Science.gov

Sample records for 60k operating temperature

  1. Radiation Test Results for a MEMS Microshutter Operating at 60 K

    NASA Technical Reports Server (NTRS)

    Rapchun, David A.; Buchner, Stephen; Moseley, Harvey; Meyer, Stephen E.; Ray, Knute; Tuttle, Jim; Quinn, Ed; Buchanan, Ernie; Bloom, Dave; Hait, Tom; Pearce, Mike; Beamer, A.

    2007-01-01

    MEMS. Knowledge of the above principle has raised the concern at NASA that the MSA might also exhibit degraded performance because, i) each shutter flap is a multilayer structure consisting of metallic and insulating layers and ii) the movement of the shutter flaps is partially controlled by the application of an electric field between the shutter flap and the substrate (vertical support grid). The whole mission would be compromised if radiation exposure were to prevent the shutters from opening and closing properly. energetic ionizing particles. Because it is located A unique feature of the MSA is that, as outside the spacecraft and has very little shielding, previously mentioned, it will have to operate at temperatures near 30 K. To date, there are no published reports on how very low temperatures (- 30K) affect the response of MEMS devices to total ionizing dose. Experiments on SiO2 structures at low temperatures (80 K) indicate that the electrons generated by the ionizing radiation are mobile and will move rapidly under the application of an external electric field. Holes, on the other hand, that would normally move in the opposite direction through the SiO2 via a "thermal hopping" process, are effectively immobile at low electric fields as they are trapped close to their generation sites. However, for sufficiently large electric fields (greater than 3 MV/cm) holes are able to move through the SiO2. The larger the field, the more rapidly the holes move. The separation of the electrons and holes leads to a reduced electric field within the insulating layer. To overcome this reduction in electric field, a greater external voltage will have to be applied that alters the normal operation of the device. This report presents the results of radiation testing of the MSA at 60 K. The temperature was higher than the targeted temperature because of a faulty electrical interconnect on the test board. Specifically, our goal was to determine whether the MSA would function propey

  2. Performance of Peltier elements as a cryogenic heat flux sensor at temperatures down to 60 K

    NASA Astrophysics Data System (ADS)

    Haruyama, T.

    2001-05-01

    An in situ heat flux measuring technique could be a good tool to investigate the mechanism of radiation heat leak and optimize the performance of multi-layer insulation. There are several types of commercially available heat flux sensors, however, most of these sensors are mainly developed for much higher heat flux measurements, e.g., radiation from an iron furnace, heat leak from LNG tanks to the ground and so on. In cryogenic systems, the typical amount of heat flux from 300 K to the first-stage radiation shield of cryogenic system is around several W/m 2, which is three or four orders of magnitude smaller than that of an iron furnace. A conventional thermoelectric element, known as a Peltier element, has been evaluated as a heat flux sensor at cryogenic temperatures and found to be suitable due to its high output voltage. In this study, the temperature dependence of the sensitivity and thermal resistance of the Peltier elements were investigated at temperatures from 200 down to 60 K for possible practical applications.

  3. 60kV, 10Amp DC power supply multiple input control and monitoring provision for the operation of various high power RF generation systems

    NASA Astrophysics Data System (ADS)

    Parmar, Kirit M.; Srinivas, Y. S. S.; Kulkarni, S. V.; ICRH-RF Group

    2010-02-01

    A 60 kV, 10 A DC power supply is used for testing of high power RF and microwave tubes e.g. Klystron, Gyrotron. Two 500 kW, 3.7 GHz klystrons, and one 82.6 GHz Gyrotron are located in SST1 Hall where as 200 kW; 28 GHz Gyrotron is located in Aditya Hall. The same power supply is required to operate, control and monitor various systems at different locations with easy change over from one system to other as per experimental requirements. An off line, control change over system, is designed to accomplish the above requirements, with control panels installed at desired different locations. The input (0 to 11 kV) A.C. voltage to power supply is given from a motorized voltage variation system (VVS). The control panels provide indication of A.C. input voltage to power supply from 11 kV potential transformers of VVS. In addition, the control panel is provided with 11 kV circuit breaker status indication and control i.e. Emergency OFF switch. The control panels are designed and developed indigenously which are successfully installed and are in continuous use for the safe and easy operation of different high power rf systems from the same DC power supply. The paper presents the design of the controls, monitoring and indications. Safety aspects of the system are also highlighted.

  4. Initial exposure to 30 kV/m or 60 kV/m 60 Hz electric fields produces temporary cessation of operant behavior of nonhuman primates

    SciTech Connect

    Rogers, W.R.; Orr, J.L.; Smith, H.D.

    1995-12-31

    In two separate experiments, the authors examined the effects of a 60 Hz electric field (EF) on performance of an operant schedule consisting of two signaled components: fixed-ratio (FR30) and differential reinforcement of low-rate (DRL20). In each experiment, 12 naive baboons (Papio cynocephalus) were assigned randomly to either an EF-exposed experimental group or a sham-exposed control group. A homogeneous vertical EF of 30 kV/m was used in one experiment; 60 kV/m was used in the other. The experimental design for both experiments included 6 week preexposure, exposure, and postexposure periods. The planned analyses indicated no evidence of statistically significant (P < .05) effects of EF exposure. However, exploratory analyses comparing performance during the last week of preexposure and the first week of exposure revealed statistically significant acute effects (work stoppage): The mean response rates of the EF-exposed groups were greatly reduced on day 1 of exposure but were normal by the end of day 2 of EF exposure. The authors hypothesize that introduction of a highly unusual stimulus, the EF, temporarily interfered with normal operant behavior to produce a primary work stoppage. Supplementary cross-over experiments added at the end of each main experiment indicated that work stoppage occurred again when formerly EF-exposed subjects served as sham-exposed controls, while other subjects received their first EF exposure. Presumably, reoccurrence of other stimuli correlated with initial exposure to the EF became sufficient to subsequently cause secondary work stoppage in the absence of direct EF exposure. The primary and secondary work-stoppage effects were reproducible.

  5. Tevatron lower temperature operation

    SciTech Connect

    Theilacker, J.C.

    1994-07-01

    This year saw the completion of three accelerator improvement projects (AIP) and two capital equipment projects pertaining to the Tevatron cryogenic system. The projects result in the ability to operate the Tevatron at lower temperature, and thus higher energy. Each project improves a subsystem by expanding capabilities (refrigerator controls), ensuring reliability (valve box, subatmospheric hardware, and compressor D), or enhancing performance (cold compressors and coldbox II). In January of 1994, the Tevatron operated at an energy of 975 GeV for the first time. This was the culmination, of many years of R&D, power testing in a sector (one sixth) of the Tevatron, and final system installation during the summer of 1993. Although this is a modest increase in energy, the discovery potential for the Top quark is considerably improved.

  6. A comparison of three types of pulse tube refrigerators - New methods for reaching 60 K

    NASA Technical Reports Server (NTRS)

    Radebaugh, Ray; Zimmerman, James; Smith, David R.; Louie, Beverly

    1986-01-01

    The three types of pulse tube refrigerator, namely the resonant, basic, and orifice designs, are compared with each other and with such common refrigerators as the Joule-Thomson and Stirling types, using an apparatus able to measure their intrinsic behavior from 30 to 300 K. Orifice pulse tubes are found capable of reaching 60 K temperature drops in a single stage. Additional advantages of the type are (1) a single, room-temperature moving part, (2) the use of moderate pressures and pressure ratios, (3) good intrinsic efficiency, and (4) the ability to operate several stages from the same pressure wave generator. The low refrigeration rate/unit mass flow means, however, that better regenerator units are required.

  7. Performance characteristics of the Atlas 60 kV, 60 kJ plastic capacitors

    SciTech Connect

    Reass, W.; Bennet, G.; Bowman, D.; Lopez, E.; Monroe, M.; Parsons, W.

    1997-12-01

    This paper provides the performance data of Atlas plastic capacitors as supplied by Maxwell Technologies and Aerovox Corporation. The fiberglass cases at 13 inches high by 29 inches wide and 28 inches in depth with a 2 inch by 18 inch bushing on each end. Two styles of the 33.5uF capacitors have been evaluated for Atlas use, a conventional paper-foil and a self-healing metalized-paper and plastic dielectric design. A test program to capacitor failure, is being used to evaluate capacitor lifetime at full voltage (60 kV) and a nominal 15% reversal. With the Atlas parameters, peak currents of {approximately} 340 kA are realized. In anticipation of faults, capacitors are capable, specified, and tested for 700 kA performance. Accurate methods are also utilized to determine capacitor inductance, less than 20 nH. The results of the various capacitor testing programs will be presented in addition to future directives for their R and D efforts.

  8. Temperature-Operated Valve

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D.

    1994-01-01

    Bimetallic valve stem positions orifice at end of inner pipe orifice so liquid flows to outlet when temperature lies within small range of preset value. If liquid too cold or too hot, orifices misaligned and liquid returned to source. Such as in shower, valve prevents outflow of dangerously hot or uncomfortably cold water.

  9. Thermal expansion data for eight optical materials from 60 K to 300 K.

    PubMed

    Browder, J S; Ballard, S S

    1977-12-01

    Coefficients of linear thermal expansion are reported, in the range 60 K to room temperature, for eight optical materials: Polytran potassium chloride and Polytran calcium fluoride-Harshaw; chemical-vapor-deposited (CVD) zinc sulfide and zinc selenide-Raytheon; germanium (single-crystal and polycrystal); crystalline magnesium fluoride, potassium dihydrogen phosphate (KDP), and lithium niobate-Harshaw. The last three are anisotropic crystals; thermal expansion was measured both parallel and perpendicular to the c axis. PMID:20174331

  10. Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kobel, Mark; Rogers, Paul; Kaya, Tarik; Paquin, Krista C. (Technical Monitor)

    2000-01-01

    Loop heat pipes (LHPs) are versatile two-phase heat transfer devices that have gained increasing acceptance for space and terrestrial applications. The operating temperature of an LHP is a function of its operating conditions. The LHP usually reaches a steady operating temperature for a given heat load and sink temperature. The operating temperature will change when the heat load and/or the sink temperature changes, but eventually reaches another steady state in most cases. Under certain conditions, however, the loop operating temperature never really reaches a true steady state, but instead becomes oscillatory. This paper discusses the temperature oscillation phenomenon using test data from a miniature LHP.

  11. Porcine colonization of the Americas: a 60k SNP story

    PubMed Central

    Burgos-Paz, W; Souza, C A; Megens, H J; Ramayo-Caldas, Y; Melo, M; Lemús-Flores, C; Caal, E; Soto, H W; Martínez, R; Álvarez, L A; Aguirre, L; Iñiguez, V; Revidatti, M A; Martínez-López, O R; Llambi, S; Esteve-Codina, A; Rodríguez, M C; Crooijmans, R P M A; Paiva, S R; Schook, L B; Groenen, M A M; Pérez-Enciso, M

    2013-01-01

    The pig, Sus scrofa, is a foreign species to the American continent. Although pigs originally introduced in the Americas should be related to those from the Iberian Peninsula and Canary islands, the phylogeny of current creole pigs that now populate the continent is likely to be very complex. Because of the extreme climates that America harbors, these populations also provide a unique example of a fast evolutionary phenomenon of adaptation. Here, we provide a genome wide study of these issues by genotyping, with a 60k SNP chip, 206 village pigs sampled across 14 countries and 183 pigs from outgroup breeds that are potential founders of the American populations, including wild boar, Iberian, international and Chinese breeds. Results show that American village pigs are primarily of European ancestry, although the observed genetic landscape is that of a complex conglomerate. There was no correlation between genetic and geographical distances, neither continent wide nor when analyzing specific areas. Most populations showed a clear admixed structure where the Iberian pig was not necessarily the main component, illustrating how international breeds, but also Chinese pigs, have contributed to extant genetic composition of American village pigs. We also observe that many genes related to the cardiovascular system show an increased differentiation between altiplano and genetically related pigs living near sea level. PMID:23250008

  12. Operation of FPGAs at Extremely Low Temperatures

    NASA Technical Reports Server (NTRS)

    Burke, Gary R.; Cozy, Scott; Lacayo, Veronica; Bakhshi, Alireza; Stern, Ryan; Mojarradi, Mohammad; Johnson, Travis; Kolawa, Elizabeth; Bolotin, Gary; Gregoire, Tim; Ramesham, Rajeshuni

    2004-01-01

    This paper describes the operation of FPGAs at very low temperatures eg -160(deg)C. Both Actel and Xilinx parts are tested It was found that low temperature operations is not a problem with the parts tested, but there is a problem with powering on an FPGA at cold temperatures.

  13. Electronics Demonstrated for Low- Temperature Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammond, Ahmad; Gerber, Scott S.

    2000-01-01

    The operation of electronic systems at cryogenic temperatures is anticipated for many NASA spacecraft, such as planetary explorers and deep space probes. For example, an unheated interplanetary probe launched to explore the rings of Saturn would experience an average temperature near Saturn of about 183 C. Electronics capable of low-temperature operation in the harsh deep space environment also would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. An ongoing research and development program on low-temperature electronics at the NASA Glenn Research Center at Lewis Field is focusing on the design of efficient power systems that can survive and exploit the advantages of low-temperature environments. The targeted systems, which are mission driven, include converters, inverters, controls, digital circuits, and special-purpose circuits. Initial development efforts successfully demonstrated the low-temperature operation and cold-restart of several direct-current/direct-current (dc/dc) converters based on different types of circuit design, some with superconducting inductors. The table lists some of these dc/dc converters with their properties, and the photograph shows a high-voltage, high-power dc/dc converter designed for an ion propulsion system for low-temperature operation. The development efforts of advanced electronic systems and the supporting technologies for low-temperature operation are being carried out in-house and through collaboration with other Government agencies, industry, and academia. The Low Temperature Electronics Program supports missions and development programs at NASA s Jet Propulsion Laboratory and Goddard Space Flight Center. The developed technologies will be transferred to commercial end users for applications such as satellite infrared sensors and medical diagnostic equipment.

  14. Performance evolution of 60 kA HTS cable prototypes in the EDIPO test facility

    NASA Astrophysics Data System (ADS)

    Bykovsky, N.; Uglietti, D.; Sedlak, K.; Stepanov, B.; Wesche, R.; Bruzzone, P.

    2016-08-01

    During the first test campaign of the 60 kA HTS cable prototypes in the EDIPO test facility, the feasibility of a novel HTS fusion cable concept proposed at the EPFL Swiss Plasma Center (SPC) was successfully demonstrated. While the measured DC performance of the prototypes at magnetic fields from 8 T to 12 T and for currents from 30 kA to 70 kA was close to the expected one, an initial electromagnetic cycling test (1000 cycles) revealed progressive degradation of the performance in both the SuperPower and SuperOx conductors. Aiming to understand the reasons for the degradation, additional cycling (1000 cycles) and warm up-cool down tests were performed during the second test campaign. I c performance degradation of the SuperOx conductor reached ∼20% after about 2000 cycles, which was reason to continue with a visual inspection of the conductor and further tests at 77 K. AC tests were carried out at 0 and 2 T background fields without transport current and at 10 T/50 kA operating conditions. Results obtained in DC and AC tests of the second test campaign are presented and compared with appropriate data published recently. Concluding the first iteration of the HTS cable development program at SPC, a summary and recommendations for the next activity within the HTS fusion cable project are also reported.

  15. MCT FPAs at high operating temperatures

    NASA Astrophysics Data System (ADS)

    Knowles, P.; Hipwood, L.; Pillans, L.; Ash, R.; Abbott, P.

    2011-11-01

    This paper summarises measurements and calculations of HOT performance in Selex Galileo's MW detectors and demonstrates that high quality imagery can be achieved up to 175K. The benefits of HOT operation for cooler performance and power dissipation are also quantified. The variable band gap of MCT provides the ability to optimise the cut-off wavelength for a wide range of operating temperatures. In particular, it provides the means to produce a MW detector that is well matched to the 3-5μm atmospheric transmission window at any temperature in the range from 80K up to room temperature. Competing InSb technology is disadvantaged at higher operating temperatures by a narrowing band gap, increasing cut-off wavelength, and inadequate EO performance. The practical upper limit of operating temperature for near-background limited performance is influenced by several factors, which fall into two categories: the fundamental physics of thermal dark current generation and black body emission from the cooled radiation shield, and the technology limitations of MCT diode leakage currents, excess noise, dark current due to defects, and injection efficiency into the ROIC.

  16. Low temperature operation of a boost converter

    SciTech Connect

    Moss, B.S.; Boudreaux, R.R.; Nelms, R.M.

    1996-12-31

    The development of satellite power systems capable of operating at low temperatures on the order of 77K would reduce the heating system required on deep space vehicles. The power supplies in the satellite power system must be capable of operating at these temperatures. This paper presents the results of a study into the operation of a boost converter at temperatures close to 77K. The boost converter is designed to supply an output voltage and power of 42 V and 50 W from a 28 V input source. The entire system, except the 28 V source, is placed in the environmental chamber. This is important because the system does not require any manual adjustments to maintain a constant output voltage with a high efficiency. The constant 42 V output of this converter is a benefit of the application of a CMOS microcontroller in the feedback path. The switch duty cycle is adjusted by the microcontroller to maintain a constant output voltage. The efficiency of the system varied less than 1% over the temperature range of 22 C to {minus}184 C and was approximately 94.2% when the temperature was {minus}184 C.

  17. New Waste Calciner High Temperature Operation

    SciTech Connect

    Swenson, M.C.

    2000-09-01

    A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm.

  18. Operator manual: High temperature heat pump

    NASA Astrophysics Data System (ADS)

    Dyer, D. F.; Maples, G.; Burch, T. E.; Chancellor, P. D.

    1980-03-01

    Experimental data were obtained from operating a high temperature heat pump system. The use of methanol as a working fluid necessitated careful monitoring of refrigerant temperatures and pressures with chemical analysis performed on the working fluid during scheduled down time. Materials sent to vendors and quotes received concerning equipment (compressor, evaporator, condensor, air heater, dryer, two accumulator tanks, and three expansion valves) are discussed. The detailed design and pricing estimates are included. Additional information on layout and construction; start-up; testing; shut down; scheduled maintenance and inspection; safety precautions; control system; and trouble shooting is presented.

  19. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with...

  20. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with...

  1. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with...

  2. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with...

  3. Strategies to build high-density linkage maps of the porcine 60k SNP chip

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present here two different strategies to compute high-density linkage maps based on the porcine 60k SNP chip that was genotyped on 4 different pedigrees with a total of 5600 animals. The first strategy uses the draft sequence as a reference order, the SNP being first mapped to it. The second stra...

  4. The development and characterization of a 60K SNP chip for chicken

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In livestock species like the chicken, high throughput SNP genotyping assays are increasingly being used for whole genome association studies and as a tool in breeding (referred to as genomic selection). We describe the design of a moderate density (60K) Illumina SNP BeadChip in chicken consisting o...

  5. Improved high operating temperature MCT MWIR modules

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Figgemeier, H.; Schallenberg, T.; Schirmacher, W.; Wollrab, R.

    2014-06-01

    High operating temperature (HOT) IR-detectors are a key factor to size, weight and power (SWaP) reduced IR-systems. Such systems are essential to provide infantrymen with low-weight handheld systems with increased battery lifetimes or most compact clip-on weapon sights in combination with high electro-optical performance offered by cooled IR-technology. AIM's MCT standard n-on-p technology with vacancy doping has been optimized over many years resulting in MWIR-detectors with excellent electro-optical performance up to operating temperatures of ~120K. In the last years the effort has been intensified to improve this standard technology by introducing extrinsic doping with Gold as an acceptor. As a consequence the dark current could considerably be suppressed and allows for operation at ~140K with good e/o performance. More detailed investigations showed that limitation for HOT > 140K is explained by consequences from rising dark current rather than from defective pixel level. Recently, several crucial parameters were identified showing great promise for further optimization of HOT-performance. Among those, p-type concentration could successfully be reduced from the mid 1016 / cm3 to the lower 1015/ cm3 range. Since AIM is one of the leading manufacturers of split linear cryocoolers, an increase in operating temperature will directly lead to IR-modules with improved SWaP characteristics by making use of the miniature members of its SX cooler family with single piston and balancer technology. The paper will present recent progress in the development of HOT MWIR-detector arrays at AIM and show electro-optical performance data in comparison to focal plane arrays produced in the standard technology.

  6. Wide-Temperature-Range Integrated Operational Amplifier

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Levanas, Greg; Chen, Yuan; Kolawa, Elizabeth; Cozy, Raymond; Blalock, Benjamin; Greenwell, Robert; Terry, Stephen

    2007-01-01

    A document discusses a silicon-on-insulator (SOI) complementary metal oxide/semiconductor (CMOS) integrated- circuit operational amplifier to be replicated and incorporated into sensor and actuator systems of Mars-explorer robots. This amplifier is designed to function at a supply potential less than or equal to 5.5 V, at any temperature from -180 to +120 C. The design is implemented on a commercial radiation-hard SOI CMOS process rated for a supply potential of less than or equal to 3.6 V and temperatures from -55 to +110 C. The design incorporates several innovations to achieve this, the main ones being the following: NMOS transistor channel lengths below 1 m are generally not used because research showed that this change could reduce the adverse effect of hot carrier injection on the lifetimes of transistors at low temperatures. To enable the amplifier to withstand the 5.5-V supply potential, a circuit topology including cascade devices, clamping devices, and dynamic voltage biasing was adopted so that no individual transistor would be exposed to more than 3.6 V. To minimize undesired variations in performance over the temperature range, the transistors in the amplifier are biased by circuitry that maintains a constant inversion coefficient over the temperature range.

  7. Electrical insulation design and evaluation of 60 kV prototype condenser cone bushing for the superconducting equipment

    NASA Astrophysics Data System (ADS)

    Shin, Woo-Ju; Lee, Jong-Geon; Hwang, Jae-Sang; Seong, Jae-Kyu; Lee, Bang-Wook

    2013-11-01

    A cryogenic bushing is an essential component to be developed for commercial applications of high voltage (HV) superconducting devices. Due to the steep temperature gradient of the ambient of cryogenic bushing, general gas bushing adopting SF6 gas as an insulating media could not be directly used due to the freezing of SF6 gas. Therefore, condenser type bushing with special material considering cryogenic environment would be better choice for superconducting equipment. Considering these circumstance, we focused on the design of condenser bushing made of fiber reinforced plastic (FRP). In case of the design of the condenser bushing, it is very important to reduce the electric field intensification on the mounted flange part of the cryostat, which is the most vulnerable part of bushings. In this paper, design factors of cryogenic bushing were analyzed, and finally 60 kV condenser bushing was fabricated and tested. In order to achieve optimal electric field configuration, the configuration of condenser cone was determined using 2D electric field simulation results. Based on the experimental and the analytical works, 60 kV FRP condenser bushing was fabricated. Finally, the fabricated condenser bushing has been tested by applying lightning impulse and AC overvoltage test. From the test results, it was possible to get satisfactory results which confirm the design of cryogenic bushing in cryogenic environment.

  8. Operator manual: high temperature heat pump

    SciTech Connect

    Dyer, D.F.; Maples, G.; Burch, T.E.; Chancellor, P.D.

    1980-03-04

    Experimental data is being obtained from operating a high temperature heat pump system. The use of methanol as a working fluid will necessitate careful monitoring of refrigerant temperatures and pressures with chemical analysis performed on the working fluid during scheduled down time. Materials sent to vendors by Auburn University and quotes received by Auburn concerning equipment (compressor, evaporator, condensor, air heater, dryer, two accumulator tanks, and three expansion valves) are discussed. The simulated dryer and two accumulator tanks were designed by Auburn. The detailed design and pricing estimates are included. Additional information is presented on layout and construction; start-up; testing; shut down; scheduled maintenance and inspection; safety precautions; control system; and trouble shooting.

  9. Albumin interacts specifically with a 60-kDa microvascular endothelial glycoprotein.

    PubMed Central

    Schnitzer, J E; Carley, W W; Palade, G E

    1988-01-01

    Confluent monolayers of microvascular endothelial cells, derived from the rat epididymal fat pad and grown in culture, were radioiodinated by using the lactoper-oxidase method. Their radioiodinated surface polypeptides were detected by NaDodSO4/PAGE (followed by autoradiography) and were characterized by both lectin affinity chromatography and protease digestion to identify the proteins involved in albumin binding. All detected polypeptides were sensitive to Pronase digestion, whereas several polypeptides were resistant to trypsin. Pronase treatment of the cell monolayer significantly reduced the specific binding of radioiodinated rat serum albumin, but trypsin digestion did not. Limax flavus, Ricinus communis, and Triticum vulgaris agglutinins competed significantly with radioiodinated rat serum albumin binding, whereas other lectins did not. A single 60-kDa glyco-protein was precipitated in common by these three lectins and was trypsin-resistant and Pronase-sensitive. Rat serum albumin affinity chromatography columns weakly but specifically bound a 60-kDa polypeptide from cell lysates derived from radioiodinated cell monolayers. These findings indicate that the 60-kDa glycoprotein is directly involved in a specific interaction of albumin with the cultured microvascular endothelial cells used in these experiments. Images PMID:3413125

  10. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Operability test; temperature range. 159.119 Section 159.119 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with...

  11. 42 CFR 84.98 - Tests during low temperature operation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Tests during low temperature operation. 84.98...-Contained Breathing Apparatus § 84.98 Tests during low temperature operation. (a) The applicant shall specify the minimum temperature for safe operation and two persons will perform the tests described...

  12. 42 CFR 84.98 - Tests during low temperature operation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Tests during low temperature operation. 84.98...-Contained Breathing Apparatus § 84.98 Tests during low temperature operation. (a) The applicant shall specify the minimum temperature for safe operation and two persons will perform the tests described...

  13. 42 CFR 84.98 - Tests during low temperature operation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Tests during low temperature operation. 84.98...-Contained Breathing Apparatus § 84.98 Tests during low temperature operation. (a) The applicant shall specify the minimum temperature for safe operation and two persons will perform the tests described...

  14. 42 CFR 84.98 - Tests during low temperature operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Tests during low temperature operation. 84.98...-Contained Breathing Apparatus § 84.98 Tests during low temperature operation. (a) The applicant shall specify the minimum temperature for safe operation and two persons will perform the tests described...

  15. Integrated Operating Scenario to Achieve 100-Second, High Electron Temperature Discharge on EAST

    NASA Astrophysics Data System (ADS)

    Qian, Jinping; Gong, Xianzu; Wan, Baonian; Liu, Fukun; Wang, Mao; Xu, Handong; Hu, Chundong; Wang, Liang; Li, Erzhong; Zeng, Long; Ti, Ang; Shen, Biao; Lin, Shiyao; Shao, Linming; Zang, Qing; Liu, Haiqing; Zhang, Bin; Sun, Youwen; Xu, Guosheng; Liang, Yunfeng; Xiao, Bingjia; Hu, Liqun; Li, Jiangang; EAST Team

    2016-05-01

    Stationary long pulse plasma of high electron temperature was produced on EAST for the first time through an integrated control of plasma shape, divertor heat flux, particle exhaust, wall conditioning, impurity management, and the coupling of multiple heating and current drive power. A discharge with a lower single null divertor configuration was maintained for 103 s at a plasma current of 0.4 MA, q95 ≈7.0, a peak electron temperature of >4.5 keV, and a central density ne(0)∼2.5×1019 m‑3. The plasma current was nearly non-inductive (Vloop <0.05 V, poloidal beta ∼ 0.9) driven by a combination of 0.6 MW lower hybrid wave at 2.45 GHz, 1.4 MW lower hybrid wave at 4.6 GHz, 0.5 MW electron cyclotron heating at 140 GHz, and 0.4 MW modulated neutral deuterium beam injected at 60 kV. This progress demonstrated strong synergy of electron cyclotron and lower hybrid electron heating, current drive, and energy confinement of stationary plasma on EAST. It further introduced an example of integrated “hybrid” operating scenario of interest to ITER and CFETR. supported by the National Magnetic Confinement Fusion Science Foundation of China (Nos. 2015GB102000 and 2014GB103000)

  16. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW

    SciTech Connect

    Li Wei; Peng Jinhui Zhang Libo; Yang Kunbin; Xia Hongying; Zhang Shimin; Guo Shenghui

    2009-02-15

    Experiments to prepare activated carbon by microwave heating indicated that microwave energy can decrease reaction temperature, save the energy and shorten processing time remarkably compared to conventional heating, owing to its internal and volumetric heating effects. The above results were based on the laboratory-scale experiments. It is desirable to develop a pilot-scale microwave heating equipment and investigate the parameters with the aim of technological industrialization. In the present study, the components and features of the self-invented equipment were introduced. The temperature rise curves of the chars were obtained. Iodine numbers of the activated carbons all exceed the state standard of China under the following conditions: 25 kg/h charging rate, 0.42 rev/min turning rate of ceramic tube, flow rate of steam at pressure of 0.01 MPa and 40 kW microwave heating power after 60 kW pre-activation for 30 min. Pore structure of the sample obtained at a time point of 46 h, which contained BET surface area, and pore size distributions of micropores and total pores, was tested by nitrogen adsorption at 77 K.

  17. Wide-temperature integrated operational amplifier

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad (Inventor); Levanas, Greg (Inventor); Chen, Yuan (Inventor); Cozy, Raymond S. (Inventor); Greenwell, Robert (Inventor); Terry, Stephen (Inventor); Blalock, Benjamin J. (Inventor)

    2009-01-01

    The present invention relates to a reference current circuit. The reference circuit comprises a low-level current bias circuit, a voltage proportional-to-absolute temperature generator for creating a proportional-to-absolute temperature voltage (VPTAT), and a MOSFET-based constant-IC regulator circuit. The MOSFET-based constant-IC regulator circuit includes a constant-IC input and constant-IC output. The constant-IC input is electrically connected with the VPTAT generator such that the voltage proportional-to-absolute temperature is the input into the constant-IC regulator circuit. Thus the constant-IC output maintains the constant-IC ratio across any temperature range.

  18. Nanoscale temperature mapping in operating microelectronic devices

    DOE PAGESBeta

    Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; Dhall, Rohan; Cronin, Stephen B.; Aloni, Shaul; Regan, B. C.

    2015-02-05

    We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with amore » statistical precision of 3 kelvin/hertz₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.« less

  19. Nanoscale temperature mapping in operating microelectronic devices

    SciTech Connect

    Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; Dhall, Rohan; Cronin, Stephen B.; Aloni, Shaul; Regan, B. C.

    2015-02-05

    We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with a statistical precision of 3 kelvin/hertz₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.

  20. The mitochondrial 60-kDa heat shock protein in marine invertebrates: biochemical purification and molecular characterization

    PubMed Central

    Choresh, Omer; Loya, Yossi; Müller, Werner E.G.; Wiedenmann, Jörg; Azem, Abdussalam

    2004-01-01

    Sessile marine invertebrates undergo constant direct exposure to the surrounding environmental conditions, including local and global environmental fluctuations that may lead to fatal protein damage. Induction of heat shock proteins (Hsps) constitutes an important defense mechanism that protects these organisms from deleterious stress conditions. In a previous study, we reported the immunological detection of a 60-kDa Hsp (Hsp60) in the sea anemone Anemonia viridis (formerly called Anemonia sulcata) and studied its expression under a variety of stress conditions. In the present study, we show that the sponge Tetilla sp. from tidal habitats with a highly variable temperature regime is characterized by an increased level of Hsp60. Moreover, we show the expression of Hsp60 in various species among Porifera and Cnidaria, suggesting a general importance of this protein among marine invertebrates. We further cloned the hsp60 gene from A viridis, using a combination of conventional protein isolation methods and screening of a complementary deoxyribonucleic acid library by polymerase chain reaction. The cloned sequence (1764 bp) encodes for a protein of 62.8 kDa (588 amino acids). The 62.8-kDa protein, which contains an amino terminal extension that may serve as a mitochondrial targeting signal, shares a significant identity with mitochondrial Hsp60s from several animals but less identity with Hsp60s from either bacteria or plants. PMID:15270076

  1. 42 CFR 84.98 - Tests during low temperature operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Tests during low temperature operation. 84.98... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.98 Tests during low temperature operation. (a) The applicant...

  2. Detrimental Effect of Fungal 60-kDa Heat Shock Protein on Experimental Paracoccidioides brasiliensis Infection.

    PubMed

    Fernandes, Fabrício Freitas; Oliveira, Leandro Licursi de; Landgraf, Taise Natali; Peron, Gabriela; Costa, Marcelo Vieira; Coelho-Castelo, Arlete A M; Bonato, Vânia L D; Roque-Barreira, Maria-Cristina; Panunto-Castelo, Ademilson

    2016-01-01

    The genus Paracoccidioides comprises species of dimorphic fungi that cause paracoccidioidomycosis (PCM), a systemic disease prevalent in Latin America. Here, we investigated whether administration of native 60-kDa heat shock protein of P. brasiliensis (nPbHsp60) or its recombinant counterpart (rPbHsp60) affected the course of experimental PCM. Mice were subcutaneously injected with nPbHsp60 or rPbHsp60 emulsified in complete's Freund Adjuvant (CFA) at three weeks after intravenous injection of P. brasiliensis yeasts. Infected control mice were injected with CFA or isotonic saline solution alone. Thirty days after the nPbHsp60 or rPbHsp60 administration, mice showed remarkably increased fungal load, tissue inflammation, and granulomas in the lungs, liver, and spleen compared with control mice. Further, rPbHsp60 treatment (i) decreased the known protective effect of CFA against PCM and (ii) increased the concentrations of IL-17, TNF-α, IL-12, IFN-γ, IL-4, IL-10, and TGF-β in the lungs. Together, our results indicated that PbHsp60 induced a harmful immune response, exacerbated inflammation, and promoted fungal dissemination. Therefore, we propose that PbHsp60 contributes to the fungal pathogenesis. PMID:27598463

  3. Design of 60-kJ SG-III laser facility and related technology development

    NASA Astrophysics Data System (ADS)

    Peng, Hansheng; Zhang, Xiaomin; Wei, X. F.; Zheng, Wanguo; Jing, F.; Sui, Z.; Zhao, Q.; Fan, Dianyuan; Ling, Z. Q.; Zhou, Jun

    2001-04-01

    The SG-III laser facility has been proposed to produce 1-ns, 60-kJ blue light pulses for IC Application at China Academy of Engineering Physics. The baseline design suggests that the SG-III be a 64-beam laser facility grouped into eight bundles with clear optical apertures of 30cm by 30cm. The facility consists of multiple subsystems, including the front end, preamplification and injection section, main amplifiers, beam transport and alignment system, switchyard, target area, integrated computer control, and beam diagnostics. The amplifier column in each bundle contains eight beamlets stacked 4 high by 2 wide. Great progress has been made in developing key laser technologies, such as integrated fiber optics, binary optics, adaptive optics, four-pass amplification, large aperture plasma electrode switches, rapid growth of KDP, brand-new laser glass, long flashlamps, precision manufacturing of large optics and metallized self-heating capacitors. Codes have been developed and numerical simulations have been conducted for the optical design of the facility. The design of the Technical Integration Line of 2 by 2 segmented array as a prototype module of SG-II has been optimized and the construction will soon get started.

  4. Lack of Teratological Effects in Rats Exposed to 20 or 60 kHz Magnetic Fields

    PubMed Central

    Nishimura, Izumi; Oshima, Atsushi; Shibuya, Kazumoto; Negishi, Tadashi

    2011-01-01

    BACKGROUND: A risk assessment of magnetic field (MF) exposure conducted by the World Health Organization indicated the need for biological studies on primary hazard identification and quantitative risk evaluation of intermediate frequency (300 Hz–100 kHz) MFs. Because induction heating cookers generate such MFs for cooking, reproductive and developmental effects are a concern due to the close proximity of the fields' source to a cook's abdomen. METHODS: Pregnant Crl:CD(SD) rats (25/group) were exposed to a 20 kHz, 0.2 mT(rms) or 60 kHz, 0.1 mT(rms) sinusoidal MF or sham-exposed for 22 hr/day during organogenesis, and their fetuses were examined for malformations on gestation day 20. All teratological evaluations were conducted in a blind fashion, and experiments were duplicated for each frequency to confirm consistency of experimental outcomes. RESULTS: No exposure-related changes were found in clinical signs, gross pathology, or number of implantation losses. The number of live fetuses and low-body-weight fetuses as well as the incidence of external, visceral, and skeletal malformations in the fetuses did not indicate significant differences between MF-exposed and sham-exposed groups. Although some fetuses showed isolated changes in sex ratio and skeletal variation and ossification, such changes were neither reproduced in duplicate experiments nor were they common to specific field frequencies. CONCLUSIONS: Exposure of rats to MFs during organogenesis did not show significant reproducible teratogenicity under experimental conditions. Present findings do not support the hypothesis that intermediate frequency MF exposure after implantation carries a significant risk for developing mammalian fetuses. Birth Defects Res (Part B) 92:469–477, 2011. © 2011 Wiley Periodicals, Inc. PMID:21770026

  5. Development of a 2.0W at 60K single-stage coaxial pulse tube cryocooler for long-wave infrared focal plane array applications

    NASA Astrophysics Data System (ADS)

    Dang, H. Z.; Wang, L. B.; Wu, Y. N.; Yang, K. X.; Li, S. S.; Shen, W. B.

    2010-04-01

    A 2.0W@60K single-stage coaxial pulse tube cryocooler has been developed to provide reliable low-vibration cooling for the space-borne long wave infrared focal plane array. The coaxial configuration result in a compact system and the inertance tube together with a gas reservoir serves as the only phase-shifting to realize a highly reliable system. The inertance tube consists of two parts with different inner diameter and length to obtain the desirable phase relationship. Both cold tip and warm flange integrated with fine slit heat exchanges fabricated with electro discharge machining technology to enhance heat exchange performance. A split Oxford-type linear compressor with dual-opposed piston configuration is connected to the cold finger with a 30 cm flexible metallic tube. The overall weight without control electronics is below 8 kg. The preliminary experiments show that a no-load temperature of 46 K and a cooling power of 2 W at 60 K with 104 W of input power at 300K reject temperature have been achieved.

  6. System for controlling the operating temperature of a fuel cell

    DOEpatents

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  7. MWIR mercury cadmium telluride detectors for high operating temperatures

    NASA Astrophysics Data System (ADS)

    Pillans, L.; Ash, R. M.; Hipwood, L.; Knowles, P.

    2012-06-01

    Raising the operating temperature of infrared detectors has benefits in terms of reduced cooler power and increased life and enables an overall reduction in size and weight for handheld applications. With MCT the composition can be tuned to achieve the required wavelength range at a given temperature. Work on detectors operating in the 3-5μm atmospheric transmission window at operating temperatures up to 210K will be described. The influence of limiting factors such as excess noise, radiation shield emission, dark current and injection efficiency will be presented. Packaging aspects will be discussed emphasizing the importance of achieving low cost, weight and power for handheld applications. The impact of the detector design on overall system size and performance is considered with specific attention to time to image, passband and f-number. Finally images will be presented showing performance from a high operating temperature (HOT) camera.

  8. Operating temperatures of recessed fluorescent fixtures with thermal insulation

    SciTech Connect

    Yarbrough, D.W.; Toor, I.A.

    1981-05-01

    Tests were performed to determine steady state surface temperatures for recessed fluorescent fixtures operated with and without thermal insulation on the top side of the fixture and to identify potential problems associated with the installation of thermal insulation. In addition to measuring temperatures, means were sought by which the fixtures can be thermally insulated and operated without fire hazards or damage to the fixture. (MCW)

  9. Evaluation of Advanced COTS Passive Devices for Extreme Temperature Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Dones, Keishla R.

    2009-01-01

    Electronic sensors and circuits are often exposed to extreme temperatures in many of NASA deep space and planetary surface exploration missions. Electronics capable of operation in harsh environments would be beneficial as they simplify overall system design, relax thermal management constraints, and meet operational requirements. For example, cryogenic operation of electronic parts will improve reliability, increase energy density, and extend the operational lifetimes of space-based electronic systems. Similarly, electronic parts that are able to withstand and operate efficiently in high temperature environments will negate the need for thermal control elements and their associated structures, thereby reducing system size and weight, enhancing its reliability, improving its efficiency, and reducing cost. Passive devices play a critical role in the design of almost all electronic circuitry. To address the needs of systems for extreme temperature operation, some of the advanced and most recently introduced commercial-off-the-shelf (COTS) passive devices, which included resistors and capacitors, were examined for operation under a wide temperature regime. The types of resistors investigated included high temperature precision film, general purpose metal oxide, and wirewound.

  10. A simple Quantum heat engine operating between two negative temperatures

    NASA Astrophysics Data System (ADS)

    Dima, Tolasa A.; Bekele, Mulugeta

    We study a heat engine that operates between two reservoirs at negative temperatures. A system of spin-half particles, in the thermodynamic limit, subject to a time dependent external magnetic field, is used as a working substance because of its capability to demonstrate negative absolute temperature. We explored the finite-time quantities: period, power and efficiency. The engine is explored in its maximum power and optimum mode of operation from which its figure of merit is defined as the product of scaled power and scaled efficiency. We found that power-wise the engine provides better performance under its maximum power mode of operation than the optimized mode; however, efficiency-wise, the optimized mode of operation is better than its maximum mode operation. We thank the Internationa Science programme,IPS, Upsala,Sweden for the support to this research?.

  11. Coexistence of Half-Metallic Itinerant Ferromagnetism with Local-Moment Antiferromagnetism in Ba0.60K0.40Mn2As2

    NASA Astrophysics Data System (ADS)

    Pandey, Abhishek; Ueland, B. G.; Yeninas, S.; Kreyssig, A.; Sapkota, A.; Zhao, Yang; Helton, J. S.; Lynn, J. W.; McQueeney, R. J.; Furukawa, Y.; Goldman, A. I.; Johnston, D. C.

    2013-07-01

    Magnetization, nuclear magnetic resonance, high-resolution x-ray diffraction, and magnetic field-dependent neutron diffraction measurements reveal a novel magnetic ground state of Ba0.60K0.40Mn2As2 in which itinerant ferromagnetism (FM) below a Curie temperature TC≈100K arising from the doped conduction holes coexists with collinear antiferromagnetism (AFM) of the Mn local moments that order below a Néel temperature TN=480K. The FM ordered moments are aligned in the tetragonal ab plane and are orthogonal to the AFM ordered Mn moments that are aligned along the c axis. The magnitude and nature of the low-T FM ordered moment correspond to complete polarization of the doped-hole spins (half-metallic itinerant FM) as deduced from magnetization and ab-plane electrical resistivity measurements.

  12. Improved Wide Operating Temperature Range of Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2013-01-01

    Future NASA missions aimed at exploring the Moon, Mars, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications including landers, rovers, penetrators, CEV, CLV, etc. This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. The Department of Energy (DoE) has identified a number of technical barriers associated with the development of Liion rechargeable batteries for PHEVs. For this reason, DoE has interest in the development of advanced electrolytes that will improve performance over a wide range of temperatures, and lead to long life characteristics (5,000 cycles over a 10-year life span). There is also interest in improving the high-voltage stability of these candidate electrolyte systems to enable the operation of up to 5 V with high specific energy cathode materials. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, the rate capability at the lower temperatures is very poor. In addition, the low-temperature performance typically deteriorates rapidly upon being exposed to high temperatures. A number of electrolyte formulations were developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl propionate (MP)-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalate borate) (LiBOB), which have previously been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. These MP-based electrolytes with additives have been shown to have improved performance in experiments with MCMB-LiNiCoAlO2 cells.

  13. Low Temperature Operation of a Switching Power Converter

    NASA Technical Reports Server (NTRS)

    Anglada-Sanchez, Carlos R.; Perez-Feliciano, David; Ray, Biswajit

    1997-01-01

    The low temperature operation of a 48 W, 50 kHz, 36/12 V pulse width modulated (PWM) buck de-de power converter designed with standard commercially available components and devices is reported. The efficiency of the converter increased from 85.6% at room temperature (300 K) to 92.0% at liquid nitrogen temperature (77 K). The variation of power MOSFET, diode rectifier, and output filter inductor loss with temperature is discussed. Relevant current, voltage. and power waveforms are also included.

  14. Material characterisation and preliminary mechanical design for the HL-LHC shielded beam screens operating at cryogenic temperatures.

    NASA Astrophysics Data System (ADS)

    Garion, C.; Dufay-Chanat, L.; Koettig, T.; Machiocha, W.; Morrone, M.

    2015-12-01

    The High Luminosity LHC project (HL-LHC) aims at increasing the luminosity (rate of collisions) in the Large Hadron Collider (LHC) experiments by a factor of 10 beyond the original design value (from 300 to 3000 fb-1). It relies on new superconducting magnets, installed close to the interaction points, equipped with new beam screen. This component has to ensure the vacuum performance together with shielding the cold mass from physics debris and screening the cold bore cryogenic system from beam induced heating. The beam screen operates in the range 40-60 K whereas the magnet cold bore temperature is 1.9 K. A tungsten-based material is used to absorb the energy of particles. In this paper, measurements of the mechanical and physical properties of such tungsten material are shown at room and cryogenic temperature. In addition, the design and the thermal mechanical behaviour of the beam screen assembly are presented also. They include the heat transfer from the tungsten absorbers to the cooling pipes and the supporting system that has to minimise the heat inleak into the cold mass. The behaviour during a magnet quench is also presented.

  15. Liquid Nitrogen Temperature Operation of a Switching Power Converter

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The performance of a 42/28 V, 175 W, 50 kHz pulse-width modulated buck dc/dc switching power converter at liquid nitrogen temperature (LNT) is compared with room temperature operation. The power circuit as well as the control circuit of the converter, designed with commercially available components, were operated at LNT and resulted in a slight improvement in converter efficiency. The improvement in power MOSFET operation was offset by deteriorating performance of the output diode rectifier at LNT. Performance of the converter could be further improved at low temperatures by using only power MOSFET's as switches. The use of a resonant topology will further improve the circuit performance by reducing the switching noise and loss.

  16. Electronics for Low-Temperature Space Operation Being Evaluated

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2001-01-01

    Electronic components and systems capable of low-temperature operation are needed for many future NASA missions where it is desirable to have smaller, lighter, and cheaper (unheated) spacecraft. These missions include Mars (-20 to -120 C) orbiters, landers, and rovers; Europa (-150 C) oceanic exploratory probes and instrumentation; Saturn (-183 C) and Pluto (-229 C) interplanetary probes. At the present, most electronic equipment can operate down to only -55 C. It would be very desirable to have electronic components that expand the operating temperature range down to -233 C. The successful development of these low-temperature components will eventually allow space probes and onboard electronics to operate in very cold environments (out as far as the planet Pluto). As a result, radioisotope heating units, which are used presently to keep space electronics near room temperature, will be reduced in number or eliminated. The new cold electronics will make spacecraft design and operation simpler, more flexible, more reliable, lighter, and cheaper. Researchers at the NASA Glenn Research Center are evaluating potential commercial off-the- shelf devices and are developing new electronic components that will tolerate operation at low temperatures down to -233 C. This work is being carried out mainly inhouse and also through university grants and commercial contracts. The components include analog-to-digital converters, semiconductor switches, capacitors, dielectric and packaging material, and batteries. For example, the effect of low temperature on the capacitance of three different types of capacitors is shown in the graph. Using these advanced components, system products will be developed, including dc/dc converters, battery charge/discharge management systems, digital control electronics, transducers, and sensor instrumentation.

  17. Nylon coil actuator operating temperature range and stiffness

    NASA Astrophysics Data System (ADS)

    Kianzad, Soheil; Pandit, Milind; Bahi, Addie; Rafie Ravandi, Ali; Ko, Frank; Spinks, Geoffrey M.; Madden, John D. W.

    2015-04-01

    Components in automotive and aerospace applications require a wide temperature range of operation. Newly discovered thermally active Baughman muscle potentially provides affordable and viable solutions for driving mechanical devices by heating them from room temperature, but little is known about their operation below room temperature. We study the mechanical behavior of nylon coil actuators by testing elastic modulus and by investigating tensile stroke as a function of temperature. Loads that range from 35 MPa to 155 MPa were applied. For the nylon used and the coiling conditions, active thermal contraction totals 19.5 % when the temperature is raised from -40 °C to 160 °C. The thermal contraction observed from -40 °C to 20°C is only ~2 %, whereas between 100 and 160 °C the contraction is 10 %. A marked increase in thermal contraction is occurs in the vicinity of the glass transition temperature (~ 45°C). The elastic modulus drops as temperature increases, from ~155 MPa at - 40 °C to 35 MPa at 200 °C. Interestingly the drop in active contraction with increasing load is small and much less than might be expected given the temperature dependence of modulus.

  18. Effects of exposure to a 60-kV/m, 60-Hz electric field on the social behavior of baboons

    SciTech Connect

    Easley, S.P.; Coelho, A.M. Jr.; Rogers, W.R. )

    1991-01-01

    The authors found in a previously reported study that exposure to a 30-kV/m, 60-Hz electric field had significant effects on the social behavior of baboons. However, it was not established whether or not the effects were related specifically to the 30-kV/m intensity of the field. A new experiment was conducted to determine whether or not exposure to a 60-Hz electric field at 60 kV/m would produce like changes in the baboons' social behavior. They exposed one group of eight male baboons to an electric field 12 hours a day, 7 days a week, for 6 weeks. A second group of eight animals was maintained under sham-exposure (control) conditions. Rates of performing on each of six categories of social behavior and on four categories of nonsocial behavior were used as criteria for comparing exposed with unexposed subjects and for within-group comparisons during three six-week experimental periods: Pre-Exposure, Exposure, and Post-Exposure. The results indicate that (1) during the exposure period, exposed animals exhibited statistically significant differences from controls in means of performance rates based on several behavioral categories; (2) across all three periods, within-group comparisons revealed that behaviors of exposed baboons were significantly affected by exposure to the electric field; (3) changes in performance levels probably reflect a stress response to the electric field; and (4) the means of response rates of animals exposed at 60 kV/m were higher, but not double, those of animals exposed at 30 kV/m. As in the 30-kV/m experiment, animals exposed at 60 kV/m exhibited significant differences in performances of Passive Affinity, Tension, and Stereotypy. Mean rates of performing these categories were 122% (Passive Affinity), 48% (Tension), and 40% (Stereotypy) higher in the exposed group than in the control group during exposure to the 60-kV/m field.

  19. Laser Transmission Measurements of Soot Extinction Coefficients in the Exhaust Plume of the X-34 60k-lb Thrust Fastrac Rocket Engine

    NASA Technical Reports Server (NTRS)

    Dobson, C. C.; Eskridge, R. H.; Lee, M. H.

    2000-01-01

    A four-channel laser transmissometer has been used to probe the soot content of the exhaust plume of the X-34 60k-lb thrust Fastrac rocket engine at NASA's Marshall Space Flight Center. The transmission measurements were made at an axial location about equal 1.65 nozzle diameters from the exit plane and are interpreted in terms of homogeneous radial zones to yield extinction coefficients from 0.5-8.4 per meter. The corresponding soot mass density, spatially averaged over the plume cross section, is, for Rayleigh particles, approximately equal to 0.7 micrograms/cubic cm and alternative particle distributions are briefly considered. Absolute plume radiance at the laser wavelength (515 nm) is estimated from the data at approximately equal to 2.200 K equivalent blackbody temperature, and temporal correlations in emission from several spatial locations are noted.

  20. Laser Transmission Measurements of Soot Extinction Coefficients in the Exhaust Plume of the X-34 60K-lb Thrust Fastrac Rocket Engine

    NASA Technical Reports Server (NTRS)

    Dobson, C. C.; Eskridge, R. H.; Lee, M. H.

    2000-01-01

    A four-channel laser transmissometer has been used to probe the soot content of the exhaust plume of the X-34 60k-lb thrust Fastrac rocket engine at NASA's Marshall Space Flight Center. The transmission measurements were made at an axial location approximately equal 1.65 nozzle diameters from the exit plane and are interpreted in terms of homogeneous radial zones to yield extinction coefficients from 0.5-8.4 per meter. The corresponding soot mass density, spatially averaged over the plume cross section, is, for Rayleigh particles, approximately equal 0.7 microgram/cc, and alternative particle distributions are briefly considered. Absolute plume radiance at the laser wavelength (515 nm) is estimated from the data at approximately equal 2,200 K equivalent blackbody temperature, and temporal correlations in emission from several spatial locations are noted.

  1. (Mg,Pb)Sr 2(Y,Ca)Cu 2O 7, a new 60 K superconductor in the Pb-1:2:1:2 family

    NASA Astrophysics Data System (ADS)

    Liu, H. B.; Morris, D. E.; Sinha, A. P. B.

    1993-01-01

    (Mg,Pb)Sr 2(Y,Ca)Cu 2O 7, a new superconductor in the Pb-1:2:1:2 family, has been synthesized. The Y:Ca ratio and annealing conditions (oxygen pressure/temperature) have been optimized. Addition of silver oxide aids in increasing the superconducting volume fraction and raising Tc to 60 K. Since this Tc is comparable to that of other Pb-1:2:1:2 compounds, it is unlikely that Mg 2+ replaces Cu in the CuO 2 planes, in spite of its small radius ( r=0.72 Å); in that case a substantial depression of Tc would be expected. Instead, Mg 2+ appears to go into the PbO layer in a rock-salt surrounding, in analogy with other divalent elements.

  2. High Operating Temperature Liquid Metal Heat Transfer Fluids (Fact Sheet)

    SciTech Connect

    Not Available

    2012-12-01

    The University of California, Los Angeles, the University of California, Berkeley, and Yale University is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.

  3. 980nm diode laser pump modules operating at high temperature

    NASA Astrophysics Data System (ADS)

    Campbell, Jenna; Semenic, Tadej; Leisher, Paul; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2016-03-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. This problem is being addressed by the team formed by Freedom Photonics and Teledyne Scientific through the development of novel high power laser chip array architectures that can operate with high efficiency when cooled with coolants at temperatures higher than 50 degrees Celsius and also the development of an advanced thermal management system for efficient heat extraction from the laser chip array. This paper will present experimental results for the optical, electrical and thermal characteristics of 980 nm diode laser pump modules operating effectively with liquid coolant at temperatures above 50 degrees Celsius, showing a very small change in performance as the operating temperature increases from 20 to 50 degrees Celsius. These pump modules can achieve output power of many Watts per array lasing element with an operating Wall-Plug-Efficiency (WPE) of >55% at elevated coolant temperatures. The paper will also discuss the technical approach that has enabled this high level of pump module performance and opportunities for further improvement.

  4. Methods of Controlling the Loop Heat Pipe Operating Temperature

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2008-01-01

    The operating temperature of a loop heat pipe (LHP) is governed by the saturation temperature of its compensation chamber (CC); the latter is in turn determined by the balance among the heat leak from the evaporator to the CC, the amount of subcooling carried by the liquid returning to the CC, and the amount of heat exchanged between the CC and ambient. The LHP operating temperature can be controlled at a desired set point by actively controlling the CC temperature. The most common method is to cold bias the CC and use electric heater power to maintain the CC set point temperature. The required electric heater power can be large when the condenser sink is very cold. Several methods have been developed to reduce the control heater power, including coupling block, heat exchanger and separate subcooler, variable conductance heat pipe, by-pass valve with pressure regulator, secondary evaporator, and thermoelectric converter. The paper discusses the operating principles, advantages and disadvantages of each method.

  5. Solid oxide fuel cell operable over wide temperature range

    DOEpatents

    Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.

    2001-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  6. Cryogenic wind tunnels: Problems of continuous operation at low temperatures

    NASA Technical Reports Server (NTRS)

    Faulmann, D.

    1986-01-01

    The design of a cryogenic wind tunnel which operates continuously, and is capable of attaining transonic speeds at generating pressures of about 3 bars is described. Its stainless steel construction with inside insulation allows for very rapid temperature variations promoted by rapid changes in the liquid nitrogen flow. A comparative study of temperature measuring probes shows a good reliability of thin sheet thermocouples. To measure fluctuations, only a cold wire makes it possible to record frequencies of about 300 Hz. The use of an integral computer method makes it possible to determine the impact of the wall temperature ratio to the adiabatic wall temperature for the various parameters characterizing the boundary layer. These cases are processed with positive and negative pressure gradients.

  7. Evaluation of Silicon-on-Insulator HTOP-01 Operational Amplifier for Wide Temperature Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electronics capable of operation under extreme temperatures are required in many of NASA space exploration missions. Aerospace and military applications, as well as some terrestrial industries constitute environments where electronic systems are anticipated to be exposed to extreme temperatures and wide-range thermal swings. Electronics that are able to withstand and operate efficiently in such harsh environments would simplify, if not eliminate, traditional thermal control elements and their associated structures for proper ambient operation. As a result, overall system mass would be reduced, design would be simplified, and reliability would be improved. Electronic parts that are built utilizing silicon-on-insulator (SOI) technology are known to offer better radiation-tolerance compared to their conventional silicon counterparts, provide faster switching, and consume less power. They also exhibit reduced leakage current and, thus, they are often tailored for high temperature operation. These attributes make SOI-based devices suitable for use in harsh environments where extreme temperatures and wide thermal swings are anticipated. A new operational amplifier, based on silicon-on-insulator technology and geared for high temperature well-logging applications, was recently introduced by Honeywell Corporation. This HTOP-01 dual precision operational amplifier is a low power device, operates on a single supply, and has an internal oscillator and an external clocking option [1]. It is rated for operation from -55 C to +225 C with a maximum output current capability of 50 mA. The amplifier chip is designed as a 14-pin, hermetically-sealed device in a ceramic package. Table I shows some of the device manufacturer s specifications.

  8. Amplifier circuit operable over a wide temperature range

    DOEpatents

    Kelly, Ronald D.; Cannon, William L.

    1979-01-01

    An amplifier circuit having stable performance characteristics over a wide temperature range from approximately 0.degree. C up to as high as approximately 500.degree. C, such as might be encountered in a geothermal borehole. The amplifier utilizes ceramic vacuum tubes connected in directly coupled differential amplifier pairs having a common power supply and a cathode follower output stage. In an alternate embodiment, for operation up to 500.degree. C, positive and negative power supplies are utilized to provide improved gain characteristics, and all electrical connections are made by welding. Resistor elements in this version of the invention are specially heat treated to improve their stability with temperature.

  9. Method of low temperature operation of an electrochemical cell array

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.; Bratton, Raymond J.

    1994-01-01

    In the method of operating an electrochemical cell generator apparatus containing a generator chamber (20) containing an array of cells (12) having interior and exterior electrodes with solid electrolyte between the electrodes, where a hot gas (F) contacts the outside of the cells (12) and the generating chamber normally operates at over 850.degree. C., where N.sub.2 gas is fed to contact the interior electrode of the cells (12) in any case when the generating chamber (20) temperature drops for whatever reason to within the range of from 550.degree. C. to 800.degree. C., to eliminate cracking within the cells (12).

  10. A nonintrusive method for measuring the operating temperature of a solenoid-operated valve

    NASA Astrophysics Data System (ADS)

    Kryter, Robert C.

    Experimental data are presented to show that the in-service operating temperature of a solenoid operated valve (SOV) can be inferred simply and nondisruptively by using the copper winding of the solenoid coil as a self-indicating, permanently available resistance thermometer. The principal merits of this approach include: (1) there is no need for an add-on temperature sensor, (2) the true temperature of a critical and likely the hottest, part of the SOV (namely, the electrical coil) is measured directly, (3) temperature readout can be provided at any location at which the SOV electrical lead wires are accessible (even though remote from the valve), (4) the SOV need not be disturbed (whether normally energized or deenergized) to measure its temperature in situ, and (5) the method is applicable to all types of SOVs, large and small, ac- and dc-powered. Laboratory tests comparing temperatures measured both by coil resistance and by a conventional thermometer placed in contact with the external surface of the potted solenoid coil indicate that temperature within the coil may be on the order of 40 C higher than that measured externally, a fact that is important to life-expectancy calculations made on the basis of Arrhenius theory. Field practicality is illustrated with temperature measurements made using this method on a SOV controlling the flow of refrigerant in a large chilled-water air-conditioning system.

  11. Performance of High Temperature Operational Amplifier, Type LM2904WH, under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Operation of electronic parts and circuits under extreme temperatures is anticipated in NASA space exploration missions as well as terrestrial applications. Exposure of electronics to extreme temperatures and wide-range thermal swings greatly affects their performance via induced changes in the semiconductor material properties, packaging and interconnects, or due to incompatibility issues between interfaces that result from thermal expansion/contraction mismatch. Electronics that are designed to withstand operation and perform efficiently in extreme temperatures would mitigate risks for failure due to thermal stresses and, therefore, improve system reliability. In addition, they contribute to reducing system size and weight, simplifying its design, and reducing development cost through the elimination of otherwise required thermal control elements for proper ambient operation. A large DC voltage gain (100 dB) operational amplifier with a maximum junction temperature of 150 C was recently introduced by STMicroelectronics [1]. This LM2904WH chip comes in a plastic package and is designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages, and it consists of two independent, high gain, internally frequency compensated operational amplifiers. Table I shows some of the device manufacturer s specifications.

  12. NGNP/HTE full-power operation at reduced high-temperature heat exchanger temperatures.

    SciTech Connect

    VIlim, R.; Nuclear Engineering Division

    2009-03-12

    Operation of the Next Generation Nuclear Plant (NGNP) with reduced reactor outlet temperature at full power was investigated for the High Temperature Electrolysis (HTE) hydrogen-production application. The foremost challenge for operation at design temperature is achieving an acceptably long service life for heat exchangers. In both the Intermediate Heat Exchanger (IHX) and the Process Heat Exchanger (PHX) (referred to collectively as high temperature heat exchangers) a pressure differential of several MPa exists with temperatures at or above 850 C. Thermal creep of the heat exchanger channel wall may severely limit heat exchanger life depending on the alloy selected. This report investigates plant performance with IHX temperatures reduced by lowering reactor outlet temperature. The objective is to lower the temperature in heat transfer channels to the point where existing materials can meet the 40 year lifetime needed for this component. A conservative estimate for this temperature is believed to be about 700 C. The reactor outlet temperature was reduced from 850 C to 700 C while maintaining reactor power at 600 MWt and high pressure compressor outlet at 7 MPa. We included a previously reported design option for reducing temperature at the PHX. Heat exchanger lengths were adjusted to reflect the change in performance resulting from coolant property changes and from resizing related to operating-point change. Turbomachine parameters were also optimized for the new operating condition. An integrated optimization of the complete system including heat transfer equipment was not performed. It is estimated, however, that by performing a pinch analysis the combined plant efficiency can be increased from 35.5 percent obtained in this report to a value between 38.5 and 40.1 percent. Then after normalizing for a more than three percent decrease in commodities inventory compared to the reference plant, the commodities-normalized efficiency lies between 40.0 and 41.3. This

  13. Improved Nominal Operating Cell Temperature (NOCT) test procedure

    NASA Technical Reports Server (NTRS)

    Wen, L.; Berns, D.

    1984-01-01

    A procedure is developed to improve testing of Nominal Operating Cell Temperature (NOCT) as it applies to solar energy conversion modules. NOCT is a direct reflection of module thermal design and is closely related to the representative ambient temperature. It is also a key to array energy production and estimates of module lifetimes. Present NOCT test and evaluation procedures are inconsistent, producing significant scatter. Test refinements would specify a clear sky, the addition of 10% to the insolation level for ground reflection, the addition of a ground emission factor of 0.8 (at 30C ground temperature), an effective wind direction of 135 degrees from the North, and a module tilt of 30 degrees from the horizon.

  14. Temperature mapping of operating nanoscale devices by scanning probe thermometry

    PubMed Central

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-01-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip–sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal–semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution. PMID:26936427

  15. Temperature mapping of operating nanoscale devices by scanning probe thermometry

    NASA Astrophysics Data System (ADS)

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-03-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip-sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal-semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution.

  16. Temperature mapping of operating nanoscale devices by scanning probe thermometry.

    PubMed

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-01-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip-sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal-semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution. PMID:26936427

  17. Test of 60 kA coated conductor cable prototypes for fusion magnets

    NASA Astrophysics Data System (ADS)

    Uglietti, D.; Bykovsky, N.; Sedlak, K.; Stepanov, B.; Wesche, R.; Bruzzone, P.

    2015-12-01

    Coated conductors could be promising materials for the fabrication of the large magnet systems of future fusion devices. Two prototype conductors (flat cables in steel conduits), each about 2 m long, were manufactured using coated conductor tapes (4 mm wide) from Super Power and SuperOx, with a total tape length of 1.6 km. Each flat cable is assembled from 20 strands, each strand consisting of a stack of 16 tapes surrounded by two half circular copper profiles, twisted and soldered. The tapes were measured at 12 T and 4.2 K and the results of the measurements were used for the assessment of the conductor electromagnetic properties at low temperature and high field. The two conductors were assembled together in a sample that was tested in the European Dipole (EDIPO) facility. The current sharing temperatures of the two conductors were measured at background fields from 8 T up to 12 T and for currents from 30 kA up to 70 kA: the measured values are within a few percent of the values expected from the measurements on tapes (short samples). After electromagnetic cycling, T cs at 12 T and 50 kA decreased from about 12 K to 11 K (about 10%), corresponding to less than 3% of I c.

  18. Digital computer study of nuclear reactor thermal transients during startup of 60-kWe Brayton power conversion system

    NASA Technical Reports Server (NTRS)

    Jefferies, K. S.; Tew, R. C.

    1974-01-01

    A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.

  19. Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature

    NASA Astrophysics Data System (ADS)

    Leng, Feng; Tan, Cher Ming; Pecht, Michael

    2015-08-01

    Temperature is known to have a significant impact on the performance, safety, and cycle lifetime of lithium-ion batteries (LiB). However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found. We use an electrochemistry-based model (ECBE) here to measure the effects on the aging behavior of cycled LiB operating within the temperature range of 25 °C to 55 °C. The increasing degradation rate of the maximum charge storage of LiB during cycling at elevated temperature is found to relate mainly to the degradations at the electrodes, and that the degradation of LCO cathode is larger than graphite anode at elevated temperature. In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range. Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work.

  20. Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature

    PubMed Central

    Leng, Feng; Tan, Cher Ming; Pecht, Michael

    2015-01-01

    Temperature is known to have a significant impact on the performance, safety, and cycle lifetime of lithium-ion batteries (LiB). However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found. We use an electrochemistry-based model (ECBE) here to measure the effects on the aging behavior of cycled LiB operating within the temperature range of 25 °C to 55 °C. The increasing degradation rate of the maximum charge storage of LiB during cycling at elevated temperature is found to relate mainly to the degradations at the electrodes, and that the degradation of LCO cathode is larger than graphite anode at elevated temperature. In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range. Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work. PMID:26245922

  1. Reversible Thermal Denaturation of a 60-kDa Genetically Engineered β-Sheet Polypeptide

    PubMed Central

    Lednev, Igor K.; Ermolenkov, Vladimir V.; Higashiya, Seiichiro; Popova, Ludmila A.; Topilina, Natalya I.; Welch, John T.

    2006-01-01

    A de novo 687-amino-acid residue polypeptide with a regular 32-amino-acid repeat sequence, (GA)3GY(GA)3GE(GA)3GH(GA)3GK, forms large β-sheet assemblages that exhibit remarkable folding properties and, as well, form fibrillar structures. This construct is an excellent tool to explore the details of β-sheet formation yielding intimate folding information that is otherwise difficult to obtain and may inform folding studies of naturally occurring materials. The polypeptide assumes a fully folded antiparallel β-sheet/turn structure at room temperature, and yet is completely and reversibly denatured at 125°C, adopting a predominant polyproline II conformation. Deep ultraviolet Raman spectroscopy indicated that melting/refolding occurred without any spectroscopically distinct intermediates, yet the relaxation kinetics depend on the initial polypeptide state, as would be indicative of a non-two-state process. Thermal denaturation and refolding on cooling appeared to be monoexponential with characteristic times of ∼1 and ∼60 min, respectively, indicating no detectable formation of hairpin-type nuclei in the millisecond timescale that could be attributed to nonlocal “nonnative” interactions. The polypeptide folding dynamics agree with a general property of β-sheet proteins, i.e., initial collapse precedes secondary structure formation. The observed folding is much faster than expected for a protein of this size and could be attributed to a less frustrated free-energy landscape funnel for folding. The polypeptide sequence suggests an important balance between the absence of strong nonnative contacts (salt bridges or hydrophobic collapse) and limited repulsion of charged side chains. PMID:16891363

  2. SY-101 Rapid Transfer Project Low Temperature Operations Review and Recommendations to Support Lower Temperature Limits

    SciTech Connect

    HICKMAN, G.L.

    2000-01-10

    The lower temperature limit for the 241 SY-101 RAPID transfer project is currently set at 20 F Based on the analysis and recommendations in this document this limit can be lowered to 0 F. Analysis of all structures systems and components (SSCs) indicate that a reduction in operating temperature may be achieved with minor modifications to field-installed equipment. Following implementation of these changes it is recommended that the system requirements be amended to specify a temperature range for transfer or back dilute evolutions of 0 F to 100 F.

  3. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature...

  4. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature...

  5. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature...

  6. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature...

  7. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature...

  8. Li/CFx Cells Optimized for Low-Temperature Operation

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Whitacre, Jay F.; Bugga, Ratnakumar V.; Prakash, G. K. Surya; Bhalla, Pooja; Smith, Kiah

    2009-01-01

    Some developments reported in prior NASA Tech Briefs articles on primary electrochemical power cells containing lithium anodes and fluorinated carbonaceous (CFx) cathodes have been combined to yield a product line of cells optimized for relatively-high-current operation at low temperatures at which commercial lithium-based cells become useless. These developments have involved modifications of the chemistry of commercial Li/CFx cells and batteries, which are not suitable for high-current and low-temperature applications because they are current-limited and their maximum discharge rates decrease with decreasing temperature. One of two developments that constitute the present combination is, itself, a combination of developments: (1) the use of sub-fluorinated carbonaceous (CFx wherein x<1) cathode material, (2) making the cathodes thinner than in most commercial units, and (3) using non-aqueous electrolytes formulated especially to enhance low-temperature performance. This combination of developments was described in more detail in High-Energy-Density, Low- Temperature Li/CFx Primary Cells (NPO-43219), NASA Tech Briefs, Vol. 31, No. 7 (July 2007), page 43. The other development included in the present combination is the use of an anion receptor as an electrolyte additive, as described in the immediately preceding article, "Additive for Low-Temperature Operation of Li-(CF)n Cells" (NPO- 43579). A typical cell according to the present combination of developments contains an anion-receptor additive solvated in an electrolyte that comprises LiBF4 dissolved at a concentration of 0.5 M in a mixture of four volume parts of 1,2 dimethoxyethane with one volume part of propylene carbonate. The proportion, x, of fluorine in the cathode in such a cell lies between 0.5 and 0.9. The best of such cells fabricated to date have exhibited discharge capacities as large as 0.6 A h per gram at a temperature of 50 C when discharged at a rate of C/5 (where C is the magnitude of the

  9. Infrared negative luminescent devices and higher operating temperature detectors

    NASA Astrophysics Data System (ADS)

    Nash, Geoff R.; Gordon, Neil T.; Hall, David J.; Little, J. Chris; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, Martin T.; Ashley, Tim

    2004-02-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source" of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very higher performance imaging is anticipated from systems which require no mechanical cooling.

  10. Infrared negative luminescent devices and higher operating temperature detectors

    NASA Astrophysics Data System (ADS)

    Nash, G. R.; Gordon, N. T.; Hall, D. J.; Ashby, M. K.; Little, J. C.; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, M. T.; Ashley, T.

    2004-01-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source’ of IR radiation for gas sensing; radiation shielding for, and non-uniformity correction of, high sensitivity staring infrared detectors; and dynamic infrared scene projection. Similarly, infrared (IR) detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We present results on negative luminescence in the mid- and long-IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1 cm×1 cm. We also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high-performance imaging is anticipated from systems which require no mechanical cooling.

  11. Infrared Negative Luminescent Devices and Higher Operating Temperature Detectors

    NASA Astrophysics Data System (ADS)

    Ashley, Tim

    2003-03-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a source' of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high performance imaging is anticipated from systems which require no mechanical cooling.

  12. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  13. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  14. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  15. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  16. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  17. High operating temperature interband cascade focal plane arrays

    SciTech Connect

    Tian, Z.-B.; Godoy, S. E.; Kim, H. S.; Schuler-Sandy, T.; Montoya, J. A.; Krishna, S.

    2014-08-04

    In this paper, we report the initial demonstration of mid-infrared interband cascade (IC) photodetector focal plane arrays with multiple-stage/junction design. The merits of IC photodetectors include low noise and efficient photocarrier extraction, even for zero-bias operation. By adopting enhanced electron barrier design and a total absorber thickness of 0.7 μm, the 5-stage IC detectors show very low dark current (1.10 × 10{sup −7} A/cm{sup 2} at −5 mV and 150 K). Even with un-optimized fabrication and standard commercial (mis-matched) read-out circuit technology, infrared images are obtained by the 320 × 256 IC focal plane array up to 180 K with f/2.3 optics. The minimum noise equivalent temperature difference of 28 mK is obtained at 120 K. These initial results indicate great potential of IC photodetectors, particularly for high operating temperature applications.

  18. Geostationary Operational Environmental Satellite (GOES) Gyro Temperature Model

    NASA Technical Reports Server (NTRS)

    Rowe, J. N.; Noonan, C. H.; Garrick, J.

    1996-01-01

    The geostationary Operational Environmental Satellite (GOES) 1/M series of spacecraft are geostationary weather satellites that use the latest in weather imaging technology. The inertial reference unit package onboard consists of three gyroscopes measuring angular velocity along each of the spacecraft's body axes. This digital integrating rate assembly (DIRA) is calibrated and used to maintain spacecraft attitude during orbital delta-V maneuvers. During the early orbit support of GOES-8 (April 1994), the gyro drift rate biases exhibited a large dependency on gyro temperature. This complicated the calibration and introduced errors into the attitude during delta-V maneuvers. Following GOES-8, a model of the DIRA temperature and drift rate bias variation was developed for GOES-9 (May 1995). This model was used to project a value of the DIRA bias to use during the orbital delta-V maneuvers based on the bias change observed as the DIRA warmed up during the calibration. The model also optimizes the yaw reorientation necessary to achieve the correct delta-V pointing attitude. As a result, a higher accuracy was achieved on GOES-9 leading to more efficient delta-V maneuvers and a propellant savings. This paper summarizes the: Data observed on GOES-8 and the complications it caused in calibration; DIRA temperature/drift rate model; Application and results of the model on GOES-9 support.

  19. Refractive Secondary Solar Concentrator Demonstrated High-Temperature Operation

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2002-01-01

    Space applications that utilize solar thermal energy--such as electric power conversion systems, thermal propulsion systems, and furnaces--require highly efficient solar concentration systems. The NASA Glenn Research Center is developing the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, such as inflatable thin films, the refractive secondary concentrator enables very high system concentration ratios and very high temperatures. Last year, Glenn successfully demonstrated a secondary concentrator throughput efficiency of 87 percent, with a projected efficiency of 93 percent using an antireflective coating. Building on this achievement, Glenn recently successfully demonstrated high-temperature operation of the secondary concentrator when it was used to heat a rhenium receiver to 2330 F. The high-temperature demonstration of the concentrator was conducted in Glenn's 68-ft long Tank 6 thermal vacuum facility equipped with a solar simulator. The facility has a rigid panel primary concentrator that was used to concentrate the light from the solar simulator onto the refractive secondary concentrator. NASA Marshall Space Flight Center provided a rhenium cavity, part of a solar thermal propulsion engine, to serve as the high-temperature receiver. The prototype refractive secondary concentrator, measuring 3.5 in. in diameter and 11.2 in. long, is made of single-crystal sapphire. A water-cooled splash shield absorbs spillage light outside of the 3.5-in. concentrator aperture. Multilayer foil insulation composed of tungsten, molybdenum, and niobium is used to minimize heat loss from the hightemperature receiver. A liquid-cooled canister calorimeter is used to measure the heat loss through the multilayer foil insulation.

  20. Operation of a low temperature absorption chiller at rating point and at reduced evaporator temperature

    NASA Astrophysics Data System (ADS)

    Best, R.; Biermann, W.; Reimann, R. C.

    1985-01-01

    The returned fifteen ton Solar Absorption Machine (SAM) 015 chiller was given a cursory visual inspection, some obvious problems were remedied, and then it was placed on a test stand to get a measure of dirty performance. It was then given a standard acid clean, the water side of the tubes was brushed clean, and then the machine was retested. The before and after cleaning data were compared to equivalent data taken before the machine was shipped. The second part of the work statement was to experimentally demonstrate the technical feasibility of operating the chiller at evaporator temperatures below 0(0)C (32(0)F) and identify any operational problems.

  1. Room temperature continuous-wave operation of GaInNAs long wavelength VCSELs

    SciTech Connect

    Larson, M C; Coldren, C W; Spruytte, S G; Peterson, H E; Harris, J S

    2000-06-22

    }m device operating CW at room temperature is shown in figure 2. The threshold current is approximately 1.3 mA, and the slope efficiency is 0.045 W/A. CW operation was possible in spite of an extremely high threshold voltage of 10.3 V which resulted from unoptimized doping and composition profiles at the heterointerfaces of the p-DBR. This created a large degree of self heating which limited the maximum output power to 0.080 mW at 3.8 mA. Figure 3 shows emission spectra at threshold, with a lasing wavelength of 1201.54 nm, and at 2.6 times threshold. The device lased in a single transverse and longitudinal mode, and far above threshold, the side mode suppression1 ratio was in excess of 40 dB. As seen in figure 4, the wavelength shifted with dissipated power at a rate of 0.0924 nm/mW. Given a wavelength shift with temperature of 0.0743 n d K obtained from broad area VCSELs [4], this indicates a calculated temperature rise of {approx}60K above the ambient at peak output power and a thermal impedance of 1.24 WmW. CW laser operation also occurred for device sizes ranging from 3.6 {micro}m to 6.4 {micro}m, with threshold currents from 0.94 to 2.3 mA and slope efficiency as high as 0.049 W/A. In summary, we have demonstrated low-threshold GaInNAs VCSELs operating continuous-wave at room temperature, with an emission wavelength of 1200 nm. Higher output power will be possible by reducing the resistance of the p-DBR, and 1300 nm emission should be achieved by increasing the indium and/or nitrogen content of the GaInNAs/GaAs multiple quantum well active layer.

  2. Primary standard of optical power operating at room temperature

    NASA Astrophysics Data System (ADS)

    Dönsberg, Timo; Sildoja, Meelis; Manoocheri, Farshid; Merimaa, Mikko; Petroff, Leo; Ikonen, Erkki

    2014-08-01

    The Predictable Quantum Efficient Detector (PQED) is evaluated as a new primary standard of optical power. Design and characterization results are presented for a new compact room temperature PQED that consists of two custom-made induced junction photodiodes mounted in a wedged trap configuration. The detector assembly includes a window aligned in Brewster angle in front of the photodiodes for high transmission of p polarized light. The detector can also be operated without the window, in which case a dry nitrogen flow system is utilized to prevent dust contamination of the photodiodes. Measurements of individual detectors at the wavelength of 488 nm indicate that reflectance and internal quantum efficiency are consistent within 14 ppm and 10 ppm (ppm = part per million), respectively, and agree with the predicted values. The measured photocurrent ratio of the two photodiodes confirms the predicted value for s and p polarized light, and the spatial variation in the photocurrent ratio can be used to estimate the uniformity in the thickness of the silicon dioxide layer on the surface of the photodiodes. In addition, the spatial non-uniformity of the responsivity of the PQED is an order of magnitude lower than that of single photodiodes. Such data provide evidence that the room temperature PQED may replace the cryogenic radiometer as a primary standard of optical power in the visible wavelength range.

  3. Welding stainless steels for structures operating at liquid helium temperature

    SciTech Connect

    Witherell, C.E.

    1980-04-18

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2/sup 0/K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2/sup 0/K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness.

  4. Temperature Control and Noise Reduction in our Compact ADR System for TES Microcalorimeter Operation

    NASA Astrophysics Data System (ADS)

    Hishi, U.; Fujimoto, R.; Kamiya, K.; Kotake, M.; Ito, H.; Kaido, T.; Tanaka, K.; Hattori, K.

    2016-08-01

    We have been developing a compact adiabatic demagnetization refrigerator, keeping ground application and future missions in mind. A salt pill fabricated in-house, a superconducting magnet with a passive magnetic shield around it, and a mechanical heat switch are mounted in a dedicated helium cryostat. The detector stage temperature is regulated by PID control of the magnet current, with a dI/dt term added to compensate the temperature rise due to parasitic heat. The temperature fluctuation of the detector stage is 1-2 \\upmu Krms, and the hold time was extended by about 15 % thanks to the dI/dt term. Bundle shields of the harnesses between the cryostat and the analog electronics boxes were connected to the chassis at both ends, and the analog electronics boxes were grounded to the cryostat through the bundle shields. This reduced the readout noise to 16 pA/√{Hz} in the 10-60 kHz range. Using this system, an energy resolution of 3.8 ± 0.2 eV (FWHM) was achieved at 5.9 keV.

  5. Temperature Control and Noise Reduction in our Compact ADR System for TES Microcalorimeter Operation

    NASA Astrophysics Data System (ADS)

    Hishi, U.; Fujimoto, R.; Kamiya, K.; Kotake, M.; Ito, H.; Kaido, T.; Tanaka, K.; Hattori, K.

    2016-03-01

    We have been developing a compact adiabatic demagnetization refrigerator, keeping ground application and future missions in mind. A salt pill fabricated in-house, a superconducting magnet with a passive magnetic shield around it, and a mechanical heat switch are mounted in a dedicated helium cryostat. The detector stage temperature is regulated by PID control of the magnet current, with a dI/dt term added to compensate the temperature rise due to parasitic heat. The temperature fluctuation of the detector stage is 1-2 \\upmu Krms, and the hold time was extended by about 15 % thanks to the dI/dt term. Bundle shields of the harnesses between the cryostat and the analog electronics boxes were connected to the chassis at both ends, and the analog electronics boxes were grounded to the cryostat through the bundle shields. This reduced the readout noise to 16 pA/√{Hz} in the 10-60 kHz range. Using this system, an energy resolution of 3.8 ± 0.2 eV (FWHM) was achieved at 5.9 keV.

  6. On the influence of temperature on PEM fuel cell operation

    NASA Astrophysics Data System (ADS)

    Coppo, M.; Siegel, N. P.; Spakovsky, M. R. von

    The 3D implementation of a previously developed 2D PEMFC model [N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, A two-dimensional computational model of a PEMFC with liquid water transport, J. Power Sources 128 (2) (2004) 173-184; N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, Single domain PEMFC model based on agglomerate catalyst geometry, J. Power Sources 115 (2003) 81-89] has been used to analyze the various pathways by which temperature affects the operation of a proton exchange membrane fuel cell [M. Coppo, CFD analysis and experimental investigation of proton exchange membrane fuel cells, Ph.D. Dissertation, Politecnico di Torino, Turin, Italy, 2005]. The original model, implemented in a specially modified version of CFDesign ® [CFDesign ® V5.1, Blue Ridge Numerics, 2003] , accounts for all of the major transport processes including: (i) a three-phase model for water transport in the liquid, vapor and dissolved phases, (ii) proton transport, (iii) gaseous species transport and reaction, (iv) an agglomerate model for the catalyst layers and (v) gas phase momentum transport. Since the details of it have been published earlier [N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, A two-dimensional computational model of a PEMFC with liquid water transport, J. Power Sources 128 (2) (2004) 173-184; N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, Single domain PEMFC model based on agglomerate catalyst geometry, J. Power Sources 115 (2003) 81-89; N.P. Siegel, Development and validation of a computational model for a proton exchange membrane fuel cell, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2003], only new features are briefly discussed in the present work. In particular, the model has been extended in order to account for the temperature dependence of all of the physical properties involved in the model formulation. Moreover, a novel model has been developed to describe liquid

  7. A variable conductance gas switch for intermediate temperature operation of liquid He/liquid N2 cryostats

    NASA Technical Reports Server (NTRS)

    Rayner, J. T.; Chuter, T. C.; Mclean, I. S.; Radostitz, J. V.; Nolt, I. G.

    1988-01-01

    A technique for establishing a stable intermediate temperature stage in liquid He/liquid N2 double vessel cryostats is described. The tertiary cold stage, which can be tuned to any temperature between 10 and 60 K, is ideal for cooling IR sensors for use in astronomy and physics applications. The device is called a variable-conductance gas switch. It is essentially a small chamber, located between the cold stage and liquid helium cold-face, whose thermal conductance may be controlled by varying the pressure of helium gas within the chamber. A key feature of this device is the large range of temperature control achieved with a very small (less than 10 mW) heat input from the cryogenic temperature control switch.

  8. Simulation of SRAM SEU Sensitivity at Reduced Operating Temperatures

    NASA Technical Reports Server (NTRS)

    Sanathanamurthy, S.; Ramachandran, V.; Alles, M. L.; Reed, R. A.; Massengill, L. W.; Raman, A.; Turowski, M.; Mantooth, A.; Woods, B.; Barlow, M.; Moen, K.; Bellini, M.; Sutton, A.; Cressler, J. D.

    2009-01-01

    A new NanoTCAD-to-Spectre interface is applied to perform mixed-mode SEU simulations of an SRAM cell. Results using newly calibrated TCAD cold temperature substrate mobility models, and BSIM3 compact models extracted explicitly for the cold temperature designs, indicate a 33% reduction in SEU threshold for the range of temperatures simulated.

  9. Improvement of the operation rate of medical temperature measuring devices

    NASA Astrophysics Data System (ADS)

    Hotra, O.; Boyko, O.; Zyska, T.

    2014-08-01

    A method of reducing measuring time of temperature measurements of biological objects based on preheating the resistance temperature detector (RTD) up to the temperature close to the temperature to be measured, is proposed. It has been found that at the same measuring time, the preheating allows to decrease the measurement error by a factor of 5 to 45 over the temperature range of 35-41°С. The measurement time is reduced by 1.6-4 times over this range, keeping the same value of the measurement error.

  10. Copy number variation identification and analysis of the chicken genome using a 60K SNP BeadChip.

    PubMed

    Rao, Y S; Li, J; Zhang, R; Lin, X R; Xu, J G; Xie, L; Xu, Z Q; Wang, L; Gan, J K; Xie, X J; He, J; Zhang, X Q

    2016-08-01

    Copy number variation (CNV) is an important source of genetic variation in organisms and a main factor that affects phenotypic variation. A comprehensive study of chicken CNV can provide valuable information on genetic diversity and facilitate future analyses of associations between CNV and economically important traits in chickens. In the present study, an F2 full-sib chicken population (554 individuals), established from a cross between Xinghua and White Recessive Rock chickens, was used to explore CNV in the chicken genome. Genotyping was performed using a chicken 60K SNP BeadChip. A total of 1,875 CNV were detected with the PennCNV algorithm, and the average number of CNV was 3.42 per individual. The CNV were distributed across 383 independent CNV regions (CNVR) and covered 41 megabases (3.97%) of the chicken genome. Seven CNVR in 108 individuals were validated by quantitative real-time PCR, and 81 of these individuals (75%) also were detected with the PennCNV algorithm. In total, 274 CNVR (71.54%) identified in the current study were previously reported. Of these, 147 (38.38%) were reported in at least 2 studies. Additionally, 109 of the CNVR (28.46%) discovered here are novel. A total of 709 genes within or overlapping with the CNVR was retrieved. Out of the 2,742 quantitative trait loci (QTL) collected in the chicken QTL database, 43 QTL had confidence intervals overlapping with the CNVR, and 32 CNVR encompassed one or more functional genes. The functional genes located in the CNVR are likely to be the QTG that are associated with underlying economic traits. This study considerably expands our insight into the structural variation in the genome of chickens and provides an important resource for genomic variation, especially for genomic structural variation related to economic traits in chickens. PMID:27118864

  11. Characterization of a 60-kDa Thermally Stable Antigenic Protein as a Marker for the Immunodetection of Bovine Plasma-Derived Food Ingredients.

    PubMed

    Ofori, Jack A; Hsieh, Yun-Hwa P

    2015-08-01

    A sandwich enzyme-linked immunosorbent assay (sELISA) based on 2 monoclonal antibodies (Bb3D6 and Bb6G12) that recognize a 60-kDa antigenic protein in bovine blood was previously developed for detecting bovine blood in animal feed for the prevention of mad cow disease. This study sought to establish the identity of this 60-kDa antigenic protein and consequently determine the suitability of the sELISA for detecting bovine plasma-derived food ingredients (BPFIs), which are widely used in dietary products without explicit labeling. Results from western blot confirmed the 60-kDa protein to be present in the plasma fraction of bovine blood. Further proteomic analyses involving 2-dimensional gel electrophoresis (2-D GE) and amino acid sequencing revealed the 60-kDa protein to be bovine serum albumin (BSA). The sELISA proved capable of detecting BPFIs in all the commercial dietary supplements tested, including those that were formulated with hydrolyzed BPFIs. The assay could also detect 0.01% and 0.5% of different BPFIs in spiked raw and cooked ground beef, respectively. This assay based on the detection of BSA therefore has the potential to become a valuable analytical tool to protect consumers who avoid consuming BPFIs for religious, health, or ethical reasons. PMID:26172875

  12. A new lateral IGBT for high temperature operation

    NASA Astrophysics Data System (ADS)

    Vellvehi, M.; Godignon, P.; Flores, D.; Fernández, J.; Hidalgo, S.; Rebollo, J.; Millán, J.

    1997-05-01

    The analysis of a new LIGBT with special emphasis on high temperature behaviour is discussed. A comprehensive experimental characterisation of the static characteristics over the temperature range 300-423 K is reported. Two-dimensional (2-D) numerical simulations are used to explain the observed behaviour and to get a physical insight into the effects of temperature on LIGBT performance. Simulation results show a peculiar latch-up mechanism in the proposed new modified structure different from the conventional IGBT structure. The novel LIGBT structure, proposed here, has been compared with LIGBT structures previously reported. All these structures have been fabricated. The experimental latch-up current density of the proposed LIGBT is four times higher than in the other fabricated structures at high temperature. The dynamic latch-up during the LIGBT turn-off process has also been analysed.

  13. A novel temperature compensated operation scheme for trichromatic LED backlights

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Woo; Kim, Jin-Ha; Park, Moo-Youn; Kim, Hee-Dong; Park, Jae-Kyuk; Hwang, Soo-Ryong; Cho, Sung-Min

    2007-02-01

    Trichromatic LED backlights render higher color gamut and panel transmittance to liquid crystal displays (LCDs) than yellow phosphor-converted white LED backlights can possibly do at their best. In realization, however, several technical challenges arise, such as colour shift due to the ambient temperature change, decrease in brightness at elevated temperature, an enlarged dead zone for colour mixing, minimizing the total number of chips and so on. In this work, we designed and demonstrated a low-cost driving circuit that stabilizes brightness and colour coordinates of trichromatic LED backlights using a thermistor as a temperature compensating element. By applying the temperature compensation, the amounts of the brightness and colour shift were reduced to 54% and 51% of the uncompensated cases, respectively.

  14. Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    Loop heat pipes (LHPs) have been used for thermal control of several NASA and commercial orbiting spacecraft. The LHP operating temperature is governed by the saturation temperature of its compensation chamber (CC). Most LHPs use the CC temperature for feedback control of its operating temperature. There exists a thermal resistance between the heat source to be cooled by the LHP and the LHP's CC. Even if the CC set point temperature is controlled precisely, the heat source temperature will still vary with its heat output. For most applications, controlling the heat source temperature is of most interest. A logical question to ask is: "Can the heat source temperature be used for feedback control of the LHP operation?" A test program has been implemented to answer the above question. Objective is to investigate the LHP performance using the CC temperature and the heat source temperature for feedback control

  15. High Frequency Low Amplitude Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2003-01-01

    Contents include the following: 1. High frequency, low amplitude temperature oscillations: LHP operation - governing equations; interactions among LHP components; factors affecting low amplitude temperature oscillations. 2. Test results. 3. Conclusions.

  16. Flashlamp Pumped, Room Temperature, Nd:YAG Laser Operating at 0.946 Micrometers

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Murray, Keith E.; Walsh, Brian M.

    1998-01-01

    Room temperature operation of flashlamp pumped Nd:YAG at 0.946 micrometers was achieved with a laser rod having undoped ends. Performance was characterized and compared with 1.064 micrometer operation and other quasi four level lasers.

  17. Extreme High and Low Temperature Operation of the Silicon-On-Insulator Type CHT-OPA Operational Amplifier

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    A new operational amplifier chip based on silicon-on-insulator technology was evaluated for potential use in extreme temperature environments. The CHT-OPA device is a low power, precision operational amplifier with rail-to-rail output swing capability, and it is rated for operation between -55 C and +225 C. A unity gain inverting circuit was constructed utilizing the CHT-OPA chip and a few passive components. The circuit was evaluated in the temperature range from -190 C to +200 C in terms of signal gain and phase shift, and supply current. The investigations were carried out to determine suitability of this device for use in space exploration missions and aeronautic applications under wide temperature incursion. Re-restart capability at extreme temperatures, i.e. power switched on while the device was soaked at extreme temperatures, was also investigated. In addition, the effects of thermal cycling under a wide temperature range on the operation of this high performance amplifier were determined. The results from this work indicate that this silicon-on-insulator amplifier chip maintained very good operation between +200 C and -190 C. The limited thermal cycling had no effect on the performance of the amplifier, and it was able to re-start at both -190 C and +200 C. In addition, no physical degradation or packaging damage was introduced due to either extreme temperature exposure or thermal cycling. The good performance demonstrated by this silicon-on-insulator operational amplifier renders it a potential candidate for use in space exploration missions or other environments under extreme temperatures. Additional and more comprehensive characterization is, however, required to establish the reliability and suitability of such devices for long term use in extreme temperature applications.

  18. Primary and Secondary Lithium Batteries Capable of Operating at Low Temperatures for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.

    2011-01-01

    Objectives and Approach: (1) Develop advanced Li ]ion electrolytes that enable cell operation over a wide temperature range (i.e., -60 to +60 C). Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (2) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (3) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

  19. Thermal measurement. Nanoscale temperature mapping in operating microelectronic devices.

    PubMed

    Mecklenburg, Matthew; Hubbard, William A; White, E R; Dhall, Rohan; Cronin, Stephen B; Aloni, Shaul; Regan, B C

    2015-02-01

    Modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit's glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope and electron energy loss spectroscopy, we quantified the local density via the energy of aluminum's bulk plasmon. Rescaling density to temperature yields maps with a statistical precision of 3 kelvin/hertz(-1/2), an accuracy of 10%, and nanometer-scale resolution. Many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers. PMID:25657242

  20. GC/MS Gas Separator Operates At Lower Temperatures

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.; Gutnikov, George

    1991-01-01

    Experiments show palladium/silver tube used to separate hydrogen carrier gas from gases being analyzed in gas-chromatography/mass-spectrometry (GC/MS) system functions satisfactorily at temperatures as low as 70 to 100 degrees C. Less power consumed, and catalytic hydrogenation of compounds being analyzed diminished. Because separation efficiency high even at lower temperatures, gas load on vacuum pump of mass spectrometer kept low, permitting use of smaller pump. These features facilitate development of relatively small, lightweight, portable GC/MS system for such uses as measuring concentrations of pollutants in field.

  1. Low threshold interband cascade lasers operating above room temperature

    NASA Technical Reports Server (NTRS)

    Hill, C. J.; Yang, B.; Yang, R. Q.

    2003-01-01

    Mid-IR type-II interband cascade lasers were demonstrated in pulsed mode at temperatures up to 325 K and in continuous mode up to 200 K. At 80 K, the threshold current density was 8.9 A/cm2 and a cw outpout power of 140 mW/facet was obtained.

  2. Electrolytes for Wide Operating Temperature Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2016-01-01

    Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.

  3. Silicon solar cell monitors high temperature furnace operation

    NASA Technical Reports Server (NTRS)

    Zellner, G. J.

    1968-01-01

    Silicon solar cell, attached to each viewpoint, monitors that incandescent emission from the hot interior of a furnace without interfering with the test assembly or optical pyrometry during the test. This technique can provide continuous indication of hot spots or provide warning of excessive temperatures in cooler regions.

  4. Performance of a spacecraft DC-DC converter breadboard modified for low temperature operation

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.; Stell, Chris; Patterson, Richard; Ray, Biswajit

    1996-01-01

    A 1OW 3OV/5.OV push-pull dc-dc converter breadboard, designed by the Jet Propulsion Laboratory (JPL) with a +50 C to +5 C operating range for the Cassini space probe, was characterized for lower operating temperatures. The breadboard converter which failed to operate for temperatures below -125 C was then modified to operate at temperatures approaching that of liquid nitrogen (LN2). Associated with this low operating temperature range (greater than -196 C) was a variety of performance problems such as significant change in output voltage, converter switching instability, and failure to restart at temperatures below -154 C. An investigation into these problems yielded additional modifications to the converter which improved low temperature performance even further.

  5. Lithium Batteries and Supercapacitors Capable of Operating at Low Temperatures for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.

    2012-01-01

    Demonstrated improved performance with wide operating temperature electrolytes containing ester co - solvents (i.e., methyl propionate and ethyl butyrate) in a number of prototype cells: center dot Successfully scaled up low temperature technology to 12 Ah size prismatic Li - ion cells (Quallion, LCC), and demonstrated good performance down to - 60 o C. center dot Demonstrated wide operating temperature range performance ( - 60 o to +60 o C) in A123 Systems LiFePO 4 - based lithium - ion cells containing methyl butyrate - based low temperature electrolytes. These systems were also demonstrated to have excellent cycle life performance at ambient temperatures, as well as the ability to be cycled up to high temperatures.

  6. Low-temperature operation of a Buck DC/DC converter

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    Low-temperature (77 K) operation of a 42/28 V, 175 W, 50 kHz PWM Buck DC/DC converter designed with commercially available components is reported. Overall, the converter losses decreased at 77 K compared to room temperature operation. A full-load efficiency of 97 percent was recorded at liquid-nitrogen temperature, compared to 95.8 percent at room temperature. Power MOSFET operation improved significantly where as the output rectifier operation deteriorated at low-temperature. The performance of the output filter inductor and capacitor did not change significantly at 77 K compared to room temperature performance. It is possible to achieve high-density and high efficiency power conversion at low-temperatures due to improved electronic, electrical and thermal properties of materials.

  7. Impacts of operation of CVP regulating reservoirs on water temperature

    SciTech Connect

    Vail, L.W.

    1996-06-01

    The Western Area Power Administration (Western) markets and transmits electric power throughout 15 western states. Western's Sierra Nevada Customer Service Region (Sierra Nevada Region) markets approximately 1,480 megawatts (MW) of firm power (and 100 MW of seasonal peaking capacity) from the Central Valley Project (CVP) and other sources and markets available nonfirm power from the Washoe Project. Western's mission is to sell and deliver electricity generated from CVP powerplants. The hydroelectric facilities of the CVP are operated by the Bureau of Reclamation (Reclamation). Reclamation manages and releases water in accordance with the various acts authorizing specific projects and with enabling legislation. Western's capacity and energy sales must be in conformance with the laws that govern its sale of electrical power. Further, Western's hydropower operations at each facility must comply with minimum and maximum flows and other constraints set by Reclamation, the U.S. Fish and Wildlife Service, or other agencies, acting in accord with law or policy.

  8. High Temperature Electrolysis Pressurized Experiment Design, Operation, and Results

    SciTech Connect

    J.E. O'Brien; X. Zhang; G.K. Housley; K. DeWall; L. Moore-McAteer

    2012-09-01

    A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate planar cells with dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. It is also suitable for testing other cell and stack geometries including tubular cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. Pressurized operation of a ten-cell internally manifolded solid oxide electrolysis stack has been successfully demonstrated up 1.5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this

  9. Operating experience using venturi flow meters at liquid helium temperature

    SciTech Connect

    Wu, K.C.

    1992-06-01

    Experiences using commercial venturi to measure single phase helium flow near 4 K (degree Kelvin) for cooling superconducting magnets have been presented. The mass flow rate was calculated from the differential pressure and the helium density evaluated from measured pressure and temperature. The venturi flow meter, with a full range of 290 g/s (0.29 Kg/s) at design conditions, has been found to be reliable and accurate. The flow measurements have been used, with great success, for evaluating the performance of a cold centrifugal compressor, the thermal acoustic heat load of a cryogenic system and the cooling of a superconducting magnet after quench.

  10. Operating experience using venturi flow meters at liquid helium temperature

    SciTech Connect

    Wu, K.C.

    1992-01-01

    Experiences using commercial venturi to measure single phase helium flow near 4 K (degree Kelvin) for cooling superconducting magnets have been presented. The mass flow rate was calculated from the differential pressure and the helium density evaluated from measured pressure and temperature. The venturi flow meter, with a full range of 290 g/s (0.29 Kg/s) at design conditions, has been found to be reliable and accurate. The flow measurements have been used, with great success, for evaluating the performance of a cold centrifugal compressor, the thermal acoustic heat load of a cryogenic system and the cooling of a superconducting magnet after quench.

  11. Silicene field-effect transistors operating at room temperature

    NASA Astrophysics Data System (ADS)

    Tao, Li; Cinquanta, Eugenio; Chiappe, Daniele; Grazianetti, Carlo; Fanciulli, Marco; Dubey, Madan; Molle, Alessandro; Akinwande, Deji

    2015-03-01

    Free-standing silicene, a silicon analogue of graphene, has a buckled honeycomb lattice and, because of its Dirac bandstructure combined with its sensitive surface, offers the potential for a widely tunable two-dimensional monolayer, where external fields and interface interactions can be exploited to influence fundamental properties such as bandgap and band character for future nanoelectronic devices. The quantum spin Hall effect, chiral superconductivity, giant magnetoresistance and various exotic field-dependent states have been predicted in monolayer silicene. Despite recent progress regarding the epitaxial synthesis of silicene and investigation of its electronic properties, to date there has been no report of experimental silicene devices because of its air stability issue. Here, we report a silicene field-effect transistor, corroborating theoretical expectations regarding its ambipolar Dirac charge transport, with a measured room-temperature mobility of ˜100 cm2 V-1 s-1 attributed to acoustic phonon-limited transport and grain boundary scattering. These results are enabled by a growth-transfer-fabrication process that we have devised—silicene encapsulated delamination with native electrodes. This approach addresses a major challenge for material preservation of silicene during transfer and device fabrication and is applicable to other air-sensitive two-dimensional materials such as germanene and phosphorene. Silicene's allotropic affinity with bulk silicon and its low-temperature synthesis compared with graphene or alternative two-dimensional semiconductors suggest a more direct integration with ubiquitous semiconductor technology.

  12. Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2011-01-01

    Objectives of this work are: (1) Develop advanced Li -ion electrolytes that enable cell operation over a wide temperature range (i.e., -30 to +60C). (2) Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (3) Improve the high voltage stability of these candidate electrolytes systems to enable operation up to 5V with high specific energy cathode materials. (4) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (5) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

  13. Binding of the 60-kDa Ro autoantigen to Y RNAs: evidence for recognition in the major groove of a conserved helix.

    PubMed

    Green, C D; Long, K S; Shi, H; Wolin, S L

    1998-07-01

    The 60-kDa Ro autoantigen is normally complexed with small cytoplasmic RNAs known as Y RNAs. In Xenopus oocytes, the Ro protein is also complexed with a large class of variant 5S rRNA precursors that are folded incorrectly. Using purified baculovirus-expressed protein, we show that the 60-kDa Ro protein binds directly to both Y RNAs and misfolded 5S rRNA precursors. To understand how the protein recognizes these two distinct classes of RNAs, we investigated the features of Y RNA sequence and structure that are necessary for protein recognition. We identified a truncated Y RNA that is stably bound by the 60-kDa Ro protein. Within this 39-nt RNA is a conserved helix that is proposed to be the binding site for the Ro protein. Mutagenesis of this minimal Y RNA revealed that binding by the 60-kDa Ro protein requires specific base pairs within the conserved helix, a singly bulged nucleotide that disrupts the helix, and a three-nucleotide bulge on the opposing strand. Chemical probing experiments using diethyl pyrocarbonate demonstrated that, in the presence of the two bulges, the major groove of the conserved helix is accessible to protein side chains. These data are consistent with a model in which the Ro protein recognizes specific base pairs in the conserved helix by binding in the major groove of the RNA. Furthermore, experiments in which dimethyl sulfate was used to probe a naked and protein-bound Y RNA revealed that a structural alteration occurs in the RNA upon Ro protein binding. PMID:9671049

  14. Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly accomplished by cold biasing the reservoir and using electrical heaters to provide the required control power. Using this method, the loop operating temperature can be controlled within +/- 0.5K. However, because of the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP has been carried out to investigate the effects on the LHP operation when the control temperature sensor is placed on the heat source instead of the reservoir. In these tests, the LHP reservoir is cold-biased and is heated by a control heater. Tests results show that it is feasible to use the heat source temperature for feedback control of the LHP operation. Using this method, the heat source temperature can be maintained within a tight range for moderate and high powers. At low powers, however, temperature oscillations may occur due to interactions among the reservoir control heater power, the heat source mass, and the heat output from the heat source. In addition, the heat source temperature could temporarily deviate from its set point during fast thermal transients. The implication is that more sophisticated feedback control algorithms need to be implemented for LHP transient operation when the heat source temperature is used for feedback control.

  15. Identification of sequence similarity between 60 kDa and 70 kDa molecular chaperones: evidence for a common evolutionary background?

    PubMed Central

    Flores, A I; Cuezva, J M

    1997-01-01

    Recent findings support the premise that chaperonins (60 kDa stress-proteins) and alpha-subunits of F-type ATPases (alpha-ATPase) are evolutionary related protein families. Two-dimensional gel patterns of synthesized proteins in unstressed and heat-shocked embryonic Drosophila melanogaster SL2 cells revealed that antibodies raised against the alpha-subunit of the F1-ATPase complex from rat liver recognize an inducible p71 member of the 70 kDa stress-responsive protein family. Molecular recognition of this stress-responsive 70 kDa protein by antibodies raised against the F1-ATPase alpha-subunit suggests the possibility of partial sequence similarity within these ATP-binding protein families. A multiple sequence alignment between alpha-ATPases and 60 kDa and 70 kDa molecular chaperones is presented. Statistical evaluation of sequence similarity reveals a significant degree of sequence conservation within the three protein families. The finding suggests a common evolutionary origin for the ATPases and molecular chaperone protein families of 60 kDa and 70 kDa, despite the lack of obvious structural resemblance between them. PMID:9065788

  16. Miniature cryocooler developments for high operating temperatures at Thales Cryogenics

    NASA Astrophysics Data System (ADS)

    Arts, R.; Martin, J.-Y.; Willems, D.; Seguineau, C.; Van Acker, S.; Mullié, J. C.; Göbel, A.; Tops, M.; Le Bordays, J.; Etchanchu, T.; Benschop, A. A. J.

    2015-05-01

    In recent years there has been a drive towards miniaturized cooled IDCA solutions for low-power, low-mass, low-size products (SWaP). To support this drive, coolers are developed optimized for high-temperature, low heat load dewar-detector assemblies. In this paper, Thales Cryogenics development activities supporting SWaP are presented. Design choices are discussed and compared to various key requirements. Trade-off analysis results are presented on drive voltage, cold finger definition (length, material, diameter and sealing concept), and other interface considerations, including cold finger definition. In parallel with linear and rotary cooler options, designs for small-size high-efficiency drive electronics based on state-of-the-art architectures are presented.

  17. Effects of the operating pressure on the performance of water electrolysis cells at elevated temperatures

    SciTech Connect

    Ogata, Y.; Yasudo, M.; Hine, F.

    1988-12-01

    The influence of pressure on the performance and the thermal behavior of an alkaline water electrolyzer operated at elevated temperatures was studied. The pressure dependence of cell voltage was not significant. On the other hand, the effects of pressure on the thermal behavior were great depending on the operating conditions mainly caused by the suppression of water vaporization. The optimum conditions of the operating temperature and pressure are also discussed from an economic point of view.

  18. Scheduling field operations as a function of temperature, soil moisture, and available resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scheduling field operations in SWAT can be done by specifying fixed dates or by using the heat unit index, which considers temperature constraints. However, soil moisture and labor requirements can also limit the ability of farm operators to perform field operations at the optimal time. The SWAT2012...

  19. High refractive index and temperature sensitivity LPGs for high temperature operation

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Gouveia, C.; Jana, Surnimal; Bera, Susanta; Baptista, J. M.; Moreira, Paulo; Biwas, Palas; Bandyopadhyay, Somnath; Jorge, Pedro A. S.

    2013-11-01

    A fiber optic sensor for high sensitivity refractive index and temperature measurement able to withstand temperature up to 450 °C is reported. Two identical LPG gratings were fabricated, whereas one was coated with a high refractive index (~1.78) sol-gel thin film in order to increase its sensitivity to the external refractive index. The two sensors were characterized and compared in refractive index and temperature. Sensitivities of 1063 nm/RIU (1.338 - 1.348) and 260 pm/°C were achieved for refractive index and temperature, respectively.

  20. Small CO2 Sensors Operate at Lower Temperature

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.

    2009-01-01

    Solid-electrolyte-based amperometric sensors for measuring concentrations of CO2 in air are being developed for use in detection of fires, environmental monitoring, and other applications where liquid-based electrochemical cells are problematic. These sensors are small (sizes of the order of a millimeter), are robust, are amenable to batch fabrication at relatively low cost, and exhibit short response times (seconds) and wide detection ranges. A sensor of this type at a previous stage of development included a solid electrolyte of Na3Zr2Si2PO12 deposited mainly between interdigitated Pt electrodes on an alumina substrate, all overcoated with an auxiliary solid electrolyte of (Na2CO3:BaCO3 in a molar ratio of 1:1.7). It was necessary to heat this device to a temperature as high as 600 C to obtain the desired sensitivity and rapid response. Heating sensors increases the power consumption of the sensor system and complicates the use of the sensor in some applications. Thus, decreasing a sensor s power consumption while maintaining its performance is a technical goal of ongoing development.

  1. High Frequency Low Amplitude Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2003-01-01

    The operating temperature of a loop heat pipe (LHP) with a single evaporator is governed by the compensation chamber (CC) temperature, which in turn is a finction of the evaporator power, condenser sink temperature, and ambient temperature. As the operating condition changes, the CC temperature will change during the transient but eventually reach a new steady temperature. Under certain conditions, however, the LHP never really reaches a true steady state, but instead displays an oscillatory behavior. This paper presents a study on the oscillation of the loop operating temperature with amplitudes on the order of one degree Kelvin and frequencies on the order of 10(exp -1) to 10(exp -2) Hertz. The source of the high frequency temperature oscillation is the fast movement of the vapor front in the condenser section, which usually occurs when the vapor front is near the condenser inlet or the condenser outlet. At these locations, the vapor front is unable to find a stable position for the given operating conditions, and will move back and forth. The movement of the vapor front causes the movement of the liquid in the condenser and the liquid line, leading to oscillations of the CC and the loop temperatures. Factors that affect the vapor front movement include evaporator power, condenser sink temperature, body forces and whether or the CC temperature is actively controlled. As long as there are no large thermal masses attached to the evaporator, the loop can self adjust rather quickly and the vapor front will move rapidly around the condenser inlet or outlet, leading to high frequency temperature oscillations. The amplitude of temperature oscillation is usually the largest in the liquid line, up to 20 degrees Kelvin in many cases, but diminishes to less than one degree Kelvin in the CC. Furthermore, the high frequency temperature oscillation can occur at any CC temperature when the right combination of the evaporator power and condenser sink temperature prevails.

  2. DYNAMIC RESPONSE OF STREAM TEMPERATURES TO BOUNDARY AND INFLOW PERTURBATION DUE TO RESERVOIR OPERATIONS

    SciTech Connect

    Khangaonkar, Tarang P.; Yang, Zhaoqing

    2008-05-01

    Dams and reservoir operations modify natural stream behaviour and affect the downstream characteristics such as mean temperatures and diurnal temperature amplitudes. Managing phase effects due to reservoir operation and the associated amplification of daily maximum temperatures in the downstream reaches remains a challenge. An analytical approach derived from a one-dimensional heat advection and dispersion equation with surface heating in the form of equilibrium temperature was developed to examine the potential for restoration of natural stream temperatures. The analytical model was validated with observed temperature data collected in the Clackamas River, Oregon, and was used to highlight key downstream temperature behaviour characteristics. Mean stream temperatures below the dam are relatively stable and upon deviating from natural stream mean temperatures, return asymptotically to their natural state. In contrast, the amplitudes of daily temperature variation are highly sensitive to the phase differences induced by the dam and could nearly double in natural amplitude within the first 24 h. The analysis showed that restoring average stream temperatures to natural levels through structural and operational modifications at the dam may not be sufficient as phase-induced temperatures maximums would continue to persist

  3. Verilog-A Device Models for Cryogenic Temperature Operation of Bulk Silicon CMOS Devices

    NASA Technical Reports Server (NTRS)

    Akturk, Akin; Potbhare, Siddharth; Goldsman, Neil; Holloway, Michael

    2012-01-01

    Verilog-A based cryogenic bulk CMOS (complementary metal oxide semiconductor) compact models are built for state-of-the-art silicon CMOS processes. These models accurately predict device operation at cryogenic temperatures down to 4 K. The models are compatible with commercial circuit simulators. The models extend the standard BSIM4 [Berkeley Short-channel IGFET (insulated-gate field-effect transistor ) Model] type compact models by re-parameterizing existing equations, as well as adding new equations that capture the physics of device operation at cryogenic temperatures. These models will allow circuit designers to create optimized, reliable, and robust circuits operating at cryogenic temperatures.

  4. Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature

    NASA Technical Reports Server (NTRS)

    Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.

  5. High-power QCW arrays for operation over wide temperature extremes

    NASA Astrophysics Data System (ADS)

    Feeler, Ryan; Junghans, Jeremy; Stephens, Ed

    2009-02-01

    A family of laser diode arrays has been developed for QCW operation in adverse environmental conditions. The arrays contain expansion-matched heatsinks, hard solder, and are built using a process that minimizes the packaging-induced strain on the laser diode bars. The arrays are rated for operation at 200 Watts/bar under normal operating conditions. This work contains test results for these arrays when run under a variety of harsh operating conditions. The conditions were chosen to mimic those required by many military and aerospace laser programs. Life test results are presented over a range of operating temperatures common to military specifications (-40 °C to + 70 °C) at a power level of approximately 215 Watts/bar. The arrays experienced no measurable degradation over the course of the life test. Operation at the temperature extremes did not introduce any additional detectable failure mechanisms. Also presented are results of characterization and reliability tests conducted at cryogenic temperatures. Diode arrays have been subjected to repeated cycles in rapid succession between room temperature and 77 K with temperature ramp rates up to 100 K/minute. Pre- and post- thermal cycle P-I-V data are compared. The results demonstrate the suitability of these arrays for operation at cryogenic temperatures.

  6. Operation of a New COTS Crystal Oscillator - CXOMHT over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2011-01-01

    Crystal oscillators are extensively used in electronic circuits to provide timing or clocking signals in data acquisition, communications links, and control systems, to name a few. They are affordable, small in size, and reliable. Because of the inherent characteristics of the crystal, the oscillator usually exhibits extreme accuracy in its output frequency within the intrinsic crystal stability. Stability of the frequency could be affected under varying load levels or other operational conditions. Temperature is one of those important factors that influence the frequency stability of an oscillator; as it does to the functionality of other electronic components. Electronics designed for use in NASA deep space and planetary exploration missions are expected to be exposed to extreme temperatures and thermal cycling over a wide range. Thus, it is important to design and develop circuits that are able to operate efficiently and reliably under in these harsh temperature environments. Most of the commercial-off-the-shelf (COTS) devices are very limited in terms of their specified operational temperature while very few custom-made commercial and military-grade parts have the ability to operate in a slightly wider range of temperature than those of the COTS parts. These parts are usually designed for operation under one temperature extreme, i.e. hot or cold, and do not address the wide swing in the operational temperature, which is typical of the space environment. For safe and successful space missions, electronic systems must therefore be designed not only to withstand the extreme temperature exposure but also to operate efficiently and reliably. This report presents the results obtained on the evaluation of a new COTS crystal oscillator under extreme temperatures.

  7. Temperature Compensated Sapphire Resonator for Ultrastable Oscillator Operating at Temperatures Near 77 Deg Kelvin

    NASA Technical Reports Server (NTRS)

    Dick, G. John (Inventor); Santiago, David G. (Inventor)

    1999-01-01

    A sapphire resonator for an ultrastable oscillator capable of substantial performance improvements over the best available crystal quartz oscillators in a compact cryogenic package is based on a compensation mechanism enabled by the difference between copper and sapphire thermal expansion coefficients for so tuning the resonator as to cancel the temperature variation of the sapphire's dielectric constant. The sapphire resonator consists of a sapphire ring separated into two parts with webs on the outer end of each to form two re-entrant parts which are separated by a copper post. The re-entrant parts are bonded to the post by indium solder for good thermal conductivity between parts of that subassembly which is supported on the base plate of a closed copper cylinder (rf shielding casing) by a thin stainless steel cylinder. A unit for temperature control is placed in the stainless steel cylinder and is connected to the subassembly of re-entrant parts and copper post by a layer of indium for good thermal conduction. In normal use, the rf shielding casing is placed in a vacuum tank which is in turn placed in a thermos flask of liquid nitrogen. The temperature regulator is controlled from outside the thermos flask to a temperature in a range of about 40K to 150K, such as 87K for the WGH-811, mode of resonance in response to microwave energy inserted into the rf shielding casing through a port from an outside source.

  8. Modeling Shasta Dam operations to regulate temperatures for Chinook salmon under extreme climate and climate change

    NASA Astrophysics Data System (ADS)

    Dai, A.; Saito, L.; Sapin, J. R.; Rajagopalan, B.; Hanna, R. B.; Kauneckis, D. L.

    2014-12-01

    Chinook salmon populations have declined significantly after the construction of Shasta Dam on the Sacramento River in 1945 prevented them from spawning in the cold waters upstream. In 1994, the winter-run Chinook were listed under the Endangered Species Act and 3 years later the US Bureau of Reclamation began operating a temperature control device (TCD) on the dam that allows for selective withdrawal for downstream temperature control to promote salmon spawning while also maximizing power generation. However, dam operators are responsible to other interests that depend on the reservoir for water such as agriculture, municipalities, industry, and recreation. An increase in temperatures due to climate change may place additional strain on the ability of dam operations to maintain spawning habitat for salmon downstream of the dam. We examined the capability of Shasta Dam to regulate downstream temperatures under extreme climates and climate change by using stochastically generated streamflow, stream temperature, and weather inputs with a two-dimensional CE-QUAL-W2 model under several operational options. Operation performance was evaluated using degree days and cold pool volume (volume of water below a temperature threshold). Model results indicated that a generalized operations release schedule, in which release elevations varied over the year to match downstream temperature targets, performed best overall in meeting temperature targets while preserving cold pool volume. Releasing all water out the bottom throughout the year tended to meet temperature targets at the expense of depleting the cold pool, and releasing all water out uppermost gates preserved the cold pool, but released water that was too warm during the critical spawning period. With higher air temperatures due to climate change, both degree day and cold pool volume metrics were worse than baseline conditions, which suggests that Chinook salmon may be more negatively affected under climate change.

  9. Comparison of photovoltaic cell temperatures in modules operating with exposed and enclosed back surfaces

    NASA Technical Reports Server (NTRS)

    Namkoong, D.; Simon, F. F.

    1981-01-01

    Four different photovoltaic module designs were tested to determine the cell temperature of each design. The cell temperatures were compared to those obtained on identical design, using the same nominal operating cell temperature (NOCT) concept. The results showed that the NOCT procedure does not apply to the enclosed configurations due to continuous transient conditions. The enclosed modules had higher cell temperatures than the open modules, and insulated modules higher than the uninsulated. The severest performance loss - when translated from cell temperatures - 17.5 % for one enclosed, insulated module as a compared to that module mounted openly.

  10. Low Frequency High Amplitude Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Rodriguez, Jose

    2003-01-01

    This paper presents viewgraphs on the low frequency high amplitude temperature oscillations observed in loop heat pipe operations. The topics include: 1) Proposed Theory; 2) Test Loop and Test Results; and 3) Effects of Various Parameters. The author also presents a short summary on the conditiions that must be met in order to sustain a low frequency high amplitude temperature oscillation.

  11. On the operation of silicon photomultipliers at temperatures of 1-4 kelvin

    NASA Astrophysics Data System (ADS)

    Achenbach, P.; Biroth, M.; Downie, E.; Thomas, A.

    2016-07-01

    SiPM operation at cryogenic temperatures fails for many common devices. A particular type from Zecotek with deep channels in the silicon substrate instead of quenching resistors was tested at liquid helium temperature. Two similar types were thoroughly characterized from room temperature down to liquid nitrogen temperature by illuminating them with low light levels. At cryogenic temperatures the SiPMs show an unchanged rise-time and a fast recovery time, practically no after-pulses, and exhibit no increased cross-talk probability. Charge collection spectra were measured to extract the pixel gain and its variation, both comparable to room temperature at the same over-voltage. The quenching resistance was decreased at cryogenic temperature. It was found possible to use the characterized devices at temperatures of 1-4 K for the read-out of a target at the Mainz Microtron in Germany.

  12. Red-light-emitting laser diodes operating CW at room temperature

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Hawrylo, F. Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200-8000-A spectral range. These devices operate continuously with simple oxide-isolated stripe contacts to 7400 A, which extends CW operation into the visible (red) portion of the spectrum.

  13. Hybrid sulfur cycle operation for high-temperature gas-cooled reactors

    SciTech Connect

    Gorensek, Maximilian B

    2015-02-17

    A hybrid sulfur (HyS) cycle process for the production of hydrogen is provided. The process uses a proton exchange membrane (PEM) SO.sub.2-depolarized electrolyzer (SDE) for the low-temperature, electrochemical reaction step and a bayonet reactor for the high-temperature decomposition step The process can be operated at lower temperature and pressure ranges while still providing an overall energy efficient cycle process.

  14. The Effective Lifetime of ACSR Full Tension Splice Connector Operated at Higher Temperature

    SciTech Connect

    Wang, Jy-An John; Lara-Curzio, Edgar; King Jr, Thomas J; Graziano, Joe; Chan, John; Goodwin, Tip

    2009-01-01

    This paper is to address the issues related to integrity of ACSR full tension splice connectors operated at high temperatures. A protocol of integrating analytical and experimental approaches to evaluate the integrity of a full tension single-stage splice connector (SSC) assembly during service at high operating temperature was developed. Based on the developed protocol the effective lifetime evaluation was demonstrated with ACSR Drake conductor SSC systems. The investigation indicates that thermal cycling temperature and frequency, conductor cable tension loading, and the compressive residual stress field within a SSC system have significant impact on the SSC integrity and the associated effective lifetime.

  15. High Temperature Electrolysis 4 kW Experiment Design, Operation, and Results

    SciTech Connect

    J.E. O'Brien; X. Zhang; K. DeWall; L. Moore-McAteer; G. Tao

    2012-09-01

    This report provides results of long-term stack testing completed in the new high-temperature steam electrolysis multi-kW test facility recently developed at INL. The report includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This facility has provided a demonstration of high-temperature steam electrolysis operation at the 4 kW scale with advanced cell and stack technology. This successful large-scale demonstration of high-temperature steam electrolysis will help to advance the technology toward near-term commercialization.

  16. Temperature dependence of dimension-6 gluon operators and their effects on charmonium

    NASA Astrophysics Data System (ADS)

    Kim, HyungJoo; Morita, Kenji; Lee, Su Houng

    2016-01-01

    Starting from an earlier representation of the independent dimension-6 gluon operators in terms of color electric and magnetic fields, we estimate their changes near the critical temperature Tc using the temperature dependence of the dimension-4 electric and magnetic condensates extracted from pure gauge theory on the lattice. We then improve the previous QCD sum rules for the J /ψ mass near Tc based on dimension-4 operators, by including the contribution of the dimension-6 operators to the OPE. We find an enhanced stability in the sum rule and confirm that the J /ψ will undergo an abrupt change in the property across Tc.

  17. Operation of SOI P-Channel Field Effect Transistors, CHT-PMOS30, under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2009-01-01

    Electronic systems are required to operate under extreme temperatures in NASA planetary exploration and deep space missions. Electronics on-board spacecraft must also tolerate thermal cycling between extreme temperatures. Thermal management means are usually included in today s spacecraft systems to provide adequate temperature for proper operation of the electronics. These measures, which may include heating elements, heat pipes, radiators, etc., however add to the complexity in the design of the system, increases its cost and weight, and affects its performance and reliability. Electronic parts and circuits capable of withstanding and operating under extreme temperatures would reflect in improvement in system s efficiency, reducing cost, and improving overall reliability. Semiconductor chips based on silicon-on-insulator (SOI) technology are designed mainly for high temperature applications and find extensive use in terrestrial well-logging fields. Their inherent design offers advantages over silicon devices in terms of reduced leakage currents, less power consumption, faster switching speeds, and good radiation tolerance. Little is known, however, about their performance at cryogenic temperatures and under wide thermal swings. Experimental investigation on the operation of SOI, N-channel field effect transistors under wide temperature range was reported earlier [1]. This work examines the performance of P-channel devices of these SOI transistors. The electronic part investigated in this work comprised of a Cissoid s CHT-PMOS30, high temperature P-channel MOSFET (metal-oxide semiconductor field-effect transistor) device [2]. This high voltage, medium-power transistor is designed for geothermal well logging applications, aerospace and avionics, and automotive industry, and is specified for operation in the temperature range of -55 C to +225 C. Table I shows some specifications of this transistor [2]. The CHT-PMOS30 device was characterized at various temperatures

  18. Requirements of diesel engine oil as it relates to low temperature operation

    SciTech Connect

    Roth, R.J.G. )

    1989-01-01

    The performance requirements of heavy duty engine oils designed for equipment operating at ambient temperatures of less than -25{degrees}C are discussed. Experience has shown that the use of properly formulated, partially synthetic SAE 5W20 arctic oils can lead to improved startability and actually increase equipment life and engine durability. A further benefit may be realized through an increase in fuel economy over that of heavier oils. Better performance may be obtained through the use of partially synthetic SAE OW30 arctic oils which are useful over a wider temperature range and allow operation of equipment at ambient temperature consistently below -40{degrees}C. Recommendations by various engine manufacturers and the US military regarding low temperature operation of diesel engines are reviewed.

  19. Analytical Prediction of Temperature Distribution in Cylinder Liner during Various Boring Operations

    NASA Astrophysics Data System (ADS)

    Tang, Yulong; Sasahara, Hiroyuki

    During the boring process of the engine cylinder liner in automotive manufacturing, the heat at the cutting point flows into the cylinder liner and causes it to thermally expand, which is an inescapable machining issue. This affects the machining accuracy of the machined liner. However, the thermal expansion can be minimized under suitable cutting conditions and boring operations. The boring operation of an engine cylinder liner usually has two stages, semi-finishing boring and finishing. Different from the conventional boring operation, a new boring operation which can perform semi-finishing boring and finishing boring in one stage is explored in this paper. By this boring operation, the influence of the thermal expansion of the machined liner can be minimized. This boring operation is called a “simultaneous boring operation” in this paper. To prove the validity of the simultaneous boring operation, a finite element method (FEM) model was developed to predict the thermal behavior in the cylinder liner during the simultaneous boring operation/conventional boring operation. The results show that the machining errors caused by the thermal expansion of the cylinder liner during the simultaneous boring operation are smaller than those of the cylinder liner during the conventional boring operation. To investigate the influence of the cutting conditions on temperature distribution in the cylinder liner during simultaneous boring operation, FEM analysis of the temperature and thermal expansion on the cylinder liner under three levels of cutting speeds (300,600, and 900m/min) combined with two types of cutting fluid (dry, wet) during simultaneous boring was performed. The results showed that the temperature rise of the cylinder liner during a high-speed, wet simultaneous boring operation is small.

  20. Life extension of elevated-temperature reactors considering actual operating conditions

    SciTech Connect

    Ziada, H.H.

    1993-01-01

    Many reactors have experienced operating conditions less severe than those specified in the design. Their actual operating conditions may involve fewer or less severe transients, lower operating temperatures, or a combination of these. Thus the actual operating conditions become important considerations in efforts to extend the life of reactor components. If the number of transients experienced is fewer than the number specified in the design, the actual transients must be reconstructed to determine extended life. When operating temperature is below 800 [degrees]F, fatigue damage becomes the controlling factor in life assessment. At operating temperatures above 800 [degrees]F (e.g., breeder reactors), creep damage becomes another controlling factor because residual stresses have a longer time for relaxation, a fact that will reduce creep damage. This study presents an approach to assessing the life of breeder reactor components when the actual transients are fewer in number than those specified in the design. It also discusses the sensitivity of creep-fatigue damage in such factors when actual operating temperatures and the actual severity of transients fall below the design specifications.

  1. Life extension of elevated-temperature reactors considering actual operating conditions

    SciTech Connect

    Ziada, H.H.

    1993-01-01

    Many reactors have experienced operating conditions less severe than those specified in the design. Their actual operating conditions may involve fewer or less severe transients, lower operating temperatures, or a combination of these. Thus the actual operating conditions become important considerations in efforts to extend the life of reactor components. If the number of transients experienced is fewer than the number specified in the design, the actual transients must be reconstructed to determine extended life. When operating temperature is below 800 {degrees}F, fatigue damage becomes the controlling factor in life assessment. At operating temperatures above 800 {degrees}F (e.g., breeder reactors), creep damage becomes another controlling factor because residual stresses have a longer time for relaxation, a fact that will reduce creep damage. This study presents an approach to assessing the life of breeder reactor components when the actual transients are fewer in number than those specified in the design. It also discusses the sensitivity of creep-fatigue damage in such factors when actual operating temperatures and the actual severity of transients fall below the design specifications.

  2. Experimental set up of a magnetoelectric measuring system operating at different temperatures

    NASA Astrophysics Data System (ADS)

    Gil, K.; Gil, J.; Cruz, B.; Ramirez, A.; Medina, M.; Torres, J.

    2016-02-01

    The magnetoelectric effect is the phenomenon whereby through a magnetic stimulation can be produced an electrical response or vice versa. We implement a magnetoelectric voltage measuring device through the dynamic method for a different range of temperatures. The system was split into an electric set and an instrumentation and control set. Design and element selection criteria that the experimenter must take into account are presented, with special emphasis in the design of the sample holder, which is the fundamental component that differentiates the system operating at high temperature and the one operating at room temperature. The experimental equipment consists of an electromagnet with DC magnetic flux density (B) in a range of (0.0 to 1.6) KOe, a Helmholtz coil which operates with a sinusoidal B between (0.0 and 0.016) KOe and a PT100 temperature sensor. A tubular heating resistance, a Checkman temperature control and an SSR 40A were used for controlling the temperature. As an application of the system, the transverse and longitudinal magnetoelectric coefficient was measured for a thin film of BiFeO3 at room temperature and 307K. It was observed that the behaviour of the longitudinal and transverse magnetoelectric coefficient matches the reported value and decreased with increasing temperature.

  3. Operative environmental temperatures and basking behavior of the turtle Pseudemys scripta

    SciTech Connect

    Crawford, K.M.; Spotila, J.R.; Standora, E.A.

    1983-01-01

    Operative environmental temperatures (T/sub e/, an index of the thermal environment) were measured for basking Pseudemys scripta in South Carolina. Operative environmental temperatures were good predictors of the basking behavior of P. scripta. Turtles in this study generally did not bask unless T/sub e/ was 28/sup 0/C (preferred body temperature) or higher. This demonstrated that basking was not a random behavior in respect to T/sub e/, and implicated thermoregulation as a major factor eliciting basking behavior. Operative environmental temperature was positively related to short-wave and total solar radiation as well as to air and substrate temperature. Substrate temperature was the best single predictor of T/sub e/. A multiple regression equation (T/sub e/ = 0.005R + 0.103T/sub a/ - 1.16 log V + 0.932T/sub s/ - 2.54, r/sup 2/ = .90, where R = total radiation in watts per square metre, T/sub a/ = air temperature in degrees Celsius, V = wind speed in metres per second, and T/sub s/ = substrate temperature in degrees Celsius) defines the relationship of T/sub e/ to microclimate variables. Movement of the sun through the day results in spatial variation in T/sub e/'s available to turtles and influences their location and basking behavior.

  4. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  5. Low Frequency High Amplitude Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Rodriquez, Jose; Simpson, Alda D. (Technical Monitor)

    2003-01-01

    This paper presents a theory that explains low frequency, high amplitude temperature oscillations in loop heat pipe (LHP) operation. Oscillations of the CC temperature with amplitudes on the order of tens of degrees Kelvin and periods on the order of hours have been observed in some LHPs during ambient testing. There are presently no satisfactory explanations for such a phenomenon in the literature. It is well-known that the operating temperature of an LHP with a single evaporator is governed by the compensation chamber (CC) temperature, which in turn is a function of the evaporator heat load, sink temperature, and ambient temperature. As the operating condition changes, the CC temperature will change during the transient but eventually reach a new steady temperature. Under certain conditions, however, the LHP never really reaches a true steady state, but instead displays an oscillatory behavior. The proposed new theory describes why low frequency, high amplitude oscillations may occur when the LHP has a low evaporator power, a low heat sink temperature (below ambient temperature), and a large thermal mass attached to the evaporator. When this condition prevails, there are some complex interactions between the CC, condenser, thermal mass and ambient. The temperature oscillation is a result of the large movement of the vapor front inside the condenser, which is caused by a change in the net evaporator power modulated by the large thermal mass through its interaction with the sink and CC. The theory agrees very well with previously published test data. Effects of various parameters on the amplitude and frequency of the temperature oscillation are also discussed.

  6. Small-Scale Mechanical Testing on Proton Beam-Irradiated 304 SS from Room Temperature to Reactor Operation Temperature

    NASA Astrophysics Data System (ADS)

    Vo, H.; Reichardt, A.; Howard, C.; Abad, M. D.; Kaoumi, D.; Chou, P.; Hosemann, P.

    2015-12-01

    Austenitic stainless steels are common structural components in light water reactors. Because reactor components are subjected to harsh conditions such as high operating temperatures and neutron radiation, they can undergo irradiation-induced embrittlement and related failure, which compromises reliable operation. Small-scale mechanical testing has seen widespread use as a testing method for both ion- and reactor-irradiated materials because it allows access to the mechanical properties of the ion beam-irradiated region, and for safe handling of a small amount of activated material. In this study, nanoindentation and microcompression testing were performed on unirradiated and 10 dpa proton-irradiated 304 SS, from 25°C to 300°C. Increases in yield stress (YS), critical resolved shear stress (CRSS) and hardness ( H) were seen in the irradiated region relative to the unirradiated region. Relationships between H, YS, and CRSS of irradiated and unirradiated materials are discussed over this temperature range.

  7. Dynamic magnetic characteristics of Fe78Si13B9 amorphous alloy subjected to operating temperature

    NASA Astrophysics Data System (ADS)

    He, Aina; Wang, Anding; Yue, Shiqiang; Zhao, Chengliang; Chang, Chuntao; Men, He; Wang, Xinmin; Li, Run-Wei

    2016-06-01

    The operating temperature dependence of dynamic magnetic characteristics of the annealed Fe78Si13B9 amorphous alloy core was systematically investigated. The core loss, magnetic induction intensity and complex permeability of the amorphous core were analyzed by means of AC B-H loop tracer and impedance analyzer. It is found that the operating temperature below 403 K has little impact on core loss when the induction (B) is less than 1.25 T. As B becomes higher, core loss measured at high temperature becomes higher. For the cores measured at power frequency, the B at 80 A/m and the coercivity (Hc) at 1 T decline slightly as the temperature goes up. Furthermore, the real part of permeability (μ‧) increases with the rise of temperature. The imaginary part of permeability (μ″) maxima shifts to lower frequency side with increasing temperature, indicating the magnetic relaxation behavior in the sample. In addition, with the rise in the operating temperature of the annealed amorphous core, the relaxation time tends to increase.

  8. Characterization and calibration of Raman based distributed temperature sensing system for 600°C operation

    NASA Astrophysics Data System (ADS)

    Mandal, Sudeep; Dekate, Sachin; Lee, Boon K.; Guida, Renato; Mondanos, Michael; Yeo, Jackson; Goranson, Marc

    2015-05-01

    Fiber optic distributed temperature sensing based on Raman scattering of light in optical fibers has become a very attractive solution for distributed temperature sensing (DTS) applications. The Raman scattered signal is independent of strain within the fiber, enabling simple packaging solutions for fiber optic temperature sensors while simultaneously improving accuracy and robustness of temperature measurements due to the lack of strain-induced errors in these measurements. Furthermore, the Raman scattered signal increases in magnitude at higher fiber temperatures, resulting in an improved SNR for high temperature measurements. Most Raman DTS instruments and fiber sensors are designed for operation up to approximately 300˚C. We will present our work in demonstrating high temperature calibration of a Raman DTS system using both Ge doped and pure silica core multi-mode optical fiber. We will demonstrate the tradeoffs involved in using each type of fiber for high temperature measurements. In addition, we will describe the challenges of measuring large temperature ranges (0 - 600˚C) with a single DTS interrogator and will demonstrate the need to customize the interrogator electronics and detector response in order to achieve reliable and repeatable high temperature measurements across a wide temperature range.

  9. HOTEYE: a novel thermal camera using higher operating temperature infrared detectors

    NASA Astrophysics Data System (ADS)

    Bowen, Gavin J.; Blenkinsop, Ian D.; Catchpole, Rose; Gordon, Neil T.; Harper, Mark A. C.; Haynes, Paul C.; Hipwood, Les; Hollier, Colin J.; Jones, Chris; Lees, David J.; Maxey, Chris D.; Milner, Daniel; Ordish, Mike; Philips, Tim S.; Price, Richard W.; Shaw, Chris; Southern, Paul

    2005-05-01

    Conventional high performance infrared (IR) sensors need to be cooled to around 80K in order to achieve a high level of thermal sensitivity. Cooling to this temperature requires the use of Joule-Thomson coolers (with bottled gas supply) or Stirling cycle cooling engines, both of which are bulky, expensive and can have low reliability. In contrast to this, higher operating temperature (HOT) detectors are designed to give high thermal performance at an operating temperature in the range 200K to 240K. These detectors are fabricated from multi-layer mercury cadmium telluride (MCT) structures that have been designed for this application. At higher temperatures, lower cost, smaller, lighter and more reliable thermoelectric (or Peltier) devices can be used to cool the detectors. The HOTEYE thermal imaging camera, which is based on a 320x256 pixel HOT focal plane array, is described in this paper and performance measurements reported.

  10. Initial Operation of the High Temperature Electrolysis Integrated Laboratory Scale Experiment at INL

    SciTech Connect

    C. M. Stoots; J. E. O'Brien; K. G. Condie; J. S. Herring; J. J. Hartvigsen

    2008-06-01

    An integrated laboratory scale, 15 kW high-temperature electrolysis facility has been developed at the Idaho National Laboratory under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other “integral” issues. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation.

  11. Long-term operation of CsLiB(6)O(10) at elevated crystal temperature.

    PubMed

    Yap, Y K; Inoue, T; Sakai, H; Kagebayashi, Y; Mori, Y; Sasaki, T; Deki, K; Horiguchi, M

    1998-01-01

    We have successfully resolved the degradation problem of CsLiB(6)O(10) (CLBO) by means of elevated crystal temperature. CLBO crystals were continuously operated at 160 degrees C in ordinary room humidity. No degradation of performance was observed after more than 1 month. We believe that heating CLBO crystal above 130 degrees C can relieve stresses introduced by crystal hydration, cutting, polishing, and thermal shock owing to laser power absorption. Thus long-term operation of CLBO crystal is achieved for effective application of laser frequency conversion. Output stability from CLBO is also further enhanced at elevated crystal temperature. PMID:18084403

  12. Regenerated distributed Bragg reflector fiber lasers for high-temperature operation.

    PubMed

    Chen, Rongzhang; Yan, Aidong; Li, Mingshan; Chen, Tong; Wang, Qingqing; Canning, John; Cook, Kevin; Chen, Kevin P

    2013-07-15

    This Letter presents distributed Bragg reflector (DBR) fiber lasers for high-temperature operation at 750°C. Thermally regenerated fiber gratings were used as the feedback elements to construct an erbium-doped DBR fiber laser. The output power of the fiber laser can reach 1 mW at all operating temperatures. The output power fluctuation tested at 750°C was 1.06% over a period of 7 hours. The thermal regeneration grating fabrication process opens new possibilities to design and to implement fiber laser sensors for extreme environments. PMID:23939090

  13. Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175 °C

    SciTech Connect

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.

    2014-03-01

    Operation of the sodium-nickel chloride battery at temperatures below 200°C reduces cell degradation and improves cyclability. One of the main technical issues with operating this battery at intermediate temperatures such as 175°C is the poor wettability of molten sodium on β”-alumina solid electrolyte (BASE), which causes reduced active area and limits charging. In order to overcome the poor wettability of molten sodium on BASE at 175°C, a Pt grid was applied on the anode side of the BASE using a screen printing technique. Cells with their active area increased by metallized BASEs exhibited deeper charging and stable cycling behavior.

  14. Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175 °C

    NASA Astrophysics Data System (ADS)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.

    2014-03-01

    Operation of the sodium-nickel chloride battery at temperatures below 200 °C reduces cell degradation and improves cyclability. One of the main technical issues with operating this battery at intermediate temperatures such as 175 °C is the poor wettability of molten sodium on β″-alumina solid electrolyte (BASE), which causes reduced active area and limits charging. In order to overcome the poor wettability of molten sodium on BASE at 175 °C, a Pt grid was applied on the anode side of the BASE using a screen printing technique. Cells with their active area increased by metallized BASEs exhibited deeper charging and stable cycling behavior.

  15. Stability of a Crystal Oscillator, Type Si530, Inside and Beyond its Specified Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    Data acquisition and control systems depend on timing signals for proper operation and required accuracy. These clocked signals are typically provided by some form of an oscillator set to produce a repetitive, defined signal at a given frequency. Crystal oscillators are commonly used because they are less expensive, smaller, and more reliable than other types of oscillators. Because of the inherent characteristics of the crystal, the oscillators exhibit excellent frequency stability within the specified range of operational temperature. In some cases, however, some compensation techniques are adopted to further improve the thermal stability of a crystal oscillator. Very limited data exist on the performance and reliability of commercial-off-the-shelf (COTS) crystal oscillators at temperatures beyond the manufacturer's specified operating temperature range. This information is very crucial if any of these parts were to be used in circuits designed for use in space exploration missions where extreme temperature swings and thermal cycling are encountered. This report presents the results of the work obtained on the operation of Silicon Laboratories crystal oscillator, type Si530, under specified and extreme ambient temperatures.

  16. Experimental evaluation of the performance of the sodium metal chloride battery below usual operating temperatures

    NASA Astrophysics Data System (ADS)

    Gerovasili, Eirini; May, Johanna F.; Sauer, Dirk Uwe

    2014-04-01

    The high operating temperature of the sodium metal chloride battery limits the possible applications of this storage technology. In this study, the performance of a 3.65 kWh (80 Ah, 48 V) battery at temperatures as low as 240 °C is measured and the efficiency at different discharge currents, cycling frequencies and operating temperatures is examined. The total available capacity of a 40 Ah string at 240 °C when discharging with 0.1C is found to be just 1 Ah smaller compared to 275 °C, which is the nominal operating temperature of the battery. However it is shown that low temperatures have a big impact on the charge duration. Starting from 20% SOC (state-of-charge) the duration of charging until the fulfillment of the end-of-charge criterion at 240 °C is 25 h with the quickest charging regime (0.25C, 2.7 V/cell) whereas until 90% SOC 7.6 h are required. At a limited SOC operation window from 20% to 90% the total daily efficiency of the 3.65 kWh battery is higher at 240 °C compared to 275 °C and increases from 69% if one cycle is performed daily with 0.175C discharge current to 81% for two cycles with the same discharge rate.

  17. EHL Transition Temperature Measurements on a Geostationary Operational Environmental Satellite (GOES) Filter Wheel Bearing

    NASA Technical Reports Server (NTRS)

    Jansen, Mark J.; Jones, William R., Jr.; Pepper, Stephen V.; Predmore, Roamer E.; Shogrin, Bradley A.

    2001-01-01

    The elastohydrodynamic lubrication (EHL) transition temperature was measured for a Geostationary Operational Environmental Satellite (GOES) sounder filter wheel bearing in a vacuum tribometer. Conditions included both an 89 N (20 lb.) hard and soft load, 600 rpm, temperatures between 23 C (73 F) and 85 C (185 F), and a vacuum of approximately 1.3 x 10(exp -5) Pa. Elastohydrodynamic to mixed lubrication started to occur at approximately 70 C (158 F).

  18. Nanoscopic voltage distribution of operating cascade laser devices in cryogenic temperature.

    PubMed

    Dhar, R S; Ban, D

    2016-06-01

    A nanoscopic exploratory measurement technique to measure voltage distribution across an operating semiconductor device in cryogenic temperature has been developed and established. The cross-section surface of the terahertz (THz) quantum cascade laser (QCL) has been measured that resolves the voltage distribution at nanometer scales. The electric field dissemination across the active region of the device has been attained under the device's lasing conditions at cryogenic temperature of 77 K. PMID:27197086

  19. The effect of operating temperature on open, multimegawatt space power systems

    SciTech Connect

    Edenburn, M.W.

    1987-01-01

    This study addresses reactor powered and combustion powered multimegawatt, burst mode, space power systems to evaluate the effect turbine inlet temperature will have on their performance and mass. Both systems will provide power to space based antiballistic missile weapons that require hydrogen for cooling, and both use this hydrogen coolant as a working fluid or as a fuel for power generation. The quantity of hydrogen needed for weapon cooling increases as the weapon's cooling load increases and as weapon coolant outlet temperature decreases. Also, the hydrogen needed by the turbines in both power systems increases as turbine inlet temperature decreases. When weapon cooling loads are above 40% to 50% of weapon power and weapon coolant outlet temperature is below 300 K to 400 K, the weapon needs more hydrogen than the turbine in either the reactor or combustion powered systems using turbine inlet temperatures consistent with current material technology. There is therefore very little system mass reduction to be gained by operating a burst mode power system at a turbine inlet temperature above present material temperature limits unless the weapon's cooling load is below 40% to 50% or coolant outlet temperature is above 300 K to 400 K. Furthermore, the combustion system's mass increases as turbine inlet temperature increases because oxygen inventory increases with increased turbine inlet temperature.

  20. A Rapid Method for Optimizing Running Temperature of Electrophoresis through Repetitive On-Chip CE Operations

    PubMed Central

    Kaneda, Shohei; Ono, Koichi; Fukuba, Tatsuhiro; Nojima, Takahiko; Yamamoto, Takatoki; Fujii, Teruo

    2011-01-01

    In this paper, a rapid and simple method to determine the optimal temperature conditions for denaturant electrophoresis using a temperature-controlled on-chip capillary electrophoresis (CE) device is presented. Since on-chip CE operations including sample loading, injection and separation are carried out just by switching the electric field, we can repeat consecutive run-to-run CE operations on a single on-chip CE device by programming the voltage sequences. By utilizing the high-speed separation and the repeatability of the on-chip CE, a series of electrophoretic operations with different running temperatures can be implemented. Using separations of reaction products of single-stranded DNA (ssDNA) with a peptide nucleic acid (PNA) oligomer, the effectiveness of the presented method to determine the optimal temperature conditions required to discriminate a single-base substitution (SBS) between two different ssDNAs is demonstrated. It is shown that a single run for one temperature condition can be executed within 4 min, and the optimal temperature to discriminate the SBS could be successfully found using the present method. PMID:21845077

  1. Effects of operating conditions on performance of high-temperature polymer electrolyte water electrolyzer

    NASA Astrophysics Data System (ADS)

    Li, Hua; Inada, Akiko; Fujigaya, Tsuyohiko; Nakajima, Hironori; Sasaki, Kazunari; Ito, Kohei

    2016-06-01

    Effects of operating conditions of a high-temperature polymer electrolyte water electrolyzer (HT-PEWE) on the electrolysis voltage are evaluated, and the optimal conditions for a high performance are revealed. A HT-PEWE unit cell with a 4-cm2 electrode consisting of Nafion117-based catalyst-coated membrane with IrO2 and Pt/C as the oxygen and hydrogen evolution catalysts is fabricated, and its electrolysis voltage and high-frequency resistance are assessed. The cell temperature and pressure are controlled at 80-130 °C and 0.1-0.5 MPa, respectively. It is observed that increasing the temperature at a constant pressure of 0.1 MPa does not increase the ohmic overvoltage of the cell; however, it does increase the concentration overvoltage. It is also found that the increase in the overvoltage resulting from the rise in the temperature can be suppressed by elevating the pressure. When operating the cell at a temperature of 100 °C, pressure greater than 0.1 MPa suppresses the overvoltage, and so does pressures greater than 0.3 MPa at 130 °C. This behavior suggests that keeping the water in a liquid water phase by increasing the pressure is critical for operating PEWEs at high temperatures.

  2. Evaluation of temperatures attained by electronic components during various manual soldering operations

    NASA Astrophysics Data System (ADS)

    Dunn, B. D.; Hilbrands, G.; Nielsen, P. J.

    1983-03-01

    After component-failure analyses showed that defective spacecraft devices were overheated during soldering, it was verified that quality-assurance personnel omitted to control pretinning-bath and soldering iron temperatures, so data were acquired under controlled processing conditions. Component temperature rises were recorded during degolding, pretinning, soldering and the reworking of soldered joints. Results show that existing ESA specifications for manual soldering and repair ensure that the maximum temperature ratings ascribed to standard spacecraft components are not exceeded. Application of heat sinks to certain delicate components during degolding is essential, and it can be advantageous to apply them during pretinning and other soldering operations.

  3. Progress report on the design of a varying temperature irradiation experiment for operation in HFIR

    SciTech Connect

    Qualls, A.L.; Muroga, T.

    1997-04-01

    The purpose of this experiment is to determine effects of temperature variation during irradiation on microstructure and mechanical properties of potential fusion reactor structural materials. A varying temperature irradiation experiment is being performed under the framework of the Japan-USA Program of Irradiation Tests for fusion Research (JUPITER) to study the effects of temperature variation on the microstructure and mechanical properties of candidate fusion reactor structural materials. An irradiation capsule has been designed for operation in the High Flux Isotope Reactor at Oak Ridge National Laboratory that will allow four sets of metallurgical test specimens to be irradiated to exposure levels ranging from 5 to 10 dpa. Two sets of specimens will be irradiated at constant temperature of 500{degrees}C and 350{degrees}C. Matching specimen sets will be irradiated to similar exposure levels, with 10% of the exposure to occur at reduced temperatures of 300{degrees}C and 200{degrees}C.

  4. Temperature dependent operation of PSAPD-based compact gamma camera for SPECT imaging.

    PubMed

    Kim, Sangtaek; McClish, Mickel; Alhassen, Fares; Seo, Youngho; Shah, Kanai S; Gould, Robert G

    2011-10-10

    We investigated the dependence of image quality on the temperature of a position sensitive avalanche photodiode (PSAPD)-based small animal single photon emission computed tomography (SPECT) gamma camera with a CsI:Tl scintillator. Currently, nitrogen gas cooling is preferred to operate PSAPDs in order to minimize the dark current shot noise. Being able to operate a PSAPD at a relatively high temperature (e.g., 5 °C) would allow a more compact and simple cooling system for the PSAPD. In our investigation, the temperature of the PSAPD was controlled by varying the flow of cold nitrogen gas through the PSAPD module and varied from -40 °C to 20 °C. Three experiments were performed to demonstrate the performance variation over this temperature range. The point spread function (PSF) of the gamma camera was measured at various temperatures, showing variation of full-width-half-maximum (FWHM) of the PSF. In addition, a (99m)Tc-pertechnetate (140 keV) flood source was imaged and the visibility of the scintillator segmentation (16×16 array, 8 mm × 8 mm area, 400 μm pixel size) at different temperatures was evaluated. Comparison of image quality was made at -25 °C and 5 °C using a mouse heart phantom filled with an aqueous solution of (99m)Tc-pertechnetate and imaged using a 0.5 mm pinhole collimator made of tungsten. The reconstructed image quality of the mouse heart phantom at 5 °C degraded in comparision to the reconstructed image quality at -25 °C. However, the defect and structure of the mouse heart phantom were clearly observed, showing the feasibility of operating PSAPDs for SPECT imaging at 5 °C, a temperature that would not need the nitrogen cooling. All PSAPD evaluations were conducted with an applied bias voltage that allowed the highest gain at a given temperature. PMID:24465051

  5. Temperature dependent operation of PSAPD-based compact gamma camera for SPECT imaging

    PubMed Central

    Kim, Sangtaek; McClish, Mickel; Alhassen, Fares; Seo, Youngho; Shah, Kanai S.; Gould, Robert G.

    2011-01-01

    We investigated the dependence of image quality on the temperature of a position sensitive avalanche photodiode (PSAPD)-based small animal single photon emission computed tomography (SPECT) gamma camera with a CsI:Tl scintillator. Currently, nitrogen gas cooling is preferred to operate PSAPDs in order to minimize the dark current shot noise. Being able to operate a PSAPD at a relatively high temperature (e.g., 5 °C) would allow a more compact and simple cooling system for the PSAPD. In our investigation, the temperature of the PSAPD was controlled by varying the flow of cold nitrogen gas through the PSAPD module and varied from −40 °C to 20 °C. Three experiments were performed to demonstrate the performance variation over this temperature range. The point spread function (PSF) of the gamma camera was measured at various temperatures, showing variation of full-width-half-maximum (FWHM) of the PSF. In addition, a 99mTc-pertechnetate (140 keV) flood source was imaged and the visibility of the scintillator segmentation (16×16 array, 8 mm × 8 mm area, 400 μm pixel size) at different temperatures was evaluated. Comparison of image quality was made at −25 °C and 5 °C using a mouse heart phantom filled with an aqueous solution of 99mTc-pertechnetate and imaged using a 0.5 mm pinhole collimator made of tungsten. The reconstructed image quality of the mouse heart phantom at 5 °C degraded in comparision to the reconstructed image quality at −25 °C. However, the defect and structure of the mouse heart phantom were clearly observed, showing the feasibility of operating PSAPDs for SPECT imaging at 5 °C, a temperature that would not need the nitrogen cooling. All PSAPD evaluations were conducted with an applied bias voltage that allowed the highest gain at a given temperature. PMID:24465051

  6. Room-temperature operation of a Co:MgF2 laser

    NASA Technical Reports Server (NTRS)

    Welford, D.; Moulton, P. F.

    1988-01-01

    A normal-mode, pulsed Co:MgF2 laser has been operated at room temperature for the first time. Continuous tuning from 1750 to 2500 nm with pulse energies up to 70 mJ and 46-percent slope efficiency was obtained with a 1338-nm Nd:YAG pump laser.

  7. High-temperature /1100 degrees F/ capacitors operate without supplement cooling

    NASA Technical Reports Server (NTRS)

    Stapleton, R. E.

    1967-01-01

    Multilayered capacitor with one-mil thick pyrolytic boron nitride and wrap around sputtered electrodes achieves parallel electrical interconnections in a stacked configuration of 3 to 9 wafers. These capacitors are compact, lightweight, and suitable for operation in high temperatures without supplemental cooling.

  8. Ice formation in PEM fuel cells operated isothermally at sub-freezing temperatures

    SciTech Connect

    Mukundan, Rangachary; Luhan, Roger W; Davey, John R; Spendelow, Jacob S; Borup, Rodney L; Hussey, Daniel S; Jacobson, David L; Arif, Muhammad

    2009-01-01

    The effect of MEA and GDL structure and composition on the performance of single-PEM fuel cells operated isothermally at subfreezing temperatures is presented. The cell performance and durability are not only dependent on the MEA/GDL materials used but also on their interfaces. When a cell is operated isothermally at sub-freezing temperatures in constant current mode, the water formation due to the current density initially hydrates the membrane/ionomer and then forms ice in the catalyst layer/GDL. An increase in high frequency resistance was also observed in certain MEAs where there is a possibility of ice formation between the catalyst layer and GDL leading to a loss in contact area. The total water/ice holding capacity for any MEA was lower at lower temperatures and higher current densities. The durability of MEAs subjected to multiple isothermal starts was better for LANL prepared MEAs as compared to commercial MEAs, and cloth GDLs when compared to paper GDLs. The ice formation was monitored using high-resolution neutron radiography and was found to be concentrated near the cathode catalyst layer. However, there was significant ice formation in the GDLs especially at the higher temperature ({approx} -10 C) and lower current density (0.02 A/cm{sup 2}) operations. These results are consistent with the longer-term durability observations that show more severe degradation at the lower temperatures.

  9. Ultra Low Power Full Digital Body Temperature Sensor Operating in Sub-Threshold Regime

    NASA Astrophysics Data System (ADS)

    Wu, Yuping; Zhang, Xuelian; Chen, Lan

    2015-11-01

    In this paper, we presented a full digital human body temperature sensor with high yield, which was designed in 40 nm CMOS technology. As part of the green BAN, it can measure the body temperature with ultra-low-power in high accuracy by operating in deep sub-threshold regime. The power dissipation is 1.2 nW with a power supply voltage of 0.12 V at 27 °C. The accuracy is 0.047 °C in the temperature range from 25 to 45 °C, and the sensor can operate with the power supply range from 0.12 to 0.40 V and takes ultra-low-power consumption.

  10. High-Operating Temperature HgCdTe: A Vision for the Near Future

    NASA Astrophysics Data System (ADS)

    Lee, D.; Carmody, M.; Piquette, E.; Dreiske, P.; Chen, A.; Yulius, A.; Edwall, D.; Bhargava, S.; Zandian, M.; Tennant, W. E.

    2016-05-01

    We review recent advances in the HgCdTe material quality and detector performance achieved at Teledyne using molecular beam epitaxy growth and the double-layer planar hetero-junction (DLPH) detector architecture. By using an un-doped, fully depleted absorber, Teledyne's DLPH architecture can be extended for use in high operating temperatures and other applications. We assess the potential achievable performance for long wavelength infrared (LWIR) hetero-junction p-lightly-doped n or p-intrinsic-n (p-i-n) detectors based on recently reported results for 10.7 μm cutoff 1 K × 1 K focal plane arrays (FPAs) tested at temperatures down to 30 K. Variable temperature dark current measurements show that any Shockley-Read-Hall currents in the depletion region of these devices have lifetimes that are reproducibly greater than 100 ms. Under the assumption of comparable lifetimes at higher temperatures, it is predicted that fully-depleted background radiation-limited performance can be expected for 10-μm cutoff detectors from room temperature to well below liquid nitrogen temperatures, with room-temperature dark current nearly 400 times lower than predicted by Rule 07. The hetero-junction p-i-n diode is shown to have numerous other significant potential advantages including minimal or no passivation requirements for pBn-like processing, low 1/f noise, compatibility with small pixel pitch while maintaining high modulation transfer function, low crosstalk and good quantum efficiency. By appropriate design of the FPA dewar shielding, analysis shows that dark current can theoretically be further reduced below the thermal equilibrium radiative limit. Modeling shows that background radiation-limited LWIR HgCdTe operating with f/1 optics has the potential to operate within √2 of background-limited performance at 215 K. By reducing the background radiation by 2/3 using novel shielding methods, operation with a single-stage thermo-electric-cooler may be possible. If the background

  11. High-Operating Temperature HgCdTe: A Vision for the Near Future

    NASA Astrophysics Data System (ADS)

    Lee, D.; Carmody, M.; Piquette, E.; Dreiske, P.; Chen, A.; Yulius, A.; Edwall, D.; Bhargava, S.; Zandian, M.; Tennant, W. E.

    2016-09-01

    We review recent advances in the HgCdTe material quality and detector performance achieved at Teledyne using molecular beam epitaxy growth and the double-layer planar hetero-junction (DLPH) detector architecture. By using an un-doped, fully depleted absorber, Teledyne's DLPH architecture can be extended for use in high operating temperatures and other applications. We assess the potential achievable performance for long wavelength infrared (LWIR) hetero-junction p-lightly-doped n or p-intrinsic- n (p-i-n) detectors based on recently reported results for 10.7 μm cutoff 1 K × 1 K focal plane arrays (FPAs) tested at temperatures down to 30 K. Variable temperature dark current measurements show that any Shockley-Read-Hall currents in the depletion region of these devices have lifetimes that are reproducibly greater than 100 ms. Under the assumption of comparable lifetimes at higher temperatures, it is predicted that fully-depleted background radiation-limited performance can be expected for 10- μm cutoff detectors from room temperature to well below liquid nitrogen temperatures, with room-temperature dark current nearly 400 times lower than predicted by Rule 07. The hetero-junction p-i-n diode is shown to have numerous other significant potential advantages including minimal or no passivation requirements for pBn-like processing, low 1/ f noise, compatibility with small pixel pitch while maintaining high modulation transfer function, low crosstalk and good quantum efficiency. By appropriate design of the FPA dewar shielding, analysis shows that dark current can theoretically be further reduced below the thermal equilibrium radiative limit. Modeling shows that background radiation-limited LWIR HgCdTe operating with f/1 optics has the potential to operate within √2 of background-limited performance at 215 K. By reducing the background radiation by 2/3 using novel shielding methods, operation with a single-stage thermo-electric-cooler may be possible. If the

  12. High performance shape memory effect in nitinol wire for actuators with increased operating temperature range

    NASA Astrophysics Data System (ADS)

    Casati, Riccardo; Biffi, Carlo Alberto; Vedani, Maurizio; Tuissi, Ausonio

    2014-07-01

    In this research, the high performance shape memory effect (HP-SME) is experimented on a shape memory NiTi wire, with austenite finish temperature higher than room temperature. The HP-SME consists in the thermal cycling of stress induced martensite and it allows achieving mechanical work higher than that produced by conventional shape memory actuators based on the heating/cooling of detwinned martensite. The Nitinol wire was able to recover about 5.5% of deformation under a stress of 600 MPa and to withstand about 5000 cycles before failure. HP-SME path increased the operating temperature of the shape memory actuator wire. Functioning temperatures higher than 100°C was reached.

  13. End-pumped 1.5 microm monoblock laser for broad temperature operation.

    PubMed

    Schilling, Bradley W; Chinn, Stephen R; Hays, A D; Goldberg, Lew; Trussell, C Ward

    2006-09-01

    We describe a next-generation monoblock laser capable of a greater than 10 mJ, 1.5 microm output at 10 pulses/s (pps) over broad ambient temperature extremes with no active temperature control. The transmitter design is based on a Nd:YAG laser with a Cr4+ passive Q switch and intracavity potassium titanyl phosphate optical parametric oscillator. To achieve the repetition rate and efficiency goals of this effort, but still have wide temperature capability, the Nd:YAG slab is end pumped with a 12-bar stack of 100 W (each) diode bars. Different techniques for focusing the pump radiation into the 4.25 mmx4.25 mm end of the slab are compared, including a lensed design, a reflective concentrator, and a lens duct. A wide temperature operation (-20 degrees C to 50 degrees C) for each end-pumped configuration is demonstrated. PMID:16912803

  14. Study of the operation temperature in the spin-exchange relaxation free magnetometer

    SciTech Connect

    Fang, Jiancheng; Li, Rujie Duan, Lihong; Chen, Yao; Quan, Wei

    2015-07-15

    We study the influence of the cell temperature on the sensitivity of the spin-exchange relaxation free (SERF) magnetometer and analyze the possibility of operating at a low temperature. Utilizing a 25 × 25 × 25 mm{sup 3} Cs vapor cell with a heating temperature of 85 {sup ∘}C, which is almost half of the value of potassium, we obtain a linewidth of 1.37 Hz and achieve a magnetic field sensitivity of 55 fT/Hz{sup 1/2} in a single channel. Theoretical analysis shows that fundamental sensitivity limits of this device with an active volume of 1 cm{sup 3} could approach 1 fT/Hz{sup 1/2}. Taking advantage of the higher saturated vapor pressure, SERF magnetometer based on Cs opens up the possibility for low cost and portable sensors and is particularly appropriate for lower temperature applications.

  15. Study of the operation temperature in the spin-exchange relaxation free magnetometer.

    PubMed

    Fang, Jiancheng; Li, Rujie; Duan, Lihong; Chen, Yao; Quan, Wei

    2015-07-01

    We study the influence of the cell temperature on the sensitivity of the spin-exchange relaxation free (SERF) magnetometer and analyze the possibility of operating at a low temperature. Utilizing a 25 × 25 × 25 mm(3) Cs vapor cell with a heating temperature of 85 °C, which is almost half of the value of potassium, we obtain a linewidth of 1.37 Hz and achieve a magnetic field sensitivity of 55 fT/Hz(1/2) in a single channel. Theoretical analysis shows that fundamental sensitivity limits of this device with an active volume of 1 cm(3) could approach 1 fT/Hz(1/2). Taking advantage of the higher saturated vapor pressure, SERF magnetometer based on Cs opens up the possibility for low cost and portable sensors and is particularly appropriate for lower temperature applications. PMID:26233365

  16. Operating the ISO-SWS InSb detectors at temperatures above 4 K

    NASA Astrophysics Data System (ADS)

    Vandenbussche, Bart K.; de Graauw, Thijs; Beintema, Douwe A.; Feuchtgruber, Helmut; Heras, A.; Kester, D.; Lahuis, F.; Lorente, R.; Leech, K.; Huygen, E.; Morris, P.; Roelfsema, Peter R.; Salama, A.; Waters, R.; Wieprecht, E.

    1999-12-01

    The Short-Wavelength Spectrometer (SWS) is one of the four focal plane instruments of ESA's Infrared Space Observatory (ISO). The satellite was launched on November 15, 1995 with a super fluid Helium content of about 2300 liters to keep the telescope, the scientific payload and the optical baffles at operating temperatures between 2 and 8 K. On April 8, 1998 the liquid Helium depleted and the instruments were switched-off when the focal plane reached a temperature of 4.2 K. A satellite engineering test program was conducted between April 20 and May 10. Timeslots before and during the test program were used to operate the InSb detectors of the SWS instrument while the temperature of the focal plane slowly increased up to 40 K. The instrument was used to record spectra of 260 stars between 2.36 and 4.05 microns at a resolution of 2000 and with high S/N. Goal of the program was to observe a set of stars covering the entire MK spectral classification scheme to extend this classification scheme to the infrared. We discuss changes in the instrument relevant for operating and calibrating the instrument at temperatures above 4K: changes in the InSb detector behavior (dark levels, noise, response, ...), behavior of the JFETs and geometry changes in the grating scanner mechanism. We also show that the calibration of the data obtained after Helium loss is accurate, resulting in a data set of great scientific value.

  17. Flow and containment characteristics of an air-curtain fume hood operated at high temperatures.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi; Hsu, Ching Min; Chen, Chun-Wann

    2012-01-01

    The flow and leakage characteristics of the air-curtain fume hood under high temperature operation (between 100°C and 250°C) were studied. Laser-assisted flow visualization technique was used to reveal the hot plume movements in the cabinet and the critical conditions for the hood-top leakage. The sulfur hexafluoride tracer-gas concentration test method was employed to examine the containment spillages from the sash opening and the hood top. It was found that the primary parameters dominating the behavior of the flow field and hood performance are the sash height and the suction velocity as an air-curtain hood is operated at high temperatures. At large sash height and low suction velocity, the air curtain broke down and accompanied with three-dimensional flow in the cabinet. Since the suction velocity was low and the sash opening was large, the makeup air drawn down from the hood top became insufficient to counter act the rising hot plume. Under this situation, containment leakage from the sash opening and the hood top was observed. At small sash opening and high suction velocity, the air curtain presented robust characteristics and the makeup air flow from the hood top was sufficiently large. Therefore the containment leakages from the sash opening and the hood top were not observed. According to the results of experiments, quantitative operation sash height and suction velocity corresponding to the operation temperatures were suggested. PMID:22293724

  18. Metabolic response to air temperature and wind in day-old mallards and a standard operative temperature scale

    USGS Publications Warehouse

    Bakken, G.S.; Reynolds, P.S.; Kenow, K.P.; Korschgen, C.E.; Boysen, A.F.

    1999-01-01

    Most duckling mortality occurs during the week following hatching and is often associated with cold, windy, wet weather and scattering of the brood. We estimated the thermoregulatory demands imposed by cold, windy weather on isolated 1-d-old mallard (Anas platyrhynchos) ducklings resting in cover. We measured O-2 consumption and evaporative water loss at air temperatures from 5 degrees to 25 degrees C and wind speeds of 0.1, 0.2, 0.5, and 1.0 mis. Metabolic heat production increased as wind increased or temperature decreased but was less sensitive to wind than that of either adult passerines or small mammals. Evaporative heat loss ranged from 5% to 17% of heat production. Evaporative heal loss and the ratio of evaporative heat loss to metabolic heat production was significantly lower in rest phase. These data were used to define a standard operative temperature (T-es) scale for night or heavy overcast conditions. An increase of wind speed from 0.1 to 1 mis decreased T-es by 3 degrees-5 degrees C.

  19. Investigation of high temperature operation of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Adjemian, Kevork Tro

    Proton exchange membrane fuel cells (PEMFCs) have garnered much attention in the media over the past years as they can provide a clean, environmentally friendly alternative to internal combustion engines. PEMFCs also have the flexibility to operate on many different types of fuels, thereby diminishing our reliance on foreign oil. PEMFCs, however, suffer from many drawbacks which need to be overcome before mass production becomes viable. One drawback is the expense of the fuel cell system, costing several times more than existing technologies. Another problem is that if the fuel cell is running on reformed fuels, trace amounts of carbon monoxide (10 ppm) in the hydrogen gas stream will completely poison the anode electrocatalyst, killing the PEMFC. Also, as a lot of waste heat is generated, a very elaborate cooling system needs to be used, making the overall system more expensive and complex. A possible solution to both the carbon monoxide poisoning and thermal management of a PEMFC is to elevate its operating temperature above 100°C. Unfortunately, current state-of-the-art electrolytes used in PEMFCs, i.e. Nafion 115, rely on water for the conduction of protons and by elevating the temperature, water loss occurs due to evaporation resulting in inadequate PEMFC performance. This thesis delves into the modification of Nafion and similar electrolytes to permit PEMFC operation above 100°C. This was accomplished by impregnating the pores of the Nafion with hydrophilic inorganic materials-silicon oxide via sol-gel processing and various inorganic particles. By performing these modifications to the various electrolytes, several composite membranes performed exceptionally well at an operating temperature of 130°C and demonstrated carbon monoxide tolerance of up to 500 ppm. In addition, a theory on how these materials help improve the water management characteristics of Nafion was developed, laying the foundation for the development of a completely novel membrane to

  20. New constant-temperature operating mode for graphite calorimeter at LNE-LNHB.

    PubMed

    Daures, J; Ostrowsky, A

    2005-09-01

    The realization of the unit of absorbed dose at LNE-LNHB is based on calorimetry with the present GR8 graphite calorimeter. For this reason the calorimetric technique must be maintained, developed and improved in the laboratory. The usual quasi-adiabatic operating mode at LNHB is based on the thermal feedback between the core (sensitive element) and the jacket (adjacent body). When a core-jacket temperature difference is detected, a commercially available analogue PID (Proportional, Integral, Derivative) controller sends to the jacket an amount of electrical power to reduce this difference. Nevertheless, the core and jacket temperatures increase with irradiations and electrical calibrations whereas the surrounding is maintained at a fixed temperature to shield against the room temperature variations. At radiotherapy dose rates, fewer than ten measurements, or electrical calibrations, per day can be performed. This paper describes the new constant-temperature operating mode which has been implemented recently to improve flexibility in use and, to some extent, accuracy. The core and the jacket temperatures are maintained at fixed temperatures. A steady state is achieved without irradiation. Then, under irradiation, the electrical power needed to maintain the assigned temperature in the core is reduced by the amount of heat generated by ionizing radiation. The difference between these electrical powers, without and with irradiation, gives the mean absorbed dose rate to the core. The quality of this electrical power substitution measurement is strongly dependent upon the quality of the core and jacket thermal control. The core temperature is maintained at the set value using a digital PID regulator developed at the laboratory with LabView software on PC for this purpose. This regulator is versatile and particularly well suited for calorimetry purposes. Measurements in a cobalt-60 beam have shown no significant difference (<0.09%) between the two operating modes, with

  1. Assessment of SOI AND Gate, Type CHT-7408, for Operation in Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Dones, Keishla Rivera

    2009-01-01

    Electronic parts based on silicon-on-insulator (SOI) technology are finding widespread applications due to their ability to operate in harsh environments and the benefits they offer as compared to their silicon counterparts. Due to their construction, they are tailored for high temperature operation and show good tolerance to radiation events. In addition, their inherent design lessens the formation of parasitic junctions, thereby reducing leakage currents, decreasing power consumption, and enhancing speed. These devices are typically rated in temperature capability from -55 C to about +225 C, and their characteristics over this temperature range are documented in data sheets. Since electronics in some of NASA space exploration missions are required to operate under extreme temperature conditions, both cold and hot, their characteristic behavior within the full temperature spectrum must be determined to establish suitability for use in space applications. The effects of extreme temperature exposure on the performance of a new commercial-off-the-shelf (COTS) SOI AND gate device were evaluated in this work. The high temperature, quad 2-inputs AND gate device, which was recently introduced by CISSOID, is fabricated using a CMOS SOI process. Some of the specifications of the CHT-7408 chip are listed in a table. By supplying a constant DC voltage to one gate input and a 10 kHz square wave into the other associated gate input, the chip was evaluated in terms of output response, output rise (t(sub r)) and fall times (tf), and propagation delays (using a 50% level between input and output during low to high (tPLH) and high to low (tPHL) transitions). The supply current of the gate circuit was also obtained. These parameters were recorded at various test temperatures between -195 C and +250 C using a Sun Systems environmental chamber programmed at a temperature rate of change of 10 C/min. In addition, the effects of thermal cycling on this chip were determined by exposing

  2. Gallium nitride junction field effect transistors for high-temperature operation

    SciTech Connect

    Zolper, J.C.; Shul, R.J.; Baca, A.G.; Hietala, V.M.; Pearton, S.J.; Stall, R.A.; Wilson, R.G.

    1996-06-01

    GaN is an attractive material for use in high-temperature or high-power electronic devices due to its high bandgap (3.39 eV), high breakdown field ({approximately}5 {times} 10{sup 6} V/cm), high saturation drift velocity (2.7 {times} 10{sup 7} cm/s), and chemical inertness. To this end, Metal Semiconductor FETs (MESFETs), High Electron Mobility Transistors (HEMTs), Heterostructure FETs (HFETs), and Metal Insulator Semiconductor FETs (MISFETs) have all been reported based on epitaxial AlN/GaN structures (Khan 1993a,b; Binari 1994 and 1995). GaN Junction Field Effect Transistors (JFETs), however, had not been reported until recently (Zolper 1996b). JFETs are attractive for high-temperature operation due to the inherently higher thermal stability of the p/n junction gate of a JFET as compared to the Schottky barrier gate of a MESFET or HFET. In this paper the authors present the first results for elevated temperature performance of a GaN JFET. Although the forward gate properties are well behaved at higher temperatures, the reverse characteristics show increased leakage at elevated temperature. However, the increased date leakage alone does not explain the observed increase in drain current with temperature. Therefore, they believe this first device is limited by temperature activated substrate conduction.

  3. Influence of gadolinium doping on the structure and defects of ceria under fuel cell operating temperature

    SciTech Connect

    Acharya, S. A. Gaikwad, V. M.; Sathe, V.; Kulkarni, S. K.

    2014-03-17

    Correlation between atomic positional shift, oxygen vacancy defects, and oxide ion conductivity in doped ceria system has been established in the gadolinium doped ceria system from X-ray diffraction (XRD) and Raman spectroscopy study at operating temperature (300–600 °C) of Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC). High temperature XRD data are used to quantify atomic positional shift from mean position with temperature. The Raman spectroscopy study shows additional vibration modes related to ordering of defect spaces (Gd{sub Ce}{sup ′}−V{sub o}{sup ••}){sup *} and (2Gd{sub Ce}{sup ′}−V{sub o}{sup ••}){sup x} generated due to association of oxygen vacancies and reduced cerium or dopant cations site (Gd{sup 3+}), which disappear at 450 °C; indicating oxygen vacancies dissociation from the defect complex. The experimental evidences of cation-anion positional shifting and oxygen vacancies dissociation from defect complex in the IT-SOFC operating temperature are discussed to correlate with activation energy for ionic conductivity.

  4. Operation of a Giant Magnetoresistive (GMR) Digital Isolator, Type IL510, Under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Panko, Scott

    2010-01-01

    A relatively new type of signal isolation based on Giant Magnetoresistive (GMR) technology was investigated for potential use in harsh temperature environments. Operational characteristics of the 2Mbps single channel, IL510-Series commercial-off-the-shelf (COTS) digital isolator chip was obtained under extreme temperature exposure and thermal cycling in the range of -190 C to +120 C. The isolator was evaluated in terms of its output signal delivery and stability, output rise (t(sub r)) and fall times (t(sub f)), and propagation delays at 50% level between input and output during low to high (t(sub PLH)) and high to low (t(sub PHL)) transitions. The device performed very well throughout the entire test temperature range as no significant changes occurred either in its function or in its output signal timing characteristics. The limited thermal cycling, which comprised of 12 cycles between -190 C and +120 C, also had no influence on its performance. In addition, the device packaging underwent no structural damage due to the extreme temperature exposure. These preliminary results indicate that this semiconductor chip has the potential for use in a temperature range that extends beyond its specified regime. Additional and more comprehensive testing, however, is required to establish its operation and reliability and to determine its suitability for long-term use in space exploration missions.

  5. High-temperature operation of broadband bidirectional terahertz quantum-cascade lasers.

    PubMed

    Khanal, Sudeep; Gao, Liang; Zhao, Le; Reno, John L; Kumar, Sushil

    2016-01-01

    Terahertz quantum cascade lasers (QCLs) with a broadband gain medium could play an important role for sensing and spectroscopy since then distributed-feedback schemes could be utilized to produce laser arrays on a single semiconductor chip with wide spectral coverage. QCLs can be designed to emit at two different frequencies when biased with opposing electrical polarities. Here, terahertz QCLs with bidirectional operation are developed to achieve broadband lasing from the same semiconductor chip. A three-well design scheme with shallow-well GaAs/Al0.10Ga0.90As superlattices is developed to achieve high-temperature operation for bidirectional QCLs. It is shown that shallow-well heterostructures lead to optimal quantum-transport in the superlattice for bidirectional operation compared to the prevalent GaAs/Al0.15Ga0.85As material system. Broadband lasing in the frequency range of 3.1-3.7 THz is demonstrated for one QCL design, which achieves maximum operating temperatures of 147 K and 128 K respectively in opposing polarities. Dual-color lasing with large frequency separation is demonstrated for a second QCL, that emits at ~3.7 THz and operates up to 121 K in one polarity, and at ~2.7 THz up to 105 K in the opposing polarity. These are the highest operating temperatures achieved for broadband terahertz QCLs at the respective emission frequencies, and could lead to commercial development of broadband terahertz laser arrays. PMID:27615416

  6. The Lifetime Estimate for ACSR Single-Stage Splice Connector Operating at Higher Temperatures

    SciTech Connect

    Wang, Jy-An John; Graziano, Joe; Chan, John

    2011-01-01

    This paper is the continuation of Part I effort to develop a protocol of integrating analytical and experimental approaches to evaluate the integrity of a full tension single-stage splice connector (SSC) assembly during service at high operating temperature.1The Part II efforts are mainly focused on the thermal mechanical testing, thermal-cycling simulation and its impact on the effective lifetime of the SSC system. The investigation indicates that thermal cycling temperature and frequency, conductor cable tension loading, and the compressive residual stress field within a SSC system have significant impact on the SSC integrity and the associated effective lifetime.

  7. Room temperature operational single electron transistor fabricated by focused ion beam deposition

    NASA Astrophysics Data System (ADS)

    Karre, P. Santosh Kumar; Bergstrom, Paul L.; Mallick, Govind; Karna, Shashi P.

    2007-07-01

    We present the fabrication and room temperature operation of single electron transistors using 8nm tungsten islands deposited by focused ion beam deposition technique. The tunnel junctions are fabricated using oxidation of tungsten in peracetic acid. Clear Coulomb oscillations, showing charging and discharging of the nanoislands, are seen at room temperature. The device consists of an array of tunnel junctions; the tunnel resistance of individual tunnel junction of the device is calculated to be as high as 25.13GΩ. The effective capacitance of the array of tunnel junctions was found to be 0.499aF, giving a charging energy of 160.6meV.

  8. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature

    NASA Astrophysics Data System (ADS)

    Mindemark, Jonas; Sun, Bing; Törmä, Erik; Brandell, Daniel

    2015-12-01

    Incorporation of carbonate repeating units in a poly(ε-caprolactone) (PCL) backbone used as a host material in solid polymer electrolytes is found to not only suppress crystallinity in the polyester material, but also give higher ionic conductivity in a wide temperature range exceeding the melting point of PCL crystallites. Combined with high cation transference numbers, this electrolyte material has sufficient lithium transport properties to be used in battery cells that are operational at temperatures down to below 23 °C, thus clearly demonstrating the potential of using non-polyether electrolytes in high-performance all-solid lithium polymer batteries.

  9. Operational and theoretical temperature considerations in a Penning surface plasma source

    SciTech Connect

    Faircloth, D. C. Lawrie, S. R.; Pereira Da Costa, H.; Dudnikov, V.

    2015-04-08

    A fully detailed 3D thermal model of the ISIS Penning surface plasma source is developed in ANSYS. The proportion of discharge power applied to the anode and cathode is varied until the simulation matches the operational temperature observations. The range of possible thermal contact resistances are modelled, which gives an estimation that between 67% and 85% of the discharge power goes to the cathode. Transient models show the electrode surface temperature rise during the discharge pulse for a range of duty cycles. The implications of these measurements are discussed and a mechanism for governing cesium coverage proposed. The requirements for the design of a high current long pulse source are stated.

  10. Method for producing ceramic composition having low friction coefficient at high operating temperatures

    DOEpatents

    Lankford, Jr., James

    1988-01-01

    A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.

  11. Frequency characteristics of an inherently stable Nd:YAG laser operated at liquid helium temperature

    SciTech Connect

    Scholz, Matthias; Kovalchuk, Evgeny; Peters, Achim

    2009-07-10

    We report on frequency measurements of a free-running Nd:YAG laser operating at temperatures down to 6.5 K using a femtosecond laser frequency comb. Due to lower thermal expansion and thermo-optic effects as well as reduced electron-phonon interactions in Nd:YAG at cryogenic temperatures, a laser frequency stability on the order of 10{sup -11} at {tau} < or = 30s has been achieved. Within a one-week measurement period, absolute frequency deviations were lower than 1.85 MHz. This is up to a 100-fold improvement of frequency stability compared to any existing free-running solid-state laser.

  12. Operational and theoretical temperature considerations in a Penning surface plasma source

    NASA Astrophysics Data System (ADS)

    Faircloth, D. C.; Lawrie, S. R.; Pereira Da Costa, H.; Dudnikov, V.

    2015-04-01

    A fully detailed 3D thermal model of the ISIS Penning surface plasma source is developed in ANSYS. The proportion of discharge power applied to the anode and cathode is varied until the simulation matches the operational temperature observations. The range of possible thermal contact resistances are modelled, which gives an estimation that between 67% and 85% of the discharge power goes to the cathode. Transient models show the electrode surface temperature rise during the discharge pulse for a range of duty cycles. The implications of these measurements are discussed and a mechanism for governing cesium coverage proposed. The requirements for the design of a high current long pulse source are stated.

  13. A simple microfluidic Coriolis effect flowmeter for operation at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Harrison, Christopher; Jundt, Jacques

    2016-08-01

    We describe a microfluidic Coriolis effect flowmeter that is simple to assemble, operates at elevated temperature and pressure, and can be operated with a lock-in amplifier. The sensor has a flow rate sensitivity greater than 2° of phase shift per 1 g/min of mass flow and is benchmarked with flow rates ranging from 0.05 to 2.0 g/min. The internal volume is 15 μl and uses off-the-shelf optical components to measure the tube motion. We demonstrate that fluid density can be calculated from the frequency of the resonating element with proper calibration.

  14. A simple microfluidic Coriolis effect flowmeter for operation at high pressure and high temperature.

    PubMed

    Harrison, Christopher; Jundt, Jacques

    2016-08-01

    We describe a microfluidic Coriolis effect flowmeter that is simple to assemble, operates at elevated temperature and pressure, and can be operated with a lock-in amplifier. The sensor has a flow rate sensitivity greater than 2° of phase shift per 1 g/min of mass flow and is benchmarked with flow rates ranging from 0.05 to 2.0 g/min. The internal volume is 15 μl and uses off-the-shelf optical components to measure the tube motion. We demonstrate that fluid density can be calculated from the frequency of the resonating element with proper calibration. PMID:27587148

  15. General information for operation of the high-temperature electromagnetic containerless vacuum induction furnace

    SciTech Connect

    Hahs, C.A.; Fox, R.J.

    1994-06-01

    The High-Temperature Electromagnetic Containerless Vacuum Induction Furnace was developed at Oak Ridge National Laboratory for the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center, Alabama. The high-efficiency radio-frequency system developed for the conceptual design of the Modular Electromagnetic Levitator was created to evaluate this hardware on the KC135 microgravity airplane operated by NASA. Near-future KC135 flights are being planned to levitate, melt, and undercool 5-mm samples of niobium. General information on the operation of this hardware is included.

  16. An Experimental Study of the Operating Temperature in a Loop Heat Pipe with Two Evaporators and Two Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Birur, Gaj; Powers, Edward I. (Technical Monitor)

    2001-01-01

    This paper presents a comprehensive experimental study of the loop operating temperature in a loop heat pipe (LHP) which has two parallel evaporators and two parallel condensers. In a single evaporator LHP, it is well known that the loop operating temperature is a function of the heat load, the sink temperature and the ambient temperature. The objective of the present study emphasizes on the stability of the loop operating temperature and parameters that affects the loop operation. Tests results show that the loop operating temperature is a function of the total system heat load, sink temperature, ambient temperature, and beat load distribution between the two evaporators. Under most conditions, only one compensation chamber (CC) contains two-phase fluid and controls the loop operating temperature, and the other CC is completely filled with liquid. Moreover, as the test condition changes, control of the loop operating temperature often shifted from one CC to another. In spite of complex interactions between various components, the test loop has demonstrated very robust operation even during fast transients.

  17. The zipcode-binding protein ZBP1 influences the subcellular location of the Ro 60-kDa autoantigen and the noncoding Y3 RNA

    PubMed Central

    Sim, Soyeong; Yao, Jie; Weinberg, David E.; Niessen, Sherry; Yates, John R.; Wolin, Sandra L.

    2012-01-01

    The Ro 60-kDa autoantigen, a ring-shaped RNA-binding protein, traffics between the nucleus and cytoplasm in vertebrate cells. In some vertebrate nuclei, Ro binds misfolded noncoding RNAs and may function in quality control. In the cytoplasm, Ro binds noncoding RNAs called Y RNAs. Y RNA binding blocks a nuclear accumulation signal, retaining Ro in the cytoplasm. Following UV irradiation, this signal becomes accessible, allowing Ro to accumulate in nuclei. To investigate how other cellular components influence the function and subcellular location of Ro, we identified several proteins that copurify with the mouse Ro protein. Here, we report that the zipcode-binding protein ZBP1 influences the subcellular localization of both Ro and the Y3 RNA. Binding of ZBP1 to the Ro/Y3 complex increases after UV irradiation and requires the Y3 RNA. Despite the lack of an identifiable CRM1-dependent export signal, nuclear export of Ro is sensitive to the CRM1 inhibitor leptomycin B. In agreement with a previous report, we find that ZBP1 export is partly dependent on CRM1. Both Ro and Y3 RNA accumulate in nuclei when ZBP1 is depleted. Our data indicate that ZBP1 may function as an adapter to export the Ro/Y3 RNA complex from nuclei. PMID:22114317

  18. Measurement of backscattered x-ray spectra at the water surface in the energy range 60 kV to 120 kV.

    PubMed

    Aoki, Kiyoshi; Koyama, Masaki

    2002-04-01

    Backscattered x-ray spectra at the water surface have been measured by using a small silicon diode detector. The measurements have been made at tube voltages 60 kV to 120 kV (HVL 2.4-6.1 mm Al) and field sizes 5 x 5 cm2 to 30 x 30 cm2. The measured spectra are corrected for detector distortion and for the angular dependence of detector efficiency. The obtained backscattered spectrum has a lower mean energy and a narrower shape than the primary spectrum. The ratio of the mean energy of the backscattered spectrum to that of the primary spectrum is between 0.83 and 0.94. The ratio of the spectrum width at 10% of the continuous spectrum maximum is between 0.65 and 0.78. The change of spectral shape due to the field size is slight. In the high-voltage spectra, the peak due to the Compton scattering of tungsten Kalpha x-rays is observed. The backscatter factors (BSFs) calculated from the obtained spectra show a satisfactory agreement with other studies. The difference between the BSF defined as the ratio of air kerma and the BSF defined as the ratio of water kerma is also calculated; the maximum difference is 0.43%. The empirical equation showing the relation between the two BSFs is presented. PMID:11996064

  19. MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging

    NASA Astrophysics Data System (ADS)

    Potsaid, Benjamin; Jayaraman, Vijaysekhar; Fujimoto, James G.; Jiang, James; Heim, Peter J. S.; Cable, Alex E.

    2012-01-01

    This paper demonstrates new wavelength swept light source technology, MEMS tunable VCSELs, for OCT imaging. The VCSEL achieves a combination of ultrahigh sweep speeds, wide spectral tuning range, flexibility in sweep trajectory, and extremely long coherence length, which cannot be simultaneously achieved with other technologies. A second generation prototype VCSEL is optically pumped at 980nm and a low mass electrostatically tunable mirror enables high speed wavelength tuning centered at ~1310nm with ~110nm of tunable bandwidth. Record coherence length >100mm enables extremely long imaging range. By changing the drive waveform, a single 1310nm VCSEL was driven to sweep at speeds from 100kHz to 1.2MHz axial scan rate with unidirectional and bidirectional high duty cycle sweeps. We demonstrate long range and high resolution 1310nm OCT imaging of the human anterior eye at 100kHz axial scan rate and imaging of biological samples at speeds of 60kHz - 1MHz. A first generation 1050nm device is shown to sweep over 100nm. The results of this study suggest that MEMS based VCSEL swept light source technology has unique performance characteristics and will be a critical technology for future ultrahigh speed and long depth range OCT imaging.

  20. Simultaneous cross polarization to 13C and 15N with 1H detection at 60 kHz MAS solid-state NMR

    NASA Astrophysics Data System (ADS)

    Das, Bibhuti B.; Opella, Stanley J.

    2016-01-01

    We describe high resolution MAS solid-state NMR experiments that utilize 1H detection with 60 kHz magic angle spinning; simultaneous cross-polarization from 1H to 15N and 13C nuclei; bidirectional cross-polarization between 13C and 15N nuclei; detection of both amide nitrogen and aliphatic carbon 1H; and measurement of both 13C and 15N chemical shifts through multi-dimensional correlation experiments. Three-dimensional experiments correlate amide 1H and alpha 1H selectively with 13C or 15N nuclei in a polypeptide chain. Two separate three-dimensional spectra correlating 1Hα/13Cα/1HN and 1HN/15N/1Hα are recorded simultaneously in a single experiment, demonstrating that a twofold savings in experimental time is potentially achievable. Spectral editing using bidirectional coherence transfer pathways enables simultaneous magnetization transfers between 15N, 13Cα(i) and 13C‧(i-1), facilitating intra- and inter-residue correlations for sequential resonance assignment. Non-uniform sampling is integrated into the experiments, further reducing the length of experimental time.

  1. High-Performing, Low-Temperature-Operating, Long-Lifetime Aerospace Lubricants

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash

    2015-01-01

    Long-duration space exploration will require spacecraft systems that can operate effectively over several years with minimal or no maintenance. Aerospace lubricants are key components of spacecraft systems. Physical Sciences Inc., has synthesized and characterized novel ionic liquids for use in aerospace lubricants that contribute to decreased viscosity, friction, and wear in aerospace systems. The resulting formulations offer low vapor pressure and outgassing properties and thermal stability up to 250 C. They are effective for use at temperatures as low as -70 C and provide long-term operational stability in aerospace systems. In Phase II, the company scaled several new ionic liquids and evaluated a novel formulation in a NASA testbed. The resulting lubricant compounds will offer lower volatility, decreased corrosion, and better tribological characteristics than standard liquid lubricants, particularly at lower temperatures.

  2. Optimizing the Operating Temperature for an array of MOX Sensors on an Open Sampling System

    NASA Astrophysics Data System (ADS)

    Trincavelli, M.; Vergara, A.; Rulkov, N.; Murguia, J. S.; Lilienthal, A.; Huerta, R.

    2011-09-01

    Chemo-resistive transduction is essential for capturing the spatio-temporal structure of chemical compounds dispersed in different environments. Due to gas dispersion mechanisms, namely diffusion, turbulence and advection, the sensors in an open sampling system, i.e. directly exposed to the environment to be monitored, are exposed to low concentrations of gases with many fluctuations making, as a consequence, the identification and monitoring of the gases even more complicated and challenging than in a controlled laboratory setting. Therefore, tuning the value of the operating temperature becomes crucial for successfully identifying and monitoring the pollutant gases, particularly in applications such as exploration of hazardous areas, air pollution monitoring, and search and rescue1. In this study we demonstrate the benefit of optimizing the sensor's operating temperature when the sensors are deployed in an open sampling system, i.e. directly exposed to the environment to be monitored.

  3. High-density magnetoresistive random access memory operating at ultralow voltage at room temperature

    PubMed Central

    Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen

    2011-01-01

    The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch−2, ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns. PMID:22109527

  4. High power and high temperature continuous-wave operation of distributed Bragg reflector quantum cascade lasers

    SciTech Connect

    Xie, Feng Caneau, Catherine G.; LeBlanc, Herve P.; Ho, Ming-tsung; Wang, Jie; Chaparala, Satish; Hughes, Lawrence C.; Zah, Chung-en

    2014-02-17

    High temperature continuous-wave (CW) operation of a distributed Bragg reflector (DBR) quantum cascade laser is demonstrated up to a heat sink temperature of 80 °C. A CW output power of 2 W and a single mode operation with side mode suppression ratio of 30 dB around wavelength of 4.48 μm were achieved at 20 °C. The maximum pulsed and CW wall-plug-efficiencies reached 14.7% and 10.3% at 20 °C, respectively. A large tuning range of 5 cm{sup −1} between mode hopping was observed and attributed to the thermal cross-talk from the gain section to the DBR section.

  5. The Integrity of ACSR Full Tension Single-Stage Splice Connector at Higher Operation Temperature

    SciTech Connect

    Wang, Jy-An John; Lara-Curzio, Edgar; King Jr, Thomas J

    2008-10-01

    Due to increases in power demand and limited investment in new infrastructure, existing overhead power transmission lines often need to operate at temperatures higher than those used for the original design criteria. This has led to the accelerated aging and degradation of splice connectors. It is manifested by the formation of hot-spots that have been revealed by infrared imaging during inspection. The implications of connector aging is two-fold: (1) significant increases in resistivity of the splice connector (i.e., less efficient transmission of electricity) and (2) significant reductions in the connector clamping strength, which could ultimately result in separation of the power transmission line at the joint. Therefore, the splice connector appears to be the weakest link in electric power transmission lines. This report presents a protocol for integrating analytical and experimental approaches to evaluate the integrity of full tension single-stage splice connector assemblies and the associated effective lifetime at high operating temperature.

  6. High power and high temperature continuous-wave operation of distributed Bragg reflector quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Xie, Feng; Caneau, Catherine G.; LeBlanc, Herve P.; Ho, Ming-tsung; Wang, Jie; Chaparala, Satish; Hughes, Lawrence C.; Zah, Chung-en

    2014-02-01

    High temperature continuous-wave (CW) operation of a distributed Bragg reflector (DBR) quantum cascade laser is demonstrated up to a heat sink temperature of 80 °C. A CW output power of 2 W and a single mode operation with side mode suppression ratio of 30 dB around wavelength of 4.48 μm were achieved at 20 °C. The maximum pulsed and CW wall-plug-efficiencies reached 14.7% and 10.3% at 20 °C, respectively. A large tuning range of 5 cm-1 between mode hopping was observed and attributed to the thermal cross-talk from the gain section to the DBR section.

  7. Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175°C

    SciTech Connect

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.

    2014-03-01

    Operation of sodium-nickel chloride battery at temperatures lower than 200°C reduces cell degradation and improves the cyclability. One of the main technical issues in terms of operating this battery at intermediate temperatures such as 175°C is the poor wettability of molten sodium on β”-alumina solid electrolyte (BASE) causing reduced active area and limited charging . In order to overcome the problem related to poor wettability of Na melt on BASE at 175°C, Pt grid was applied on the anode side of BASE using a screen printing technique. Deeper charging and improved cycling behavior was observed on the cells with metalized BASEs due to extended active area.

  8. Extreme Temperature Operation of a 10 MHz Silicon Oscillator Type STCL1100

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2008-01-01

    The performance of STMicroelectronics 10 MHz silicon oscillator was evaluated under exposure to extreme temperatures. The oscillator was characterized in terms of its output frequency stability, output signal rise and fall times, duty cycle, and supply current. The effects of thermal cycling and re-start capability at extreme low and high temperatures were also investigated. The silicon oscillator chip operated well with good stability in its output frequency over the temperature region of -50 C to +130 C, a range that by far exceeded its recommended specified boundaries of -20 C to +85 C. In addition, this chip, which is a low-cost oscillator designed for use in applications where great accuracy is not required, continued to function at cryogenic temperatures as low as - 195 C but at the expense of drop in its output frequency. The STCL1100 silicon oscillator was also able to re-start at both -195 C and +130 C, and it exhibited no change in performance due to the thermal cycling. In addition, no physical damage was observed in the packaging material due to extreme temperature exposure and thermal cycling. Therefore, it can be concluded that this device could potentially be used in space exploration missions under extreme temperature conditions in microprocessor and other applications where tight clock accuracy is not critical. In addition to the aforementioned screening evaluation, additional testing, however, is required to fully establish the reliability of these devices and to determine their suitability for long-term use.

  9. Dynamical modelling of an activated sludge system of a petrochemical plant operating at high temperatures.

    PubMed

    Maqueda, M A M; Martinez, Sergio A; Narváez, D; Rodriguez, Miriam G; Aguilar, Ricardo; Herrero, Victor M

    2006-01-01

    The Mexican petrochemical industry, Morelos S.A. de C.V., is one of the biggest and more important petroleum industries in Mexico and Latin America. It has an activated sludge system to treat its wastewater flow, which is approximately 7,000 m3/d. The wastewater contains volatile organic carbon substances classified as toxics. The old surface aeration system was changed for fine bubble diffusers; however, one major drawback of the new aeration system is that the temperature in the bioreactor has increased due to the compression of the air, which at the compressor exit reaches 85 degrees C. This effect results in the temperature in the bioreactor attaining 32 degrees C during the fall, whereas in the spring and summer, the bioreactor temperature reaches higher values than 40 degrees C. The high temperatures reduce the microorganism activity and cause a higher volatilisation rate of volatile compounds, among other effects, which affect the performance of the biological treatment. This work was performed to obtain a better modelling of the wastewater treatment from the petrochemical industry. The model describes the effect of the temperature on the performance of the biological treatment. The model was obtained from tests that were carried out in laboratory reactors with 14 L capacity, which were operated at different temperatures (from 30 to 45 degrees C), with the same wastewater and conditions as the actual system. PMID:16862783

  10. Performance and durability of PEM fuel cells operated at sub-freezing temperatures

    SciTech Connect

    Mukundan, Rangachary; Davey, John R; Lujan, Roger W; Spendelow, Jacob S

    2008-01-01

    The durability of polymer electrolyte membrane (PEM) fuel cells operated at sub-freezing temperatures has received increasing attention in recent years. The Department of Energy's PEM fuel cell stack technical targets for the year 2010 include unassisted start-up from -40 {sup o}C and startup from -20 {sup o}C ambient in as low as 30 seconds with < 5 MJ energy consumption. Moreover, the sub-freezing operations should not have any impact on acieving other technical targets including 5000 hours durability. The effect of MEA preparation on the performance of single-PEM fuel cells operated at sub-freezing temperatures is presented. The cell performance and durability are dependent on the MEA and are probably influenced by the porosity of the catalyst layers. When a cell is operated isothermally at -10 {sup o}C in constant current mode, the voltage gradually decreases over time and eventually drops to zero. AC impedance analysis indicated that the rate of voltage loss is initially due to an increase in the charge transfer resistance and is gradual. After a period, the rate of decay accelerates rapidly due to mass transport limitations at the catalyst and/or gas diffusion layers. The high frequency resistance also increases over time during the isothermal operation at sub-freezing temperatures and was a function of the initial membrane water content. LANL prepared MEAs showed very little loss in the catalyst surface area with multiple sub-freezing operations, whereas the commercial MEAs exhibited significant loss in cathode surface area with the anode being unaffected. These results indicate that catalyst layer ice formation is influenced strongly by the MEA and is responsible for the long-term degradation of fuel cells operated at sub-freezing temperatures. This ice formation was monitored using neutron radiography and was found to be concentrated near cell edges at the flow field turns. The water distribution also indicated that ice may be forming mainly in the GDLs at

  11. High operating temperature IR-modules with reduced pitch for SWaP sensitive applications

    NASA Astrophysics Data System (ADS)

    Breiter, R.; Wendler, J.; Lutz, H.; Rutzinger, S.; Ihle, T.; Ziegler, J.; Rühlich, I.

    2011-06-01

    Low size, weight and power (SWaP) are the most critical requirements for portable thermal imagers like weapon sights or handheld observations devices. On the other hand due to current asymmetrical conflicts there are high requirements for the e/o performance of these devices providing the ability to distinguish between combatants and non-combatants in adequate ranges. Despite of all the success with uncooled technology, such requirements usually still require cooled detectors. AIM has developed a family of thermal weapon sights called HuntIR and RangIR based on high performance cooled IR-modules which are used e.g. in the infantryman of the future program of the German army (IdZ). The specific capability of these devices is a high ID range >1500m for tank targets being suitable in use as thermal sights for .50 cal rifles like the G82, targeting units for the 40mm AGL or for night observation. While such ranges sound far beyond the operational needs in urban operations, the a.m. specific needs of asymmetric warfare require sometimes even more range performance. High operating temperature (HOT) is introduced in the AIM MCT 640x512/15μm MWIR or LWIR modules for further reduction of cooler power consumption, shorter cooldown times and higher MTTF. As a key component to keep performance while further reducing SWaP AIM is developing a new cooled MCT IR-module with reduced pitch of 12 μm operating at a temperature >120 K. The module will provide full TV format with 640x480 elements sensitive in the MWIR spectral band. The paper will show recent results of AIM IR-modules with high operating temperature and the impact of design regarding the IR-module itself and thermal sights making use of it.

  12. A novel NO2 gas sensor based on Hall effect operating at room temperature

    NASA Astrophysics Data System (ADS)

    Lin, J. Y.; Xie, W. M.; He, X. L.; Wang, H. C.

    2016-09-01

    Tungsten trioxide nanoparticles were obtained by a simple thermal oxidation approach. The structural and morphological properties of these nanoparticles are investigated using XRD, SEM and TEM. A WO3 thick film was deposited on the four Au electrodes to be a WO3 Hall effect sensor. The sensor was tested between magnetic field in a plastic test chamber. Room-temperature nitrogen dioxide sensing characteristics of Hall effect sensor were studied for various concentration levels of nitrogen dioxide at dry air and humidity conditions. A typical room-temperature response of 3.27 was achieved at 40 ppm of NO2 with a response and recovery times of 36 and 45 s, respectively. NO2 gas sensing mechanism of Hall effect sensor was also studied. The room-temperature operation, with the low deposition cost of the sensor, suggests suitability for developing a low-power cost-effective nitrogen dioxide sensor.

  13. Two temperature gas equilibration model with a Fokker-Planck type collision operator

    NASA Astrophysics Data System (ADS)

    Méndez, A. R.; Chacón-Acosta, G.; García-Perciante, A. L.

    2014-01-01

    The equilibration process of a binary mixture of gases with two different temperatures is revisited using a Fokker-Planck type equation. The collision integral term of the Boltzmann equation is approximated by a Fokker-Planck differential collision operator by assuming that one of the constituents can be considered as a background gas in equilibrium while the other species diffuses through it. As a main result the coefficients of the linear term and of the first derivative are modified by the temperature and kinetic energy difference of the two species. These modifications are expected to influence the form of the solution for the distribution function and the corresponding transport equations. When temperatures are equal, the usual result of a Rayleigh gas is recovered.

  14. Temperature & stress issues in devices with diamond substrates during manufacturing and operation

    SciTech Connect

    Chandran, B.; Schmidt, W.F.; Gordon, M.H.

    1995-12-31

    Finite element thermal and stress analyses were performed on a backside attached GaAs laser diode with a CVD diamond substrate. Two situations were one corresponding to thermal conditions during manufacture and the other to thermal conditions while operating. The influence of different solder coverage areas and voids in the solder layer on the maximum temperature and stress in the diode were determined. The results show that the stresses in the diode decrease and the maximum temperature increases when the area of the solder layer with respect to the die area decreases from the edges towards the center. It was also found that voids in the solder layer do not significantly increase the maximum temperature in the diode.

  15. Study of YBCO tape anisotropy as a function of field, field orientation and operating temperature

    SciTech Connect

    Lombardo, v.; Barzi, E.; Turrioni, D.; Zlobin, A.V.

    2011-06-01

    Superconducting magnets with magnetic fields above 20 T will be needed for a Muon Collider and possible LHC energy upgrade. This field level exceeds the possibilities of traditional Low Temperature Superconductors (LTS) such as Nb{sub 3}Sn and Nb{sub 3}Al. Presently the use of high field high temperature superconductors (HTS) is the only option available for achieving such field levels. Commercially available YBCO comes in tapes and shows noticeable anisotropy with respect to field orientation, which needs to be accounted for during magnet design. In the present work, critical current test results are presented for YBCO tape manufactured by Bruker. Short sample measurements results are presented up to 14 T, assessing the level of anisotropy as a function of field, field orientation and operating temperature.

  16. Electrolytes for Low-Temperature Operation of Li-CFx Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Whitacre, Jay F.; Bugga, Ratnakumar V.; Prakash, G. K. Surya; Bhalla, Pooja; Smith, Kiah

    2009-01-01

    A report describes a study of electrolyte compositions selected as candidates for improving the low-temperature performances of primary electrochemical cells that contain lithium anodes and fluorinated carbonaceous (CFx) cathodes. This study complements the developments reported in Additive for Low-Temperature Operation of Li-(CF)n Cells (NPO- 43579) and Li/CFx Cells Optimized for Low-Temperature Operation (NPO- 43585), which appear elsewhere in this issue of NASA Tech Briefs. Similar to lithium-based electrolytes described in several previous NASA Tech Briefs articles, each of these electrolytes consisted of a lithium salt dissolved in a nonaqueous solvent mixture. Each such mixture consisted of two or more of the following ingredients: propylene carbonate (PC); 1,2-dimethoxyethane (DME); trifluoropropylene carbonate; bis(2,2,2-trifluoroethyl) ether; diethyl carbonate; dimethyl carbonate; and ethyl methyl carbonate. The report describes the physical and chemical principles underlying the selection of the compositions (which were not optimized) and presents results of preliminary tests made to determine effects of the compositions upon the low-temperature capabilities of Li-CFx cells, relative to a baseline composition of LiBF4 at a concentration of 1.0 M in a solvent comprising equal volume parts of PC and DME.

  17. SiC field-effect devices operating at high temperature

    NASA Astrophysics Data System (ADS)

    Ghosh, Ruby N.; Tobias, Peter

    2005-04-01

    Field-effect devices based on SiC metal-oxide-semiconductor (MOS) structures are attractive for electronic and sensing applications above 250°C. The MOS device operation in chemically corrosive, high-temperature environments places stringent demands on the stability of the insulating dielectric and the constituent interfaces within the structure. The primary mode of oxide breakdown under these conditions is attributed to electron injection from the substrate. The reliability of n-type SiC MOS devices was investigated by monitoring the gate-leakage current as a function of temperature. We find current densities below 17 nA/cm2 and 3 nA/cm2 at electric field strengths up to 0.6 MV/cm and temperatures of 330°C and 180°C, respectively. These are promising results for high-temperature operation, because the optimum bias point for SiC MOS gas sensors in near midgap, where the field across the oxide is small. Our results are valid for n-type SiC MOS sensors in general and have been observed in both the 4H and 6H polytypes.

  18. Discharge product morphology versus operating temperature in non-aqueous lithium-air batteries

    NASA Astrophysics Data System (ADS)

    Tan, P.; Shyy, W.; Zhao, T. S.; Wei, Z. H.; An, L.

    2015-03-01

    During the discharge process of non-aqueous lithium-air batteries, a solid product, Li2O2, forms in the pores of the porous cathode, and eventually causes the discharge process to cease. During the charge process, solid Li2O2 needs to be electrochemically oxidized. The morphology of the discharge product is, therefore, critically related to the capacity and reversibility of the battery. In this work, we experimentally show that for a given design of the cathode, the shape of the discharge product Li2O2 at a given discharge current density remains almost unchanged with a change in the operating temperature, but the size decreases with an increase in the temperature. We also demonstrate that the product shape varies with the discharge current density at a given temperature. The practical implication of these findings is that the capacity, charge voltage, and cyclability of a given non-aqueous lithium-air battery are affected by the operating temperature.

  19. Microscopic derivation of the finite-temperature Josephson relation in operator form

    SciTech Connect

    Rieckers, A.; Ullrich, M.

    1986-04-01

    As a microscopic description of the Josephson junction, two BCS models, are studied in the strict pair formulation with quite an arbitrary weak coupling potential. The modular formalism, the separate gauge transformations, and the limiting dynamics are analyzed for the interacting system in terms of the GNS representation of the uncoupled limiting Gibbs state. By means of the Connes theory the condensed Cooper pair and the quasiparticle spectrum is shown to be stable against weak perturbations. The modular formalism is used to construct a local approximation to the renormalized particle number operator and, by this, its time dependence, in spite of this observable not being affiliated with the von Neumann algebra of the temperature representation. The time derivation from this unbounded operator-valued function coincides with the limit of the local currents and splits under a natural assumption into a sum of the Josephson and the quasiparticle current operator extending the two-fluid picture also to the coupled model.

  20. Active Control of the Operating Temperature in a Loop Heat Pipe with Two Evaporators and Two Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Birur, Gaj; Powers, Edward I. (Technical Monitor)

    2001-01-01

    The operating temperature of a loop heat pipe (LHP) with multiple evaporators is a function of the total heat load, heat load distribution among evaporators, condenser temperature and ambient temperature. Because of the many variables involved, the operating temperature also showed more hystereses than an LHP with a single evaporator. Tight temperature control can be achieved by controlling its compensation chamber (CC) temperatures at the desired set point. This paper describes a test program on active control of the operating temperature in an LHP with two evaporators and two condensers. Temperature control was achieved by heating one or both CC's. Tests performed included start-up, power cycle, sink temperature cycle, CC temperature cycle, and capillary limit. Test results show that, regardless one or two CC's were heated to the set point temperature, one of CC's was always flooded with liquid. The loop could operate successfully at the desired set point temperature under most conditions, including some fast transients. At low heat loads, however, the CC temperature could suddenly increase above the set point temperature, possibly due to a sudden change of the vapor content inside the evaporator core.

  1. Effects of operating temperature on the characteristics of nickel/iron traction batteries

    SciTech Connect

    DeLuca, W.H.; Biwer, R.L.; Tummillo, A.F.

    1986-07-01

    Performance of improved Ni/Fe electric vehicle batteries was measured at ambient temperatures of 0, 25, and 50/sup 0/C for a range of overcharge levels, open-circuit stand times, and charge and discharge rates. Tests in which charges and discharges were performed at different battery operating temperatures showed that the discharge capacity of a Ni/Fe battery is directly related to its operating temperature, but its charge acceptance is descreased at 0 and 50/sup 0/C by approx.6% from that obtained at 25/sup 0/C. The decline in battery efficiency at high temperatures is the result of increased self-discharge losses. In the first 0.5 h after charge, the Ah self-discharge loss at 50/sup 0/C is twice (6%) that at 0 and 25/sup 0/C (approx.3%), corresponding to an increase in initial self-discharge rate from approx.8 to 16 A. The increased self-discharge rate apparently occurs during the latter part of charging and, thereby, causes the 6% decline in charge acceptance. A decrease in battery efficiency also resulted at 50/sup 0/C (6% coulombic and 4% energy efficiency loss) when the charge current was reduced from the 3-h to the 6-h rate. In comparison, low temperatures impact battery internal resistance and IR-free voltage more than high temperatures. For an increase in ambient temperature from 25 to 50/sup 0/C, battery IR-free voltage increased less than 1% and battery resistance decreased only 3%. However, a decrease from 25 to 0/sup 0/C resulted in a 2.3% decrease in IR-free voltage and about a 22% increase in resistance. The available capacity and operating efficiency of a Ni/Fe battery are maximal near 25/sup 0/C. To maintain the same Ah capacity achieved at 25/sup 0/C with a 20% overcharge, the overcharge must be doubled at 50/sup 0/C (42%) and tripled at 0/sup 0/C (60%). Test procedures and equipment are described, test data are presented, and results are discussed.

  2. High temperature operation In1-xAlxSb infrared focal plane

    NASA Astrophysics Data System (ADS)

    Lyu, Yanqiu; Si, Junjie; Cao, Xiancun; Zhang, Liang; Peng, Zhenyu; Ding, Jiaxin; Yao, Guansheng; Zhang, Xiaolei; Reobrazhenskiy, Valeriy

    2016-05-01

    A high temperature operation mid-wavelength 128×128 infrared focal plane arrays (FPA) based on low Al component In1-xAlxSb was presented in this work. InAlSb materials were grown on InSb (100) substrates using MBE technology, which was confirmed by XRD and AFM analyses. We have designed and grown two structures with and without barrier. The pixel of the detector had a conventional PIN structure with a size of 50μmx50μm. The device fabrication process consisted of mesa etching, passivation, metallization and flip-chip hybridization with readout integrated circuit (ROIC), epoxy backfill, lap and polish. Diode resistance, imaging, NETD and operability results are presented for a progression of structures that reduce the diode leakage current as the temperature is raised above 80K. These include addition of a thin region of InAlSb to reduce p-contact leakage current, and construction of the whole device from InAlSb to reduce thermal generation in the active region of the detector. An increase in temperature to 110K, whilst maintaining full 80K performance, is achieved. The I-V curves were measured at different temperature. Quantum efficiency, pixel operability, non-uniformity, and the mean NETD values of the FPAs were measured at 110K. This gives the prospect of significant benefits for the cooling systems, including, for example, use of argon in Joule-Thomson coolers or an increase in the life and/or decrease in the cost, power consumption and cool-down time of Stirling engines by several tens of percent.

  3. Impact of Radiation Hardness and Operating Temperatures of Silicon Carbide Electronics on Space Power System Mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Tew, Roy C.; Schwarze, Gene E.

    1998-01-01

    The effect of silicon carbide (SiC) electronics operating temperatures on Power Management and Distribution (PMAD), or Power Conditioning (PC), subsystem radiator size and mass requirements was evaluated for three power output levels (100 kW(e) , 1 MW(e), and 10 MW(e)) for near term technology ( i.e. 1500 K turbine inlet temperature) Closed Cycle Gas Turbine (CCGT) power systems with a High Temperature Gas Reactor (HTGR) heat source. The study was conducted for assumed PC radiator temperatures ranging from 370 to 845 K and for three scenarios of electrical energy to heat conversion levels which needed to be rejected to space by means of the PC radiator. In addition, during part of the study the radiation hardness of the PC electronics was varied at a fixed separation distance to estimate its effect on the mass of the instrument rated reactor shadow shield. With both the PC radiator and the conical shadow shield representing major components of the overall power system the influence of the above on total power system mass was also determined. As expected, results show that the greatest actual mass savings achieved by the use of SiC electronics occur with high capacity power systems. Moreover, raising the PC radiator temperature above 600 K yields only small additional system mass savings. The effect of increased radiation hardness on total system mass is to reduce system mass by virtue of lowering the shield mass.

  4. Impact of radiation hardness and operating temperatures of silicon carbide electronics on space power system mass

    NASA Astrophysics Data System (ADS)

    Juhasz, Albert J.; Tew, Roy C.; Schwarze, Gene E.

    1999-01-01

    The effect of silicon carbide (SiC) electronics operating temperatures on Power Management and Distribution (PMAD), or Power Conditioning (PC), subsystem radiator size and mass requirements was evaluated for three power output levels (100 kWe, 1 MWe, and 10 MWe) for near term technology (i.e. 1500 K turbine inlet temperature) Closed Cycle Gas Turbine (CCGT) power systems with a High Temperature Gas Reactor (HTGR) heat source. The study was conducted for assumed PC radiator temperatures ranging from 370 to 845 K and for three scenarios of electrical energy to heat conversion levels which needed to be rejected to space by means of the PC radiator. In addition, during part of the study the radiation hardness of the PC electronics was varied at a fixed separation distance to estimate its effect on the mass of the instrument rated reactor shadow shield. With both the PC radiator and the conical shadow shield representing major components of the overall power system the influence of the above on total power system mass was also determined. As expected, results show that the greatest actual mass savings achieved by the use of SiC electronics occur with high capacity power systems. Moreover, raising the PC radiator temperature above 600 K yields only small additional system mass savings. The effect of increased radiation hardness on total system mass is to reduce system mass by virtue of lowering the shield mass.

  5. Operation results of the first commercial PFBC plant with high temperature ceramic filters

    SciTech Connect

    Kaneko, S.; Suga, N.

    1998-07-01

    Trial operation is now successfully underway at Tomato-Atsuma Unit No. 3 of Hokkaido Electric Power Co. (HEPCO) in Japan. This newly built 85 MWe unit is an innovative PFBC plant, which is the first commercial PFBC in Japan, and equipped with full capacity ceramic filters operated at 850 C. The high temperature ceramic filter effectively removes dusts in the hot gas and the dust loading at gas turbine inlet is much less than that of two-stage cyclones, minimizing the cost and time of gas turbine maintenance. The PFBC plant is composed of a pressurized fluidized-bed boiler, cyclones, ceramic filters, a gas turbine, a steam turbine, etc. and all of the equipment were manufactured and supplied by Mitsubishi Heavy Industries, Ltd. (MHI). Joint R and D program between HEPCO and MHI started 7 years ago, based on their own private funding and without any financial supports from public sectors, studying the optimum design of the first commercial PFBC aiming at environmental and economical advantages. And now fruitful results have been achieved. The commercial operation will start in March 1998 or earlier. Several troubles had been experienced during initial trial operation stage including pressure drop increase in ceramic filters. All these problems were solved one by one by the joint efforts of HEPCO and MHO. Load rejection tests, load swing tests, and automatic power control tests were successfully done in the spring of 1997. And tests with various kinds of coals are scheduled before the commercial operation.

  6. Operating experience with the southwire 30-meter high-temperature superconducting power cable

    NASA Astrophysics Data System (ADS)

    Stovall, J. P.; Lue, J. W.; Demko, J. A.; Fisher, P. W.; Gouge, M. J.; Hawsey, R. A.; Armstrong, J. W.; Hughey, R. L.; Lindsay, D. T.; Roden, M. L.; Sinha, U. K.; Tolbert, J. C.

    2002-05-01

    Southwire Company is operating a high-temperature superconducting (HTS) cable system at its corporate headquarters. The 30-m long, 3-phase cable system is powering three Southwire manufacturing plants and is rated at 12.4-kV, 1250-A, 60-Hz. Cooling is provided by a pressurized liquid nitrogen system operating at 70-80 K. The cables were energized on January 5, 2000 for on-line testing and operation and in April 2000 were placed into extended service. As of June 1, 2001, the HTS cables have provided 100% of the customer load for 8000 hours. The cryogenic system has been in continuous operation since November 1999. The HTS cable system has not been the cause of any power outages to the average 20 MW industrial load served by the cable. The cable has been exposed to short-circuit currents caused by load-side faults without damage. Based upon field measurements described herein, the cable critical current-a key performance parameter-remains the same and has not been affected by the hours of real-world operation, further proving the viability of this promising technology.

  7. The first echinoderm poly-U-binding factor 60 kDa (PUF60) from sea cucumber (Stichopus monotuberculatus): Molecular characterization, inducible expression and involvement of apoptosis.

    PubMed

    Ren, Chunhua; Chen, Ting; Sun, Hongyan; Jiang, Xiao; Hu, Chaoqun; Qian, Jing; Wang, Yanhong

    2015-11-01

    Poly-U-binding factor 60 kDa (PUF60), also known as Ro RNA binding protein (RoBPI) and FBP interacting repressor (FIR), is a multifunctional protein that is involved in a variety of nuclear processes including pre-mRNA splicing, apoptosis and transcription regulation. In this study, the first echinoderm PUF60 named StmPUF60 was identified from sea cucumber (Stichopus monotuberculatus). The StmPUF60 cDNA is 4503 bp in length, containing a 5'-untranslated region (UTR) of 34 bp, a 3'-UTR of 2963 bp and an open reading frame (ORF) of 1506 bp that encoding a protein of 501 amino acids with a deduced molecular weight of 54.15 kDa and a predicted isoelectric point of 5.15. The putative StmPUF60 protein possesses all the main characteristics of known PUF60 proteins, including two RNA recognition motifs (RRM1 and RRM2), a C-terminal PUMP domain and two conserved nucleic acid-binding ribonucleoprotein sequences (RNP1 and RNP2). For the gene structure, StmPUF60 contains nine exons separated by eight introns. In addition, the highest level of StmPUF60 mRNA expression was noticed in the gonad, followed by coelomocytes, intestine, respiratory tree and body wall. In in vivo experiments, the expression of StmPUF60 mRNA in coelomocytes and intestine was significantly up-regulated by lipopolysaccharides (LPS) challenge, suggesting that the sea cucumber PUF60 might play critical roles in the innate immune defense against bacterial infections. Moreover, we further confirmed that overexpressed StmPUF60 could induce apoptosis, and this function of StmPUF60 may be one of the innate immune defense mechanisms for sea cucumber against pathogen infections. PMID:26362209

  8. High operation temperature mid-wavelength interband cascade infrared photodetectors grown on InAs substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Chen, Jianxin; Xu, Zhicheng; He, Li

    2016-05-01

    In recent years, interband cascade detectors (ICIP) based on typer-II superlattice have shown great performance potential at high operation temperature. In this paper, we report our studies on mid-infrared interband cascade photodetectors first grown on InAs substrate. We examined the photo-generated carriers' transport in ICIP structures by comparing three detectors grown on InAs substrate. The 2-stages ICIP device has demonstrated a high quantum efficiency around 20% at room temperature. The dark current density of the 2-stages ICIP device at -0.05V is as low as 1 nA at 80K, 1 mA at 150K, which is comparable to the state of art PIN superlattice photodetectors with similar cutoff wavelength. The Johnson-noise limited D* reaches 1.64×1014cm.Hz1/2/W at 3.65 μm and 80K, and 4.1×1010cm.Hz1/2/W at 3.8 μm and 200K. The 300 K background limited infrared performance (BLIP) operation temperature is estimated to be over 140 K.

  9. Reduced group delay dispersion in quantum dot passively mode-locked lasers operating at elevated temperature

    NASA Astrophysics Data System (ADS)

    Mee, J. K.; Raghunathan, R.; Murrell, D.; Braga, A.; Li, Y.; Lester, L. F.

    2014-09-01

    A detailed study of the pulse characteristics emitted from a monolithic Quantum Dot (QD) passively Mode-Locked Laser (MLL) has been performed using a state-of-the-art Frequency Resolved Optical Gating (FROG) pulse measurement system. While traditionally the time-domain pulse characteristics of semiconductor MLLs have been studied using digital sampling oscilloscope or intensity autocorrelation techniques, the FROG measurements allow for simultaneous characterization of time and frequency, which has been shown to be necessary and sufficient for true determination of mode-locked stability. In this paper, FROG pulse measurements are presented on a two-section QD MLL operating over wide temperature excursions. The FROG measurement allows for extraction of the temporal and spectral intensity and phase profiles from which the Group Delay Dispersion (GDD) can be determined. The magnitude of the GDD is found to decrease from 16.1 to 3.5 ps/nm when the temperature is increased from 20 to 50 oC, mirroring the trend of pulse width reduction at elevated temperature, which has been shown to correlate strongly with reduced unsaturated absorption. The possibility to further optimize pulse generation via intra-cavity dispersion compensation in a novel three-section MLL design is also examined, and shows strong potential toward providing valuable insight into the optimal cavity designs and operating parameters for QD MLLs.

  10. Performance of MEMS Silicon Oscillator, ASFLM1, under Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2008-01-01

    Over the last few years, MEMS (Micro-Electro-Mechanical Systems) resonator-based oscillators began to be offered as commercial-off-the-shelf (COTS) parts by a few companies [1-2]. These quartz-free, miniature silicon devices could compete with the traditional crystal oscillators in providing the timing (clock function) for many digital and analog electronic circuits. They provide stable output frequency, offer great tolerance to shock and vibration, and are immune to electro-static discharge [1-2]. In addition, they are encapsulated in compact lead-free packages, cover a wide frequency range (1 MHz to 125 MHz), and are specified, depending on the grade, for extended temperature operation from -40 C to +85 C. The small size of the MEMS oscillators along with their reliability and thermal stability make them candidates for use in space exploration missions. Limited data, however, exist on the performance and reliability of these devices under operation in applications where extreme temperatures or thermal cycling swings, which are typical of space missions, are encountered. This report presents the results of the work obtained on the evaluation of an ABRACON Corporation MEMS silicon oscillator chip, type ASFLM1, under extreme temperatures.

  11. Epitaxial InSb for elevated temperature operation of large IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Ashley, Tim; Burke, Theresa M.; Emeny, Martin T.; Gordon, Neil T.; Hall, David J.; Lees, David J.; Little, J. Chris; Milner, Daniel

    2003-09-01

    The use of epitaxially grown indium antimonide (InSb) has previously been demonstrated for the production of large 2D focal plane arrays. It confers several advantages over conventional, bulk InSb photo-voltaic detectors, such as reduced cross-talk, however here we focus on the improvement in operating temperature that can be achieved because more complex structures can be grown. Diode resistance, imaging, NETD and operability results are presented for a progression of structures that reduce the diode leakage current as the temperature is raised above 80K, compared with a basic p+-n-n+ structure presented previously. These include addition of a thin region of InAlSb to reduce p-contact leakage current, and construction of the whole device from InAlSb to reduce thermal generation in the active region of the detector. An increase in temperature to 110K, whilst maintaining full 80K performance, is achieved, and imaging up to 130K is demonstrated. This gives the prospect of significant benefits for the cooling systems, including, for example, use of argon in Joule-Thomson coolers or an increase in the life and/or decrease in the cost; power consumption and cool-down time of Stirling engines by several tens of per cent.

  12. Operating parameters of liquid helium transfer lines used with continuous flow cryostats at low sample temperatures

    NASA Astrophysics Data System (ADS)

    Dittmar, N.; Welker, D.; Haberstroh, Ch; Hesse, U.; Krzyzowski, M.

    2015-12-01

    Continuous flow cryostats are used to cool samples to a variable temperature level by evaporating a cryogen, e.g. liquid helium (LHe). For this purpose LHe is usually stored outside the cryostat in a mobile dewar and supplied through a transfer line. In general, the complete setup has to be characterised by the lowest possible consumption of LHe. Additionally, a minimum sample temperature can be favourable from an experimental point of view. The achievement of both requirements is determined by the respective cryostat design as well as by the transfer line. In the presented work operating data, e.g. the LHe consumption during cooldown and steady state, the minimum sample temperature, and the outlet quality are analysed to characterise the performance of a reference transfer line. In addition, an experimental transfer line with built-in pressure sensors has been commissioned to examine the pressure drop along the transfer line, too. During the tests LHe impurities occurred which restricted a steady operation.

  13. High-temperature ceramics for automobile gas turbines

    NASA Technical Reports Server (NTRS)

    Walzer, P.

    1978-01-01

    The employment of the high operational temperatures makes it necessary to use, for the construction of the turbines, ceramic materials such as silicon nitride or silicon carbide. Investigations concerning the development of turbine components made of such materials are conducted by a German automobile manufacturer and the ceramics industry. The current status of these investigations is reviewed. Flame tubes and guide-vane rings have successfully passed tests lasting 20 hours. Prototype turbine wheels have withstood the effects of peripheral speeds of 450 m/s. They also showed resistance to thermal shocks which were as high as 6-0 K/s.

  14. 46 CFR 54.25-15 - Low temperature operation-high alloy steels (modifies UHA-23(b) and UHA-51).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (incorporated by reference; see 46 CFR 54.01-1) for service temperatures below −425 °F., UHA-51(b)(1) through (5... 46 Shipping 2 2013-10-01 2013-10-01 false Low temperature operation-high alloy steels (modifies....25-15 Low temperature operation—high alloy steels (modifies UHA-23(b) and UHA-51). (a)...

  15. 46 CFR 54.25-15 - Low temperature operation-high alloy steels (modifies UHA-23(b) and UHA-51).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (incorporated by reference; see 46 CFR 54.01-1) for service temperatures below −425 °F., UHA-51(b)(1) through (5... 46 Shipping 2 2014-10-01 2014-10-01 false Low temperature operation-high alloy steels (modifies....25-15 Low temperature operation—high alloy steels (modifies UHA-23(b) and UHA-51). (a)...

  16. 46 CFR 54.25-15 - Low temperature operation-high alloy steels (modifies UHA-23(b) and UHA-51).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (incorporated by reference; see 46 CFR 54.01-1) for service temperatures below −425 °F., UHA-51(b)(1) through (5... 46 Shipping 2 2012-10-01 2012-10-01 false Low temperature operation-high alloy steels (modifies....25-15 Low temperature operation—high alloy steels (modifies UHA-23(b) and UHA-51). (a)...

  17. 46 CFR 54.25-15 - Low temperature operation-high alloy steels (modifies UHA-23(b) and UHA-51).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (incorporated by reference; see 46 CFR 54.01-1) for service temperatures below −425 °F., UHA-51(b)(1) through (5... 46 Shipping 2 2011-10-01 2011-10-01 false Low temperature operation-high alloy steels (modifies....25-15 Low temperature operation—high alloy steels (modifies UHA-23(b) and UHA-51). (a)...

  18. High-frequency operation of a mid-infrared interband cascade system at room temperature

    NASA Astrophysics Data System (ADS)

    Lotfi, Hossein; Li, Lu; Lei, Lin; Ye, Hao; Shazzad Rassel, S. M.; Jiang, Yuchao; Yang, Rui Q.; Mishima, Tetsuya D.; Santos, Michael B.; Gupta, James A.; Johnson, Matthew B.

    2016-05-01

    The high-frequency operation of a mid-infrared interband cascade system that consists of a type-I interband cascade laser and an uncooled interband cascade infrared photodetector (ICIP) is demonstrated at room temperature. The 3-dB bandwidth of this system under direct frequency modulation was ˜850 MHz. A circuit model was developed to analyze the high-frequency characteristics. The extracted 3-dB bandwidth for an uncooled ICIP was ˜1.3 GHz, signifying the great potential of interband cascade structures for high-speed applications. The normalized Johnson-noise-limited detectivity of these ICIPs exceeded 109 cm Hz1/2/W at 300 K. These results validate the advantage of ICIPs to achieve both high speed and high sensitivity at high temperatures.

  19. Quantal Brownian motion from second RPA dynamics at finite temperature: Explicit density operator and related quantities

    NASA Astrophysics Data System (ADS)

    Jang, S.

    1991-07-01

    Within the framework of the quantum dynamical description of Brownian motion, a closed expression for the density operator is extracted from the master equation based on the dynamics of the second random phase approximation (RPA) at finite temperature. The second RPA theory is an extension of the usual RPA theory up to next higher order. The entropy and effective temperature of the system of collective RPA phonons are subsequently calculated by exploiting the analogy with the quantum optics damped oscillator, and their temporal behavior is surveyed by showing how these quantities relax to their equilibrium values. The calculation is carried out without invoking the so-called the resonant approximation, which amounts to ignoring the rapidly oscillating coupling terms. Particular attention is paid to the effect of these coupling terms.

  20. A new lead alloy for automotive batteries operating under high-temperature conditions

    NASA Astrophysics Data System (ADS)

    Albert, L.; Goguelin, A.; Jullian, E.

    The operating conditions of automotive and some industrial batteries are involving increasingly higher temperatures and heavier duty cycles. These place stress on the positive-grid materials which are presently not sufficiently resistant to corrosion and to creep. Conventional lead-calcium-tin-aluminium alloys can usually be optimized by a proper choice of calcium and tin contents for each specific manufacturing technology. With the new requirements of customers and the typical behaviour of these conventional alloys, however, there is no more room for improvement without searching for additional alloying elements. The work reported here shows how the doping of conventional lead-calcium-tin-aluminium alloys with barium improves mechanical properties (tensile strength and creep resistance) and increases corrosion resistance at temperatures between 50 and 75°C. Grid materials prepared by two manufacturing technologies (gravity cast; continuous cast followed by expansion) are investigated. Both the mechanical properties and the corrosion behaviour of the resulting grids are evaluated.

  1. High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Abbas, Qamar; Béguin, François

    2016-06-01

    We demonstrate that an activated carbon (AC)-based electrochemical capacitor implementing aqueous lithium sulfate electrolyte in 7:3 vol:vol water/methanol mixture can operate down to -40 °C with good electrochemical performance. Three-electrode cell investigations show that the faradaic contributions related with hydrogen chemisorption in the negative AC electrode are thermodynamically unfavored at -40 °C, enabling the system to work as a typical electrical double-layer (EDL) capacitor. After prolonged floating of the AC/AC capacitor at 1.6 V and -40°C, the capacitance, equivalent series resistance and efficiency remain constant, demonstrating the absence of ageing related with side redox reactions at this temperature. Interestingly, when temperature is increased back to 24 °C, the redox behavior due to hydrogen storage reappears and the system behaves as a freshly prepared one.

  2. Wide-aperture TeO₂ AOTF at low temperatures: operation and survival.

    PubMed

    Mantsevich, S N; Korablev, O I; Kalinnikov, Yu K; Ivanov, A Yu; Kiselev, A V

    2015-05-01

    The effect of temperature on the performance in a wide-angle paratellurite acousto-optic tunable filter (AOTF) is analyzed on the example of two different AOTF configurations. The present study is a by-product of the AOTF characterization for space-borne applications. The two AOTFs serve as dispersion elements in spectrometers for Moon and Mars space missions. The operation of the AO filters was tested in the range of -50° to+40°C; we have also demonstrated the survival of an AOTF device at -130°C. The phase matching ultrasound frequency varies with temperature within 2.5×10(-5) K(-1) and 6.6×10(-5) K(-1). We link this temperature shift to elastic characteristics of the TeO2, and demonstrate that it is mostly explained by the temperature modification of the slow acoustic wave velocity. We point out the best reference describing experimental results (Silvestrova et al., 1987). A generalization is made for all wide-angle acousto-optic tunable filters based on tellurium dioxide crystal. PMID:25683318

  3. Extending the operating temperature, wavelength and frequency response of HgCdTe heterodyne detectors

    NASA Technical Reports Server (NTRS)

    Spears, D. L.

    1980-01-01

    Near ideal optical heterodyne performance was obtained at GHz IF frequencies in the 10 micrometer wavelength region with liquid nitrogen cooled HgCdTe photodiodes. Heterodyne NEP's as low as 2.7 x 10 to the minus 20th power W/Hz at 100MHz, 5.4 x 10 to the minus 20th power W/Hz at 1.5 GHz, and 9.4 x 19 to the minus 20th power W/Hz at 3 GHz were achieved. Various physical phenomena which occur within a photodiode and affect heterodyne operation were examined in order to assess the feasibility of extending the operating temperature, wavelength, and frequency response of these HgCdTe photomixers.

  4. Compensation techniques for high-temperature superconducting quantum interference device gradiometers operating in unshielded environment

    NASA Astrophysics Data System (ADS)

    Borgmann, J.; David, P.; Krause, H. J.; Otto, R.; Braginski, A. I.

    1997-08-01

    We have tested two methods of compensating environmental disturbances applicable to high-temperature superconducting quantum interference device (SQUID) systems operating in magnetically unshielded environments. For testing, we used first- and second-order axial electronic gradiometer setups with rf SQUID magnetometers operating at 77 K and base lines between 7 and 8 cm. The magnetometers were single-layer washer rf SQUIDs with bulk or thin-film magnetic flux concentrators in flip-chip geometry. The tested methods resulted in disturbance compensation levels comparable to those attained using electronically formed gradiometers. The white noise of the compensated magnetometers resulted in 13.5 fT/cm √Hz for first-order and 22 fT/cm2 √Hz for second-order compensation down to a few Hz. Common mode rejection was balanced to better than 10 000 for homogeneous fields and better than 200 for gradient fields with second-order compensation.

  5. Experimental Demonstration of xor Operation in Graphene Magnetologic Gates at Room Temperature

    NASA Astrophysics Data System (ADS)

    Wen, Hua; Dery, Hanan; Amamou, Walid; Zhu, Tiancong; Lin, Zhisheng; Shi, Jing; Žutić, Igor; Krivorotov, Ilya; Sham, L. J.; Kawakami, Roland K.

    2016-04-01

    We report the experimental demonstration of a magnetologic gate built on graphene at room temperature. This magnetologic gate consists of three ferromagnetic electrodes contacting a single-layer graphene spin channel and relies on spin injection and spin transport in the graphene. We utilize electrical bias tuning of spin injection to balance the inputs and achieve "exclusive or" (xor) logic operation. Furthermore, a simulation of the device performance shows that substantial improvement towards spintronic applications can be achieved by optimizing the device parameters such as the device dimensions. This advance holds promise as a basic building block for spin-based information processing.

  6. Power Systems Development Facility: High Temperature, High Pressure Filtration in Gasification Operation

    SciTech Connect

    Martin, R.A.; Guan, X.; Gardner, B.; Hendrix, H.

    2002-09-18

    High temperature, high pressure gas filtration is a fundamental component of several advanced coal-fired power systems. This paper discusses the hot-gas filter vessel operation in coal gasification mode at the Power Systems Development Facility (PSDF). The PSDF, near Wilsonville, Alabama, is funded by the U.S. Department of Energy (DOE), Southern Company, and other industrial participants currently including the Electric Power Research Institute, Siemens Westinghouse Power Corporation, Kellogg Brown & Root Inc. (KBR), and Peabody Energy. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems designed at sufficient size to provide data for commercial scale-up.

  7. Pulsed, room-temperature operation of a tunable NaCl color-center laser

    SciTech Connect

    Culpepper, C.F.; Carrig, T.J.; Pinto, J.F.; Georgiou, E.; Pollock, C.R.

    1987-11-01

    A room-temperature, pulsed, color-center laser using OH/sup : /-doped NaCl crystals is reported. Crystals were transversely pumped by a Q-switched Nd:YAG laser at 1.06 ..mu..m and produced output energies of 8.6 mJ in 20-nsec pulses. The tuning range extended from 1.37 to 1.77 ..mu..m. During 40 h of operation (>10/sup 6/ pulses), a gradual power fading was observed. Laser action is tentatively ascribed to F/sub 2//sup //sup +/ centers.

  8. Low temperature operation and influence parameters on the cold start ability of portable PEMFCs

    NASA Astrophysics Data System (ADS)

    Oszcipok, M.; Zedda, M.; Riemann, D.; Geckeler, D.

    The start up behaviour of PEM fuel cells below 0 °C is one of the most challenging tasks to be solved before commercialisation. The automotive industry started to develop solutions to reduce the start up time of fuel cell systems in the middle of the nineties. The strategies varied from catalytic combustion of hydrogen on the electrode catalyst to fuel starvation or external stack heating via cooling loops to increase the stack temperature. Beside the automotive sector the cold start ability is as well important for portable PEMFC applications for outdoor use. But here the cold start issue is even more complicated, as the fuel cell system should be operated as passive as possible. Below 0 °C freezing of water inside the PEMFC could form ice layers in the electrode and in the gas diffusion layer. Therefore the cell reaction is limited or even inhibited. Product water during the start up builds additional barriers and leads to a strong decay of the output power at isothermal operating conditions. In order to find out which operational and hardware parameters affect this decay, potentiostatic experiments on single cells were performed at isothermal conditions. These experiments comprise investigations of the influence of membrane thickness and different GDL types as well as the effect of gas flow rates and humidification levels of the membrane. As pre stage to physical based models, empirical based prediction models are used to gain a better understanding of the main influence parameters during cold start. The results are analysed using the statistical software Cornerstone 4.0. The experience of single cell investigations are compared to start up behaviour of portable fuel cell stacks which are operated in a climate chamber at different ambient temperatures below 0 °C. Additional flow sharing problems in the fuel cell stack could be seen during cold start up experiments.

  9. Interface stability of electrode/Bi-containing relaxor ferroelectric oxide for high-temperature operational capacitor

    NASA Astrophysics Data System (ADS)

    Nagata, Takahiro; Kumaragurubaran, Somu; Tsunekawa, Yoshifumi; Yamashita, Yoshiyuki; Ueda, Shigenori; Takahashi, Kenichiro; Ri, Sung-Gi; Suzuki, Setsu; Oh, Seungjun; Chikyow, Toyohiro

    2016-06-01

    The interface stability between electrodes (Pt, TaC, TiC, and RuO2) and a Bi-containing relaxor ferroelectric oxide, BaTiO3–Bi(Mg2/3Nb1/3)O3 (BT–BMN), applied to a high-temperature operational capacitor was investigated by hard X-ray photoelectron spectroscopy. All the electrodes showed electron filling at the Fermi level after annealing at 400 °C. However, Pt and TaC indicated electrical property degradations due to the thick intermediate layer formation and defect formation of the BT–BMN layer relating to the Bi diffusion into the electrodes. In contrast, TiC inhibited the Bi diffusion and did not show any change in the band alignment after annealing. Furthermore, RuO2 eliminated the defect formation in BT–BMN and showed no change in the band alignment although the Bi diffusion was also observed. These results suggest that the TiC/RuO2/BT–BMN stack structure is a potential candidate for the high-temperature operational capacitor.

  10. Assessment of Operation of EMK21 MEMS Silicon Oscillator Over Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2009-01-01

    Electronic control systems, data-acquisition instrumentation, and microprocessors require accurate timing signals for proper operation. Traditionally, ceramic resonators and crystal oscillators provided this clock function for the majority of these systems. Over the last few years, MEMS (Micro-Electro-Mechanical Systems) resonator-based oscillators began to surface as commercial-off-the-shelf (COTS) parts by a few companies. These quartz-free, miniature silicon devices could easily replace the traditional crystal oscillators in providing the timing/clock function for many digital and analog circuits. They are reported to provide stable output frequency, offer great tolerance to shock and vibration, and are immune to electro-static discharge [ 1-2]. In addition, they are encapsulated in compact lead-free packages and cover a wide frequency range (1 MHz to 125 MHz). The small size of the MEMS oscillators along with their thermal stability make them ideal candidates for use in space exploration missions. Limited data, however, exist on the performance and reliability of these devices under operation in applications where extreme temperatures or thermal cycling swings, which are typical of space missions, are encountered. This report presents the results of the work obtained on the evaluation of an Ecliptek Corporation MEMS silicon oscillator chip under extreme temperatures.

  11. Numerical simulation of proton exchange membrane fuel cells at high operating temperature

    NASA Astrophysics Data System (ADS)

    Peng, Jie; Lee, Seung Jae

    A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T ≥ 393 K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement.

  12. Low temperature operated NiO-SnO2 heterostructured SO2 gas sensor

    NASA Astrophysics Data System (ADS)

    Tyagi, Punit; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2016-04-01

    Sulfur dioxide (SO2) is among the most toxic gas released by the industries which is extremely dangerous for human health. In the present communication, an attempt has been made for the detection of SO2 gas (500 ppm) with the help of SnO2 thin film based gas sensor. A low sensing response of 1.3 is obtained for sputtered SnO2 thin films based sensors at a high operating temperature of 220 °C. To improve the sensing response, different heterostructured sensors are developed by incorporating other metal oxide thin films (PdO, MgO, NiO, V2O5) over SnO2 thin film surface. Sensing response studies of different sensors towards SO2 gas (500 ppm) are presented in the present report. Among all the prepared sensors NiO-SnO2 hetero-structure sensor is showing highest sensing response (˜8) at a comparatively lower operating temperature (140 °C). Possible sensing mechanism for NiO-SnO2 heterostructured sensor has also been discussed in the present report.

  13. High performance catalyzed-reaction layer for medium temperature operating solid oxide fuel cells

    SciTech Connect

    Watanabe, M.; Uchida, H.; Shibata, M.; Mochizuki, N.; Amikura, K. . Lab. of Electrochemical Energy Conversion)

    1994-02-01

    New concepts for a high performance catalyzed-reaction layer for medium temperature operating solid oxide fuel cells were proposed. Mixed conducting oxide particles, samaria-doped ceria (SDC), were employed as the anode material utilizing highly dispersed noble metal catalysts on their surface. As the cathode material, Sr-doped LaMnO[sub 3] (LSM) particles catalyzed with microcrystalline Pt were employed. Performances of the anode or cathode were examined in the cell using yttria-stabilized zirconia electrolyte at a series of operating temperatures. It was found that the anodic polarization resistance and its activation energy were greatly decreased by loading only a small amount of the catalysts (such as Ru, Rh, and Pt) onto the SDC particles. The polarization loss at the anode showed a minimum value by using the SDC particles with a mean diameter of 1.5 to 2.0 [mu]m. A large depolarizing effect was also observed with a Pt-catalyzed LSM cathode, especially at high current densities.

  14. High-Operating-Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Hill, Cory, J.; Soibel, Alexander; Bandara, Sumith V.; Gunapala, Sarath D.

    2011-01-01

    A mid-wavelength infrared (MWIR) barrier photodetector is capable of operating at higher temperature than the prevailing MWIR detectors based on InSb. The standard high-operating-temperature barrier infrared detector (HOT-BIRD) is made with an InAsSb infrared absorber that is lattice-matched to a GaSb substrate, and has a cutoff wavelength of approximately 4 microns. To increase the versatility and utility of the HOT-BIRD, it is implemented with IR absorber materials with customizable cutoff wavelengths. The HOT-BIRD can be built with the quaternary alloy GaInAsSb as the absorber, GaAlSbAs as the barrier, on a lattice-matching GaSb substrate. The cutoff wavelength of the GaInAsSb can be tailored by adjusting the alloy composition. To build a HOT-BIRD requires a matching pair of absorber and barrier materials with the following properties: (1) their valence band edges must be approximately the same to allow unimpeded hole flow, while their conduction band edges should have a large difference to form an electron barrier; and (2) the absorber and the barrier must be respectively lattice-matched and closely lattice-matched to the substrate to ensure high material quality and low defect density. To make a HOT-BIRD with cutoff wavelength shorter than 4 microns, a GaInAsSb quaternary alloy was used as the absorber, and a matching GaAlSbAs quaternary alloy as the barrier. By changing the alloy composition, the band gap of the quaternary alloy absorber can be continuously adjusted with cutoff wavelength ranging from 4 microns down to the short wavelength infrared (SWIR). By carefully choosing the alloy composition of the barrier, a HOT-BIRD structure can be formed. With this method, a HOT-BIRD can be made with continuously tailorable cutoff wavelengths from 4 microns down to the SWIR. The HOT-BIRD detector technology is suitable for making very-large-format MWIR/SWIR focal plane arrays that can be operated by passive cooling from low Earth orbit. High-operating temperature

  15. Influence of Temperature on AA6014 Alloy Tribological Behaviour in Stamping Operations

    SciTech Connect

    Sgarabotto, F.; Ghiotti, A.; Bruschi, S.

    2011-05-04

    The evaluation of the tribological characteristics at the metal blank-tool interface during sheet metal working operations is usually carried out by accurately reproducing the mechanical and kinematical parameters occurring during the real process. The high rate production characterizing the industrial processes can induce significant temperature increase in both the blank and the dies during deformation. With respect to this aspect, among the other process conditions, an accurate tribological characterization should take into account the influence of the temperature variations at the blank and the dies. In the present paper, a novel apparatus to investigate the tribological conditions during sheet metal working processes is presented. In addition to the control of mechanical (i.e. normal pressure) and kinematic parameters (i.e. sliding speed, sliding length), the developed testing machine permits to reproduce the thermal fields and monitor the thermal conditions of the sheet and tool materials. Experiments were carried out on aluminium alloy sheets between 20 deg. and 200thinsp; deg. C by using both coated and uncoated dies. It is proved that the temperature influences the tribological behaviour, especially when coated dies are utilized.

  16. Effect of operating parameters and reactor structure on moderate temperature dry desulfurization.

    PubMed

    Zhang, Jie; You, Changfu; Qi, Haiying; Hou, Bo; Chen, Changhe; Xu, Xuchang

    2006-07-01

    A moderate temperature dry desulfurization process at 600-800 degrees C was studied in a pilot-scale circulating fluidized bed flue gas desulfurization (CFB-FGD) experimental facility. The desulfurization efficiency was investigated for various operating parameters, such as bed temperature, CO2 concentration, and solids concentration. In addition, structural improvements in key parts of the CFB-FGD system, i.e., the cyclone separator and the distributor, were made to improve the desulfurization efficiency and flow resistance. The experimental results show that the desulfurization efficiency increased rapidly with increasing temperature above 600 degrees C due to enhanced gas diffusion and the shift of the equilibrium for the carbonate reaction. The sorbent sulfated gradually after quick carbonation of the sorbent with a long particle residence time necessary to realize a high desulfurization ratio. A reduced solids concentration in the bed reduced the particle residence time and the desulfurization efficiency. A single-stage cyclone separator produced no improvement in the desulfurization efficiency compared with a two-stage cyclone separator. Compared with a wind cap distributor, a large hole distributor reduced the flow resistance which reduced the desulfurization efficiency due to the reduced bed pressure drop and worsened bed fluidization. The desulfurization efficiency can be improved by increasing the collection efficiency of fine particles to prolong their residence time and by improving the solids concentration distribution to increase the gas-solid contact surface area. PMID:16856750

  17. Heat-driven thermoacoustic cryocooler operating at liquid hydrogen temperature with a unique coupler

    NASA Astrophysics Data System (ADS)

    Hu, J. Y.; Luo, E. C.; Li, S. F.; Yu, B.; Dai, W.

    2008-05-01

    A heat-driven thermoacoustic cryocooler is constructed. A unique coupler composed of a tube, reservoir, and elastic diaphragm is introduced to couple a traveling-wave thermoacoustic engine (TE) and two-stage pulse tube refrigerator (PTR). The amplitude of the pressure wave generated in the engine is first amplified in the coupler and the wave then passes into the refrigerator to pump heat. The TE uses nitrogen as its working gas and the PTR still uses helium as its working gas. With this coupler, the efficiency of the system is doubled. The engine and coupler match at a much lower operating frequency, which is of great benefit for the PTR to obtain a lower cooling temperature. The coupling place between the coupler and engine is also optimized. The onset problem is effectively solved. With these improvements, the heat-driven thermoacoustic cryocooler reaches a lowest temperature of 18.1K, which is the demonstration of heat-driven thermoacoustic refrigeration technology used for cooling at liquid hydrogen temperatures.

  18. Experimental design, operation, and results of a 4 kW high temperature steam electrolysis experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyu; O'Brien, James E.; Tao, Greg; Zhou, Can; Housley, Gregory K.

    2015-11-01

    High temperature steam electrolysis (HTSE) is a promising technology for large-scale hydrogen production. However, research on HTSE performance above the kW level is limited. This paper presents the results of 4 kW HTSE long-term test completed in a multi-kW test facility recently developed at the Idaho National Laboratory (INL). The 4 kW HTSE unit consisted of two solid oxide electrolysis stacks electrically connected in parallel, each of which included 40 electrode-supported planar cells. A current density of 0.41 A cm-2 was used for the long-term operating at a constant current mode, resulting in a theoretical hydrogen production rate about 23 slpm. A demonstration of 830 h stable operation was achieved with a degradation rate of 3.1% per 1000 h. The paper also includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This successful demonstration of multi-kW scale HTSE unit will help to advance the technology toward near-term commercialization.

  19. Demonstration of type-II superlattice MWIR minority carrier unipolar imager for high operation temperature application.

    PubMed

    Chen, Guanxi; Haddadi, Abbas; Hoang, Anh-Minh; Chevallier, Romain; Razeghi, Manijeh

    2015-01-01

    An InAs/GaSb type-II superlattice-based mid-wavelength infrared (MWIR) 320×256 unipolar focal plane array (FPA) using pMp architecture exhibited excellent infrared image from 81 to 150 K and ∼98% operability, which illustrated the possibility for high operation temperature application. At 150 K and -50  mV operation bias, the 27 μm pixels exhibited dark current density to be 1.2×10(-5)  A/cm(2), with 50% cutoff wavelength of 4.9 μm, quantum efficiency of 67% at peak responsivity (4.6 μm), and specific detectivity of 1.2×10(12) Jones. At 90 K and below, the 27 μm pixels exhibited system limited dark current density, which is below 1×10(-9)  A/cm(2), and specific detectivity of 1.5×10(14) Jones. From 81 to 100 K, the FPA showed ∼11  mK NEDT by using F/2.3 optics and a 9.69 ms integration time. PMID:25531604

  20. AATSR - Precise Sea-Surface Temperature for Climate Monitoring and for Operational Applications

    NASA Astrophysics Data System (ADS)

    Llewellyn-Jones, David; Corlett, Gary; Donlon, Craig; Stark, John

    The Advanced Along-Track Scanning Radiometer (AATSR) is an imaging radiometer specifi- cally designed to measure Sea-Surface Temperature (SST) to the demanding levels of accuracy and stability required for climate research. AATSR, which has been operating continuously on ESA's Envisat Satellite since its launch in 2002, achieves the required levels of accuracy on account of its unique dual view, whereby each terrestrial scene is viewed twice, once at nadir and then through an inclined path which uses a different atmospheric path-length, thereby providing a direct observation of atmospheric effects, leading to an exceptionally accurate atmospheric correction. This feature is accompanied by an advanced calibration system combined with excellent optical and thermal designs. Recent rigorous and extensive comparisons with in situ data have shown that, for most of the global oceans, AATSR can achieve and accuracy of around 0.2o C with high stability, which has qualified them for use in climate analysis schemes. Because AATSR is the third sensor in a near-continuous series which started with the launch of ATSR-1 on ERS-1 satellite in 1991, there is a time-series of 16+ years of climate standard SSTs which have recently been re-processed and are now becoming available to the World-wide user community from data centres in Europe. SST data from AATSR have been included in the suite of operational SST products generated by the GODAE/GHRSST Pilot Project, on a timescale needed by operational users and in a format which allows easy ingestion and error estimates for data from AATSR and most of the other sensors currently providing SST measurements from space. Within the GODAE/GHRSST data-products, AATSR SST data are generally regarded as the benchmark for accuracy and are used to provide bias corrections for data from the other sensors, which often have superior coverage, thus exploiting synergistically the complementary qualities if the different data-sets. The UK Met Office

  1. Designing Nanoscale Precipitates in Novel Cobalt-based Superalloys to Improve Creep Resistance and Operating Temperature

    SciTech Connect

    Dunand, David C.; Seidman, David N.; Wolverton, Christopher; Saal, James E.; Bocchini, Peter J.; Sauza, Daniel J.

    2014-10-01

    High-temperature structural alloys for aerospace and energy applications have long been dominated by Ni-base superalloys, whose strength and creep resistance can be attributed to microstructures consisting of a large volume fraction of ordered (L12) γ'-precipitates embedded in a disordered’(f.c.c.) γ-matrix. These alloys exhibit excellent mechanical behavior and thermal stability, but after decades of incremental improvement are nearing the theoretical limit of their operating temperatures. Conventional Co-base superalloys are solid-solution or carbide strengthened; although they see industrial use, these alloys are restricted to lower-stress applications because the absence of an ordered intermetallic phase places an upper limit on their mechanical performance. In 2006, a γ+γ' microstructure with ordered precipitates analogous to (L12) Ni3Al was first identified in the Co-Al-W ternary system, allowing, for the first time, the development of Co-base alloys with the potential to meet or even exceed the elevated-temperature performance of their Ni-base counterparts. The potential design space for these alloys is complex: the most advanced Ni-base superalloys may contain as many as 8-10 minor alloying additions, each with a specified purpose such as raising the γ' solvus temperature or improving creep strength. Our work has focused on assessing the effects of alloying additions on microstructure and mechanical behavior of γ'-strengthened Co-base alloys in an effort to lay the foundations for understanding this emerging alloy system. Investigation of the size, morphology, and composition of γ' and other relevant phases is investigated utilizing scanning electron microscopy (SEM) and 3-D picosecond ultraviolet local electrode atom probe tomography (APT). Microhardness, compressive yield stress at ambient and elevated temperatures, and compressive high-temperature creep measurements are employed to extract mechanical behavior

  2. [INVITED] Multiwavelength operation of erbium-doped fiber-ring laser for temperature measurements

    NASA Astrophysics Data System (ADS)

    Diaz, S.; Lopez-Amo, M.

    2016-04-01

    In this work, simultaneous lasing at up to eight wavelengths is demonstrated in a multi-wavelength erbium-doped fiber ring laser previously reported. This is achieved by introducing a feedback fiber loop in a fiber ring cavity. Eight-wavelength laser emission lines were obtained simultaneously in single-longitudinal mode operation showing a power instability lower than 0.8 dB, and an optical signal-to-noise ratio higher than 42 dB for all the emitted wavelengths. The fiber Bragg gratings give this source the possibility to be also used as sensor-network multiplexing scheme. The application of this system for remote temperature measurements has been demonstrated obtaining good time stability results.

  3. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1995-09-12

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  4. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1996-07-16

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  5. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1996-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  6. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1995-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  7. Critical Current Density Performance of Malic Acid Doped Magnesium Diboride Wires at Different Operating Temperatures

    NASA Astrophysics Data System (ADS)

    Xu, X.; Kim, J. H.; Zhang, Y.; Jercinovic, M.; Babic, E.

    We investigated the effects of different operating temperatures on the performance of transport critical current density, Jc, for MgB2 + 10 wt% C4H6O5 MgB2/Fe wires. It was shown that the Jc values of the malic acid doped wires sintered at 900°C reached 104 Acm-2 at 20 K and 5 T. The Jc value extrapolated to 2 T and 20 K exceeds the practical level of 105 Acm-2. According to the Kramer plots, the pinning force, FK = Jc1/2 x B1/4, is expected to be a linear function of magnetic field B. The irreversibility field, Birr, at which extrapolated FK reaches zero, was 1.8 T at 32.8 K, 2.8 T at 30 K, 5.7 T at 25 K, 8.6 T at 20 K, and 12.5 T at 15 K, respectively.

  8. Effect of Operating Temperature on Structure Properties of TICX Nanoparticle Coating Applied by Pacvd

    NASA Astrophysics Data System (ADS)

    Shanaghi, Ali; Sabour Rouhaghdam, Ali Reza; Ahangarani, Shahrokh; Moradi, Hadi; Mohammadi, Ali

    Titanium carbide (TiC) is a widely used hard coating to improve the wear resistance and lifetime of tools because of its outstanding properties such as high melting point, high hardness, corrosion resistance and abrasion resistance. These properties were drastically improved by using nanotechnology. So in this project, TiCx was applied on hot-working die steel (H11) by Plasma CVD (PACVD). The effect of operating temperatures on TiCx structure properties have been studies by typical and advanced analyses methods such as SEM, XRD, FTIR and Raman. The best properties of TiCx nanoparticle, such as nanostructure, mechanical properties and chemical properties, were obtained at 480 °C.

  9. The Integrity of ACSR Full Tension Splice Connector at Higher Operation Temperature

    SciTech Connect

    Wang, Jy-An John; Lara-Curzio, Edgar; King Jr, Thomas J; Graziano, Joe; Chan, John

    2007-01-01

    Due to the increase in power demand and limited investment in new infrastructure, existing overhead power transmission lines often need to operate at temperatures higher than those used for the original design criteria. This has led to the accelerated aging and degradation of splice connectors, which have been manifested by the formation of hot-spots that have been revealed by infrared imaging during inspection. The implications of connector aging is two-fold: (1) significant increase in resistivity of the splice connector (i.e., less efficient transmission of electricity) and (2) significant reduction in the connector clamping strength, which could ultimately result in separation of the power transmission line at the joint. Therefore, the splice connector appears to be the weakest link in the electric power transmission lines. This paper presents a protocol for integrating analytical and experimental approaches to evaluate the integrity of a full tension single-stage splice connector assembly.

  10. High-temperature operating biosensor for the determination of phenol and related compounds

    SciTech Connect

    Rella, R.; Ferrara, D.; Barison, G.; Doretti, L.

    1996-08-01

    Living phenol-oxidizing Bacillus stearothermophilus cells were immobilized in a hydroxyethyl methacrylate membrane. A thermostable biosensor was developed by coupling the bacterially activated membrane with a dissolved oxygen electrode and was utilized for the amperometric determination of phenols. Linear relationships were obtained for phenol, catechol and some related compounds. The steady-state response was very fast (max. 2 min), faster than other analogous biosensors. Its response was stable, reproducible for months and quite specific. The biosensor may be utilized over a wide temperature (35-55{degrees}C), pH (4.5-8.0) range and in matrices containing compounds toxic for most microorganisms and enzymes used. The best performance was observed at 55{degrees}C and pH 7.2. Owing to its sensitivity, stability and operational simplicity, the phenol biosensor can potentially be applied for the on-line monitoring of phenols in industrial waste effluents. 29 refs., 7 figs., 1 tab.

  11. Reliability issues for a bolometer detector for ITER at high operating temperatures.

    PubMed

    Meister, H; Kannamüller, M; Koll, J; Pathak, A; Penzel, F; Trautmann, T; Detemple, P; Schmitt, S; Langer, H

    2012-10-01

    The first detector prototypes for the ITER bolometer diagnostic featuring a 12.5 μm thick Pt-absorber have been realized and characterized in laboratory tests. The results show linear dependencies of the calibration parameters and are in line with measurements of prototypes with thinner absorbers. However, thermal cycling tests up to 450 °C of the prototypes with thick absorbers demonstrated that their reliability at these elevated operating temperatures is not yet sufficient. Profilometer measurements showed a deflection of the membrane hinting to stresses due to the deposition processes of the absorber. Finite element analysis (FEA) managed to reproduce the deflection and identified the highest stresses in the membrane in the region around the corners of the absorber. FEA was further used to identify changes in the geometry of the absorber with a positive impact on the intrinsic stresses of the membrane. However, further improvements are still necessary. PMID:23126898

  12. Determination of allowable fluid temperature during start-up operation of outlet header under the assumption of constant and temperature-dependent material properties

    NASA Astrophysics Data System (ADS)

    Rząsa, Dariusz; Duda, Piotr

    2013-09-01

    Modern supercritical power plants operate at very high temperatures and pressures. Thus the construction elements are subjected to both high thermal and mechanical loads. As a result high stresses in those components are created. In order to operate safely, it is important to monitor stresses, especially during start-up and shut-down processes. The maximum stresses in the construction elements should not exceed the allowable stresses that are defined according to boiler regulations. It is important to find optimum operating parameters, that can assure safe heating and cooling processes. The optimum parameters define temperature and pressure histories that can keep the highest stresses within allowable limit and reduce operation time as much as possible. In this paper a new numerical method for determining optimum working fluid parameters is presented. In this method, properties of steel can be assumed as constant or temperature dependent. The constant value is taken usually at the average temperature of the operation cycle. For both cases optimal parameters are determined. Based on these parameters start-up operations for both cases are conducted. During entire processes stresses in the heated element are monitored. The results obtained are compared with German boiler regulations - Technische Regeln fur Dampfkessel 301.

  13. Design and construction of a guarded hot plate apparatus operating down to liquid nitrogen temperature

    NASA Astrophysics Data System (ADS)

    Li, Manfeng; Zhang, Hua; Ju, Yonglin

    2012-07-01

    A double-sided guarded hot plate apparatus (GHP) is specifically designed, fabricated, and constructed for the measurement of thermal conductivities of insulation specimens operated down to liquid nitrogen temperature (-196 °C), at different controlled pressures from 0.005 Pa to 0.105 MPa. The specimens placed in this apparatus are 300 mm in diameter at various thicknesses ranging from 4 mm to 40 mm. The apparatus is different from traditional GHP in terms of structure, supporting and heating method. The details of the design and construction of the hot plate, the cold plates, the suspensions, the clampings, and the vacuum chamber of the system are presented. The measurement methods of the temperatures, the input power, the meter area, and the thickness of the specimens are given. The apparatus is calibrated with teflon plates as sample and the maximum deviation from the published data is about 6% for thermal conductivity. The uncertainties for the measurement are also discussed in this paper.

  14. Preliminary operational results of the low-temperature solar industrial process heat field tests

    SciTech Connect

    Kutscher, C.F.; Davenport, R.L.

    1980-06-01

    Six solar industrial process heat field tests have been in operation for a year or more - three are hot water systems and three are hot air systems. All are low-temperature projects (process heat at temperatures below 212/sup 0/F). Performance results gathered by each contractor's data acquisition system are presented and project costs and problems encountered are summarized. Flat-plate, evacuated-tube, and line-focus collectors are all represented in the program, with collector array areas ranging from 2500 to 21,000 ft/sup 2/. Collector array efficiencies ranged from 12% to 36% with net system efficiencies from 8% to 33%. Low efficiencies are attributable in some cases to high thermal losses and, for the two projects using air collectors, are due in part to high parasitic power consumption. Problems have included industrial effluents on collectors, glazing and absorber surface failures, excessive thermal losses, freezing and overheating, control problems, and data acquisition system failure. With design and data acquisition costs excluded costs of the projects ranged from $25/ft/sup 2/ to $87/ft/sup 2/ and $499/(MBtu/yr) to $1537/(MBtu/yr).

  15. Effect of operating parameters and reactor structure on moderate temperature dry desulfurization

    SciTech Connect

    Jie Zhang; Changfu You; Haiying Qi; Bo Hou; Changhe Chen; Xuchang Xu

    2006-07-01

    A moderate temperature dry desulfurization process at 600-800 C was studied in a pilot-scale circulating fluidized bed flue gas desulfurization (CFB-FGD) experimental facility. The desulfurization efficiency was investigated for various operating parameters. Structural improvements in key parts of the CFB-FGD system, i.e., the cyclone separator and the distributor, were made to improve the desulfurization efficiency and flow resistance. The experimental results show that the desulfurization efficiency increased rapidly with increasing temperature above 600 C due to enhanced gas diffusion and the shift of the equilibrium for the carbonate reaction. The sorbent sulfated gradually after quick carbonation of the sorbent with a long particle residence time necessary to realize a high desulfurization ratio. A reduced solids concentration in the bed reduced the particle residence time and the desulfurization efficiency. A single-stage cyclone separator produced no improvement in the desulfurization efficiency compared with a two-stage cyclone separator. Compared with a wind cap distributor, a large hole distributor reduced the flow resistance which reduced the desulfurization efficiency due to the reduced bed pressure drop and worsened bed fluidization. The desulfurization efficiency can be improved by increasing the collection efficiency of fine particles to prolong their residence time and by improving the solids concentration distribution to increase the gas-solid contact surface area. 16 refs., 9 figs.

  16. Short-wavelength interband cascade infrared photodetectors operating above room temperature

    DOE PAGESBeta

    Lotfi, Hossein; Li, Lu; Lei, Lin; Jiang, Yuchao; Yang, Rui Q.; Klem, John F.; Johnson, Matthew B.

    2016-01-13

    High temperature operation (250–340 K) of short-wavelength interband cascade infrared photodetectors (ICIPs) with InAs/GaSb/Al0.2In0.8Sb/GaSb superlattice absorbers has been demonstrated with a 50% cutoff wavelength of 2.9 μm at 300 K. Two ICIP structures, one with two and the other with three stages, were designed and grown to explore this multiple-stage architecture. At λ = 2.1 μm, the two- and three-stage ICIPs had Johnson-noise-limited detectivities of 5.1 × 109 and 5.8 ×109 cm Hz1/2/W, respectively, at 300 K. The better device performance of the three-stage ICIP over the two-stage ICIP confirmed the advantage of more stages for this cascade architecture. Furthermore,more » an Arrhenius activation energy of 450 meV is extracted for the bulk resistance-area product, which indicates the dominance of the diffusion current at these high temperatures.« less

  17. Design and performance of a rugged standard operative temperature thermometer for avian studies

    USGS Publications Warehouse

    Bakken, G.S.; Boysen, A.F.; Korschgen, C.E.; Kenow, K.P.; Lima, S.L.

    2001-01-01

    The lack of a truly satisfactory sensor which can characterize the thermal environment at the spatial scale experienced by small endotherms has hindered study of their thermoregulatory behavior. We describe a general design for a rugged, easily constructed sensor to measure standard operative temperature, Tes. We present specific designs for adult dark-eyed juncos (Junco hyemalis) and hatchling mallards (Anas platyrhynchos). Sensor response was stable and repeatable (??1.4%) over the course of several months. Over the range of conditions for which validation data were available (variable air temperature and wind with negligible net radiation), sensors predicted the mean net heat production of live animals to within ??0.023W (equivalent to ??1??C at Tes= 15??C). The main limit on accuracy was scatter in the data on metabolism and evaporative water loss in live animals. These sensors are far more rugged and easily constructed than the heated taxidermic mounts previously used to measure Tes. These characteristics facilitate the use of significant numbers of sensors in thermal mapping studies of endotherms. ?? 2001 Elsevier Science Ltd. All rights reserved.

  18. Vital roles of nano silica in synthetic based mud for high temperature drilling operation

    NASA Astrophysics Data System (ADS)

    Yusof, Muhammad Aslam Md; Hanafi, Nor Hazimastura

    2015-07-01

    At high temperature drilling, chemicals degradation occurs which reduce the effectiveness of the drilling fluid. There is a potential that by using nano sized particles which have thermal stability up to 2500°F to be used as a stabilizer to withstand the harsh condition. Therefore, this project aims to identify the performance of synthetic-based mud (SBM) with nano silica for high temperature drilling operation. A conventional SBM performance has been compared with additional percentages of nano silica. 20% and 40% of nano silica out of fluid loss weight has been added into the SBM and analyzed the rheological properties and other drilling fluid properties. The conventional SBM formulation has lost some amount of weighting material or solids in the mud and has been replaced by lighter and smaller size of nanoparticles. It has reduced the rheological properties of the mud but the gelation formed by nano silica material has given higher gel strength. Also, nano silica potentially plugs the porous media, resulted in lower filtration loss measurement and thinner mud cake ranged 20% to 50% respectively.

  19. Design and construction of a guarded hot plate apparatus operating down to liquid nitrogen temperature.

    PubMed

    Li, Manfeng; Zhang, Hua; Ju, Yonglin

    2012-07-01

    A double-sided guarded hot plate apparatus (GHP) is specifically designed, fabricated, and constructed for the measurement of thermal conductivities of insulation specimens operated down to liquid nitrogen temperature (-196 °C), at different controlled pressures from 0.005 Pa to 0.105 MPa. The specimens placed in this apparatus are 300 mm in diameter at various thicknesses ranging from 4 mm to 40 mm. The apparatus is different from traditional GHP in terms of structure, supporting and heating method. The details of the design and construction of the hot plate, the cold plates, the suspensions, the clampings, and the vacuum chamber of the system are presented. The measurement methods of the temperatures, the input power, the meter area, and the thickness of the specimens are given. The apparatus is calibrated with teflon plates as sample and the maximum deviation from the published data is about 6% for thermal conductivity. The uncertainties for the measurement are also discussed in this paper. PMID:22852723

  20. High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum.

    PubMed

    Chou, Yu-Hsun; Wu, Yen-Mo; Hong, Kuo-Bin; Chou, Bo-Tsun; Shih, Jheng-Hong; Chung, Yi-Cheng; Chen, Peng-Yu; Lin, Tzy-Rong; Lin, Chien-Chung; Lin, Sheng-Di; Lu, Tien-Chang

    2016-05-11

    The recent development of plasmonics has overcome the optical diffraction limit and fostered the development of several important components including nanolasers, low-operation-power modulators, and high-speed detectors. In particular, the advent of surface-plasmon-polariton (SPP) nanolasers has enabled the development of coherent emitters approaching the nanoscale. SPP nanolasers widely adopted metal-insulator-semiconductor structures because the presence of an insulator can prevent large metal loss. However, the insulator is not necessary if permittivity combination of laser structures is properly designed. Here, we experimentally demonstrate a SPP nanolaser with a ZnO nanowire on the as-grown single-crystalline aluminum. The average lasing threshold of this simple structure is 20 MW/cm(2), which is four-times lower than that of structures with additional insulator layers. Furthermore, single-mode laser operation can be sustained at temperatures up to 353 K. Our study represents a major step toward the practical realization of SPP nanolasers. PMID:27089144

  1. Computer-Aided Design of Materials for use under High Temperature Operating Condition

    SciTech Connect

    Rajagopal, K. R.; Rao, I. J.

    2010-01-31

    The procedures in place for producing materials in order to optimize their performance with respect to creep characteristics, oxidation resistance, elevation of melting point, thermal and electrical conductivity and other thermal and electrical properties are essentially trial and error experimentation that tend to be tremendously time consuming and expensive. A computational approach has been developed that can replace the trial and error procedures in order that one can efficiently design and engineer materials based on the application in question can lead to enhanced performance of the material, significant decrease in costs and cut down the time necessary to produce such materials. The work has relevance to the design and manufacture of turbine blades operating at high operating temperature, development of armor and missiles heads; corrosion resistant tanks and containers, better conductors of electricity, and the numerous other applications that are envisaged for specially structured nanocrystalline solids. A robust thermodynamic framework is developed within which the computational approach is developed. The procedure takes into account microstructural features such as the dislocation density, lattice mismatch, stacking faults, volume fractions of inclusions, interfacial area, etc. A robust model for single crystal superalloys that takes into account the microstructure of the alloy within the context of a continuum model is developed. Having developed the model, we then implement in a computational scheme using the software ABAQUS/STANDARD. The results of the simulation are compared against experimental data in realistic geometries.

  2. Effects of temperature on flood forecasting: analysis of an operative case study in Alpine basins

    NASA Astrophysics Data System (ADS)

    Ceppi, A.; Ravazzani, G.; Salandin, A.; Rabuffetti, D.; Montani, A.; Borgonovo, E.; Mancini, M.

    2013-04-01

    In recent years the interest in the forecast and prevention of natural hazards related to hydro-meteorological events has increased the challenge for numerical weather modelling, in particular for limited area models, to improve the quantitative precipitation forecasts (QPF) for hydrological purposes. After the encouraging results obtained in the MAP D-PHASE Project, we decided to devote further analyses to show recent improvements in the operational use of hydro-meteorological chains, and above all to better investigate the key role played by temperature during snowy precipitation. In this study we present a reanalysis simulation of one meteorological event, which occurred in November 2008 in the Piedmont Region. The attention is focused on the key role of air temperature, which is a crucial feature in determining the partitioning of precipitation in solid and liquid phase, influencing the quantitative discharge forecast (QDF) into the Alpine region. This is linked to the basin ipsographic curve and therefore by the total contributing area related to the snow line of the event. In order to assess hydrological predictions affected by meteorological forcing, a sensitivity analysis of the model output was carried out to evaluate different simulation scenarios, considering the forecast effects which can radically modify the discharge forecast. Results show how in real-time systems hydrological forecasters have to consider also the temperature uncertainty in forecasts in order to better understand the snow dynamics and its effect on runoff during a meteorological warning with a crucial snow line over the basin. The hydrological ensemble forecasts are based on the 16 members of the meteorological ensemble system COSMO-LEPS (developed by ARPA-SIMC) based on the non-hydrostatic model COSMO, while the hydrological model used to generate the runoff simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano.

  3. Wide Operating Temperature Range Electrolytes for High Voltage and High Specific Energy Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Hwang, C.; Krause, F. C.; Soler, J.; West, W. C.; Ratnakumar, B. V.; Amine, K.

    2012-01-01

    A number of electrolyte formulations that have been designed to operate over a wide temperature range have been investigated in conjunction with layered-layered metal oxide cathode materials developed at Argonne. In this study, we have evaluated a number of electrolytes in Li-ion cells consisting of Conoco Phillips A12 graphite anodes and Toda HE5050 Li(1.2)Ni(0.15)Co(0.10)Mn(0.55)O2 cathodes. The electrolytes studied consisted of LiPF6 in carbonate-based electrolytes that contain ester co-solvents with various solid electrolyte interphase (SEI) promoting additives, many of which have been demonstrated to perform well in 4V systems. More specifically, we have investigated the performance of a number of methyl butyrate (MB) containing electrolytes (i.e., LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + MB (20:20:60 v/v %) that contain various additives, including vinylene carbonate, lithium oxalate, and lithium bis(oxalato)borate (LiBOB). When these systems were evaluated at various rates at low temperatures, the methyl butyrate-based electrolytes resulted in improved rate capability compared to cells with all carbonate-based formulations. It was also ascertained that the slow cathode kinetics govern the generally poor rate capability at low temperature in contrast to traditionally used LiNi(0.80)Co(0.15)Al(0.05)O2-based systems, rather than being influenced strongly by the electrolyte type.

  4. 46 CFR 54.25-15 - Low temperature operation-high alloy steels (modifies UHA-23(b) and UHA-51).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (incorporated by reference; see 46 CFR 54.01-1) for service temperatures below −425 °F., UHA-51(b)(1) through (5... 46 Shipping 2 2010-10-01 2010-10-01 false Low temperature operation-high alloy steels (modifies... (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels §...

  5. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... section VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1... 46 Shipping 2 2014-10-01 2014-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature...

  6. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... section VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1... 46 Shipping 2 2011-10-01 2011-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature...

  7. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... section VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1... 46 Shipping 2 2012-10-01 2012-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature...

  8. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... section VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1... 46 Shipping 2 2013-10-01 2013-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature...

  9. Analysis of the Impact of Decreasing District Heating Supply Temperature on Combined Heat and Power Plant Operation

    NASA Astrophysics Data System (ADS)

    Bolonina, Alona; Bolonins, Genadijs; Blumberga, Dagnija

    2014-12-01

    District heating systems are widely used to supply heat to different groups of heat consumers. The district heating system offers great opportunities for combined heat and power production. In this paper decreasing district heating supply temperature is analysed in the context of combined heat and power plant operation. A mathematical model of a CHP plant is developed using both empirical and theoretical equations. The model is used for analysis of modified CHP plant operation modes with reduced district heating supply temperature. Conclusions on the benefits of new operation modes are introduced.

  10. Derivation and evaluation of land surface temperature from the geostationary operational environmental satellite series

    NASA Astrophysics Data System (ADS)

    Fang, Li

    The Geostationary Operational Environmental Satellites (GOES) have been continuously monitoring the earth surface since 1970, providing valuable and intensive data from a very broad range of wavelengths, day and night. The National Oceanic and Atmospheric Administration's (NOAA's) National Environmental Satellite, Data, and Information Service (NESDIS) is currently operating GOES-15 and GOES-13. The design of the GOES series is now heading to the 4 th generation. GOES-R, as a representative of the new generation of the GOES series, is scheduled to be launched in 2015 with higher spatial and temporal resolution images and full-time soundings. These frequent observations provided by GOES Image make them attractive for deriving information on the diurnal land surface temperature (LST) cycle and diurnal temperature range (DTR). These parameters are of great value for research on the Earth's diurnal variability and climate change. Accurate derivation of satellite-based LSTs from thermal infrared data has long been an interesting and challenging research area. To better support the research on climate change, the generation of consistent GOES LST products for both GOES-East and GOES-West from operational dataset as well as historical archive is in great demand. The derivation of GOES LST products and the evaluation of proposed retrieval methods are two major objectives of this study. Literature relevant to satellite-based LST retrieval techniques was reviewed. Specifically, the evolution of two LST algorithm families and LST retrieval methods for geostationary satellites were summarized in this dissertation. Literature relevant to the evaluation of satellite-based LSTs was also reviewed. All the existing methods are a valuable reference to develop the GOES LST product. The primary objective of this dissertation is the development of models for deriving consistent GOES LSTs with high spatial and high temporal coverage. Proper LST retrieval algorithms were studied

  11. High Speed, High Temperature, Fault Tolerant Operation of a Combination Magnetic-Hydrostatic Bearing Rotor Support System for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Jansen, Mark; Montague, Gerald; Provenza, Andrew; Palazzolo, Alan

    2004-01-01

    Closed loop operation of a single, high temperature magnetic radial bearing to 30,000 RPM (2.25 million DN) and 540 C (1000 F) is discussed. Also, high temperature, fault tolerant operation for the three axis system is examined. A novel, hydrostatic backup bearing system was employed to attain high speed, high temperature, lubrication free support of the entire rotor system. The hydrostatic bearings were made of a high lubricity material and acted as journal-type backup bearings. New, high temperature displacement sensors were successfully employed to monitor shaft position throughout the entire temperature range and are described in this paper. Control of the system was accomplished through a stand alone, high speed computer controller and it was used to run both the fault-tolerant PID and active vibration control algorithms.

  12. Operations

    ERIC Educational Resources Information Center

    Wilkins, Jesse L. M.; Norton, Anderson; Boyce, Steven J.

    2013-01-01

    Previous research has documented schemes and operations that undergird students' understanding of fractions. This prior research was based, in large part, on small-group teaching experiments. However, written assessments are needed in order for teachers and researchers to assess students' ways of operating on a whole-class scale. In this…

  13. Evaluation of a 2.5 kWel automotive low temperature PEM fuel cell stack with extended operating temperature range up to 120 °C

    NASA Astrophysics Data System (ADS)

    Ruiu, Tiziana; Dreizler, Andreas M.; Mitzel, Jens; Gülzow, Erich

    2016-01-01

    Nowadays, the operating temperature of polymer electrolyte membrane fuel cell stacks is typically limited to 80 °C due to water management issues of membrane materials. In the present work, short-term operation at elevated temperatures up to 120 °C and long-term steady-state operation under automotive relevant conditions at 80 °C are examined using a 30-cell stack developed at DLR. The high temperature behavior is investigated by using temperature cycles between 90 and 120 °C without adjustment of the gases dew points, to simulate a short-period temperature increase, possibly caused by an extended power demand and/or limited heat removal. This galvanostatic test demonstrates a fully reversible performance decrease of 21 ± 1% during each thermal cycle. The irreversible degradation rate is about a factor of 6 higher compared to the one determined by the long-term test. The 1200-h test at 80 °C demonstrates linear stack voltage decay with acceptable degradation rate, apart from a malfunction of the air compressor, which results in increased catalyst degradation effects on individual cells. This interpretation is based on an end-of-life characterization, aimed to investigate catalyst, electrode and membrane degradation, by determining hydrogen crossover rates, high frequency resistances, electrochemically active surface areas and catalyst particle sizes.

  14. OSI-SAF operational NPP/VIIRS sea surface temperature chain

    NASA Astrophysics Data System (ADS)

    Le Borgne, Pierre; Legendre, Gérard; Marsouin, Anne; Péré, Sonia; Roquet, Hervé

    2013-06-01

    Data of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar-orbiting Partnership (NPP) have been acquired at Centre de Météorologie Spatiale (CMS) in Lannion (Brittany) in direct readout mode since April 2012. CMS is committed to produce sea surface temperature (SST) products from VIIRS data twice a day over an area covering North-East Atlantic and the Mediterranean Sea in the framework of the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF). A cloud mask has been developed and cloud mask control techniques have been implemented. SST algorithms have been defined, as well as quality level attribution rules. Since mid October 2012 a VIIRS SST chain, similar to that used for processing METOP AVHRR has been run in a preoperational mode. The corresponding bias and standard deviation against drifting buoy measurements (mid October 2012 to mid March 2013) are -0.05 and 0.37 K for nighttime and -0.13 and 0.46 K for daytime, respectively. VIIRS derived SST production is expected operational by mid 2013. The OSI-SAF VIIRS derived SST products are compliant with the Group for High Resolution SST (GHRSST) GDS V2.0 format.

  15. High Operating Temperature Midwave Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    The nBn or XBn barrier infrared detector has the advantage of reduced dark current resulting from suppressed Shockley-Read-Hall (SRH) recombination and surface leakage. High performance detectors and focal plane arrays (FPAs) based on InAsSb absorber lattice matched to GaSb substrate, with a matching AlAsSb unipolar electron barrier, have been demonstrated. The band gap of lattice-matched InAsSb yields a detector cutoff wavelength of approximately 4.2 ??m when operating at 150K. We report results on extending the cutoff wavelength of midwave barrier infrared detectors by incorporating self-assembled InSb quantum dots into the active area of the detector. Using this approach, we were able to extend the detector cutoff wavelength to 6 ?m, allowing the coverage of the full midwave infrared (MWIR) transmission window. The quantum dot barrier infrared detector (QD-BIRD) shows infrared response at temperatures up to 225 K.

  16. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.

    PubMed

    Cai, Weiwei; Zhang, Yunfeng; Li, Jing; Sun, Yubao; Cheng, Hansong

    2014-04-01

    Conductive processes involving lithium ions are analyzed in detail from a mechanistic perspective, and demonstrate that single ion polymeric electrolyte (SIPE) membranes can be used in lithium-ion batteries with a wide operating temperature range (25-80 °C) through systematic optimization of electrodes and electrode/electrolyte interfaces, in sharp contrast to other batteries equipped with SIPE membranes that display appreciable operability only at elevated temperatures (>60 °C). The performance is comparable to that of batteries using liquid electrolyte of inorganic salt, and the batteries exhibit excellent cycle life and rate performance. This significant widening of battery operation temperatures coupled with the inherent flexibility and robustness of the SIPE membranes makes it possible to develop thin and flexible Li-ion batteries for a broad range of applications. PMID:24623577

  17. Time-resolved nature of exhaust gas emissions and piston wall temperature under transient operation in a small diesel engine

    SciTech Connect

    Reksowardojo, I.K.; Ogawa, Hideyuki; Miyamoto, Noboru; Enomoto, Yoshiteru; Kitamura, Toru

    1996-09-01

    Diesel combustion and exhaust gas emissions under transient operation (when fuel amounts abruptly increased) were investigated under a wide range of operating conditions with a newly developed gas sampling system. The relation between gas emissions and piston wall temperatures was also investigated. The results indicated that after the start of acceleration NOx, THC and smoke showed transient behaviors before reaching the steady state condition. Of the three gases, THC was most affected by piston wall temperature; its concentration decreased as the wall temperature increased throughout the acceleration except immediately after the start of acceleration. The number of cycles, at which gas concentrations reach the steady-state value after the start of acceleration, were about 1.2 times the cycle constant of the piston wall temperature for THC, and 2.3 times for smoke.

  18. Temperature-programmed technique accompanied with high-throughput methodology for rapidly searching the optimal operating temperature of MOX gas sensors.

    PubMed

    Zhang, Guozhu; Xie, Changsheng; Zhang, Shunping; Zhao, Jianwei; Lei, Tao; Zeng, Dawen

    2014-09-01

    A combinatorial high-throughput temperature-programmed method to obtain the optimal operating temperature (OOT) of gas sensor materials is demonstrated here for the first time. A material library consisting of SnO2, ZnO, WO3, and In2O3 sensor films was fabricated by screen printing. Temperature-dependent conductivity curves were obtained by scanning this gas sensor library from 300 to 700 K in different atmospheres (dry air, formaldehyde, carbon monoxide, nitrogen dioxide, toluene and ammonia), giving the OOT of each sensor formulation as a function of the carrier and analyte gases. A comparative study of the temperature-programmed method and a conventional method showed good agreement in measured OOT. PMID:25090138

  19. Principles of application of high temperature superconductors to electromagnetic launch technology

    SciTech Connect

    Oberly, C.E.; Kozlowski, G. ); Gooden, C.E. ); Lenard, R.X. ); Sarkar, A.K.; Maartense, I. . Research Inst.); Ho, J.C. )

    1991-01-01

    Many recent advances in the performance of bulk high temperature superconductors (HTSC) now permit conductor and magnet development at practical magnetic fields to be pursued for high current applications such as electromagnetic launchers (EML). While early hopes for a superconductor critical temperature (T{sub c}) approaching room temperature have not been fulfilled, numerous HTSC with T{sub c} between 60K and 125K exist which can be successfully processed. Some of these HTSC are well enough understood that small conductors and coils may be fabricated for operation near 20K. Numerous physics, magnetic flux mechanics, materials processing and structural support issues remain for resolution before large scale coils made of HTSC can be operated at high energy storage density at temperatures well above 20K. This paper describes the authors' recent results on properties and materials processing of HTSC and their relation to EML applications technology.

  20. R&D on an Ultra-Thin Composite Membrane for High-Temperature Operation in PEMFC. Final Report

    SciTech Connect

    Yuh, C.-Y.

    2003-10-06

    FuelCell Energy developed a novel high-temperature proton exchange membrane for PEM fuel cells for building applications. The laboratory PEM fuel cell successfully operated at 100-400{supdegree}C and low relative humidity to improve CO tolerance, mitigate water and thermal management challenges, and reduce membrane cost. The developed high-temperature membrane has successfully completed 500h 120C endurance testing.

  1. Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm

    NASA Astrophysics Data System (ADS)

    Yoon, S. J.; Mackenzie, J. I.

    2014-05-01

    We present our measurements of the key spectroscopic properties over the temperature range of 77 K to 450 K for Nd3+ ions doped in Y3Al5O12 (YAG). From room to liquid nitrogen temperature (LNT), the peak absorption cross section around 808 nm increased by almost 3 times, in conjunction the bandwidth of this absorption line reduced by the same factor. At LNT the peak of the absorption line was blue shifted by 0.25 nm with respect to that at 300 K. The fluorescence spectrum between 850 nm - 1450 nm was measured, from which the emission cross sections for the three main transitions were calculated. One note of particular interest for the dominant emission wavelengths around 1064nm and 1061nm (4F3/2 --> 4I11/2) was the switch in their relative strength below 170K, and at LNT the 1061 nm line has almost twice the cross section as at 1064nm.. The fluorescence and lifetime of the upper laser level (4F3/2) was measured and the effective emission cross section determined by the Fuchtbauer-Ladenburg (F-L) method. The effective emission cross section for 946 nm (R1 --> Z5) increased by more than two times over the 300 K to 77 K range. A numerical fit for the temperature dependent emission cross section at 946 nm and 1064 nm and also calculated absorption coefficient at 808 nm pump diode laser have also obtained from the measured spectroscopic data.

  2. Prediction of air temperature in the aircraft cabin under different operational conditions

    NASA Astrophysics Data System (ADS)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  3. The influence of operating temperature on the efficiency of a combined heat and power fuel cell plant

    NASA Astrophysics Data System (ADS)

    Au, S. F.; McPhail, S. J.; Woudstra, N.; Hemmes, K.

    It is generally accepted that the ideal operating temperature of a molten carbonate fuel cell (MCFC) is 650 °C. Nevertheless, when waste heat utilization in the form of an expander and steam production cycle is introduced in the system, another temperature level might prove more productive. This article is a first attempt to the optimization of MCFC operating temperatures of a MCFC system by presenting a case study in which the efficiency of a combined heat and power (CHP) plant is analyzed. The fuel cell plant under investigation is designed around a 250 kW-class MCFC fuelled by natural gas, which is externally reformed by a heat exchange reformer (HER). The operating temperature of the MCFC is varied over a temperature range between 600 and 700 °C while keeping the rest of the system the same as far as possible. Changes in energetic efficiency are given and the causes of these changes are further analyzed. Furthermore, the exergetic efficiencies of the system and the distribution of exergy losses in the system are given. Flowsheet calculations show that there is little dependency on the temperature in the first order. Both the net electrical performance and the overall exergetic performance show a maximum at approximately 675 °C, with an electrical efficiency of 51.9% (LHV), and an exergy efficiency of 58.7%. The overall thermal efficiency of this CHP plant increases from 87.1% at 600 °C to 88.9% at 700 °C. Overall, the change in performance is small in this typical range of MCFC operating temperature.

  4. Analysis of source-follower buffers implemented with graded-channel SOI nMOSFETs operating at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    de Souza, Michelly; Flandre, Denis; Pavanello, Marcelo Antonio

    2009-11-01

    This work studies the operation of source-follower buffers implemented with standard and graded-channel (GC) fully depleted (FD) SOI nMOSFETs at low temperatures. The analysis is performed by comparing the voltage gain of buffers implemented with GC and standard SOI nMOS transistors considering devices with the same mask channel length and same effective channel length. It is shown that the use of GC devices allows for achieving improved gain in all inversion levels in a wide range of temperatures. In addition, this improvement increases as temperature is reduced. It is shown that GC transistors can provide virtually constant gain, while for standard devices, the gain departs from the maximum value depending on the temperature and inversion level imposed by the bias current and input voltage. Two-dimensional numerical simulations were performed in order to study the reasons for the enhanced gain of GC MOSFETs at low temperatures.

  5. Temperature effects on particulate emissions from DPF-equipped diesel trucks operating on conventional and biodiesel fuels

    EPA Science Inventory

    Two diesel trucks equipped with a particulate filter (DPF) were tested at two ambient temperatures (70oF and 20oF), fuels (ultra low sulfur diesel (ULSD) and biodiesel (B20)) and operating loads (a heavy and light weight). The test procedure included three driving cycles, a cold ...

  6. AuPd/polyaniline as the anode in an ethylene glycol microfluidic fuel cell operated at room temperature.

    PubMed

    Arjona, N; Palacios, A; Moreno-Zuria, A; Guerra-Balcázar, M; Ledesma-García, J; Arriaga, L G

    2014-08-01

    AuPd/polyaniline was used for the first time, for ethylene glycol (EG) electrooxidation in a novel microfluidic fuel cell (MFC) operated at room temperature. The device exhibits high electrocatalytic performance and stability for the conversion of cheap and fully available EG as fuel. PMID:24923468

  7. Animal Thermoregulation and the Operative Environmental (Equivalent) Temperature. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Process.

    ERIC Educational Resources Information Center

    Stevenson, R. D.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Thermoregulation is defined as the ability of an organism to modify its body temperature. This…

  8. Palladium-silver-activated ZnO surface: highly selective methane sensor at reasonably low operating temperature.

    PubMed

    Ghosh, Sugato; Roychaudhuri, Chirasree; Bhattacharya, Raghunath; Saha, Hiranmay; Mukherjee, Nillohit

    2014-03-26

    Metal oxide semiconductors (MOS) are well known as reducing gas sensors. However, their selectivity and operating temperature have major limitations. Most of them show cross sensitivity and the operating temperatures are also relatively higher than the value reported here. To resolve these problems, here, we report the use of palladium-silver (70-30%) activated ZnO thin films as a highly selective methane sensor at low operating temperature (∼100 °C). Porous ZnO thin films were deposited on fluorine-doped tin oxide (FTO)-coated glass substrates by galvanic technique. X-ray diffraction showed polycrystalline nature of the films, whereas the morphological analyses (field emission scanning electron microscopy) showed flake like growth of the grains mainly on xy plane with high surface roughness (107 nm). Pd-Ag (70-30%) alloy was deposited on such ZnO films by e-beam evaporation technique with three different patterns, namely, random dots, ultrathin (∼1 nm) layer and thin (∼5 nm) layer as the activation layer. ZnO films with Pd-Ag dotted pattern were found show high selectivity towards methane (with respect to H2S and CO) and sensitivity (∼80%) at a comparatively low operating temperature of about 100°C. This type of sensor was found to have higher methane selectivity in comparison to other commercially available reducing gas sensor. PMID:24564703

  9. Analytical and experimental spur gear tooth temperature as affected by operating variables

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Akin, L. S.

    1980-01-01

    A gear tooth temperature analysis was performed using a finite element method combined with a calculated heat input, calculated oil jet impingement depth, and estimated heat transfer coefficients. Experimental measurements of gear tooth average surface temperatures and instantaneous surface temperatures were made with a fast response infrared radiometric microscope. Increased oil jet pressure had a significant effect on both average and peak surface temperatures at both high load and speeds. Increasing the speed at constant load and increasing the load at constant speed causes a significant rise in average and peak surface temperatures of gear teeth. The oil jet pressure required for adequate cooling at high speed and load conditions must be high enough to get full depth penetration of the teeth. Calculated and experimental results were in good agreement with high oil jet penetration but showed poor agreement with low oil jet penetration depth.

  10. Analytical and experimental spur gear tooth temperature as affected by operating variables

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Akin, L. S.

    1980-01-01

    A gear tooth temperature analysis was performed using a finite element method combined with a calculated heat input, calculated oil jet impingement depth, and estimated heat transfer coefficients. Experimental measurements of gear tooth average surface temperatures and instanteous surface temperatures were made with a fast response infrared radiometric microscope. Increased oil jet pressure had a significant effect on both average and peak surface temperatures at both high load and speeds. Increasing the speed at constant load and increasing the load at constant speed causes a significant rise in average and peak surface temperatures of gear teeth. The oil jet pressure required for adequate cooling at high speed and load conditions must be high enough to get full depth penetration of the teeth. Calculated and experimental results were in good agreement with high oil jet penetration but showed poor agreement with low oil jet penetration depth.

  11. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    NASA Technical Reports Server (NTRS)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  12. Simulating potential structural and operational changes for Detroit Dam on the North Santiam River, Oregon, for downstream temperature management

    USGS Publications Warehouse

    Buccola, Norman L.; Rounds, Stewart A.; Sullivan, Annett B.; Risley, John C.

    2012-01-01

    Detroit Dam was constructed in 1953 on the North Santiam River in western Oregon and resulted in the formation of Detroit Lake. With a full-pool storage volume of 455,100 acre-feet and a dam height of 463 feet, Detroit Lake is one of the largest and most important reservoirs in the Willamette River basin in terms of power generation, recreation, and water storage and releases. The U.S. Army Corps of Engineers operates Detroit Dam as part of a system of 13 reservoirs in the Willamette Project to meet multiple goals, which include flood-damage protection, power generation, downstream navigation, recreation, and irrigation. A distinct cycle in water temperature occurs in Detroit Lake as spring and summer heating through solar radiation creates a warm layer of water near the surface and isolates cold water below. Controlling the temperature of releases from Detroit Dam, therefore, is highly dependent on the location, characteristics, and usage of the dam's outlet structures. Prior to operational changes in 2007, Detroit Dam had a well-documented effect on downstream water temperature that was problematic for endangered salmonid fish species, releasing water that was too cold in midsummer and too warm in autumn. This unnatural seasonal temperature pattern caused problems in the timing of fish migration, spawning, and emergence. In this study, an existing calibrated 2-dimensional hydrodynamic water-quality model [CE-QUAL-W2] of Detroit Lake was used to determine how changes in dam operation or changes to the structural release points of Detroit Dam might affect downstream water temperatures under a range of historical hydrologic and meteorological conditions. The results from a subset of the Detroit Lake model scenarios then were used as forcing conditions for downstream CE-QUAL-W2 models of Big Cliff Reservoir (the small reregulating reservoir just downstream of Detroit Dam) and the North Santiam and Santiam Rivers. Many combinations of environmental, operational, and

  13. Effect of lubricant jet location on spiral bevel gear operating temperatures

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    1992-01-01

    An experimental study was conducted to determine the effect of lubricant jet location on spiral bevel gear bulk temperatures. Transient surface temperatures were also measured. Tests were conducted on aircraft quality spiral bevel gears in a closed loop test facility. Thermocoupled pinions and an infrared microscope were used to collect the pertinent data. A single fan jet lubricated the test gears. Lubricant flow rate (lubricant jet pressure) and applied torque were also varied. The results showed that jet placement had a significant effect on the gear bulk temperatures.

  14. Principles of application of high temperature superconductors to electromagnetic launch technology

    NASA Astrophysics Data System (ADS)

    Oberly, C. E.; Kozlowski, G.; Gooden, C. E.; Lenard, Roger X.; Sarkar, Asok K.

    1991-01-01

    A review is presented of advances in the performance of bulk high-temperature superconductors (HTSC) which permit conductor and magnet development at practical magnetic fields to be pursued for high-current applications such as electromagnetic launchers (EMLs). While early hopes for a superconductor critical temperature (Tc) approaching room temperture have not been fulfilled, numerous HTSC with Tc between 60 K and 125 K exist which can be successfully processed. Some of these HTSC are well enough understood that small conductors and coils may be fabricated for operation near 20 K. Numerous physics, magnetic flux mechanics, materials processing, and structural support issues remain for resolution before large-scale coils made of HTSC can be operated at high energy storage density at temperatures well above 20 K. Properties and materials processing of HTSC and their relation to EML applications technology are described.

  15. Dirac point and transconductance of top-gated graphene field-effect transistors operating at elevated temperature

    SciTech Connect

    Hopf, T.; Vassilevski, K. V. Escobedo-Cousin, E.; King, P. J.; Wright, N. G.; O'Neill, A. G.; Horsfall, A. B.; Goss, J. P.; Wells, G. H.; Hunt, M. R. C.

    2014-10-21

    Top-gated graphene field-effect transistors (GFETs) have been fabricated using bilayer epitaxial graphene grown on the Si-face of 4H-SiC substrates by thermal decomposition of silicon carbide in high vacuum. Graphene films were characterized by Raman spectroscopy, Atomic Force Microscopy, Scanning Tunnelling Microscopy, and Hall measurements to estimate graphene thickness, morphology, and charge transport properties. A 27 nm thick Al₂O₃ gate dielectric was grown by atomic layer deposition with an e-beam evaporated Al seed layer. Electrical characterization of the GFETs has been performed at operating temperatures up to 100 °C limited by deterioration of the gate dielectric performance at higher temperatures. Devices displayed stable operation with the gate oxide dielectric strength exceeding 4.5 MV/cm at 100 °C. Significant shifting of the charge neutrality point and an increase of the peak transconductance were observed in the GFETs as the operating temperature was elevated from room temperature to 100 °C.

  16. Biohydrogen production from kitchen based vegetable waste: effect of pyrolysis temperature and time on catalysed and non-catalysed operation.

    PubMed

    Agarwal, Manu; Tardio, James; Mohan, S Venkata

    2013-02-01

    Pyrolysis of kitchen based vegetable waste (KVW) was studied in a designed packed bed reactor. The effect of process parameters like temperature, time and catalyst on bio-gas yield and its composition was studied. The total bio-gas yield was found to be maximum with non-catalysed operation (260ml/g) at 1073K (180min). Higher hydrogen (H(2)) yield with non-catalysed operation (32.68%) was observed at 1073K (180min) while with catalysed operation the requisite temperature (873K) and time (120min) reduced with both silica gel (33.34%) and sand (41.82%) thus, saving energy input. Methane (CH(4)) yield was found to be highest (4.44times than non-catalysed and 1.42 with silica gel) in presence of sand (71.485ml/g) at medium temperature (873K) and time (60min). The catalyst operation reduced the carbondioxide (CO(2)) share from 47.29% to 41.30% (silica gel catalysed) and 21.91% (sand catalysed) at 873K. PMID:23313698

  17. The low temperature differential Stirling engine with working fluid operated on critical condition

    SciTech Connect

    Naso, V.; Dong, W.; Lucentini, M.; Capata, R.

    1998-07-01

    The research and development of low temperature differential Stirling engine has a great potential market since a lot of thermal energy at low temperature can supply it and the cost of this kind of engine is lower than general Stirling engine. The characteristics of low compression ratio and low differential temperature Stirling engine may be satisfied with working fluid compressed on critical conditions. By combining two phase heat transfer with forced convective flow in compression space and through the regenerator in the engine, a new heat transfer coefficient emerges capable of absorbing and releasing high heat fluxes without the corresponding low temperature increase. The current analysis focuses on the study of Stirling engines with working fluid compressed on critical conditions, thus at two-phase heat transfer in compression space and regenerator of the engine under forced convective flow conditions.

  18. EVALUATION OF ROTARY KILN INCINERATOR OPERATION AT LOW TO MODERATE TEMPERATURE CONDITIONS VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    A test program was performed at the Environmental Protection Agency Incineration Research Facility to study the effectiveness of incineration at low-to-moderate temperatures in decontaminating soils containing organic compounds with different volatilities (boiling points). The da...

  19. Measurements of the gain medium temperature in an operating Cs DPAL.

    PubMed

    Zhdanov, B V; Rotondaro, M D; Shaffer, M K; Knize, R J

    2016-08-22

    A Mach-Zehnder interferometer was used for contactless measurement of the temperature of the gain medium within a static cell of Cs DPAL. The maximum temperature recorded approached 700° C leading to a significant degradation of laser performance. This work also examined lasing and non-lasing heat deposition and has shown that as much as 85% of the heating in a DPAL gain medium can be attributed to quenching. PMID:27557208

  20. Li-Ion Batteries for Space Applications: High Specific Energy and Wide-Operating Temperature

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Whitacre, Jay; West, William; Manthiram, A.; Prakash, G. K. S; Bugga, Ratnakumar

    2006-01-01

    Compared to the conventional Ni-Co oxides (with or without AI additions), the NMC (1/3:1/3:1/3) cathode provides marginal improvement in specific capacity. However, some of the formulations based on the solid solutions of layered Li2Mn03 and LiM02 (M = Mn0.5Ni0.5} have shown capacities as high as 250 mAh/g, combined with high cell voltages (4.5 V) and with the likelihood of enhanced thermal stability. Multi-component electrolytes with low EC-proportions and selected co-solvents provide significant improvement in the low temperature performance, down to -60 C, combined with the non-flammable attribute from the co-solvents. The NMC cathode shows good compatibility with the carbonate-based low temperature electrolytes. Impressive performances have been realized at low temperatures of <= 30 C. Electrolytes with high salt concentration and high EC content fare well at room temperatures, while the formulations with low EC content and low salt concentration are preferred at low temperatures. DPA studies reveal increased SEI growth on the electrodes, especially anode, upon irradiation. Performance of low temperature electrolytes in prototype cells corroborate the findings from laboratory cells.

  1. A novel coupled VM-PT cryocooler operating at liquid helium temperature

    NASA Astrophysics Data System (ADS)

    Pan, Changzhao; Zhang, Tong; Zhou, Yuan; Wang, Junjie

    2016-07-01

    This paper presents experimental results on a novel two-stage gas-coupled VM-PT cryocooler, which is a one-stage VM cooler coupled a pulse tube cooler. In order to reach temperatures below the critical point of helium-4, a one-stage coaxial pulse tube cryocooler was gas-coupled on the cold end of the former VM cryocooler. The low temperature inertance tube and room temperature gas reservoir were used as phase shifters. The influence of room temperature double-inlet was first investigated, and the results showed that it added excessive heat loss. Then the inertance tube, regenerator and the length of the pulse tube were researched experimentally. Especially, the DC flow, whose function is similar to the double-orifice, was experimentally studied, and shown to contribute about 0.2 K for the no-load temperature. The minimum no-load temperature of 4.4 K was obtained with a pressure ratio near 1.5, working frequency of 2.2 Hz, and average pressure of 1.73 MPa.

  2. EVALUATION OF ROTARY KILN INCINERATOR OPERATION AT LOW TO MODERATE TEMPERATURE CONDITIONS VOLUME 2. APPENDICES

    EPA Science Inventory

    A test program was performed at the Environmental Protection Agency Incineration Research Facility to study the effectiveness of incineration at low-to-moderate volatilities (boiling points). The data in the Appendix contain: incinerator operating data, laboratory analyses, sampl...

  3. High-Voltage 1-kW dc/dc Converter Developed for Low-Temperature Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.

    1998-01-01

    Recently, Lewis developed and demonstrated a high-voltage, 1-kW dc/dc converter that operates from room temperature to -184 C. A power supply designed for use in a NASA ion beam propulsion system was utilized as a starting point for the design of a low- (wide-) temperature dc/dc converter. For safety, we decided to halve the output voltage and power level, so the converter was designed for an 80-Vdc input and a 550-Vdc output at 1 kW.

  4. Using Synchrotron X-Ray Nano-CT to Characterize SOFC Electrode Microstructures in Three-Dimensions at Operating Temperature

    SciTech Connect

    Shearing, P.R.; Bradley, R.S.; Gelb, J.; Lee, S.N.; Atkinson, A.; Withers, P.J.; Brandon, N.P.

    2012-01-20

    In recent years, developments in tomography tools have provided unprecedented insight into the microstructure of electrodes for solid oxide fuel cells, enabling researchers to establish direct links between electrode microstructure and electrochemical performance. Here we present results of high resolution, synchrotron X-ray nano computed tomography experiments, which have enabled microstructural characterisation of a mixed ionic electronic conducting lanthanum strontium cobalt iron oxide (LSCF) cathode with sub-50nm resolution at operating temperature. Using the uniquely non-destructive nano-CT platform, it is possible to characterise microstructural evolution processes associated with heating and operation in-situ.

  5. A study on positive-feedback configuration of a bipolar SiC high temperature operational amplifier

    NASA Astrophysics Data System (ADS)

    Kargarrazi, Saleh; Lanni, Luigia; Zetterling, Carl-Mikael

    2016-02-01

    This paper reports on the design and implementation of an integrated operational amplifier in bipolar SiC, and elaborates on its operation in positive-feedback configuration.The opamp is studied in different feedback setups: closed-loop compensated amplifier, comparator with hysteresis (Schmitt trigger), and as a relaxation oscillator. Measurement results suggest a stable closed-loop opamp with ∼40 dB gain, a Schmitt trigger with constant threshold levels over a wide temperature range, and a relaxation oscillator tested up to 540 kHz. All the setups were tested from 25 °C up to 500 °C.

  6. Optimal laser wavelength for efficient laser power converter operation over temperature

    NASA Astrophysics Data System (ADS)

    Höhn, O.; Walker, A. W.; Bett, A. W.; Helmers, H.

    2016-06-01

    A temperature dependent modeling study is conducted on a GaAs laser power converter to identify the optimal incident laser wavelength for optical power transmission. Furthermore, the respective temperature dependent maximal conversion efficiencies in the radiative limit as well as in a practically achievable limit are presented. The model is based on the transfer matrix method coupled to a two-diode model, and is calibrated to experimental data of a GaAs photovoltaic device over laser irradiance and temperature. Since the laser wavelength does not strongly influence the open circuit voltage of the laser power converter, the optimal laser wavelength is determined to be in the range where the external quantum efficiency is maximal, but weighted by the photon flux of the laser.

  7. Frequency dependence of the maximum operating temperature for quantum-cascade lasers up to 5.4 THz

    SciTech Connect

    Wienold, M.; Röben, B.; Lü, X.; Rozas, G.; Schrottke, L.; Biermann, K.; Grahn, H. T.

    2015-11-16

    We report on the observation of an approximately linear reduction in the maximum operating temperature with an increasing emission frequency for terahertz quantum-cascade lasers between 4.2 and 5.4 THz. These lasers are based on the same design type, but vary in period length and barrier height for the cascade structure. The sample emitting at the highest frequency around 5.4 THz can be operated in pulsed mode up to 56 K. We identify an additional relaxation channel for electrons by longitudinal optical phonon scattering from the upper to the lower laser level and increasing optical losses toward higher frequencies as major processes, leading to the observed temperature behavior.

  8. Intermediate-temperature operation of solid oxide fuel cells (IT-SOFCs) with thin film proton conductive electrolyte

    NASA Astrophysics Data System (ADS)

    Kariya, T.; Uchiyama, K.; Tanaka, H.; Hirono, T.; Kuse, T.; Yanagimoto, K.; Henmi, M.; Hirose, M.; Kimura, I.; Suu, K.; Funakubo, H.

    2015-12-01

    A novel solid oxide fuel cell (SOFC) structure, which is fabricated on a Pd-plated porous stainless steel substrate, was proposed for low-temperature SOFC operation. The surface of the substrate was covered with Pd layer without any pores, which reduces the difficulty of depositing thin film electrolyte on the porous substrate. A 1.2-μm thick proton conductive Sr(Zr0.8Y0.2)O3-δ (SZYO) layer and the cathode of a 100-nm thick (La0.6Sr0.4)(Co0.2Fe0.8)O3-δ (LSCF) layer were deposited on the Pd-plated substrates by the pulsed laser deposition (PLD) method. The low temperature operations at 400 and 450 °C were demonstrated with proposed SOFC cells.

  9. Effects of geographic area, feedstock, temperature, and operating time on microbial communities of six full-scale biogas plants.

    PubMed

    Fontana, Alessandra; Patrone, Vania; Puglisi, Edoardo; Morelli, Lorenzo; Bassi, Daniela; Garuti, Mirco; Rossi, Lorella; Cappa, Fabrizio

    2016-10-01

    The objective of this study was to investigate the effect of different animal feedings operated in two distinct PDO (protected designation of origin) cheese production areas (Parmigiano Reggiano and Grana Padano) on the microbiome of six full-scale biogas plants, by means of Illumina sequencing and qPCR techniques. The effects of feedstock (cattle slurry manure, energy crops, agro-industrial by-products), temperature (mesophilic/thermophilic), and operating time were also examined, as were the relationships between the predominant bacterial and archaeal taxa and process parameters. The different feedstocks and temperatures strongly affected the microbiomes. A more biodiverse archaeal population was highlighted in Parmigiano Reggiano area plants, suggesting an influence of the different animal feedings. Methanosarcina and Methanosaeta showed an opposite distribution among anaerobic plants, with the former found to be related to ammonium concentration. The Methanoculleus genus was more abundant in the thermophilic digester whereas representation of the Thermotogales order correlated with hydraulic retention time. PMID:27450128

  10. Dynamic gas temperature measurement system. Volume 2: Operation and program manual

    NASA Technical Reports Server (NTRS)

    Purpura, P. T.

    1983-01-01

    The hot section technology (HOST) dynamic gas temperature measurement system computer program acquires data from two type B thermocouples of different diameters. The analysis method determines the in situ value of an aerodynamic parameter T, containing the heat transfer coefficient from the transfer function of the two thermocouples. This aerodynamic parameter is used to compute a fequency response spectrum and compensate the dynamic portion of the signal of the smaller thermocouple. The calculations for the aerodynamic parameter and the data compensation technique are discussed. Compensated data are presented in either the time or frequency domain, time domain data as dynamic temperature vs time, or frequency domain data.

  11. Metal-Based Room-Temperature Operating Single Electron Devices Using Scanning Probe Oxidation

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kazuhiko; Gotoh, Yoshitaka; TatsuroMaeda, TatsuroMaeda; Dagata, John; Harris, JamesS.

    1999-01-01

    Coulomb oscillation was clearly observed at room temperature in the singleelectron transistor fabricated by atomic force microscopy (AFM) nano-oxidationprocess. In order to obtain a clear Coulomb oscillation at room temperature, newand improved fabrication processes and measurement systems such as a pulse-modeAFM nano-oxidation process and a triaxial active feedback measurement system areintroduced. The Coulomb oscillation peaks appear with the period of 1.9 V at thedrain bias conditions of 0.25 V and 0.3 V. The current modulation rate ranges from20% to 30%.

  12. Conceptual HALT (Hydrate Addition at Low Temperature) scaleup design: Capital and operating costs: Part 5. [Hydrate addition at low temperature for the removal of SO/sub 2/

    SciTech Connect

    Babu, M.; Kerivan, D.; Hendrick, C.; Kosek, B.; Tackett, D.; Golightley, M.

    1988-12-01

    Hydrate addition at low temperature (or the HALT process) is a retrofit option for moderate SO/sub 2/ removal efficiency in coal burning utility plants. This dry FGD process involves injecting calcium based dry hydrate particles into flue gas ducting downstream of the air preheater where the flue gas temperature is typically in the range of 280-325/degree/F. This report is comprised of the conceptual scaleup design of the HALT process to a 180 MW and a 500 MW coal fired utility station followed by detailed capital and operating cost estimates. A cost sensitivity analysis of major process variables for the 500 MW unit is also included. 1 fig.

  13. Room-temperature repositioning of individual C60 molecules at Cu steps: Operation of a molecular counting device

    NASA Astrophysics Data System (ADS)

    Cuberes, M. T.; Schlittler, R. R.; Gimzewski, J. K.

    1996-11-01

    C60 molecules absorbed on a monoatomic Cu step have been reversibly repositioned at room temperature with the tip of a scanning tunneling microscope by performing controlled displacements along the step direction. We demonstrate the feasibility of building an abacus on the nanometer scale using single molecules as ``counters,'' Cu monoatomic steps as ``rods'' that constrain the molecular motion to one dimension, and the scanning tunneling microscope as an ``actuator'' for counting operations.

  14. Turbine vane coolant flow variations and calculated effects on metal temperatures

    NASA Technical Reports Server (NTRS)

    Yeh, F. C.; Meitner, P. L.; Russell, L. M.

    1975-01-01

    Seventy-two air-cooled turbine vanes were tested to determine coolant flow variations among the vanes. Calculations were made to estimate the effect of measured coolant flow variations on local vane metal temperatures. The calculations were based on the following assumed operating conditions: turbine inlet temperature, 1700 K (2600 F); turbine inlet pressure, 31 N/sq cm (45 psia); coolant inlet temperature, 811 K (1000 F); and total coolant to gas flow ratio, 0.065. Variations of total coolant flow were not large (about 10 percent from the arithmetic mean) for all 72 vanes, but variations in local coolant flows were large. The local coolant flow variations ranged from 8 to 75 percent, and calculated metal temperature variations ranged from 8 to 60 K (15 to 180 F).

  15. Visible-light activated ZnO/CdSe heterostructure-based gas sensors with low operating temperature

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Lin, Zhangqing; Sheng, Minqi; Hou, Songyan; Xu, Jifang

    2016-01-01

    Three-dimensional ZnO/CdSe heterostructure (ZnO/CdSe HS) was fabricated with large scale and its gas-sensing application with low operating temperature was explored. Combining cost-effective chemical vapor deposition with solution growth methods, ZnO nanorods were grown on the surface of CdSe nanoribbons. Scanning electron microscopy, X-ray diffraction and transmission electron microscopy were employed to confirm the formation of ZnO/CdSe HS. The ZnO/CdSe HSs were fabricated as gas sensors in the detection of ethanol at the optimum operating temperature of 160 °C. Compared with ZnO-based gas sensors, the optimum operating temperature of the ZnO/CdSe HS-based sensor was approximately 100 °C lower, while the sensitivity was 20-fold higher in the dark and 3-fold higher under visible light illumination condition. The enhancement of sensing properties was attributed to the advanced heterostructure and visible light activated CdSe.

  16. Stress Evaluation while Prolonged Driving Operation Using the Facial Skin Temperature

    NASA Astrophysics Data System (ADS)

    Asano, Hirotoshi; Muto, Takumi; Ide, Hideto

    There is a relation to the accident of a car and the physiological and psychological state of a driver. The stress may lead to the fall of a fatigue or attentiveness. Therefore, it is an important subject from viewpoint such as accident prevention to evaluate the mental state of a driver. The study aimed at the development of a quantitative instrumentation technology of the stress when a subject is driving for a long time. First of all, we measured the physiological and psychological stress of a driver. The facial skin temperature and ventricular rate that was driver's physiological amount were measured and compared it with visual analog scale of the subjective amount. It was able to be obtaining of the high correlation in facial skin temperature and visual analog scale from the outcome of the experiment. Therefore, the possibility of appreciable of driver's stress at a facial skin temperature was shown. As a result of the experiment, we showed a possibility that facial skin temperature could evaluate long driving stress.

  17. A high-temperature gas-and-steam turbine plant operating on combined fuel

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Milman, O. O.; Shifrin, B. A.

    2015-11-01

    A high-temperature gas-steam turbine plant (GSTP) for ultrasupercritical steam conditions is proposed based on an analysis of prospects for the development of power engineering around the world and in Russia up to 2040. The performance indicators of a GSTP using steam from a coal-fired boiler with a temperature of 560-620°C with its superheating to 1000-1500°C by firing natural gas with oxygen in a mixingtype steam superheater are analyzed. The thermal process circuit and design of a GSTP for a capacity of 25 MW with the high- and intermediate-pressure high-temperature parts with the total efficiency equal to 51.7% and the natural gas utilization efficiency equal to 64-68% are developed. The principles of designing and the design arrangement of a 300 MW GSTP are developed. The effect of economic parameters (the level and ratio of prices for solid fuel and gas, and capital investments) on the net cost of electric energy is determined. The net cost of electric energy produced by the GSTP is lower than that produced by modern combined-cycle power plants in a wide variation range of these parameters. The components of a high-temperature GSTP the development of which determines the main features of such installations are pointed out: a chamber for combusting natural gas and oxygen in a mixture with steam, a vacuum device for condensing steam with a high content of nondensables, and a control system. The possibility of using domestically available gas turbine technologies for developing the GSTP's intermediate-pressure high-temperature part is pointed out. In regard of its environmental characteristics, the GSTP is more advantageous as compared with modern condensing power plants: it allows a flow of concentrated carbon dioxide to be obtained at its outlet, which can be reclaimed; in addition, this plant requires half as much consumption of fresh water.

  18. Cs vapor microcells with Ne-He buffer gas mixture for high operation-temperature miniature atomic clocks.

    PubMed

    Kroemer, E; Abdel Hafiz, M; Maurice, V; Fouilland, B; Gorecki, C; Boudot, R

    2015-07-13

    We report on the characterization of Cs vapor microfabricated cells filled with a Ne-He buffer gas mixture using coherent population trapping (CPT) spectroscopy. The temperature dependence of the Cs clock frequency is found to be canceled at the first order around a so-called inversion temperature higher than 80°C whose value depends on the buffer gas partial pressure ratio. This buffer gas mixture could be well-adapted for the development of miniature atomic clocks devoted to be used in specific applications such as defense and avionic systems with high operating temperature environment (typically higher than 85°C). This solution suggests an alternative to buffer gas mixtures generally used in optically-pumped vapor cell atomic clocks. PMID:26191895

  19. The electrolyte challenge for a direct methanol-air polymer electrolyte fuel cell operating at temperatures up to 200 C

    NASA Technical Reports Server (NTRS)

    Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel

    1993-01-01

    Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.

  20. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum

    NASA Astrophysics Data System (ADS)

    Schaefer-Nolte, E.; Reinhard, F.; Ternes, M.; Wrachtrup, J.; Kern, K.

    2014-01-01

    We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines a tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.

  1. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum

    SciTech Connect

    Schaefer-Nolte, E.; Wrachtrup, J.; 3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart ; Reinhard, F.; Ternes, M.; Kern, K.; Institut de Physique de la Matière Condenseé, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne

    2014-01-15

    We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines a tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.

  2. Parametric study on the operating efficiencies of a packed bed for high-temperature sensible heat storage

    SciTech Connect

    Adebiyi, G.A.; Steele, W.G.; Jalalzadeh-Azar, A.A.; Nsofor, E.C.

    1998-02-01

    A comprehensive computer model of a packed bed thermal energy storage system originally developed for storage media employing either sensible heat storage (SHS) materials or phase-change material (PCM), was validated for the sensible heat storage media using a rather extensive set of data obtained with a custom-made experimental facility for high-temperature energy storage. The model is for high-temperature storage and incorporates several features including (a) allowance for media property variations with temperature, (b) provisions for arbitrary initial conditions and time-dependent varying fluid inlet temperature to be set, (c) formulation for axial thermal dispersion effects in the bed, (d) modeling for intraparticle transient conduction in the storage medium, (e) provision for energy storage (or accumulation) in the fluid medium, (f) modeling for the transient conduction in the containment vessel wall, (g) energy recovery in two modes, one with flow direction parallel with that in the storage mode (cocurrent) and the other with flow in the opposite direction (countercurrent), and (h) computation of the first and second-law efficiencies. Parametric studies on the sensible heat storage system were carried out using the validated model to determine the effects of several of the design and operating parameters on the first and second-law efficiencies of the packed bed. Decisions on the thermodynamic optimum system design and operating parameters for the packed bed are based on the second-law evaluations made.

  3. Soft metal plating enables hard metal seal to operate successfully in low temperature, high pressure environment

    NASA Technical Reports Server (NTRS)

    Lamvermeyer, D. J.

    1967-01-01

    Soft metal plating of hard metal lip seal enables successful operation of seal in a cryogenic fluid line under high pressure. The seal is coated with a thin film of 24 carat gold on the lip area to provide antigall and seal properties.

  4. High temperature operation of YBa sub 2 Cu sub 3 O sub 7 minus x dc SQUID

    SciTech Connect

    Irie, A.; Sasahara, H.; Yamashita, Y.; Kurosawa, H. ); Yamane, H.; Hirai, T. )

    1991-03-01

    In this paper using the YBa{sub x}Cu{sub 3}O{sub 7{minus}x} thin film deposited by MOCVD, the authors fabricate the dc SQUID operated at 77 K. The SQUIDs with microbridges are patterned by chemical and laser etching process. These SQUIDS operate stably without hysteresis in quite a wide range of temperature, within several periods of {phi}{sub 0}. At 4.2 K the voltage modulation of 80{mu}V and the intrinsic energy sensitibity of 4.9 {times} 10{sup {minus}31}J/Hz were obtained for the SQUID with an inductance of 70 pH. The flux noise of the SQUID operating at 77 K in FLL mode was 1.8 {times}10{sub {minus}4}{phi}{sub 0}/square root Hz at 10 Hz.

  5. Reliable high-power long-pulse 8XX-nm diode laser bars and arrays operating at high temperature

    NASA Astrophysics Data System (ADS)

    Fan, Li; Cao, Chuanshun; Thaler, Gerald; Nonnemacher, Dustin; Lapinski, Feliks; Ai, Irene; Caliva, Brian; Das, Suhit; Walker, Robert; Zeng, Linfei; McElhinney, Mark; Thiagarajan, Prabhu

    2011-03-01

    We report on the high-power high-temperature long-pulse performance of the 8XX-nm diode laser bars and arrays, which were recently developed at Lasertel Inc. for diode laser pumping within high-temperature (130 °C) environment without any cooling. Since certain energy in each pulse is required, the diode laser bars have to provide both high peak power and a nice pulse shape at 130 °C. Optimizing the epi-structure of the diode laser, the laser cavity and the distribution of waste heat, we demonstrate over 40-millisecond long-pulse operation of the 8XX-nm CS bars at 130 °C and 100 A. Pumping the bar with 5-Hz frequency 15-millisecond rectangular current pulses, we generate over 60 W peak power at 100 A and 130 °C. During the pulse duration, the pulse shape of the CS bars is well-maintained and the power almost linearly decays with a rate of 1.9% peak power per millisecond at 130 °C and 100 A. Regardless of the pulse shape, this laser bar can lase at very high temperature and output pulse can last for 8 ms/2ms at 170 °C/180 °C (both driven by 60 A current pulses with 5-Hz frequency, 10 millisecond pulse width), respectively. To the best of our knowledge, this is the highest operating temperature for a long-pulse 8XX-nm laser bar. Under the condition of 130 °C and 100 A, the laser bars do not show any degradation after 310,000 10-millisecond current pulse shots. The performance of stack arrays at 130 °C and 100 A are also presented. The development of reliable high-temperature diode laser bar paves the way for diode laser long-pulse pumping within a high-temperature environment without any cooling.

  6. Temperature Effects of Point Sources, Riparian Shading, and Dam Operations on the Willamette River, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.

    2007-01-01

    Water temperature is an important factor influencing the migration, rearing, and spawning of several important fish species in rivers of the Pacific Northwest. To protect these fish populations and to fulfill its responsibilities under the Federal Clean Water Act, the Oregon Department of Environmental Quality set a water temperature Total Maximum Daily Load (TMDL) in 2006 for the Willamette River and the lower reaches of its largest tributaries in northwestern Oregon. As a result, the thermal discharges of the largest point sources of heat to the Willamette River now are limited at certain times of the year, riparian vegetation has been targeted for restoration, and upstream dams are recognized as important influences on downstream temperatures. Many of the prescribed point-source heat-load allocations are sufficiently restrictive that management agencies may need to expend considerable resources to meet those allocations. Trading heat allocations among point-source dischargers may be a more economical and efficient means of meeting the cumulative point-source temperature limits set by the TMDL. The cumulative nature of these limits, however, precludes simple one-to-one trades of heat from one point source to another; a more detailed spatial analysis is needed. In this investigation, the flow and temperature models that formed the basis of the Willamette temperature TMDL were used to determine a spatially indexed 'heating signature' for each of the modeled point sources, and those signatures then were combined into a user-friendly, spreadsheet-based screening tool. The Willamette River Point-Source Heat-Trading Tool allows the user to increase or decrease the heating signature of each source and thereby evaluate the effects of a wide range of potential point-source heat trades. The predictions of the Trading Tool were verified by running the Willamette flow and temperature models under four different trading scenarios, and the predictions typically were accurate

  7. Reduced model for combustion of a small biomass particle at high operating temperatures.

    PubMed

    Haseli, Y; van Oijen, J A; de Goey, L P H

    2013-03-01

    The aim of this work was to demonstrate a model for a spherical biomass particle combusting at high temperatures with reduced number of variables. The model is based on the observation that combustion of a small particle includes three main phases: heating up, pyrolysis, and char conversion. It is assumed that the pyrolysis begins as soon as the particle surface attains a pyrolysis temperature, yielding a char front, moving towards the center of particle as time passes. The formulation of the heating up and pyrolysis phases is based on an integral method which allows describing the energy conservation with an ordinary differential equation. The char combustion model is according to the shrinking core approximation. Model validation is carried out by comparing the predictions with experiments of sawdust particles taken from the literature, and with computations of partial differential equation-based models. Satisfactory agreement is achieved between the predictions and experimental data. PMID:23376204

  8. Lifetime improvement of sheathed thermocouples for use in high-temperature and thermal transient operations

    SciTech Connect

    McCulloch, R.W.; Clift, J.H.

    1982-01-01

    Premature failure of small-diameter, magnesium-oxide-insulated sheathed thermocouples occurred when they were placed within nuclear fuel rod simulators (FRSs) to measure high temperatures and to follow severe thermal transients encountered during simulation of nuclear reactor accidents in Oak Ridge National Laboratory (ORNL) thermal-hydraulic test facilities. Investigation of thermally cycled thermocouples yielded three criteria for improvement of thermocouple lifetime: (1) reduction of oxygen impurities prior to and during their fabrication, (2) refinement of thermoelement grain size during their fabrication, and (3) elimination of prestrain prior to use above their recrystallization temperature. The first and third criteria were satisfied by improved techniques of thermocouple assembly and by a recovery anneal prior to thermocouple use.

  9. Non-contact passive temperature measuring system and method of operation using micro-mechanical sensors

    SciTech Connect

    2000-04-18

    A non-contact infrared thermometer measures target temperatures remotely without requiring the ratio of the target size to the target distance to the thermometer. A collection means collects and focuses target IR radiation on an IR detector. The detector measures thermal energy of the target over a spectrum using micromechanical sensors. A processor means calculates the collected thermal energy in at least two different spectral regions using a first algorithm in program form and further calculates the ratio of the thermal energy in the at least two different spectral regions to obtain the target temperature independent of the target size, distance to the target and emissivity using a second algorithm in program form.

  10. Non-contact passive temperature measuring system and method of operation using micro-mechanical sensors

    DOEpatents

    Thundat, Thomas G.; Oden, Patrick I.; Datskos, Panagiotis G.

    2000-01-01

    A non-contact infrared thermometer measures target temperatures remotely without requiring the ratio of the target size to the target distance to the thermometer. A collection means collects and focusses target IR radiation on an IR detector. The detector measures thermal energy of the target over a spectrum using micromechanical sensors. A processor means calculates the collected thermal energy in at least two different spectral regions using a first algorithm in program form and further calculates the ratio of the thermal energy in the at least two different spectral regions to obtain the target temperature independent of the target size, distance to the target and emissivity using a second algorithm in program form.

  11. Amber InGaN-Based Light-Emitting Diodes Operable at High Ambient Temperatures

    NASA Astrophysics Data System (ADS)

    Mukai, Takashi; Narimatsu, Hiroki; Nakamura, Shuji

    1998-05-01

    High-efficiency amber InGaN single-quantum-well (SQW) structure light-emitting diodes (LEDs) with a luminous efficiency of 10 lm/W were developed. At a current of 20 mA, the external quantum efficiency, the output power and the emission wavelength of the amber InGaN SQW structure LEDs were 3.3%, 1.4 mW and 594 nm, respectively. The output power of InGaN LEDs was about twice as high as that of AlInGaP LEDs. There was a large difference in the temperature dependence of the output power between InGaN and AlInGaP LEDs. When the ambient temperature was increased from room temperature to 80°C, the output power of AlInGaP LEDs decreased dramatically. On the other hand, the output power of the InGaN LEDs remained almost constant.

  12. Discriminating among different tea leaves using an operating temperature-modulated tin oxide gas sensor

    NASA Astrophysics Data System (ADS)

    Rastkhadiv, Ali; Jenabi, Amin; Souri, Asma

    2016-03-01

    We report distinguishing different types of tea leaves from each other based on their aroma using a thermal shock-induced generic tin oxide gas sensor. The sensor used in this work consists of a microheater and a tin oxide pellet, both connected to outside circuitry with noble metal contacts. The heater is powered with a series of narrow high magnitude voltage impulses of predetermined thermal impacts adjusted to produce step-like temperature rises of different magnitudes on the gas sensitive pellet. The sensor is exposed to aromas collected from various types of tea leaves at different concentrations. Within 4.5 s, nine 500 ms-wide voltage pulses, each as high as 9.3 V in magnitude, are applied to the microheater. Each pulse causes a step-like temperature jump on the pellet temperature. The transient responses recorded for different tea leaves look different even after amplitude normalization. The sensor profiles are recorded, digitized, and compared with the database of previous experiences. A heuristically defined high dimensional feature vector is automatically generated for each analyte. Classifications are graphically achieved in a 3-D feature space after applying principle component analysis for dimension reduction.

  13. Temperature-dependent spectroscopy and microchip laser operation of Nd:KGd(WO4)2

    NASA Astrophysics Data System (ADS)

    Loiko, P.; Yoon, S. J.; Serres, J. M.; Mateos, X.; Beecher, S. J.; Birch, R. B.; Savitski, V. G.; Kemp, A. J.; Yumashev, K.; Griebner, U.; Petrov, V.; Aguiló, M.; Díaz, F.; Mackenzie, J. I.

    2016-08-01

    High-resolution absorption and stimulated-emission cross-section spectra are presented for monoclinic Nd:KGd(WO4)2 (Nd:KGW) laser crystals in the temperature range 77-450 K. At room-temperature, the maximum stimulated emission cross-section is σSE = 21.4 × 10-20 cm2 at 1067.3 nm, for light polarization E || Nm. The lifetime of the 4F3/2 state of Nd3+ in KGW is practically temperature independent at 115 ± 5 μs. Measurement of the energy transfer upconversion parameter for a 3 at.% Nd:KGW crystal proved that this was significantly smaller than for alternative hosts, ∼2.5 × 10-17 cm3/s. When cut along the Ng optical indicatrix axis, the Nd:KGW crystal was configured as a microchip laser, generating ∼4 W of continuous-wave output at 1067 nm with a slope efficiency of 61% under diode-pumping. Using a highly-doped (10 at.%) Nd:KGW crystal, the slope efficiency reached 71% and 74% when pumped with a laser diode and a Ti:Sapphire laser, respectively. The concept of an ultrathin (250 μm) Nd:KGW microchip laser sandwiched between two synthetic diamond heat-spreaders is demonstrated.

  14. Electronic properties of InAs/GaSb superlattice detectors to evaluate high-temperature operation

    NASA Astrophysics Data System (ADS)

    Christol, P.; Cervera, C.; Chaghi, R.; Aït-Kaci, H.; Rodriguez, J. B.; Konczewicz, L.; Contreras, S.; Jaworowicz, K.; Ribet-Mohamed, I.

    2010-01-01

    Electrical properties of non-intentionally doped (nid) InAs/GaSb Superlattice (SL) structures and p-nid-n detectors grown by Molecular Beam Epitaxy on GaSb substrate are reported. The SL structures were made of 600 periods of 8 InAs monolayers (MLs) and 8 GaSb MLs, for a total thickness of 3ìm. This structure exhibited a cutoff wavelength in the midwave infrared (MWIR) domain, near 4.7μm at 80K. Electrical transport measurements, based on resistivity and Hall Effect measurements, were performed on SL structure after removing the conducting GaSb substrate with an appropriate technological process. Carrier concentrations and mobilities carried out as a function of temperature (77- 300K) for magnetic fields in the 0-1 Tesla range are analyzed. A change in type of conductivity is observed. The nid SL layers is p-type at liquid Nitrogen temperature while is n-type at room temperature. These results are completed with diode characterizations based on current-voltage (I-V) and capacitance-voltage (C-V) measurements performed on p-nidn devices with identical InAs/GaSb SL active zone.

  15. Low temperature, atmospheric pressure, direct current microplasma jet operated in air, nitrogen and oxygen

    NASA Astrophysics Data System (ADS)

    Mohamed, A.-A. H.; Kolb, J. F.; Schoenbach, K. H.

    2010-12-01

    Micro-plasma jets in atmospheric pressure molecular gases (nitrogen, oxygen, air) were generated by blowing these gases through direct current microhollow cathode discharges (MHCDs). The tapered discharge channel, drilled through two 100 to 200 μm thick molybdenum electrodes separated by a 200 μm thick alumina layer, is 150 to 450 μm in diameter in the cathode and has an opening of 100 to 300 μm in diameter in the anode. Sustaining voltages are 400 to 600 V, the maximum current is 25 mA. The gas temperature of the microplasma inside the microhollow cathode varies between ~2000 K and ~1000 K depending on current, gas, and flow rate. Outside the discharge channel the temperature in the jet can be reduced by manipulating the discharge current and the gas flow to achieve values close to room temperature. This cold microplasma jet can be used for surface treatment of heat sensitive substances, and for sterilization of contaminated areas.

  16. Increased operational temperature of Cr2O3-based spintronic devices

    NASA Astrophysics Data System (ADS)

    Street, Michael; Echtenkamp, Will; Komesu, Takashi; Cao, Shi; Wang, Jian; Dowben, Peter; Binek, Christian

    Spintronic devices have been considered a promising path to revolutionizing the current data storage and memory technologies. This work is an effort to utilize voltage-controlled boundary magnetization of the magnetoelectric chromia (Cr2O3) to be implemented into a spintronic device. The electric switchable boundary magnetization of chromia can be used to voltage-control the magnetic states of an adjacent ferromagnetic layer. For this technique to be utilized in a spintronic device, the antiferromagnetic ordering temperature of chromia must be enhanced above the bulk value of TN = 307K. Previously, based on first principle calculations, boron doped chromia thin films were fabricated via pulsed laser deposition showing boundary magnetization at elevated temperatures. Measurements of the boundary magnetization were also corroborated by spin polarized inverse photoemission spectroscopy. Exchange bias of B-doped chromia was also investigated using magneto-optical Kerr effect, showing an increased blocking temperature from 307K. Further boundary magnetization measurements and spin polarized inverse photoemission measurements indicate the surface magnetization to an in-plane orientation from the standard perpendicular orientation. This project was supported by the SRC through CNFD, an SRC-NRI Center under Task ID (2398.001) and by C-SPIN, part of STARnet, sponsored by MARCO and DARPA (No. SRC 2381.001).

  17. High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum

    NASA Technical Reports Server (NTRS)

    Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.

    1995-01-01

    The Jet Propulsion Laboratory evaluated the use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto-Fast-Flyby (PFF) mission. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers. Using a control package, the mirror system provides image motion compensation and mosaicking capabilities. While this device offers unique advantages, there were concerns pertaining to its operational capabilities for the PFF mission. The issues include irradiation effects and thermal concerns. A literature study indicated that irradiation effects will not significantly impact the linear motor's operational characteristics. On the other hand, thermal concerns necessitated an in depth study.

  18. Room temperature Dy:YLF laser operation at 4.34 micron

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Allen, Roger E.

    1991-01-01

    A Dy:YLF laser operating on the 6H11/2 to 6H13/2 transition at 4.34 micron and using a laser pumping scheme is reported. This pumping scheme is necessitated by the short upper-laser-level lifetime and the small effective stimulated-emission cross section. A suitable laser for this application is the Er:YLF laser operating at 1.73 micron. A simple model that approximates Dy:YLF laser performance well is presented. Results on laser performance, including a determination of the slope efficiency and threshold as a function of the output mirror reflectivity and a correlation of the pulse length with the laser output energy, are reported. Overall laser efficiency is found to be limited primarily by the ratio of the pump wavelength to laser output wavelength and the terminated four-level laser operation. Spectroscopic results, including the measurement of the absorption spectra and the lifetimes of both the upper- and lower-laser manifolds, are given.

  19. Performance of MWIR and SWIR HgCdTe-based focal plane arrays at high operating temperatures

    NASA Astrophysics Data System (ADS)

    Melkonian, Leon; Bangs, James; Elizondo, Lee; Ramey, Ron; Guerrero, Ernesto

    2010-04-01

    Raytheon Vision Systems (RVS) is producing large format, high definition HgCdTe-based MWIR and SWIR focal plane arrays (FPAs) with pitches of 15 μm and smaller for various applications. Infrared sensors fabricated from HgCdTe have several advantages when compared to those fabricated from other materials -- such as a highly tunable bandgap, high quantum efficiencies, and R0A approaching theoretical limits. It is desirable to operate infrared sensors at elevated operating temperatures in order to increase the cooler life and reduce the required system power. However, the sensitivity of many infrared sensors, including those made from HgCdTe, declines significantly above a certain temperature due to the noise resulting from increasing detector dark current. In this paper we provide performance data on a MWIR and a SWIR focal plane array operating at temperatures up to 160K and 170K, respectively. The FPAs used in the study were grown by molecular beam epitaxy (MBE) on silicon substrates, processed into a 1536x1024 format with a 15 μm pixel pitch, and hybridized to a silicon readout integrated circuit (ROIC) via indium bumps to form a sensor chip assembly (SCA). This data shows that the noise equivalent delta temperature (NEDT) is background limited at f/3.4 in the SWIR SCA (cutoff wavelength of 3.7 μm at 130K) up to 140K and in the MWIR SCA (cutoff wavelength of 4.8 μm at 115K) up to 115K.

  20. Temperature-dependent spectroscopy and microchip laser operation of Nd:KGd(WO4)2

    NASA Astrophysics Data System (ADS)

    Loiko, P.; Yoon, S. J.; Serres, J. M.; Mateos, X.; Beecher, S. J.; Birch, R. B.; Savitski, V. G.; Kemp, A. J.; Yumashev, K.; Griebner, U.; Petrov, V.; Aguiló, M.; Díaz, F.; Mackenzie, J. I.

    2016-08-01

    High-resolution absorption and stimulated-emission cross-section spectra are presented for monoclinic Nd:KGd(WO4)2 (Nd:KGW) laser crystals in the temperature range 77-450 K. At room-temperature, the maximum stimulated emission cross-section is σSE = 21.4 × 10-20 cm2 at 1067.3 nm, for light polarization E || Nm. The lifetime of the 4F3/2 state of Nd3+ in KGW is practically temperature independent at 115 ± 5 μs. Measurement of the energy transfer upconversion parameter for a 3 at.% Nd:KGW crystal proved that this was significantly smaller than for alternative hosts, ∼2.5 × 10-17 cm3/s. When cut along the Ng optical indicatrix axis, the Nd:KGW crystal was configured as a microchip laser, generating ∼4 W of continuous-wave output at 1067 nm with a slope efficiency of 61% under diode-pumping. Using a highly-doped (10 at.%) Nd:KGW crystal, the slope efficiency reached 71% and 74% when pumped with a laser diode and a Ti:Sapphire laser, respectively. The concept of an ultrathin (250 μm) Nd:KGW microchip laser sandwiched between two synthetic diamond heat-spreaders is demonstrated.

  1. Long-term and room temperature operable bioactuator powered by insect dorsal vessel tissue.

    PubMed

    Akiyama, Yoshitake; Iwabuchi, Kikuo; Furukawa, Yuji; Morishima, Keisuke

    2009-01-01

    We present a bioactuator powered by insect dorsal vessel tissue which can work for a long time at room temperature without maintenance. Previously reported bioactuators which exploit contracting ability of mammalian heart muscle cell have required precise environmental control to keep the cell alive and contracting. To overcome this problem, we propose a bioactuator using dorsal vessel tissue. The insect tissue which can grow at room temperature is generally robust over a range of culture conditions compared to mammalian tissues and cells. First, we confirm that a dorsal vessel tissue of lepidoptera larva Ctenoplusia agnata contracts spontaneously for at least 30 days without medium replacement at 25 degrees C. Using the dorsal vessel tissue cultured under the same conditions, we succeed in driving micropillars 100 microm in diameter and 1000 microm in height for more than 90 days. The strongest displacement of the micropillar top occurs on the 42(nd) day and is 23 microm. Based on these results, the contracting force is roughly estimated as 4.7 microN which is larger than that by a few mammalian cardiomyocytes (3.4 microN). Definite displacements of more than 10 microm are observed for 58 days from the 15(th) to the 72(nd) days. The number of life cycles can be roughly calculated as 7.5 x 10(5) times for the average frequency of about 0.15 Hz, which is no less than that of conventional mechanical actuators. These results suggest that the insect dorsal vessel tissue is a more promising material for bioactuators used at room temperature than other biological cell-based materials. PMID:19209346

  2. Neoplasms treatment by diode laser with and without real time temperature control on operation zone

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Gelfond, Mark L.; Shatilova, Ksenia V.; Sosenkova, Svetlana A.; Lazareva, Anastasia A.; Semyashkina, Yulia V.

    2016-04-01

    Results of nevus, papilloma, dermatofibroma, and basal cell skin cancer in vivo removal by a 980+/-10 nm diode laser with "blackened" tip operating in continuous (CW) mode and automatic power control (APC) mode are presented. The collateral damage width and width of graze wound area around the collateral damage area were demonstrated. The total damage area width was calculated as sum of collateral damage width and graze wound area width. The mean width of total damage area reached 1.538+/-0.254 mm for patient group with nevus removing by 980 nm diode laser operating in CW mode, papilloma - 0.586+/-0.453 mm, dermatofibroma - 1.568+/-0.437 mm, and basal cell skin cancer - 1.603+/-0.613 mm. The mean width of total damage area reached 1.201+/-0.292 mm for patient group with nevus removing by 980 nm diode laser operating in APC mode, papilloma - 0.413+/-0.418 mm, dermatofibroma - 1.240+/-0.546 mm, and basal cell skin cancer - 1.204+/-0.517 mm. It was found that using APC mode decreases the total damage area width at removing of these nosological neoplasms of human skin, and decreases the width of graze wound area at removing of nevus and basal cell skin cancer. At the first time, the dynamic of output laser power and thermal signal during laser removal of nevus in CW and APC mode is presented. It was determined that output laser power during nevus removal for APC mode was 1.6+/-0.05 W and for CW mode - 14.0+/-0.1 W. This difference can explain the decrease of the total damage area width and width of graze wound area for APC mode in comparison with CW mode.

  3. Polarization characteristics of a low catalyst loading PEM water electrolyzer operating at elevated temperature

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Seok; Park, Hee-Young; Choi, Insoo; Cho, Min Kyung; Kim, Hyoung-Juhn; Yoo, Sung Jong; Henkensmeier, Dirk; Kim, Jin Young; Nam, Suk Woo; Park, Sehkyu; Lee, Kwan-Young; Jang, Jong Hyun

    2016-03-01

    The effect of temperature and pressure, and diffusion layer thickness is assessed on performance of a proton exchange membrane water electrolyzers (PEMWEs) with an ultralow iridium oxide (IrO2) loading (0.1 mg cm-2) anode prepared by electrodeposition and a Pt/C catalyzed cathode with a Pt loading of 0.4 mg cm-2. Increasing pressure to 2.5 bar at 120 °C enhances the water electrolysis current, so the anode electrodeposited with 0.1 mg cm-2 IrO2 gives a current density of 1.79 A cm-2 at 1.6 V, which is comparable to the conventional powder-type IrO2 electrode with 2.0 mg cm-2 at a temperature of 120 °C and pressure of 2.5 bar. The major factors for cell performances are rationalized in terms of overpotentials, water flow rates and thickness of diffusion layers, based on polarization behavior and ac-impedance response.

  4. Method to Measure Total Noise Temperature of a Wireless Receiver During Operation

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E.; Esterhuizen, Stephan; Turbiner, Dmitry

    2013-01-01

    A method has been developed to measure the total effective noise power in a GPS receiver, including contributions from the system temperature, the antenna temperature, interference, lossy components, etc. A known level of noise is periodically injected before the preamplifier during normal tracking, with a switch set to a very low duty cycle, so that there is insignificant signal loss for the GPS signals being tracked. Alternately, a signal of known power may be injected. The coupling port is fed with a switch that can be controlled from the receiver s digital processing section. The switch can connect the coupling port to a noise or signal source at a known power level. The combined system noise is measured, and nearly continuous noise calibrations are made. The effect from injected noise/signals on the performance of the GPS receiver can be less than 0.01 dB of SNR loss. Minimal additional components are required. The GPS receiver is used to measure the SNRs required to solve for the noise level. Because this measurement is referenced to the preamplifier input, it is insensitive to variations in the receiver gain.

  5. Evaluation of cermet materials suitable for lithium lubricated thrust bearings for high temperature operation

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.; Hendrixson, W. H.

    1974-01-01

    Cerment materials (HfC - 10 wt% W; HfC - 10 wt% TaC - 10 wt%W; HfC - 2 wt% CbC - 8 wt% Mo;Hfn - 10 wt% W; Hfn - 10 wt% TaN - 10 wt% W; and ZrC - 17 wt% W) were evaluated for possible use as lithium-lubricated bearings in the control system of a nuclear reactor. Tests of compatibility with lithium were made in T-111 (Ta-8W-2Hf) capsules at temperatures up to 1090 C. The tendencies of HfC-TaC-W, HfC-CbC-Mo, and HfN-W to bond to themselves and to the refractory alloys T-111 and TZM when enclosed in lithium-filled capsules under a pressure of 2000 psi at 980 and 1200 C for 1933 hours were evaluated. Thermal expansion characteristics were determined for the same three materials from room temperature to 1200 C. On the basis of these tests, HfC-10 TaC-10W and HfN-10W were selected as the best and second best candidates, respectively, of the materials tested for the bearing application.

  6. Hot Corrosion Studies of HVOF-Sprayed Coating on T-91 Boiler Tube Steel at Different Operating Temperatures

    NASA Astrophysics Data System (ADS)

    Bhatia, Rakesh; Singh, Hazoor; Sidhu, Buta Singh

    2013-11-01

    The aim of the present work is to investigate the usefulness of high velocity oxy fuel-sprayed 75% Cr3C2-25% (Ni-20Cr) coating to control hot corrosion of T-91 boiler tube steel at different operating temperatures viz 550, 700, and 850 °C. The deposited coatings on the substrates exhibit nearly uniform, adherent and dense microstructure with porosity less than 2%. Thermogravimetry technique is used to study the high temperature hot corrosion behavior of uncoated and coated samples. The corrosion products of the coating on the substrate are analyzed by using XRD, SEM, and FE-SEM/EDAX to reveal their microstructural and compositional features for the corrosion mechanisms. It is found that the coated specimens have shown minimum weight gain at all the operating temperatures when compared with uncoated T-91 samples. Hence, coating is effective in decreasing the corrosion rate in the given molten salt environment. Oxides and spinels of nickel-chromium may be the reason for successful resistance against hot corrosion.

  7. Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures.

    PubMed

    Kaarela, Outi E; Härkki, Heli A; Palmroth, Marja R T; Tuhkanen, Tuula A

    2015-01-01

    Granular activated carbon (GAC) filtration enhances the removal of natural organic matter and micropollutants in drinking water treatment. Microbial communities in GAC filters contribute to the removal of the biodegradable part of organic matter, and thus help to control microbial regrowth in the distribution system. Our objectives were to investigate bacterial community dynamics, identify the major bacterial groups, and determine the concentration of active bacterial biomass in full-scale GAC filters treating cold (3.7-9.5°C), physicochemically pretreated, and ozonated lake water. Three sampling rounds were conducted to study six GAC filters of different operation times and flow modes in winter, spring, and summer. Total organic carbon results indicated that both the first-step and second-step filters contributed to the removal of organic matter. Length heterogeneity analysis of amplified 16S rRNA genes illustrated that bacterial communities were diverse and considerably stable over time. α-Proteobacteria, β-Proteobacteria, and Nitrospira dominated in all of the GAC filters, although the relative proportion of dominant phylogenetic groups in individual filters differed. The active bacterial biomass accumulation, measured as adenosine triphosphate, was limited due to low temperature, low flux of nutrients, and frequent backwashing. The concentration of active bacterial biomass was not affected by the moderate seasonal temperature variation. In summary, the results provided an insight into the biological component of GAC filtration in cold water temperatures and the operational parameters affecting it. PMID:25242545

  8. An operational multifield analog/antianalog prediction system for United States seasonal temperatures: 1. System design and winter experiments

    NASA Astrophysics Data System (ADS)

    Livezey, Robert E.; Barnston, Anthony G.

    1988-01-01

    The theoretical framework developed by Barnett and Preisendorfer (1978) for multifield analog prediction of United States seasonal temperatures has been modified and expanded to accommodate the use of composites of analogs and antianalogs to form predictions. Major changes have also been made both in predictor data and in the way it is processed, although the general strategy of Barnett and Preisendorfer served as a guide in this regard. Cross-validation tests on a 35-year record suggest that substantial gains in winter forecast skill have been achieved through both the previously mentioned architectural changes and several predictor data set changes. The latter include the use of a different El Niño/Southern Oscillation index and United States surface temperature data but not precipitation data. It was found that significant model skill depends most on these two data sets, along with well-filtered 700-mbar heights, and depends least on sea surface temperatures. Considerable skill was found over the eastern half and the north-central portion of the United States. Forecasts were found to be effectively independent of and to outperform those of persistence and were comparable in skill to official forecasts. In a quasi-operational test most of the system's skill was reproduced, even under very disadvantageous circumstances. Because of all these factors, the mixed analog and antianalog prediction system has been adopted as a major input for operational use by official forecasters. Development of models for other seasons will be described in a subsequent paper.

  9. Stabilized composite membranes and membrane electrode assemblies for elevated temperature/low relative humidity PEFC operation

    NASA Astrophysics Data System (ADS)

    Ramani, Vijay; Kunz, H. R.; Fenton, J. M.

    An approach is presented to combine existing heteropolyacid (HPA) additive and membrane electrode assembly (MEA) stabilization techniques to yield a stabilized MEA for operation at 120 °C and 35% relative humidity (RH). MEAs were prepared using Nafion ®/phosphotungstic acid composite membranes with a phosphotungstic acid (PTA) particle size of 30-50 nm. The PTA additive was stabilized by substituting its protons with cesium counter ions. The Nafion ® in the membrane and electrodes was simultaneously converted to the Cs + form by an ion-exchange process. The melt processability of the Nafion ® in the Cs + form permitted the MEA to be heat treated at 200 °C and 30 atm, promoting the development of a durable membrane/electrode interface. The prior stabilization of the PTA permitted MEA re-protonation with minimal additive loss. FTIR spectroscopy and thermogravimetric analysis (TGA) were employed to present evidence of ion-exchange and protonation. In situ electrochemical impedance measurements (EIS) and cyclic voltammetry (CV) measurements confirmed ion-exchange and protonation within the active portion of the stabilized MEA. The stabilization process did not affect the integrity of the MEA, with the hydrogen crossover currents through the membrane remaining unchanged at 2 mA cm -2. The MEA was evaluated at 120 °C and 35% relative humidity in an operating fuel cell environment and yielded respectable performance under these conditions.

  10. Operation of the Airmodus A11 nano Condensation Nucleus Counter at various inlet pressures and various operation temperatures, and design of a new inlet system

    NASA Astrophysics Data System (ADS)

    Kangasluoma, Juha; Franchin, Alessandro; Duplissy, Jonahtan; Ahonen, Lauri; Korhonen, Frans; Attoui, Michel; Mikkilä, Jyri; Lehtipalo, Katrianne; Vanhanen, Joonas; Kulmala, Markku; Petäjä, Tuukka

    2016-07-01

    Measuring sub-3 nm particles outside of controlled laboratory conditions is a challenging task, as many of the instruments are operated at their limits and are subject to changing ambient conditions. In this study, we advance the current understanding of the operation of the Airmodus A11 nano Condensation Nucleus Counter (nCNC), which consists of an A10 Particle Size Magnifier (PSM) and an A20 Condensation Particle Counter (CPC). The effect of the inlet line pressure on the measured particle concentration was measured, and two separate regions inside the A10, where supersaturation of working fluid can take place, were identified. The possibility of varying the lower cut-off diameter of the nCNC was investigated; by scanning the growth tube temperature, the range of the lower cut-off was extended from 1-2.5 to 1-6 nm. Here we present a new inlet system, which allows automated measurement of the background concentration of homogeneously nucleated droplets, minimizes the diffusion losses in the sampling line and is equipped with an electrostatic filter to remove ions smaller than approximately 4.5 nm. Finally, our view of the guidelines for the optimal use of the Airmodus nCNC is provided.

  11. Ambient temperature operated acetaldehyde vapour detection of spray deposited cobalt doped zinc oxide thin film.

    PubMed

    Shalini, S; Balamurugan, D

    2016-03-15

    Undoped and Co-doped ZnO thin films were prepared by a home built spray pyrolysis method. X-ray diffraction results indicate that both undoped and Co-doped ZnO have a polycrystalline nature and a preferential orientation peak in the (002) plane. From a field-emission scanning electron micrographs of annealed films, a uniform distribution of nanoparticles along with nanorods was observed. UV-Visible measurement indicated that all the films are transparent in the visible region. The electrical resistance was also reported. The acetaldehyde sensing behaviour of the prepared undoped and Co-doped ZnO thin films was studied using the chemi-resistive method at ambient temperature (∼30 °C). In the presence of 10 ppm of acetaldehyde vapour, the Co-doped ZnO thin films showed good sensing response of 74% with fast response and recovery time of 3 s and 110 s respectively. PMID:26748067

  12. Liquid Phase Chemical-Enhanced Oxidation for GaAs Operated Near Room Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Hwei-Heng; Huang, Chien-Jung; Wang, Yeong-Her; Houng, Mau-Phon

    1998-01-01

    A new chemical enhanced oxidation method for gallium arsenide (GaAs) in liquid phase near room temperature (40°C 70°C) is proposed and investigated. Featureless oxide layers with good uniformity and reliability can be grown efficiently on GaAs without any extra energy source. A relatively high oxidation rate (≃1000 Å/h), about 50 times higher than that obtained during oxidation in boiling water has been realized. Based on the results of X-ray photoelectron spectroscopy (XPS), excellent chemical stability after thermal annealing as well as good chemical stoichiometry have been realized. The oxide was determined to be composed of Ga2O3 and As2O3.

  13. Evaluation of Fairchild's Gate Drive Optocoupler, Type FOD3150, Under Wide Temperature Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Adhad; Panko, Scott

    2010-01-01

    An optocoupler is a semiconductor device that is used to transfer a signal between different parts of a circuit that need to be electrically isolated from one another - for example, where a high voltage is to be switched with a low voltage control signal. Optocouplers often can be used in place of relays. These optocouplers utilize an infrared LED (light emitting diode) and a photodetector such as a silicon controlled rectifier or photosensitive silicon diode for the transfer of the electronic signal between components of a circuit by means of a short optical transmission channel. For maximum coupling, the wave-length responses of the LED and the detector should be very similar. In switch-mode power supply applications, optocouplers offer advantages over transformers by virtue of simpler circuit design, reduced weight, and DC coupling capability. The effects of extreme temperature exposure and thermal cycling on the performance of a commercial-off-the-shelf (COTS) optocoupler, Fairchild FOD3150, were evaluated in this work. This 1.0 A output current, high noise immunity gate drive optocoupler utilizes an aluminum gallium arsenide (AlGaAs) LED, is capable of driving most 800V/20A IGBT/MOSFETs, and is suited for fast switching in motor control inverter applications and high performance power systems. Some of the specifications of the isolator chip are listed. The device was evaluated in terms of output response, output rise (t(sub r)) and fall times (t(sub f)), and propagation delays (using a 50% level between input and output during low to high (t(sub PLH)) and high to low (t(sub PLH)) transitions). The output supply current was also obtained. These parameters were recorded at various test temperatures between -190 C and +110 C.

  14. Method to Measure Total Noise Temperature of a Wireless Receiver During Operation

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E. (Inventor); Turbiner, Dmitry (Inventor); Esterhuizen, Stephan X. (Inventor)

    2014-01-01

    An electromagnetic signal receiver and methods for determining the noise level and signal power in a signal of interest while the receiver is operating. In some embodiments, the signal of interest is a GPS signal. The receiver includes a noise source that provides a noise signal of known power during intervals while the signal of interest is observed. By measuring a signal-to-noise ratio for the signal of interest and the noise power in the signal of interest, the noise level and signal power of the signal of interest can be computed. Various methods of making the measurements and computing the power of the signal of interest are described. Applications of the system and method are described.

  15. High-Temperature (1000 F) Magnetic Thrust Bearing Test Rig Completed and Operational

    NASA Technical Reports Server (NTRS)

    Montague, Gerald T.

    2005-01-01

    Large axial loads are induced on the rolling element bearings of a gas turbine. To extend bearing life, designers use pneumatic balance pistons to reduce the axial load on the bearings. A magnetic thrust bearing could replace the balance pistons to further reduce the axial load. To investigate this option, the U.S. Army Research Laboratory, the NASA Glenn Research Center, and Texas A&M University designed and fabricated a 7-in.- diameter magnetic thrust bearing to operate at 1000 F and 30,000 rpm, with a 1000-lb load capacity. This research was funded through a NASA Space Technology Transfer Act with Allison Advance Development Company under the Ultra-Efficient Engine Technology (UEET) Intelligent Propulsion Systems Foundation Technology project.

  16. A combined experimental and numerical approach for the control and monitoring of the SPES target during operation at high temperature

    NASA Astrophysics Data System (ADS)

    Ballan, Michele; Manzolaro, Mattia; Meneghetti, Giovanni; Andrighetto, Alberto; Monetti, Alberto; Bisoffi, Giovanni; Prete, Gianfranco

    2016-06-01

    The SPES project at INFN-LNL aims at the production of neutron-rich Radioactive Ion Beams (RIBs) using the ISOL (Isotope Separation On Line) technique. A 40 MeV 200 μA proton beam will directly impinge a uranium carbide target, generating approximately 1013 fissions per second. The target system is installed under vacuum inside a water-cooled chamber, and have to maintain high working temperatures, close to 2000 °C. During operation the proton beam provides the heating power required to keep the target at the desired temperature level. As a consequence, its characteristics have to be strictly controlled in order to avoid undesired overheating. According to the original design of the control system, the proton beam can be suddenly interrupted in case of out of range vacuum or cooling water flow levels. With the aim to improve the reliability of the control system a set of temperature sensors has been installed close to the target. Their types and installation positions were defined taking into consideration the detailed information coming from a dedicated thermal-electric model that allowed to investigate the most critical and inaccessible target hot-spots. This work is focused on the definition and experimental validation of the aforementioned numerical model. Its results were used to appropriately install two type C thermocouples, a PT100 thermo-resistance and a residual primary beam current detector. In addition the numerical model will be used for the definition of appropriate thresholds for each installed temperature sensor, since it allows to define a relationship between the locally measured values with the overall calculated temperature field. In case of over temperatures the monitoring system will send warning signals or in case interrupt the proton beam.

  17. Assessment of body mapping sportswear using a manikin operated in constant temperature mode and thermoregulatory model control mode.

    PubMed

    Wang, Faming; Del Ferraro, Simona; Molinaro, Vincenzo; Morrissey, Matthew; Rossi, René

    2014-09-01

    Regional sweating patterns and body surface temperature differences exist between genders. Traditional sportswear made from one material and/or one fabric structure has a limited ability to provide athletes sufficient local wear comfort. Body mapping sportswear consists of one piece of multiple knit structure fabric or of different fabric pieces that may provide athletes better wear comfort. In this study, the 'modular' body mapping sportswear was designed and subsequently assessed on a 'Newton' type sweating manikin that operated in both constant temperature mode and thermophysiological model control mode. The performance of the modular body mapping sportswear kit and commercial products were also compared. The results demonstrated that such a modular body mapping sportswear kit can meet multiple wear/thermal comfort requirements in various environmental conditions. All body mapping clothing (BMC) presented limited global thermophysiological benefits for the wearers. Nevertheless, BMC showed evident improvements in adjusting local body heat exchanges and local thermal sensations. PMID:24357489

  18. Assessment of body mapping sportswear using a manikin operated in constant temperature mode and thermoregulatory model control mode

    NASA Astrophysics Data System (ADS)

    Wang, Faming; Del Ferraro, Simona; Molinaro, Vincenzo; Morrissey, Matthew; Rossi, René

    2014-09-01

    Regional sweating patterns and body surface temperature differences exist between genders. Traditional sportswear made from one material and/or one fabric structure has a limited ability to provide athletes sufficient local wear comfort. Body mapping sportswear consists of one piece of multiple knit structure fabric or of different fabric pieces that may provide athletes better wear comfort. In this study, the `modular' body mapping sportswear was designed and subsequently assessed on a `Newton' type sweating manikin that operated in both constant temperature mode and thermophysiological model control mode. The performance of the modular body mapping sportswear kit and commercial products were also compared. The results demonstrated that such a modular body mapping sportswear kit can meet multiple wear/thermal comfort requirements in various environmental conditions. All body mapping clothing (BMC) presented limited global thermophysiological benefits for the wearers. Nevertheless, BMC showed evident improvements in adjusting local body heat exchanges and local thermal sensations.

  19. Implications of Graphite Radiation Damage on the Neutronic, Operational, and Safety Aspects of Very High Temperature Reactors

    SciTech Connect

    Hawari, Ayman I

    2011-08-30

    In both the prismatic and pebble bed designs of Very High Temperature Reactors (VHTR), the graphite moderator is expected to reach exposure levels of 1021 to 1022 n/cm2 over the lifetime of the reactor. This exposure results in damage to the graphite structure. In this work, molecular dynamic and ab initio molecular static calculations will be used to: 1) simulate radiation damage in graphite under various irradiation and temperature conditions, 2) generate the thermal neutron scattering cross sections for damaged graphite, and 3) examine the resulting microstructure to identify damage formations that may produce the high-temperature Wigner effect. The impact of damage on the neutronic, operational and safety behavior of the reactor will be assessed using reactor physics calculations. In addition, tests will be performed on irradiated graphite samples to search for the high-temperature Wigner effect, and phonon density of states measurements will be conducted to quantify the effect on thermal neutron scattering cross sections using these samples.

  20. Electrical characteristics of multilayer MoS{sub 2} transistors at real operating temperatures with different ambient conditions

    SciTech Connect

    Kwon, Hyuk-Jun; Grigoropoulos, Costas P.; Jang, Jaewon Subramanian, Vivek; Kim, Sunkook

    2014-10-13

    Atomically thin, two-dimensional (2D) materials with bandgaps have attracted increasing research interest due to their promising electronic properties. Here, we investigate carrier transport and the impact of the operating ambient conditions on back-gated multilayer MoS{sub 2} field-effect transistors with a thickness of ∼50 nm at their realistic working temperatures and under different ambient conditions (in air and in a vacuum of ∼10{sup −5} Torr). Increases in temperature cause increases in I{sub min} (likely due to thermionic emission at defects), and result in decreased I{sub on} at high V{sub G} (likely due to increased phonon scattering). Thus, the I{sub on}/I{sub min} ratio decreases as the temperature increases. Moreover, the ambient effects with working temperatures on field effect mobilities were investigated. The adsorbed oxygen and water created more defect sites or impurities in the MoS{sub 2} channel, which can lead another scattering of the carriers. In air, the adsorbed molecules and phonon scattering caused a reduction of the field effect mobility, significantly. These channel mobility drop-off rates in air and in a vacuum reached 0.12 cm{sup 2}/V s K and 0.07 cm{sup 2}/V s K, respectively; the rate of degradation is steeper in air than in a vacuum due to enhanced phonon mode by the adsorbed oxygen and water molecules.

  1. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    SciTech Connect

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung

    2014-09-08

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in Li{sub x}Ni{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  2. Efficient operation of a room-temperature Nd:YAG 946-nm laser pumped with multiple diode arrays

    SciTech Connect

    Hanson, F.

    1995-01-15

    Efficient pulsed room-temperature laser operation at 946 nm is reported for Nd:YAG pumped with multiple diode array bars. We achieved high pump brightness by collimating the outputs from individual bars and focusing them onto the end of a short 3-mm-diameter rod. An average power of 470 mW at 100 Hz was obtained with an optical slope efficiency of 15% based on incident pump power, and greater than 1 W of output was obtained at 300 Hz. Intracavity frequency doubling with KNbO{sub 3} resulted in 40--70-mW output at 473 nm. {ital Q}-switched operation is also reported.

  3. Optimization of 3-junction inverted metamorphic solar cells for high-temperature and high-concentration operation

    NASA Astrophysics Data System (ADS)

    Geisz, John F.; Duda, Anna; France, Ryan M.; Friedman, Daniel J.; Garcia, Ivan; Olavarria, Waldo; Olson, Jerry M.; Steiner, Myles A.; Ward, J. Scott; Young, Michelle

    2012-10-01

    Four different band gap combinations of triple-junction inverted metamorphic solar cells are characterized as a function of temperature and concentration up to 120°C and ˜1000 suns. We demonstrate that the standard 1.82/1.40/1.00 eV combination is an excellent choice for typical operating conditions of 1000 suns and 75°C. Improved metal grids and thermal management in such a cell has achieved 42.6% efficiency at 327 suns and 40.9% at 1093 suns at 25°C.

  4. Submilliampere continuous-wave room-temperature lasing operation of a GaAs mushroom structure surface-emitting laser

    SciTech Connect

    Yang, Y.J.; Dziura, T.G.; Wang, S.C. ); Hsin, W.; Wang, S. Electronics Research Laboratory, University of California, Berkeley, California 94720 )

    1990-05-07

    We report a GaAs mushroom structure surface-emitting laser at 900 nm with submilliampere (0.2--0.5 mA) threshold under room-temperature cw operation for the first time. The very low threshold current was achieved on devices which consisted of a 2--4 {mu}m diameter active region formed by chemical selective etching, and sandwiched between two Al{sub 0.05}Ga{sub 0.95} As/ Al{sub 0.53}Ga{sub 0.47} As distributed Bragg reflectors of very high reflectivity (98--99%) grown by metalorganic chemical vapor deposition.

  5. A Simple Technique for Creating Regional Composites of Sea Surface Temperature from MODIS for Use in Operational Mesoscale NWP

    NASA Technical Reports Server (NTRS)

    Knievel, Jason C.; Rife, Daran L.; Grim, Joseph A.; Hahmann, Andrea N.; Hacker, Joshua P.; Ge, Ming; Fisher, Henry H.

    2010-01-01

    This paper describes a simple technique for creating regional, high-resolution, daytime and nighttime composites of sea surface temperature (SST) for use in operational numerical weather prediction (NWP). The composites are based on observations from NASA s Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua and Terra. The data used typically are available nearly in real time, are applicable anywhere on the globe, and are capable of roughly representing the diurnal cycle in SST. The composites resolution is much higher than that of many other standard SST products used for operational NWP, including the low- and high-resolution Real-Time Global (RTG) analyses. The difference in resolution is key because several studies have shown that highly resolved SSTs are important for driving the air sea interactions that shape patterns of static stability, vertical and horizontal wind shear, and divergence in the planetary boundary layer. The MODIS-based composites are compared to in situ observations from buoys and other platforms operated by the National Data Buoy Center (NDBC) off the coasts of New England, the mid-Atlantic, and Florida. Mean differences, mean absolute differences, and root-mean-square differences between the composites and the NDBC observations are all within tenths of a degree of those calculated between RTG analyses and the NDBC observations. This is true whether or not one accounts for the mean offset between the skin temperatures of the MODIS dataset and the bulk temperatures of the NDBC observations and RTG analyses. Near the coast, the MODIS-based composites tend to agree more with NDBC observations than do the RTG analyses. The opposite is true away from the coast. All of these differences in point-wise comparisons among the SST datasets are small compared to the 61.08C accuracy of the NDBC SST sensors. Because skin-temperature variations from land to water so strongly affect the development and life cycle of the sea breeze, this

  6. Experimental design, operation, and results of a 4 kW high temperature steam electrolysis experiment

    SciTech Connect

    Zhang, Xiaoyu; O'Brien, James E.; Tao, Greg; Zhou, Can; Housley, Gregory K.

    2015-08-06

    High temperature steam electrolysis (HTSE) is a promising technology for large-scale hydrogen production. However, research on HTSE performance above the kW level is limited. This paper presents the results of 4 kW HTSE long-term test completed in a multi-kW test facility recently developed at the Idaho National Laboratory (INL). The 4 kW HTSE unit included two solid oxide electrolysis stacks operating in parallel, each of which included 40 electrode-supported planar cells. A current density of 0.41 A/cm2 was used for the long-term operation, resulting in a hydrogen production rate about 25 slpm. A demonstration of 920 hours stable operation was achieved. The paper also includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. As a result, this successful demonstration of multi-kW scale HTSE unit will help to advance the technology toward near-term commercialization.

  7. Experimental design, operation, and results of a 4 kW high temperature steam electrolysis experiment

    DOE PAGESBeta

    Zhang, Xiaoyu; O'Brien, James E.; Tao, Greg; Zhou, Can; Housley, Gregory K.

    2015-08-06

    High temperature steam electrolysis (HTSE) is a promising technology for large-scale hydrogen production. However, research on HTSE performance above the kW level is limited. This paper presents the results of 4 kW HTSE long-term test completed in a multi-kW test facility recently developed at the Idaho National Laboratory (INL). The 4 kW HTSE unit included two solid oxide electrolysis stacks operating in parallel, each of which included 40 electrode-supported planar cells. A current density of 0.41 A/cm2 was used for the long-term operation, resulting in a hydrogen production rate about 25 slpm. A demonstration of 920 hours stable operation wasmore » achieved. The paper also includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. As a result, this successful demonstration of multi-kW scale HTSE unit will help to advance the technology toward near-term commercialization.« less

  8. The No Vibrational Fundamental Band: Temperature Dependence of N2-Broadening Coefficients

    NASA Technical Reports Server (NTRS)

    Spencer, M. N.; Chackerian, C., Jr.; Giver, L. P.; Brown, L. R.; Strawa, Anthony W. (Technical Monitor)

    1995-01-01

    Rovibrational spectra of the vibrational fundamental of nitric oxide have been recorded under N2-broadening conditions at 0.0056 cm(exp-1) resolution using the Solar McMath FTS at the Kitt Peak National Observatory. The temperature range for the experiments was 296 K to 183 K. The 30 cm absorption cell used for the measurements is cooled with a helium compressor and can operate at temperatures down to 60 K; vibration isolation of the cell allows its use with high performance Fourier Transform Spectrometers. From these spectra, N2-broadened line widths have been determined thru m = 16.5. Qualitative as well as quantitative discrepancies are observed between our experimental determinations of the temperature dependence of the broadening and theoretical calculations.

  9. Evaluation of porous 430L stainless steel for SOFC operation at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Molin, Sebastian; Kusz, Boguslaw; Gazda, Maria; Jasinski, Piotr

    In this paper a 430L porous stainless steel is evaluated for possible SOFC applications. Recently, there are extensive studies related to dense stainless steels for fuel cell purposes, but only very few publications deal with porous stainless steel. In this report porous substrates, which are prepared by die-pressing and sintering in hydrogen of commercially available 430L stainless steel powders, are investigated. Prepared samples are characterized by scanning electron microscopy, X-ray diffractometry and cyclic thermogravimetry in air and humidified hydrogen at 400 °C and 800 °C. The electrical properties of steel and oxide scale measured in air are investigated as well. The results show that at high temperatures porous steel in comparison to dense steel behaves differently. It was found that porous 430L has reduced oxidation resistance both in air and in humidified hydrogen. This is connected to its high surface area and grain boundaries, which after sintering are prone to oxidation. Formed oxide scale is mainly composed of iron oxide after the oxidation in air and chromium oxide after the oxidation in humidified hydrogen. In case of dense substrates only chromium oxide scale usually occurs. Iron oxide is also a cause of relatively high area-specific resistance, which reaches the literature limit of 100 mΩ cm 2 when oxidizing in air only after about 70 h at 800 °C.

  10. Test Plan for Long-Term Operation of a Ten-Cell High Temperature Electrolysis Stack

    SciTech Connect

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring

    2008-07-01

    This document defines a test plan for a long-term (2500 Hour) test of a ten-cell high-temperature electrolysis stack to be performed at INL during FY09 under the Nuclear Hydrogen Initiative. This test was originally planned for FY08, but was removed from our work scope as a result of the severe budget cuts in the FY08 NHI Program. The purpose of this test is to evaluate stack performance degradation over a relatively long time period and to attempt to identify some of the degradation mechanisms via post-test examination. This test will be performed using a planar ten-cell Ceramatec stack, with each cell having dimensions of 10 cm × 10 cm. The specific makeup of the stack will be based on the results of a series of shorter duration ten-cell stack tests being performed during FY08, funded by NGNP. This series of tests was aimed at evaluating stack performance with different interconnect materials and coatings and with or without brazed edge rails. The best performing stack from the FY08 series, in which five different interconnect/coating/edge rail combinations were tested, will be selected for the FY09 long-term test described herein.

  11. Monolithically integrated mid-infrared sensor using narrow mode operation and temperature feedback

    NASA Astrophysics Data System (ADS)

    Ristanic, Daniela; Schwarz, Benedikt; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2015-01-01

    A method to improve the sensitivity and selectivity of a monolithically integrated mid-infrared sensor using a distributed feedback laser (DFB) is presented in this paper. The sensor is based on a quantum cascade laser/detector system built from the same epitaxial structure and with the same fabrication approach. The devices are connected via a dielectric-loaded surface plasmon polariton waveguide with a twofold function: it provides high light coupling efficiency and a strong interaction of the light with the environment (e.g., a surrounding fluid). The weakly coupled DFB quantum cascade laser emits narrow mode light with a FWHM of 2 cm-1 at 1586 cm-1. The room temperature laser threshold current density is 3 kA/cm2 and a pulsed output power of around 200 mW was measured. With the superior laser noise performance, due to narrow mode emission and the compensation of thermal fluctuations, the lower limit of detection was expanded by one order of magnitude to the 10 ppm range.

  12. Lead iodide X-ray and gamma-ray spectrometers for room and high temperature operation

    SciTech Connect

    Hermon, H.; James, R.B.; Cross, E.

    1997-02-01

    In this study, we report on the results of the investigation of lead iodide material properties. The effectiveness of zone refining purification methods on the material purity is determined by ICP-MS and ICP-OES and correlated to the electrical and physical material properties. We show that this zone refining method is very efficient in removing impurities from lead iodide and we also determine the segregation coefficient for some of these impurities. Triple axis x- ray diffraction (TAD) analysis has been used to determine the crystalline perfection of the lead iodide after applying various cutting, etching, and fabrication methods. The soft lead iodide crystal was found to be damaged when cleaved by a razor blade, but by using a diamond wheel saw, followed by etching, the crystallinity of the material was improved, as observed by TAD. Low temperature photoluminescence also indicates an improvement in the material properties of the purified lead iodide. Electrical properties of lead iodide such as carrier mobility, were calculated based on carrier- phonon scattering. The results for the electrical properties were in good agreement with the experimental data.

  13. Lead iodide X-ray and gamma-ray spectrometers for room and high temperature operation

    SciTech Connect

    Hermon, H.; James, R.B.; Lund, J.

    1998-12-31

    In this study the authors report on the results of the investigation of lead iodide material properties. The effectiveness of a zone refining purification method on the material purity is determined by ICP-MS and ICP-OES and correlated to the electrical and physical material properties. They show that this zone refining method is very efficient in removing impurities from lead iodide, and they also determine the segregation coefficient for some of these impurities. Triple axis X-ray diffraction (TAD) analysis has been used to determine the crystalline perfection of the lead iodide after applying various cutting, etching and fabrication methods. The soft lead iodide crystal was found to be damaged when cleaved by a razor blade, but by using a diamond wheel saw, followed by etching, the crystallinity of the material was much improved, as observed by TAD. Low temperature photoluminescence also indicates an improvement in the material properties of the purified lead iodide. Electrical properties of lead iodide such as carrier mobility, were calculated based on carrier-phonon scattering. The results for the electrical properties were in good agreement with the experimental data.

  14. Efficient ceramic anodes infiltrated with binary and ternary electrocatalysts for SOFCs operating at low temperatures

    NASA Astrophysics Data System (ADS)

    Hussain, A. Mohammed; Høgh, Jens V. T.; Zhang, Wei; Bonanos, Nikolaos

    2012-10-01

    Electrocatalyst precursor of various combinations: Pt, Ru, Pd, Ni and Gd-doped CeO2 (CGO) were infiltrated into a porous Sr0.94Ti0.9Nb0.1O3 (STN) backbone, to study the electrode performance of infiltrated ceramic anodes at low temperature ranges of 400-600 °C. The performance of the binary electrocatalyst infiltrated ceramic backbones are Pt-CGO>Ru-CGO>Pd-CGO>Ni-CGO. Ternary electrocatalyst of Ni-Pd-CGO and Ni-Pt-CGO showed the lowest polarization resistance of 0.31 and 0.11 Ωcm2, respectively at 600 °C in H2/3% H2O. The average particle size of the ternary electrocatalyst was larger than the binary Pd-CGO and Pt-CGO due to the particle coarsening of Ni nanoparticles. High resolution transmission electron microscopic analysis on the best performing Ni-Pt-CGO electrocatalyst infiltrated anode reveals the formation of Ni-Pt nanocrystalline alloy and a homogenous distribution of nanoparticles on STN backbone.

  15. Monolithically integrated mid-infrared sensor using narrow mode operation and temperature feedback

    SciTech Connect

    Ristanic, Daniela; Schwarz, Benedikt Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2015-01-26

    A method to improve the sensitivity and selectivity of a monolithically integrated mid-infrared sensor using a distributed feedback laser (DFB) is presented in this paper. The sensor is based on a quantum cascade laser/detector system built from the same epitaxial structure and with the same fabrication approach. The devices are connected via a dielectric-loaded surface plasmon polariton waveguide with a twofold function: it provides high light coupling efficiency and a strong interaction of the light with the environment (e.g., a surrounding fluid). The weakly coupled DFB quantum cascade laser emits narrow mode light with a FWHM of 2 cm{sup −1} at 1586 cm{sup −1}. The room temperature laser threshold current density is 3 kA∕cm{sup 2} and a pulsed output power of around 200 mW was measured. With the superior laser noise performance, due to narrow mode emission and the compensation of thermal fluctuations, the lower limit of detection was expanded by one order of magnitude to the 10 ppm range.

  16. Development of an operational global ocean climatology through the use of remotely sensed sea surface temperature

    SciTech Connect

    Winter, T.M.

    1995-05-09

    Monthly mean satellite-derived sea surface temperature SST data have been derived globally using daytime and nighttime AVHRR (Advanced Very High Resolution Radiometer) multi-channel data. From a 12 year data set (1982-1993), valid monthly daytime and nighttime climatologies were created using an eight year subset (1984-1990, 1993). Based on buoy comparisons, four years were omitted due to volcanic aerosol corruption (El Chichon 1982/83, Mt. Pinatubo 1991/92). These resulting monthly climatologies provide SST fields at approximately 1/3rd degree latitude/longitude resolution. Difference fields have been created comparing the new satellite climatology with the older and coarser-resolution climatology constructed from conventional SST data. Regional and zonal climatology differences were also created to highlight the deficiencies, especially in the Southern Hemisphere, in the older climatology believed to result primarily from a lack of buoy/ship (in situ) data. Such comparisons made it clear that the satellite climatology provided a much better product. Ocean current systems, El Nino, La Nina, and other water mass characteristics all appear with better detail and accuracy within the high-resolution satellite climatology.

  17. Fluidized-bed denitrification for mine waters. Part I: low pH and temperature operation.

    PubMed

    Papirio, S; Ylinen, A; Zou, G; Peltola, M; Esposito, G; Puhakka, J A

    2014-06-01

    Mining often leads to nitrate and metal contamination of groundwater and water bodies. Denitrification of acidic water was investigated in two up-flow fluidized-bed reactors (FBR) and using batch assays. Bacterial communities were enriched on ethanol plus nitrate in the FBRs. Initially, the effects of temperature, low-pH and ethanol/nitrate on denitrification were revealed. Batch assays showed that pH 4.8 was inhibitory to denitrification, whereas FBR characteristics permitted denitrification even at feed pH of 2.5 and at 7-8 °C. Nitrate and ethanol were removed and the feed pH was neutralized, provided that ethanol was supplied in excess to nitrate. Subsequently, Fe(II) and Cu impact on denitrification was investigated within batch tests at pH 7. Iron supplementation up to 100 mg/L resulted in iron oxidation and soluble concentrations ranging from 0.4 to 1.6 mg/L that stimulated denitrification. On the contrary, 0.7 mg/L of soluble Cu significantly slowed denitrification down resulting in about 45 % of inhibition in the first 8 h. Polymerase chain reaction-denaturant gradient gel electrophoresis demonstrated the co-existence of different denitrifying microbial consortia in FBRs. Dechloromonas denitrificans and Hydrogenophaga caeni were present in both FBRs and mainly responsible for nitrate reduction. PMID:24166159

  18. High temperature oxidation behavior of AISI 304L stainless steel-Effect of surface working operations

    NASA Astrophysics Data System (ADS)

    Ghosh, Swati; Kumar, M. Kiran; Kain, Vivekanand

    2013-01-01

    The oxidation behavior of grade 304L stainless steel (SS) subjected to different surface finishing (machining and grinding) operations was followed in situ by contact electric resistance (CER) and electrochemical impedance spectroscopy (EIS) measurements using controlled distance electrochemistry (CDE) technique in high purity water (conductivity < 0.1 μS cm-1) at 300 °C and 10 MPa in an autoclave connected to a recirculation loop system. The results highlight the distinct differences in the oxidation behavior of surface worked material as compared to solution annealed material in terms of specific resistivity and low frequency Warburg impedance. The resultant oxide layer was characterized for (a) elemental analyses by glow discharge optical emission spectroscopy (GDOES) and (b) morphology by scanning electron microscopy (SEM). Oxide layers with higher specific resistivity and chromium content were formed in case of machined and ground conditions. Presence of an additional ionic transport process has also been identified for the ground condition at the metal/oxide interface. These differences in electrochemical properties and distinct morphological features of the oxide layer as a result of surface working were attributed to the prevalence of heavily fragmented grain structure and presence of martensite.

  19. Additive for Low-Temperature Operation of Li-(CF)n Cells

    NASA Technical Reports Server (NTRS)

    West, William; Whitacre, Jay

    2009-01-01

    Some progress has been reported in continuing research on the use of anion-receptor compounds as electrolyte additives to increase the sustainable rates of discharge and, hence, the discharge capacities, of lithium-poly(carbon monofluoride) [Li-(CF)n, where n >1] primary electrochemical power cells. Some results of this research at a prior stage were summarized in Increasing Discharge Capacities of Li(CF)n Cells (NPO-42346), NASA Tech Briefs, Vol. 32, No. 2 (February 2008), page 37. A major difference between the present and previously reported results is that now there is some additional focus on improving performance at temperatures from ambient down to as low as 40 C. To recapitulate from the cited prior article: During the discharge of a Li-(CF)n cell, one of the electrochemical reactions causes LiF to precipitate at the cathode. LiF is almost completely insoluble in most non-aqueous solvents, including those used in the electrolyte solutions of Li- (CF)n cells. LiF is electrochemically inactive and can block the desired transport of electrons at the cathode, and, hence, the precipitation of LiF can form an ever-thickening film on the cathode that limits the rate of discharge. An anion-receptor electrolyte additive helps to increase the discharge capacity in two ways: It renders LiF somewhat soluble in the non-aqueous electrolyte solution, thereby delaying precipitation until a high concentration of LiF in solution has been reached. When precipitation occurs, it promotes the formation of large LiF grains that do not conformally coat the cathode. The net effect is to reduce the blockage caused by precipitation of LiF, thereby maintaining a greater degree of access of electrolyte to the cathode and greater electronic conductivity.

  20. Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys

    NASA Astrophysics Data System (ADS)

    Fontana, S.; Amendola, R.; Chevalier, S.; Piccardo, P.; Caboche, G.; Viviani, M.; Molins, R.; Sennour, M.

    One of challenges in improving the performance and cost-effectiveness of solid oxide fuel cells (SOFCs) is the development of suitable interconnect materials. Recent researches have enabled to decrease the operating temperature of the SOFC from 1000 to 800 °C. Chromia forming alloys are then among the best candidates for interconnects. However, low electronic conductivity and volatility of chromium oxide scale need to be solved to improve interconnect performances. In the field of high temperature oxidation of metals, it is well known that the addition of reactive element into alloys or as thin film coatings, improves their oxidation resistance at high temperature. The elements of beginning of the lanthanide group and yttrium are the most efficient. The goal of this study is to make reactive element oxides (La 2O 3, Nd 2O 3 and Y 2O 3) coatings by metal organic chemical vapour deposition (MOCVD) on Crofer 22 APU, AL 453 and Haynes 230 in order to form perovskite oxides which present a good conductivity at high temperature. The coatings were analysed after 100 h ageing at 800 °C in air under atmospheric pressure by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analyses, X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Area-specific resistance (ASR) was measured in air for the same times and temperature, using a sandwich technique with Pt paste for electrical contacts between surfaces. The ASR values for the best coating were estimated to be limited to 0.035 Ω cm 2, even after 40,000 h use.

  1. Modeling and Simulation of - and Silicon Germanium-Base Bipolar Transistors Operating at a Wide Range of Temperatures.

    NASA Astrophysics Data System (ADS)

    Shaheed, M. Reaz

    1995-01-01

    Higher speed at lower cost and at low power consumption is a driving force for today's semiconductor technology. Despite a substantial effort toward achieving this goal via alternative technologies such as III-V compounds, silicon technology still dominates mainstream electronics. Progress in silicon technology will continue for some time with continual scaling of device geometry. However, there are foreseeable limits on achievable device performance, reliability and scaling for room temperature technologies. Thus, reduced temperature operation is commonly viewed as a means for continuing the progress towards higher performance. Although silicon CMOS will be the first candidate for low temperature applications, bipolar devices will be used in a hybrid fashion, as line drivers or in limited critical path elements. Silicon -germanium-base bipolar transistors look especially attractive for low-temperature bipolar applications. At low temperatures, various new physical phenomena become important in determining device behavior. Carrier freeze-out effects which are negligible at room temperature, become of crucial importance for analyzing the low temperature device characteristics. The conventional Pearson-Bardeen model of activation energy, used for calculation of carrier freeze-out, is based on an incomplete picture of the physics that takes place and hence, leads to inaccurate results at low temperatures. Plasma -induced bandgap narrowing becomes more pronounced in device characteristics at low temperatures. Even with modern numerical simulators, this effect is not well modeled or simulated. In this dissertation, improved models for such physical phenomena are presented. For accurate simulation of carrier freeze-out, the Pearson-Bardeen model has been extended to include the temperature dependence of the activation energy. The extraction of the model is based on the rigorous, first-principle theoretical calculations available in the literature. The new model is shown

  2. Enhancing Nitrification at Low Temperature with Zeolite in a Mining Operations Retention Pond

    PubMed Central

    Miazga-Rodriguez, Misha; Han, Sukkyun; Yakiwchuk, Brian; Wei, Kai; English, Colleen; Bourn, Steven; Bohnert, Seth; Stein, Lisa Y.

    2012-01-01

    Ammonium nitrate explosives are used in mining operations at Diavik Diamond Mines Inc. in the Northwest Territories, Canada. Residual nitrogen is washed into the mine pit and piped to a nearby retention pond where its removal is accomplished by microbial activity prior to a final water treatment step and release into the sub-Arctic lake, Lac de Gras. Microbial removal of ammonium in the retention pond is rapid during the brief ice-free summer, but often slows under ice cover that persists up to 9 months of the year. The aluminosilicate mineral zeolite was tested as an additive to retention pond water to increase rates of ammonium removal at 4°C. Water samples were collected across the length of the retention pond monthly over a year. The structure of the microbial community (bacteria, archaea, and eukarya), as determined by denaturing gradient gel electrophoresis of PCR-amplified small subunit ribosomal RNA genes, was more stable during cold months than during July–September, when there was a marked phytoplankton bloom. Of the ammonia-oxidizing community, only bacterial amoA genes were consistently detected. Zeolite (10 g) was added to retention pond water (100 mL) amended with 5 mM ammonium and incubated at 12°C to encourage development of a nitrifying biofilm. The biofilm community was composed of different amoA phylotypes from those identified in gene clone libraries of native water samples. Zeolite biofilm was added to fresh water samples collected at different times of the year, resulting in a significant increase in laboratory measurements of potential nitrification activity at 4°C. A significant positive correlation between the amount of zeolite biofilm and potential nitrification activity was observed; rates were unaffected in incubations containing 1–20 mM ammonium. Addition of zeolite to retention ponds in cold environments could effectively increase nitrification rates year-round by concentrating active nitrifying biomass. PMID:22866052

  3. Characterization of microorganisms responsible for phosphorus removal linking operation performance with microbial community structure at low temperature.

    PubMed

    Zou, Haiming; Lu, Xiwu; Saad, Abualhail

    2014-01-01

    Two enhanced biological phosphorus removal (EBPR) reactors were started up at low temperatures to obtain microorganisms responsible for aerobic and anoxic phosphorus removal, namely polyphosphate-accumulating organisms (PAO) and denitrifying PAO (DPAO), and their operational performance and microbial community were together investigated in the hope of assessment of the effectiveness of the EBPR process at low temperature by combining chemical analysis and microbial community structure evolution based on polymerase chain reaction-denaturing gradient gel electrophoresis. When two reactors reached the steady state after 40 and 80 days for the anaerobic-aerobic (AO) and anaerobic-anoxic (AA) reactor operation in AO and AA modes, respectively, a good ability of anaerobic phosphorus release and aerobic or anoxic phosphorus uptake was present both in these two reactors. During this start-up process, a total of 22 bands were detected in seed, AA and AO sludge samples, including Alpha-, Beta-, Gamma- and Deltaproteobacteria, as well as Chlorobi, Firmicutes, Bacteroidetes and Actinobacteria. Of all the bands, only four bands were present in all the lanes, suggesting that shift in microbial community occurred greatly depending on the electron acceptors in this study. From evolutionary tree, it was found that microorganisms related to DPAO mostly belong to the phylum Betaproteobacteria, while microbes corresponding to PAO were present in several phyla. Overall, the new strategy proposed here was shown to be feasible for the enrichment of PAO and DPAO at low temperature, and may be regarded as a new guidance for the application of EBPR technology to practice, especially in winter. PMID:24701905

  4. [Startup, stable operation and process failure of EBPR system under the low temperature and low dissolved oxygen condition].

    PubMed

    Ma, Juan; Li, Lu; Yu, Xiao-Jun; Wei, Xue-Fen; Liu, Juan-Li

    2015-02-01

    A sequencing batch reactor (SBR) was started up and operated with alternating anaerobic/oxic (An/O) to perform enhanced biological phosphorus removal (EBPR) under the condition of 13-16 degrees C. The results showed that under the condition of low temperature, the EBPR system was successfully started up in a short time (<6 d). The reactor achieved a high and stable phosphorus removal performance with an influent phosphate concentration of 20 mg x L(-1) and the dissolved oxygen (DO) concentration of 2 mg x L(-1). The effluent phosphate concentration was lower than 0.5 mg x L(-1). It was found that decreasing DO had an influence on the steady operation of EBPR system. As DO concentration of aerobic phase decreased from 2 mg x L(-1) to 1 mg x L(-1), the system could still perform EBPR and the phosphorus removal efficiency was greater than 97.4%. However, the amount of phosphate released during anaerobic phase was observed to decrease slightly compared with that of 2 mg x L(-1) DO condition. Moreover, the phosphorus removal performance of the system deteriorated immediately and the effluent phosphate concentration couldn't meet the national integrated wastewater discharge standard when DO concentration was further lowered to 0.5 mg x L(-1). The experiments of increasing DO to recover phosphorus removal performance of the EBPR suggested the process failure resulted from low DO was not reversible in the short-term. It was also found that the batch tests of anoxic phosphorus uptake using nitrite and nitrate as electron acceptors had an impact on the stable operation of EBPR system, whereas the resulting negative influence could be recovered within 6 cycles. In addition, the mixed liquid suspended solids (MLSS) of the EBPR system remained stable and the sludge volume index (SVI) decreased to a certain extend in a long run, implying long-term low temperature and low DO condition favored the sludge sedimentation. PMID:26031088

  5. A new sensor for ammonia based on cyanidin-sensitized titanium dioxide film operating at room temperature.

    PubMed

    Huang, Xiao-wei; Zou, Xiao-bo; Shi, Ji-yong; Zhao, Jie-wen; Li, Yanxiao; Hao, Limin; Zhang, Jianchun

    2013-07-17

    Design and fabrication of an ammonia sensor operating at room temperature based on pigment-sensitized TiO2 films was described. TiO2 was prepared by sol-gel method and deposited on glass slides containing gold electrodes. Then, the film immersed in a 2.5×10(-4)M ethanol solution of cyanidin to absorb the pigment. The hybrid organic-inorganic formed film here can detect ammonia reversibly at room temperature. The relative change resistance of the films at a potential difference of 1.5V is determined when the films are exposed to atmospheres containing ammonia vapors with concentrations over the range 10-50 ppm. The relative change resistance, S, of the films increased almost linearly with increasing concentrations of ammonia (r=0.92). The response time to increasing concentrations of the ammonia is about 180-220 s, and the corresponding values for decreasing concentrations 240-270 s. At low humidity, ammonia could be ionized by the cyanidin on the TiO2 film and thereby decrease in the proton concentration at the surface. Consequently, more positively charged holes at the surface of the TiO2 have to be extracted to neutralize the adsorbed cyanidin and water film. The resistance response to ammonia of the sensors was nearly independent on temperature from 10 to 50°C. These results are not actually as good as those reported in the literature, but this preliminary work proposes simpler and cheaper processes to realize NH3 sensor for room temperature applications. PMID:23830444

  6. Detection of the human 70-kD and 60-kD heat shock proteins in the vagina: relation to microbial flora, vaginal pH, and method of contraception.

    PubMed

    Giraldo, P; Neuer, A; Ribeiro-Filho, A; Linhares, I; Witkin, S S

    1999-01-01

    The expression of the 60-kD and 70-kD heat shock proteins (hsp60 and hsp70) in the vaginas of 43 asymptomatic women of reproductive age with or without a history of recurrent vulvovaginitis (RVV) were compared. Vaginal wash samples were obtained and assayed by enzyme-linked immunosorbent assay (ELISA) for human hsp60 and hsp70. Heat shock protein 70 was not detected in any of the 19 women with no history of RVV, and hsp60 was present in only one woman in this group. In contrast, in the RVV group, 11 (45.8%) were hsp60-positive and eight (33.3%) were hsp70-positive. The presence of either heat shock protein in the vagina was associated with an elevated vaginal pH (>4.5). Bacterial vaginosis or Candida was identified in some of the asymptomatic subjects; their occurrence was significantly higher in women with vaginal hsp70 than in women with no heat shock proteins. Oral contraceptives were used by 35.7% of subjects who were negative for vaginal heat shock proteins, as opposed to only 12.5% of women who were positive for hsp70 and 8.3% who were positive for hsp60. Expression of heat shock proteins in the vagina may indicate an altered vaginal environment and a susceptibility to vulvovaginal symptoms. PMID:10231004

  7. Characteristics of CMOS Light Detectors at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Christian, James; Johnson, Erik; Stapels, Christopher; Linsay, Paul; Miskimen, Rory; Crabb, Donald; Augustine, Frank

    2008-10-01

    Advancing nuclear and high-energy physics often requires experiments conducted in harsh environments, such as a liquid helium bath and a superconducting magnet at several Tesla. These experiments need improved sensors that operate in these conditions. Improvements in detector technology used in extreme environments can improve the data quality and allow new designs for experiments that operate under these conditions. Solid-State Photomultipliers (SSPM), a device built from a monolithic array of photodiodes, can be used in these environments where traditional PMTs may not operate. Measurements of the diode properties at low temperatures down to 5 K are used to determine the potential of CMOS SSPMs in these environments. At temperatures below 60 K, extensive after pulsing is observed, which renders the Geiger photodiodes in the SSPM nonfunctional for biases above breakdown. In proportional mode operation, below the reverse bias breakdown, the photodiodes show a linear response to incident light with a relatively large gain and can be used at temperatures near 5 K.

  8. Theoretical Study of Midwave Infrared HgCdTe nBn Detectors Operating at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Akhavan, Nima Dehdashti; Jolley, Gregory; Umana-Membreno, Gilberto A.; Antoszewski, Jarek; Faraone, Lorenzo

    2015-09-01

    We report a theoretical study of mercury cadmium telluride (HgCdTe) unipolar n-type/barrier/ n-type (nBn) detectors for midwave infrared (MWIR) applications at elevated temperatures. The results obtained indicate that the composition, doping, and thickness of the barrier layer in MWIR HgCdTe nBn detectors can be optimized to yield performance levels comparable with those of ideal HgCdTe p- n photodiodes. It is also shown that introduction of an additional barrier at the back contact layer of the detector structure (nBnn+) leads to substantial suppression of the Auger generation-recombination (GR) mechanism; this results in an order-of-magnitude reduction in the dark current level compared with conventional nBn or p- n junction-based detectors, thus enabling background-limited detector operation above 200 K.

  9. Low Temperature Scanning Probe Microscope(LT-SPM) operating in a Cryogen-Free Cryostat, 1.5-300K

    NASA Astrophysics Data System (ADS)

    Karci, Ozgur; Dede, Munir; Bugoslavsky, Yury; Hall, Renny; Oral, Ahmet; Nanomagnetics Instruments Ltd. Team; Cryogenic Limited Team; Sabanci University Team

    2011-03-01

    We present the design of a Low Temperature Scanning Probe Microscope(LT-SFM) operating in a vibration-free cryogen-free cryostat. A 0.5W ultra now noise Pulse Tube cryocooler is integrated into the cryostat with a 9T magnet. Stick slip coarse approach mechanism is used to bring the sample in to close proximity of the sample. The sample can be moved in XY directions within 3 mm range, while the position is measured with capacitive encoder with 3 μ m accuracy. An improved fiber interferometer with ~ 12 fm/ √ Hz noise level is used to detect cantilever deflection. The resonance of the cantilever controlled by a digital Phase Locked Loop (PLL) integrated in our Control Electronics with 5mHz frequency resolution. We can achieve ~ 1 nm resolution in AFM mode & <10nm resolution in MFM mode. Results from different imaging modes; non-contact AFM, MFM, Piezoresponse, Conductive AFM etc. will be presented.

  10. Preliminary Investigation of Molybdenum Disulfide-air-mist Lubrication for Roller Bearings Operating to DN Values of 1 x 10(exp 6) and Ball Bearings Operating to Temperatures of 1000 F

    NASA Technical Reports Server (NTRS)

    Macks, E F; Nemeth, Z N; Anderson, W J

    1951-01-01

    The effectiveness of molybdenum disulfide MoS2 as a bearing lubricant was determined at high temperature and at high speeds. A 1-inch-bore ball bearing operated at temperatures to 1000 F, a speed of 1725 rpm, and a thrust load of 20 pounds when lubricated only with MoS2-air mist. A 75-millimeter-bore cageless roller bearing, provided with a MoS2-syrup coating before operation, operated at DN values to 1 x 10(exp 6) with a load of 368 pounds.

  11. Performance Demonstration of Mcmb-LiNiCoO2 Cells Containing Electrolytes Designed for Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whicanack, L. D.; Smith, K. A.; Santee, S.; Puglia, F. J.; Gitzendanner, R.

    2009-01-01

    With the intent of improving the performance of Li-ion cells over a wide operating temperature range, we have investigated the use of co-solvents to improve the properties of electrolyte formulations. In the current study, we have focused upon evaluating promising electrolytes which have been incorporated into large capacity (7 Ah) prototype Li-ion cells, fabricated by Yardney Technical Products, Inc. The electrolytes selected for performance evaluation include the use of a number of esters as co-solvents, including methyl propionate (MP), ethyl propionate (EP), ethyl butyrate (EB), propyl butyrate (PB), and 2,2,2-trifluoroethyl butyrate (TFEB). The performance of the prototype cells containing the ester-based electrolytes was compared with an extensive data base generated on cells containing previously developed all carbonate-based electrolytes. A number of performance tests were performed, including determining (i) the discharge rate capacity over a wide range of temperatures, (ii) the charge characteristics, (iii) the cycle life characteristics under various conditions, and (iv) the impedance characteristics.

  12. Single Event Transient Analysis of an SOI Operational Amplifier for Use in Low-Temperature Martian Exploration

    NASA Technical Reports Server (NTRS)

    Laird, Jamie S.; Scheik, Leif; Vizkelethy, Gyorgy; Mojarradi, Mohammad M; Chen, Yuan; Miyahira, Tetsuo; Blalock, Benjamin; Greenwell, Robert; Doyle, Barney

    2006-01-01

    The next generation of Martian rover#s to be launched by JPL are to examine polar regions where temperatures are extremely low and the absence of an earth-like atmosphere results in high levels of cosmic radiation at ground level. Cosmic rays lead to a plethora of radiation effects including Single Event Transients (SET) which can severely degrade microelectronic functionality. As such, a radiation-hardened, temperature compensated CMOS Single-On-Insulator (SOI) Operational Amplifier has been designed for JPL by the University of Tennessee and fabricated by Honeywell using the SOI V process. SOI technology has been shownto be far less sensitive to transient effects than both bulk and epilayer Si. Broad beam heavy-ion tests at the University of Texas A&M using Kr and Xebeams of energy 25MeV/amu were performed to ascertain the duration and severity of the SET for the op-amp configured for a low and high gain application. However, some ambiguity regarding the location of transient formation required the use of a focused MeV ion microbeam. A 36MeV O6(+) microbeam. the Sandia National Laboratory (SNL) was used to image and verify regions of particular concern. This is a viewgraph presentation

  13. Wearable system-on-a-chip radiometer for remote temperature sensing and its application to the safeguard of emergency operators.

    PubMed

    Fonte, A; Alimenti, F; Zito, D; Neri, B; De Rossi, D; Lanatà, A; Tognetti, A

    2007-01-01

    The remote sensing and the detection of events that may represent a danger for human beings have become more and more important thanks to the latest advances of the technology. A microwave radiometer is a sensor capable to detect a fire or an abnormal increase of the internal temperature of the human body (hyperthermia), or an onset of a cancer, or even meteorological phenomena (forest fires, pollution release, ice formation on road pavement). In this paper, the overview of a wearable low-cost low-power system-on-a-chip (SoaC) 13 GHz passive microwave radiometer in CMOS 90 nm technology is presented. In particular, we focused on its application to the fire detection for civil safeguard. In detail, this sensor has been thought to be inserted into the fireman jacket in order to help the fireman in the detection of a hidden fire behind a door or a wall. The simulation results obtained by Ptolemy system simulation have confirmed the feasibility of such a SoaC microwave radiometer in a low-cost standard silicon technology for temperature remote sensing and, in particular, for its application to the safeguard of emergency operators. PMID:18003310

  14. One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature.

    PubMed

    Hwang, Tae Hoon; Jung, Dae Soo; Kim, Joo-Seong; Kim, Byung Gon; Choi, Jang Wook

    2013-09-11

    Na-S batteries are one type of molten salt battery and have been used to support stationary energy storage systems for several decades. Despite their successful applications based on long cycle lives and low cost of raw materials, Na-S cells require high temperatures above 300 °C for their operations, limiting their propagation into a wide range of applications. Herein, we demonstrate that Na-S cells with solid state active materials can perform well even at room temperature when sulfur-containing carbon composites generated from a simple thermal reaction were used as sulfur positive electrodes. Furthermore, this structure turned out to be robust during repeated (de)sodiation for ~500 cycles and enabled extraordinarily high rate performance when one-dimensional morphology is adopted using scalable electrospinning processes. The current study suggests that solid-state Na-S cells with appropriate atomic configurations of sulfur active materials could cover diverse battery applications where cost of raw materials is critical. PMID:23981085

  15. Failure Mechanisms and Color Stability in Light-Emitting Diodes during Operation in High- Temperature Environments in Presence of Contamination

    SciTech Connect

    Lall, Pradeep; Zhang, Hao; Davis, J Lynn

    2015-05-26

    The energy efficiency of light-emitting diode (LED) technology compared to incandescent light bulbs has triggered an increased focus on solid state luminaries for a variety of lighting applications. Solid-state lighting (SSL) utilizes LEDs, for illumination through the process of electroluminescence instead of heating a wire filament as seen with traditional lighting. The fundamental differences in the construction of LED and the incandescent lamp results in different failure modes including lumen degradation, chromaticity shift and drift in the correlated color temperature. The use of LED-based products for safety-critical and harsh environment applications necessitates the characterization of the failure mechanisms and modes. In this paper, failure mechanisms and color stability has been studied for commercially available vertical structured thin film LED (VLED) under harsh environment conditions with and without the presence of contaminants. The VLED used for the study was mounted on a ceramic starboard in order to connect it to the current source. Contamination sources studied include operation in the vicinity of vulcanized rubber and adhesive epoxies in the presence of temperature and humidity. Performance of the VLEDs has been quantified using the measured luminous flux and color shift of the VLEDs subjected to both thermal and humidity stresses under a forward current bias of 350 mA. Results indicate that contamination can result in pre-mature luminous flux degradation and color shift in LEDs.

  16. A low-temperature spin-polarized scanning tunneling microscope operating in a fully rotatable magnetic field.

    PubMed

    Meckler, S; Gyamfi, M; Pietzsch, O; Wiesendanger, R

    2009-02-01

    A new scanning tunneling microscope for spin-polarized experiments has been developed. The microscope is operated at 4.7 K in a superconducting triple axis vector magnet providing the possibility for measurements depending on the direction of the magnetic field. In single axis mode the maximum field is 5 T perpendicular to the sample plane and 1.3 T in the sample plane, respectively. In cooperative mode fields are limited to 3.5 T perpendicular and 1 T in plane. The microscope is operated in an ultrahigh vacuum system providing optimized conditions for the self-assembled growth of magnetic structures at the atomic scale. The available temperature during growth ranges from 10 up to 1100 K. The performance of the new instrument is illustrated by spin-polarized measurements on 1.6 atomic layers Fe/W(110). It is demonstrated that the magnetization direction of ferromagnetic Fe and Gd tips can be adjusted using the external magnetic field. Atomic resolution is demonstrated by imaging an Fe monolayer on Ru(0001). PMID:19256654

  17. Electron density and temperature of gas-temperature-dependent cryoplasma jet

    SciTech Connect

    Noma, Yuri; Hyuk Choi, Jai; Muneoka, Hitoshi; Terashima, Kazuo

    2011-03-01

    A microsize cryoplasma jet was developed and analyzed at plasma gas temperatures ranging from room temperature down to 5 K. Experimental results obtained from optical emission spectroscopy and current-voltage measurements indicate that the average electron density and electron temperature of the cryoplasma jet depend on the gas temperature. In particular, the electron temperature in the cryoplasma starts to decrease rapidly near 60 K from about 13 eV at 60 K to 2 eV at 5 K, while the electron density increases from about 10{sup 9} to approximately 10{sup 12} cm{sup -3} from room temperature to 5 K. This phenomenon induces an increase in the Coulomb interaction between electrons, which can be explained by the virial equation of state.

  18. Improved Wide Operating Temperature Range of LiNiCoAiO2-based Li-ion Cells with Methyl Propionate-based Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Tomcsi, Michael R.; Hwang, C.; Whitcanack, L. D.; Bugga, Ratnakumar V.; Nagata, Mikito; Visco, Vince; Tsukamoto, Hisashi

    2012-01-01

    Demonstration of wide operating temperature range Li-ion electrolytes Methyl propionate-based wide operating temperature range electrolytes were demonstrated to provide dramatic improvement of the low temperature capability of Quallion prototype Li-ion cells (MCMB-LiNiCoAlO2). Some formulations were observed to deliver over 60% of the room temperature capacity using a 5C rate at - 40oC !! Represents over a 4-fold improvement over the baseline electrolyte system. Demonstrated operational capability of a number of systems over a wide temperature range (-40 to +70 C) Demonstrated reasonably good long term cycle life performance at high temperature (i.e., at +40deg and +50 C) A number of formulations containing electrolytes additives (i.e., FEC, VC, LiBOB, and lithium oxalate) have been shown to have enhanced lithium kinetics at low temperature and promising high temperature resilience. Demonstrated good performance in larger capacity (12 Ah) Quallion Li-ion cells with methyl propionate-based electrolytes. Current efforts focused upon performing life studies and the impact upon low temperature capability.

  19. A room temperature operating cryogenic cell for in vivo monitoring of dry snow metamorphism by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Flin, F.; Lesaffre, B.; Dufour, A.; Roulle, J.; Puglièse, P.; Philip, A.; Lahoucine, F.; Rolland du Roscoat, S.; Geindreau, C.

    2013-12-01

    Three-dimensional (3D) images of snow offer the possibility of studying snow metamorphism at the grain scale by analysing the time evolution of its complex microstructure. Such images are also particularly useful for providing physical effective properties of snow arising in macroscopic models. In the last 15 years, several experiments have been developed in order to get 3D images of snow by X-ray microtomography. Up to now, two different approaches have been used: a static and an in vivo approach. The static method consists in imaging a snow sample whose structural evolution has been stopped by impregnation and/or very cold temperature conditions. The sample is placed in a cryogenic cell that can operate at the ambient temperature of the tomograph room (e.g. Brzoska et al., 1999, Coléou et al., 2001). The in vivo technique uses a non impregnated sample which continues to undergo structural evolutions and is put in a cell that controls the temperature conditions at the boundaries of the sample. This kind of cell requires a cold environnement and the whole tomographic acquisition process takes place in a cold room (e.g. Schneebeli and Sokratov, 2004, Pinzer and Schneebeli, 2009). The 2nd approach has the major advantage to provide the time evolution of the microstructure of a same snow sample but requires a dedicated cold-room tomographic scanner, whereas the static method can be used with any tomographic scanner operating at ambient conditions. We developed a new in vivo cryogenic cell which benefits from the advantages of each of the above methods: it (1) allows to follow the evolution of the same sample with time and (2) is usable with a wide panel of tomographic scanners provided with large cabin sizes, which has many advantages in terms of speed, resolution, and availability of new technologies. The thermal insulation between the snow sample and the outside is ensured by a double wall vacuum system of thermal conductivity of about 0.0015 Wm-1K-1. An air

  20. Temperature in a J47-25 Turbojet-engine Combustor and Turbine Sections During Steady-state and Transient Operation in a Sea-level Test Stand

    NASA Technical Reports Server (NTRS)

    Morse, C R; Johnston, J R

    1955-01-01

    In order to determine the conditions of engine operation causing the most severe thermal stresses in the hot parts of a turbojet engine, a J47-25 engine was instrumented with thermocouples and operated to obtain engine material temperatures under steady-state and transient conditions. Temperatures measured during rated take-off conditions of nozzle guide vanes downstream of a single combustor differed on the order of 400 degrees F depending on the relation of the blades position to the highest temperature zone of the burner. Under the same operation conditions, measured midspan temperatures in a nozzle guide vane in the highest temperature zone of a combustor wake ranged from approximately 1670 degrees F at leading and trailing edges to 1340 degrees F at midchord on the convex side of the blade. The maximum measured nozzle-guide-vane temperature of 1920degrees at the trailing edge occurred during a rapid acceleration from idle to rated take-off speed following which the tail-pipe gas temperature exceeded maximum allowable temperature by 125 degrees F.

  1. High 400 °C operation temperature blue spectrum concentration solar junction in GaInN/GaN

    SciTech Connect

    Zhao, Liang; Detchprohm, Theeradetch; Wetzel, Christian

    2014-12-15

    Transparent wide gap junctions suitable as high temperature, high flux topping cells have been achieved in GaInN/GaN by metal-organic vapor phase epitaxy. In structures of 25 quantum wells (QWs) under AM1.5G illumination, an open circuit voltage of 2.1 V is achieved. Of the photons absorbed in the limited spectral range of <450 nm, 64.2% are converted to electrons collected at the contacts under zero bias. At a fill factor of 45%, they account for a power conversion efficiency of38.6%. Under concentration, the maximum output power density per sun increases from 0.49 mW/cm{sup 2} to 0.51 mW/cm{sup 2} at 40 suns and then falls 0.42 mW/cm{sup 2} at 150 suns. Under external heating, a maximum of 0.59 mW/cm{sup 2} is reached at 250 °C. Even at 400 °C, the device is fully operational and exceeds room temperature performance. A defect analysis suggests that significantly higher fill factors and extension into longer wavelength ranges are possible with further development. The results prove GaInN/GaN QW solar junctions a viable and rugged topping cell for concentrator photovoltaics with minimal cooling requirements. By capturing the short range spectrum, they reduce the thermal load to any conventional cells stacked behind.

  2. Optimization of a Radiative Transfer Forward Operator for Simulating SMOS Brightness Temperatures over the Upper Mississippi Basin, USA

    NASA Technical Reports Server (NTRS)

    Lievens, H.; Verhoest, N. E. C.; Martens, B.; VanDenBerg, M. J.; Bitar, A. Al; Tomer, S. Kumar; Merlin, O.; Cabot, F.; Kerr, Y.; DeLannoy, G. J. M.; Drusch, M.; Hendricks-Franssen, H.-J.; Vereecken, H.; Pan, M.; Wood, E. F.; Dumedah, G.; Walker, J. P.; Pauwels, V. R. N.

    2014-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission is routinely providing global multi-angular observations of brightness temperature (TB) at both horizontal and vertical polarization with a 3-day repeat period. The assimilation of such data into a land surface model (LSM) may improve the skill of operational flood forecasts through an improved estimation of soil moisture (SM). To accommodate for the direct assimilation of the SMOS TB data, the LSM needs to be coupled with a radiative transfer model (RTM), serving as a forward operator for the simulation of multi-angular and multi-polarization top of atmosphere TBs. This study investigates the use of the Variable Infiltration Capacity (VIC) LSM coupled with the Community Microwave Emission Modelling platform (CMEM) for simulating SMOS TB observations over the Upper Mississippi basin, USA. For a period of 2 years (2010-2011), a comparison between SMOS TBs and simulations with literature-based RTM parameters reveals a basin averaged bias of 30K. Therefore, time series of SMOS TB observations are used to investigate ways for mitigating these large biases. Specifically, the study demonstrates the impact of the LSM soil moisture climatology in the magnitude of TB biases. After CDF matching the SM climatology of the LSM to SMOS retrievals, the average bias decreases from 30K to less than 5K. Further improvements can be made through calibration of RTM parameters related to the modeling of surface roughness and vegetation. Consequently, it can be concluded that SM rescaling and RTM optimization are efficient means for mitigating biases and form a necessary preparatory step for data assimilation.

  3. Single Spatial-Mode Room-Temperature-Operated 3.0 to 3.4 micrometer Diode Lasers

    NASA Technical Reports Server (NTRS)

    Frez, Clifford F.; Soibel, Alexander; Belenky, Gregory; Shterengas, Leon; Kipshidze, Gela

    2010-01-01

    Compact, highly efficient, 3.0 to 3.4 m light emitters are in demand for spectroscopic analysis and identification of chemical substances (including methane and formaldehyde), infrared countermeasures technologies, and development of advanced infrared scene projectors. The need for these light emitters can be currently addressed either by bulky solid-state light emitters with limited power conversion efficiency, or cooled Interband Cascade (IC) semiconductor lasers. Researchers here have developed a breakthrough approach to fabrication of diode mid-IR lasers that have several advantages over IC lasers used for the Mars 2009 mission. This breakthrough is due to a novel design utilizing the strain-engineered quantum-well (QW) active region and quinternary barriers, and due to optimization of device material composition and growth conditions (growth temperatures and rates). However, in their present form, these GaSb-based laser diodes cannot be directly used as a part of sensor systems. The device spectrum is too broad to perform spectroscopic analysis of gas species, and operating currents and voltages are too high. In the current work, the emitters were fabricated as narrow-ridge waveguide index-guided lasers rather than broad stripe-gain guided multimode Fabry-Perot (FP) lasers as was done previously. These narrow-ridge waveguide mid-IR lasers exhibit much lower power consumptions, and can operate in a single spatial mode that is necessary for demonstration of single-mode distributed feedback (DBF) devices for spectroscopic applications. These lasers will enable a new generation of compact, tunable diode laser spectrometers with lower power consumption, reduced complexity, and significantly reduced development costs. These lasers can be used for the detection of HCN, C2H2, methane, and ethane.

  4. Fail-Safe Operation of a High-Temperature Magnetic Bearing Investigated for Gas Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Montague, Gerald T.

    2002-01-01

    The Structural Mechanics and Dynamics Branch at the NASA Glenn Research Center has developed a three-axis high-temperature magnetic bearing suspension rig to enhance the safety of the bearing system up to 1000 F. This test rig can accommodate thrust and radial bearings up to a 22.84 cm (9 in.) diameter with a maximum axial loading of 22.25 kN (5000 lb) and a maximum radial loading up to 4.45 kN (1000 lb). The test facility was set up to test magnetic bearings under high-temperature (1100 F) and high-speed (20,000 rpm) conditions. The magnetic bearing is located at the center of gravity of the rotor between two high-temperature grease-packed mechanical ball bearings. The drive-end duplex angular contact ball bearing, which is in full contact, acts as a moment release and provides axial stability. The outboard end ball bearing has a 0.015-in. radial clearance between the rotor to act as a backup bearing and to compensate for axial thermal expansion. There is a 0.020-in. radial air gap between the stator pole and the rotor. The stator was wrapped with three 1-kW band heaters to create a localized hot section; the mechanical ball bearings were outside this section. Eight threaded rods supported the stator. These incorporated a plunger and Bellville washers to compensate for radial thermal expansion and provide rotor-to-stator alignment. The stator was instrumented with thermocouples and a current sensor for each coil. Eight air-cooled position sensors were mounted outside the hot section to monitor the rotor. Another sensor monitored this rotation of the outboard backup bearing. Ground fault circuit interrupts were incorporated into all power amplifier loops for personnel safety. All instrumentation was monitored and recorded on a LabView-based data acquisition system. Currently, this 12-pole heteropolar magnetic bearing has 13 thermal cycles and over 26 hr of operation at 1000 F.

  5. Broad Negative Thermal Expansion Operation-Temperature Window Achieved by Adjusting Fe-Fe Magnetic Exchange Coupling in La(Fe,Si)13 Compounds.

    PubMed

    Li, Shaopeng; Huang, Rongjin; Zhao, Yuqiang; Li, Wen; Wang, Wei; Huang, Chuanjun; Gong, Pifu; Lin, Zheshuai; Li, Laifeng

    2015-08-17

    Cubic La(Fe,Si)13-based compounds have been recently developed as promising negative thermal expansion(NTE) materials, but the narrow NTE operation-temperature window(∼110 K) restricts their actual applications. In this work, we demonstrate that the NTE operation-temperature window of LaFe(13-x)Si(x) can be significantly broadened by adjusting Fe-Fe magnetic exchange coupling as x ranges from 2.8 to 3.1. In particular, the NTE operation-temperature window of LaFe10.1Si2.9 is extended to 220 K. More attractively, the coefficients of thermal expansion of LaFe10.0Si3.0 and LaFe9.9Si3.1 are homogeneous in the NTE operation-temperature range of about 200 K, which is much valuable for the stability of fabricating devices. The further experimental characterizations combined with first-principles studies reveal that the tetragonal phase is gradually introduced into the cubic phase as the Si content increases, hence modifies the Fe-Fe interatomic distance. The reduction of the overall Fe-Fe magnetic exchange interactions contributes to the broadness of NTE operation-temperature window for LaFe(13-x)Si(x). PMID:26196377

  6. A rechargeable lithium metal battery operating at intermediate temperatures using molten alkali bis(trifluoromethylsulfonyl)amide mixture as an electrolyte

    NASA Astrophysics Data System (ADS)

    Watarai, Atsushi; Kubota, Keigo; Yamagata, Masaki; Goto, Takuya; Nohira, Toshiyuki; Hagiwara, Rika; Ui, Koichi; Kumagai, Naoaki

    The physicochemical properties of molten alkali bis(trifluoromethylsulfonyl)amide, MTFSI (M = Li, K, Cs), mixture (x LiTFSI = 0.20, x KTFSI = 0.10, x CsTFSI = 0.70) were studied to develop a new rechargeable lithium battery operating at intermediate temperature (100-180 °C). The viscosity and ionic conductivity of this melt at 150 °C are 87.2 cP and 14.2 mS cm -1, respectively. The cyclic voltammetry revealed that the electrochemical window at 150 °C is as wide as 5.0 V, and that the electrochemical deposition/dissolution of lithium metal occurs at the cathode limit. A Li/MTFSI (M = Li, K, Cs)/LiFePO 4 cell showed an excellent cycle performance at a constant current rate of C/10 at 150 °C; 95% of the initial discharge capacity was maintained after 50 cycles. Except for the initial few cycles, the coulombic efficiencies were approximately 100% for all the cycles, indicating the stabilities of the molten MTFSI mixture and all the electrode materials.

  7. High-temperature gas filtration. Volume 2, Operating performance of a pilot-scale filter: Final report

    SciTech Connect

    Schiffer, H.P.; Laux, S.; Renz, U.

    1992-10-01

    High-temperature, high-pressure filtration is important to the development of fluidized-bed combustion (FBC) technology. This volume describes the commissioning and testing of a pilot-scale filter module rated at 1 to 4 bar pressure and up to 900{degrees}C. The module consists of an array of six porous sintered silicon carbide filter elements, designed to be cleaned on-line by jet pulses of compressed air. More than 2000 hours of exposure were achieved with FBC combustion gas with inlet dust concentrations of 500 to 40,000 ppM{sub w} at 200 to 650{degrees}C. Another 3500 hours of operation were achieved with simulated gas and injected dust. The filter elements were subjected to 60,000 cleaning cycles. No dust penetration through the filter modules was detected. After an initial stabilizing period, pressure drop remained moderate at less that 50 mbar (0.7 psi). The energy expended in pulse cleaning was negligible. No crusty deposits of dust were found on the filter elements during inspections, and no irreversible blinding occurred.

  8. Modulated ionomer distribution in the catalyst layer of polymer electrolyte membrane fuel cells for high temperature operation.

    PubMed

    Choo, Min-Ju; Oh, Keun-Hwan; Kim, Hee-Tak; Park, Jung-Ki

    2014-08-01

    Ionomer distribution is an important design parameter for high performance polymer electrolyte membrane fuel cells (PEMFCs); however, the nano-scale modulation of the ionomer morphology has not been intensively explored. Here, we propose a new route to modulate the ionomer distribution that features the introduction of poly(ethylene glycol) (PEG) to the cathode catalyst layer and the leaching the PEG phase from the catalyst layer using a water effluent during operation. The key concept in the approach is the expansion of the ionomer thin film through the PEG addition. We demonstrate that the modulated ionomer distribution increases the electrochemical active area and proton transport property, without loss in oxygen transport, at a fixed ionomer content. At a high temperature of 120 °C, the power performance at 0.6 V is increased by 1.73-fold with the modulated ionomer distribution as a result of 1.25-fold increase in the electrochemical active area and two-fold increase in the proton transport rate in the catalyst layer. PMID:24777945

  9. Electrically pumped room-temperature operation of GaAs1-xBix laser diodes with low-temperature dependence of oscillation wavelength

    NASA Astrophysics Data System (ADS)

    Fuyuki, Takuma; Yoshida, Kenji; Yoshioka, Ryo; Yoshimoto, Masahiro

    2014-08-01

    Lasing oscillation at wavelengths up to 1045 nm at room temperature has been realized from GaAs1-xBix Fabry-Perot laser diodes (FP-LDs) by electrical injection, and the temperature characteristics of GaAs1-xBix FP-LDs are revealed for the first time. The characteristic temperature T0 of the GaAs0.97Bi0.03 FP-LD in the temperature range between 15 and 40 °C (T0 = 125 K) is similar to that reported for typical 0.98 µm InGaAs/GaAs LDs. The temperature coefficient of the lasing wavelength in GaAs0.97Bi0.03 FP-LDs is reduced to 0.17 nm/K, which is only 45% of that of GaAs FP-LDs.

  10. Charge carrier localization effects on the quantum efficiency and operating temperature range of InAsxP1-x/InP quantum well detectors

    NASA Astrophysics Data System (ADS)

    Vashisht, Geetanjali; Dixit, V. K.; Porwal, S.; Kumar, R.; Sharma, T. K.; Oak, S. M.

    2016-03-01

    The effect of charge carrier localization resulting in "S-shaped" temperature dependence of the photoluminescence peak energy of InAsxP1-x/InP quantum wells (QWs) is distinctly revealed by the temperature dependent surface photo voltage (SPV) and photoconductivity (PC) processes. It is observed that the escape efficiency of carriers from QWs depends on the localization energy, where the carriers are unable to contribute in SPV/PC signal below a critical temperature. Below the critical temperature, carriers are strongly trapped in the localized states and are therefore unable to escape from the QW. Further, the critical temperature increases with the magnitude of localization energy of carriers. Carrier localization thus plays a pivotal role in defining the operating temperature range of InAsxP1-x/InP QW detectors.

  11. Interannual variations of the equatorial upper tropospheric temperature: A quick look at the Indonesian operational rawinsonde database

    NASA Astrophysics Data System (ADS)

    Okamoto, N.; Yamanaka, M. D.; Ogino, S.; Hashiguchi, H.; Nishi, N.; Sribimawati, T.

    2002-05-01

    We have collected operational rawinsonde data observed at 11 stations across the whole territory of Indonesia for about seven years (November 1991--May 1999), which have not completely opened on the GTS (global telecommunication system). Only less than 50% of the daily data have been obtained, but the quality seems much better than those reported on the GTS. After taking a pentad (five-day) mean and a 90-day low-pass filter at each standard pressure level, we have successfully analyzed seasonal and interannual variations in the equatorial troposphere and lower stratosphere. The pentad mean and low-pass filter are important not only to recover the data discontinuity but also to filter out an innegligible contribution of the intraseasonal variations (ISVs). The interannual variations may be classified into two categories. One is correlated with ENSO. In 1994 (not a strong El Niño year under the definition over the whole equatorial Pacific but an El Niño-like year in Indonesia) and in 1997 (the year of the strongest El Niño so far observed), the tropopause height defined by the temperature minimum was slightly higher (0.5--1.0 km) than the seven-year mean. On the other hand, tropopause temperature was 1--1.5 K cooler in winter 1994 and warmer in 1997 than in the seven-year mean in spite that the tropopause altitude had positive anomalies. These features cannot be explained simply by an eastward shift of the convection center such as considered usually in the El Niño situation: over Indonesia in an El Niño year, adiabatic cooling in the upper troposphere by convective activities is suppressed, and the tropopause is expected to be warmer and lower than in average under a radiative-convective equilibrium. This expectation is right in some El Niño years (1982--83, 1991--92) according to the NCEP reanalysis data, but wrong in 1994 and in 1997. The other is non-ENSO interannual variation. The tropopause height increased by about 1 km during 1992--97. Simultaneously

  12. Operation of a New Half-Bridge Gate Driver for Enhancement - Mode GaN FETs, Type LM5113, Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2011-01-01

    A new commercial-off-the-shelf (COTS) gate driver designed to drive both the high-side and the low-side enhancement-mode GaN FETs, National Semiconductor's type LM5113, was evaluated for operation at temperatures beyond its recommended specified limits of -40 C to +125 C. The effects of limited thermal cycling under the extended test temperature, which ranged from -194 C to +150 C, on the operation of this chip as well as restart capability at the extreme cryogenic and hot temperatures were also investigated. The driver circuit was able to maintain good operation throughout the entire test regime between -194 C and +150 C without undergoing any major changes in its outputs signals and characteristics. The limited thermal cycling performed on the device also had no effect on its performance, and the driver chip was able to successfully restart at each of the extreme temperatures of -194 C and +150 C. The plastic packaging of this device was also not affected by either the short extreme temperature exposure or the limited thermal cycling. These preliminary results indicate that this new commercial-off-the-shelf (COTS) halfbridge eGaN FET driver integrated circuit has the potential for use in space exploration missions under extreme temperature environments. Further testing is planned under long-term cycling to assess the reliability of these parts and to determine their suitability for extended use in the harsh environments of space.

  13. Current and temperature distributions in-situ acquired by electrode-segmentation along a microtubular solid oxide fuel cell operating with syngas

    NASA Astrophysics Data System (ADS)

    Aydın, Özgür; Nakajima, Hironori; Kitahara, Tatsumi

    2015-10-01

    Addressing the fuel distribution and endothermic cooling by the internal reforming, we have measured longitudinal current/temperature variations by "Electrode-segmentation" in a microtubular solid oxide fuel cell operated with syngas (50% pre-reformed methane) and equivalent H2/N2 (100% conversion of syngas to H2) at three different flow rates. Regardless of the syngas flow rates, currents and temperatures show irregular fluctuations with varying amplitudes from upstream to downstream segment. Analysis of the fluctuations suggests that the methane steam reforming reaction is highly affected by the H2 partial pressure. Current-voltage curves plotted for the syngas and equivalent H2/N2 flow rates reveal that the fuel depletion is enhanced toward the downstream during the syngas operation, resulting in a larger performance degradation. All the segments exhibit temperature drops with the syngas flow compared with the equivalent H2/N2 flow due to the endothermic cooling by the methane steam reforming reaction. Despite the drops, the segment temperatures remain above the furnace temperature; besides, the maximum temperature difference along the cell diminishes. The MSR reaction rate does not consistently increase with the decreasing gas inlet velocity (increasing residence time on the catalyst); which we ascribe to the dominating impact of the local temperatures.

  14. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR FREEZER MAINTENANCE AND TEMPERATURE VERIFICATION FOR SAMPLE INTEGRITY (BCO-L-25.0)

    EPA Science Inventory

    The purpose of this SOP is to ensure suitable temperature maintenance of freezers used for storage of samples. This procedure was followed to ensure consistent data retrieval during the Arizona NHEXAS project and the "Border" study. Keywords: freezers; operation.

    The National H...

  15. Continuous-wave operation of InAsSb/InP quantum - dot lasers near 2 (mu)m at room temperature

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming; Uhl, David; Keo, Sam

    2004-01-01

    InAsSb quantum-dot lasers near 2 pm were demonstrated in cw operation at room temperature with a threshold current density of below 1 kA/cm, output power of 3 mW/facet and a differential quantum efficiency of 13%.

  16. A Low-Operating-Power and Flexible Active-Matrix Organic-Transistor Temperature-Sensor Array.

    PubMed

    Ren, Xiaochen; Pei, Ke; Peng, Boyu; Zhang, Zhichao; Wang, Zongrong; Wang, Xinyu; Chan, Paddy K L

    2016-06-01

    An organic flexible temperature-sensor array exhibits great potential in health monitoring and other biomedical applications. The actively addressed 16 × 16 temperature sensor array reaches 100% yield rate and provides 2D temperature information of the objects placed in contact, even if the object has an irregular shape. The current device allows defect predictions of electronic devices, remote sensing of harsh environments, and e-skin applications. PMID:27111745

  17. Evaluation of HgCdTe on GaAs Grown by Molecular Beam Epitaxy for High-Operating-Temperature Infrared Detector Applications

    NASA Astrophysics Data System (ADS)

    Wenisch, J.; Schirmacher, W.; Wollrab, R.; Eich, D.; Hanna, S.; Breiter, R.; Lutz, H.; Figgemeier, H.

    2015-09-01

    Molecular beam epitaxy (MBE) growth of HgCdTe (MCT) on alternative substrates enables production of both cheaper and more versatile (third-generation) infrared (IR) detectors. After rapid progress in the development of MBE-grown MCT on GaAs in recent years, the question of whether the considerable benefits of this material system are also applicable to high-operating-temperature (HOT) applications demands attention. In this paper, we present a mid-wavelength-IR 640 × 512 pixel, 15- μm-pitch focal-plane array with operability of 99.71% at operating temperature of 120 K and low dark current density. In the second part of the paper, MBE growth of short-wavelength IR material with Cd fraction of up to 0.8 is investigated as the basis for future evaluation of the material for low-light-level imaging HOT applications.

  18. A magnetosensitive thin-film silicon Hall-type field-effect transistor with operating temperature range expanded up to 350°C

    NASA Astrophysics Data System (ADS)

    Leonov, A. V.; Malykh, A. A.; Mordkovich, V. N.; Pavlyuk, M. I.

    2016-01-01

    We describe a magnetosensitive device consisting of a combination of a thin-film Si transistor with built-in conducting channel (fabricated by the silicon-on-insulator technology) and a Hall-type sensor (HS). The transistor has a double-gate field control system of the metal-insulator-semiconductor-insulator-metal type and operates in the regime of carrier accumulation in the channel at partial depletion of adjacent regions of the Si film. It is established that the device can operate at temperatures up to about 350°C, which is 160-180°C higher than the maximum operating temperature of HSs based on bulk Si crystals and comparable with HSs based on wide-bandgap semiconductors.

  19. Development and evaluation of magnetic and electrical materials capable of operating in the 800 to 1600 F temperature range

    NASA Technical Reports Server (NTRS)

    Kueser, P. E.; Toth, J. W.

    1973-01-01

    The results are summarized of a research program on electrical materials for advanced space electric power systems. The areas investigated included improved high-temperature magnetic materials, high-temperature capacitor materials, ceramic-to-metal bore-seal technology, and simulated-space environmental testing of electric-power system components

  20. Influence of operating temperature on the power, divergence, and stress-induced birefringence in solar-pumped solid state lasers

    NASA Astrophysics Data System (ADS)

    Brauch, U.; Muckenschnabel, J.; Thompson, George A.; Bernstein, Hana; Yogev, Amnon; Reich, A.; Oron, Moshe

    1992-05-01

    The relative performance of solar-pumped Nd:YAG and Nd:Cr:GSGG lasers was evaluated at both 300 and 80 K. Measurements of the slope efficiency and the lasing threshold were made on several lasers containing these crystals. The stress-induced birefringence and the divergence were also studied. The measurements were used to calculate the values of the intrinsic efficiencies and the losses at both temperatures. The possible mechanisms for the observed temperature dependence are discussed. Due to the improved thermal conductivity of the laser crystals at low temperature, all lasers showed significantly improved performance at low temperature. Both the slope efficiencies and the thresholds improved by a factor of 2 to 3 on cooling. The absolute value of the beam quality, and its sensitivity to changes in the resonator configuration or pump power were significantly better at low temperature.

  1. Silicon solar cell development and radiation effects study for low temperature and low illumination intensity operation, volume 2

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1972-01-01

    The results are presented of a study to determine the effect of in-situ proton irradiation upon low temperature, low intensity performance of several cell types. The cell types were selected in an attempt to distinguish variations in temperature-dependent radiation resistance which could be attributed to the n-p or p-n structure, diffused or implanted junctions, crucible grown or float-zone type base material, and high or low base resistivity. The results indicate that while expected variations of performance occur at room temperature, all cell types degrade more or less similarly at lower temperatures with normalized degradation becoming increasingly rapid as temperature is reduced. Recommendations for an optimized cell for Jupiter probe use are included along with a definition of the testing required on these cells to insure good performance characteristics.

  2. Giant room-temperature elastocaloric effect in ferroelectric ultrathin films.

    PubMed

    Liu, Yang; Infante, Ingrid C; Lou, Xiaojie; Bellaiche, Laurent; Scott, James F; Dkhil, Brahim

    2014-09-17

    Environmentally friendly ultrathin BaTiO3 capacitors can exhibit a giant stress-induced elastocaloric effect without hysteresis loss or Joule heating. By combining this novel elastocaloric effect with the intrinsic electrocaloric effect, an ideal refrigeration cycle with high performance (temperature change over 10 K with a wide working-temperature window of 60 K) at room temperature is proposed for future cooling applications. PMID:25042767

  3. High-temperature operation of self-assembled GaInNAs/GaAsN quantum-dot lasers grown by solid-source molecular-beam epitaxy

    SciTech Connect

    Liu, C.Y.; Yoon, S.F.; Sun, Z.Z.; Yew, K.C.

    2006-02-20

    Self-assembled GaInNAs/GaAsN single layer quantum-dot (QD) lasers grown using solid-source molecular-beam epitaxy have been fabricated and characterized. Temperature-dependent measurements have been carried out on the GaInNAs QD lasers. The lowest obtained threshold current density in this work is {approx}1.05 kA/cm{sup 2} from a GaInNAs QD laser (50x1700 {mu}m{sup 2}) at 10 deg. C. High-temperature operation up to 65 deg. C was also demonstrated from an unbonded GaInNAs QD laser (50x1060 {mu}m{sup 2}), with high characteristic temperature of 79.4 K in the temperature range of 10-60 deg. C.

  4. Uncooled 2.5 Gb/s operation of 1.3 μm GaInNAs DQW lasers over a wide temperature range

    NASA Astrophysics Data System (ADS)

    Wei, Yongqiang; Gustavsson, Johan S.; Sadeghi, Mahdad; Wang, Shumin; Larsson, Anders; Savolainen, Pekka; Melanen, Petri; Sipilä, Pekko

    2006-04-01

    Ridge waveguide 1.3 μm GaInNAs lasers were fabricated from high quality double quantum well material grown by molecular beam epitaxy. Short cavity (250 μm) lasers have low threshold currents and small temperature dependencies of threshold current and slope efficiency, with a characteristic temperature of the threshold current as high as 200 K. The temperature stability allows for uncooled 2.5 Gb/s operation up to temperatures as high as 110°C with a constant modulation voltage and only the bias current adjusted for constant average output power. Under these conditions, an extinction ratio larger than 6 dB and a spectral rms-width smaller than 2 nm are obtained.

  5. Uncooled 2.5 Gb/s operation of 1.3 mum GaInNAs DQW lasers over a wide temperature range.

    PubMed

    Wei, Yongqiang; Gustavsson, Johan S; Sadeghi, Mahdad; Wang, Shumin; Larsson, Anders; Savolainen, Pekka; Melanen, Petri; Sipilä, Pekko

    2006-04-01

    Ridge waveguide 1.3 mum GaInNAs lasers were fabricated from high quality double quantum well material grown by molecular beam epitaxy. Short cavity (250 mum) lasers have low threshold currents and small temperature dependencies of threshold current and slope efficiency, with a characteristic temperature of the threshold current as high as 200 K. The temperature stability allows for uncooled 2.5 Gb/s operation up to temperatures as high as 110 degrees C with a constant modulation voltage and only the bias current adjusted for constant average output power. Under these conditions, an extinction ratio larger than 6 dB and a spectral rms-width smaller than 2 nm are obtained. PMID:19516408

  6. Room-temperature continuous operation of InAsSb quantum-dot lasers near 2 mu m based on (100) InP substrate

    NASA Technical Reports Server (NTRS)

    Qui, Y.; Uhl, D.; Keo, S.

    2003-01-01

    Single-stack InAsSb self-assembled quantum-dot lasers based on (001) InP substrate have been grown by metalorganic vapor-phase epitaxy. The narrow ridge waveguide lasers lased at wavelengths near 2 mu m up to 25 degrees C in continuous-wave operation. At room temperature, a differential quantum efficiency of 13 percent is obtained and the maximum output optical power reaches 3 mW per facet with a threshold current density of 730 A/cm(sup 2). With increasing temperature the emission wavelength is extremely temperature stable, and a very low wavelength temperature sensitivity of 0.05 nm/degrees C is measured, which is even lower than that caused by the refractive index change.

  7. A superconducting quantum interference device based read-out of a subattonewton force sensor operating at millikelvin temperatures

    SciTech Connect

    Usenko, O.; Vinante, A.; Wijts, G.; Oosterkamp, T. H.

    2011-03-28

    We present a scheme to measure the displacement of a nanomechanical resonator at cryogenic temperature. The technique is based on the use of a superconducting quantum interference device to detect the magnetic flux change induced by a magnetized particle attached on the end of the resonator. Unlike conventional interferometric techniques, our detection scheme does not involve direct power dissipation in the resonator, and therefore, is particularly suitable for ultralow temperature applications. We demonstrate its potential by cooling an ultrasoft silicon cantilever to a noise temperature of 25 mK, corresponding to a subattonewton thermal force noise of 0.5 aN/{radical}(Hz).

  8. Comparatively electrochemical studies at different operational temperatures for the effect of layered silicate and spherical silica on the anticorrosion efficiency of PANI nanocomposite coatings.

    PubMed

    Chang, Kung-Chin; Lai, Mei-Chun; Peng, Chih-Wei; Huang, Hsin-Hua; Fan, Tsuny-Hua; Yeh, Jui-Ming; Chou, Yi-Chen

    2011-02-01

    In this paper, a series of PANI nanocomposites have been successfully prepared by in situ oxidative polymerization. The as-prepared PANI nanocomposites were subsequently characterized by WAXRD patterns and TEM. It should be noted that the nanocomposite coating containing 3 wt-% of organophilic clay loading was found to exhibit an observable enhanced corrosion protection on cold-rolled steel (CRS) electrode at higher operational temperature of 50 degrees C, which was even better than that of uncoated and electrode-coated with PANI or PANI nanocomposites with 3 wt-% of amino-modified silica nanoparticles alone at room temperature of 30 degrees C based on the electrochemical parameter evaluations (e.g., E(corr), R(p), I(corr), R(corr) and impedance). The vapor permeability property at three different operational temperatures of PANI and PANI nanocomposite membranes were investigated by vapor permeability analyzer (VPA). Effect of material composition on the molecular weight, optical properties and surface hydrophobicity of neat PANI and PANI nanocomposite, in the form of membrane and solution, were studied by gel permeation chromatography (GPC), ultraviolet-visible absorption spectra and contact-angle measurements, respectively. Finally, electrical conductivity at three different operational temperatures of PANI and PANI nanocomposite powder-pressed pellets was also investigated through the measurements of standard four-point-probe technique. PMID:21456149

  9. Calibration of catalyst temperature in automotive engines over coldstart operation in the presence of different random noises and uncertainty: Implementation of generalized Gaussian process regression machine

    NASA Astrophysics Data System (ADS)

    Azad, Nasser L.; Mozaffari, Ahmad

    2015-12-01

    The main scope of the current study is to develop a systematic stochastic model to capture the undesired uncertainty and random noises on the key parameters affecting the catalyst temperature over the coldstart operation of automotive engine systems. In the recent years, a number of articles have been published which aim at the modeling and analysis of automotive engines' behavior during coldstart operations by using regression modeling methods. Regarding highly nonlinear and uncertain nature of the coldstart operation, calibration of the engine system's variables, for instance the catalyst temperature, is deemed to be an intricate task, and it is unlikely to develop an exact physics-based nonlinear model. This encourages automotive engineers to take advantage of knowledge-based modeling tools and regression approaches. However, there exist rare reports which propose an efficient tool for coping with the uncertainty associated with the collected database. Here, the authors introduce a random noise to experimentally derived data and simulate an uncertain database as a representative of the engine system's behavior over coldstart operations. Then, by using a Gaussian process regression machine (GPRM), a reliable model is used for the sake of analysis of the engine's behavior. The simulation results attest the efficacy of GPRM for the considered case study. The research outcomes confirm that it is possible to develop a practical calibration tool which can be reliably used for modeling the catalyst temperature.

  10. A new method for determining allowable medium temperature during transient operation of thick-walled elements in a supercritical power plant

    NASA Astrophysics Data System (ADS)

    Duda, Piotr; Rząsa, Dariusz

    2010-09-01

    Construction elements of supercritical power plants are subjected to high working pressures and high temperatures while operating. Under these conditions high stresses in the construction are created. In order to operate safely, it is important to monitor stresses, especially during start-up and shut-down processes. The maximum stresses in the construction elements should not exceed the allowable stress limit. The goal is to find optimum operating parameters that can assure safe heating and cooling processes [1-5]. The optimum parameters should guarantee that the allowable stresses are not exceeded and the entire process is conducted in the shortest time. In this work new numerical method for determining optimum working parameters is presented. Based on these parameters heating operations were conducted. Stresses were monitored during the entire processes. The results obtained were compared with the German boiler regulations - Technische Regeln für Dampfkessel 301.

  11. Investigating the dependence of the temperature of high-intensity discharge (HID) lamp electrodes on the operating frequency by pyrometric measurements

    NASA Astrophysics Data System (ADS)

    Reinelt, J.; Westermeier, M.; Ruhrmann, C.; Bergner, A.; Awakowicz, P.; Mentel, J.

    2011-03-01

    Phase-resolved temperature distributions are determined along a rod-shaped tungsten electrode, by which an ac arc is operated within a model lamp filled with argon. Switched dc and sinusoidal currents are applied with amplitudes of several amperes and operating frequencies being varied between 10 Hz and 10 kHz. The temperature is deduced from the grey body radiation of the electrode being recorded with a spectroscopic measuring system. Phase-resolved values of the electrode tip temperature Ttip and of the power input Pin are determined comparing the measured temperature distributions with the integral of the one-dimensional heat balance with these parameters as integration constants. They are supplemented by phase-resolved measurements of the sum of cathode and anode fall called the electrode sheath voltage. If a switched dc current is applied it is found that both quantities are within the cathodic phase only marginally higher than for a cathode being operated with a dc current. Ttip and Pin start to decrease for low currents and to increase for high currents at the beginning of the anodic phase. But with increasing operating frequency the deviations from the cathodic phase are reduced until they cannot be resolved for frequencies of several kHz. A more pronounced modulation, but the same tendencies, is observed with a sinusoidal current waveform. For 10 kHz a diffuse arc attachment with an almost phase-independent electrode tip temperature, which deviates only marginally from that of a dc cathode, and an electrode sheath voltage proportional to the arc current is established with both current waveforms.

  12. Thermal dynamic in hyporheic zone response to river temperatures formed by reservoir operations in Xinanjiang River, China

    NASA Astrophysics Data System (ADS)

    Chen, X.; Zhao, J.; Chen, L.; Tao, X.; Zhao, Z.

    2012-12-01

    Understanding heat fluxes through hyporheic zones (HZ) becomes increasingly important as anthropogenic influences and changing climate alter river thermal regimes. The HZ directly interacts with river thermal regimes by storing and releasing heat over a range of timescales. Alteration of HZ can lead to shifts in aquatic species composition and changes in biogeochemical processes. In this study we examine a reach of the Xinanjiang, China downstream of the Xinanjiang Dam. The Xinanjiang Dam introduces a low temperature water (LTW) region to the downstream of a length of 23 km and an area of 9.9 km2, which greatly changes the downstream thermal regime. However, how and to what extent the LTW in stream affect the HZ temperature distribution and, ulteriorly, the full range of the river ecosystem are still not completely understood. We quantify hyporheic exchange and heat transport induced by LTW by field experiments and numerical simulations for coupled groundwater flow and heat transport. Both surface and subsurface water temperature are measured in a study region for model validation. The hydraulic head and water temperature along the water-aquifer interface are considered as the input boundaries for groundwater models. The upwelling water with short streamline paths shows the same temperature pattern as surface water but the temperature of water that comes out from the deep subsurface zones rises much higher and shows a relatively lower variation. However, with the continuing exchange of surface LTW and groundwater, the low temperature spreads over the entire domain. Detailed field characterization and groundwater modeling indicate residence times of hyporheic flux can vary from hours to months. A significant implication is that the LTW released from upstream reservoir contributes to the downstream temperature field and potential degradation of habitats in hyporheic zones.

  13. High-speed highly temperature stable 980 nm VCSELs operating at 25 Gb/s at up to 85 °C for short reach optical interconnects

    NASA Astrophysics Data System (ADS)

    Mutig, Alex; Lott, James A.; Blokhin, Sergey A.; Moser, Philip; Wolf, Philip; Hofmann, Werner; Nadtochiy, Alexey M.; Bimberg, Dieter

    2011-03-01

    The progressive penetration of optical communication links into traditional copper interconnect markets greatly expands the applications of vertical cavity surface emitting lasers (VCSELs) for the next-generation of board-to-board, moduleto- module, chip-to-chip, and on-chip optical interconnects. Stability of the VCSEL parameters at high temperatures is indispensable for such applications, since these lasers typically reside directly on or near integrated circuit chips. Here we present 980 nm oxide-confined VCSELs operating error-free at bit rates up to 25 Gbit/s at temperatures as high as 85 °C without adjustment of the drive current and peak-to-peak modulation voltage. The driver design is therefore simplified and the power consumption of the driver electronics is lowered, reducing the production and operational costs. Small and large signal modulation experiments at various temperatures from 20 up to 85 °C for lasers with different oxide aperture diameters are presented in order to analyze the physical processes controlling the performance of the VCSELs. Temperature insensitive maximum -3 dB bandwidths of around 13-15 GHz for VCSELs with aperture diameters of 10 μm and corresponding parasitic cut-off frequencies exceeding 22 GHz are observed. Presented results demonstrate the suitability of our VCSELs for practical high speed and high temperature stable short-reach optical links.

  14. Inactivation of a 25.5 µm Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet

    NASA Astrophysics Data System (ADS)

    Pei, X.; Lu, X.; Liu, J.; Liu, D.; Yang, Y.; Ostrikov, K.; Chu, Paul K.; Pan, Y.

    2012-04-01

    Effective biofilm inactivation using a handheld, mobile plasma jet powered by a 12 V dc battery and operated in open air without any external gas supply is reported. This cold, room-temperature plasma is produced in self-repetitive nanosecond discharges with current pulses of ˜100 ns duration, current peak amplitude of ˜6 mA and repetition rate of ˜20 kHz. It is shown that the reactive plasma species penetrate to the bottom layer of a 25.5 µm-thick Enterococcus faecalis biofilm and produce a strong bactericidal effect. This is the thickest reported biofilm inactivated using room-temperature air plasmas.

  15. Influence of UV illumination on the cold temperature operation of a LiNbO(3) Q-switched Nd:YAG laser.

    PubMed

    Cole, Brian; Goldberg, Lew; King, Vernon; Leach, Jeff

    2010-04-26

    UV illumination of a lithium niobate Q-switch was demonstrated as an effective means to eliminate a loss in hold-off and associated prelasing that occurs under cold temperature operation of Q-switched lasers. This degradation occurs due to the pyroelectric effect, where an accumulation of charge on crystal faces results in a reduction in the Q-switch hold-off and a spatially variable loss of the Q-switch in its high-transmission state, both resulting in lowering of the maximum Q-switched pulse energy. With UV illumination, the resulting creation of photo-generated carriers was shown to be effective in eliminating both of these effects. A Q-switched Nd:YAG laser utilizing UV-illuminated LiNbO(3) was shown to operate under cold temperatures without prelasing or spatially variable loss. PMID:20588809

  16. Investigating the origin of efficiency droop by profiling the temperature across the multi-quantum well of an operating light-emitting diode

    SciTech Connect

    Jung, Euihan; Hwang, Gwangseok; Chung, Jaehun; Kwon, Ohmyoung; Han, Jaecheon; Moon, Yong-Tae; Seong, Tae-Yeon

    2015-01-26

    Performance degradation resulting from efficiency droop during high-power operation is a critical problem in the development of high-efficiency light-emitting diodes (LEDs). In order to resolve the efficiency droop and increase the external quantum efficiency of LEDs, the droop's origin should be identified first. To experimentally investigate the cause of efficiency droop, we used null-point scanning thermal microscopy to quantitatively profile the temperature distribution on the cross section of the epi-layers of an operating GaN-based vertical LED with nanoscale spatial resolution at four different current densities. The movement of temperature peak towards the p-GaN side as the current density increases suggests that more heat is generated by leakage current than by Auger recombination. We therefore suspect that at higher current densities, current leakage becomes the dominant cause of the droop problem.

  17. Diode-pumped Q-switched Nd{sup 3+} : YAG laser operating in a wide temperature range without thermal stabilisation of pump diodes

    SciTech Connect

    Vainshenker, A E; Vilenskiy, A V; Kazakov, A A; Lysoy, B G; Mikhailov, L K; Pashkov, V A

    2013-02-28

    A model sample of a compact low-power-consumption Nd{sup 3+} : YAG laser emitting 20-mJ pulses with a pulse repetition rate up to 20 Hz (in cyclic duty) at a wavelength of 1064 nm is developed and studied. The laser is designed for operating at external temperatures from -40 to +50 deg C. This was achieved by using quasi-end diode pumping without thermal stabilisation of pump diodes. (laser optics 2012)

  18. Direct use of low temperature geothermal water by Aquafarms International, Inc. for freshwater aquaculture (prawns and associated species). An operations and maintenance manual

    SciTech Connect

    Broughton, R.; Price, M.; Price, V.; Grajcer, D.

    1984-04-01

    In connection with an ongoing commercial aquaculture project in the Coachella Valley, California; a twelve month prawn growout demonstration project was conducted. This project began in August, 1979 and involved the use of low temperature (85/sup 0/F) geothermal waters to raise freshwater prawns, Macrobrachium rosenbergii (deMan), in earthen ponds. The following publication is an operations and maintenance guide which may by useful for those interested in conducting similar enterprises.

  19. Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures.

    PubMed

    Li, Yueh-Fen; Nelson, Michael C; Chen, Po-Hsu; Graf, Joerg; Li, Yebo; Yu, Zhongtang

    2015-01-01

    The microbiomes involved in liquid anaerobic digestion process have been investigated extensively, but the microbiomes underpinning solid-state anaerobic digestion (SS-AD) are poorly understood. In this study, microbiome composition and temporal succession in batch SS-AD reactors, operated at mesophilic or thermophilic temperatures, were investigated using Illumina sequencing of 16S rRNA gene amplicons. A greater microbial richness and evenness were found in the mesophilic than in the thermophilic SS-AD reactors. Firmicutes accounted for 60 and 82 % of the total Bacteria in the mesophilic and in the thermophilic SS-AD reactors, respectively. The genus Methanothermobacter dominated the Archaea in the thermophilic SS-AD reactors, while Methanoculleus predominated in the mesophilic SS-AD reactors. Interestingly, the data suggest syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis as an important pathway for biogas production during the thermophilic SS-AD. Canonical correspondence analysis (CCA) showed that temperature was the most influential factor in shaping the microbiomes in the SS-AD reactors. Thermotogae showed strong positive correlation with operation temperature, while Fibrobacteres, Lentisphaerae, Spirochaetes, and Tenericutes were positively correlated with daily biogas yield. This study provided new insight into the microbiome that drives SS-AD process, and the findings may help advance understanding of the microbiome in SS-AD reactors and the design and operation of SS-AD systems. PMID:25194839

  20. 46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1) and... atmospheric pressure. Only temperatures due to refrigerated service usually need to be considered in... (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels §...

  1. 46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1) and... atmospheric pressure. Only temperatures due to refrigerated service usually need to be considered in... (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels §...

  2. 46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1) and... atmospheric pressure. Only temperatures due to refrigerated service usually need to be considered in... (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels §...

  3. 46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1) and... atmospheric pressure. Only temperatures due to refrigerated service usually need to be considered in... (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels §...

  4. Cold temperature effects on speciated MSAT emissions from light duty vehicles operating on gasoline and ethanol blends

    EPA Science Inventory

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty gasoline vehicles. Vehicle testing was conducted using a three phase LA92 driving cycle on a temperature controlled chassis...

  5. Design and Room-Temperature Operation of GaAs/AlGaAs Multiple Quantum Well Nanowire Lasers.

    PubMed

    Saxena, Dhruv; Jiang, Nian; Yuan, Xiaoming; Mokkapati, Sudha; Guo, Yanan; Tan, Hark Hoe; Jagadish, Chennupati

    2016-08-10

    We present the design and room-temperature lasing characteristics of single nanowires containing coaxial GaAs/AlGaAs multiple quantum well (MQW) active regions. The TE01 mode, which has a doughnut-shaped intensity profile and is polarized predominantly in-plane to the MQWs, is predicted to lase in these nanowire heterostructures and is thus chosen for the cavity design. Through gain and loss calculations, we determine the nanowire dimensions required to minimize loss for the TE01 mode and determine the optimal thickness and number of QWs for minimizing the threshold sheet carrier density. In particular, we show that there is a limit to the minimum and maximum number of QWs that are required for room-temperature lasing. Based on our design, we grew nanowires of a suitable diameter containing eight uniform coaxial GaAs/AlGaAs MQWs. Lasing was observed at room temperature from optically pumped single nanowires and was verified to be from TE01 mode by polarization measurements. The GaAs MQW nanowire lasers have a threshold fluence that is a factor of 2 lower than that previously demonstrated for room-temperature GaAs nanowire lasers. PMID:27459233

  6. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 3

    NASA Technical Reports Server (NTRS)

    Blakeslee, A. E.; Hovel, H. J.; Woodall, J. M.

    1977-01-01

    The etch-back epitaxy process is described for producing thin, graded composition GaAlAs layers. The palladium-aluminum contact system is discussed along with its associated problems. Recent solar cell results under simulated air mass zero light and at elevated temperatures are reported and the growth of thin polycrystalline GaAs films on foreign substrates is developed.

  7. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... section VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1... properties enhanced by heat treatment (modifies UHT-5(c), UHT-6, UHT-23, and UHT-82). 54.25-20 Section 54.25... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature...

  8. Investigation of exhaust gas temperature distribution within a furnace of a stoker fired boiler as a function of its operating parameters

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr; Badyda, Krzysztof; Szczygieł, Jacek; Młynarz, Szczepan

    2015-09-01

    Distribution of the exhaust gas temperature within the furnace of a grate boiler greatly depends on its operating parameters such as output. It has a considerably different character than temperature distributions in other types of boilers (with pulverised or fluidised bed), as it varies considerably across the chamber. Results presented in this paper have been obtained through research of a grate-fired hot water boiler with a nominal rating of some 30 MW. Measurements have been taken by introducing temperature sensors into prearranged openings placed in the boiler side walls. Investigation has been carried out for different output levels. Tests involved thermocouples in ceramic coating and aspirated thermocouples. The latter were used to eliminate influence of radiative heat transfer on measured results. Values obtained with both methods have been cross-checked.

  9. Numerical method for determining the allowable medium temperature during transient operation of a thick-walled boiler element in power plant

    NASA Astrophysics Data System (ADS)

    Rząsa, Dariusz; Duda, Piotr

    2011-12-01

    Secure and cost-effective power generation has become very important nowdays. Care must be taken while designing and operating modern steam power plants. There are regulations such as German boiler regulations (Technische Regeln für Dampfkessel 301) or European Standards that guide the user how to operate the steam power plants. However, those regulations are based on the quasi-steady state assumption and one dimensional temperature distribution in the entire element. This simplifications may not guarantee that the heating and cooling operations are conducted in the most efficient way. Thus, it was important to find an improved method that can allow to establish optimum parameters for heating and cooling operations. The optimum parameters should guarantee that the maximum total stresses in the construction element are in the allowable limits and the entire process is conducted in the shortest time. This paper summarizes mathematical descriptions how to optimize shut down process of power block devices. The optimization formulation is based on the assumption that the maximum total stresses in the whole construction element should be kept within allowable limits during cooling operation. Additionally, the operation should be processed in the shortest time possible.

  10. A Raman Lidar as Operational Tool for Long-Term Water Vapor, Temperature and Aerosol Profiling in the Swiss Meteorological Office

    NASA Astrophysics Data System (ADS)

    Simeonov, Dr; Dinoev, Dr; Serikov, Dr; Calpini, Dr; Bobrovnikov, Dr; Arshinov, Dr; Ristori, Dr; van den Bergh, Dr; Parlange, Dr

    2010-09-01

    To satisfy the rising demands on the quality and frequency of atmospheric water vapor, temperature and aerosol measurements used for numerical weather prediction models, climate change observations and special events (volcanoes, dust and smoke transport) monitoring, MeteoSwiss decided to implement a lidar at his main aerological station in Payerne. The instrument is narrow field of view, narrowband UV Raman lidar designed for continuous day and night operational profiling of tropospheric water vapor, aerosol and temperature The lidar was developed and built by the Swiss Federal Institute of Technology- Lausanne (EPFL) within a joint project with MeteoSwiss. To satisfy the requirements for operational exploitation in a meteorological network the lidar had to satisfy a number of criteria, the most important of which are: accuracy and precision, traceability of the measurement, long-term data consistency, long-term system stability, automated operation, requiring minimal maintenance by a technician, and eye safety. All this requirements were taken into account during the design phase of the lidar. After a ten months test phase of the lidar at Payerne it has been in regular operation since August 2008. Selected data illustrating interesting atmospheric phenomena captured by the lidar as well as long-term intercomparison with collocated microwave radiometer, GPS, radiosonding and an airborne DIAL will be presented and discussed. The talk will address also the technical availability, alignment and calibration stabilities of the instrument.

  11. The effect of perfusion on post-operative viability in the replanted rabbit ear: measured by laser Doppler flowmetry and skin temperature.

    PubMed

    Pietilä, J; von Smitten, K; Sundell, B

    1985-01-01

    The effect of perfusion by heparinized Ringer solution on post-operative microcirculation in rabbit ear replants was studied. One ear in each of five rabbits was replanted after perfusion with heparinized Ringer solution and these were compared with five replantations of rabbit ears without perfusion. The ears were studied post-operatively for 2 1/2 days by skin temperature monitoring and Laser Doppler Flowmetry (LDF). During the first day after replantation the perfused ears had better capillary flow, whereafter no significant differences were noted. LDF was more sensitive to changes in capillary blood flow, and this seems to make the reproducibility of LDF poor. It is, however, a suitable method for continued observation of post-operative viability. PMID:2937141

  12. Tunable CW diode-pumped Tm,Ho:YLiF4 laser operating at or near room temperature

    NASA Technical Reports Server (NTRS)

    Mcguckin, Brendan T. (Inventor); Menzies, Robert T. (Inventor)

    1995-01-01

    A conversion efficiency of 42% and slope efficiency of 60% relative to absorbed pump power are obtained from a continuous wave diode-pumped Tm,Ho:YLiF4 laser at 2 microns with output power of 84 mW at a crystal temperature of 275 K. The emission spectrum is etalon tunable over a range of7 nm (16.3/cm) centered on 2.067 microns with fine tuning capability of the transition frequency with crystal temperature at a measured rate of -0.03/(cm)K. The effective emission cross-section is measured to be 5 x 10(exp -21) cm squared. These and other aspects of the laser performance are disclosed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications. Single frequency output and frequency stabilization are achieved using an intracavity etalon in conjunction with an external reference etalon.

  13. Tunable CW diode-pumped Tm,Ho:YLiF4 laser operating at or near room temperature

    NASA Technical Reports Server (NTRS)

    Mcguckin, Brendan T. (Inventor); Menzies, Robert T. (Inventor)

    1993-01-01

    A conversion efficiency of 42 percent and slope efficiency of 60 percent relative to absorbed pump power are obtained from a continuous wave diode-pumped Tm,Ho:YLiF4 laser at 2 microns with output power of 84mW at a crystal temperature of 275K. The emission spectrum is etalon tunable over a range of 7nm (16.3 cm(sup -1) centered on 2.067 microns with fine tuning capability of the transition frequency with crystal temperature at a measured rate of -0.03/(cm)K. The effective emission cross-section is measured to be 5 x 10(sup -21) cm squared. These and other aspects of the laser performance are disclosed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications. Single frequency output and frequency stabilization are achieved using an intracavity etalon in conjunction with an external reference etalon.

  14. Extension of the operational regime in high-temperature plasmas and the dynamic-transport characteristics in the LHD

    NASA Astrophysics Data System (ADS)

    Takahashi, H.; Osakabe, M.; Nagaoka, K.; Murakami, S.; Yamada, I.; Takeiri, Y.; Yokoyama, M.; Lee, H.; Ida, K.; Seki, R.; Suzuki, C.; Yoshinuma, M.; Ido, T.; Shimizu, A.; Goto, M.; Morita, S.; Shimozuma, T.; Kubo, S.; Satake, S.; Matsuoka, S.; Tamura, N.; Tsuchiya, H.; Tanaka, K.; Nunami, M.; Wakasa, A.; Tsumori, K.; Ikeda, K.; Nakano, H.; Kisaki, M.; Yoshimura, Y.; Nishiura, M.; Igami, H.; Seki, T.; Kasahara, H.; Saito, K.; Kumazawa, R.; Muto, S.; Narihara, K.; Mutoh, T.; Kaneko, O.; Yamada, H.; the LHD Experiment Group

    2013-07-01

    A central ion temperature of 7 keV in a neutral beam injection (NBI)-heated plasma and a central-electron temperature of 20 keV in an electron cyclotron resonance heating plasma were achieved in the Large Helical Device (LHD) using an upgraded heating system with a newly installed perpendicular-NB injector and gyrotrons. The values of Ti and Te significantly exceeded 5.6 and 15 keV, obtained in previous experiments, respectively. High-Ti plasma was obtained using a carbon pellet injection and the kinetic-energy confinement improved by a factor of 1.5. Transport analysis of the high-Ti plasmas showed that the ion-thermal diffusivity and the viscosity were reduced after the pellet injection. Dynamic-transport analysis is applied and the transition to the ion-internal-transport barrier and back transition are discussed.

  15. Study of operation dynamics for crystal temperature measurement in a diode end-pumped monolithic Yb:YAG laser.

    PubMed

    Moon, Hee-Jong; Lim, Changhwan; Kim, Guang-Hoon; Kang, Uk

    2013-12-16

    A temperature measurement scheme was proposed in a diode end-pumped thin monolithic Yb:YAG laser by analyzing the red-shifting behaviors of each lasing peak. The amount of peak shift was measured on the basis of the threshold lasing spectrum by using a chopped pump beam. In order to determine the effective scale factor, the ratio between the peak shift and the temperature rise, the dynamics of the spectral shift, the output beam profile, and the output power were investigated. The effective scale factor was determined to be about 0.0114 nm/°C in the case of the crystal sandwiched by copper bocks with a hole, wherein the plane stress approximation is valid. On the other hand, the effective scale factor significantly decreased in the case of the crystal sandwiched by sapphire plates. PMID:24514724

  16. Design of resonant cavity structure for efficient high-temperature operation of single-photon avalanche photodiodes.

    PubMed

    Zavvari, Mahdi; Abedi, Kambiz; Karimi, Mohammad

    2014-05-20

    A novel design of a single-photon avalanche photodiode (SPAD) is proposed based on resonant cavity (RC) structure, and its performance is studied. In the proposed structure, InAlAs/InGaAs distributed Bragg reflectors (DBRs) are employed as top and bottom mirrors and the quantum efficiency (QE) of the absorption region is calculated considering the effect of the RC. Results show that using 12 periods of DBRs as a bottom reflector without incorporation of a top mirror can enhance the QE to about 90% at room temperature. For this RC-enhanced SPAD, a single-photon quantum efficiency (SPQE) is obtained of about 0.35 at T=300  K. For temperatures lower than T=260  K, SPQE is about 1. Results show that although the RC doesn't affect the dark current, for a given SPQE the dark count rate is lower for the RC-SPAD. PMID:24922220

  17. Lithium niobate Q-switch to prevent pre-lasing of high gain lasers operating over a wide temperature range

    NASA Astrophysics Data System (ADS)

    Jundt, Dieter H.; MacKay, Peter E.

    2015-02-01

    Because of its ease of growth and large electro-optic effect, lithium niobate is the preferred choice for Q-switching mobile lasers. Temperature-induced pyro-electric charges however may lead to premature lasing. We manufactured and characterized temperature-stable LN Q-switch. A thermo-chemical anneal was performed creating a conductive material layer 0.5mm thick with increased conductivity. While this increases optical insertion loss by a few percent, this is tolerable in high gain lasers. We present details of treatment, the surface charge creation and dissipation mechanism and the setup used to assess the cold-performance used to demonstrate improved charge dissipation when compared to untreated crystals.

  18. Dielectric relaxation study of amorphous TiTaO thin films in a large operating temperature range

    SciTech Connect

    Rouahi, A.; Kahouli, A.; Challali, F.; Besland, M. P.; Salimy, S.; Goullet, A.; Vallee, C.; Pairis, S.; Yangui, B.; Sylvestre, A.

    2012-11-01

    Two relaxation processes have been identified in amorphous TiTaO thin films deposited by reactive magnetron sputtering. The parallel angle resolved x-ray photoelectron spectroscopy and field emission scanning electron microscopy analyses have shown that this material is composed of an agglomerates mixture of TiO{sub 2}, Ta{sub 2}O{sub 5}, and Ti-Ta bonds. The first relaxation process appears at low temperature with activation energy of about 0.26 eV and is related to the first ionisation of oxygen vacancies and/or the reduction of Ti{sup 4+} to Ti{sup 3+}. The second relaxation process occurs at high temperature with activation energy of 0.95 eV. This last peak is associated to the diffusion of the doubly ionized oxygen vacancies V{sub O}e. The dispersion phenomena observed at high temperature can be attributed to the development of complex defect such as (V{sub O}e - 2Ti{sup 3+}).

  19. Treatment of strong domestic sewage in a 96 m3 UASB reactor operated at ambient temperatures: two-stage versus single-stage reactor.

    PubMed

    Halalsheh, M; Sawajneh, Z; Zu'bi, M; Zeeman, G; Lier, J; Fayyad, M; Lettinga, G

    2005-03-01

    A 96 m3 UASB reactor was operated for 2.5 years under different conditions to assess the feasibility of treating strong sewage (COD(tot) = 1531 mg/l) at ambient temperatures with averages of 18 and 25 degrees C for winter and summer respectively. During the first year, the reactor was operated as a two-stage system at OLRs in the range of 3.6-5.0 kg COD/m3 d for the first stage and 2.9-4.6 kg COD/m3 d for the second stage. The results of the first stage showed average removals of 51% and 60% for COD(tot) and COD(ss) respectively without significant effect of temperature. The second stage reactor was unstable. The temperature affected sludge stabilization. During the second year, the first stage was operated as a single-stage UASB reactor at half of the previous loading rates. The results showed an average removal efficiency of 62% for COD(tot) during summer, while it dropped to 51% during wintertime. However, the effluent suspended solids were stabilized with VSS/TSS ratio around 0.50 all over the year. The sludge in the single-stage reactor was well-stabilized and exerted an excellent settlability. During the last three months of research, sludge was discharged regularly from the single-stage UASB reactor. The results showed no significant improvement in the performance in terms of COD(tot). Based on the results of the experiment, a single-stage UASB reactor operated at relatively long HRT is preferred above two-stage system at the Jordanian conditions. PMID:15501665

  20. Determining local temperatures in the structures of AlInGaP/GaAs red LEDs in a pulsed operation regime

    NASA Astrophysics Data System (ADS)

    Sergeev, V. A.; Shirokov, A. A.

    2009-05-01

    The emission spectra of AlInGaP/GaAs red light-emitting diodes (LEDs) based on a multi-quantum-well heterostructure with distributed Bragg reflectors, operating in a pulsed mode with a pulse repetition rate within 1-10 kHz and a current of 1 × 10-3-2 × 10-1 A have been studied in the 20-100°C temperature range. In the regimes with short current pulses and large off/duty ratios, which exclude self-heating of the LED structure, the temperature dependences of the wavelength of emission peaks in the main and side bands exhibit a super-and sublinear behavior, respectively. In the quasi-linear regions of these dependences, the temperature coefficient of wavelength shift for the main peak decreases, while that for the side peak weakly increases with increasing current. The local temperatures (determined from the spectral shift of the main and side emission peaks) and their difference increase with the pulse duration. The difference of thermal resistances, which is calculated from the slope of a plot of the local temperature versus average heating power, is independent of the current and determined by the parameters of layers separating the heterostructure from the reemission region.