonation has the potential to cover an area as large as the continental United States with damaging levels of EMP radiation. In this study, two of seven items of medical equipment were damaged by an EMP simulator. Computer circuit analysis of 17 different items showed that 11 of the 17 items would be damaged by current surges on the power cords, while two would be damaged by current surges on external leads. This research showed that a field commander can expect approximately 65% of his electronic medical equipment to be damaged by a single nuclear detonation as far as 2,200 km away.

  4. Annals of conflicting results: looking back on electromagnetic field research.

    PubMed

    Schoen, D

    1996-11-15

    Few environmental health issues are as contentious as the question of whether exposure to electromagnetic fields (EMFs) from power lines increases cancer risk. Among the many actors in this controversy, epidemiologists have played the leading role in raising the question and motivating research. Epidemiologic studies of the effects of exposure to power-line EMFs include the investigation by Dr. Gilles Thériault and colleagues into incidence rates of cancer among electric-utility workers in Quebec, Ontario and France. With the development of personal dosimeters to measure exposure to electric, magnetic and pulsed EMFs, occupational studies in the 1990s have made an important methodologic advance. But, as Thériault explains, improvements in assessing exposure have not yet translated into clear and consistent findings.

  5. Human exposure to radiofrequency electromagnetic fields. Final rule.

    PubMed

    2013-06-04

    This document resolves several issues regarding compliance with the Federal Communications Commission's (FCC's) regulations for conducting environmental reviews under the National Environmental Policy Act (NEPA) as they relate to the guidelines for human exposure to RF electromagnetic fields. More specifically, the Commission clarifies evaluation procedures and references to determine compliance with its limits, including specific absorption rate (SAR) as a primary metric for compliance, consideration of the pinna (outer ear) as an extremity, and measurement of medical implant exposure. The Commission also elaborates on mitigation procedures to ensure compliances with its limits, including labeling and other requirements for occupational exposure classification, clarification of compliance responsibility at multiple transmitter sites, and labeling of fixed consumer transmitters.

  6. Paternal occupational exposure to electromagnetic fields and neuroblastoma in offspring

    SciTech Connect

    Wilkins, J.R. 3d.; Hundley, V.D. )

    1990-06-01

    Investigators in Texas have reported an association between paternal employment in jobs linked with exposure to electromagnetic fields and risk of neuroblastoma in offspring. In an attempt to replicate this finding, the authors conducted a case-control study in Ohio. A total of 101 incident cases of neuroblastoma were identified through the Columbus (Ohio) Children's Hospital Tumor Registry. All cases were born sometime during the period 1942-1967. From a statewide roster of birth certificates, four controls were selected for each case, with individual matching on the case's year of birth, race, and sex, and the mother's county of residence at the time of the (index) child's birth. Multiple definitions were employed to infer the potential for paternal occupational exposure to electromagnetic fields from the industry/occupation statements on the birth certificates. Case-control comparisons revealed adjusted odds ratios ranging in magnitude from 0.5 to 1.9. For two of the exposure definitions employed--both of which are similar to one used by the Texas investigators--the corresponding odds ratios were modestly elevated (odds ratios = 1.6 and 1.9). Notably, the magnitude of these odds ratios is not inconsistent with the Texas findings, where the exposure definition referred to yielded an odds ratio of 2.1. Because the point estimates in this study are imprecise, and because the biologic plausibility of the association is uncertain, the results reported here must be interpreted cautiously. However, the apparent consistency between two independent studies suggests that future evaluation of the association is warranted.

  7. Electromagnetic interference with cardiac pacemakers and implantable cardioverter-defibrillators from low-frequency electromagnetic fields in vivo.

    PubMed

    Tiikkaja, Maria; Aro, Aapo L; Alanko, Tommi; Lindholm, Harri; Sistonen, Heli; Hartikainen, Juha E K; Toivonen, Lauri; Juutilainen, Jukka; Hietanen, Maila

    2013-03-01

    Electromagnetic interference (EMI) can pose a danger to workers with pacemakers and implantable cardioverter-defibrillators (ICDs). At some workplaces electromagnetic fields are high enough to potentially inflict EMI. The purpose of this in vivo study was to evaluate the susceptibility of pacemakers and ICDs to external electromagnetic fields. Eleven volunteers with a pacemaker and 13 with an ICD were exposed to sine, pulse, ramp, and square waveform magnetic fields with frequencies of 2-200 Hz using Helmholtz coil. The magnetic field flux densities varied to 300 µT. We also tested the occurrence of EMI from an electronic article surveillance (EAS) gate, an induction cooktop, and a metal inert gas (MIG) welding machine. All pacemakers were tested with bipolar settings and three of them also with unipolar sensing configurations. None of the bipolar pacemakers or ICDs tested experienced interference in any of the exposure situations. The three pacemakers with unipolar settings were affected by the highest fields of the Helmholtz coil, and one of them also by the EAS gate and the welding cable. The induction cooktop did not interfere with any of the unipolarly programmed pacemakers. Magnetic fields with intensities as high as those used in this study are rare even in industrial working environments. In most cases, employees can return to work after implantation of a bipolar pacemaker or an ICD, after an appropriate risk assessment. Pacemakers programmed to unipolar configurations can cause danger to their users in environments with high electromagnetic fields, and should be avoided, if possible.

  8. Do the standard expressions for the electromagnetic field momentum need any modifications?

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-10-01

    We investigate here the question raised in the literature about the correct expression for the electromagnetic field momentum, especially when static or stationary fields are involved. For this, we examine a couple of simple but intriguing cases. First, we consider a system configuration in which electromagnetic field momentum is present even though the system is stationary. We trace the electromagnetic momentum to be present in the form of a continuous transport of electromagnetic energy from one part of the system to another, without causing any net change in the energy of the system. In a second case, we show that the electromagnetic momentum is zero irrespective of whether the charged system is static or in motion, even though the electromagnetic energy is present throughout. We demonstrate that the conventional formulation of electromagnetic field momentum describes the systems consistently without any real contradictions. Here, we also make exposition of a curiosity where electromagnetic energy decreases when the charged system gains velocity. Then we discuss the more general question that has been raised: Are the conventional formulas for energy-momentum of electromagnetic fields valid for all cases? Specifically, in the case of so-called "bound fields," do we need to change to some modified definitions? We show that in all cases it is only the conventional formulas that lead to results consistent with the rest of physics, including the special theory of relativity, and that any proposed modifications are thus superfluous.

  9. Electromagnetic field and cylindrical compact objects in modified gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Bhatti, M. Zaeem ul Haq

    2016-05-01

    In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.

  10. Analyzing Exposures to Electromagnetic Fields in an Intensive Care Unit

    PubMed Central

    Gökmen, Necati; Erdem, Sabri; Toker, Kadir Atilla; Öçmen, Elvan; Gökmen, Başak Ilgım; Özkurt, Ahmet

    2016-01-01

    Objective In this study, we conducted a numerical analysis of exposure to electromagnetic fields (EMFs) in a hospital’s intensive care unit that is one of the most crucial one in terms of hazardous areas among all service units. This is a new study for measuring exposure to EMFs in an intensive care unit as well as other healthcare services in Turkey. Methods We measured the EMFs in the intensive care unit with a SRM-3006 (selective radiation metre), which was used for measurement of the absolute and the limit values of high frequency EMFs. The measurement points were chosen to represent the highest levels of exposure to which a person might be subjected. We obtained a dataset that included 5929 observations, with 96 extreme values, through measuring the magnetic field in terms of V/m. Results The measurements show the frequency varies from 47 MHz to 2.5 GHz as 17 frequency ranges at the measurement point as well. According to these findings, the referenced maximum safety limit was not exceeded. However, it was also found that mobile telecommunication was the most critical cause of magnetic fields. Conclusion Further studies need to be performed with different frequency antennas to assess the EMFs in intensive care units. PMID:27909603

  11. Singularities in the Transverse Fields of Electromagnetic Waves. II. Observations on the Electric Field

    NASA Astrophysics Data System (ADS)

    Hajnal, J. V.

    1987-12-01

    Electromagnetic waves propagating in free space contain three kinds of singularities called C lines, S surfaces and disclinations. The paper describes observations of these singularities in two different monochromatic microwave fields. The observations confirm all the theoretically predicted properties of the singularities that could be tested. As expected, the singularities were found to be prominent structural features of the fields and in consequence to provide an economical means of characterizing their structure. A notable result is the observation of both right-hand and left-hand C lines in a field that is nominally uniformly left-hand circularly polarized. This is in agreement with the previous assertion that, in general, electromagnetic wavefields contain both right-hand and left-hand polarized regions.

  12. The use of the rotating electromagnetic field for hardening treatment of details

    NASA Astrophysics Data System (ADS)

    Lebedev, V. A.; Kochubey, A. A.; Kiricheck, A. V.

    2017-02-01

    The article discusses energy aspects of details’ hardening with convective flows of freely moving indenters under the conditions of the rotating electromagnetic field. Results of theoretical studies of the kinetics of the movement of the ferromagnetic indenters are presented and the energy model of the state of the rotating magnetic liquefied layer is proposed, formed under the influence of the rotating electromagnetic field.

  13. Spontaneous topological transitions of electromagnetic fields in spatially inhomogeneous C P -odd domains

    NASA Astrophysics Data System (ADS)

    Tuchin, Kirill

    2016-12-01

    Metastable C P -odd domains of the hot QCD matter are coupled to QED via the chiral anomaly. The topology of electromagnetic field in these domains is characterized by magnetic helicity. It is argued, using the Maxwell-Chern-Simons model, that spatial inhomogeneity of the domains induces spontaneous transitions of electromagnetic field between the opposite magnetic helicity states.

  14. Modeling of interactions of electromagnetic fields with human bodies

    NASA Astrophysics Data System (ADS)

    Caputa, Krzysztof

    Interactions of electromagnetic fields with the human body have been a subject of scientific interest and public concern. In recent years, issues in power line field effects and those of wireless telephones have been in the forefront of research. Engineering research compliments biological investigations by quantifying the induced fields in biological bodies due to exposure to external fields. The research presented in this thesis aims at providing reliable tools, and addressing some of the unresolved issues related to interactions with the human body of power line fields and fields produced by handheld wireless telephones. The research comprises two areas, namely development of versatile models of the human body and their visualisation, and verification and application of numerical codes to solve selected problems of interest. The models of the human body, which are based on the magnetic resonance scans of the body, are unique and differ considerably from other models currently available. With the aid of computer software developed, the models can be arranged to different postures, and medical devices can be accurately placed inside them. A previously developed code for modeling interactions of power line fields with biological bodies has been verified by rigorous, quantitative inter-laboratory comparison for two human body models. This code has been employed to model electromagnetic interference (EMI) of the magnetic field with implanted cardiac pacemakers. In this case, the correct placement and representation of the pacemaker leads are critical, as simplified computations have been shown to result in significant errors. In modeling interactions of wireless communication devices, the finite difference time domain technique (FDTD) has become a de facto standard. The previously developed code has been verified by comparison with the analytical solution for a conductive sphere. While previously researchers limited their verifications to principal axes of the sphere

  15. Idiopathic environmental intolerance attributed to electromagnetic fields (formerly 'electromagnetic hypersensitivity'): An updated systematic review of provocation studies.

    PubMed

    Rubin, G James; Nieto-Hernandez, Rosa; Wessely, Simon

    2010-01-01

    Idiopathic Environmental Intolerance attributed to electromagnetic fields (IEI-EMF; formerly 'electromagetic hypersensitivity') is a medically unexplained illness in which subjective symptoms are reported following exposure to electrical devices. In an earlier systematic review, we reported data from 31 blind provocation studies which had exposed IEI-EMF volunteers to active or sham electromagnetic fields and assessed whether volunteers could detect these fields or whether they reported worse symptoms when exposed to them. In this article, we report an update to that review. An extensive literature search identified 15 new experiments. Including studies reported in our earlier review, 46 blind or double-blind provocation studies in all, involving 1175 IEI-EMF volunteers, have tested whether exposure to electromagnetic fields is responsible for triggering symptoms in IEI-EMF. No robust evidence could be found to support this theory. However, the studies included in the review did support the role of the nocebo effect in triggering acute symptoms in IEI-EMF sufferers. Despite the conviction of IEI-EMF sufferers that their symptoms are triggered by exposure to electromagnetic fields, repeated experiments have been unable to replicate this phenomenon under controlled conditions. A narrow focus by clinicians or policy makers on bioelectromagnetic mechanisms is therefore, unlikely to help IEI-EMF patients in the long-term.

  16. Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.

    PubMed

    Niu, D; Zhu, F; Qiu, R; Niu, Q

    2016-01-01

    High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.

  17. Three-dimensional electromagnetic breathers in carbon nanotubes with the field inhomogeneity along their axes

    NASA Astrophysics Data System (ADS)

    Zhukov, Alexander V.; Bouffanais, Roland; Fedorov, Eduard G.; Belonenko, Mikhail B.

    2013-10-01

    We study the propagation of extremely short electromagnetic three-dimensional bipolar pulses in an array of semiconductor carbon nanotubes. The heterogeneity of the pulse field along the axis of the nanotubes is accounted for the first time. The evolution of the electromagnetic field and the charge density of the sample are described by Maxwell's equations supplemented by the continuity equation. Our analysis reveals for the first time the possibility of propagation of three-dimensional electromagnetic breathers in CNTs arrays. Specifically, we found that the propagation of short electromagnetic pulse induces a redistribution of the electron density in the sample.

  18. Electromagnetic fluid drift turbulence in static ergodic magnetic fields

    SciTech Connect

    Reiser, D.; Scott, B.

    2005-12-15

    Numerical simulations of three-dimensional nonlinear electromagnetic fluid drift turbulence in a tokamak plasma with externally applied stochastic magnetic-field perturbations are presented. The contributions to the radial particle transport due to nonlinearities arising from ExB advection and magnetic flutter are investigated for perturbation fields of varying strengths in the cases of low and high collisionalities. The perturbation strength is varied to study the physics for Chirikov parameters above 1. In all the cases considered a significant increase of ExB transport is found. A static contribution in the density and velocity perturbations contributes significantly to the total radial ExB transport. For low collisionality, the external perturbation leads to enhanced density and velocity fluctuations over a broad range in the toroidal wave-number spectrum, resulting in an enhanced turbulent flux. For high collisionality, the density fluctuations stay roughly the same and the velocity fluctuations are increased in an intermediate range of the toroidal wave number spectrum, separated from the maximum of the density fluctuations, thus leaving the turbulent flux almost unchanged.

  19. Electromagnetically induced transparency resonances inverted in magnetic field

    SciTech Connect

    Sargsyan, A.; Sarkisyan, D. E-mail: david@ipr.sci.am; Pashayan-Leroy, Y.; Leroy, C.; Cartaleva, S.; Wilson-Gordon, A. D.; Auzinsh, M.

    2015-12-15

    The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

  20. Adaptive framework for uncertainty analysis in electromagnetic field measurements.

    PubMed

    Prieto, Javier; Alonso, Alonso A; de la Rosa, Ramón; Carrera, Albano

    2015-04-01

    Misinterpretation of uncertainty in the measurement of the electromagnetic field (EMF) strength may lead to an underestimation of exposure risk or an overestimation of required measurements. The Guide to the Expression of Uncertainty in Measurement (GUM) has internationally been adopted as a de facto standard for uncertainty assessment. However, analyses under such an approach commonly assume unrealistic static models or neglect relevant prior information, resulting in non-robust uncertainties. This study proposes a principled and systematic framework for uncertainty analysis that fuses information from current measurements and prior knowledge. Such a framework dynamically adapts to data by exploiting a likelihood function based on kernel mixtures and incorporates flexible choices of prior information by applying importance sampling. The validity of the proposed techniques is assessed from measurements performed with a broadband radiation meter and an isotropic field probe. The developed framework significantly outperforms GUM approach, achieving a reduction of 28% in measurement uncertainty. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Electromagnetic cascades and the depletion of intense fields

    NASA Astrophysics Data System (ADS)

    Bulanov, Stepan; Seipt, Daniel; Heinzl, Thomas; Marklund, Mattias; Ji, Qing; Steinke, Sven; Schroeder, Carl; Esarey, Eric; Leemans, Wim P.

    2016-10-01

    The interaction of electrons, positrons, and photons with intense electromagnetic fields gives rise to multi-photon Compton and Breit-Wheeler processes. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution. Moreover the multi-photon nature of Compton and Breit-Wheeler processes implies the absorption of a significant number of photons. As a result, the interaction of a highly charged electron bunch with an intense laser pulse can lead to a significant depletion of the laser pulse energy, thus rendering the external field approximation invalid. The relevance of these results to the proposed BELLA-i beamline at BELLA center at LBNL is discussed. We acknowledge support from the Office of Science of the US DOE under Contract No. DE-AC02-05CH11231.

  2. Error sources affecting thermocouple thermometry in RF electromagnetic fields.

    PubMed

    Chakraborty, D P; Brezovich, I A

    1982-03-01

    Thermocouple thermometry errors in radiofrequency (typically 13, 56 MHZ) electromagnetic fields such as are encountered in hyperthermia are described. RF currents capacitatively or inductively coupled into the thermocouple-detector circuit produce errors which are a combination of interference, i.e., 'pick-up' error, and genuine rf induced temperature changes at the junction of the thermocouple. The former can be eliminated by adequate filtering and shielding; the latter is due to (a) junction current heating in which the generally unequal resistances of the thermocouple wires cause a net current flow from the higher to the lower resistance wire across the junction, (b) heating in the surrounding resistive material (tissue in hyperthermia), and (c) eddy current heating of the thermocouple wires in the oscillating magnetic field. Low frequency theories are used to estimate these errors under given operating conditions and relevant experiments demonstrating these effects and precautions necessary to minimize the errors are described. It is shown that at 13.56 MHz and voltage levels below 100 V rms these errors do not exceed 0.1 degrees C if the precautions are observed and thermocouples with adequate insulation (e.g., Bailey IT-18) are used. Results of this study are being currently used in our clinical work with good success.

  3. Electromagnetic fluid drift turbulence in static ergodic magnetic fields

    NASA Astrophysics Data System (ADS)

    Reiser, D.; Scott, B.

    2005-12-01

    Numerical simulations of three-dimensional nonlinear electromagnetic fluid drift turbulence in a tokamak plasma with externally applied stochastic magnetic-field perturbations are presented. The contributions to the radial particle transport due to nonlinearities arising from E ×B advection and magnetic flutter are investigated for perturbation fields of varying strengths in the cases of low and high collisionalities. The perturbation strength is varied to study the physics for Chirikov parameters above 1. In all the cases considered a significant increase of E ×B transport is found. A static contribution in the density and velocity perturbations contributes significantly to the total radial E ×B transport. For low collisionality, the external perturbation leads to enhanced density and velocity fluctuations over a broad range in the toroidal wave-number spectrum, resulting in an enhanced turbulent flux. For high collisionality, the density fluctuations stay roughly the same and the velocity fluctuations are increased in an intermediate range of the toroidal wave number spectrum, separated from the maximum of the density fluctuations, thus leaving the turbulent flux almost unchanged.

  4. Convective heat transfer in engine coolers influenced by electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Karcher, C.; Kühndel, J.

    2017-08-01

    In engine coolers of off-highway vehicles, convective heat transfer at the coolant side limits both efficiency and performance density of the apparatus. Here, due to restrictions in construction and design, backwater areas and stagnation regions cannot be avoided. Those unwanted changes in flow characteristics are mainly triggered by flow deflections and sudden cross-sectional expansions. In application, mixtures of water and glysantine are used as appropriate coolants. Such coolants typically show an electrical conductivity of a few S/m. Coolant flow and convective heat transfer can then be controlled using Lorentz forces. These body forces are generated within the conducting fluid by the interactions of an electrical current density and a localized magnetic field, both of which are externally superimposed. In future application, this could be achieved by inserting electrodes in the cooler wall and a corresponding arrangement of permanent magnets. In this paper we perform numerical simulations of such magnetohydrodynamic flow in three model geometries that frequently appear in engine cooling applications: Carnot-Borda diffusor, 90° bend, and 180° bend. The simulations are carried out using the software package ANSYS Fluent. The present study demonstrates that, depending on the electromagnetic interaction parameter and the specific geometric arrangement of electrodes and magnetic field, Lorentz forces are suitable to break up eddy waters and separation zones and thus significantly increase convective heat transfer in these areas. Furthermore, the results show that hydraulic pressure losses can be reduced due to the pumping action of the Lorentz forces.

  5. Extremely low frequency electromagnetic fields and cancer: the epidemiologic evidence.

    PubMed Central

    Bates, M N

    1991-01-01

    This paper reviews the epidemiologic evidence that low frequency electromagnetic fields generated by alternating current may be a cause of cancer. Studies examining residential exposures of children and adults and studies of electrical and electronics workers are reviewed. Using conventional epidemiologic criteria for inferring causal associations, including strength and consistency of the relationship, biological plausibility, and the possibility of bias as an explanation, it is concluded that the evidence is strongly suggestive that such radiation is carcinogenic. The evidence is strongest for brain and central nervous system cancers in electrical workers and children. Weaker evidence supports an association with leukemia in electrical workers. Some evidence also exists for an association with melanoma in electrical workers. Failure to find consistent evidence of a link between residential exposures and adult cancers may be attributable to exposure misclassification. Studies so far have used imperfect surrogates for any true biologically effective magnetic field exposure. The resulting exposure misclassification has produced relative risk estimates that understate any true risk. PMID:1821368

  6. [Interhemispheric relations of the EEG power of cortical potentials in the band of 1-60 Hz during formation and testing of cognitive set to facial expression].

    PubMed

    Dumenko, V N; Kozlov, M K; Kurova, N S; Cheremushkin, E A

    2009-01-01

    Interhemispheric relations of the EEG power in the 1-60 frequency band were studied at the stages of formation and testing of the cognitive set to facial expression. Different topographic asymmetry patterns were revealed in subjects with different set plasticity. In subjects without behavioral actualization (n = 11) of the set at the stage of set formation, EEG power in the gamma band (21-40 and 41-60 Hz) prevailed in the frontal areas of the right hemisphere, whereas the power of electrical oscillations in the bands of 2-7 and 8-13 Hz was higher also in the frontal areas but of the left hemisphere. At the stage of set testing, this basic topographical asymmetry pattern persisted. Formation of the set in subjects with pronounced actualization (n = 18) was characterized by another topographical asymmetry pattern: a significant excess of the power of gamma oscillations was observed in the posterotemporal and occipital areas of the left hemisphere, whereas the power of oscillations in the bands 2-7, 8-13, and 14-20 Hz was higher also in the posterior areas but of the right hemisphere. No asymmetry in the EEG power was observed in these subjects at the stage of set testing.

  7. Growth inhibition of Staphylococcus aureus induced by low-frequency electric and electromagnetic fields.

    PubMed

    Obermeier, Andreas; Matl, Florian Dominik; Friess, Wolfgang; Stemberger, Axel

    2009-05-01

    Magnetic field therapy is an established technique in the treatment of pseudarthrosis. In cases of osteomylitis, palliation is also observed. This study focuses on the impact of different electric and electromagnetic fields on the growth of Staphylococcus aureus by in vitro technologies. Cultures of Staphylococcus aureus in fluid and gel-like medium were exposed to a low-frequency electromagnetic field, an electromagnetic field combined with an additional electric field, a sinusoidal electric field and a static electric field. In gel-like medium no significant difference between colony-forming units of exposed samples and non-exposed references was detected. In contrast, Staphylococcus aureus concentrations in fluid medium could clearly be reduced under the influence of the four different applied fields within 24 h of experiment. The strongest effects were observed for the direct current electric field which could decrease CFU/ml of 37%, and the low-frequency electromagnetic field with additional induced electric alternating field with a decrease of Staphylococci concentration by 36%. The effects of the electromagnetic treatment on Staphylococci within fluid medium are significantly higher than in gel-like medium. The application of low-frequency electromagnetic fields corroborates clinical situations of bone infections during magnetic field therapy. Copyright 2009 Wiley-Liss, Inc.

  8. Influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction

    SciTech Connect

    Forsberg, M.; Brodin, G.; Papadopoulos, D.

    2010-07-15

    The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the QED effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered due to the QED effects. The consequences of our results are discussed.

  9. Electromagnetic Near-Field Computations for a Broadcast Monopole Using Numerical Electromagnetics Code (NEC).

    DTIC Science & Technology

    1983-09-01

    Electromagnetic Near-FEjeid Computazions for a Broadcast Mono~ole using ’Vimerical El.ectromagnetics Code (NEC) by David Duerr T-homson Li’~enntCommander... Poggio of Lawrence Livermore Laboratory, January 1981. 3. Schelkuncff, S.A. and Friis, H.T., Antennas Theory -and ?ractice, Wiley, 1952. 4. Jordan...Virginia 22314 2. Library, Code 0142 2 Naval Postgraduate School Monterey, California 93943 3. LCDR David D. Thomson (Code 33n9)2Naval Weapons Center

  10. Electromagnetic Radiation System (EMRS) for Susceptibility Testing.

    DTIC Science & Technology

    ELECTROMAGNETIC COMPATIBILITY, *ELECTROMAGNETIC SUSCEPTIBILITY, COMMUNICATION EQUIPMENT, ELECTRONIC EQUIPMENT, ELECTROMAGNETIC RADIATION , ANTENNAS, ELECTROMAGNETIC INTERFERENCE, RADAR SIGNALS, RADIO SIGNALS, FIELD INTENSITY.

  11. Possibility of sounding Earth by using electromagnetic field of sea current

    NASA Astrophysics Data System (ADS)

    Smagin, V. P.; Fonarev, G. A.; Savchenko, V. N.

    1985-06-01

    The possibilities of determining the conductivity of bottom rocks by measuring different combinations of components of the electromagnetic field of a current on the ocean floor are analyzed. It is shown that the sea current induces an electromagnetic field in the geomagnetic field. Then a formula is derived for the magnetic component B. After determining B it is possible to find the electric field in sea water and in rocks beneath the ocean layer. The parameter epsilon is introduced which makes it possible to ascertain the vertical gradient of the magnetic field in bottom rocks; a function is derived which characterizes the magnetic field in the bottom rocks. Formulas are derived which can be used in estimating the width of a current by an electromagnetic method. It is shown, therefore, that with electromagnetic sounding in the fields of sea currents it is possible to make a simple interpretation of the experimental data within the framework of an exponential model of ocean floor conductivity.

  12. [ASSESSMENT OF OCCUPATIONAL EXPOSURE TO RADIO FREQUENCY ELECTROMAGNETIC FIELDS].

    PubMed

    Aniołczyk, Halina; Mariańska, Magda; Mamrot, Paweł

    2015-01-01

    European Union Directive 2013/35/UE provides for the implementation of EU regulations into national legislation. Our aim is to assess actual health hazards from radiofrequency eldctromagnetic field (RF EMF) (range: 100 kHz - 300 GHz) and indicate workplaces with the highest risk to employee health. Data from measurements of RF EMF performed by the Laboratory of Electromagnetic Hazards in Nofer Institute of Occupational Medicine (Łódź, Poland) were analyzed. The analysis covered the results of electric field intensity (E) for over 450 selected items. The ranges of protection zones and the extent to which maximum admissible intensity (MAI) values were also analyzed. The determinations and'measurements of EMF in the work environment met the requirements of Polish Standard, while Polish regulations on the MAI values were used as the criterion for the assessment of the exposure. The highest values of E field intensity at workplaces were measured for: electrosurgery, to 400 V/m, and short-wave diathermy units, to 220 V/m, dielectric welders to 240 V/m, within the FM radio antenna systems, to 180 V/m. The widest protection zones were noted for prototype research instruments, short-wave diathermy units, and dielectric welders. The most excessive (up to 12-fold MAI) values were recorded for dielectric welders, short-wave diathermy units (up to 11-fold) and microwave diathermy units (up to 8-fold). Our results have confirmed the high RF EMF values for physiotherapists, operators of dielectric welders, and mast maintenance workers in radio com munication facilities (especially radio and TV broadcasting stations).

  13. Consequences of rotating off-centred dipolar electromagnetic field in vacuum around Pulsars

    NASA Astrophysics Data System (ADS)

    Kundu, A.; Pétri, J.

    2016-12-01

    Studying the electromagnetic field of pulsars is one of the key themes in neutron star physics. While most of the works assume a standard central dipolar electromagnetic field model, recently some efforts had been made in explaining how inclusion of higher field components produces drastic consequences in our understanding of these objects. We put forward the effects of a unique recently presented approach in which the magnetic axis is shifted off from the centre. It is found that the rotating off-centred dipolar electromagnetic field itself reveals the presence of the higher components within. The consequences of this approach on the shape of the polar caps and the emission diagrams are discussed.

  14. Extremely low frequency electromagnetic fields activate the ERK cascade, increase hsp70 protein levels and promote regeneration in Planaria.

    PubMed

    Goodman, Reba; Lin-Ye, Avary; Geddis, Matthew S; Wickramaratne, Priya J; Hodge, Susan E; Pantazatos, Spiro P; Blank, Martin; Ambron, Richard T

    2009-01-01

    To use regenerating Planaria Dugesia dorotocethala as a model to determine whether an intermittent modulated extremely low frequency electro-magnetic field (ELF-EMF) produces elevated levels of the heat shock protein hsp70 and stimulates intracellular pathways known to be involved in injury and repair. We focused on serum response element (SRE) binding through the extra-cellular signal-regulated kinase (ERK) cascade. Planaria were transected equidistant between the tip of the head and the tip of the tail. Individual head and tail portions from the same worm were exposed to a 60 Hertz 80 milliGauss ELF-EMF for 1 h twice daily for 15 days post-transection under carefully controlled exposure conditions. The regenerating heads and tails were photographed and the lengths measured at three-day intervals. In other experiments, the timing of the appearance of pigmented eyes was monitored in the tail portion at 12-h intervals following transection in both ELF-EMF exposed and sham control. In some experiments protein lysates were analysed for hsp70 levels, doubly phosphorylated (pp)-ERK, Elk-1 kinase activity and serum response factor (SRF)-SRE binding. ELF-EMF exposure during the initial 3-days post-surgery caused a significant increase in regeneration for both heads and tails, but especially tails. The first appearance of eyes occurred at day seven post-transection in tail portions exposed to ELF-EMF. In the sham control tail samples the initial appearance of eyes occurred 48 h later. Concurrently, ELF-EMF-exposed heads and tails exhibited an elevation in the level of hsp70 protein, an activation of an ERK cascade, and an increase in SRF-SRE binding. Exposures to a modulated sinusoidal ELF-EMF were delivered by a Helmholtz configuration at a frequency of 60 Hz and 80 mG twice a day for one hour. This is accompanied by an increase in hsp70 protein levels, activation of specific kinases and upregulation of transcription factors that are generally associated with repair

  15. Extremely low frequency electromagnetic fields activate the ERK cascade, increase hsp70 protein levels and promote regeneration in Planaria

    PubMed Central

    Goodman, Reba; Lin-Ye, Avary; Geddis, Matthew S.; Wickramaratne, Priya J.; Hodge, Susan E.; Pantazatos, Spiro; Blank, Martin; Ambron, Richard T.

    2010-01-01

    Purpose To use regenerating Planaria Dugesia dorotocethala as a model to determine whether an intermittent modulated extremely low frequency electro-magnetic field (ELF-EMF) produces elevated levels of the heat shock protein hsp70 and stimulates intracellular pathways known to be involved in injury and repair. We focused on serum response element (SRE) binding through the extra-cellular signal-regulated kinase (ERK) cascade. Materials and methods Planaria were transected equidistant between the tip of the head and the tip of the tail. Individual head and tail portions from the same worm were exposed to a 60 Hertz 80 milliGauss ELF- EMF for one hour twice daily for 15 days post transection under carefully controlled exposure conditions. The regenerating heads and tails were photographed and the lengths measured at 3-day intervals. In other experiments, the timing of the appearance of pigmented eyes was monitored in the tail portion at 12 hour intervals following transection in both ELF-EMF exposed and sham control. In some experiments protein lysates were analyzed for hsp70 levels, doubly phosphorylated (pp)-ERK, Elk-1 kinase activity and serum response factor (SRF) -SRE binding. Results ELF-EMF exposure during the initial 3-days post surgery caused a significant increase in regeneration for both heads and tails, but especially tails. The first appearance of eyes occurred at day seven post-transection in tail portions exposed to ELF-EMF. In the sham control tail samples the initial appearance of eyes occurred 48 hours later. Concurrently, ELF-EMF-exposed heads and tails exhibited an elevation in the level of hsp70 protein, an activation of an ERK cascade, and an increase in SRF-SRE binding. Conclusion Exposures to a modulated sinusoidal ELF-EMF were delivered by a Helmholtz configuration at a frequency of 60Hz and 80mG twice a day for one hour. This is accompanied by an increase in hsp70 protein levels, activation of specific kinases and up-regulation of

  16. Effects of pulsed electromagnetic field frequencies on the osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Luo, Fei; Hou, Tianyong; Zhang, Zehua; Xie, Zhao; Wu, Xuehui; Xu, Jianzhong

    2012-04-01

    The purpose of this study was to evaluate the effect of different frequencies of pulsed electromagnetic fields on the osteogenic differentiation of human mesenchymal stem cells. Third-generation human mesenchymal stem cells were irradiated with different frequencies of pulsed electromagnetic fields, including 5, 25, 50, 75, 100, and 150 Hz, with a field intensity of 1.1 mT, for 30 minutes per day for 21 days. Changes in human mesenchymal stem cell morphology were observed using phase contrast microscopy. Alkaline phosphatase activity and osteocalcin expression were also determined to evaluate human mesenchymal stem cell osteogenic differentiation.Different effects were observed on human mesenchymal stem cell osteoblast induction following exposure to different pulsed electromagnetic field frequencies. Levels of human mesenchymal stem cell differentiation increased when the pulsed electromagnetic field frequency was increased from 5 hz to 50 hz, but the effect was weaker when the pulsed electromagnetic field frequency was increased from 50 Hz to 150 hz. The most significant effect on human mesenchymal stem cell differentiation was observed at of 50 hz.The results of the current study show that pulsed electromagnetic field frequency is an important factor with regard to the induction of human mesenchymal stem cell differentiation. Furthermore, a pulsed electromagnetic field frequency of 50 Hz was the most effective at inducing human mesenchymal stem cell osteoblast differentiation in vitro.

  17. Estimation of the Lithospheric Component Share in the Earth Natural Pulsed Electromagnetic Field Structure

    NASA Astrophysics Data System (ADS)

    Malyshkov, S. Y.; Gordeev, V. F.; Polyvach, V. I.; Shtalin, S. G.; Pustovalov, K. N.

    2017-04-01

    Article describes the results of the atmosphere and Earth’s crust climatic and ecological parameters integrated monitoring. The estimation is made for lithospheric component share in the Earth natural pulsed electromagnetic field structure. To estimate lithospheric component we performed a round-the-clock monitoring of the Earth natural pulsed electromagnetic field background variations at the experiment location and measured the Earth natural pulsed electromagnetic field under electric shields. Natural materials in a natural environment were used for shielding, specifically lakes with varying parameters of water conductivity. Skin effect was used in the experiment - it is the tendency of electromagnetic waves amplitude to decrease with greater depths in the conductor. Atmospheric and lithospheric component the Earth natural pulsed electromagnetic field data recorded on terrain was compared against the recorded data with atmosphere component decayed by an electric shield. In summary we have demonstrated in the experiment that thunderstorm discharge originating electromagnetic field decay corresponds to the decay calculated using Maxwell equations. In the absence of close lightning strikes the ratio of field intensity recorded on terrain to shielded field intensity is inconsistent with the ratio calculated for atmospheric sources, that confirms there is a lithospheric component present to the Earth natural pulsed electromagnetic field.

  18. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis.

    PubMed

    Zhu, Siyi; He, Hongchen; Zhang, Chi; Wang, Haiming; Gao, Chengfei; Yu, Xijie; He, Chengqi

    2017-09-01

    Postmenopausal osteoporosis (PMOP) is considered to be a well-defined subject that has caused high morbidity and mortality. In elderly women diagnosed with PMOP, low bone mass and fragile bone strength have been proven to significantly increase risk of fragility fractures. Currently, various anabolic and anti-resorptive therapies have been employed in an attempt to retain healthy bone mass and strength. Pulsed electromagnetic fields (PEMFs), first applied in treating patients with delayed fracture healing and nonunions, may turn out to be another potential and effective therapy for PMOP. PEMFs can enhance osteoblastogenesis and inhibit osteoclastogenesis, thus contributing to an increase in bone mass and strength. However, accurate mechanisms of the positive effects of PEMFs on PMOP remain to be further elucidated. This review attempts to summarize recent advances of PEMFs in treating PMOP based on clinical trials, and animal and cellular studies. Possible mechanisms are also introduced, and the future possibility of application of PEMFs on PMOP are further explored and discussed. Bioelectromagnetics. 38:406-424, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Electromagnetic fields in neonatal incubators: the reasons for an alert.

    PubMed

    Bellieni, Carlo Valerio; Nardi, Valentina; Buonocore, Giuseppe; Di Fabio, Sandra; Pinto, Iole; Verrotti, Alberto

    2017-10-08

    Neonatal incubators are important tools for sick newborns in the first few days of life. Nevertheless, their electric engine, often very close to the newborn's body, emits electromagnetic fields (EMF) to which newborns are exposed. Aim of this paper is to review the available literature on EMF exposure in incubators, and the effects of such exposures on newborns that have been investigated. We carried out a systematic review of studies about EMF emissions produced by incubators, using Medline and Embase databases from 1993 to 2017. We retrieved 15 papers that described the EMF exposure in incubators and their biological effects on babies. EMF levels in incubators appear to be between 2 and 100 mG, depending on the distance of the mattress from the electric engine. In some cases they exceed this range. These values interfere with melatonin production or with vagal tone. Even caregivers are exposed to high EMF, above 200 mG, when working at close contact with the incubators. EMF have been described as potentially hazardous for human health, and values reported in this review are an alert to prevent babies' and caregivers' exposure when close to the incubators. A precautionary approach should be adopted in future incubator design, to prevent high exposures of newborns in incubators and of caregivers as well.

  20. The role of electromagnetic fields in neurological disorders.

    PubMed

    Terzi, Murat; Ozberk, Berra; Deniz, Omur Gulsum; Kaplan, Suleyman

    2016-09-01

    In the modern world, people are exposed to electromagnetic fields (EMFs) as part of their daily lives; the important question is "What is the effect of EMFs on human health?" Most previous studies are epidemiological, and we still do not have concrete evidence of EMF pathophysiology. Several factors may lead to chemical, morphological, and electrical alterations in the nervous system in a direct or indirect way. It is reported that non-ionizing EMFs have effects on animals and cells. The changes they bring about in organic systems may cause oxidative stress, which is essential for the neurophysiological process; it is associated with increased oxidization in species, or a reduction in antioxidant defense systems. Severe oxidative stress can cause imbalances in reactive oxygen species, which may trigger neurodegeneration. This review aims to detail these changes. Special attention is paid to the current data regarding EMFs' effects on neurological disease and associated symptoms, such as headache, sleep disturbances, and fatigue. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effect of cyclophosphamide and electromagnetic fields on mouse bone marrow

    SciTech Connect

    Cadossi, R.; Zucchini, P.; Emilia, G.; Torelli, G. )

    1990-02-26

    The authors have previously shown that the exposure to low frequency pulsing electromagnetic fields (PEMF) of mice X-ray irradiated resulted in an increased damage to the bone marrow. The series of experiments here reported were designed to investigate the effect of PEMF exposure after intraperitoneum injection of 200mg/kg of cyclophosphamide (CY). Control mice were CY injected only; experimental mice were CY injected and then exposed to PEMF. Exposure to PEMF (24 hours/day) increased the rate of decline of white blood cells in peripheral blood. Spleen weight was statistically higher among control mice than among mice exposed to PEMF at day 6, 8 and 10 after CY injection. Spleen autoradiography proved to be higher among PEMF exposed mice than among controls at day 8 and 9 after CY injection. The grafting efficiency of the bone marrow obtained from control mice was higher than the grafting efficiency of the bone marrow recovered from mice exposed to PEMF. All these data indicate that the exposure to PEMF increases the cytotoxic effect of CY.

  2. Effect of electromagnetic field exposure on the reproductive system

    PubMed Central

    Park, Chan Jin

    2012-01-01

    The safety of human exposure to an ever-increasing number and diversity of electromagnetic field (EMF) sources both at work and at home has become a public health issue. To date, many in vivo and in vitro studies have revealed that EMF exposure can alter cellular homeostasis, endocrine function, reproductive function, and fetal development in animal systems. Reproductive parameters reported to be altered by EMF exposure include male germ cell death, the estrous cycle, reproductive endocrine hormones, reproductive organ weights, sperm motility, early embryonic development, and pregnancy success. At the cellular level, an increase in free radicals and [Ca2+]i may mediate the effect of EMFs and lead to cell growth inhibition, protein misfolding, and DNA breaks. The effect of EMF exposure on reproductive function differs according to frequency and wave, strength (energy), and duration of exposure. In the present review, the effects of EMFs on reproductive function are summarized according to the types of EMF, wave type, strength, and duration of exposure at cellular and organism levels. PMID:22563544

  3. Effect of extremely low frequency electromagnetic fields on bacterial membrane.

    PubMed

    Oncul, Sule; Cuce, Esra M; Aksu, Burak; Inhan Garip, Ayse

    2016-01-01

    The effect of extremely low frequency electromagnetic fields (ELF-EMF) on bacteria has attracted attention due to its potential for beneficial uses. This research aimed to determine the effect of ELF-EMF on bacterial membrane namely the membrane potential, surface potential, hydrophobicity, respiratory activity and growth. Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli were subjected to ELF-EMF, 50 Hz, 1 mT for 2 h. Membrane potential was determined by fluorescence spectroscopy with or without EDTA (Ethylenediaminetetraacetic acid) with DisC3(5) (3,3-dipropylthiacarbocyanine iodide), zeta potential measurements were performed by electrophoretic mobility, hydrophobicity of the membrane was measured with MATH (Microbial Adhesion to Hydrocarbons) test, respiratory activity was determined with CTC (5-Cyano-2,3-ditolyl tetrazolium chloride), colony forming unit (CFU) and DAPI (4',6-diamidino-2-phenylindole, dihydrochloride) was used for growth determinations. ELF-EMF caused changes in physicochemical properties of both Gram-positive and Gram-negative bacteria. Hyperpolarization was seen in S. aureus and EDTA-treated E. coli. Surface potential showed a positive shift in S. aureus contrariwise to the negative shift seen in EDTA-untreated E. coli. Respiratory activity increased in both bacteria. A slight decrease in growth was observed. These results show that ELF-EMF affects the crucial physicochemical processes in both Gram-positive and Gram-negative bacteria which need further research.

  4. Effects of Electromagnetic Fields on Automated Blood Cell Measurements.

    PubMed

    Vagdatli, Eleni; Konstandinidou, Vasiliki; Adrianakis, Nikolaos; Tsikopoulos, Ioannis; Tsikopoulos, Alexios; Mitsopoulou, Kyriaki

    2014-08-01

    The aim of this study is to investigate whether the electromagnetic fields associated with mobile phones and/or laptops interfere with blood cell counts of hematology analyzers. Random blood samples were analyzed on an Aperture Impedance hematology analyzer. The analysis was performed in four ways: (A) without the presence of any mobile phone or portable computer in use, (B) with mobile phones in use (B1: one mobile, B4: four mobiles), (C) with portable computers (laptops) in use (C1: one laptop, C3: three laptops), and (D) with four mobile phones and three laptops in use simultaneously. The results obtained demonstrated a statistically significant decrease in neutrophil, erythrocyte, and platelet count and an increase in lymphocyte count, mean corpuscular volume, and red blood cell distribution width, notably in the B4 group. Despite this statistical significance, in clinical practice, only the red blood cell reduction could be taken into account, as the mean difference between the A and B4 group was 60,000 cells/µL. In group D, the analyzer gave odd results after 11 measurements and finally stopped working. The combined and multiple use of mobile phones and computers affects the function of hematology analyzers, leading to false results. Consequently, the use of such electronic devices must be avoided.

  5. Influence of different types of electromagnetic fields on skin reparatory processes in experimental animals.

    PubMed

    Matic, Milan; Lazetic, Bogosav; Poljacki, Mirjana; Djuran, Verica; Matic, Aleksandra; Gajinov, Zorica

    2009-05-01

    Wound healing is a very complex process, some phases of which have only recently been explained. Magnetic and electromagnetic fields can modulate this process in a non-thermal way. The aim of this research was to compare the influence of constant and pulsed electromagnetic fields and low-level laser therapy (LLLT) on wound healing in experimental animals. The experiment was conducted on 120 laboratory rats divided into four groups of 30 animals each (constant electromagnetic field, pulsed electromagnetic field, LLLT and control group). It lasted for 21 days. Under the influence of the constant electromagnetic field the healing of the skin defect was accelerated in comparison with the control group. The difference was statistically significant in all the weeks of the experiment at the P < 0.01 level. Accelerated healing was also observed under the influence of the pulsed electromagnetic field (P < 0.05). In the group of animals exposed to LLLT, the healing of the skin defect was faster than in the control group. The statistical significance was at the P < 0.05 level. Different types of electromagnetic fields have a promoting effect on the wound healing process.

  6. Pulsed electromagnetic field with or without exercise therapy in the treatment of benign prostatic hyperplasia.

    PubMed

    Elgohary, Hany M; Tantawy, Sayed A

    2017-08-01

    [Purpose] To investigate the effect of pulsed electromagnetic field with or without exercise therapy in the treatment of benign prostatic hyperplasia. [Subjects and Methods] Sixty male patients aged 55-65 years with benign prostatic hyperplasia were invited to participate in this study. Patients were randomly assigned to Group A (n=20; patients who received pulsed electromagnetic field in addition to pelvic floor and aerobic exercises), Group B (n=20; patients who received pulsed electromagnetic field), and Group C (n=20; patients who received placebo electromagnetic field). The assessments included post-void residual urine, urine flow rate, prostate specific antigen, white blood cells count, and International Prostate Symptom Score were weighed, before and after a 4-week intervention. [Results] There were significant differences in Group A and B in all parameters. Group C showed non-significant differences in all measured variables except for International Prostate Symptom Score. Among groups, all parameters showed highly significant differences in favor of Group A. There were non-significant differences between Group A and B and significant difference between Groups A and C and between Groups B and C. [Conclusion] The present study demonstrated that electromagnetic field had a significant impact on the treatment of benign prostatic hyperplasia. Accordingly, electromagnetic field can be utilized alone or in combination with other physiotherapy modalities. Moreover, clinicians should have the capacity to perceive the advantages accomplished using extra treatment alternatives. Electromagnetic field is a safe, noninvasive method and can be used for the treatment of benign prostatic hyperplasia.

  7. Occupational exposure to electromagnetic fields and acute leukaemia: analysis of a case-control study

    PubMed Central

    Willett, E; McKinney, P; Fear, N; Cartwright, R; Roman, E

    2003-01-01

    Aims: To investigate whether the risk of acute leukaemia among adults is associated with occupational exposure to electromagnetic fields. Methods: Probable occupational exposure to electromagnetic fields at higher than typical residential levels was investigated among 764 patients diagnosed with acute leukaemia during 1991–96 and 1510 sex and age matched controls. A job exposure matrix was applied to the self reported employment histories to determine whether or not a subject was exposed to electromagnetic fields. Risks were assessed using conditional logistic regression for a matched analysis. Results: Study subjects considered probably ever exposed to electromagnetic fields at work were not at increased risk of acute leukaemia compared to those considered never exposed. Generally, no associations were observed on stratification by sex, leukaemia subtype, number of years since exposure stopped, or occupation; there was no evidence of a dose-response effect using increasing number of years exposed. However, relative to women considered never exposed, a significant excess of acute lymphoblastic leukaemia was observed among women probably exposed to electromagnetic fields at work that remained increased irrespective of time prior to diagnosis or job ever held. Conclusion: This large population based case-control study found little evidence to support an association between occupational exposure to electromagnetic fields and acute leukaemia. While an excess of acute lymphoblastic leukaemia among women was observed, it is unlikely that occupational exposure to electromagnetic fields was responsible, given that increased risks remained during periods when exposure above background levels was improbable. PMID:12883018

  8. Exposure to electromagnetic fields from laptop use of "laptop" computers.

    PubMed

    Bellieni, C V; Pinto, I; Bogi, A; Zoppetti, N; Andreuccetti, D; Buonocore, G

    2012-01-01

    Portable computers are often used at tight contact with the body and therefore are called "laptop." The authors measured electromagnetic fields (EMFs) laptop computers produce and estimated the induced currents in the body, to assess the safety of laptop computers. The authors evaluated 5 commonly used laptop of different brands. They measured EMF exposure produced and, using validated computerized models, the authors exploited the data of one of the laptop computers (LTCs) to estimate the magnetic flux exposure of the user and of the fetus in the womb, when the laptop is used at close contact with the woman's womb. In the LTCs analyzed, EMF values (range 1.8-6 μT) are within International Commission on Non-Ionizing Radiation (NIR) Protection (ICNIRP) guidelines, but are considerably higher than the values recommended by 2 recent guidelines for computer monitors magnetic field emissions, MPR II (Swedish Board for Technical Accreditation) and TCO (Swedish Confederation of Professional Employees), and those considered risky for tumor development. When close to the body, the laptop induces currents that are within 34.2% to 49.8% ICNIRP recommendations, but not negligible, to the adult's body and to the fetus (in pregnant women). On the contrary, the power supply induces strong intracorporal electric current densities in the fetus and in the adult subject, which are respectively 182-263% and 71-483% higher than ICNIRP 98 basic restriction recommended to prevent adverse health effects. Laptop is paradoxically an improper site for the use of a LTC, which consequently should be renamed to not induce customers towards an improper use.

  9. The regenerative effects of electromagnetic field on spinal cord injury.

    PubMed

    Ross, Christina L; Syed, Ishaq; Smith, Thomas L; Harrison, Benjamin S

    2017-01-01

    Traumatic spinal cord injury (SCI) is typically the result of direct mechanical impact to the spine, leading to fracture and/or dislocation of the vertebrae along with damage to the surrounding soft tissues. Injury to the spinal cord results in disruption of axonal transmission of signals. This primary trauma causes secondary injuries that produce immunological responses such as neuroinflammation, which perpetuates neurodegeneration and cytotoxicity within the injured spinal cord. To date there is no FDA-approved pharmacological agent to prevent the development of secondary SCI and induce regenerative processes aimed at healing the spinal cord and restoring neurological function. An alternative method to electrically activate spinal circuits is the application of a noninvasive electromagnetic field (EMF) over intact vertebrae. The EMF method of modulating molecular signaling of inflammatory cells emitted in the extra-low frequency range of <100 Hz, and field strengths of <5 mT, has been reported to decrease inflammatory markers in macrophages, and increase endogenous mesenchymal stem cell (MSC) proliferation and differentiation rates. EMF has been reported to promote osteogenesis by improving the effects of osteogenic media, and increasing the proliferation of osteoblasts, while inhibiting osteoclast formation and increasing bone matrix in vitro. EMF has also been shown to increase chondrogenic markers and collagen and induce neural differentiation, while increasing cell viability by over 50%. As advances are made in stem cell technologies, stabilizing the cell line after differentiation is crucial to SCI repair. Once cell-seeded scaffolds are implanted, EMF may be applied outside the wound for potential continued adjunct treatment during recovery.

  10. A simple dye-sensitized solar cell sealing technique using a CO 2 laser beam excited by 60 Hz AC discharges

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Gil; Hong, Ji-Tae; Xu, Guo-Cheng; Kim, Ho-Sung; Lee, Kyoung-Jun; Park, Sung-Joon; Kim, Whi-Young; Kim, Hee-Je

    2010-09-01

    Dye-sensitized solar cells (DSSCs) use two glass substrates (photo electrode and counter electrode) coated with fluorine-doped tin oxide (FTO) to harvest light into the cell and to collect electrons. The space between the photo electrode and the counter electrode are filled with a liquid type electrolyte for electron transfer into the cell. Therefore, an appropriate sealing method is required to prevent the liquid electrolyte leaking out. In this paper, a simple CO 2 laser beam with TEM 00 mode excited by a 60 Hz AC discharge was used to seal two glass substrates coated with FTO for the fabrication of DSSCs. The sealing technique improved the durability and stability of the DSSCs. The optimal conditions for the sealing of the DSSCs are related to the pin-hole diameter, the discharge current and the moving velocity of the target. Especially, the CO 2 laser beam is used as a heat source that is precisely controlled by the pin-hole, which plays an important role in adjusting its spot size. From these results, the maximum laser power was found to be 40 W at 18 Torr and 35 mA. In order to achieve the best sealing quality, the following parameters are required: a pin-hole diameter of 4 mm, input voltage of 10.73 kV, discharge current of 9.31 mA, moving velocity of 1 mm/s and distance from the target surface of 26.5 cm. Scanning electron microscope images show that the sealing quality obtained using the CO 2 laser beam is superior to that obtained using a hot press or soldering iron.

  11. Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats.

    PubMed

    Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping

    2012-05-10

    Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Effects of Extremely Low Frequency Electromagnetic Fields on Growth and Differentiation of ’Physarum polycephalum’

    DTIC Science & Technology

    1975-04-01

    AD-AO10 187 EFFECTS OF EXTREMELY LOW FREQUENCY ELECTRO- MAGNETIC FIELDS ON GROWTH AND DIFFERENTIATION OF ’ PHYSARUM POLYCEPHALUM ’ E. M. Guodman, et al...LExtremely Low Prequency Electromagnetic Fields on Growth and Differentiation of Physarum polycephalum Technical Report Phase I (Continuous Wave) by...that weak, alternating electromagnetic fields (60 or 75 Hz, 2.0 G, 0.7 V/n) affect the cell cycle of Physarum polycephalum by increasing the interval

  13. Idiopathic Environmental Intolerance Attributed to Electromagnetic Fields: A Content Analysis of British Newspaper Reports

    PubMed Central

    Eldridge-Thomas, Buffy; Rubin, G James

    2013-01-01

    Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged

  14. Idiopathic environmental intolerance attributed to electromagnetic fields: a content analysis of British newspaper reports.

    PubMed

    Eldridge-Thomas, Buffy; Rubin, G James

    2013-01-01

    Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged

  15. Entanglement control in a superconducting qubit system by an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Q.; Xu, J. B.

    2011-08-01

    By making use of the dynamical algebraic method we investigate a quantum system consisting of superconducting qubits interacting with data buses, where the qubits are driven by time-dependent electromagnetic field and obtain an explicit expression of time evolution operator. Furthermore, we explore the entanglement dynamics and the influence of the time-dependent electromagnetic field and the initial state on the entanglement sudden death and birth for the system. It is shown that the entanglement between the qubit and bus as well as the entanglement sudden death and birth can be controlled by the time-dependent electromagnetic field.

  16. More on the covariant retarded Green's function for the electromagnetic field in de Sitter spacetime

    SciTech Connect

    Higuchi, Atsushi; Lee, Yen Cheong; Nicholas, Jack R.

    2009-11-15

    In a recent paper 2 it was shown in examples that the covariant retarded Green's functions in certain gauges for electromagnetism and linearized gravity can be used to reproduce field configurations correctly in spite of the spacelike nature of past infinity in de Sitter spacetime. In this paper we extend the work of Ref. 2 concerning the electromagnetic field and show that the covariant retarded Green's function with an arbitrary value of the gauge parameter reproduces the electromagnetic field from two opposite charges at antipodal points of de Sitter spacetime.

  17. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    SciTech Connect

    Cadena, M. S. Reyes; Chapul, L. Sanchez; Perez, Javier; Garcia, M. N. Jimenez; Lopez, M. A. Jimenez; Espindola, M. E. Sanchez; Perez, R. Paniagua; Hernandez, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodriguez

    2008-08-11

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-{beta}) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor.

  18. Dynamic model for electromagnetic field and heating patterns in loaded cylindrical cavities

    SciTech Connect

    Tian, Y.L.; Black, W.M.; Sa`adaldin, H.S.; Ahmad, I.; Silberglitt, R.

    1995-07-01

    An analytical solution for the electromagnetic fields in a cylindrical cavity, partially filled with a cylindrical dielectric has been recently reported. A program based on this solution has been developed and combined with the authors` previous program for heat transfer analysis. The new software has been used to simulate the dynamic temperature profiles of microwave heating and to investigate the role of electromagnetic field in heating uniformity and stability. The effects of cavity mode, cavity dimension, the dielectric properties of loads on electromagnetic field and heating patterns can be predicted using this software.

  19. Investigation of brain potentials in sleeping humans exposed to the electromagnetic field of mobile phones.

    PubMed

    Lebedeva, N N; Sulimov, A V; Sulimova, O P; Korotkovskaya, T I; Gailus, T

    2001-01-01

    An investigation was made of 8-hour EEG tracings of sleeping humans exposed to the electromagnetic field of a GSM-standard mobile phone. To analyze the EEG-patterns, manual scoring, nonlinear dynamics, and spectral analysis were employed. It was found that, when human beings were exposed to the electromagnetic field of a cellular phone, their cerebral cortex biopotentials revealed an increase in the alpha-range power density as compared to the placebo experiment. It was also found that the dimension of EEG correlation dynamics and the relation of sleep stages changed under the influence of the electromagnetic field of a mobile phone.

  20. Operator of pair electron-ion collisions in alternating electromagnetic fields

    SciTech Connect

    Balakin, A. A.

    2008-12-15

    Collisions of electrons with ions in the presence of an alternating electromagnetic field are considered. Based on the first principles (the Liouville equations for N particles), a general expression for the collisional operator in the approximation of pair collisions at an arbitrary scattering potential, including that depending periodically on time, is derived. The problem of collisions in plasma in the presence of an electromagnetic field can be reduced to this case by introducing drift coordinates. It is shown that the method of test particles can be applied to the problem of particle collisions in an alternating electromagnetic field.

  1. Impact of Low Frequency Electromagnetic Field Exposure on the Candida Albicans

    NASA Astrophysics Data System (ADS)

    Malíková, Ivona; Janoušek, Ladislav; Fantova, Vladyslava; Jíra, Jaroslav; Kříha, Vítĕzslav

    2015-03-01

    Effect of low frequency electromagnetic field on growth of selected microorganism is studied in the article. The diploid fungus that grows both as yeast and filamentous cell was chosen for this research. The theory of ion parametric resonance was taken as the base for studying the influence of electromagnetic field on biological structures. We tested the hypothesis, whether it is possible to observe the change in growth properties of Candida albicans with an AC electromagnetic field tuned to resonance with calcium ions cyclotron frequency.

  2. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    NASA Astrophysics Data System (ADS)

    Cadena, M. S. Reyes; Chapul, L. Sánchez; Pérez, Javiér; García, M. N. Jiménez; López, M. A. Jiménez; Espíndola, M. E. Sánchez; Perez, R. Paniagua; Hernández, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodríguez

    2008-08-01

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-β) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor.

  3. Induction of tamoxifen resistance in breast cancer cells by ELF electromagnetic fields

    SciTech Connect

    Girgert, Rainer . E-mail: rainer.girgert@med.uni-goettingen.de; Schimming, Hartmut; Koerner, Wolfgang; Gruendker, Carsten; Hanf, Volker

    2005-11-04

    The incidence of breast cancer in western societies has been rising ever since the Second World War. Besides the exposure to a multitude of new chemical compounds, electromagnetic field exposure has been linked to breast cancer through a radiation-mediated anti-melatonin pathway. We investigated, whether low-frequency electromagnetic field exposure interferes with the anti-estrogenic activity of tamoxifen. Two different clones of the breast cancer cell line MCF-7 were exposed to highly homogeneous 50 Hz electromagnetic fields and IC{sub 50} values were calculated from dose-response curves of tamoxifen at various field intensities. An intensity-dependent shift of tamoxifen dose-response curves to higher concentrations with a maximal response at 1.2 {mu}T was observed. Hypothetically, electromagnetic field exposure could contribute to tamoxifen resistance observed in breast cancer after long-term treatment.

  4. Induction of tamoxifen resistance in breast cancer cells by ELF electromagnetic fields.

    PubMed

    Girgert, Rainer; Schimming, Hartmut; Körner, Wolfgang; Gründker, Carsten; Hanf, Volker

    2005-11-04

    The incidence of breast cancer in western societies has been rising ever since the Second World War. Besides the exposure to a multitude of new chemical compounds, electromagnetic field exposure has been linked to breast cancer through a radiation-mediated anti-melatonin pathway. We investigated, whether low-frequency electromagnetic field exposure interferes with the anti-estrogenic activity of tamoxifen. Two different clones of the breast cancer cell line MCF-7 were exposed to highly homogeneous 50Hz electromagnetic fields and IC(50) values were calculated from dose-response curves of tamoxifen at various field intensities. An intensity-dependent shift of tamoxifen dose-response curves to higher concentrations with a maximal response at 1.2muT was observed. Hypothetically, electromagnetic field exposure could contribute to tamoxifen resistance observed in breast cancer after long-term treatment.

  5. Statistical analysis of personal radiofrequency electromagnetic field measurements with nondetects.

    PubMed

    Röösli, Martin; Frei, Patrizia; Mohler, Evelyn; Braun-Fahrländer, Charlotte; Bürgi, Alfred; Fröhlich, Jürg; Neubauer, Georg; Theis, Gaston; Egger, Matthias

    2008-09-01

    Exposimeters are increasingly applied in bioelectromagnetic research to determine personal radiofrequency electromagnetic field (RF-EMF) exposure. The main advantages of exposimeter measurements are their convenient handling for study participants and the large amount of personal exposure data, which can be obtained for several RF-EMF sources. However, the large proportion of measurements below the detection limit is a challenge for data analysis. With the robust ROS (regression on order statistics) method, summary statistics can be calculated by fitting an assumed distribution to the observed data. We used a preliminary sample of 109 weekly exposimeter measurements from the QUALIFEX study to compare summary statistics computed by robust ROS with a naïve approach, where values below the detection limit were replaced by the value of the detection limit. For the total RF-EMF exposure, differences between the naïve approach and the robust ROS were moderate for the 90th percentile and the arithmetic mean. However, exposure contributions from minor RF-EMF sources were considerably overestimated with the naïve approach. This results in an underestimation of the exposure range in the population, which may bias the evaluation of potential exposure-response associations. We conclude from our analyses that summary statistics of exposimeter data calculated by robust ROS are more reliable and more informative than estimates based on a naïve approach. Nevertheless, estimates of source-specific medians or even lower percentiles depend on the assumed data distribution and should be considered with caution.

  6. The effects of exposure to electromagnetic field on rat myocardium.

    PubMed

    Kiray, Amac; Tayefi, Hamid; Kiray, Muge; Bagriyanik, Husnu Alper; Pekcetin, Cetin; Ergur, Bekir Ugur; Ozogul, Candan

    2013-06-01

    Exposure to electromagnetic fields (EMFs) causes increased adverse effects on biological systems. The aim of this study was to investigate the effects of EMF on heart tissue by biochemical and histomorphological evaluations in EMF-exposed adult rats. In this study, 28 male Wistar rats weighing 200-250 g were used. The rats were divided into two groups: sham group (n = 14) and EMF group (n = 14). Rats in sham group were exposed to same conditions as the EMF group except the exposure to EMF. Rats in EMF group were exposed to a 50-Hz EMF of 3 mT for 4 h/day and 7 days/week for 2 months. After 2 months of exposure, rats were killed; the hearts were excised and evaluated. Determination of oxidative stress parameters was performed spectrophotometrically. To detect apoptotic cells, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining and caspase-3 immunohistochemistry were performed. In EMF-exposed group, levels of lipid peroxidation significantly increased and activities of superoxide dismutase and glutathione peroxidase decreased compared with sham group. The number of TUNEL-positive cells and caspase-3 immunoreactivity increased in EMF-exposed rats compared with sham. Under electron microscopy, there were mitochondrial degeneration, reduction in myofibrils, dilated sarcoplasmic reticulum and perinuclear vacuolization in EMF-exposed rats. In conclusion, the results show that the exposure to EMF causes oxidative stress, apoptosis and morphologic damage in myocardium of adult rats. The results of our study indicate that EMF-related changes in rat myocardium could be the result of increased oxidative stress. Further studies are needed to demonstrate whether the exposure to EMF can induce adverse effects on myocardium.

  7. Household electromagnetic fields and breast cancer in elderly women.

    PubMed

    Beniashvili, Djemal; Avinoach, Ilana; Baazov, David; Zusman, Itshak

    2005-01-01

    The relationship between the rate of household low-frequency electromagnetic fields (EMF) and incidences of mammary tumors was studied in 1290 clinical case-records of female patients aged 60 and more over a period of 26 years, based on the materials of the Edith Wolfson Medical Center, Israel. The studied material was divided into two groups, each corresponding to a period of 13 years. Group I included patients with mammary tumors under observation from 1978 to 1990, who rarely used EMF-generating appliances. Group II consisted of patients being under observation in the period between 1991 and 2003, characterized by much more extensive use of personal computers (more than 3 hours a day), mobile telephones, television sets, air conditioners and other household electrical appliances generating EMF. 200,527 biopsy and surgery samples were analyzed. Mammary tumors were found in 2824 women (1.4%), of which 1290 cases (45.6%) were observed in elderly women. Most of the observed tumors--1254 (97.2%)--were epithelial neoplasms. Mammary tumors were found in 585 elderly women in Group I and 705 women in Group II. The case records of these patients showed that 114 elderly women (19.5%) in Group I and 360 (51.1%) in Group II were regularly exposed to EMF (mostly from personal computers) for at least 3 hours a day (chi2=57.2, p<0.001). There was a statistically significant influence of EMF on the formation of all observed epithelial mammary tumors in Group II. This influence is most evident for invasive ductal carcinomas, which was the commonest form of cancer in elderly women.

  8. Radiofrequency-electromagnetic field exposures in kindergarten children.

    PubMed

    Bhatt, Chhavi Raj; Redmayne, Mary; Billah, Baki; Abramson, Michael J; Benke, Geza

    2017-09-01

    The aim of this study was to assess environmental and personal radiofrequency-electromagnetic field (RF-EMF) exposures in kindergarten children. Ten children and 20 kindergartens in Melbourne, Australia participated in personal and environmental exposure measurements, respectively. Order statistics of RF-EMF exposures were computed for 16 frequency bands between 88 MHz and 5.8 GHz. Of the 16 bands, the three highest sources of environmental RF-EMF exposures were: Global System for Mobile Communications (GSM) 900 MHz downlink (82 mV/m); Universal Mobile Telecommunications System (UMTS) 2100MHz downlink (51 mV/m); and GSM 900 MHz uplink (45 mV/m). Similarly, the three highest personal exposure sources were: GSM 900 MHz downlink (50 mV/m); UMTS 2100 MHz downlink, GSM 900 MHz uplink and GSM 1800 MHz downlink (20 mV/m); and Frequency Modulation radio, Wi-Fi 2.4 GHz and Digital Video Broadcasting-Terrestrial (10 mV/m). The median environmental exposures were: 179 mV/m (total all bands), 123 mV/m (total mobile phone base station downlinks), 46 mV/m (total mobile phone base station uplinks), and 16 mV/m (Wi-Fi 2.4 GHz). Similarly, the median personal exposures were: 81 mV/m (total all bands), 62 mV/m (total mobile phone base station downlinks), 21 mV/m (total mobile phone base station uplinks), and 9 mV/m (Wi-Fi 2.4 GHz). The measurements showed that environmental RF-EMF exposure levels exceeded the personal RF-EMF exposure levels at kindergartens.

  9. Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents.

    PubMed

    Roser, Katharina; Schoeni, Anna; Struchen, Benjamin; Zahner, Marco; Eeftens, Marloes; Fröhlich, Jürg; Röösli, Martin

    2017-02-01

    Adolescents belong to the heaviest users of wireless communication devices, but little is known about their personal exposure to radiofrequency electromagnetic fields (RF-EMF). The aim of this paper is to describe personal RF-EMF exposure of Swiss adolescents and evaluate exposure relevant factors. Furthermore, personal measurements were used to estimate average contributions of various sources to the total absorbed RF-EMF dose of the brain and the whole body. Personal exposure was measured using a portable RF-EMF measurement device (ExpoM-RF) measuring 13 frequency bands ranging from 470 to 3600MHz. The participants carried the device for three consecutive days and kept a time-activity diary. In total, 90 adolescents aged 13 to 17years participated in the study conducted between May 2013 and April 2014. In addition, personal measurement values were combined with dose calculations for the use of wireless communication devices to quantify the contribution of various RF-EMF sources to the daily RF-EMF dose of adolescents. Main contributors to the total personal RF-EMF measurements of 63.2μW/m(2) (0.15V/m) were exposures from mobile phones (67.2%) and from mobile phone base stations (19.8%). WLAN at school and at home had little impact on the personal measurements (WLAN accounted for 3.5% of total personal measurements). According to the dose calculations, exposure from environmental sources (broadcast transmitters, mobile phone base stations, cordless phone base stations, WLAN access points, and mobile phones in the surroundings) contributed on average 6.0% to the brain dose and 9.0% to the whole-body dose. RF-EMF exposure of adolescents is dominated by their own mobile phone use. Environmental sources such as mobile phone base stations play a minor role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A prediction model for personal radio frequency electromagnetic field exposure.

    PubMed

    Frei, Patrizia; Mohler, Evelyn; Bürgi, Alfred; Fröhlich, Jürg; Neubauer, Georg; Braun-Fahrländer, Charlotte; Röösli, Martin

    2009-12-15

    Radio frequency electromagnetic fields (RF-EMF) in our daily life are caused by numerous sources such as fixed site transmitters (e.g. mobile phone base stations) or indoor devices (e.g. cordless phones). The objective of this study was to develop a prediction model which can be used to predict mean RF-EMF exposure from different sources for a large study population in epidemiological research. We collected personal RF-EMF exposure measurements of 166 volunteers from Basel, Switzerland, by means of portable exposure meters, which were carried during one week. For a validation study we repeated exposure measurements of 31 study participants 21 weeks after the measurements of the first week on average. These second measurements were not used for the model development. We used two data sources as exposure predictors: 1) a questionnaire on potentially exposure relevant characteristics and behaviors and 2) modeled RF-EMF from fixed site transmitters (mobile phone base stations, broadcast transmitters) at the participants' place of residence using a geospatial propagation model. Relevant exposure predictors, which were identified by means of multiple regression analysis, were the modeled RF-EMF at the participants' home from the propagation model, housing characteristics, ownership of communication devices (wireless LAN, mobile and cordless phones) and behavioral aspects such as amount of time spent in public transports. The proportion of variance explained (R2) by the final model was 0.52. The analysis of the agreement between calculated and measured RF-EMF showed a sensitivity of 0.56 and a specificity of 0.95 (cut-off: 90th percentile). In the validation study, the sensitivity and specificity of the model were 0.67 and 0.96, respectively. We could demonstrate that it is feasible to model personal RF-EMF exposure. Most importantly, our validation study suggests that the model can be used to assess average exposure over several months.

  11. Effect of pulsed electromagnetic fields on endoplasmic reticulum stress.

    PubMed

    Keczan, E; Keri, G; Banhegyi, G; Stiller, I

    2016-10-01

    The maintenance of protein homeostasis in the endoplasmic reticulum (ER) is crucial in cell life. Disruption of proteostasis results in ER stress that activates the unfolded protein response (UPR); a signalling network assigned to manage the accumulated misfolded or unfolded proteins. Prolonged or unresolved ER stress leads to apoptotic cell death that can be the basis of many serious diseases. Our aim was to study the effect of pulsed electromagnetic fields (PEMF), an alternative, non-invasive therapeutic method on ER stressed cell lines. First, the effect of PEMF treatment on the expression of ER stress markers was tested in three different cell lines. PEMF had no remarkable effect on ER stress protein levels in human embryonic kidney (HEK293T) and human liver carcinoma (HepG2) cell lines. However, the expression of BiP, Grp94 and CHOP were increased in HeLa cells upon PEMF exposure. Therefore, HepG2 cell line was selected for further experiments. Cells were stressed by tunicamycin and exposed to PEMF. Grp94, PDI, CHOP and PARP expression as markers of stress were monitored by Western blot and cell viability was also investigated. Tunicamycin treatment, as expected, increased the expression of Grp94, PDI, CHOP and inactivated PARP. Analysis of protein expression showed that PEMF was able to decrease the elevated level of ER chaperons Grp94, PDI and the apoptosis marker CHOP. The truncated, inactive form of PARP was also decreased. Accordingly, cell viability was also improved by PEMF exposure. These results indicate that PEMF is able to moderate ER stress induced by tunicamycin in HepG2 cells. However, our results clearly draw attention to that different cell lines may vary in the response to PEMF treatment.

  12. Impact of high electromagnetic field levels on childhood leukemia incidence.

    PubMed

    Teepen, Jop C; van Dijck, Jos A A M

    2012-08-15

    The increasing exposure to electromagnetic fields (EMFs) has raised concern, as increased exposure may result in an increased risk of childhood leukemia (CL). Besides a short introduction of CL and EMF, our article gives an evaluation of the evidence of a causal relation between EMF and CL by critically appraising the epidemiological and biological evidence. The potential impact is also estimated by the population attributable risk. The etiology of CL is largely unknown, but is probably multifactorial. EMF may be one of the environmental exposures involved. Three pooled analyses of case-control studies showed a 1.4- to 1.7-fold increased CL risk for extremely low-frequency EMF (ELF-EMF) exposure levels above 0.3 μT. Several biases may have played a role in these studies, but are unlikely to fully explain the increased risk. For effects of radiofrequency ELF evidence is lacking. None of the proposed biological mechanisms by which ELF-EMF might cause CL have been confirmed. The estimated overall population attributable risk was 1.9%, with the highest estimates in Northern America and Brazil (4.2% and 4.1%, respectively). The potential impact of EMF exposure on public health is probably limited, although in some countries exposure might be relatively high and thus might have a more substantial impact. We recommend nationwide surveys to gain more insight into the contemporary exposure levels among children. Reducing exposure from power lines near densely populated areas and schools is advised. Future epidemiological studies should focus on limiting bias. Copyright © 2012 UICC.

  13. Biological effects of ELF (extremely-low-frequency) electric and magnetic fields

    SciTech Connect

    Anderson, L.E.

    1989-10-01

    Studies have been conducted at the Pacific Northwest Laboratory to examine extremely-low-frequency (ELF) electromagnetic fields for possible biological effects in animals. Two areas of investigation are reported here: (1) studies on the nervous system, including behavior and neuroendocrine function, and (2) experiments on cancer development in animals. In behavioral experiments, preliminary data suggest that short term memory may be affected in albino rats exposed to combined ELF and static magnetic fields. Neuroendocrine studies were conducted to demonstrate an apparent stress-related response in rats exposed to 60-Hz electric fields. Finally, using a chemically-induced mammary tumor model, experiments were conducted in which rats, chronically exposed to 60-Hz electric fields, showed an enhancement in the number of tumors per tumor bearing animal.

  14. Subwavelength confinement of electromagnetic field by guided modes of dielectric micro- and nanowaveguides

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.

    2010-04-01

    Regimes enabling the strongest confinement of electromagnetic field by guided modes of dielectric micro- and nanowaveguides are identified. Waveguides of this class are shown to allow a guidance of subwavelength optical beams.

  15. Effect of radio frequency waves of electromagnetic field on the tubulin.

    PubMed

    Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-Zarchi

    2013-09-01

    Microtubules (MTs) are macromolecular structures consisting of tubulin heterodimers and present in almost every eukaryotic cell. MTs fulfill all conditions for generation of electromagnetic field and are electrically polar due to the electrical polarity of a tubulin heterodimer. The calculated static electric dipole moment of about 1000 Debye makes them capable of being aligned parallel to the applied electromagnetic field direction. In the present study, the tubulin heterodimers were extracted and purified from the rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules were adsorbed in the absence and in the presence of electromagnetic fields with radio frequency of 900 Hz. Our results demonstrate the effect of electromagnetic field with 900 Hz frequency to change the structure of MTs. In this paper, a related patent was used that will help to better understand the studied subject.

  16. Characteristics of the electromagnetic wave field far away from the radiation source

    NASA Astrophysics Data System (ADS)

    Balkhanov, V. K.; Bashkuev, Yu. B.

    2017-04-01

    A solution to the Sommerfeld problem of the far (in terms of wavelengths) field of a vertical electrical dipole placed at the interface between two media has been found. The characteristics of a surface electromagnetic wave that propagates over a medium with highly inductive surface impedance δ have been determined. The spatial characteristics of the wave are expressed through the real and imaginary parts of impedance δ. It has been proved that the surface electromagnetic wave is the major contributor to the electromagnetic field of the ground wave in the case of highly inductive radio paths.

  17. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    PubMed

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  18. [Mutagenic, carcinogenic and teratogenic effects induced by radiofrequency electromagnetic field of mobile phone].

    PubMed

    Chen, Zhi-jian; He, Ji-liang

    2008-01-01

    The extensive use of mobile phones causes increasing public concern on health effects of exposure to radiofrequency (RF) electromagnetic fields. Conflicting results are found in publications on the mutagenic, carcinogenic and teratogenic effects of RF electromagnetic fields. The overwhelming findings do not support the assumption that RF exposure may induce mutagenic, carcinogenic or teratogenic effects. However, health effects from low level RF exposure need to be further studied.

  19. Deuteron electromagnetic form factors in a renormalizable formulation of chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Schindler, M. R.

    2014-03-01

    We calculate the deuteron electromagnetic form factors in a modified version of Weinberg's chiral effective field theory approach to the two-nucleon system. We derive renormalizable integral equations for the deuteron without partial wave decomposition. Deuteron form factors are extracted by applying the Lehmann-Symanzik-Zimmermann reduction formalism to the three-point correlation function of deuteron interpolating fields and the electromagnetic current operator. Numerical results of a leading-order calculation with removed cutoff regularization agree well with experimental data.

  20. [Ecological significance of electromagnetic fields: the 20th century--century of electricity, the 21st--century of magnetism].

    PubMed

    Lazetić, Bogosav

    2003-01-01

    The biosphere consists of all ecosystems of earth and is characterized by electromagnetic fields of different frequencies. Physics and natural sciences and disciplines are focused on their origin and characteristics. NATURAL ELECTROMAGNETIC FIELDS: There is a well defined idea that natural electromagnetic activity of the Earth's atmosphere throughout evolution led to appearance of electromagnetic homeostasis, i.e. maintenance of inner electromagnetic mileu. It can be supposed that during the evolution of living organisms natural electromagnetic fields were associated with biochemical processes and as a result of natural selection became an important information system and obligatory component of life. The results presented here show that there is no reason to doubt that natural electromagnetic fields are an important ecologic factor. On the contrary, we have to emphasize that natural electromagnetic environment is necessary for life on the Earth. Today intensity of artificial electromagnetic fields is ten to hundred times higher than of natural electromagnetic fields. Danger from electromagnetic fields is an acute and actual problem which increases knowing that there won't be a spot without artificial electromagnetic field on our planet.