Science.gov

Sample records for 60s biogenesis pathway

  1. The NF45/NF90 Heterodimer Contributes to the Biogenesis of 60S Ribosomal Subunits and Influences Nucleolar Morphology

    PubMed Central

    Wandrey, Franziska; Montellese, Christian; Koos, Krisztian; Badertscher, Lukas; Bammert, Lukas; Cook, Atlanta G.; Zemp, Ivo; Horvath, Peter

    2015-01-01

    The interleukin enhancer binding factors ILF2 (NF45) and ILF3 (NF90/NF110) have been implicated in various cellular pathways, such as transcription, microRNA (miRNA) processing, DNA repair, and translation, in mammalian cells. Using tandem affinity purification, we identified human NF45 and NF90 as components of precursors to 60S (pre-60S) ribosomal subunits. NF45 and NF90 are enriched in nucleoli and cosediment with pre-60S ribosomal particles in density gradient analysis. We show that association of the NF45/NF90 heterodimer with pre-60S ribosomal particles requires the double-stranded RNA binding domains of NF90, while depletion of NF45 and NF90 by RNA interference leads to a defect in 60S biogenesis. Nucleoli of cells depleted of NF45 and NF90 have altered morphology and display a characteristic spherical shape. These effects are not due to impaired rRNA transcription or processing of the precursors to 28S rRNA. Consistent with a role of the NF45/NF90 heterodimer in nucleolar steps of 60S subunit biogenesis, downregulation of NF45 and NF90 leads to a p53 response, accompanied by induction of the cyclin-dependent kinase inhibitor p21/CIP1, which can be counteracted by depletion of RPL11. Together, these data indicate that NF45 and NF90 are novel higher-eukaryote-specific factors required for the maturation of 60S ribosomal subunits. PMID:26240280

  2. Insertion of the Biogenesis Factor Rei1 Probes the Ribosomal Tunnel during 60S Maturation.

    PubMed

    Greber, Basil Johannes; Gerhardy, Stefan; Leitner, Alexander; Leibundgut, Marc; Salem, Michèle; Boehringer, Daniel; Leulliot, Nicolas; Aebersold, Ruedi; Panse, Vikram Govind; Ban, Nenad

    2016-01-14

    Eukaryotic ribosome biogenesis depends on several hundred assembly factors to produce functional 40S and 60S ribosomal subunits. The final phase of 60S subunit biogenesis is cytoplasmic maturation, which includes the proofreading of functional centers of the 60S subunit and the release of several ribosome biogenesis factors. We report the cryo-electron microscopy (cryo-EM) structure of the yeast 60S subunit in complex with the biogenesis factors Rei1, Arx1, and Alb1 at 3.4 Å resolution. In addition to the network of interactions formed by Alb1, the structure reveals a mechanism for ensuring the integrity of the ribosomal polypeptide exit tunnel. Arx1 probes the entire set of inner-ring proteins surrounding the tunnel exit, and the C terminus of Rei1 is deeply inserted into the ribosomal tunnel, where it forms specific contacts along almost its entire length. We provide genetic and biochemical evidence that failure to insert the C terminus of Rei1 precludes subsequent steps of 60S maturation. PMID:26709046

  3. The Roles of Puf6 and Loc1 in 60S Biogenesis Are Interdependent, and Both Are Required for Efficient Accommodation of Rpl43.

    PubMed

    Yang, Yi-Ting; Ting, Ya-Han; Liang, Kei-Jen; Lo, Kai-Yin

    2016-09-01

    Puf6 and Loc1 have two important functional roles in the cells, asymmetric mRNA distribution and ribosome biogenesis. Puf6 and Loc1 are localized predominantly in the nucleolus. They bind ASH1 mRNA, repress its translation, and facilitate the transport to the daughter cells. Asymmetric mRNA distribution is important for cell differentiation. Besides their roles in mRNA localization, Puf6 and Loc1 have been shown to be involved in 60S biogenesis. In puf6Δ or loc1Δ cells, pre-rRNA processing and 60S export are impaired and 60S subunits are underaccumulated. The functional studies of Puf6 and Loc1 have been focused on ASH1 mRNA pathway, but their roles in 60S biogenesis are still not clear. In this study, we found that Puf6 and Loc1 interact directly with each other and both proteins interact with the ribosomal protein Rpl43 (L43e). Notably, the roles of Puf6 and Loc1 in 60S biogenesis are interdependent, and both are required for efficient accommodation of Rpl43. Loc1 is further required to maintain the protein level of Rpl43. Additionally, the recruitment of Rpl43 is required for the release of Puf6 and Loc1. We propose that Puf6 and Loc1 facilitate Rpl43 loading and are sequentially released from 60S after incorporation of Rpl43 into ribosomes in yeast. PMID:27458021

  4. Saccharomyces cerevisiae Nip7p is required for efficient 60S ribosome subunit biogenesis.

    PubMed Central

    Zanchin, N I; Roberts, P; DeSilva, A; Sherman, F; Goldfarb, D S

    1997-01-01

    The Saccharomyces cerevisiae temperature-sensitive (ts) allele nip7-1 exhibits phenotypes associated with defects in the translation apparatus, including hypersensitivity to paromomycin and accumulation of halfmer polysomes. The cloned NIP7+ gene complemented the nip7-1 ts growth defect, the paromomycin hypersensitivity, and the halfmer defect. NIP7 encodes a 181-amino-acid protein (21 kDa) with homology to predicted products of open reading frames from humans, Caenorhabditis elegans, and Arabidopsis thaliana, indicating that Nip7p function is evolutionarily conserved. Gene disruption analysis demonstrated that NIP7 is essential for growth. A fraction of Nip7p cosedimented through sucrose gradients with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Nip7p was found evenly distributed throughout the cytoplasm and nucleus by indirect immunofluorescence; however, in vivo localization of a Nip7p-green fluorescent protein fusion protein revealed that a significant amount of Nip7p is present inside the nucleus, most probably in the nucleolus. Depletion of Nip7-1p resulted in a decrease in protein synthesis rates, accumulation of halfmers, reduced levels of 60S subunits, and, ultimately, cessation of growth. Nip7-1p-depleted cells showed defective pre-rRNA processing, including accumulation of the 35S rRNA precursor, presence of a 23S aberrant precursor, decreased 20S pre-rRNA levels, and accumulation of 27S pre-rRNA. Delayed processing of 27S pre-rRNA appeared to be the cause of reduced synthesis of 25S rRNA relative to 18S rRNA, which may be responsible for the deficit of 60S subunits in these cells. PMID:9271378

  5. Signaling pathways in melanosome biogenesis and pathology.

    PubMed

    Schiaffino, Maria Vittoria

    2010-07-01

    Melanosomes are the specialized intracellular organelles of pigment cells devoted to the synthesis, storage and transport of melanin pigments, which are responsible for most visible pigmentation in mammals and other vertebrates. As a direct consequence, any genetic mutation resulting in alteration of melanosomal function, either because affecting pigment cell survival, migration and differentiation, or because interfering with melanosome biogenesis, transport and transfer to keratinocytes, is immediately translated into color variations of skin, fur, hair or eyes. Thus, over 100 genes and proteins have been identified as pigmentary determinants in mammals, providing us with a deep understanding of this biological system, which functions by using mechanisms and processes that have parallels in other tissues and organs. In particular, many genes implicated in melanosome biogenesis have been characterized, so that melanosomes represent an incredible source of information and a model for organelles belonging to the secretory pathway. Furthermore, the function of melanosomes can be associated with common physiological phenotypes, such as variation of pigmentation among individuals, and with rare pathological conditions, such as albinism, characterized by severe visual defects. Among the most relevant mechanisms operating in melanosome biogenesis are the signal transduction pathways mediated by two peculiar G protein-coupled receptors: the melanocortin-1 receptor (MC1R), involved in the fair skin/red hair phenotype and skin cancer; and OA1 (GPR143), whose loss-of-function results in X-linked ocular albinism. This review will focus on the most recent novelties regarding the functioning of these two receptors, by highlighting emerging signaling mechanisms and general implications for cell biology and pathology. PMID:20381640

  6. Bypass of the pre-60S ribosomal quality control as a pathway to oncogenesis.

    PubMed

    Sulima, Sergey O; Patchett, Stephanie; Advani, Vivek M; De Keersmaecker, Kim; Johnson, Arlen W; Dinman, Jonathan D

    2014-04-15

    Ribosomopathies are a class of diseases caused by mutations that affect the biosynthesis and/or functionality of the ribosome. Although they initially present as hypoproliferative disorders, such as anemia, patients have elevated risk of hyperproliferative disease (cancer) by midlife. Here, this paradox is explored using the rpL10-R98S (uL16-R98S) mutant yeast model of the most commonly identified ribosomal mutation in acute lymphoblastic T-cell leukemia. This mutation causes a late-stage 60S subunit maturation failure that targets mutant ribosomes for degradation. The resulting deficit in ribosomes causes the hypoproliferative phenotype. This 60S subunit shortage, in turn, exerts pressure on cells to select for suppressors of the ribosome biogenesis defect, allowing them to reestablish normal levels of ribosome production and cell proliferation. However, suppression at this step releases structurally and functionally defective ribosomes into the translationally active pool, and the translational fidelity defects of these mutants culminate in destabilization of selected mRNAs and shortened telomeres. We suggest that in exchange for resolving their short-term ribosome deficits through compensatory trans-acting suppressors, cells are penalized in the long term by changes in gene expression that ultimately undermine cellular homeostasis. PMID:24706786

  7. The Arabidopsis gene DIG6 encodes a large 60S subunit nuclear export GTPase 1 that is involved in ribosome biogenesis and affects multiple auxin-regulated development processes.

    PubMed

    Zhao, Huayan; Lü, Shiyou; Li, Ruixi; Chen, Tao; Zhang, Huoming; Cui, Peng; Ding, Feng; Liu, Pei; Wang, Guangchao; Xia, Yiji; Running, Mark P; Xiong, Liming

    2015-11-01

    The circularly permuted GTPase large subunit GTPase 1 (LSG1) is involved in the maturation step of the 60S ribosome and is essential for cell viability in yeast. Here, an Arabidopsis mutant dig6 (drought inhibited growth of lateral roots) was isolated. The mutant exhibited multiple auxin-related phenotypes, which included reduced lateral root number, altered leaf veins, and shorter roots. Genetic mapping combined with next-generation DNA sequencing identified that the mutation occurred in AtLSG1-2. This gene was highly expressed in regions of auxin accumulation. Ribosome profiling revealed that a loss of function of AtLSG1-2 led to decreased levels of monosomes, further demonstrating its role in ribosome biogenesis. Quantitative proteomics showed that the expression of certain proteins involved in ribosome biogenesis was differentially regulated, indicating that ribosome biogenesis processes were impaired in the mutant. Further investigations showed that an AtLSG1-2 deficiency caused the alteration of auxin distribution, response, and transport in plants. It is concluded that AtLSG1-2 is integral to ribosome biogenesis, consequently affecting auxin homeostasis and plant development.

  8. Interplay between oxygen and Fe-S cluster biogenesis: insights from the Suf pathway.

    PubMed

    Boyd, Eric S; Thomas, Khaleh M; Dai, Yuyuan; Boyd, Jeff M; Outten, F Wayne

    2014-09-23

    Iron-sulfur (Fe-S) cluster metalloproteins conduct essential functions in nearly all contemporary forms of life. The nearly ubiquitous presence of Fe-S clusters and the fundamental requirement for Fe-S clusters in both aerobic and anaerobic Archaea, Bacteria, and Eukarya suggest that these clusters were likely integrated into central metabolic pathways early in the evolution of life prior to the widespread oxidation of Earth's atmosphere. Intriguingly, Fe-S cluster-dependent metabolism is sensitive to disruption by oxygen because of the decreased bioavailability of ferric iron as well as direct oxidation of sulfur trafficking intermediates and Fe-S clusters by reactive oxygen species. This fact, coupled with the ubiquity of Fe-S clusters in aerobic organisms, suggests that organisms evolved with mechanisms that facilitate the biogenesis and use of these essential cofactors in the presence of oxygen, which gradually began to accumulate around 2.5 billion years ago as oxygenic photosynthesis proliferated and reduced minerals that buffered against oxidation were depleted. This review highlights the most ancient of the Fe-S cluster biogenesis pathways, the Suf system, which likely was present in early anaerobic forms of life. Herein, we use the evolution of the Suf pathway to assess the relationships between the biochemical functions and physiological roles of Suf proteins, with an emphasis on the selective pressure of oxygen toxicity. Our analysis suggests that diversification into oxygen-containing environments disrupted iron and sulfur metabolism and was a main driving force in the acquisition of accessory Suf proteins (such as SufD, SufE, and SufS) by the core SufB-SufC scaffold complex. This analysis provides a new framework for the study of Fe-S cluster biogenesis pathways and Fe-S cluster-containing metalloenzymes and their complicated patterns of divergence in response to oxygen. PMID:25153801

  9. Interplay between Oxygen and Fe–S Cluster Biogenesis: Insights from the Suf Pathway

    PubMed Central

    2015-01-01

    Iron–sulfur (Fe–S) cluster metalloproteins conduct essential functions in nearly all contemporary forms of life. The nearly ubiquitous presence of Fe–S clusters and the fundamental requirement for Fe–S clusters in both aerobic and anaerobic Archaea, Bacteria, and Eukarya suggest that these clusters were likely integrated into central metabolic pathways early in the evolution of life prior to the widespread oxidation of Earth’s atmosphere. Intriguingly, Fe–S cluster-dependent metabolism is sensitive to disruption by oxygen because of the decreased bioavailability of ferric iron as well as direct oxidation of sulfur trafficking intermediates and Fe–S clusters by reactive oxygen species. This fact, coupled with the ubiquity of Fe–S clusters in aerobic organisms, suggests that organisms evolved with mechanisms that facilitate the biogenesis and use of these essential cofactors in the presence of oxygen, which gradually began to accumulate around 2.5 billion years ago as oxygenic photosynthesis proliferated and reduced minerals that buffered against oxidation were depleted. This review highlights the most ancient of the Fe–S cluster biogenesis pathways, the Suf system, which likely was present in early anaerobic forms of life. Herein, we use the evolution of the Suf pathway to assess the relationships between the biochemical functions and physiological roles of Suf proteins, with an emphasis on the selective pressure of oxygen toxicity. Our analysis suggests that diversification into oxygen-containing environments disrupted iron and sulfur metabolism and was a main driving force in the acquisition of accessory Suf proteins (such as SufD, SufE, and SufS) by the core SufB–SufC scaffold complex. This analysis provides a new framework for the study of Fe–S cluster biogenesis pathways and Fe–S cluster-containing metalloenzymes and their complicated patterns of divergence in response to oxygen. PMID:25153801

  10. Interplay between oxygen and Fe-S cluster biogenesis: insights from the Suf pathway.

    PubMed

    Boyd, Eric S; Thomas, Khaleh M; Dai, Yuyuan; Boyd, Jeff M; Outten, F Wayne

    2014-09-23

    Iron-sulfur (Fe-S) cluster metalloproteins conduct essential functions in nearly all contemporary forms of life. The nearly ubiquitous presence of Fe-S clusters and the fundamental requirement for Fe-S clusters in both aerobic and anaerobic Archaea, Bacteria, and Eukarya suggest that these clusters were likely integrated into central metabolic pathways early in the evolution of life prior to the widespread oxidation of Earth's atmosphere. Intriguingly, Fe-S cluster-dependent metabolism is sensitive to disruption by oxygen because of the decreased bioavailability of ferric iron as well as direct oxidation of sulfur trafficking intermediates and Fe-S clusters by reactive oxygen species. This fact, coupled with the ubiquity of Fe-S clusters in aerobic organisms, suggests that organisms evolved with mechanisms that facilitate the biogenesis and use of these essential cofactors in the presence of oxygen, which gradually began to accumulate around 2.5 billion years ago as oxygenic photosynthesis proliferated and reduced minerals that buffered against oxidation were depleted. This review highlights the most ancient of the Fe-S cluster biogenesis pathways, the Suf system, which likely was present in early anaerobic forms of life. Herein, we use the evolution of the Suf pathway to assess the relationships between the biochemical functions and physiological roles of Suf proteins, with an emphasis on the selective pressure of oxygen toxicity. Our analysis suggests that diversification into oxygen-containing environments disrupted iron and sulfur metabolism and was a main driving force in the acquisition of accessory Suf proteins (such as SufD, SufE, and SufS) by the core SufB-SufC scaffold complex. This analysis provides a new framework for the study of Fe-S cluster biogenesis pathways and Fe-S cluster-containing metalloenzymes and their complicated patterns of divergence in response to oxygen.

  11. Diversity of the piRNA pathway for nonself silencing: worm-specific piRNA biogenesis factors

    PubMed Central

    Izumi, Natsuko; Tomari, Yukihide

    2014-01-01

    The PIWI-interacting RNA (piRNA) pathway protects animal germline cells from transposable elements and other genomic invaders. Although the genome defense function of piRNAs has been well established, the mechanisms of their biogenesis remain poorly understood. In this issue of Genes & Development, three groups identify novel factors required for piRNA biogenesis in Caenorhabditis elegans. These works greatly expand our understanding of the piRNA pathway in worms, highlighting both its shared and its unique properties. PMID:24696451

  12. Oxaloacetate activates brain mitochondrial biogenesis, enhances the insulin pathway, reduces inflammation and stimulates neurogenesis.

    PubMed

    Wilkins, Heather M; Harris, Janna L; Carl, Steven M; E, Lezi; Lu, Jianghua; Eva Selfridge, J; Roy, Nairita; Hutfles, Lewis; Koppel, Scott; Morris, Jill; Burns, Jeffrey M; Michaelis, Mary L; Michaelis, Elias K; Brooks, William M; Swerdlow, Russell H

    2014-12-15

    Brain bioenergetic function declines in some neurodegenerative diseases, this may influence other pathologies and administering bioenergetic intermediates could have therapeutic value. To test how one intermediate, oxaloacetate (OAA) affects brain bioenergetics, insulin signaling, inflammation and neurogenesis, we administered intraperitoneal OAA, 1-2 g/kg once per day for 1-2 weeks, to C57Bl/6 mice. OAA altered levels, distributions or post-translational modifications of mRNA and proteins (proliferator-activated receptor-gamma coactivator 1α, PGC1 related co-activator, nuclear respiratory factor 1, transcription factor A of the mitochondria, cytochrome oxidase subunit 4 isoform 1, cAMP-response element binding, p38 MAPK and adenosine monophosphate-activated protein kinase) in ways that should promote mitochondrial biogenesis. OAA increased Akt, mammalian target of rapamycin and P70S6K phosphorylation. OAA lowered nuclear factor κB nucleus-to-cytoplasm ratios and CCL11 mRNA. Hippocampal vascular endothelial growth factor mRNA, doublecortin mRNA, doublecortin protein, doublecortin-positive neuron counts and neurite length increased in OAA-treated mice. (1)H-MRS showed OAA increased brain lactate, GABA and glutathione thereby demonstrating metabolic changes are detectable in vivo. In mice, OAA promotes brain mitochondrial biogenesis, activates the insulin signaling pathway, reduces neuroinflammation and activates hippocampal neurogenesis.

  13. Cardioprotection against doxorubicin by metallothionein Is associated with preservation of mitochondrial biogenesis involving PGC-1α pathway.

    PubMed

    Guo, Jiabin; Guo, Qian; Fang, Haiqing; Lei, Lei; Zhang, Tingfen; Zhao, Jun; Peng, Shuangqing

    2014-08-15

    Metallothionein (MT) has been shown to inhibit cardiac oxidative stress and protect against the cardiotoxicity induced by doxorubicin (DOX), a potent and widely used chemotherapeutic agent. However, the mechanism of MT׳s protective action against DOX still remains obscure. Mitochondrial biogenesis impairment has been implicated to play an important role in the etiology and progression of DOX-induced cardiotoxicity. Increasing evidence indicates an intimate link between MT-mediated cardioprotection and mitochondrial biogenesis. This study was aimed to explore the possible contribution of mitochondrial biogenesis in MT׳s cardioprotective action against DOX. Adult male MT-I/II-null (MT(-/-)) and wild-type (MT(+/+)) mice were given a single dose of DOX intraperitoneally. Our results revealed that MT deficiency significantly sensitized mice to DOX-induced cardiac dysfunction, ultrastructural alterations, and mortality. DOX disrupted cardiac mitochondrial biogenesis indicated by mitochondrial DNA copy number and decreased mitochondrial number, and these effects were greater in MT(-/-) mice. Basal MT effectively protected against DOX-induced inhibition on the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a key regulator of mitochondrial biogenesis, and its downstream factors including mitochondrial transcription factor A. Moreover, MT was found to preserve the protein expression of manganese superoxide dismutase, a transcriptional target of PGC-1α. in vitro study showed that MT absence augmented DOX-induced increase of mitochondrial superoxide production in primary cultured cardiomyocytes. These findings suggest that MT׳s cardioprotection against DOX is mediated, at least in part, by preservation of mitochondrial biogenesis involving PGC-1α pathway. PMID:24858368

  14. A novel pathway for outer membrane protein biogenesis in Gram‐negative bacteria

    PubMed Central

    Jeeves, Mark

    2015-01-01

    Summary The understanding of the biogenesis of the outer membrane of Gram‐negative bacteria is of critical importance due to the emergence of bacteria that are becoming resistant to available antibiotics. A problem that is most serious for Gram‐negative bacteria, with essentially few antibiotics under development or likely to be available for clinical use in the near future. The understanding of the Gram‐negative bacterial outer membrane is therefore critical to developing new antimicrobial agents, as this membrane makes direct contact with the external milieu, and the proteins present within this membrane are the instruments of microbial warfare, playing key roles in microbial pathogenesis, virulence and multidrug resistance. To date, a single outer membrane complex has been identified as essential for the folding and insertion of proteins into the outer membrane, this is the β‐barrel assembly machine (BAM) complex, which in some cases is supplemented by the Translocation and Assembly Module (TAM). In this issue of Molecular Microbiology, Dunstan et al. have identified a novel pathway for the insertion of a subset of integral membrane proteins into the Gram‐negative outer membrane that is independent of the BAM complex and TAM. PMID:26059329

  15. The Hippo pathway effectors TAZ/YAP regulate dicer expression and microRNA biogenesis through Let-7.

    PubMed

    Chaulk, Steven G; Lattanzi, Victoria J; Hiemer, Samantha E; Fahlman, Richard P; Varelas, Xaralabos

    2014-01-24

    MicroRNAs (miRNAs) are genome-encoded small double-stranded RNAs that have emerged as key regulators of gene expression and are implicated in most aspects of human development and disease. Canonical miRNA biogenesis involves processing of ∼70-nucleotide pre-miRNA hairpins by Dicer to generate mature ∼22-nucleotide miRNAs, which target complementary RNA sequences. Despite the importance of miRNA biogenesis, signaling mechanisms controlling this process are poorly defined. Here we demonstrate that the post-transcriptional regulation of Dicer is controlled by the cell density-mediated localization of the Hippo pathway effectors TAZ (transcriptional co-activator with PDZ-binding motif) and YAP (Yes-associated protein) (TAZ/YAP). We show that nuclear TAZ/YAP, which are abundant at low cell density, are required for efficient pre-miRNA processing. Knockdown of TAZ/YAP in low density cells, or density-mediated sequestration of TAZ/YAP into the cytoplasm, results in the defective processing of pre-miRNAs. Strikingly, one exception is Let-7, which accumulates upon loss of nuclear TAZ/YAP, leading to Let-7-dependent reduction in Dicer levels. Accordingly, inhibition of Let-7 rescues the miRNA biogenesis defects observed following TAZ/YAP knockdown. Thus, density-regulated TAZ/YAP localization defines a critical and previously unrecognized mechanism by which cells relay cell contact-induced cues to control miRNA biogenesis.

  16. The Hippo Pathway Effectors TAZ/YAP Regulate Dicer Expression and MicroRNA Biogenesis through Let-7

    PubMed Central

    Chaulk, Steven G.; Lattanzi, Victoria J.; Hiemer, Samantha E.; Fahlman, Richard P.; Varelas, Xaralabos

    2014-01-01

    MicroRNAs (miRNAs) are genome-encoded small double-stranded RNAs that have emerged as key regulators of gene expression and are implicated in most aspects of human development and disease. Canonical miRNA biogenesis involves processing of ∼70-nucleotide pre-miRNA hairpins by Dicer to generate mature ∼22-nucleotide miRNAs, which target complementary RNA sequences. Despite the importance of miRNA biogenesis, signaling mechanisms controlling this process are poorly defined. Here we demonstrate that the post-transcriptional regulation of Dicer is controlled by the cell density-mediated localization of the Hippo pathway effectors TAZ (transcriptional co-activator with PDZ-binding motif) and YAP (Yes-associated protein) (TAZ/YAP). We show that nuclear TAZ/YAP, which are abundant at low cell density, are required for efficient pre-miRNA processing. Knockdown of TAZ/YAP in low density cells, or density-mediated sequestration of TAZ/YAP into the cytoplasm, results in the defective processing of pre-miRNAs. Strikingly, one exception is Let-7, which accumulates upon loss of nuclear TAZ/YAP, leading to Let-7-dependent reduction in Dicer levels. Accordingly, inhibition of Let-7 rescues the miRNA biogenesis defects observed following TAZ/YAP knockdown. Thus, density-regulated TAZ/YAP localization defines a critical and previously unrecognized mechanism by which cells relay cell contact-induced cues to control miRNA biogenesis. PMID:24324261

  17. Crosstalk between the lipopolysaccharide and phospholipid pathways during outer membrane biogenesis in Escherichia coli

    PubMed Central

    Emiola, Akintunde; Andrews, Steven S.; Heller, Carolin; George, John

    2016-01-01

    The outer membrane of gram-negative bacteria is composed of phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet. LPS is an endotoxin that elicits a strong immune response from humans, and its biosynthesis is in part regulated via degradation of LpxC (EC 3.5.1.108) and WaaA (EC 2.4.99.12/13) enzymes by the protease FtsH (EC 3.4.24.-). Because the synthetic pathways for both molecules are complex, in addition to being produced in strict ratios, we developed a computational model to interrogate the regulatory mechanisms involved. Our model findings indicate that the catalytic activity of LpxK (EC 2.7.1.130) appears to be dependent on the concentration of unsaturated fatty acids. This is biologically important because it assists in maintaining LPS/phospholipids homeostasis. Further crosstalk between the phospholipid and LPS biosynthetic pathways was revealed by experimental observations that LpxC is additionally regulated by an unidentified protease whose activity is independent of lipid A disaccharide concentration (the feedback source for FtsH-mediated LpxC regulation) but could be induced in vitro by palmitic acid. Further experimental analysis provided evidence on the rationale for WaaA regulation. Overexpression of waaA resulted in increased levels of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) sugar in membrane extracts, whereas Kdo and heptose levels were not elevated in LPS. This implies that uncontrolled production of WaaA does not increase the LPS production rate but rather reglycosylates lipid A precursors. Overall, the findings of this work provide previously unidentified insights into the complex biogenesis of the Escherichia coli outer membrane. PMID:26929331

  18. Crosstalk between the lipopolysaccharide and phospholipid pathways during outer membrane biogenesis in Escherichia coli.

    PubMed

    Emiola, Akintunde; Andrews, Steven S; Heller, Carolin; George, John

    2016-03-15

    The outer membrane of gram-negative bacteria is composed of phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet. LPS is an endotoxin that elicits a strong immune response from humans, and its biosynthesis is in part regulated via degradation of LpxC (EC 3.5.1.108) and WaaA (EC 2.4.99.12/13) enzymes by the protease FtsH (EC 3.4.24.-). Because the synthetic pathways for both molecules are complex, in addition to being produced in strict ratios, we developed a computational model to interrogate the regulatory mechanisms involved. Our model findings indicate that the catalytic activity of LpxK (EC 2.7.1.130) appears to be dependent on the concentration of unsaturated fatty acids. This is biologically important because it assists in maintaining LPS/phospholipids homeostasis. Further crosstalk between the phospholipid and LPS biosynthetic pathways was revealed by experimental observations that LpxC is additionally regulated by an unidentified protease whose activity is independent of lipid A disaccharide concentration (the feedback source for FtsH-mediated LpxC regulation) but could be induced in vitro by palmitic acid. Further experimental analysis provided evidence on the rationale for WaaA regulation. Overexpression of waaA resulted in increased levels of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) sugar in membrane extracts, whereas Kdo and heptose levels were not elevated in LPS. This implies that uncontrolled production of WaaA does not increase the LPS production rate but rather reglycosylates lipid A precursors. Overall, the findings of this work provide previously unidentified insights into the complex biogenesis of the Escherichia coli outer membrane. PMID:26929331

  19. Melanoregulin, product of the dsu locus, links the BLOC-pathway and OA1 in organelle biogenesis.

    PubMed

    Rachel, Rivka A; Nagashima, Kunio; O'Sullivan, T Norene; Frost, Laura S; Stefano, Frank P; Marigo, Valeria; Boesze-Battaglia, Kathleen

    2012-01-01

    Humans with Hermansky-Pudlak Syndrome (HPS) or ocular albinism (OA1) display abnormal aspects of organelle biogenesis. The multigenic disorder HPS displays broad defects in biogenesis of lysosome-related organelles including melanosomes, platelet dense granules, and lysosomes. A phenotype of ocular pigmentation in OA1 is a smaller number of macromelanosomes, in contrast to HPS, where in many cases the melanosomes are smaller than normal. In these studies we define the role of the Mreg(dsu) gene, which suppresses the coat color dilution of Myo5a, melanophilin, and Rab27a mutant mice in maintaining melanosome size and distribution. We show that the product of the Mreg(dsu) locus, melanoregulin (MREG), interacts both with members of the HPS BLOC-2 complex and with Oa1 in regulating melanosome size. Loss of MREG function facilitates increase in the size of micromelanosomes in the choroid of the HPS BLOC-2 mutants ruby, ruby2, and cocoa, while a transgenic mouse overexpressing melanoregulin corrects the size of retinal pigment epithelium (RPE) macromelanosomes in Oa1(ko/ko) mice. Collectively, these results suggest that MREG levels regulate pigment incorporation into melanosomes. Immunohistochemical analysis localizes melanoregulin not to melanosomes, but to small vesicles in the cytoplasm of the RPE, consistent with a role for this protein in regulating membrane interactions during melanosome biogenesis. These results provide the first link between the BLOC pathway and Oa1 in melanosome biogenesis, thus supporting the hypothesis that intracellular G-protein coupled receptors may be involved in the biogenesis of other organelles. Furthermore these studies provide the foundation for therapeutic approaches to correct the pigment defects in the RPE of HPS and OA1.

  20. Melanoregulin, product of the dsu locus, links the BLOC-pathway and OA1 in organelle biogenesis.

    PubMed

    Rachel, Rivka A; Nagashima, Kunio; O'Sullivan, T Norene; Frost, Laura S; Stefano, Frank P; Marigo, Valeria; Boesze-Battaglia, Kathleen

    2012-01-01

    Humans with Hermansky-Pudlak Syndrome (HPS) or ocular albinism (OA1) display abnormal aspects of organelle biogenesis. The multigenic disorder HPS displays broad defects in biogenesis of lysosome-related organelles including melanosomes, platelet dense granules, and lysosomes. A phenotype of ocular pigmentation in OA1 is a smaller number of macromelanosomes, in contrast to HPS, where in many cases the melanosomes are smaller than normal. In these studies we define the role of the Mreg(dsu) gene, which suppresses the coat color dilution of Myo5a, melanophilin, and Rab27a mutant mice in maintaining melanosome size and distribution. We show that the product of the Mreg(dsu) locus, melanoregulin (MREG), interacts both with members of the HPS BLOC-2 complex and with Oa1 in regulating melanosome size. Loss of MREG function facilitates increase in the size of micromelanosomes in the choroid of the HPS BLOC-2 mutants ruby, ruby2, and cocoa, while a transgenic mouse overexpressing melanoregulin corrects the size of retinal pigment epithelium (RPE) macromelanosomes in Oa1(ko/ko) mice. Collectively, these results suggest that MREG levels regulate pigment incorporation into melanosomes. Immunohistochemical analysis localizes melanoregulin not to melanosomes, but to small vesicles in the cytoplasm of the RPE, consistent with a role for this protein in regulating membrane interactions during melanosome biogenesis. These results provide the first link between the BLOC pathway and Oa1 in melanosome biogenesis, thus supporting the hypothesis that intracellular G-protein coupled receptors may be involved in the biogenesis of other organelles. Furthermore these studies provide the foundation for therapeutic approaches to correct the pigment defects in the RPE of HPS and OA1. PMID:22984402

  1. Four distinct secretory pathways serve protein secretion, cell surface growth, and peroxisome biogenesis in the yeast Yarrowia lipolytica.

    PubMed Central

    Titorenko, V I; Ogrydziak, D M; Rachubinski, R A

    1997-01-01

    We have identified and characterized mutants of the yeast Yarrowia lipolytica that are deficient in protein secretion, in the ability to undergo dimorphic transition from the yeast to the mycelial form, and in peroxisome biogenesis. Mutations in the SEC238, SRP54, PEX1, PEX2, PEX6, and PEX9 genes affect protein secretion, prevent the exit of the precursor form of alkaline extracellular protease from the endoplasmic reticulum, and compromise peroxisome biogenesis. The mutants sec238A, srp54KO, pex2KO, pex6KO, and pex9KO are also deficient in the dimorphic transition from the yeast to the mycelial form and are affected in the export of only plasma membrane and cell wall-associated proteins specific for the mycelial form. Mutations in the SEC238, SRP54, PEX1, and PEX6 genes prevent or significantly delay the exit of two peroxisomal membrane proteins, Pex2p and Pex16p, from the endoplasmic reticulum en route to the peroxisomal membrane. Mutations in the PEX5, PEX16, and PEX17 genes, which have previously been shown to be essential for peroxisome biogenesis, affect the export of plasma membrane and cell wall-associated proteins specific for the mycelial form but do not impair exit from the endoplasmic reticulum of either Pex2p and Pex16p or of proteins destined for secretion. Biochemical analyses of these mutants provide evidence for the existence of four distinct secretory pathways that serve to deliver proteins for secretion, plasma membrane and cell wall synthesis during yeast and mycelial modes of growth, and peroxisome biogenesis. At least two of these secretory pathways, which are involved in the export of proteins to the external medium and in the delivery of proteins for assembly of the peroxisomal membrane, diverge at the level of the endoplasmic reticulum. PMID:9271399

  2. The Extracellular Vesicles of the Helminth Pathogen, Fasciola hepatica: Biogenesis Pathways and Cargo Molecules Involved in Parasite Pathogenesis*

    PubMed Central

    Cwiklinski, Krystyna; de la Torre-Escudero, Eduardo; Trelis, Maria; Bernal, Dolores; Dufresne, Philippe J.; Brennan, Gerard P.; O'Neill, Sandra; Tort, Jose; Paterson, Steve; Marcilla, Antonio; Dalton, John P.; Robinson, Mark W.

    2015-01-01

    Extracellular vesicles (EVs) released by parasites have important roles in establishing and maintaining infection. Analysis of the soluble and vesicular secretions of adult Fasciola hepatica has established a definitive characterization of the total secretome of this zoonotic parasite. Fasciola secretes at least two subpopulations of EVs that differ according to size, cargo molecules and site of release from the parasite. The larger EVs are released from the specialized cells that line the parasite gastrodermus and contain the zymogen of the 37 kDa cathepsin L peptidase that performs a digestive function. The smaller exosome-like vesicle population originate from multivesicular bodies within the tegumental syncytium and carry many previously described immunomodulatory molecules that could be delivered into host cells. By integrating our proteomics data with recently available transcriptomic data sets we have detailed the pathways involved with EV biogenesis in F. hepatica and propose that the small exosome biogenesis occurs via ESCRT-dependent MVB formation in the tegumental syncytium before being shed from the apical plasma membrane. Furthermore, we found that the molecular “machinery” required for EV biogenesis is constitutively expressed across the intramammalian development stages of the parasite. By contrast, the cargo molecules packaged within the EVs are developmentally regulated, most likely to facilitate the parasites migration through host tissue and to counteract host immune attack. PMID:26486420

  3. The Extracellular Vesicles of the Helminth Pathogen, Fasciola hepatica: Biogenesis Pathways and Cargo Molecules Involved in Parasite Pathogenesis.

    PubMed

    Cwiklinski, Krystyna; de la Torre-Escudero, Eduardo; Trelis, Maria; Bernal, Dolores; Dufresne, Philippe J; Brennan, Gerard P; O'Neill, Sandra; Tort, Jose; Paterson, Steve; Marcilla, Antonio; Dalton, John P; Robinson, Mark W

    2015-12-01

    Extracellular vesicles (EVs) released by parasites have important roles in establishing and maintaining infection. Analysis of the soluble and vesicular secretions of adult Fasciola hepatica has established a definitive characterization of the total secretome of this zoonotic parasite. Fasciola secretes at least two subpopulations of EVs that differ according to size, cargo molecules and site of release from the parasite. The larger EVs are released from the specialized cells that line the parasite gastrodermus and contain the zymogen of the 37 kDa cathepsin L peptidase that performs a digestive function. The smaller exosome-like vesicle population originate from multivesicular bodies within the tegumental syncytium and carry many previously described immunomodulatory molecules that could be delivered into host cells. By integrating our proteomics data with recently available transcriptomic data sets we have detailed the pathways involved with EV biogenesis in F. hepatica and propose that the small exosome biogenesis occurs via ESCRT-dependent MVB formation in the tegumental syncytium before being shed from the apical plasma membrane. Furthermore, we found that the molecular "machinery" required for EV biogenesis is constitutively expressed across the intramammalian development stages of the parasite. By contrast, the cargo molecules packaged within the EVs are developmentally regulated, most likely to facilitate the parasites migration through host tissue and to counteract host immune attack.

  4. Characterization of Yeast Extracellular Vesicles: Evidence for the Participation of Different Pathways of Cellular Traffic in Vesicle Biogenesis

    PubMed Central

    Joffe, Luna S.; Guimarães, Allan J.; Sobreira, Tiago J. P.; Nosanchuk, Joshua D.; Cordero, Radames J. B.; Frases, Susana; Casadevall, Arturo; Almeida, Igor C.; Nimrichter, Leonardo; Rodrigues, Marcio L.

    2010-01-01

    Background Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. Methodology/Principal Findings We characterized extracellular vesicle production in wild type (WT) and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB) formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100–300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. Conclusions/Significance Our results suggest that both conventional and unconventional pathways of secretion are required for

  5. Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili

    PubMed Central

    Wolfgang, Matthew; van Putten, Jos P.M.; Hayes, Stanley F.; Dorward, David; Koomey, Michael

    2000-01-01

    Type IV pili (Tfp) are a unique class of multifunctional surface organelles in Gram-negative bacteria, which play important roles in prokaryotic cell biology. Although components of the Tfp biogenesis machinery have been characterized, it is not clear how they function or interact. Using Neisseria gonorrhoeae as a model system, we report here that organelle biogenesis can be resolved into two discrete steps: fiber formation and translocation of the fiber to the cell surface. This conclusion is based on the capturing of an intermediate state in which the organelle is retained within the cell owing to the simultaneous absence of the secretin family member and biogenesis component PilQ and the twitching motility/pilus retraction protein PilT. This finding is the first demonstration of a specific translocation defect associated with loss of secretin function, and additionally confirms the role of PilT as a conditional antagonist of stable pilus fiber formation. These findings have important implications for Tfp structure and function and are pertinent to other membrane translocation systems that utilize a highly related set of components. PMID:11101514

  6. Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation.

    PubMed

    D'Souza, Anthony D; Parikh, Neal; Kaech, Susan M; Shadel, Gerald S

    2007-12-01

    The quantity and activity of mitochondria vary dramatically in tissues and are modulated in response to changing cellular energy demands and environmental factors. The amount of mitochondrial DNA (mtDNA), which encodes essential subunits of the oxidative phosphorylation complexes required for cellular ATP production, is also tightly regulated, but by largely unknown mechanisms. Using murine T cells as a model system, we have addressed how specific signaling pathways influence mitochondrial biogenesis and mtDNA copy number. T cell receptor (TCR) activation results in a large increase in mitochondrial mass and membrane potential and a corresponding amplification of mtDNA, consistent with a vital role for mitochondrial function for growth and proliferation of these cells. Independent activation of protein kinase C (via PMA) or calcium-related pathways (via ionomycin) had differential and sub-maximal effects on these mitochondrial parameters, as did activation of naïve T cells with proliferative cytokines. Thus, the robust mitochondrial biogenesis response observed upon TCR activation requires synergy of multiple downstream signaling pathways. One such pathway involves AMP-activated protein kinase (AMPK), which we show has an unprecedented role in negatively regulating mitochondrial biogenesis that is mammalian target of rapamycin (mTOR)-dependent. That is, inhibition of AMPK after TCR signaling commences results in excessive, but uncoordinated mitochondrial proliferation. Thus mitochondrial biogenesis is not under control of a single master regulatory circuit, but rather requires the convergence of multiple signaling pathways with distinct downstream consequences on the organelle's structure, composition, and function.

  7. GAIP Interacting Protein C-Terminus Regulates Autophagy and Exosome Biogenesis of Pancreatic Cancer through Metabolic Pathways

    PubMed Central

    Bhattacharya, Santanu; Pal, Krishnendu; Sharma, Anil K.; Dutta, Shamit K.; Lau, Julie S.; Yan, Irene K.; Wang, Enfeng; Elkhanany, Ahmed; Alkharfy, Khalid M.; Sanyal, Arunik; Patel, Tushar C.; Chari, Suresh T.; Spaller, Mark R.; Mukhopadhyay, Debabrata

    2014-01-01

    GAIP interacting protein C terminus (GIPC) is known to play an important role in a variety of physiological and disease states. In the present study, we have identified a novel role for GIPC as a master regulator of autophagy and the exocytotic pathways in cancer. We show that depletion of GIPC-induced autophagy in pancreatic cancer cells, as evident from the upregulation of the autophagy marker LC3II. We further report that GIPC regulates cellular trafficking pathways by modulating the secretion, biogenesis, and molecular composition of exosomes. We also identified the involvement of GIPC on metabolic stress pathways regulating autophagy and microvesicular shedding, and observed that GIPC status determines the loading of cellular cargo in the exosome. Furthermore, we have shown the overexpression of the drug resistance gene ABCG2 in exosomes from GIPC-depleted pancreatic cancer cells. We also demonstrated that depletion of GIPC from cancer cells sensitized them to gemcitabine treatment, an avenue that can be explored as a potential therapeutic strategy to overcome drug resistance in cancer. PMID:25469510

  8. GAIP interacting protein C-terminus regulates autophagy and exosome biogenesis of pancreatic cancer through metabolic pathways.

    PubMed

    Bhattacharya, Santanu; Pal, Krishnendu; Sharma, Anil K; Dutta, Shamit K; Lau, Julie S; Yan, Irene K; Wang, Enfeng; Elkhanany, Ahmed; Alkharfy, Khalid M; Sanyal, Arunik; Patel, Tushar C; Chari, Suresh T; Spaller, Mark R; Mukhopadhyay, Debabrata

    2014-01-01

    GAIP interacting protein C terminus (GIPC) is known to play an important role in a variety of physiological and disease states. In the present study, we have identified a novel role for GIPC as a master regulator of autophagy and the exocytotic pathways in cancer. We show that depletion of GIPC-induced autophagy in pancreatic cancer cells, as evident from the upregulation of the autophagy marker LC3II. We further report that GIPC regulates cellular trafficking pathways by modulating the secretion, biogenesis, and molecular composition of exosomes. We also identified the involvement of GIPC on metabolic stress pathways regulating autophagy and microvesicular shedding, and observed that GIPC status determines the loading of cellular cargo in the exosome. Furthermore, we have shown the overexpression of the drug resistance gene ABCG2 in exosomes from GIPC-depleted pancreatic cancer cells. We also demonstrated that depletion of GIPC from cancer cells sensitized them to gemcitabine treatment, an avenue that can be explored as a potential therapeutic strategy to overcome drug resistance in cancer.

  9. The CDP-Ethanolamine Pathway Regulates Skeletal Muscle Diacylglycerol Content and Mitochondrial Biogenesis without Altering Insulin Sensitivity.

    PubMed

    Selathurai, Ahrathy; Kowalski, Greg M; Burch, Micah L; Sepulveda, Patricio; Risis, Steve; Lee-Young, Robert S; Lamon, Severine; Meikle, Peter J; Genders, Amanda J; McGee, Sean L; Watt, Matthew J; Russell, Aaron P; Frank, Matthew; Jackowski, Suzanne; Febbraio, Mark A; Bruce, Clinton R

    2015-05-01

    Accumulation of diacylglycerol (DG) in muscle is thought to cause insulin resistance. DG is a precursor for phospholipids, thus phospholipid synthesis could be involved in regulating muscle DG. Little is known about the interaction between phospholipid and DG in muscle; therefore, we examined whether disrupting muscle phospholipid synthesis, specifically phosphatidylethanolamine (PtdEtn), would influence muscle DG content and insulin sensitivity. Muscle PtdEtn synthesis was disrupted by deleting CTP:phosphoethanolamine cytidylyltransferase (ECT), the rate-limiting enzyme in the CDP-ethanolamine pathway, a major route for PtdEtn production. While PtdEtn was reduced in muscle-specific ECT knockout mice, intramyocellular and membrane-associated DG was markedly increased. Importantly, however, this was not associated with insulin resistance. Unexpectedly, mitochondrial biogenesis and muscle oxidative capacity were increased in muscle-specific ECT knockout mice and were accompanied by enhanced exercise performance. These findings highlight the importance of the CDP-ethanolamine pathway in regulating muscle DG content and challenge the DG-induced insulin resistance hypothesis. PMID:25955207

  10. Structural Insight into Archaic and Alternative Chaperone-Usher Pathways Reveals a Novel Mechanism of Pilus Biogenesis

    PubMed Central

    Pakharukova, Natalia; Garnett, James A.; Tuittila, Minna; Paavilainen, Sari; Diallo, Mamou; Xu, Yingqi; Matthews, Steve J.; Zavialov, Anton V.

    2015-01-01

    Gram-negative pathogens express fibrous adhesive organelles that mediate targeting to sites of infection. The major class of these organelles is assembled via the classical, alternative and archaic chaperone-usher pathways. Although non-classical systems share a wider phylogenetic distribution and are associated with a range of diseases, little is known about their assembly mechanisms. Here we report atomic-resolution insight into the structure and biogenesis of Acinetobacter baumannii Csu and Escherichia coli ECP biofilm-mediating pili. We show that the two non-classical systems are structurally related, but their assembly mechanism is strikingly different from the classical assembly pathway. Non-classical chaperones, unlike their classical counterparts, maintain subunits in a substantially disordered conformational state, akin to a molten globule. This is achieved by a unique binding mechanism involving the register-shifted donor strand complementation and a different subunit carboxylate anchor. The subunit lacks the classical pre-folded initiation site for donor strand exchange, suggesting that recognition of its exposed hydrophobic core starts the assembly process and provides fresh inspiration for the design of inhibitors targeting chaperone-usher systems. PMID:26587649

  11. Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation

    PubMed Central

    D’Souza, Anthony D.; Parikh, Neal; Kaech, Susan M.; Shadel, Gerald S.

    2009-01-01

    The quantity and activity of mitochondria vary dramatically in tissues and are modulated in response to changing cellular energy demands and environmental factors. The amount of mitochondrial DNA (mtDNA), which encodes essential subunits of the oxidative phosphorylation complexes required for cellular ATP production, is also tightly regulated, but by largely unknown mechanisms. Using murine T cells as a model system, we have addressed how specific signaling pathways influence mitochondrial biogenesis and mtDNA levels. T cell receptor (TCR) activation results in a large increase in mitochondrial mass and membrane potential and a corresponding increase of mtDNA copy number, indicating the vital role for mitochondrial function for the growth and proliferation of these cells. Independent activation of protein kinase C (via PMA) or calcium-related pathways (via ionomycin) had differential and sub-maximal effects on these mitochondrial parameters, as did activation of naïve T cells with proliferative cytokines. Thus, the robust mitochondrial biogenesis response observed upon TCR activation requires synergy of multiple downstream signaling pathways. One such pathway involves AMP-activated protein kinase (AMPK), which we show has an unprecedented role in negatively regulating mitochondrial biogenesis that is mammalian target of rapamycin (mTOR)-dependent. That is, inhibition of AMPK after TCR signaling commences results in excessive, but uncoordinated mitochondrial proliferation. We propose that mitochondrial biogenesis is not under control of a master regulatory circuit, but rather requires the convergence of multiple signaling pathways with distinct downstream consequences on the organelle’s structure, composition, and function. PMID:17890163

  12. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    PubMed Central

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed. PMID:22174182

  13. The Stability of Ribosome Biogenesis Factor WBSCR22 Is Regulated by Interaction with TRMT112 via Ubiquitin-Proteasome Pathway

    PubMed Central

    Õunap, Kadri; Leetsi, Lilian; Matsoo, Maarja; Kurg, Reet

    2015-01-01

    The human WBSCR22 protein is a 18S rRNA methyltransferase involved in pre-rRNA processing and ribosome 40S subunit biogenesis. Recent studies have shown that the protein function in ribosome synthesis is independent of its enzymatic activity. In this work, we have studied the WBSCR22 protein interaction partners by SILAC-coupled co-immunoprecipitation assay and identified TRMT112 as the interaction partner of WBSCR22. Knock-down of TRMT112 expression decreased the WBSCR22 protein level in mammalian cells, suggesting that the stability of WBSCR22 is regulated through the interaction with TRMT112. The localization of the TRMT112 protein is determined by WBSCR22, and the WBSCR22-TRMT112 complex is localized in the cell nucleus. We provide evidence that the interaction between WBSCR22/Bud23 and TRMT112/Trm112 is conserved between mammals and yeast, suggesting that the function of TRMT112 as a co-activator of methyltransferases is evolutionarily conserved. Finally, we show that the transiently expressed WBSCR22 protein is ubiquitinated and degraded through the proteasome pathway, revealing the tight control of the WBSCR22 protein level in the cells. PMID:26214185

  14. Protective Effects of Quercetin on Mitochondrial Biogenesis in Experimental Traumatic Brain Injury via the Nrf2 Signaling Pathway

    PubMed Central

    Li, Xiang; Wang, Handong; Gao, Yongyue; Li, Liwen; Tang, Chao; Wen, Guodao; Zhou, Yuan; Zhou, Mengliang; Mao, Lei; Fan, Youwu

    2016-01-01

    The present investigation was carried out to elucidate a possible molecular mechanism related to the protective effect of quercetin administration against oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in mitochondrial biogenesis. Recently, quercetin has been proved to have a protective effect against mitochondria damage after traumatic brain injury (TBI). However, its precise role and underlying mechanisms in traumatic brain injury are not yet fully understood. The aim of the present study was to investigate the effect of quercetin on the potential mechanism of these effects in a weight-drop model of TBI in male mice that were treated with quercetin or vehicle via intraperitoneal injection administrated 30 min after TBI. In this experiment, ICR mice were divided into four groups: A sham group, TBI group, TBI + vehicle group, and TBI + quercetin group. Brain samples were collected 24 h later for analysis. Quercetin treatment resulted in an upregulation of Nrf2 expression and cytochrome c, malondialdehyde (MDA) and superoxide dismutase (SOD) levels were restored by quercetin treatment. Quercetin markedly promoted the translocation of Nrf2 protein from the cytoplasm to the nucleus. These observations suggest that quercetin improves mitochondrial function in TBI models, possibly by activating the Nrf2 pathway. PMID:27780244

  15. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways

    PubMed Central

    Mishanina, Tatiana V; Libiad, Marouane; Banerjee, Ruma

    2016-01-01

    The chemical species involved in H2S signaling remain elusive despite the profound and pleiotropic physiological effects elicited by this molecule. The dominant candidate mechanism for sulfide signaling is persulfidation of target proteins. However, the relatively poor reactivity of H2S toward oxidized thiols, such as disulfides, the low concentration of disulfides in the reducing milieu of the cell and the low steady-state concentration of H2S raise questions about the plausibility of persulfide formation via reaction between an oxidized thiol and a sulfide anion or a reduced thiol and oxidized hydrogen disulfide. In contrast, sulfide oxidation pathways, considered to be primarily mechanisms for disposing of excess sulfide, generate a series of reactive sulfur species, including persulfides, polysulfides and thiosulfate, that could modify target proteins. We posit that sulfide oxidation pathways mediate sulfide signaling and that sulfurtransferases ensure target specificity. PMID:26083070

  16. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis

    PubMed Central

    Piek, Susannah; Kahler, Charlene M.

    2012-01-01

    The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism. PMID:23267440

  17. The ribosome biogenesis pathway as an early target of benzyl butyl phthalate (BBP) toxicity in Chironomus riparius larvae.

    PubMed

    Herrero, Óscar; Planelló, Rosario; Morcillo, Gloria

    2016-02-01

    Butyl benzyl phthalate (BBP) is a ubiquitous contaminant whose presence in the environment is expected for decades, since it has been extensively used worldwide as a plasticizer in the polyvinyl chloride (PVC) industry and the manufacturing of many other products. In the present study, the interaction of BBP with the ribosome biogenesis pathway and the general transcriptional profile of Chironomus riparius aquatic larvae were investigated by means of changes in the rDNA activity (through the study of the internal transcribed spacer 2, ITS2) and variations in the expression profile of ribosomal protein genes (rpL4, rpL11, and rpL13) after acute 24-h and 48-h exposures to a wide range of BBP doses. Furthermore, cytogenetic assays were conducted to evaluate the transcriptional activity of polytene chromosomes from salivary gland cells, with special attention to the nucleolus and the Balbiani rings (BRs) of chromosome IV. BBP caused a dose and time-dependent toxicity in most of the selected biomarkers, with a general depletion in the gene expression levels and the activity of BR2 after 48-h treatments. At the same time, decondensation and activation of some centromeres took place, while the activity of nucleolus remained unaltered. Withdrawal of the xenobiotic allowed the larvae to reach control levels in the case of rpL4 and rpL13 genes, which were previously slightly downregulated in 24-h tests. These data provide the first evidence on the interaction of BBP with the ribosome synthesis pathways, which results in a significant impairment of the functional activity of ribosomal protein genes. Thus, the depletion of ribosomes would be a long-term effect of BBP-induced cellular damage. These findings may have important implications for understanding the adverse biological effects of BBP in C. riparius, since they provide new sensitive biomarkers of BBP exposure and highlight the suitability of this organism for ecotoxicological risk assessment, especially in aquatic

  18. Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways

    PubMed Central

    Vlasblom, James; Gagarinova, Alla; Phanse, Sadhna; Graham, Chris; Yousif, Fouad; Ding, Huiming; Xiong, Xuejian; Nazarians-Armavil, Anaies; Alamgir, Md; Ali, Mehrab; Pogoutse, Oxana; Pe'er, Asaf; Arnold, Roland; Michaut, Magali; Parkinson, John; Golshani, Ashkan; Whitfield, Chris; Wodak, Shoshana J.; Moreno-Hagelsieb, Gabriel; Greenblatt, Jack F.; Emili, Andrew

    2011-01-01

    As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target. PMID:22125496

  19. Cutis laxa: intersection of elastic fiber biogenesis, TGFβ signaling, the secretory pathway and metabolism.

    PubMed

    Urban, Zsolt; Davis, Elaine C

    2014-01-01

    Cutis laxa (CL), a disease characterized by redundant and inelastic skin, displays extensive locus heterogeneity. Together with geroderma osteodysplasticum and arterial tortuosity syndrome, which show phenotypic overlap with CL, eleven CL-related genes have been identified to date, which encode proteins within 3 groups. Elastin, fibulin-4, fibulin-5 and latent transforming growth factor-β-binding protein 4 are secreted proteins which form elastic fibers and are involved in the sequestration and subsequent activation of transforming growth factor-β (TGFβ). Proteins within the second group, localized to the secretory pathway, perform transport and membrane trafficking functions necessary for the modification and secretion of elastic fiber components. Key proteins include a subunit of the vacuolar-type proton pump, which ensures the efficient secretion of tropoelastin, the precursor or elastin. A copper transporter is required for the activity of lysyl oxidases, which crosslink collagen and elastin. A Rab6-interacting goglin recruits kinesin motors to Golgi-vesicles facilitating the transport from the Golgi to the plasma membrane. The Rab and Ras interactor 2 regulates the activity of Rab5, a small guanosine triphosphatase essential for the endocytosis of various cell surface receptors, including integrins. Proteins of the third group related to CL perform metabolic functions within the mitochondria, inhibiting the accumulation of reactive oxygen species. Two of these proteins catalyze subsequent steps in the conversion of glutamate to proline. The third transports dehydroascorbate into mitochondria. Recent studies on CL-related proteins highlight the intricate connections among membrane trafficking, metabolism, extracellular matrix assembly, and TGFβ signaling. PMID:23954411

  20. Cutis laxa: intersection of elastic fiber biogenesis, TGFβ signaling, the secretory pathway and metabolism.

    PubMed

    Urban, Zsolt; Davis, Elaine C

    2014-01-01

    Cutis laxa (CL), a disease characterized by redundant and inelastic skin, displays extensive locus heterogeneity. Together with geroderma osteodysplasticum and arterial tortuosity syndrome, which show phenotypic overlap with CL, eleven CL-related genes have been identified to date, which encode proteins within 3 groups. Elastin, fibulin-4, fibulin-5 and latent transforming growth factor-β-binding protein 4 are secreted proteins which form elastic fibers and are involved in the sequestration and subsequent activation of transforming growth factor-β (TGFβ). Proteins within the second group, localized to the secretory pathway, perform transport and membrane trafficking functions necessary for the modification and secretion of elastic fiber components. Key proteins include a subunit of the vacuolar-type proton pump, which ensures the efficient secretion of tropoelastin, the precursor or elastin. A copper transporter is required for the activity of lysyl oxidases, which crosslink collagen and elastin. A Rab6-interacting goglin recruits kinesin motors to Golgi-vesicles facilitating the transport from the Golgi to the plasma membrane. The Rab and Ras interactor 2 regulates the activity of Rab5, a small guanosine triphosphatase essential for the endocytosis of various cell surface receptors, including integrins. Proteins of the third group related to CL perform metabolic functions within the mitochondria, inhibiting the accumulation of reactive oxygen species. Two of these proteins catalyze subsequent steps in the conversion of glutamate to proline. The third transports dehydroascorbate into mitochondria. Recent studies on CL-related proteins highlight the intricate connections among membrane trafficking, metabolism, extracellular matrix assembly, and TGFβ signaling.

  1. The ribosome biogenesis pathway as an early target of benzyl butyl phthalate (BBP) toxicity in Chironomus riparius larvae.

    PubMed

    Herrero, Óscar; Planelló, Rosario; Morcillo, Gloria

    2016-02-01

    Butyl benzyl phthalate (BBP) is a ubiquitous contaminant whose presence in the environment is expected for decades, since it has been extensively used worldwide as a plasticizer in the polyvinyl chloride (PVC) industry and the manufacturing of many other products. In the present study, the interaction of BBP with the ribosome biogenesis pathway and the general transcriptional profile of Chironomus riparius aquatic larvae were investigated by means of changes in the rDNA activity (through the study of the internal transcribed spacer 2, ITS2) and variations in the expression profile of ribosomal protein genes (rpL4, rpL11, and rpL13) after acute 24-h and 48-h exposures to a wide range of BBP doses. Furthermore, cytogenetic assays were conducted to evaluate the transcriptional activity of polytene chromosomes from salivary gland cells, with special attention to the nucleolus and the Balbiani rings (BRs) of chromosome IV. BBP caused a dose and time-dependent toxicity in most of the selected biomarkers, with a general depletion in the gene expression levels and the activity of BR2 after 48-h treatments. At the same time, decondensation and activation of some centromeres took place, while the activity of nucleolus remained unaltered. Withdrawal of the xenobiotic allowed the larvae to reach control levels in the case of rpL4 and rpL13 genes, which were previously slightly downregulated in 24-h tests. These data provide the first evidence on the interaction of BBP with the ribosome synthesis pathways, which results in a significant impairment of the functional activity of ribosomal protein genes. Thus, the depletion of ribosomes would be a long-term effect of BBP-induced cellular damage. These findings may have important implications for understanding the adverse biological effects of BBP in C. riparius, since they provide new sensitive biomarkers of BBP exposure and highlight the suitability of this organism for ecotoxicological risk assessment, especially in aquatic

  2. Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways.

    PubMed

    Xiao, Yu; Karnati, Srikanth; Qian, Guofeng; Nenicu, Anca; Fan, Wei; Tchatalbachev, Svetlin; Höland, Anita; Hossain, Hamid; Guillou, Florian; Lüers, Georg H; Baumgart-Vogt, Eveline

    2012-01-01

    Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts), inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14) as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase). In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2) and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7) in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt) with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  3. Sestrin2 Silencing Exacerbates Cerebral Ischemia/Reperfusion Injury by Decreasing Mitochondrial Biogenesis through the AMPK/PGC-1α Pathway in Rats

    PubMed Central

    Li, Lingyu; Xiao, Lina; Hou, Yanghao; He, Qi; Zhu, Jin; Li, Yixin; Wu, Jingxian; Zhao, Jing; Yu, Shanshan; Zhao, Yong

    2016-01-01

    Sestrin2 (Sesn2) exerts neuroprotective properties in some neurodegenerative diseases. However, the role of Sesn2 in stroke is unclear. The AMP-activated protein kinase/peroxisome proliferator-activated receptor γ coactivator-1α (AMPK/PGC-1α) pathway plays an important role in regulating mitochondrial biogenesis, which helps prevent cerebral ischemia/reperfusion (I/R) injury. Here, we aimed to determine whether Sesn2 alleviated I/R damage by regulating mitochondrial biogenesis through the AMPK/PGC-1α signaling pathway. To be able to test this, Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 1 h with Sesn2 silencing. At 24 h after reperfusion, we found that neurological deficits were exacerbated, infarct volume was enlarged, and oxidative stress and neuronal damage were greater in the Sesn2 siRNA group than in the MCAO group. To explore protective mechanisms, an AMPK activator was used. Expression levels of Sesn2, p-AMPK, PGC-1α, NRF-1, TFAM, SOD2, and UCP2 were significantly increased following cerebral I/R. However, upregulation of these proteins was prevented by Sesn2 small interfering RNA (siRNA). In contrast, activation of AMPK with 5′-aminoimidazole-4-carboxamide riboside weakened the effects of Sesn2 siRNA. These results suggest that Sesn2 silencing may suppress mitochondrial biogenesis, reduce mitochondrial biological activity, and finally aggravate cerebral I/R injury through inhibiting the AMPK/PGC-1α pathway. PMID:27453548

  4. Sestrin2 Silencing Exacerbates Cerebral Ischemia/Reperfusion Injury by Decreasing Mitochondrial Biogenesis through the AMPK/PGC-1α Pathway in Rats.

    PubMed

    Li, Lingyu; Xiao, Lina; Hou, Yanghao; He, Qi; Zhu, Jin; Li, Yixin; Wu, Jingxian; Zhao, Jing; Yu, Shanshan; Zhao, Yong

    2016-01-01

    Sestrin2 (Sesn2) exerts neuroprotective properties in some neurodegenerative diseases. However, the role of Sesn2 in stroke is unclear. The AMP-activated protein kinase/peroxisome proliferator-activated receptor γ coactivator-1α (AMPK/PGC-1α) pathway plays an important role in regulating mitochondrial biogenesis, which helps prevent cerebral ischemia/reperfusion (I/R) injury. Here, we aimed to determine whether Sesn2 alleviated I/R damage by regulating mitochondrial biogenesis through the AMPK/PGC-1α signaling pathway. To be able to test this, Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 1 h with Sesn2 silencing. At 24 h after reperfusion, we found that neurological deficits were exacerbated, infarct volume was enlarged, and oxidative stress and neuronal damage were greater in the Sesn2 siRNA group than in the MCAO group. To explore protective mechanisms, an AMPK activator was used. Expression levels of Sesn2, p-AMPK, PGC-1α, NRF-1, TFAM, SOD2, and UCP2 were significantly increased following cerebral I/R. However, upregulation of these proteins was prevented by Sesn2 small interfering RNA (siRNA). In contrast, activation of AMPK with 5'-aminoimidazole-4-carboxamide riboside weakened the effects of Sesn2 siRNA. These results suggest that Sesn2 silencing may suppress mitochondrial biogenesis, reduce mitochondrial biological activity, and finally aggravate cerebral I/R injury through inhibiting the AMPK/PGC-1α pathway. PMID:27453548

  5. Biogenesis of the protein import channel Tom40 of the mitochondrial outer membrane: intermembrane space components are involved in an early stage of the assembly pathway.

    PubMed

    Wiedemann, Nils; Truscott, Kaye N; Pfannschmidt, Sylvia; Guiard, Bernard; Meisinger, Chris; Pfanner, Nikolaus

    2004-04-30

    Tom40 forms the central channel of the preprotein translocase of the mitochondrial outer membrane (TOM complex). The precursor of Tom40 is encoded in the nucleus, synthesized in the cytosol, and imported into mitochondria via a multi-step assembly pathway that involves the mature TOM complex and the sorting and assembly machinery of the outer membrane (SAM complex). We report that opening of the mitochondrial intermembrane space by swelling blocks the assembly pathway of the beta-barrel protein Tom40. Mitochondria with defects in small Tim proteins of the intermembrane space are impaired in the Tom40 assembly pathway. Swelling as well as defects in the small Tim proteins inhibit an early stage of the Tom40 import pathway that is needed for formation of a Tom40-SAM intermediate. We propose that the biogenesis pathway of beta-barrel proteins of the outer mitochondrial membrane not only requires TOM and SAM components, but also involves components of the intermembrane space.

  6. Genetic variants in microRNA and microRNA biogenesis pathway genes and breast cancer risk among women of African ancestry.

    PubMed

    Qian, Frank; Feng, Ye; Zheng, Yonglan; Ogundiran, Temidayo O; Ojengbede, Oladosu; Zheng, Wei; Blot, William; Ambrosone, Christine B; John, Esther M; Bernstein, Leslie; Hu, Jennifer J; Ziegler, Regina G; Nyante, Sarah; Bandera, Elisa V; Ingles, Sue A; Press, Michael F; Nathanson, Katherine L; Hennis, Anselm; Nemesure, Barbara; Ambs, Stefan; Kolonel, Laurence N; Olopade, Olufunmilayo I; Haiman, Christopher A; Huo, Dezheng

    2016-10-01

    MicroRNAs (miRNA) regulate breast biology by binding to specific RNA sequences, leading to RNA degradation and inhibition of translation of their target genes. While germline genetic variations may disrupt some of these interactions between miRNAs and their targets, studies assessing the relationship between genetic variations in the miRNA network and breast cancer risk are still limited, particularly among women of African ancestry. We systematically put together a list of 822 and 10,468 genetic variants among primary miRNA sequences and 38 genes in the miRNA biogenesis pathway, respectively; and examined their association with breast cancer risk in the ROOT consortium which includes women of African ancestry. Findings were replicated in an independent consortium. Logistic regression was used to estimate the odds ratio (OR) and 95 % confidence intervals (CI). For overall breast cancer risk, three single-nucleotide polymorphisms (SNPs) in miRNA biogenesis genes DROSHA rs78393591 (OR = 0.69, 95 % CI: 0.55-0.88, P = 0.003), ESR1 rs523736 (OR = 0.88, 95 % CI: 0.82-0.95, P = 3.99 × 10(-4)), and ZCCHC11 rs114101502 (OR = 1.33, 95 % CI: 1.11-1.59, P = 0.002), and one SNP in primary miRNA sequence (rs116159732 in miR-6826, OR = 0.74, 95 % CI: 0.63-0.89, P = 0.001) were found to have significant associations in both discovery and validation phases. In a subgroup analysis, two SNPs were associated with risk of estrogen receptor (ER)-negative breast cancer, and three SNPs were associated with risk of ER-positive breast cancer. Several variants in miRNA and miRNA biogenesis pathway genes were associated with breast cancer risk. Risk associations varied by ER status, suggesting potential new mechanisms in etiology.

  7. Genetic variants in microRNA and microRNA biogenesis pathway genes and breast cancer risk among women of African ancestry.

    PubMed

    Qian, Frank; Feng, Ye; Zheng, Yonglan; Ogundiran, Temidayo O; Ojengbede, Oladosu; Zheng, Wei; Blot, William; Ambrosone, Christine B; John, Esther M; Bernstein, Leslie; Hu, Jennifer J; Ziegler, Regina G; Nyante, Sarah; Bandera, Elisa V; Ingles, Sue A; Press, Michael F; Nathanson, Katherine L; Hennis, Anselm; Nemesure, Barbara; Ambs, Stefan; Kolonel, Laurence N; Olopade, Olufunmilayo I; Haiman, Christopher A; Huo, Dezheng

    2016-10-01

    MicroRNAs (miRNA) regulate breast biology by binding to specific RNA sequences, leading to RNA degradation and inhibition of translation of their target genes. While germline genetic variations may disrupt some of these interactions between miRNAs and their targets, studies assessing the relationship between genetic variations in the miRNA network and breast cancer risk are still limited, particularly among women of African ancestry. We systematically put together a list of 822 and 10,468 genetic variants among primary miRNA sequences and 38 genes in the miRNA biogenesis pathway, respectively; and examined their association with breast cancer risk in the ROOT consortium which includes women of African ancestry. Findings were replicated in an independent consortium. Logistic regression was used to estimate the odds ratio (OR) and 95 % confidence intervals (CI). For overall breast cancer risk, three single-nucleotide polymorphisms (SNPs) in miRNA biogenesis genes DROSHA rs78393591 (OR = 0.69, 95 % CI: 0.55-0.88, P = 0.003), ESR1 rs523736 (OR = 0.88, 95 % CI: 0.82-0.95, P = 3.99 × 10(-4)), and ZCCHC11 rs114101502 (OR = 1.33, 95 % CI: 1.11-1.59, P = 0.002), and one SNP in primary miRNA sequence (rs116159732 in miR-6826, OR = 0.74, 95 % CI: 0.63-0.89, P = 0.001) were found to have significant associations in both discovery and validation phases. In a subgroup analysis, two SNPs were associated with risk of estrogen receptor (ER)-negative breast cancer, and three SNPs were associated with risk of ER-positive breast cancer. Several variants in miRNA and miRNA biogenesis pathway genes were associated with breast cancer risk. Risk associations varied by ER status, suggesting potential new mechanisms in etiology. PMID:27380242

  8. Quercetin protects against aluminium induced oxidative stress and promotes mitochondrial biogenesis via activation of the PGC-1α signaling pathway.

    PubMed

    Sharma, Deep Raj; Sunkaria, Aditya; Wani, Willayat Yousuf; Sharma, Reeta Kumari; Verma, Deepika; Priyanka, Kumari; Bal, Amanjit; Gill, Kiran Dip

    2015-12-01

    The present investigation was carried out to elucidate a possible molecular mechanism related to the protective effect of quercetin administration against aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of PGC-1α and its downstream targets, i.e. NRF-1, NRF-2 and Tfam in mitochondrial biogenesis. Aluminium lactate (10mg/kg b.wt./day) was administered intragastrically to rats, which were pre-treated with quercetin 6h before aluminium (10mg/kg b.wt./day, intragastrically) for 12 weeks. We found a decrease in ROS levels, mitochondrial DNA oxidation and citrate synthase activity in the hippocampus (HC) and corpus striatum (CS) regions of rat brain treated with quercetin. Besides this an increase in the mRNA levels of the mitochondrial encoded subunits - ND1, ND2, ND3, Cyt b, COX1, COX3 and ATPase6 along with increased expression of nuclear encoded subunits COX4, COX5A and COX5B of electron transport chain (ETC). In quercetin treated group an increase in the mitochondrial DNA copy number and mitochondrial content in both the regions of rat brain was observed. The PGC-1α was up regulated in quercetin treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α. Electron microscopy results revealed a significant decrease in the mitochondrial cross-section area, mitochondrial perimeter length and increase in mitochondrial number in case of quercetin treated rats as compared to aluminium treated ones. Therefore it seems quercetin increases mitochondrial biogenesis and makes it an almost ideal flavanoid to control or limit the damage that has been associated with the defective mitochondrial function seen in many neurodegenerative diseases.

  9. The histone H3 lysine 56 acetylation pathway is regulated by target of rapamycin (TOR) signaling and functions directly in ribosomal RNA biogenesis.

    PubMed

    Chen, Hongfeng; Fan, Meiyun; Pfeffer, Lawrence M; Laribee, R Nicholas

    2012-08-01

    Epigenetic changes in chromatin through histone post-translational modifications are essential for altering gene transcription in response to environmental cues. How histone modifications are regulated by environmental stimuli remains poorly understood yet this process is critical for delineating how epigenetic pathways are influenced by the cellular environment. We have used the target of rapamycin (TOR) pathway, which transmits environmental nutrient signals to control cell growth, as a model to delineate mechanisms underlying this phenomenon. A chemical genomics screen using the TOR inhibitor rapamycin against a histone H3/H4 mutant library identified histone H3 lysine 56 acetylation (H3K56ac) as a chromatin modification regulated by TOR signaling. We demonstrate this acetylation pathway functions in TOR-dependent cell growth in part by contributing directly to ribosomal RNA (rRNA) biogenesis. Specifically, H3K56ac creates a chromatin environment permissive to RNA polymerase I transcription and nascent rRNA processing by regulating binding of the high mobility group protein Hmo1 and the small ribosomal subunit (SSU) processome complex. Overall, these studies identify a novel chromatin regulatory role for TOR signaling and support a specific function for H3K56ac in ribosomal DNA (rDNA) gene transcription and nascent rRNA processing essential for cell growth.

  10. Rab GTPases and the Autophagy Pathway: Bacterial Targets for a Suitable Biogenesis and Trafficking of Their Own Vacuoles

    PubMed Central

    López de Armentia, María Milagros; Amaya, Celina; Colombo, María Isabel

    2016-01-01

    Autophagy is an intracellular process that comprises degradation of damaged organelles, protein aggregates and intracellular pathogens, having an important role in controlling the fate of invading microorganisms. Intracellular pathogens are internalized by professional and non-professional phagocytes, localizing in compartments called phagosomes. To degrade the internalized microorganism, the microbial phagosome matures by fusion events with early and late endosomal compartments and lysosomes, a process that is regulated by Rab GTPases. Interestingly, in order to survive and replicate in the phagosome, some pathogens employ different strategies to manipulate vesicular traffic, inhibiting phagolysosomal biogenesis (e.g., Staphylococcus aureus and Mycobacterium tuberculosis) or surviving in acidic compartments and forming replicative vacuoles (e.g., Coxiella burnetti and Legionella pneumophila). The bacteria described in this review often use secretion systems to control the host’s response and thus disseminate. To date, eight types of secretion systems (Type I to Type VIII) are known. Some of these systems are used by bacteria to translocate pathogenic proteins into the host cell and regulate replicative vacuole formation, apoptosis, cytokine responses, and autophagy. Herein, we have focused on how bacteria manipulate small Rab GTPases to control many of these processes. The growing knowledge in this field may facilitate the development of new treatments or contribute to the prevention of these types of bacterial infections. PMID:27005665

  11. Rab GTPases and the Autophagy Pathway: Bacterial Targets for a Suitable Biogenesis and Trafficking of Their Own Vacuoles.

    PubMed

    López de Armentia, María Milagros; Amaya, Celina; Colombo, María Isabel

    2016-03-08

    Autophagy is an intracellular process that comprises degradation of damaged organelles, protein aggregates and intracellular pathogens, having an important role in controlling the fate of invading microorganisms. Intracellular pathogens are internalized by professional and non-professional phagocytes, localizing in compartments called phagosomes. To degrade the internalized microorganism, the microbial phagosome matures by fusion events with early and late endosomal compartments and lysosomes, a process that is regulated by Rab GTPases. Interestingly, in order to survive and replicate in the phagosome, some pathogens employ different strategies to manipulate vesicular traffic, inhibiting phagolysosomal biogenesis (e.g., Staphylococcus aureus and Mycobacterium tuberculosis) or surviving in acidic compartments and forming replicative vacuoles (e.g., Coxiella burnetti and Legionella pneumophila). The bacteria described in this review often use secretion systems to control the host's response and thus disseminate. To date, eight types of secretion systems (Type I to Type VIII) are known. Some of these systems are used by bacteria to translocate pathogenic proteins into the host cell and regulate replicative vacuole formation, apoptosis, cytokine responses, and autophagy. Herein, we have focused on how bacteria manipulate small Rab GTPases to control many of these processes. The growing knowledge in this field may facilitate the development of new treatments or contribute to the prevention of these types of bacterial infections.

  12. Rab GTPases and the Autophagy Pathway: Bacterial Targets for a Suitable Biogenesis and Trafficking of Their Own Vacuoles.

    PubMed

    López de Armentia, María Milagros; Amaya, Celina; Colombo, María Isabel

    2016-01-01

    Autophagy is an intracellular process that comprises degradation of damaged organelles, protein aggregates and intracellular pathogens, having an important role in controlling the fate of invading microorganisms. Intracellular pathogens are internalized by professional and non-professional phagocytes, localizing in compartments called phagosomes. To degrade the internalized microorganism, the microbial phagosome matures by fusion events with early and late endosomal compartments and lysosomes, a process that is regulated by Rab GTPases. Interestingly, in order to survive and replicate in the phagosome, some pathogens employ different strategies to manipulate vesicular traffic, inhibiting phagolysosomal biogenesis (e.g., Staphylococcus aureus and Mycobacterium tuberculosis) or surviving in acidic compartments and forming replicative vacuoles (e.g., Coxiella burnetti and Legionella pneumophila). The bacteria described in this review often use secretion systems to control the host's response and thus disseminate. To date, eight types of secretion systems (Type I to Type VIII) are known. Some of these systems are used by bacteria to translocate pathogenic proteins into the host cell and regulate replicative vacuole formation, apoptosis, cytokine responses, and autophagy. Herein, we have focused on how bacteria manipulate small Rab GTPases to control many of these processes. The growing knowledge in this field may facilitate the development of new treatments or contribute to the prevention of these types of bacterial infections. PMID:27005665

  13. Mitochondrial biogenesis: pharmacological approaches.

    PubMed

    Valero, Teresa

    2014-01-01

    ), myoclonic epilepsy with ragged-red fibers (MERRF), mitochondrial encephalomyopathy, lactic acidosis and strokelike episodes (MELAS), Leber's hereditary optic neuropathy (LHON), the syndrome of neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP), and Leigh's syndrome. Likewise, other diseases in which mitochondrial dysfunction plays a very important role include neurodegenerative diseases, diabetes or cancer. Generally, in mitochondrial diseases a mutation in the mitochondrial DNA leads to a loss of functionality of the OXPHOS system and thus to a depletion of ATP and overproduction of ROS, which can, in turn, induce further mtDNA mutations. The work by Yu-Ting Wu, Shi-Bei Wu, and Yau-Huei Wei (Department of Biochemistry and Molecular Biology, National Yang-Ming University, Taiwan) [4] focuses on the aforementioned mitochondrial diseases with special attention to the compensatory mechanisms that prompt mitochondria to produce more energy even under mitochondrial defect-conditions. These compensatory mechanisms include the overexpression of antioxidant enzymes, mitochondrial biogenesis and overexpression of respiratory complex subunits, as well as metabolic shift to glycolysis. The pathways observed to be related to mitochondrial biogenesis as a compensatory adaptation to the energetic deficits in mitochondrial diseases are described (PGC- 1, Sirtuins, AMPK). Several pharmacological strategies to trigger these signaling cascades, according to these authors, are the use of bezafibrate to activate the PPAR-PGC-1α axis, the activation of AMPK by resveratrol and the use of Sirt1 agonists such as quercetin or resveratrol. Other strategies currently used include the addition of antioxidant supplements to the diet (dietary supplementation with antioxidants) such as L-carnitine, coenzyme Q10,MitoQ10 and other mitochondria-targeted antioxidants,N-acetylcysteine (NAC), vitamin C, vitamin E vitamin K1, vitamin B, sodium pyruvate or -lipoic acid. As aforementioned, other

  14. Mitochondrial biogenesis: pharmacological approaches.

    PubMed

    Valero, Teresa

    2014-01-01

    ), myoclonic epilepsy with ragged-red fibers (MERRF), mitochondrial encephalomyopathy, lactic acidosis and strokelike episodes (MELAS), Leber's hereditary optic neuropathy (LHON), the syndrome of neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP), and Leigh's syndrome. Likewise, other diseases in which mitochondrial dysfunction plays a very important role include neurodegenerative diseases, diabetes or cancer. Generally, in mitochondrial diseases a mutation in the mitochondrial DNA leads to a loss of functionality of the OXPHOS system and thus to a depletion of ATP and overproduction of ROS, which can, in turn, induce further mtDNA mutations. The work by Yu-Ting Wu, Shi-Bei Wu, and Yau-Huei Wei (Department of Biochemistry and Molecular Biology, National Yang-Ming University, Taiwan) [4] focuses on the aforementioned mitochondrial diseases with special attention to the compensatory mechanisms that prompt mitochondria to produce more energy even under mitochondrial defect-conditions. These compensatory mechanisms include the overexpression of antioxidant enzymes, mitochondrial biogenesis and overexpression of respiratory complex subunits, as well as metabolic shift to glycolysis. The pathways observed to be related to mitochondrial biogenesis as a compensatory adaptation to the energetic deficits in mitochondrial diseases are described (PGC- 1, Sirtuins, AMPK). Several pharmacological strategies to trigger these signaling cascades, according to these authors, are the use of bezafibrate to activate the PPAR-PGC-1α axis, the activation of AMPK by resveratrol and the use of Sirt1 agonists such as quercetin or resveratrol. Other strategies currently used include the addition of antioxidant supplements to the diet (dietary supplementation with antioxidants) such as L-carnitine, coenzyme Q10,MitoQ10 and other mitochondria-targeted antioxidants,N-acetylcysteine (NAC), vitamin C, vitamin E vitamin K1, vitamin B, sodium pyruvate or -lipoic acid. As aforementioned, other

  15. A hierarchical model for assembly of eukaryotic 60S ribosomal subunit domains.

    PubMed

    Gamalinda, Michael; Ohmayer, Uli; Jakovljevic, Jelena; Kumcuoglu, Beril; Woolford, Joshua; Mbom, Bertrade; Lin, Lawrence; Woolford, John L

    2014-01-15

    Despite having high-resolution structures for eukaryotic large ribosomal subunits, it remained unclear how these ribonucleoprotein complexes are constructed in living cells. Nevertheless, knowing where ribosomal proteins interact with ribosomal RNA (rRNA) provides a strategic platform to investigate the connection between spatial and temporal aspects of 60S subunit biogenesis. We previously found that the function of individual yeast large subunit ribosomal proteins (RPLs) in precursor rRNA (pre-rRNA) processing correlates with their location in the structure of mature 60S subunits. This observation suggested that there is an order by which 60S subunits are formed. To test this model, we used proteomic approaches to assay changes in the levels of ribosomal proteins and assembly factors in preribosomes when RPLs functioning in early, middle, and late steps of pre-60S assembly are depleted. Our results demonstrate that structural domains of eukaryotic 60S ribosomal subunits are formed in a hierarchical fashion. Assembly begins at the convex solvent side, followed by the polypeptide exit tunnel, the intersubunit side, and finally the central protuberance. This model provides an initial paradigm for the sequential assembly of eukaryotic 60S subunits. Our results reveal striking differences and similarities between assembly of bacterial and eukaryotic large ribosomal subunits, providing insights into how these RNA-protein particles evolved.

  16. A hierarchical model for assembly of eukaryotic 60S ribosomal subunit domains

    PubMed Central

    Gamalinda, Michael; Ohmayer, Uli; Jakovljevic, Jelena; Kumcuoglu, Beril; Woolford, Joshua; Mbom, Bertrade; Lin, Lawrence; Woolford, John L.

    2014-01-01

    Despite having high-resolution structures for eukaryotic large ribosomal subunits, it remained unclear how these ribonucleoprotein complexes are constructed in living cells. Nevertheless, knowing where ribosomal proteins interact with ribosomal RNA (rRNA) provides a strategic platform to investigate the connection between spatial and temporal aspects of 60S subunit biogenesis. We previously found that the function of individual yeast large subunit ribosomal proteins (RPLs) in precursor rRNA (pre-rRNA) processing correlates with their location in the structure of mature 60S subunits. This observation suggested that there is an order by which 60S subunits are formed. To test this model, we used proteomic approaches to assay changes in the levels of ribosomal proteins and assembly factors in preribosomes when RPLs functioning in early, middle, and late steps of pre-60S assembly are depleted. Our results demonstrate that structural domains of eukaryotic 60S ribosomal subunits are formed in a hierarchical fashion. Assembly begins at the convex solvent side, followed by the polypeptide exit tunnel, the intersubunit side, and finally the central protuberance. This model provides an initial paradigm for the sequential assembly of eukaryotic 60S subunits. Our results reveal striking differences and similarities between assembly of bacterial and eukaryotic large ribosomal subunits, providing insights into how these RNA–protein particles evolved. PMID:24449272

  17. DEMONSTRATION BULLETIN: BIOGENESIS SOIL WASHING TECHNOLOGY - BIOGENESIS

    EPA Science Inventory

    The BioGenesisSM soil washing technology was developed by BioGenesis Enterprises, Inc. to remove organic compounds from soil. The technology uses a proprietary solution (BioGenesisSM cleaner) to transfer organic compounds from the soil matrix to a liquid phase. BioGenesis claims...

  18. FGF21 represses cerebrovascular aging via improving mitochondrial biogenesis and inhibiting p53 signaling pathway in an AMPK-dependent manner.

    PubMed

    Wang, Xiao-Mei; Xiao, Hang; Liu, Ling-Lin; Cheng, Dang; Li, Xue-Jun; Si, Liang-Yi

    2016-08-15

    Cerebrovascular aging has a high relationship with stroke and neurodegenerative disease. In the present study, we evaluated the influence of fibroblast growth factor 21 (FGF21) on angiotensin (Ang II)-mediated cerebrovascular aging in human brain vascular smooth muscle cells (hBVSMCs). Ang II induced remarkable aging-phenotypes in hBVSMCs, including enhanced SA-β-gal staining and NBS1 protein expression. First, we used immunoblotting assay to confirm protein expression of FGF21 receptor (FGFR1) and the co-receptor β-Klotho in cultured hBVSMCs. Second, we found that FGF21 treatment partly prevented the aging-related changes induced by Ang II. FGF21 inhibited Ang II-enhanced ROS production/superoxide anion levels, rescued the Ang II-reduced Complex IV and citrate synthase activities, and suppressed the Ang II-induced meprin protein expression. Third, we showed that FGF21 not only inhibited the Ang II-induced p53 activation, but also blocked the action of Ang II on Siah-1-TRF signaling pathway which is upstream factors for p53 activation. At last, either chemical inhibition of AMPK signaling pathway by a specific antagonist Compound C or knockdown of AMPKα1/2 isoform using siRNA, successfully abolished the anti-aging action of FGF21 in hBVSMCs. These results indicate that FGF21 protects against Ang II-induced cerebrovascular aging via improving mitochondrial biogenesis and inhibiting p53 activation in an AMPK-dependent manner, and highlight the therapeutic value of FGF21 in cerebrovascular aging-related diseases such as stroke and neurodegenerative disease. PMID:27364911

  19. Overexpression of human selenoprotein H in neuronal cells enhances mitochondrial biogenesis and function through activation of protein kinase A, protein kinase B, and cyclic adenosine monophosphate response element-binding protein pathway.

    PubMed

    Mehta, Suresh L; Mendelev, Natalia; Kumari, Santosh; Andy Li, P

    2013-03-01

    Mitochondrial biogenesis is activated by nuclear encoded transcription co-activator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which is regulated by several upstream factors including protein kinase A and Akt/protein kinase B. We have previously shown that selenoprotein H enhances the levels of nuclear regulators for mitochondrial biogenesis, increases mitochondrial mass and improves mitochondrial respiratory rate, under physiological condition. Furthermore, overexpression of selenoprotein H protects neuronal HT22 cells from ultraviolet B irradiation-induced cell damage by lowering reactive oxygen species production, and inhibiting activation of caspase-3 and -9, as well as p53. The objective of this study is to identify the cell signaling pathways by which selenoprotein H initiates mitochondrial biogenesis. We first confirmed our previous observation that selenoprotein H transfected HT22 cells increased the protein levels of nuclear-encoded mitochondrial biogenesis factors, peroxisome proliferator-activated receptor γ coactivator-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A. We then observed that total and phosphorylation of protein kinase A, Akt/protein kinase B and cyclic adenosine monophosphate response element-binding protein (CREB) were significantly increased in selenoprotein H transfected cells compared to vector transfected HT22 cells. To verify whether the observed stimulating effects on mitochondrial biogenesis pathways are caused by selenoprotein H and mediated through CREB, we knocked down selenoprotein H mRNA level using siRNA and inhibited CREB with napthol AS-E phosphate in selenoprotein H transfected cells and repeated the measurements of the aforementioned biomarkers. Our results revealed that silencing of selenoprotein H not only decreased the protein levels of PGC-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A, but also decreased the total and

  20. Organelle biogenesis and interorganellar connections

    PubMed Central

    Daniele, Tiziana; Schiaffino, Maria Vittoria

    2014-01-01

    Membrane contact sites (MCSs) allow the exchange of molecules and information between organelles, even when their membranes cannot fuse directly. In recent years, a number of functions have been attributed to these contacts, highlighting their critical role in cell homeostasis. Although inter-organellar connections typically involve the endoplasmic reticulum (ER), we recently reported the presence of a novel MCSs between melanosomes and mitochondria. Melanosome-mitochondrion contacts appear mediated by fibrillar bridges resembling the protein tethers linking mitochondria and the ER, both for their ultrastructural features and the involvement of Mitofusin 2. The frequency of these connections correlates spatially and timely with melanosome biogenesis, suggesting a functional link between the 2 processes and in general that organelle biogenesis in the secretory pathway requires interorganellar crosstalks at multiple steps. Here, we summarize the different functions attributed to MCSs, and discuss their possible relevance for the newly identified melanosome-mitochondrion liaison. PMID:25346798

  1. Yeast Ribosomal Protein L40 Assembles Late into Precursor 60 S Ribosomes and Is Required for Their Cytoplasmic Maturation*

    PubMed Central

    Fernández-Pevida, Antonio; Rodríguez-Galán, Olga; Díaz-Quintana, Antonio; Kressler, Dieter; de la Cruz, Jesús

    2012-01-01

    Most ribosomal proteins play important roles in ribosome biogenesis and function. Here, we have examined the contribution of the essential ribosomal protein L40 in these processes in the yeast Saccharomyces cerevisiae. Deletion of either the RPL40A or RPL40B gene and in vivo depletion of L40 impair 60 S ribosomal subunit biogenesis. Polysome profile analyses reveal the accumulation of half-mers and a moderate reduction in free 60 S ribosomal subunits. Pulse-chase, Northern blotting, and primer extension analyses in the L40-depleted strain clearly indicate that L40 is not strictly required for the precursor rRNA (pre-rRNA) processing reactions but contributes to optimal 27 SB pre-rRNA maturation. Moreover, depletion of L40 hinders the nucleo-cytoplasmic export of pre-60 S ribosomal particles. Importantly, all these defects most likely appear as the direct consequence of impaired Nmd3 and Rlp24 release from cytoplasmic pre-60 S ribosomal subunits and their inefficient recycling back into the nucle(ol)us. In agreement, we show that hemagglutinin epitope-tagged L40A assembles in the cytoplasm into almost mature pre-60 S ribosomal particles. Finally, we have identified that the hemagglutinin epitope-tagged L40A confers resistance to sordarin, a translation inhibitor that impairs the function of eukaryotic elongation factor 2, whereas the rpl40a and rpl40b null mutants are hypersensitive to this antibiotic. We conclude that L40 is assembled at a very late stage into pre-60 S ribosomal subunits and that its incorporation into 60 S ribosomal subunits is a prerequisite for subunit joining and may ensure proper functioning of the translocation process. PMID:22995916

  2. PIWI Slicing and EXD1 Drive Biogenesis of Nuclear piRNAs from Cytosolic Targets of the Mouse piRNA Pathway

    PubMed Central

    Yang, Zhaolin; Chen, Kuan-Ming; Pandey, Radha Raman; Homolka, David; Reuter, Michael; Janeiro, Bruno Kotska Rodino; Sachidanandam, Ravi; Fauvarque, Marie-Odile; McCarthy, Andrew A.; Pillai, Ramesh S.

    2016-01-01

    Summary PIWI-interacting RNAs (piRNAs) guide PIWI proteins to suppress transposons in the cytoplasm and nucleus of animal germ cells, but how silencing in the two compartments is coordinated is not known. Here we demonstrate that endonucleolytic slicing of a transcript by the cytosolic mouse PIWI protein MILI acts as a trigger to initiate its further 5′→3′ processing into non-overlapping fragments. These fragments accumulate as new piRNAs within both cytosolic MILI and the nuclear MIWI2. We also identify Exonuclease domain-containing 1 (EXD1) as a partner of the MIWI2 piRNA biogenesis factor TDRD12. EXD1 homodimers are inactive as a nuclease but function as an RNA adaptor within a PET (PIWI-EXD1-Tdrd12) complex. Loss of Exd1 reduces sequences generated by MILI slicing, impacts biogenesis of MIWI2 piRNAs, and de-represses LINE1 retrotransposons. Thus, piRNA biogenesis triggered by PIWI slicing, and promoted by EXD1, ensures that the same guides instruct PIWI proteins in the nucleus and cytoplasm. PMID:26669262

  3. Concerted removal of the Erb1-Ytm1 complex in ribosome biogenesis relies on an elaborate interface.

    PubMed

    Thoms, Matthias; Ahmed, Yasar Luqman; Maddi, Karthik; Hurt, Ed; Sinning, Irmgard

    2016-01-29

    The complicated process of eukaryotic ribosome biogenesis involves about 200 assembly factors that transiently associate with the nascent pre-ribosome in a spatiotemporally ordered way. During the early steps of 60S subunit formation, several proteins, collectively called A3 cluster factors, participate in the removal of the internal transcribed spacer 1 (ITS1) from 27SA3 pre-rRNA. Among these factors is the conserved hetero-trimeric Nop7-Erb1-Ytm1 complex (or human Pes1-Bop1-Wdr12), which is removed from the evolving pre-60S particle by the AAA ATPase Rea1 to allow progression in the pathway. Here, we clarify how Ytm1 and Erb1 interact, which has implications for the release mechanism of both factors from the pre-ribosome. Biochemical studies show that Ytm1 and Erb1 bind each other via their ß-propeller domains. The crystal structure of the Erb1-Ytm1 heterodimer determined at 2.67Å resolution reveals an extended interaction surface between the propellers in a rarely observed binding mode. Structure-based mutations in the interface that impair the Erb1-Ytm1 interaction do not support growth, with specific defects in 60S subunit synthesis. Under these mutant conditions, it becomes clear that an intact Erb1-Ytm1 complex is required for 60S maturation and that loss of this stable interaction prevents ribosome production. PMID:26657628

  4. [About the ribosomal biogenesis in human].

    PubMed

    Tafforeau, Lionel

    2015-01-01

    Ribosomes are cellular ribonucleoprotein particles required for a fundamental mechanism, translation of the genetic information into proteins. Ribosome biogenesis is a highly complex pathway involving many maturation steps: ribosomal RNA (rRNA) synthesis, rRNA processing, pre-rRNA modifications, its assembly with ribosomal proteins in the nuceolus, export of the subunit precursors to the nucleoplasm and the cytoplasm. Ribosome biogenesis has mainly being investigated in yeast during these last 25 years. However, recent works have shown that, despite many similarities between yeast and human ribosome structure and biogenesis, human pre-rRNA processing is far more complex than in yeast. In order to better understand diseases related to a malfunction in ribosome synthesis, the ribosomopathies, research should be conducted directly in human cells and animal models. PMID:26152166

  5. Mak5 and Ebp2 Act Together on Early Pre-60S Particles and Their Reduced Functionality Bypasses the Requirement for the Essential Pre-60S Factor Nsa1

    PubMed Central

    Pratte, Dagmar; Singh, Ujjwala; Murat, Guillaume; Kressler, Dieter

    2013-01-01

    Ribosomes are the molecular machines that translate mRNAs into proteins. The synthesis of ribosomes is therefore a fundamental cellular process and consists in the ordered assembly of 79 ribosomal proteins (r-proteins) and four ribosomal RNAs (rRNAs) into a small 40S and a large 60S ribosomal subunit that form the translating 80S ribosomes. Most of our knowledge concerning this dynamic multi-step process comes from studies with the yeast Saccharomyces cerevisiae, which have shown that assembly and maturation of pre-ribosomal particles, as they travel from the nucleolus to the cytoplasm, relies on a multitude (>200) of biogenesis factors. Amongst these are many energy-consuming enzymes, including 19 ATP-dependent RNA helicases and three AAA-ATPases. We have previously shown that the AAA-ATPase Rix7 promotes the release of the essential biogenesis factor Nsa1 from late nucleolar pre-60S particles. Here we show that mutant alleles of genes encoding the DEAD-box RNA helicase Mak5, the C/D-box snoRNP component Nop1 and the rRNA-binding protein Nop4 bypass the requirement for Nsa1. Interestingly, dominant-negative alleles of RIX7 retain their phenotype in the absence of Nsa1, suggesting that Rix7 may have additional nuclear substrates besides Nsa1. Mak5 is associated with the Nsa1 pre-60S particle and synthetic lethal screens with mak5 alleles identified the r-protein Rpl14 and the 60S biogenesis factors Ebp2, Nop16 and Rpf1, which are genetically linked amongst each other. We propose that these ’Mak5 cluster’ factors orchestrate the structural arrangement of a eukaryote-specific 60S subunit surface composed of Rpl6, Rpl14 and Rpl16 and rRNA expansion segments ES7L and ES39L. Finally, over-expression of Rix7 negatively affects growth of mak5 and ebp2 mutant cells both in the absence and presence of Nsa1, suggesting that Rix7, at least when excessively abundant, may act on structurally defective pre-60S subunits and may subject these to degradation. PMID:24312670

  6. Biogenesis of nuclear bodies.

    PubMed

    Dundr, Miroslav; Misteli, Tom

    2010-12-01

    The nucleus is unique amongst cellular organelles in that it contains a myriad of discrete suborganelles. These nuclear bodies are morphologically and molecularly distinct entities, and they host specific nuclear processes. Although the mode of biogenesis appears to differ widely between individual nuclear bodies, several common design principles are emerging, particularly, the ability of nuclear bodies to form de novo, a role of RNA as a structural element and self-organization as a mode of formation. The controlled biogenesis of nuclear bodies is essential for faithful maintenance of nuclear architecture during the cell cycle and is an important part of cellular responses to intra- and extracellular events.

  7. Membrane dynamics in autophagosome biogenesis.

    PubMed

    Carlsson, Sven R; Simonsen, Anne

    2015-01-15

    Bilayered phospholipid membranes are vital to the organization of the living cell. Based on fundamental principles of polarity, membranes create borders allowing defined spaces to be encapsulated. This compartmentalization is a prerequisite for the complex functional design of the eukaryotic cell, yielding localities that can differ in composition and operation. During macroautophagy, cytoplasmic components become enclosed by a growing double bilayered membrane, which upon closure creates a separate compartment, the autophagosome. The autophagosome is then primed for fusion with endosomal and lysosomal compartments, leading to degradation of the captured material. A large number of proteins have been found to be essential for autophagy, but little is known about the specific lipids that constitute the autophagic membranes and the membrane modeling events that are responsible for regulation of autophagosome shape and size. In this Commentary, we review the recent progress in our understanding of the membrane shaping and remodeling events that are required at different steps of the autophagy pathway. This article is part of a Focus on Autophagosome biogenesis. For further reading, please see related articles: 'ERES: sites for autophagosome biogenesis and maturation?' by Jana Sanchez-Wandelmer et al. (J. Cell Sci. 128, 185-192) and 'WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome' by Tassula Proikas-Cezanne et al. (J. Cell Sci. 128, 207-217). PMID:25568151

  8. The conserved Bud20 zinc finger protein is a new component of the ribosomal 60S subunit export machinery.

    PubMed

    Bassler, Jochen; Klein, Isabella; Schmidt, Claudia; Kallas, Martina; Thomson, Emma; Wagner, Maria Anna; Bradatsch, Bettina; Rechberger, Gerald; Strohmaier, Heimo; Hurt, Ed; Bergler, Helmut

    2012-12-01

    The nuclear export of the preribosomal 60S (pre-60S) subunit is coordinated with late steps in ribosome assembly. Here, we show that Bud20, a conserved C(2)H(2)-type zinc finger protein, is an unrecognized shuttling factor required for the efficient export of pre-60S subunits. Bud20 associates with late pre-60S particles in the nucleoplasm and accompanies them into the cytoplasm, where it is released through the action of the Drg1 AAA-ATPase. Cytoplasmic Bud20 is then reimported via a Kap123-dependent pathway. The deletion of Bud20 induces a strong pre-60S export defect and causes synthetic lethality when combined with mutant alleles of known pre-60S subunit export factors. The function of Bud20 in ribosome export depends on a short conserved N-terminal sequence, as we observed that mutations or the deletion of this motif impaired 60S subunit export and generated the genetic link to other pre-60S export factors. We suggest that the shuttling Bud20 is recruited to the nascent 60S subunit via its central zinc finger rRNA binding domain to facilitate the subsequent nuclear export of the preribosome employing its N-terminal extension.

  9. Peroxisome biogenesis in mammalian cells

    PubMed Central

    Fujiki, Yukio; Okumoto, Kanji; Mukai, Satoru; Honsho, Masanori; Tamura, Shigehiko

    2014-01-01

    To investigate peroxisome assembly and human peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome, thirteen different complementation groups (CGs) of Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis have been isolated and established as a model research system. Successful gene-cloning studies by a forward genetic approach utilized a rapid functional complementation assay of CHO cell mutants led to isolation of human peroxin (PEX) genes. Search for pathogenic genes responsible for PBDs of all 14 CGs is now completed together with the homology search by screening the human expressed sequence tag database using yeast PEX genes. Peroxins are divided into three groups: (1) peroxins including Pex3p, Pex16p, and Pex19p, are responsible for peroxisome membrane biogenesis via classes I and II pathways; (2) peroxins that function in matrix protein import; (3) those such as three forms of Pex11p, Pex11pα, Pex11pβ, and Pex11pγ, are involved in peroxisome proliferation where DLP1, Mff, and Fis1 coordinately function. In membrane assembly, Pex19p forms complexes in the cytosol with newly synthesized PMPs including Pex16p and transports them to the receptor Pex3p, whereby peroxisomal membrane is formed (Class I pathway). Pex19p likewise forms a complex with newly made Pex3p and translocates it to the Pex3p receptor, Pex16p (Class II pathway). In matrix protein import, newly synthesized proteins harboring peroxisome targeting signal type 1 or 2 are recognized by Pex5p or Pex7p in the cytoplasm and are imported to peroxisomes via translocation machinery. In regard to peroxisome-cytoplasmic shuttling of Pex5p, Pex5p initially targets to an 800-kDa docking complex consisting of Pex14p and Pex13p and then translocates to a 500-kDa RING translocation complex. At the terminal step, Pex1p and Pex6p of the AAA family mediate the export of Pex5p, where Cys-ubiquitination of Pex5p is essential for the Pex5p exit. PMID:25177298

  10. TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae

    PubMed Central

    Welch, Aaron Z.; Gibney, Patrick A.; Botstein, David; Koshland, Douglas E.

    2013-01-01

    Tolerance to desiccation in cultures of Saccharomyces cerevisiae is inducible; only one in a million cells from an exponential culture survive desiccation compared with one in five cells in stationary phase. Here we exploit the desiccation sensitivity of exponentially dividing cells to understand the stresses imposed by desiccation and their stress response pathways. We found that induction of desiccation tolerance is cell autonomous and that there is an inverse correlation between desiccation tolerance and growth rate in glucose-, ammonia-, or phosphate-limited continuous cultures. A transient heat shock induces a 5000–fold increase in desiccation tolerance, whereas hyper-ionic, -reductive, -oxidative, or -osmotic stress induced much less. Furthermore, we provide evidence that the Sch9p-regulated branch of the TOR and Ras-cAMP pathway inhibits desiccation tolerance by inhibiting the stress response transcription factors Gis1p, Msn2p, and Msn4p and by activating Sfp1p, a ribosome biogenesis transcription factor. Among 41 mutants defective in ribosome biogenesis, a subset defective in 60S showed a dramatic increase in desiccation tolerance independent of growth rate. We suggest that reduction of a specific intermediate in 60S biogenesis, resulting from conditions such as heat shock and nutrient deprivation, increases desiccation tolerance. PMID:23171550

  11. Plant Peroxisomes: Biogenesis and Function

    PubMed Central

    Hu, Jianping; Baker, Alison; Bartel, Bonnie; Linka, Nicole; Mullen, Robert T.; Reumann, Sigrun; Zolman, Bethany K.

    2012-01-01

    Peroxisomes are eukaryotic organelles that are highly dynamic both in morphology and metabolism. Plant peroxisomes are involved in numerous processes, including primary and secondary metabolism, development, and responses to abiotic and biotic stresses. Considerable progress has been made in the identification of factors involved in peroxisomal biogenesis, revealing mechanisms that are both shared with and diverged from non-plant systems. Furthermore, recent advances have begun to reveal an unexpectedly large plant peroxisomal proteome and have increased our understanding of metabolic pathways in peroxisomes. Coordination of the biosynthesis, import, biochemical activity, and degradation of peroxisomal proteins allows for highly dynamic responses of peroxisomal metabolism to meet the needs of a plant. Knowledge gained from plant peroxisomal research will be instrumental to fully understanding the organelle’s dynamic behavior and defining peroxisomal metabolic networks, thus allowing the development of molecular strategies for rational engineering of plant metabolism, biomass production, stress tolerance, and pathogen defense. PMID:22669882

  12. Recovery of dicer-like 1-late flowering phenotype by miR172 expressed by the noncanonical DCL4-dependent biogenesis pathway

    PubMed Central

    Tsuzuki, Masayuki; Takeda, Atsushi

    2014-01-01

    MicroRNAs (miRNAs) act as down-regulators of gene expression, and play a dominant role in eukaryote development. In Arabidopsis thaliana, DICER-LIKE 1 (DCL1) is the main processor in miRNA biogenesis, and dcl1 mutants show various developmental defects at the early stage of embryogenesis or at gamete formation. However, miRNAs responsible for the respective developmental stages of the dcl1 defects have not been identified. Here, we developed a DCL1-independent miRNA expression system using the unique DCL4-dependent miRNA, miR839. By replacing the mature sequence in the miR839 precursor sequence with that of miR172, one of the most widely conserved miRNAs in angiosperms, we succeeded in expressing miR172 from a chimeric miR839 precursor in dcl1-7 plants and observed the repression of miR172 target gene expression. In parallel, the DCL4-dependent miR172 expression rescued the late flowering phenotype of dcl1-7 by acceleration of flowering. We established the DCL1-independent miRNA expression system, and revealed that the reduction of miR172 expression is responsible for the dcl1-7 late flowering phenotype. PMID:24966167

  13. The N-terminal extension of yeast ribosomal protein L8 is involved in two major remodeling events during late nuclear stages of 60S ribosomal subunit assembly.

    PubMed

    Tutuncuoglu, Beril; Jakovljevic, Jelena; Wu, Shan; Gao, Ning; Woolford, John L

    2016-09-01

    Assaying effects on pre-rRNA processing and ribosome assembly upon depleting individual ribosomal proteins (r-proteins) provided an initial paradigm for assembly of eukaryotic ribosomes in vivo-that each structural domain of ribosomal subunits assembles in a hierarchical fashion. However, two features suggest that a more complex pathway may exist: (i) Some r-proteins contain extensions that reach long distances across ribosomes to interact with multiple rRNA domains as well as with other r-proteins. (ii) Individual r-proteins may assemble in a stepwise fashion. For example, the globular domain of an r-protein might assemble separately from its extensions. Thus, these extensions might play roles in assembly that could not be revealed by depleting the entire protein. Here, we show that deleting or mutating extensions of r-proteins L7 (uL30) and L35 (uL29) from yeast reveal important roles in early and middle steps during 60S ribosomal subunit biogenesis. Detailed analysis of the N-terminal terminal extension of L8 (eL8) showed that it is necessary for late nuclear stages of 60S subunit assembly involving two major remodeling events: removal of the ITS2 spacer; and reorganization of the central protuberance (CP) containing 5S rRNA and r-proteins L5 (uL18) and L11 (uL5). Mutations in the L8 extension block processing of 7S pre-rRNA, prevent release of assembly factors Rpf2 and Rrs1 from pre-ribosomes, which is required for rotation of the CP, and block association of Sda1, the Rix1 complex, and the Rea1 ATPase involved in late steps of remodeling. PMID:27390266

  14. The N-terminal extension of yeast ribosomal protein L8 is involved in two major remodeling events during late nuclear stages of 60S ribosomal subunit assembly.

    PubMed

    Tutuncuoglu, Beril; Jakovljevic, Jelena; Wu, Shan; Gao, Ning; Woolford, John L

    2016-09-01

    Assaying effects on pre-rRNA processing and ribosome assembly upon depleting individual ribosomal proteins (r-proteins) provided an initial paradigm for assembly of eukaryotic ribosomes in vivo-that each structural domain of ribosomal subunits assembles in a hierarchical fashion. However, two features suggest that a more complex pathway may exist: (i) Some r-proteins contain extensions that reach long distances across ribosomes to interact with multiple rRNA domains as well as with other r-proteins. (ii) Individual r-proteins may assemble in a stepwise fashion. For example, the globular domain of an r-protein might assemble separately from its extensions. Thus, these extensions might play roles in assembly that could not be revealed by depleting the entire protein. Here, we show that deleting or mutating extensions of r-proteins L7 (uL30) and L35 (uL29) from yeast reveal important roles in early and middle steps during 60S ribosomal subunit biogenesis. Detailed analysis of the N-terminal terminal extension of L8 (eL8) showed that it is necessary for late nuclear stages of 60S subunit assembly involving two major remodeling events: removal of the ITS2 spacer; and reorganization of the central protuberance (CP) containing 5S rRNA and r-proteins L5 (uL18) and L11 (uL5). Mutations in the L8 extension block processing of 7S pre-rRNA, prevent release of assembly factors Rpf2 and Rrs1 from pre-ribosomes, which is required for rotation of the CP, and block association of Sda1, the Rix1 complex, and the Rea1 ATPase involved in late steps of remodeling.

  15. Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes.

    PubMed

    Wu, Shan; Tutuncuoglu, Beril; Yan, Kaige; Brown, Hailey; Zhang, Yixiao; Tan, Dan; Gamalinda, Michael; Yuan, Yi; Li, Zhifei; Jakovljevic, Jelena; Ma, Chengying; Lei, Jianlin; Dong, Meng-Qiu; Woolford, John L; Gao, Ning

    2016-05-25

    Ribosome biogenesis is a highly complex process in eukaryotes, involving temporally and spatially regulated ribosomal protein (r-protein) binding and ribosomal RNA remodelling events in the nucleolus, nucleoplasm and cytoplasm. Hundreds of assembly factors, organized into sequential functional groups, facilitate and guide the maturation process into productive assembly branches in and across different cellular compartments. However, the precise mechanisms by which these assembly factors function are largely unknown. Here we use cryo-electron microscopy to characterize the structures of yeast nucleoplasmic pre-60S particles affinity-purified using the epitope-tagged assembly factor Nog2. Our data pinpoint the locations and determine the structures of over 20 assembly factors, which are enriched in two areas: an arc region extending from the central protuberance to the polypeptide tunnel exit, and the domain including the internal transcribed spacer 2 (ITS2) that separates 5.8S and 25S ribosomal RNAs. In particular, two regulatory GTPases, Nog2 and Nog1, act as hub proteins to interact with multiple, distant assembly factors and functional ribosomal RNA elements, manifesting their critical roles in structural remodelling checkpoints and nuclear export. Moreover, our snapshots of compositionally and structurally different pre-60S intermediates provide essential mechanistic details for three major remodelling events before nuclear export: rotation of the 5S ribonucleoprotein, construction of the active centre and ITS2 removal. The rich structural information in our structures provides a framework to dissect molecular roles of diverse assembly factors in eukaryotic ribosome assembly.

  16. Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes.

    PubMed

    Wu, Shan; Tutuncuoglu, Beril; Yan, Kaige; Brown, Hailey; Zhang, Yixiao; Tan, Dan; Gamalinda, Michael; Yuan, Yi; Li, Zhifei; Jakovljevic, Jelena; Ma, Chengying; Lei, Jianlin; Dong, Meng-Qiu; Woolford, John L; Gao, Ning

    2016-06-01

    Ribosome biogenesis is a highly complex process in eukaryotes, involving temporally and spatially regulated ribosomal protein (r-protein) binding and ribosomal RNA remodelling events in the nucleolus, nucleoplasm and cytoplasm. Hundreds of assembly factors, organized into sequential functional groups, facilitate and guide the maturation process into productive assembly branches in and across different cellular compartments. However, the precise mechanisms by which these assembly factors function are largely unknown. Here we use cryo-electron microscopy to characterize the structures of yeast nucleoplasmic pre-60S particles affinity-purified using the epitope-tagged assembly factor Nog2. Our data pinpoint the locations and determine the structures of over 20 assembly factors, which are enriched in two areas: an arc region extending from the central protuberance to the polypeptide tunnel exit, and the domain including the internal transcribed spacer 2 (ITS2) that separates 5.8S and 25S ribosomal RNAs. In particular, two regulatory GTPases, Nog2 and Nog1, act as hub proteins to interact with multiple, distant assembly factors and functional ribosomal RNA elements, manifesting their critical roles in structural remodelling checkpoints and nuclear export. Moreover, our snapshots of compositionally and structurally different pre-60S intermediates provide essential mechanistic details for three major remodelling events before nuclear export: rotation of the 5S ribonucleoprotein, construction of the active centre and ITS2 removal. The rich structural information in our structures provides a framework to dissect molecular roles of diverse assembly factors in eukaryotic ribosome assembly. PMID:27251291

  17. [Molecular mechanisms of peroxisome biogenesis in yeasts].

    PubMed

    Sibirnyĭ, A A

    2012-01-01

    Peroxisomes contain oxidases generating hydrogen peroxide, and catalase degrading this toxic compound. Another characteristic function of each eukaryotic peroxisome, from yeast to man, is fatty acid beta-oxidation. However, in peroxisomes a variety of other metabolic pathways are located. In fungi, peroxisomes contain enzymes involved in catabolism of unusual carbon and nitrogen sources (methanol, purines, D-amino acids, pipecolynic acid, sarcosine, glycolate, spermidine etc) as well as biosynthesis of lysine in yeasts and penicillin in mycelial fungi. Impairment of peroxisomal structure and functions causes many human disorders. The similar defects have been identified in yeast mutants defective in peroxisomal biogenesis. Peroxisomal biogenesis is actively studied during last two decades using uni- and multicellular model systems. It was observed that many aspects of peroxisomal biogenesis and proteins involved in this process display striking similarity between all eukaryotes, from yeasts to humans. Yeast is a convenient model system for this kind of research. Current review summarizes data on molecular events of peroxisomal biogenesis, functions of peroxine proteins, import of peroxisomal matrix and membrane proteins and on mechanisms of peroxisomedivision and inheritance. PMID:22642098

  18. The effects of heat induction and the siRNA biogenesis pathway on the transgenerational transposition of ONSEN, a copia-like retrotransposon in Arabidopsis thaliana.

    PubMed

    Matsunaga, Wataru; Kobayashi, Akie; Kato, Atsushi; Ito, Hidetaka

    2012-05-01

    Environmental stress influences genetic and epigenetic regulation in plant genomes. We previously reported that heat stress activated a copia-like retrotransposon named ONSEN. To investigate the heat sensitivity and transgenerational activation of ONSEN, we analyzed the stress response by temperature shift and multiple heat stress treatments. ONSEN was activated at 37°C, and the newly inserted ONSEN was transcriptionally active and mobile to the next generation subjected to heat stress, indicating that the regulation of ONSEN is independent of positional effects on the chromosome. Reciprocal crosses with activated ONSEN revealed that the transgenerational transposition was inherited from both sexes, indicating that the transposition is suppressed independently of gametophytic regulation. We showed previously that ONSEN was transposed in mutants deficient in small interfering RNA (siRNA) biogenesis, including nrpd2 and rdr2, but not dcl3. To define the functional redundancy of Dicer-like (DCL) proteins in Arabidopsis, we analyzed ONSEN activation in mutants deficient in DCL proteins, including dcl2, dcl3 and dcl4. ONSEN was nearly immobile in a single Dicer mutant; however, some transgenerational transpositions were observed in dcl2/dcl3/dcl4 triple mutants subjected to heat stress. This indicated that the Dicer family is redundant for ONSEN transposition. To examine the activation of ONSEN in undifferentiated cells, ONSEN transcripts and synthesized DNA were analyzed in heat-stressed callus tissue. In contrast to vegetative tissue, high accumulation of the transcripts and amplified DNA copies of ONSEN were detected in callus. This result indicated that ONSEN activation is controlled by cell-specific regulatory mechanisms.

  19. Physiological function of IspE, a plastid MEP pathway gene for isoprenoid biosynthesis, in organelle biogenesis and cell morphogenesis in Nicotiana benthamiana.

    PubMed

    Ahn, Chang Sook; Pai, Hyun-Sook

    2008-03-01

    Isoprenoid biosynthesis in plants occurs by two independent pathways: the cytosolic mevalonate (MVA) pathway and the plastidic methylerythritol phosphate (MEP) pathway. In this study, we investigated the cellular effects of depletion of IspE, a protein involved in the MEP pathway, using virus-induced gene silencing (VIGS). The IspE gene is preferentially expressed in young tissues, and induced by light and methyl jasmonate. The GFP fusion protein of IspE was targeted to chloroplasts. Reduction of IspE expression by VIGS resulted in a severe leaf yellowing phenotype. At the cellular level, depletion of IspE severely affected chloroplast development, dramatically reducing both the number and size of chloroplasts. Interestingly, mitochondrial development was also impaired, suggesting a possibility that the plastidic MEP pathway contributes to mitochondrial isoprenoid biosynthesis in leaves. A deficiency in IspE activity decreased cellular levels of the metabolites produced by the MEP pathway, such as chlorophylls and carotenoids, and stimulated expression of some of the downstream MEP pathway genes, particularly IspF and IspG. Interestingly, the IspE VIGS lines had significantly increased numbers of cells of reduced size in all leaf layers, compared with TRV control and other VIGS lines for the MEP pathway genes. The increased cell division in the IspE VIGS lines was particularly pronounced in the abaxial epidermal layer, in which the over-proliferated cells bulged out of the plane, making the surface uneven. In addition, trichome numbers dramatically increased and the stomata size varied in the affected tissues. Our results show that IspE deficiency causes novel developmental phenotypes distinct from the phenotypes of other MEP pathway mutants, indicating that IspE may have an additional role in plant development besides its role in isoprenoid biosynthesis.

  20. DNAJC21 Mutations Link a Cancer-Prone Bone Marrow Failure Syndrome to Corruption in 60S Ribosome Subunit Maturation.

    PubMed

    Tummala, Hemanth; Walne, Amanda J; Williams, Mike; Bockett, Nicholas; Collopy, Laura; Cardoso, Shirleny; Ellison, Alicia; Wynn, Rob; Leblanc, Thierry; Fitzgibbon, Jude; Kelsell, David P; van Heel, David A; Payne, Elspeth; Plagnol, Vincent; Dokal, Inderjeet; Vulliamy, Tom

    2016-07-01

    A substantial number of individuals with bone marrow failure (BMF) present with one or more extra-hematopoietic abnormality. This suggests a constitutional or inherited basis, and yet many of them do not fit the diagnostic criteria of the known BMF syndromes. Through exome sequencing, we have now identified a subgroup of these individuals, defined by germline biallelic mutations in DNAJC21 (DNAJ homolog subfamily C member 21). They present with global BMF, and one individual developed a hematological cancer (acute myeloid leukemia) in childhood. We show that the encoded protein associates with rRNA and plays a highly conserved role in the maturation of the 60S ribosomal subunit. Lymphoblastoid cells obtained from an affected individual exhibit increased sensitivity to the transcriptional inhibitor actinomycin D and reduced amounts of rRNA. Characterization of mutations revealed impairment in interactions with cofactors (PA2G4, HSPA8, and ZNF622) involved in 60S maturation. DNAJC21 deficiency resulted in cytoplasmic accumulation of the 60S nuclear export factor PA2G4, aberrant ribosome profiles, and increased cell death. Collectively, these findings demonstrate that mutations in DNAJC21 cause a cancer-prone BMF syndrome due to corruption of early nuclear rRNA biogenesis and late cytoplasmic maturation of the 60S subunit. PMID:27346687

  1. DNAJC21 Mutations Link a Cancer-Prone Bone Marrow Failure Syndrome to Corruption in 60S Ribosome Subunit Maturation.

    PubMed

    Tummala, Hemanth; Walne, Amanda J; Williams, Mike; Bockett, Nicholas; Collopy, Laura; Cardoso, Shirleny; Ellison, Alicia; Wynn, Rob; Leblanc, Thierry; Fitzgibbon, Jude; Kelsell, David P; van Heel, David A; Payne, Elspeth; Plagnol, Vincent; Dokal, Inderjeet; Vulliamy, Tom

    2016-07-01

    A substantial number of individuals with bone marrow failure (BMF) present with one or more extra-hematopoietic abnormality. This suggests a constitutional or inherited basis, and yet many of them do not fit the diagnostic criteria of the known BMF syndromes. Through exome sequencing, we have now identified a subgroup of these individuals, defined by germline biallelic mutations in DNAJC21 (DNAJ homolog subfamily C member 21). They present with global BMF, and one individual developed a hematological cancer (acute myeloid leukemia) in childhood. We show that the encoded protein associates with rRNA and plays a highly conserved role in the maturation of the 60S ribosomal subunit. Lymphoblastoid cells obtained from an affected individual exhibit increased sensitivity to the transcriptional inhibitor actinomycin D and reduced amounts of rRNA. Characterization of mutations revealed impairment in interactions with cofactors (PA2G4, HSPA8, and ZNF622) involved in 60S maturation. DNAJC21 deficiency resulted in cytoplasmic accumulation of the 60S nuclear export factor PA2G4, aberrant ribosome profiles, and increased cell death. Collectively, these findings demonstrate that mutations in DNAJC21 cause a cancer-prone BMF syndrome due to corruption of early nuclear rRNA biogenesis and late cytoplasmic maturation of the 60S subunit.

  2. Biogenesis of light harvesting proteins.

    PubMed

    Dall'Osto, Luca; Bressan, Mauro; Bassi, Roberto

    2015-09-01

    The LHC family includes nuclear-encoded, integral thylakoid membrane proteins, most of which coordinate chlorophyll and xanthophyll chromophores. By assembling with the core complexes of both photosystems, LHCs form a flexible peripheral moiety for enhancing light-harvesting cross-section, regulating its efficiency and providing protection against photo-oxidative stress. Upon its first appearance, LHC proteins underwent evolutionary diversification into a large protein family with a complex genetic redundancy. Such differentiation appears as a crucial event in the adaptation of photosynthetic organisms to changing environmental conditions and land colonization. The structure of photosystems, including nuclear- and chloroplast-encoded subunits, presented the cell with a number of challenges for the control of the light harvesting function. Indeed, LHC-encoding messages are translated in the cytosol, and pre-proteins imported into the chloroplast, processed to their mature size and targeted to the thylakoids where are assembled with chromophores. Thus, a tight coordination between nuclear and plastid gene expression, in response to environmental stimuli, is required to adjust LHC composition during photoacclimation. In recent years, remarkable progress has been achieved in elucidating structure, function and regulatory pathways involving LHCs; however, a number of molecular details still await elucidation. In this review, we will provide an overview on the current knowledge on LHC biogenesis, ranging from organization of pigment-protein complexes to the modulation of gene expression, import and targeting to the photosynthetic membranes, and regulation of LHC assembly and turnover. Genes controlling these events are potential candidate for biotechnological applications aimed at optimizing light use efficiency of photosynthetic organisms. This article is part of a Special Issue entitled: Chloroplast biogenesis.

  3. Human disorders of peroxisome metabolism and biogenesis.

    PubMed

    Waterham, Hans R; Ferdinandusse, Sacha; Wanders, Ronald J A

    2016-05-01

    Peroxisomes are dynamic organelles that play an essential role in a variety of cellular catabolic and anabolic metabolic pathways, including fatty acid alpha- and beta-oxidation, and plasmalogen and bile acid synthesis. Defects in genes encoding peroxisomal proteins can result in a large variety of peroxisomal disorders either affecting specific metabolic pathways, i.e., the single peroxisomal enzyme deficiencies, or causing a generalized defect in function and assembly of peroxisomes, i.e., peroxisome biogenesis disorders. In this review, we discuss the clinical, biochemical, and genetic aspects of all human peroxisomal disorders currently known.

  4. Human disorders of peroxisome metabolism and biogenesis.

    PubMed

    Waterham, Hans R; Ferdinandusse, Sacha; Wanders, Ronald J A

    2016-05-01

    Peroxisomes are dynamic organelles that play an essential role in a variety of cellular catabolic and anabolic metabolic pathways, including fatty acid alpha- and beta-oxidation, and plasmalogen and bile acid synthesis. Defects in genes encoding peroxisomal proteins can result in a large variety of peroxisomal disorders either affecting specific metabolic pathways, i.e., the single peroxisomal enzyme deficiencies, or causing a generalized defect in function and assembly of peroxisomes, i.e., peroxisome biogenesis disorders. In this review, we discuss the clinical, biochemical, and genetic aspects of all human peroxisomal disorders currently known. PMID:26611709

  5. Peroxisome Biogenesis and Function

    PubMed Central

    Kaur, Navneet; Reumann, Sigrun; Hu, Jianping

    2009-01-01

    Peroxisomes are small and single membrane-delimited organelles that execute numerous metabolic reactions and have pivotal roles in plant growth and development. In recent years, forward and reverse genetic studies along with biochemical and cell biological analyses in Arabidopsis have enabled researchers to identify many peroxisome proteins and elucidate their functions. This review focuses on the advances in our understanding of peroxisome biogenesis and metabolism, and further explores the contribution of large-scale analysis, such as in sillco predictions and proteomics, in augmenting our knowledge of peroxisome function In Arabidopsis. PMID:22303249

  6. MYC and Mitochondrial Biogenesis

    PubMed Central

    Morrish, Fionnuala; Hockenbery, David

    2014-01-01

    Mitochondria, the powerhouses of the cell, face two imperatives concerning biogenesis. The first is the requirement for dividing cells to replicate their mitochondrial content by growth of existing mitochondria. The second is the dynamic regulation of mitochondrial content in response to organismal and cellular cues (e.g., exercise, caloric restriction, energy status, temperature). MYC provides the clearest example of a programmed expansion of mitochondrial content linked to the cell cycle. As an oncogene, MYC also presents intriguing questions about the role of its mitochondrial targets in cancer-related phenotypes, such as the Warburg effect and MYC-dependent apoptosis. PMID:24789872

  7. Concerted removal of the Erb1–Ytm1 complex in ribosome biogenesis relies on an elaborate interface

    PubMed Central

    Thoms, Matthias; Ahmed, Yasar Luqman; Maddi, Karthik; Hurt, Ed; Sinning, Irmgard

    2016-01-01

    The complicated process of eukaryotic ribosome biogenesis involves about 200 assembly factors that transiently associate with the nascent pre-ribosome in a spatiotemporally ordered way. During the early steps of 60S subunit formation, several proteins, collectively called A3 cluster factors, participate in the removal of the internal transcribed spacer 1 (ITS1) from 27SA3 pre-rRNA. Among these factors is the conserved hetero-trimeric Nop7–Erb1–Ytm1 complex (or human Pes1–Bop1–Wdr12), which is removed from the evolving pre-60S particle by the AAA ATPase Rea1 to allow progression in the pathway. Here, we clarify how Ytm1 and Erb1 interact, which has implications for the release mechanism of both factors from the pre-ribosome. Biochemical studies show that Ytm1 and Erb1 bind each other via their ß-propeller domains. The crystal structure of the Erb1–Ytm1 heterodimer determined at 2.67Å resolution reveals an extended interaction surface between the propellers in a rarely observed binding mode. Structure-based mutations in the interface that impair the Erb1–Ytm1 interaction do not support growth, with specific defects in 60S subunit synthesis. Under these mutant conditions, it becomes clear that an intact Erb1–Ytm1 complex is required for 60S maturation and that loss of this stable interaction prevents ribosome production. PMID:26657628

  8. Yeast Pescadillo is required for multiple activities during 60S ribosomal subunit synthesis.

    PubMed Central

    Oeffinger, Marlene; Leung, Anthony; Lamond, Angus; Tollervey, David; Lueng, Anthony

    2002-01-01

    The Pescadillo protein was identified via a developmental defect and implicated in cell cycle progression. Here we report that human Pescadillo and its yeast homolog (Yph1p or Nop7p) are localized to the nucleolus. Depletion of Nop7p leads to nuclear accumulation of pre-60S particles, indicating a defect in subunit export, and it interacts genetically with a tagged form of the ribosomal protein Rpl25p, consistent with a role in subunit assembly. Two pre-rRNA processing pathways generate alternative forms of the 5.8S rRNA, designated 5.8S(L) and 5.8Ss. In cells depleted for Nop7p, the 27SA3 pre-rRNA accumulated, whereas later processing intermediates and the mature 5.8Ss rRNA were depleted. Less depletion was seen for the 5.8S(L) pathway. TAP-tagged Nop7p coprecipitated precursors to both 5.8S(L) and 5.8Ss but not the mature rRNAs. We conclude that Nop7p is required for efficient exonucleolytic processing of the 27SA3 pre-rRNA and has additional functions in 60S subunit assembly and transport. Nop7p is a component of at least three different pre-60S particles, and we propose that it carries out distinct functions in each of these complexes. PMID:12022229

  9. Transcriptome Comparative Profiling of Barley eibi1 Mutant Reveals Pleiotropic Effects of HvABCG31 Gene on Cuticle Biogenesis and Stress Responsive Pathways

    PubMed Central

    Yang, Zujun; Zhang, Tao; Lang, Tao; Li, Guangrong; Chen, Guoxiong; Nevo, Eviatar

    2013-01-01

    Wild barley eibi1 mutant with HvABCG31 gene mutation has low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. To better understand how such a mutant plant survives, we performed a genome-wide gene expression analysis. The leaf transcriptomes between the near-isogenic lines eibi1 and the wild type were compared using the 22-k Barley1 Affymetrix microarray. We found that the pleiotropic effect of the single gene HvABCG31 mutation was linked to the co-regulation of metabolic processes and stress-related system. The cuticle development involved cytochrome P450 family members and fatty acid metabolism pathways were significantly up-regulated by the HvABCG31 mutation, which might be anticipated to reduce the levels of cutin monomers or wax and display conspicuous cuticle defects. The candidate genes for responses to stress were induced by eibi1 mutant through activating the jasmonate pathway. The down-regulation of co-expressed enzyme genes responsible for DNA methylation and histone deacetylation also suggested that HvABCG31 mutation may affect the epigenetic regulation for barley development. Comparison of transcriptomic profiling of barley under biotic and abiotic stresses revealed that the functions of HvABCG31 gene to high-water loss rate might be different from other osmotic stresses of gene mutations in barley. The transcriptional profiling of the HvABCG31 mutation provided candidate genes for further investigation of the physiological and developmental changes caused by the mutant. PMID:24129180

  10. Poxvirus Membrane Biogenesis

    PubMed Central

    2015-01-01

    Poxviruses differ from most DNA viruses by replicating entirely within the cytoplasm. The first discernible viral structures are crescents and spherical immature virions containing a single lipoprotein membrane bilayer with an external honeycomb lattice. Because this viral membrane displays no obvious continuity with a cellular organelle, a de novo origin was suggested. Nevertheless, transient connections between viral and cellular membranes could be difficult to resolve. Despite the absence of direct evidence, the intermediate compartment (ERGIC) between the endoplasmic reticulum (ER) and Golgi apparatus and the ER itself were considered possible sources of crescent membranes. A break-through in understanding poxvirus membrane biogenesis has come from recent studies of the abortive replication of several vaccinia virus null mutants. Novel images showing continuity between viral crescents and the ER and the accumulation of immature virions in the expanded ER lumen provide the first direct evidence for a cellular origin of this poxvirus membrane. PMID:25728299

  11. Biogenesis of the rat hepatocyte plasma membrane in vivo: comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation

    SciTech Connect

    Bartles, J.R.; Feracci, H.M.; Stieger, B.; Hubbard, A.L.

    1987-09-01

    We have used pulse-chase metabolic radiolabeling with L-(/sup 35/S)methionine in conjunction with subcellular fractionation and specific protein immunoprecipitation techniques to compare the posttranslational transport pathways taken by endogenous domain-specific integral proteins of the rat hepatocyte plasma membrane in vivo. Our results suggest that both apical (HA 4, dipeptidylpeptidase IV, and aminopeptidase N) and basolateral (CE 9 and the asialoglycoprotein receptor (ASGP-R)) proteins reach the hepatocyte plasma membrane with similar kinetics. The mature molecular mass form of each of these proteins reaches its maximum specific radioactivity in a purified hepatocyte plasma membrane fraction after only 45 min of chase. However, at this time, the mature radiolabeled apical proteins are not associated with vesicles derived from the apical domain of the hepatocyte plasma membrane, but instead are associated with vesicles which, by several criteria, appear to be basolateral plasma membrane. These vesicles: (a) fractionate like basolateral plasma membrane in sucrose density gradients and in free-flow electrophoresis; (b) can be separated from the bulk of the likely organellar contaminants, including membranes derived from the late Golgi cisternae, transtubular network, and endosomes; (c) contain the proven basolateral constituents CE 9 and the ASGP-R, as judged by vesicle immunoadsorption using fixed Staphylococcus aureus cells and anti-ASGP-R antibodies; and (d) are oriented with their ectoplasmic surfaces facing outward, based on the results of vesicle immunoadsorption experiments using antibodies specific for the ectoplasmic domain of the ASGP-R. Only at times of chase greater than 45 min do significant amounts of the mature radiolabeled apical proteins arrive at the apical domain, and they do so at different rates.

  12. Unravelling the mechanisms regulating muscle mitochondrial biogenesis.

    PubMed

    Hood, David A; Tryon, Liam D; Carter, Heather N; Kim, Yuho; Chen, Chris C W

    2016-08-01

    Skeletal muscle is a tissue with a low mitochondrial content under basal conditions, but it is responsive to acute increases in contractile activity patterns (i.e. exercise) which initiate the signalling of a compensatory response, leading to the biogenesis of mitochondria and improved organelle function. Exercise also promotes the degradation of poorly functioning mitochondria (i.e. mitophagy), thereby accelerating mitochondrial turnover, and preserving a pool of healthy organelles. In contrast, muscle disuse, as well as the aging process, are associated with reduced mitochondrial quality and quantity in muscle. This has strong negative implications for whole-body metabolic health and the preservation of muscle mass. A number of traditional, as well as novel regulatory pathways exist in muscle that control both biogenesis and mitophagy. Interestingly, although the ablation of single regulatory transcription factors within these pathways often leads to a reduction in the basal mitochondrial content of muscle, this can invariably be overcome with exercise, signifying that exercise activates a multitude of pathways which can respond to restore mitochondrial health. This knowledge, along with growing realization that pharmacological agents can also promote mitochondrial health independently of exercise, leads to an optimistic outlook in which the maintenance of mitochondrial and whole-body metabolic health can be achieved by taking advantage of the broad benefits of exercise, along with the potential specificity of drug action. PMID:27470593

  13. Germ plasm biogenesis –an Oskar-centric perspective

    PubMed Central

    Lehmann, Ruth

    2016-01-01

    Germ granules are the hallmark of all germ cells. These membrane-less, electron-dense structures were first observed over 100 years ago. Today, their role in regulating and processing transcripts critical for the establishment, maintenance and protection of germ cells is well-established and pathways outlining the biochemical mechanisms and physical properties associated with their biogenesis are emerging. PMID:26970648

  14. Peroxisomal Biogenesis in Ischemic Brain

    PubMed Central

    Young, Jennifer M.; Nelson, Jonathan W.; Cheng, Jian; Zhang, Wenri; Mader, Sarah; Davis, Catherine M.; Morrison, Richard S.

    2015-01-01

    Abstract Aims: Peroxisomes are highly adaptable and dynamic organelles, adjusting their size, number, and enzyme composition to changing environmental and metabolic demands. We determined whether peroxisomes respond to ischemia, and whether peroxisomal biogenesis is an adaptive response to cerebral ischemia. Results: Focal cerebral ischemia induced peroxisomal biogenesis in peri-infarct neurons, which was associated with a corresponding increase in peroxisomal antioxidant enzyme catalase. Peroxisomal biogenesis was also observed in primary cultured cortical neurons subjected to ischemic insult induced by oxygen-glucose deprivation (OGD). A catalase inhibitor increased OGD-induced neuronal death. Moreover, preventing peroxisomal proliferation by knocking down dynamin-related protein 1 (Drp1) exacerbated neuronal death induced by OGD, whereas enhancing peroxisomal biogenesis pharmacologically using a peroxisome proliferator-activated receptor-alpha agonist protected against neuronal death induced by OGD. Innovation: This is the first documentation of ischemia-induced peroxisomal biogenesis in mammalian brain using a combined in vivo and in vitro approach, electron microscopy, high-resolution laser-scanning confocal microscopy, and super-resolution structured illumination microscopy. Conclusion: Our findings suggest that neurons respond to ischemic injury by increasing peroxisome biogenesis, which serves a protective function, likely mediated by enhanced antioxidant capacity of neurons. Antioxid. Redox Signal. 22, 109–120. PMID:25226217

  15. Aβ25-35 Suppresses Mitochondrial Biogenesis in Primary Hippocampal Neurons.

    PubMed

    Dong, Weiguo; Wang, Feng; Guo, Wanqing; Zheng, Xuehua; Chen, Yue; Zhang, Wenguang; Shi, Hong

    2016-01-01

    Mitochondrial biogenesis is involved in the regulation of mitochondrial content, morphology, and function. Impaired mitochondrial biogenesis has been observed in Alzheimer's disease. Amyloid-β (Aβ) has been shown to cause mitochondrial dysfunction in cultured neurons, but its role in mitochondrial biogenesis in neurons remains poorly defined. AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) are key energy-sensing molecules regulating mitochondrial biogenesis. In addition, peroxisome proliferator-activated receptor-γ coactivator 1-alpha (PGC-1α), the master regulator of mitochondrial biogenesis, is a target for SIRT1 deacetylase activity. In this study, we investigated the effects of Aβ25-35 on mitochondrial biogenesis in cultured hippocampal neurons and the underlying mechanisms. In primary hippocampal neurons, we found that 24-h incubation with Aβ25-35 suppressed both phosphorylations of AMPK and SIRT1 expression and increased PGC-1α acetylation expression. In addition, Aβ25-35 also resulted in a decrease in mitochondrial DNA copy number, as well as decreases in the expression of mitochondrial biogenesis factors (PGC-1α, NRF 1, NRF 2, and Tfam). Taken together, these data show that Aβ25-35 suppresses mitochondrial biogenesis in hippocampal neurons. Aβ25-35-induced impairment of mitochondrial biogenesis may be associated with the inhibition of the AMPK-SIRT1-PGC-1α pathway.

  16. Minotaur is critical for primary piRNA biogenesis

    PubMed Central

    Vagin, Vasily V.; Yu, Yang; Jankowska, Anna; Luo, Yicheng; Wasik, Kaja A.; Malone, Colin D.; Harrison, Emily; Rosebrock, Adam; Wakimoto, Barbara T.; Fagegaltier, Delphine; Muerdter, Felix; Hannon, Gregory J.

    2013-01-01

    Piwi proteins and their associated small RNAs are essential for fertility in animals. In part, this is due to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and, as such, form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur. PMID:23788724

  17. RNA mimicry by the fap7 adenylate kinase in ribosome biogenesis.

    PubMed

    Loc'h, Jérôme; Blaud, Magali; Réty, Stéphane; Lebaron, Simon; Deschamps, Patrick; Bareille, Joseph; Jombart, Julie; Robert-Paganin, Julien; Delbos, Lila; Chardon, Florian; Zhang, Elodie; Charenton, Clément; Tollervey, David; Leulliot, Nicolas

    2014-05-01

    During biogenesis of the 40S and 60S ribosomal subunits, the pre-40S particles are exported to the cytoplasm prior to final cleavage of the 20S pre-rRNA to mature 18S rRNA. Amongst the factors involved in this maturation step, Fap7 is unusual, as it both interacts with ribosomal protein Rps14 and harbors adenylate kinase activity, a function not usually associated with ribonucleoprotein assembly. Human hFap7 also regulates Cajal body assembly and cell cycle progression via the p53-MDM2 pathway. This work presents the functional and structural characterization of the Fap7-Rps14 complex. We report that Fap7 association blocks the RNA binding surface of Rps14 and, conversely, Rps14 binding inhibits adenylate kinase activity of Fap7. In addition, the affinity of Fap7 for Rps14 is higher with bound ADP, whereas ATP hydrolysis dissociates the complex. These results suggest that Fap7 chaperones Rps14 assembly into pre-40S particles via RNA mimicry in an ATP-dependent manner. Incorporation of Rps14 by Fap7 leads to a structural rearrangement of the platform domain necessary for the pre-rRNA to acquire a cleavage competent conformation.

  18. Magnetosome biogenesis in magnetotactic bacteria.

    PubMed

    Uebe, René; Schüler, Dirk

    2016-09-13

    Magnetotactic bacteria derive their magnetic orientation from magnetosomes, which are unique organelles that contain nanometre-sized crystals of magnetic iron minerals. Although these organelles have evident potential for exciting biotechnological applications, a lack of genetically tractable magnetotactic bacteria had hampered the development of such tools; however, in the past decade, genetic studies using two model Magnetospirillum species have revealed much about the mechanisms of magnetosome biogenesis. In this Review, we highlight these new insights and place the molecular mechanisms of magnetosome biogenesis in the context of the complex cell biology of Magnetospirillum spp. Furthermore, we discuss the diverse properties of magnetosome biogenesis in other species of magnetotactic bacteria and consider the value of genetically 'magnetizing' non-magnetotactic bacteria. Finally, we discuss future prospects for this highly interdisciplinary and rapidly advancing field. PMID:27620945

  19. De novo peroxisome biogenesis: Evolving concepts and conundrums.

    PubMed

    Agrawal, Gaurav; Subramani, Suresh

    2016-05-01

    Peroxisomes proliferate by growth and division of pre-existing peroxisomes or could arise de novo. Though the de novo pathway of peroxisome biogenesis is a more recent discovery, several studies have highlighted key mechanistic details of the pathway. The endoplasmic reticulum (ER) is the primary source of lipids and proteins for the newly-formed peroxisomes. More recently, an intricate sorting process functioning at the ER has been proposed, that segregates specific PMPs first to peroxisome-specific ER domains (pER) and then assembles PMPs selectively into distinct pre-peroxisomal vesicles (ppVs) that later fuse to form import-competent peroxisomes. In addition, plausible roles of the three key peroxins Pex3, Pex16 and Pex19, which are also central to the growth and division pathway, have been suggested in the de novo process. In this review, we discuss key developments and highlight the unexplored avenues in de novo peroxisome biogenesis.

  20. Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors

    PubMed Central

    Zhang, Gao; Frederick, Dennie T.; Wu, Lawrence; Wei, Zhi; Krepler, Clemens; Srinivasan, Satish; Chae, Young Chan; Xu, Xiaowei; Choi, Harry; Dimwamwa, Elaida; Shannan, Batool; Basu, Devraj; Zhang, Dongmei; Guha, Manti; Xiao, Min; Randell, Sergio; Sproesser, Katrin; Xu, Wei; Liu, Jephrey; Karakousis, Giorgos C.; Schuchter, Lynn M.; Gangadhar, Tara C.; Amaravadi, Ravi K.; Gu, Mengnan; Xu, Caiyue; Ghosh, Abheek; Xu, Weiting; Tian, Tian; Zhang, Jie; Zha, Shijie; Brafford, Patricia; Weeraratna, Ashani; Davies, Michael A.; Wargo, Jennifer A.; Avadhani, Narayan G.; Lu, Yiling; Mills, Gordon B.; Altieri, Dario C.; Flaherty, Keith T.

    2016-01-01

    Targeting multiple components of the MAPK pathway can prolong the survival of patients with BRAFV600E melanoma. This approach is not curative, as some BRAF-mutated melanoma cells are intrinsically resistant to MAPK inhibitors (MAPKi). At the systemic level, our knowledge of how signaling pathways underlie drug resistance needs to be further expanded. Here, we have shown that intrinsically resistant BRAF-mutated melanoma cells with a low basal level of mitochondrial biogenesis depend on this process to survive MAPKi. Intrinsically resistant cells exploited an integrated stress response, exhibited an increase in mitochondrial DNA content, and required oxidative phosphorylation to meet their bioenergetic needs. We determined that intrinsically resistant cells rely on the genes encoding TFAM, which controls mitochondrial genome replication and transcription, and TRAP1, which regulates mitochondrial protein folding. Therefore, we targeted mitochondrial biogenesis with a mitochondrium-targeted, small-molecule HSP90 inhibitor (Gamitrinib), which eradicated intrinsically resistant cells and augmented the efficacy of MAPKi by inducing mitochondrial dysfunction and inhibiting tumor bioenergetics. A subset of tumor biopsies from patients with disease progression despite MAPKi treatment showed increased mitochondrial biogenesis and tumor bioenergetics. A subset of acquired drug-resistant melanoma cell lines was sensitive to Gamitrinib. Our study establishes mitochondrial biogenesis, coupled with aberrant tumor bioenergetics, as a potential therapy escape mechanism and paves the way for a rationale-based combinatorial strategy to improve the efficacy of MAPKi. PMID:27043285

  1. Mechanisms of organelle biogenesis govern stochastic fluctuations in organelle abundance.

    PubMed

    Mukherji, Shankar; O'Shea, Erin K

    2014-06-10

    Fluctuations in organelle abundance can profoundly limit the precision of cell biological processes from secretion to metabolism. We modeled the dynamics of organelle biogenesis and predicted that organelle abundance fluctuations depend strongly on the specific mechanisms that increase or decrease the number of a given organelle. Our model exactly predicts the size of experimentally measured Golgi apparatus and vacuole abundance fluctuations, suggesting that cells tolerate the maximum level of variability generated by the Golgi and vacuole biogenesis pathways. We observe large increases in peroxisome abundance fluctuations when cells are transferred from glucose-rich to fatty acid-rich environments. These increased fluctuations are significantly diminished in mutants lacking peroxisome fission factors, leading us to infer that peroxisome biogenesis switches from de novo synthesis to primarily fission. Our work provides a general framework for exploring stochastic organelle biogenesis and using fluctuations to quantitatively unravel the biophysical pathways that control the abundance of subcellular structures.DOI: http://dx.doi.org/10.7554/eLife.02678.001.

  2. The essential function of Rrs1 in ribosome biogenesis is conserved in budding and fission yeasts.

    PubMed

    Wan, Kun; Kawara, Haruka; Yamamoto, Tomoyuki; Kume, Kazunori; Yabuki, Yukari; Goshima, Tetsuya; Kitamura, Kenji; Ueno, Masaru; Kanai, Muneyoshi; Hirata, Dai; Funato, Kouichi; Mizuta, Keiko

    2015-09-01

    The Rrs1 protein plays an essential role in the biogenesis of 60S ribosomal subunits in budding yeast (Saccharomyces cerevisiae). Here, we examined whether the fission yeast (Schizosaccharomyces pombe) homologue of Rrs1 also plays a role in ribosome biogenesis. To this end, we constructed two temperature-sensitive fission yeast strains, rrs1-D14/22G and rrs1-L51P, which had amino acid substitutions corresponding to those of the previously characterized budding yeast rrs1-84 (D22/30G) and rrs1-124 (L61P) strains, respectively. The fission yeast mutants exhibited severe defects in growth and 60S ribosomal subunit biogenesis at high temperatures. In addition, expression of the Rrs1 protein of fission yeast suppressed the growth defects of the budding yeast rrs1 mutants at high temperatures. Yeast two-hybrid analyses revealed that the interactions of Rrs1 with the Rfp2 and Ebp2 proteins were conserved in budding and fission yeasts. These results suggest that the essential function of Rrs1 in ribosome biogenesis may be conserved in budding and fission yeasts.

  3. Biogenesis of respiratory cytochromes in bacteria.

    PubMed Central

    Thöny-Meyer, L

    1997-01-01

    Biogenesis of respiratory cytochromes is defined as consisting of the posttranslational processes that are necessary to assemble apoprotein, heme, and sometimes additional cofactors into mature enzyme complexes with electron transfer functions. Different biochemical reactions take place during maturation: (i) targeting of the apoprotein to or through the cytoplasmic membrane to its subcellular destination; (ii) proteolytic processing of precursor forms; (iii) assembly of subunits in the membrane and oligomerization; (iv) translocation and/or modification of heme and covalent or noncovalent binding to the protein moiety; (v) transport, processing, and incorporation of other cofactors; and (vi) folding and stabilization of the protein. These steps are discussed for the maturation of different oxidoreductase complexes, and they are arranged in a linear pathway to best account for experimental findings from studies concerning cytochrome biogenesis. The example of the best-studied case, i.e., maturation of cytochrome c, appears to consist of a pathway that requires at least nine specific genes and more general cellular functions such as protein secretion or the control of the redox state in the periplasm. Covalent attachment of heme appears to be enzyme catalyzed and takes place in the periplasm after translocation of the precursor through the membrane. The genetic characterization and the putative biochemical functions of cytochrome c-specific maturation proteins suggest that they may be organized in a membrane-bound maturase complex. Formation of the multisubunit cytochrome bc, complex and several terminal oxidases of the bo3, bd, aa3, and cbb3 types is discussed in detail, and models for linear maturation pathways are proposed wherever possible. PMID:9293186

  4. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis.

    PubMed

    Bursac, Sladana; Brdovcak, Maja Cokaric; Donati, Giulio; Volarevic, Sinisa

    2014-06-01

    Errors in ribosome biogenesis can result in quantitative or qualitative defects in protein synthesis and consequently lead to improper execution of the genetic program and the development of specific diseases. Evidence has accumulated over the last decade suggesting that perturbation of ribosome biogenesis triggers a p53-activating checkpoint signaling pathway, often referred to as the ribosome biogenesis stress checkpoint pathway. Although it was originally suggested that p53 has a prominent role in preventing diseases by monitoring the fidelity of ribosome biogenesis, recent work has demonstrated that p53 activation upon impairment of ribosome biogenesis also mediates pathological manifestations in humans. Perturbations of ribosome biogenesis can trigger a p53-dependent checkpoint signaling pathway independent of DNA damage and the tumor suppressor ARF through inhibitory interactions of specific ribosomal components with the p53 negative regulator, Mdm2. Here we review the recent advances made toward understanding of this newly-recognized checkpoint signaling pathway, its role in health and disease, and discuss possible future directions in this exciting research field. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. PMID:24514102

  5. Cellulose biogenesis in Dictyostelium discoideum

    SciTech Connect

    Blanton, R.L.

    1993-12-31

    Organisms that synthesize cellulose can be found amongst the bacteria, protistans, fungi, and animals, but it is in plants that the importance of cellulose in function (as the major structural constituent of plant cell walls) and economic use (as wood and fiber) can be best appreciated. The structure of cellulose and its biosynthesis have been the subjects of intense investigation. One of the most important insights gained from these studies is that the synthesis of cellulose by living organisms involves much more than simply the polymerization of glucose into a (1{r_arrow}4)-{beta}-linked polymer. The number of glucoses in a polymer (the degree of polymerization), the crystalline form assumed by the glucan chains when they crystallize to form a microfibril, and the dimensions and orientation of the microfibrils are all subject to cellular control. Instead of cellulose biosynthesis, a more appropriate term might be cellulose biogenesis, to emphasize the involvement of cellular structures and mechanisms in controlling polymerization and directing crystallization and deposition. Dictyostelium discoideum is uniquely suitable for the study of cellulose biogenesis because of its amenability to experimental study and manipulation and the extent of our knowledge of its basic cellular mechanisms (as will be evident from the rest of this volume). In this chapter, I will summarize what is known about cellulose biogenesis in D. discoideum, emphasizing its potential to illuminate our understanding both of D. discoideum development and plant cellulose biogenesis.

  6. The nucleolar GTPase nucleostemin-like 1 plays a role in plant growth and senescence by modulating ribosome biogenesis

    PubMed Central

    Jeon, Young; Park, Yong-Joon; Cho, Hui Kyung; Jung, Hyun Ju; Ahn, Tae-Kyu; Kang, Hunseung; Pai, Hyun-Sook

    2015-01-01

    Nucleostemin is a nucleolar GTP-binding protein that is involved in stem cell proliferation, embryonic development, and ribosome biogenesis in mammals. Plant nucleostemin-like 1 (NSN1) plays a role in embryogenesis, and apical and floral meristem development. In this study, a nucleolar function of NSN1 in the regulation of ribosome biogenesis was identified. Green fluorescent protein (GFP)-fused NSN1 localized to the nucleolus, which was primarily determined by its N-terminal domain. Recombinant NSN1 and its N-terminal domain (NSN1-N) bound to RNA in vitro. Recombinant NSN1 expressed GTPase activity in vitro. NSN1 silencing in Arabidopsis thaliana and Nicotiana benthamiana led to growth retardation and premature senescence. NSN1 interacted with Pescadillo and EBNA1 binding protein 2 (EBP2), which are nucleolar proteins involved in ribosome biogenesis, and with several ribosomal proteins. NSN1, NSN1-N, and EBP2 co-fractionated primarily with the 60S ribosomal large subunit in vivo. Depletion of NSN1 delayed 25S rRNA maturation and biogenesis of the 60S ribosome subunit, and repressed global translation. NSN1-deficient plants exhibited premature leaf senescence, excessive accumulation of reactive oxygen species, and senescence-related gene expression. Taken together, these results suggest that NSN1 plays a crucial role in plant growth and senescence by modulating ribosome biogenesis. PMID:26163696

  7. Chromoplast biogenesis and carotenoid accumulation.

    PubMed

    Li, Li; Yuan, Hui

    2013-11-15

    Chromoplasts are special organelles that possess superior ability to synthesize and store massive amounts of carotenoids. They are responsible for the distinctive colors found in fruits, flowers, and roots. Chromoplasts exhibit various morphologies and are derived from either pre-existing chloroplasts or other non-photosynthetic plastids such as proplastids, leucoplasts or amyloplasts. While little is known about the molecular mechanisms underlying chromoplast biogenesis, research progress along with proteomics study of chromoplast proteomes signifies various processes and factors important for chromoplast differentiation and development. Chromoplasts act as a metabolic sink that enables great biosynthesis and high storage capacity of carotenoids. The formation of chromoplasts enhances carotenoid metabolic sink strength and controls carotenoid accumulation in plants. The objective of this review is to provide an integrated view on our understanding of chromoplast biogenesis and carotenoid accumulation in plants.

  8. Deuterosome-mediated centriole biogenesis.

    PubMed

    Klos Dehring, Deborah A; Vladar, Eszter K; Werner, Michael E; Mitchell, Jennifer W; Hwang, Peter; Mitchell, Brian J

    2013-10-14

    The ability of cells to faithfully duplicate their two centrioles once per cell cycle is critical for proper mitotic progression and chromosome segregation. Multiciliated cells represent an interesting variation of centriole duplication in that these cells generate greater than 100 centrioles, which form the basal bodies of their motile cilia. This centriole amplification is proposed to require a structure termed the deuterosome, thought to be capable of promoting de novo centriole biogenesis. Here, we begin to molecularly characterize the deuterosome and identify it as a site for the localization of Cep152, Plk4, and SAS6. Additionally we identify CCDC78 as a centriole-associated and deuterosome protein that is essential for centriole amplification. Overexpression of Cep152, but not Plk4, SAS6, or CCDC78, drives overamplification of centrioles. However, in CCDC78 morphants, Cep152 fails to localize to the deuterosome and centriole biogenesis is impaired, indicating that CCDC78-mediated recruitment of Cep152 is required for deuterosome-mediated centriole biogenesis.

  9. The structure of Rpf2–Rrs1 explains its role in ribosome biogenesis

    PubMed Central

    Kharde, Satyavati; Calviño, Fabiola R.; Gumiero, Andrea; Wild, Klemens; Sinning, Irmgard

    2015-01-01

    The assembly of eukaryotic ribosomes is a hierarchical process involving about 200 biogenesis factors and a series of remodeling steps. The 5S RNP consisting of the 5S rRNA, RpL5 and RpL11 is recruited at an early stage, but has to rearrange during maturation of the pre-60S ribosomal subunit. Rpf2 and Rrs1 have been implicated in 5S RNP biogenesis, but their precise role was unclear. Here, we present the crystal structure of the Rpf2–Rrs1 complex from Aspergillus nidulans at 1.5 Å resolution and describe it as Brix domain of Rpf2 completed by Rrs1 to form two anticodon-binding domains with functionally important tails. Fitting the X-ray structure into the cryo-EM density of a previously described pre-60S particle correlates with biochemical data. The heterodimer forms specific contacts with the 5S rRNA, RpL5 and the biogenesis factor Rsa4. The flexible protein tails of Rpf2–Rrs1 localize to the central protuberance. Two helices in the Rrs1 C-terminal tail occupy a strategic position to block the rotation of 25S rRNA and the 5S RNP. Our data provide a structural model for 5S RNP recruitment to the pre-60S particle and explain why removal of Rpf2–Rrs1 is necessary for rearrangements to drive 60S maturation. PMID:26117542

  10. Regulation of chloroplast biogenesis: the immutans mutant of Arabidopsis

    SciTech Connect

    Rodermel, Steven

    2015-11-16

    The immutans (im) variegation mutant of Arabidopsis is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GIGANTEA (GI), a central component of the circadian clock that plays a poorly-understood role in diverse plant developmental processes. imgi2 mutants are late-flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a developmental-specific de-repression of cytokinin signaling that involves crosstalk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, sex1, perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GIGANTEA and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis.

  11. Potent, Reversible, and Specific Chemical Inhibitors of Eukaryotic Ribosome Biogenesis.

    PubMed

    Kawashima, Shigehiro A; Chen, Zhen; Aoi, Yuki; Patgiri, Anupam; Kobayashi, Yuki; Nurse, Paul; Kapoor, Tarun M

    2016-10-01

    All cellular proteins are synthesized by ribosomes, whose biogenesis in eukaryotes is a complex multi-step process completed within minutes. Several chemical inhibitors of ribosome function are available and used as tools or drugs. By contrast, we lack potent validated chemical probes to analyze the dynamics of eukaryotic ribosome assembly. Here, we combine chemical and genetic approaches to discover ribozinoindoles (or Rbins), potent and reversible triazinoindole-based inhibitors of eukaryotic ribosome biogenesis. Analyses of Rbin sensitivity and resistance conferring mutations in fission yeast, along with biochemical assays with recombinant proteins, provide evidence that Rbins' physiological target is Midasin, an essential ∼540-kDa AAA+ (ATPases associated with diverse cellular activities) protein. Using Rbins to acutely inhibit or activate Midasin function, in parallel experiments with inhibitor-sensitive or inhibitor-resistant cells, we uncover Midasin's role in assembling Nsa1 particles, nucleolar precursors of the 60S subunit. Together, our findings demonstrate that Rbins are powerful probes for eukaryotic ribosome assembly.

  12. Mitochondrial cytochrome c biogenesis: no longer an enigma

    PubMed Central

    Babbitt, Shalon E.; Sutherland, Molly C.; Francisco, Brian San; Mendez, Deanna L.; Kranz, Robert G.

    2015-01-01

    Cytochromes c and c1are heme proteins that are essential for aerobic respiration. Release of cytochrome c from mitochondria is an important signal in apoptosis initiation. Biogenesis of c-type cytochromes involves covalent attachment of heme to two cysteines (at a conserved CXXCH sequence) in the apocytochrome. Heme attachment is catalyzed in most mitochondria by holocytochrome c synthase (HCCS), which is also necessary for import of apocytochrome c. Thus, HCCS affects cellular levels of cytochrome c, impacting mitochondrial physiology and cell death. Here, we review the mechanisms of HCCS function and the roles played by heme and residues in the CXXCH motif. Additionally, we consider concepts emerging within the two prokaryotic cytochrome c biogenesis pathways. PMID:26073510

  13. Iron–sulfur cluster biogenesis and human disease

    PubMed Central

    Rouault, Tracey A.; Tong, Wing Hang

    2008-01-01

    Iron–sulfur (Fe–S) clusters are essential for numerous biological processes, including mitochondrial respiratory chain activity and various other enzymatic and regulatory functions. Human Fe–S cluster assembly proteins are frequently encoded by single genes, and inherited defects in some of these genes cause disease. Recently, the spectrum of diseases attributable to abnormal Fe–S cluster biogenesis has extended beyond Friedreich ataxia to include a sideroblastic anemia with deficiency of glutaredoxin 5 and a myopathy associated with a deficiency of a Fe–S cluster assembly scaffold protein, ISCU. Mutations within other mammalian Fe–S cluster assembly genes could be causative for human diseases that manifest distinctive combinations of tissue-specific impairments. Thus, defects in the iron–sulfur cluster biogenesis pathway could underlie many human diseases. PMID:18606475

  14. EVALUATION OF THE BIOGENESIS SOIL WASHING TECHNOLOGY

    EPA Science Inventory

    The BioGenesis Enterprises, Inc. (BioGenesis) soil washing technology was demonstrated as part of the US Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) program in November 1992. The demonstration was conducted over three days at a petrol...

  15. The Drug Diazaborine Blocks Ribosome Biogenesis by Inhibiting the AAA-ATPase Drg1*

    PubMed Central

    Loibl, Mathias; Klein, Isabella; Prattes, Michael; Schmidt, Claudia; Kappel, Lisa; Zisser, Gertrude; Gungl, Anna; Krieger, Elmar; Pertschy, Brigitte; Bergler, Helmut

    2014-01-01

    The drug diazaborine is the only known inhibitor of ribosome biogenesis and specifically blocks large subunit formation in eukaryotic cells. However, the target of this drug and the mechanism of inhibition were unknown. Here we identify the AAA-ATPase Drg1 as a target of diazaborine. Inhibitor binding into the second AAA domain of Drg1 requires ATP loading and results in inhibition of ATP hydrolysis in this site. As a consequence the physiological activity of Drg1, i.e. the release of Rlp24 from pre-60S particles, is blocked, and further progression of cytoplasmic preribosome maturation is prevented. Our results identify the first target of an inhibitor of ribosome biogenesis and provide the mechanism of inhibition of a key step in large ribosomal subunit formation. PMID:24371142

  16. Multiple crosstalks between mRNA biogenesis and SUMO.

    PubMed

    Rouvière, Jérôme O; Geoffroy, Marie-Claude; Palancade, Benoit

    2013-10-01

    mRNA metabolism involves the orchestration of multiple nuclear events, including transcription, processing (e.g., capping, splicing, polyadenylation), and quality control. This leads to the accurate formation of messenger ribonucleoparticles (mRNPs) that are finally exported to the cytoplasm for translation. The production of defined sets of mRNAs in given environmental or physiological situations relies on multiple regulatory mechanisms that target the mRNA biogenesis machineries. Among other regulations, post-translational modification by the small ubiquitin-like modifier SUMO, whose prominence in several cellular processes has been largely demonstrated, also plays a key role in mRNA biogenesis. Analysis of the multiple available SUMO proteomes and functional validations of an increasing number of sumoylated targets have revealed the key contribution of SUMO-dependent regulation in nuclear mRNA metabolism. While sumoylation of transcriptional activators and repressors is so far best documented, SUMO contribution to other stages of mRNA biogenesis is also emerging. Modification of mRNA metabolism factors by SUMO determine their subnuclear targeting and biological activity, notably by regulating their molecular interactions with nucleic acids or protein partners. In particular, sumoylation of DNA-bound transcriptional regulators interfere with their association to target sequences or chromatin modifiers. In addition, the recent identification of enzymes of the SUMO pathway within specialized mRNA biogenesis machineries may provide a further level of regulation to their specificity. These multiple crosstalks between mRNA metabolism and SUMO appear therefore as important players in cellular regulatory networks.

  17. The fungal vacuole: composition, function, and biogenesis.

    PubMed Central

    Klionsky, D J; Herman, P K; Emr, S D

    1990-01-01

    The fungal vacuole is an extremely complex organelle that is involved in a wide variety of functions. The vacuole not only carries out degradative processes, the role most often ascribed to it, but also is the primary storage site for certain small molecules and biosynthetic precursors such as basic amino acids and polyphosphate, plays a role in osmoregulation, and is involved in the precise homeostatic regulation of cytosolic ion and basic amino acid concentration and intracellular pH. These many functions necessitate an intricate interaction between the vacuole and the rest of the cell; the vacuole is part of both the secretory and endocytic pathways and is also directly accessible from the cytosol. Because of the various roles and properties of the vacuole, it has been possible to isolate mutants which are defective in various vacuolar functions including the storage and uptake of metabolites, regulation of pH, sorting and processing of vacuolar proteins, and vacuole biogenesis. These mutants show a remarkable degree of genetic overlap, suggesting that these functions are not individual, discrete properties of the vacuole but, rather, are closely interrelated. Images PMID:2215422

  18. Ribosome biogenesis in the yeast Saccharomyces cerevisiae.

    PubMed

    Woolford, John L; Baserga, Susan J

    2013-11-01

    Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes. PMID:24190922

  19. The fusogenic lipid phosphatidic acid promotes the biogenesis of mitochondrial outer membrane protein Ugo1

    PubMed Central

    Keller, Michael; Taskin, Asli A.; Horvath, Susanne E.; Guan, Xue Li; Prinz, Claudia; Opalińska, Magdalena; Zorzin, Carina; van der Laan, Martin; Wenk, Markus R.; Schubert, Rolf; Wiedemann, Nils; Holzer, Martin

    2015-01-01

    Import and assembly of mitochondrial proteins depend on a complex interplay of proteinaceous translocation machineries. The role of lipids in this process has been studied only marginally and so far no direct role for a specific lipid in mitochondrial protein biogenesis has been shown. Here we analyzed a potential role of phosphatidic acid (PA) in biogenesis of mitochondrial proteins in Saccharomyces cerevisiae. In vivo remodeling of the mitochondrial lipid composition by lithocholic acid treatment or by ablation of the lipid transport protein Ups1, both leading to an increase of mitochondrial PA levels, specifically stimulated the biogenesis of the outer membrane protein Ugo1, a component of the mitochondrial fusion machinery. We reconstituted the import and assembly pathway of Ugo1 in protein-free liposomes, mimicking the outer membrane phospholipid composition, and found a direct dependency of Ugo1 biogenesis on PA. Thus, PA represents the first lipid that is directly involved in the biogenesis pathway of a mitochondrial membrane protein. PMID:26347140

  20. Outer membrane lipoprotein biogenesis: Lol is not the end.

    PubMed

    Konovalova, Anna; Silhavy, Thomas J

    2015-10-01

    Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology. PMID:26370942

  1. Outer membrane lipoprotein biogenesis: Lol is not the end

    PubMed Central

    Konovalova, Anna; Silhavy, Thomas J.

    2015-01-01

    Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology. PMID:26370942

  2. Outer membrane lipoprotein biogenesis: Lol is not the end.

    PubMed

    Konovalova, Anna; Silhavy, Thomas J

    2015-10-01

    Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology.

  3. The synthesis of glutamic acid in the absence of enzymes: Implications for biogenesis

    NASA Technical Reports Server (NTRS)

    Morowitz, Harold; Peterson, Eta; Chang, Sherwood

    1995-01-01

    This paper reports on the non-enzymatic aqueous phase synthesis of amino acids from keto acids, ammonia and reducing agents. The facile synthesis of key metabolic intermediates, particularly in the glycolytic pathway, the citric acid cycle, and the first step of amino acid synthesis, lead to new ways of looking at the problem of biogenesis.

  4. Yeast ribosomal protein L7 and its homologue Rlp7 are simultaneously present at distinct sites on pre-60S ribosomal particles

    PubMed Central

    Babiano, Reyes; Badis, Gwenael; Saveanu, Cosmin; Namane, Abdelkader; Doyen, Antonia; Díaz-Quintana, Antonio; Jacquier, Alain; Fromont-Racine, Micheline; de la Cruz, Jesús

    2013-01-01

    Ribosome biogenesis requires >300 assembly factors in Saccharomyces cerevisiae. Ribosome assembly factors Imp3, Mrt4, Rlp7 and Rlp24 have sequence similarity to ribosomal proteins S9, P0, L7 and L24, suggesting that these pre-ribosomal factors could be placeholders that prevent premature assembly of the corresponding ribosomal proteins to nascent ribosomes. However, we found L7 to be a highly specific component of Rlp7-associated complexes, revealing that the two proteins can bind simultaneously to pre-ribosomal particles. Cross-linking and cDNA analysis experiments showed that Rlp7 binds to the ITS2 region of 27S pre-rRNAs, at two sites, in helix III and in a region adjacent to the pre-rRNA processing sites C1 and E. However, L7 binds to mature 25S and 5S rRNAs and cross-linked predominantly to helix ES7Lb within 25S rRNA. Thus, despite their predicted structural similarity, our data show that Rlp7 and L7 clearly bind at different positions on the same pre-60S particles. Our results also suggest that Rlp7 facilitates the formation of the hairpin structure of ITS2 during 60S ribosomal subunit maturation. PMID:23945946

  5. HDL biogenesis, remodeling, and catabolism.

    PubMed

    Zannis, Vassilis I; Fotakis, Panagiotis; Koukos, Georgios; Kardassis, Dimitris; Ehnholm, Christian; Jauhiainen, Matti; Chroni, Angeliki

    2015-01-01

    In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research. PMID:25522986

  6. Coordinated nuclear export of 60S ribosomal subunits and NMD3 in vertebrates

    PubMed Central

    Trotta, Christopher R.; Lund, Elsebet; Kahan, Lawrence; Johnson, Arlen W.; Dahlberg, James E.

    2003-01-01

    60S and 40S ribosomal subunits are assembled in the nucleolus and exported from the nucleus to the cytoplasm independently of each other. We show that in vertebrate cells, transport of both subunits requires the export receptor CRM1 and Ran·GTP. Export of 60S subunits is coupled with that of the nucleo- cytoplasmic shuttling protein NMD3. Human NMD3 (hNMD3) contains a CRM-1-dependent leucine-rich nuclear export signal (NES) and a complex, dispersed nuclear localization signal (NLS), the basic region of which is also required for nucleolar accumulation. When present in Xenopus oocytes, both wild-type and export-defective mutant hNMD3 proteins bind to newly made nuclear 60S pre-export particles at a late step of subunit maturation. The export-defective hNMD3, but not the wild-type protein, inhibits export of 60S subunits from oocyte nuclei. These results indicate that the NES mutant protein competes with endogenous wild-type frog NMD3 for binding to nascent 60S subunits, thereby preventing their export. We propose that NMD3 acts as an adaptor for CRM1–Ran·GTP-mediated 60S subunit export, by a mechanism that is conserved from vertebrates to yeast. PMID:12773398

  7. Dysregulation of microRNA biogenesis machinery in cancer.

    PubMed

    Hata, Akiko; Kashima, Risa

    2016-01-01

    MicroRNAs (miRNAs) are integral to the gene regulatory network. A single miRNA is capable of controlling the expression of hundreds of protein coding genes and modulate a wide spectrum of biological functions, such as proliferation, differentiation, stress responses, DNA repair, cell adhesion, motility, inflammation, cell survival, senescence and apoptosis, all of which are fundamental to tumorigenesis. Overexpression, genetic amplification, and gain-of-function mutation of oncogenic miRNAs ("onco-miRs") as well as genetic deletion and loss-of-function mutation of tumor suppressor miRNAs ("suppressor-miRs") are linked to human cancer. In addition to the dysregulation of a specific onco-miR or suppressor-miRs, changes in global miRNA levels resulting from a defective miRNA biogenesis pathway play a role in tumorigenesis. The function of individual onco-miRs and suppressor-miRs and their target genes in cancer has been described in many different articles elsewhere. In this review, we primarily focus on the recent development regarding the dysregulation of the miRNA biogenesis pathway and its contribution to cancer. PMID:26628006

  8. Biological applications of hydrophilic C60 derivatives (hC60s)- a structural perspective.

    PubMed

    Zhu, Xiaolei; Sollogoub, Matthieu; Zhang, Yongmin

    2016-06-10

    Reactive oxygen species (ROS) generation and radical scavenging are dual properties of hydrophilic C60 derivatives (hC60s). hC60s eliminate radicals in dark, while they produce reactive oxygen species (ROS) in the presence of irradiation and oxygen. Compared to the pristine C60 suspension, the aqueous solution of hC60s is easier to handle in vivo. hC60s are diverse and could be placed into two general categories: covalently modified C60 derivatives and pristine C60 solubilized non-covalently by macromolecules. In order to present in detail, the above categories are broken down into 8 parts: C60(OH)n, C60 with carboxylic acid, C60 with quaternary ammonium salts, C60 with peptide, C60 containing sugar, C60 modified covalently or non-covalently solubilized by cyclodextrins (CDs), pristine C60 delivered by liposomes, functionalized C60-polymer and pristine C60 solubilized by polymer. Each hC60 shows the propensity to be ROS producer or radical scavenger. This preference is dependent on hC60s structures. For example, major application of C60(OH)n is radical scavenger, while pristine C60/γ-CD complex usually serves as ROS producer. In addition, the electron acceptability and innate hydrophobic surface confer hC60s with O2 uptake inhibition, HIV inhibition and membrane permeability. In this review, we summarize the preparation methods and biological applications of hC60s according to the structures. PMID:27049677

  9. Mitochondrial biogenesis in plants during seed germination.

    PubMed

    Law, Simon R; Narsai, Reena; Whelan, James

    2014-11-01

    Mitochondria occupy a central role in the eukaryotic cell. In addition to being major sources of cellular energy, mitochondria are also involved in a diverse range of functions including signalling, the synthesis of many essential organic compounds and a role in programmed cell death. The active proliferation and differentiation of mitochondria is termed mitochondrial biogenesis and necessitates the coordinated communication of mitochondrial status within an integrated cellular network. Two models of mitochondrial biogenesis have been defined previously, the growth and division model and the maturation model. The former describes the growth and division of pre-existing mature organelles through a form of binary fission, while the latter describes the propagation of mitochondria from structurally and biochemically simple promitochondrial structures that upon appropriate stimuli, mature into fully functional mitochondria. In the last decade, a number of studies have utilised seed germination in plants as a platform for the examination of the processes occurring during mitochondrial biogenesis. These studies have revealed many new aspects of the tightly regulated procession of events that define mitochondrial biogenesis during this period of rapid development. A model for mitochondrial biogenesis that supports the maturation of mitochondria from promitochondrial structures has emerged, where mitochondrial signalling plays a crucial role in the early steps of seed germination. PMID:24727594

  10. Insights into chloroplast biogenesis and development.

    PubMed

    Pogson, Barry J; Ganguly, Diep; Albrecht-Borth, Verónica

    2015-09-01

    In recent years many advances have been made to obtain insight into chloroplast biogenesis and development. In plants several plastids types exist such as the proplastid (which is the progenitor of all plastids), leucoplasts (group of colourless plastids important for storage including elaioplasts (lipids), amyloplasts (starch) or proteinoplasts (proteins)), chromoplasts (yellow to orange-coloured due to carotenoids, in flowers or in old leaves as gerontoplasts), and the green chloroplasts. Chloroplasts are indispensable for plant development; not only by performing photosynthesis and thus rendering the plant photoautotrophic, but also for biochemical processes (which in some instances can also take place in other plastids types), such as the synthesis of pigments, lipids, and plant hormones and sensing environmental stimuli. Although we understand many aspects of these processes there are gaps in our understanding of the establishment of functional chloroplasts and their regulation. Why is that so? Even though chloroplast function is comparable in all plants and most of the algae, ferns and moss, detailed analyses have revealed many differences, specifically with respect to its biogenesis. As an update to our prior review on the genetic analysis of chloroplast biogenesis and development [1] herein we will focus on recent advances in Angiosperms (monocotyledonous and dicotyledonous plants) that provide novel insights and highlight the challenges and prospects for unravelling the regulation of chloroplast biogenesis specifically during the establishment of the young plants. This article is part of a Special Issue entitled: Chloroplast Biogenesis.

  11. Rosiglitazone induces mitochondrial biogenesis in mouse brain.

    PubMed

    Strum, Jay C; Shehee, Ron; Virley, David; Richardson, Jill; Mattie, Michael; Selley, Paula; Ghosh, Sujoy; Nock, Christina; Saunders, Ann; Roses, Allen

    2007-03-01

    Rosiglitazone was found to simulate mitochondrial biogenesis in mouse brain in an apolipoprotein (Apo) E isozyme-independent manner. Rosiglitazone induced both mitochondrial DNA (mtDNA) and estrogen-stimulated related receptor alpha (ESRRA) mRNA, a key regulator of mitochondrial biogenesis. Transcriptomics and proteomics analysis suggested the mitochondria produced in the presence of human ApoE3 and E4 were not as metabolically efficient as those in the wild type or ApoE knockout mice. Thus, we propose that PPARgamma agonism induces neuronal mitochondrial biogenesis and improves glucose utilization leading to improved cellular function and provides mechanistic support for the improvement in cognition observed in treatment of Alzheimer's patients with rosiglitazone.

  12. Mitochondrial OXA Translocase Plays a Major Role in Biogenesis of Inner-Membrane Proteins.

    PubMed

    Stiller, Sebastian B; Höpker, Jan; Oeljeklaus, Silke; Schütze, Conny; Schrempp, Sandra G; Vent-Schmidt, Jens; Horvath, Susanne E; Frazier, Ann E; Gebert, Natalia; van der Laan, Martin; Bohnert, Maria; Warscheid, Bettina; Pfanner, Nikolaus; Wiedemann, Nils

    2016-05-10

    The mitochondrial inner membrane harbors three protein translocases. Presequence translocase and carrier translocase are essential for importing nuclear-encoded proteins. The oxidase assembly (OXA) translocase is required for exporting mitochondrial-encoded proteins; however, different views exist about its relevance for nuclear-encoded proteins. We report that OXA plays a dual role in the biogenesis of nuclear-encoded mitochondrial proteins. First, a systematic analysis of OXA-deficient mitochondria led to an unexpected expansion of the spectrum of OXA substrates imported via the presequence pathway. Second, biogenesis of numerous metabolite carriers depends on OXA, although they are not imported by the presequence pathway. We show that OXA is crucial for the biogenesis of the Tim18-Sdh3 module of the carrier translocase. The export translocase OXA is thus required for the import of metabolite carriers by promoting assembly of the carrier translocase. We conclude that OXA is of central importance for the biogenesis of the mitochondrial inner membrane.

  13. Mitochondrial OXA Translocase Plays a Major Role in Biogenesis of Inner-Membrane Proteins.

    PubMed

    Stiller, Sebastian B; Höpker, Jan; Oeljeklaus, Silke; Schütze, Conny; Schrempp, Sandra G; Vent-Schmidt, Jens; Horvath, Susanne E; Frazier, Ann E; Gebert, Natalia; van der Laan, Martin; Bohnert, Maria; Warscheid, Bettina; Pfanner, Nikolaus; Wiedemann, Nils

    2016-05-10

    The mitochondrial inner membrane harbors three protein translocases. Presequence translocase and carrier translocase are essential for importing nuclear-encoded proteins. The oxidase assembly (OXA) translocase is required for exporting mitochondrial-encoded proteins; however, different views exist about its relevance for nuclear-encoded proteins. We report that OXA plays a dual role in the biogenesis of nuclear-encoded mitochondrial proteins. First, a systematic analysis of OXA-deficient mitochondria led to an unexpected expansion of the spectrum of OXA substrates imported via the presequence pathway. Second, biogenesis of numerous metabolite carriers depends on OXA, although they are not imported by the presequence pathway. We show that OXA is crucial for the biogenesis of the Tim18-Sdh3 module of the carrier translocase. The export translocase OXA is thus required for the import of metabolite carriers by promoting assembly of the carrier translocase. We conclude that OXA is of central importance for the biogenesis of the mitochondrial inner membrane. PMID:27166948

  14. Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice.

    PubMed

    Park, Eun-Jung; Kim, Hero; Kim, Younghun; Yi, Jongheop; Choi, Kyunghee; Park, Kwangsik

    2010-04-15

    Fullerenes (C60s) occur in the environment due to natural and anthropogenic sources such as volcanic eruptions, forest fires, and the combustion of carbon-based materials. Recently, production and application of engineered C60s have also rapidly increased in diverse industrial fields and biomedicine due to C60' unique physico-chemical properties, so toxicity assessment on environmental and human health is being evaluated as a valuable work. However, data related to the toxicity of C60s have not been abundant up to now. In this study, we studied the immunotoxic mechanism and change of gene expression caused by the instillation of C60s. As a result, C60s induced an increase in sub G1 and G1 arrest in BAL cells, an increase in pro-inflammatory cytokines such as IL-1, TNF-alpha, and IL-6, and an increase of Th1 cytokines such as IL-12 and IFN-r in BAL fluid. In addition, IgE reached the maximum at 1 day after treatment in both BAL fluid and the blood, and decreased in a time-dependent manner. Gene expression of the MHC class II (H2-Eb1) molecule was stronger than that of the MHC class I (H2-T23), and an increase in T cell distribution was also observed during the experiment period. Furthermore, cell infiltration and expression of tissue damage related genes in lung tissue were constantly observed during the experiment period. Based on this, C60s may induce inflammatory responses in the lung of mice.

  15. Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice

    SciTech Connect

    Park, Eun-Jung; Kim, Hero; Kim, Younghun; Yi, Jongheop; Choi, Kyunghee; Park, Kwangsik

    2010-04-15

    Fullerenes (C60s) occur in the environment due to natural and anthropogenic sources such as volcanic eruptions, forest fires, and the combustion of carbon-based materials. Recently, production and application of engineered C60s have also rapidly increased in diverse industrial fields and biomedicine due to C60' unique physico-chemical properties, so toxicity assessment on environmental and human health is being evaluated as a valuable work. However, data related to the toxicity of C60s have not been abundant up to now. In this study, we studied the immunotoxic mechanism and change of gene expression caused by the instillation of C60s. As a result, C60s induced an increase in sub G1 and G1 arrest in BAL cells, an increase in pro-inflammatory cytokines such as IL-1, TNF-alpha, and IL-6, and an increase of Th1 cytokines such as IL-12 and IFN-r in BAL fluid. In addition, IgE reached the maximum at 1 day after treatment in both BAL fluid and the blood, and decreased in a time-dependent manner. Gene expression of the MHC class II (H2-Eb1) molecule was stronger than that of the MHC class I (H2-T23), and an increase in T cell distribution was also observed during the experiment period. Furthermore, cell infiltration and expression of tissue damage related genes in lung tissue were constantly observed during the experiment period. Based on this, C60s may induce inflammatory responses in the lung of mice.

  16. Cilostazol promotes mitochondrial biogenesis in human umbilical vein endothelial cells through activating the expression of PGC-1α

    SciTech Connect

    Zuo, Luning; Li, Qiang; Sun, Bei; Xu, Zhiying; Ge, Zhiming

    2013-03-29

    Highlights: ► First time to show that cilostazol promotes the expressions of PGC-1α. ► First time to show that cilostazol stimulates mitochondrial biogenesis in HUVECs. ► PKA/CREB pathway mediates the effect of cilostazol on PGC-1α expression. ► Suggesting the roles of cilostazol in mitochondrial dysfunction related disease. -- Abstract: Mitochondrial dysfunction is frequently observed in vascular diseases. Cilostazol is a drug approved by the US Food and Drug Administration for the treatment of intermittent claudication. Cilostazol increases intracellular cyclic adenosine monophosphate (cAMP) levels through inhibition of type III phosphodiesterase. The effects of cilostazol in mitochondrial biogenesis in human umbilical vein endothelial cells (HUVECs) were investigated in this study. Cilostazol treated HUVECs displayed increased levels of ATP, mitochondrial DNA/nuclear DNA ratio, expressions of cytochrome B, and mitochondrial mass, suggesting an enhanced mitochondrial biogenesis induced by cilostazol. The promoted mitochondrial biogenesis could be abolished by Protein kinase A (PKA) specific inhibitor H-89, implying that PKA pathway played a critical role in increased mitochondrial biogenesis after cilostazol treatment. Indeed, expression levels of peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), NRF 1 and mitochondrial transcription factor A (TFAM) were significantly increased in HUVECs after incubation with cilostazol at both mRNA levels and protein levels. Importantly, knockdown of PGC-1α could abolish cilostazol-induced mitochondrial biogenesis. Enhanced expression of p-CREB and PGC-1α induced by cilostazol could be inhibited by H-89. Moreover, the increased expression of PGC-1α induced by cilostazol could be inhibited by downregulation of CREB using CREB siRNA at both mRNA and protein levels. All the results indicated that cilostazol promoted mitochondrial biogenesis through activating the expression of PGC-1α in

  17. Phosphatidylinositol 3-monophosphate is involved in toxoplasma apicoplast biogenesis.

    PubMed

    Tawk, Lina; Dubremetz, Jean-François; Montcourrier, Philippe; Chicanne, Gaëtan; Merezegue, Fabrice; Richard, Véronique; Payrastre, Bernard; Meissner, Markus; Vial, Henri J; Roy, Christian; Wengelnik, Kai; Lebrun, Maryse

    2011-02-01

    Apicomplexan parasites cause devastating diseases including malaria and toxoplasmosis. They harbour a plastid-like, non-photosynthetic organelle of algal origin, the apicoplast, which fulfils critical functions for parasite survival. Because of its essential and original metabolic pathways, the apicoplast has become a target for the development of new anti-apicomplexan drugs. Here we show that the lipid phosphatidylinositol 3-monophosphate (PI3P) is involved in apicoplast biogenesis in Toxoplasma gondii. In yeast and mammalian cells, PI3P is concentrated on early endosomes and regulates trafficking of endosomal compartments. Imaging of PI3P in T. gondii showed that the lipid was associated with the apicoplast and apicoplast protein-shuttling vesicles. Interference with regular PI3P function by over-expression of a PI3P specific binding module in the parasite led to the accumulation of vesicles containing apicoplast peripheral membrane proteins around the apicoplast and, ultimately, to the loss of the organelle. Accordingly, inhibition of the PI3P-synthesising kinase interfered with apicoplast biogenesis. These findings point to an unexpected implication for this ubiquitous lipid and open new perspectives on how nuclear encoded proteins traffic to the apicoplast. This study also highlights the possibility of developing specific pharmacological inhibitors of the parasite PI3-kinase as novel anti-apicomplexan drugs. PMID:21379336

  18. Biogenesis and functions of lipid droplets in plants

    PubMed Central

    Chapman, Kent D.; Dyer, John M.; Mullen, Robert T.

    2012-01-01

    The compartmentation of neutral lipids in plants is mostly associated with seed tissues, where triacylglycerols (TAGs) stored within lipid droplets (LDs) serve as an essential physiological energy and carbon reserve during postgerminative growth. However, some nonseed tissues, such as leaves, flowers and fruits, also synthesize and store TAGs, yet relatively little is known about the formation or function of LDs in these tissues. Characterization of LD-associated proteins, such as oleosins, caleosins, and sterol dehydrogenases (steroleosins), has revealed surprising features of LD function in plants, including stress responses, hormone signaling pathways, and various aspects of plant growth and development. Although oleosin and caleosin proteins are specific to plants, LD-associated sterol dehydrogenases also are present in mammals, and in both plants and mammals these enzymes have been shown to be important in (steroid) hormone metabolism and signaling. In addition, several other proteins known to be important in LD biogenesis in yeasts and mammals are conserved in plants, suggesting that at least some aspects of LD biogenesis and/or function are evolutionarily conserved. PMID:22045929

  19. Multicilin drives centriole biogenesis via E2f proteins.

    PubMed

    Ma, Lina; Quigley, Ian; Omran, Heymut; Kintner, Chris

    2014-07-01

    Multiciliate cells employ hundreds of motile cilia to produce fluid flow, which they nucleate and extend by first assembling hundreds of centrioles. In most cells, entry into the cell cycle allows centrioles to undergo a single round of duplication, but in differentiating multiciliate cells, massive centriole assembly occurs in G0 by a process initiated by a small coiled-coil protein, Multicilin. Here we show that Multicilin acts by forming a ternary complex with E2f4 or E2f5 and Dp1 that binds and activates most of the genes required for centriole biogenesis, while other cell cycle genes remain off. This complex also promotes the deuterosome pathway of centriole biogenesis by activating the expression of deup1 but not its paralog, cep63. Finally, we show that this complex is disabled by mutations in human Multicilin that cause a severe congenital mucociliary clearance disorder due to reduced generation of multiple cilia. By coopting the E2f regulation of cell cycle genes, Multicilin drives massive centriole assembly in epithelial progenitors in a manner required for multiciliate cell differentiation.

  20. Increases in Mitochondrial Biogenesis Impair Carcinogenesis at Multiple Levels

    PubMed Central

    Wang, Xiao; Moraes, Carlos T.

    2011-01-01

    Although mitochondrial respiration is decreased in most cancer cells, the role of this decrease in carcinogenesis and cancer progression is still unclear. To better understand this phenomenon, instead of further inhibiting mitochondrial function, we induced mitochondrial biogenesis in transformed cells by activating the peroxisome proliferator-activated receptors (PPARs)/ peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathways. This was achieved by treating the cells with bezafibrate, a PPARs panagonist that also enhances PGC-1α expression. We confirmed that bezafibrate treatment led to increased mitochondrial proteins and enzyme functions. We found that cells with increased mitochondrial biogenesis had decreased growth rates in glucose-containing medium. In addition, they became less invasive, which was directly linked to the reduced lactate levels. Surprisingly, even though bezafibrate-treated cells had higher levels of mitochondrial markers, total respiration was not significantly altered. However, respiratory coupling, and ATP levels were. Our data show that by increasing the efficiency of the mitochondrial oxidative phosphorylation system, cancer progression is hampered by decreases in cell proliferation and invasiveness. PMID:21855427

  1. Vulnerability of microRNA biogenesis in FTD-ALS.

    PubMed

    Eitan, Chen; Hornstein, Eran

    2016-09-15

    The genetics of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) turn our attention to RNA metabolism, primarily because many of the identified diseases-associated genes encode for RNA-binding proteins. microRNAs (miRNAs) are endogenous noncoding RNAs that play critical roles in maintaining brain integrity. The current review sheds light on miRNA dysregulation in neurodegenerative diseases, focusing on FTD-ALS. We propose that miRNAs are susceptible to fail when protein factors that are critical for miRNA biogenesis malfunction. Accordingly, potential insufficiencies of the 'microprocessor' complex, the nucleo-cytoplasmic export of miRNA precursors or their processing by Dicer were recently reported. Furthermore, specific miRNAs are involved in the regulation of pathways that are essential for neuronal survival or function. Any change in the expression of these specific miRNAs or in their ability to recognize their target sequences will have negative consequences. Taken together, recent reports strengthens the hypothesis that dysregulation of miRNAs might play an important role in the pathogenesis of neurodegenerative diseases, and highlights the miRNA biogenesis machinery as an interesting target for therapeutic interventions for ALS as well as FTD. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease. PMID:26778173

  2. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6.

    PubMed

    Klinge, Sebastian; Voigts-Hoffmann, Felix; Leibundgut, Marc; Arpagaus, Sofia; Ban, Nenad

    2011-11-18

    Protein synthesis in all organisms is catalyzed by ribosomes. In comparison to their prokaryotic counterparts, eukaryotic ribosomes are considerably larger and are subject to more complex regulation. The large ribosomal subunit (60S) catalyzes peptide bond formation and contains the nascent polypeptide exit tunnel. We present the structure of the 60S ribosomal subunit from Tetrahymena thermophila in complex with eukaryotic initiation factor 6 (eIF6), cocrystallized with the antibiotic cycloheximide (a eukaryotic-specific inhibitor of protein synthesis), at a resolution of 3.5 angstroms. The structure illustrates the complex functional architecture of the eukaryotic 60S subunit, which comprises an intricate network of interactions between eukaryotic-specific ribosomal protein features and RNA expansion segments. It reveals the roles of eukaryotic ribosomal protein elements in the stabilization of the active site and the extent of eukaryotic-specific differences in other functional regions of the subunit. Furthermore, it elucidates the molecular basis of the interaction with eIF6 and provides a structural framework for further studies of ribosome-associated diseases and the role of the 60S subunit in the initiation of protein synthesis.

  3. Mechanism of eIF6 release from the nascent 60S ribosomal subunit

    PubMed Central

    Weis, Félix; Giudice, Emmanuel; Churcher, Mark; Jin, Li; Hilcenko, Christine; Wong, Chi C; Traynor, David; Kay, Robert R; Warren, Alan J

    2016-01-01

    SBDS protein (deficient in the inherited leukemia-predisposition disorder Shwachman-Diamond syndrome) and the GTPase EFL1 (an EF-G homolog) activate nascent 60S ribosomal subunits for translation by catalyzing eviction of the antiassociation factor eIF6 from nascent 60S ribosomal subunits. However, the mechanism is completely unknown. Here, we present cryo-EM structures of human SBDS and SBDS–EFL1 bound to Dictyostelium discoideum 60S ribosomal subunits with and without endogenous eIF6. SBDS assesses the integrity of the peptidyl (P) site, bridging uL16 (mutated in T-cell acute lymphoblastic leukemia) with uL11 at the P-stalk base and the sarcin-ricin loop. Upon EFL1 binding, SBDS is repositioned around helix 69, thus facilitating a conformational switch in EFL1 that displaces eIF6 by competing for an overlapping binding site on the 60S ribosomal subunit. Our data reveal the conserved mechanism of eIF6 release, which is corrupted in both inherited and sporadic leukemias. PMID:26479198

  4. Flexibility in targeting and insertion during bacterial membrane protein biogenesis

    SciTech Connect

    Bloois, Edwin van; Hagen-Jongman, Corinne M. ten; Luirink, Joen

    2007-10-26

    The biogenesis of Escherichia coli inner membrane proteins (IMPs) is assisted by targeting and insertion factors such as the signal recognition particle (SRP), the Sec-translocon and YidC with translocation of (large) periplasmic domains energized by SecA and the proton motive force (pmf). The use of these factors and forces is probably primarily determined by specific structural features of an IMP. To analyze these features we have engineered a set of model IMPs based on endogenous E. coli IMPs known to follow distinct targeting and insertion pathways. The modified model IMPs were analyzed for altered routing using an in vivo protease mapping approach. The data suggest a facultative use of different combinations of factors.

  5. TIP47 functions in the biogenesis of lipid droplets.

    PubMed

    Bulankina, Anna V; Deggerich, Anke; Wenzel, Dirk; Mutenda, Kudzai; Wittmann, Julia G; Rudolph, Markus G; Burger, Koert N J; Höning, Stefan

    2009-05-18

    TIP47 (tail-interacting protein of 47 kD) was characterized as a cargo selection device for mannose 6-phosphate receptors (MPRs), directing their transport from endosomes to the trans-Golgi network. In contrast, our current analysis shows that cytosolic TIP47 is not recruited to organelles of the biosynthetic and endocytic pathways. Knockdown of TIP47 expression had no effect on MPR distribution or trafficking and did not affect lysosomal enzyme sorting. Therefore, our data argue against a function of TIP47 as a sorting device. Instead, TIP47 is recruited to lipid droplets (LDs) by an amino-terminal sequence comprising 11-mer repeats. We show that TIP47 has apolipoprotein-like properties and reorganizes liposomes into small lipid discs. Suppression of TIP47 blocked LD maturation and decreased the incorporation of triacylglycerol into LDs. We conclude that TIP47 functions in the biogenesis of LDs.

  6. Flexibility in targeting and insertion during bacterial membrane protein biogenesis.

    PubMed

    van Bloois, Edwin; ten Hagen-Jongman, Corinne M; Luirink, Joen

    2007-10-26

    The biogenesis of Escherichia coli inner membrane proteins (IMPs) is assisted by targeting and insertion factors such as the signal recognition particle (SRP), the Sec-translocon and YidC with translocation of (large) periplasmic domains energized by SecA and the proton motive force (pmf). The use of these factors and forces is probably primarily determined by specific structural features of an IMP. To analyze these features we have engineered a set of model IMPs based on endogenous E. coli IMPs known to follow distinct targeting and insertion pathways. The modified model IMPs were analyzed for altered routing using an in vivo protease mapping approach. The data suggest a facultative use of different combinations of factors.

  7. Cell wall structure and biogenesis in Aspergillus species.

    PubMed

    Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu

    2016-09-01

    Aspergillus species are among the most important filamentous fungi from the viewpoints of industry, pathogenesis, and mycotoxin production. Fungal cells are exposed to a variety of environmental stimuli, including changes in osmolality, temperature, and pH, which create stresses that primarily act on fungal cell walls. In addition, fungal cell walls are the first interactions with host cells in either human or plants. Thus, understanding cell wall structure and the mechanism of their biogenesis is important for the industrial, medical, and agricultural fields. Here, we provide a systematic review of fungal cell wall structure and recent findings regarding the cell wall integrity signaling pathways in aspergilli. This accumulated knowledge will be useful for understanding and improving the use of industrial aspergilli fermentation processes as well as treatments for some fungal infections.

  8. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    PubMed Central

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  9. Utilizing small nutrient compounds as enhancers of exercise-induced mitochondrial biogenesis

    PubMed Central

    Craig, Daniel M.; Ashcroft, Stephen P.; Belew, Micah Y.; Stocks, Ben; Currell, Kevin; Baar, Keith; Philp, Andrew

    2015-01-01

    Endurance exercise, when performed regularly as part of a training program, leads to increases in whole-body and skeletal muscle-specific oxidative capacity. At the cellular level, this adaptive response is manifested by an increased number of oxidative fibers (Type I and IIA myosin heavy chain), an increase in capillarity and an increase in mitochondrial biogenesis. The increase in mitochondrial biogenesis (increased volume and functional capacity) is fundamentally important as it leads to greater rates of oxidative phosphorylation and an improved capacity to utilize fatty acids during sub-maximal exercise. Given the importance of mitochondrial biogenesis for skeletal muscle performance, considerable attention has been given to understanding the molecular cues stimulated by endurance exercise that culminate in this adaptive response. In turn, this research has led to the identification of pharmaceutical compounds and small nutritional bioactive ingredients that appear able to amplify exercise-responsive signaling pathways in skeletal muscle. The aim of this review is to discuss these purported exercise mimetics and bioactive ingredients in the context of mitochondrial biogenesis in skeletal muscle. We will examine proposed modes of action, discuss evidence of application in skeletal muscle in vivo and finally comment on the feasibility of such approaches to support endurance-training applications in humans. PMID:26578969

  10. Nuclear-localized CTP:phosphocholine cytidylyltransferase α regulates phosphatidylcholine synthesis required for lipid droplet biogenesis

    PubMed Central

    Aitchison, Adam J.; Arsenault, Daniel J.; Ridgway, Neale D.

    2015-01-01

    The reversible association of CTP:phosphocholine cytidylyltransferase α (CCTα) with membranes regulates the synthesis of phosphatidylcholine (PC) by the CDP-choline (Kennedy) pathway. Based on results with insect CCT homologues, translocation of nuclear CCTα onto cytoplasmic lipid droplets (LDs) is proposed to stimulate the synthesis of PC that is required for LD biogenesis and triacylglycerol (TAG) storage. We examined whether this regulatory mechanism applied to LD biogenesis in mammalian cells. During 3T3-L1 and human preadipocyte differentiation, CCTα expression and PC synthesis was induced. In 3T3-L1 cells, CCTα translocated from the nucleoplasm to the nuclear envelope and cytosol but did not associate with LDs. The enzyme also remained in the nucleus during human adipocyte differentiation. RNAi silencing in 3T3-L1 cells showed that CCTα regulated LD size but did not affect TAG storage or adipogenesis. LD biogenesis in nonadipocyte cell lines treated with oleate also promoted CCTα translocation to the nuclear envelope and/or cytoplasm but not LDs. In rat intestinal epithelial cells, CCTα silencing increased LD size, but LD number and TAG deposition were decreased due to oleate-induced cytotoxicity. We conclude that CCTα increases PC synthesis for LD biogenesis by translocation to the nuclear envelope and not cytoplasmic LDs. PMID:26108622

  11. Optimizing intramuscular adaptations to aerobic exercise: effects of carbohydrate restriction and protein supplementation on mitochondrial biogenesis.

    PubMed

    Margolis, Lee M; Pasiakos, Stefan M

    2013-11-01

    Mitochondrial biogenesis is a critical metabolic adaptation to aerobic exercise training that results in enhanced mitochondrial size, content, number, and activity. Recent evidence has shown that dietary manipulation can further enhance mitochondrial adaptations to aerobic exercise training, which may delay skeletal muscle fatigue and enhance exercise performance. Specifically, studies have demonstrated that combining carbohydrate restriction (endogenous and exogenous) with a single bout of aerobic exercise potentiates the beneficial effects of exercise on markers of mitochondrial biogenesis. Additionally, studies have demonstrated that high-quality protein supplementation enhances anabolic skeletal muscle intracellular signaling and mitochondrial protein synthesis following a single bout of aerobic exercise. Mitochondrial biogenesis is stimulated by complex intracellular signaling pathways that appear to be primarily regulated by 5'AMP-activated protein kinase and p38 mitogen-activated protein kinase mediated through proliferator-activated γ receptor co-activator 1 α activation, resulting in increased mitochondrial DNA expression and enhanced skeletal muscle oxidative capacity. However, the mechanisms by which concomitant carbohydrate restriction and dietary protein supplementation modulates mitochondrial adaptations to aerobic exercise training remains unclear. This review summarizes intracellular regulation of mitochondrial biogenesis and the effects of carbohydrate restriction and protein supplementation on mitochondrial adaptations to aerobic exercise.

  12. Transcriptome and small RNA deep sequencing reveals deregulation of miRNA biogenesis in human glioma.

    PubMed

    Moore, Lynette M; Kivinen, Virpi; Liu, Yuexin; Annala, Matti; Cogdell, David; Liu, Xiuping; Liu, Chang-Gong; Sawaya, Raymond; Yli-Harja, Olli; Shmulevich, Ilya; Fuller, Gregory N; Zhang, Wei; Nykter, Matti

    2013-02-01

    Altered expression of oncogenic and tumour-suppressing microRNAs (miRNAs) is widely associated with tumourigenesis. However, the regulatory mechanisms underlying these alterations are poorly understood. We sought to shed light on the deregulation of miRNA biogenesis promoting the aberrant miRNA expression profiles identified in these tumours. Using sequencing technology to perform both whole-transcriptome and small RNA sequencing of glioma patient samples, we examined precursor and mature miRNAs to directly evaluate the miRNA maturation process, and examined expression profiles for genes involved in the major steps of miRNA biogenesis. We found that ratios of mature to precursor forms of a large number of miRNAs increased with the progression from normal brain to low-grade and then to high-grade gliomas. The expression levels of genes involved in each of the three major steps of miRNA biogenesis (nuclear processing, nucleo-cytoplasmic transport, and cytoplasmic processing) were systematically altered in glioma tissues. Survival analysis of an independent data set demonstrated that the alteration of genes involved in miRNA maturation correlates with survival in glioma patients. Direct quantification of miRNA maturation with deep sequencing demonstrated that deregulation of the miRNA biogenesis pathway is a hallmark for glioma genesis and progression.

  13. Transcriptome and Small RNA Deep Sequencing Reveals Deregulation of miRNA Biogenesis in Human Glioma

    PubMed Central

    Moore, Lynette M.; Kivinen, Virpi; Liu, Yuexin; Annala, Matti; Cogdell, David; Liu, Xiuping; Liu, Chang-Gong; Sawaya, Raymond; Yli-Harja, Olli; Shmulevich, Ilya; Fuller, Gregory N.; Zhang, Wei; Nykter, Matti

    2013-01-01

    Altered expression of oncogenic and tumor-suppressing microRNAs (miRNAs) is widely associated with tumorigenesis. However, the regulatory mechanisms underlying these alterations are poorly understood. We sought to shed light on the deregulation of miRNA biogenesis promoting the aberrant miRNA expression profiles identified in these tumors. Using sequencing technology to perform both whole-transcriptome and small RNA sequencing of glioma patient samples, we examined precursor and mature miRNAs to directly evaluate the miRNA maturation process, and interrogated expression profiles for genes involved in the major steps of miRNA biogenesis. We found that ratios of mature to precursor forms of a large number of miRNAs increased with the progression from normal brain to low-grade and then to high-grade gliomas. The expression levels of genes involved in each of the three major steps of miRNA biogenesis (nuclear processing, nucleo-cytoplasmic transport, and cytoplasmic processing) were systematically altered in glioma tissues. Survival analysis of an independent data set demonstrated that the alteration of genes involved in miRNA maturation correlates with survival in glioma patients. Direct quantification of miRNA maturation with deep sequencing demonstrated that deregulation of the miRNA biogenesis pathway is a hallmark for glioma genesis and progression. PMID:23007860

  14. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions.

    PubMed

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis.

  15. FYVE1 is essential for vacuole biogenesis and intracellular trafficking in Arabidopsis.

    PubMed

    Kolb, Cornelia; Nagel, Marie-Kristin; Kalinowska, Kamila; Hagmann, Jörg; Ichikawa, Mie; Anzenberger, Franziska; Alkofer, Angela; Sato, Masa H; Braun, Pascal; Isono, Erika

    2015-04-01

    The plant vacuole is a central organelle that is involved in various biological processes throughout the plant life cycle. Elucidating the mechanism of vacuole biogenesis and maintenance is thus the basis for our understanding of these processes. Proper formation of the vacuole has been shown to depend on the intracellular membrane trafficking pathway. Although several mutants with altered vacuole morphology have been characterized in the past, the molecular basis for plant vacuole biogenesis has yet to be fully elucidated. With the aim to identify key factors that are essential for vacuole biogenesis, we performed a forward genetics screen in Arabidopsis (Arabidopsis thaliana) and isolated mutants with altered vacuole morphology. The vacuolar fusion defective1 (vfd1) mutant shows seedling lethality and defects in central vacuole formation. VFD1 encodes a Fab1, YOTB, Vac1, and EEA1 (FYVE) domain-containing protein, FYVE1, that has been implicated in intracellular trafficking. FYVE1 localizes on late endosomes and interacts with Src homology-3 domain-containing proteins. Mutants of FYVE1 are defective in ubiquitin-mediated protein degradation, vacuolar transport, and autophagy. Altogether, our results show that FYVE1 is essential for plant growth and development and place FYVE1 as a key regulator of intracellular trafficking and vacuole biogenesis.

  16. Biosynthetic Study on Antihypercholesterolemic Agent Phomoidride: General Biogenesis of Fungal Dimeric Anhydrides.

    PubMed

    Fujii, Ryuya; Matsu, Yusuke; Minami, Atsushi; Nagamine, Shota; Takeuchi, Ichiro; Gomi, Katsuya; Oikawa, Hideaki

    2015-11-20

    To elucidate the general biosynthetic pathway of fungal dimeric anhydrides, a gene cluster for the biosynthesis of the antihy-percholesterolemic agent phomoidride was identified by heterologous expression of candidate genes encoding the highly reducing polyketide synthase, alkylcitrate synthase (ACS), and alkylcitrate dehydratase (ACDH). An in vitro analysis of ACS and ACDH revealed that they give rise to anhydride monomers. Based on the established monomer biosynthesis, we propose a general biogenesis of dimeric anhydrides involving a single donor unit and four acceptor units.

  17. The yeast NOP4 gene product is an essential nucleolar protein required for pre-rRNA processing and accumulation of 60S ribosomal subunits.

    PubMed Central

    Sun, C; Woolford, J L

    1994-01-01

    The Saccharomyces cerevisiae NOP4 gene was isolated by screening a lambda gt11 yeast genomic DNA library with a monoclonal antibody against a yeast nucleolar protein. NOP4 encodes a 78 kDa protein that contains two prototypical RNA recognition motifs (RRMs) flanking an imperfect RRM lacking characteristic RNP1 and RNP2 motifs. In addition, there is a fourth incomplete RRM. NOP4 is a single copy essential gene present on chromosome XVI, between RAD1 and PEP4. To examine the function of Nop4p, we constructed a conditional null allele of NOP4 by placing this gene under the control of the glucose-repressible GAL1 promoter. When cells are shifted from galactose-containing medium to glucose-containing medium, NOP4 transcription is terminated, Nop4 protein is depleted and cell growth is impaired. Nop4 protein depletion results in diminished accumulation of 60S ribosomal subunits, assignable to a defect in ribosome biogenesis arising from a lack of production of mature 25S rRNA from 27S precursor rRNA. Images PMID:8039505

  18. shutdown is a component of the Drosophila piRNA biogenesis machinery

    PubMed Central

    Preall, Jonathan B.; Czech, Benjamin; Guzzardo, Paloma M.; Muerdter, Felix; Hannon, Gregory J.

    2012-01-01

    In animals, the piRNA pathway preserves the integrity of gametic genomes, guarding them against the activity of mobile genetic elements. This innate immune mechanism relies on distinct genomic loci, termed piRNA clusters, to provide a molecular definition of transposons, enabling their discrimination from genes. piRNA clusters give rise to long, single-stranded precursors, which are processed into primary piRNAs through an unknown mechanism. These can engage in an adaptive amplification loop, the ping-pong cycle, to optimize the content of small RNA populations via the generation of secondary piRNAs. Many proteins have been ascribed functions in either primary biogenesis or the ping-pong cycle, though for the most part the molecular functions of proteins implicated in these pathways remain obscure. Here, we link shutdown (shu), a gene previously shown to be required for fertility in Drosophila, to the piRNA pathway. Analysis of knockdown phenotypes in both the germline and somatic compartments of the ovary demonstrate important roles for shutdown in both primary biogenesis and the ping-pong cycle. shutdown is a member of the FKBP family of immunophilins. Shu contains domains implicated in peptidyl-prolyl cis-trans isomerase activity and in the binding of HSP90-family chaperones, though the relevance of these domains to piRNA biogenesis is unknown. PMID:22753781

  19. Centriole biogenesis and function in multiciliated cells

    PubMed Central

    Zhang, Siwei; Mitchell, Brian J.

    2016-01-01

    The use of Xenopus embryonic skin as a model system for the development of ciliated epithelia is well established. This tissue is comprised of numerous cell types, most notably the multiciliated cells (MCCs) that each contain approximately 150 motile cilia. At the base of each cilium lies the centriole-based structure called the basal body. Centriole biogenesis is typically restricted to two new centrioles per cell cycle, each templating from an existing “mother” centriole. In contrast, MCCs are post-mitotic cells in which the majority of centrioles arise “de novo” without templating from a mother centriole, instead, these centrioles nucleate from an electron-dense structure termed the deuterostome. How centriole number is regulated in these cells and the mechanism by which the deuterosome templates nascent centrioles is still poorly understood. Here, we describe methods for regulating MCC cell fate as well as for visualizing and manipulating centriole biogenesis. PMID:26175436

  20. Analysis of photosystem II biogenesis in cyanobacteria.

    PubMed

    Heinz, Steffen; Liauw, Pasqual; Nickelsen, Jörg; Nowaczyk, Marc

    2016-03-01

    Photosystem II (PSII), a large multisubunit membrane protein complex found in the thylakoid membranes of cyanobacteria, algae and plants, catalyzes light-driven oxygen evolution from water and reduction of plastoquinone. Biogenesis of PSII requires coordinated assembly of at least 20 protein subunits, as well as incorporation of various organic and inorganic cofactors. The stepwise assembly process is facilitated by numerous protein factors that have been identified in recent years. Further analysis of this process requires the development or refinement of specific methods for the identification of novel assembly factors and, in particular, elucidation of the unique role of each. Here we summarize current knowledge of PSII biogenesis in cyanobacteria, focusing primarily on the impact of methodological advances and innovations. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux.

  1. PPARα in lysosomal biogenesis: A perspective

    PubMed Central

    Ghosh, Arunava; Pahan, Kalipada

    2016-01-01

    Lysosomes are membrane-bound vesicles containing hydrolytic enzymes, ubiquitously present in all eukaryotic cells. Classically considered to be central to the cellular waste management machinery, recent studies revealed the role of lysosomes in a wide array of cellular processes like, degradation, cellular development, programmed cell death, secretion, plasma membrane repair, nutritional responses, and lipid metabolism. We recently studied the regulation of TFEB, considered to be the master regulator of lysosomal biogenesis, by activation of peroxisomal proliferator activated receptor α (PPARα), one of the key regulators of lipid metabolism. In this article, we discuss how the recent finding could be put in to perspective with the previous findings that relate lysosomal biogenesis to lipid metabolism, and comment on the possibility of a bi-directional interplay between these two distinct cellular processes upon activation of PPARα. PMID:26621249

  2. Centriole biogenesis and function in multiciliated cells.

    PubMed

    Zhang, Siwei; Mitchell, Brian J

    2015-01-01

    The use of Xenopus embryonic skin as a model system for the development of ciliated epithelia is well established. This tissue is comprised of numerous cell types, most notably the multiciliated cells (MCCs) that each contain approximately 150 motile cilia. At the base of each cilium lies the centriole-based structure called the basal body. Centriole biogenesis is typically restricted to two new centrioles per cell cycle, each templating from an existing "mother" centriole. In contrast, MCCs are post-mitotic cells in which the majority of centrioles arise "de novo" without templating from a mother centriole, instead, these centrioles nucleate from an electron-dense structure termed the deuterostome. How centriole number is regulated in these cells and the mechanism by which the deuterosome templates nascent centrioles is still poorly understood. Here, we describe methods for regulating MCC cell fate as well as for visualizing and manipulating centriole biogenesis.

  3. Cholesterol in myelin biogenesis and hypomyelinating disorders.

    PubMed

    Saher, Gesine; Stumpf, Sina Kristin

    2015-08-01

    The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids.

  4. Enantiomeric Natural Products: Occurrence and Biogenesis**

    PubMed Central

    Finefield, Jennifer M.; Sherman, David H.; Kreitman, Martin; Williams, Robert M.

    2012-01-01

    In Nature, chiral natural products are usually produced in optically pure form; however, on occasion Nature is known to produce enantiomerically opposite metabolites. These enantiomeric natural products can arise in Nature from a single species, or from different genera and/or species. Extensive research has been carried out over the years in an attempt to understand the biogenesis of naturally occurring enantiomers, however, many fascinating puzzles and stereochemical anomalies still remain. PMID:22555867

  5. Anatomy, biogenesis and regeneration of salivary glands.

    PubMed

    Holmberg, Kyle V; Hoffman, Matthew P

    2014-01-01

    An overview of the anatomy and biogenesis of salivary glands is important in order to understand the physiology, functions and disorders associated with saliva. A major disorder of salivary glands is salivary hypofunction and resulting xerostomia, or dry mouth, which affects hundreds of thousands of patients each year who suffer from salivary gland diseases or undergo head and neck cancer treatment. There is currently no curative therapy for these patients. To improve these patients' quality of life, new therapies are being developed based on findings in salivary gland cell and developmental biology. Here we discuss the anatomy and biogenesis of the major human salivary glands and the rodent submandibular gland, which has been used extensively as a research model. We also include a review of recent research on the identification and function of stem cells in salivary glands, and the emerging field of research suggesting that nerves play an instructive role during development and may be essential for adult gland repair and regeneration. Understanding the molecular mechanisms involved in gland biogenesis provides a template for regenerating, repairing or reengineering diseased or damaged adult human salivary glands. We provide an overview of 3 general approaches currently being developed to regenerate damaged salivary tissue, including gene therapy, stem cell-based therapy and tissue engineering. In the future, it may be that a combination of all three will be used to repair, regenerate and reengineer functional salivary glands in patients to increase the secretion of their saliva, the focus of this monograph. PMID:24862590

  6. Peroxisome biogenesis disorders: molecular basis for impaired peroxisomal membrane assembly: in metabolic functions and biogenesis of peroxisomes in health and disease.

    PubMed

    Fujiki, Yukio; Yagita, Yuichi; Matsuzaki, Takashi

    2012-09-01

    Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome (ZS). Gene defects of peroxins required for both membrane assembly and matrix protein import are identified: ten mammalian pathogenic peroxins for ten complementation groups of PBDs, are required for matrix protein import; three, Pex3p, Pex16p and Pex19p, are shown to be essential for peroxisome membrane assembly and responsible for the most severe ZS in PBDs of three complementation groups 12, 9, and 14, respectively. Patients with severe ZS with defects of PEX3, PEX16, and PEX19 tend to carry severe mutation such as nonsense mutations, frameshifts and deletions. With respect to the function of these three peroxins in membrane biogenesis, two distinct pathways have been proposed for the import of peroxisomal membrane proteins in mammalian cells: a Pex19p- and Pex3p-dependent class I pathway and a Pex19p- and Pex16p-dependent class II pathway. In class II pathway, Pex19p also forms a soluble complex with newly synthesized Pex3p as the chaperone for Pex3p in the cytosol and directly translocates it to peroxisomes. Pex16p functions as the peroxisomal membrane receptor that is specific to the Pex3p-Pex19p complexes. A model for the import of peroxisomal membrane proteins is suggested, providing new insights into the molecular mechanisms underlying the biogenesis of peroxisomes and its regulation involving Pex3p, Pex19p, and Pex16p. Another model suggests that in Saccharomyces cerevisiae peroxisomes likely emerge from the endoplasmic reticulum.

  7. Myristoylated CIL-7 regulates ciliary extracellular vesicle biogenesis.

    PubMed

    Maguire, Julie E; Silva, Malan; Nguyen, Ken C Q; Hellen, Elizabeth; Kern, Andrew D; Hall, David H; Barr, Maureen M

    2015-08-01

    The cilium both releases and binds to extracellular vesicles (EVs). EVs may be used by cells as a form of intercellular communication and mediate a broad range of physiological and pathological processes. The mammalian polycystins (PCs) localize to cilia, as well as to urinary EVs released from renal epithelial cells. PC ciliary trafficking defects may be an underlying cause of autosomal dominant polycystic kidney disease (PKD), and ciliary-EV interactions have been proposed to play a central role in the biology of PKD. In Caenorhabditis elegans and mammals, PC1 and PC2 act in the same genetic pathway, act in a sensory capacity, localize to cilia, and are contained in secreted EVs, suggesting ancient conservation. However, the relationship between cilia and EVs and the mechanisms generating PC-containing EVs remain an enigma. In a forward genetic screen for regulators of C. elegans PKD-2 ciliary localization, we identified CIL-7, a myristoylated protein that regulates EV biogenesis. Loss of CIL-7 results in male mating behavioral defects, excessive accumulation of EVs in the lumen of the cephalic sensory organ, and failure to release PKD-2::GFP-containing EVs to the environment. Fatty acylation, such as myristoylation and palmitoylation, targets proteins to cilia and flagella. The CIL-7 myristoylation motif is essential for CIL-7 function and for targeting CIL-7 to EVs. C. elegans is a powerful model with which to study ciliary EV biogenesis in vivo and identify cis-targeting motifs such as myristoylation that are necessary for EV-cargo association and function. PMID:26041936

  8. The Centriole Cartwheel Protein SAS-6 in Trypanosoma brucei Is Required for Probasal Body Biogenesis and Flagellum Assembly.

    PubMed

    Hu, Huiqing; Liu, Yi; Zhou, Qing; Siegel, Sara; Li, Ziyin

    2015-09-01

    The centriole in eukaryotes functions as the cell's microtubule-organizing center (MTOC) to nucleate spindle assembly, and its biogenesis requires an evolutionarily conserved protein, SAS-6, which assembles the centriole cartwheel. Trypanosoma brucei, an early branching protozoan, possesses the basal body as its MTOC to nucleate flagellum biogenesis. However, little is known about the components of the basal body and their roles in basal body biogenesis and flagellum assembly. Here, we report that the T. brucei SAS-6 homolog, TbSAS-6, is localized to the mature basal body and the probasal body throughout the cell cycle. RNA interference (RNAi) of TbSAS-6 inhibited probasal body biogenesis, compromised flagellum assembly, and caused cytokinesis arrest. Surprisingly, overexpression of TbSAS-6 in T. brucei also impaired probasal body duplication and flagellum assembly, contrary to SAS-6 overexpression in humans, which produces supernumerary centrioles. Furthermore, we showed that depletion of T. brucei Polo-like kinase, TbPLK, or inhibition of TbPLK activity did not abolish TbSAS-6 localization to the basal body, in contrast to the essential role of Polo-like kinase in recruiting SAS-6 to centrioles in animals. Altogether, these results identified the essential role of TbSAS-6 in probasal body biogenesis and flagellum assembly and suggest the presence of a TbPLK-independent pathway governing basal body duplication in T. brucei.

  9. Peroxisome biogenesis in mammalian cells: The impact of genes and environment.

    PubMed

    Farr, Rebecca L; Lismont, Celien; Terlecky, Stanley R; Fransen, Marc

    2016-05-01

    The initiation and progression of many human diseases are mediated by a complex interplay of genetic, epigenetic, and environmental factors. As all diseases begin with an imbalance at the cellular level, it is essential to understand how various types of molecular aberrations, metabolic changes, and environmental stressors function as switching points in essential communication networks. In recent years, peroxisomes have emerged as important intracellular hubs for redox-, lipid-, inflammatory-, and nucleic acid-mediated signaling pathways. In this review, we focus on how nature and nurture modulate peroxisome biogenesis and function in mammalian cells. First, we review emerging evidence that changes in peroxisome activity can be linked to the epigenetic regulation of cell function. Next, we outline how defects in peroxisome biogenesis may directly impact cellular pathways involved in the development of disease. In addition, we discuss how changes in the cellular microenvironment can modulate peroxisome biogenesis and function. Finally, given the importance of peroxisome function in multiple aspects of health, disease, and aging, we highlight the need for more research in this still understudied field.

  10. Peroxisome biogenesis in mammalian cells: The impact of genes and environment.

    PubMed

    Farr, Rebecca L; Lismont, Celien; Terlecky, Stanley R; Fransen, Marc

    2016-05-01

    The initiation and progression of many human diseases are mediated by a complex interplay of genetic, epigenetic, and environmental factors. As all diseases begin with an imbalance at the cellular level, it is essential to understand how various types of molecular aberrations, metabolic changes, and environmental stressors function as switching points in essential communication networks. In recent years, peroxisomes have emerged as important intracellular hubs for redox-, lipid-, inflammatory-, and nucleic acid-mediated signaling pathways. In this review, we focus on how nature and nurture modulate peroxisome biogenesis and function in mammalian cells. First, we review emerging evidence that changes in peroxisome activity can be linked to the epigenetic regulation of cell function. Next, we outline how defects in peroxisome biogenesis may directly impact cellular pathways involved in the development of disease. In addition, we discuss how changes in the cellular microenvironment can modulate peroxisome biogenesis and function. Finally, given the importance of peroxisome function in multiple aspects of health, disease, and aging, we highlight the need for more research in this still understudied field. PMID:26305119

  11. Phosphorylation of αSNAP is Required for Secretory Organelle Biogenesis in Toxoplasma gondii.

    PubMed

    Stewart, Rebecca J; Ferguson, David J P; Whitehead, Lachlan; Bradin, Clare H; Wu, Hong J; Tonkin, Christopher J

    2016-02-01

    Upon infection, apicomplexan parasites quickly invade host cells and begin a replicative cycle rapidly increasing in number over a short period of time, leading to tissue lysis and disease. The secretory pathway of these highly polarized protozoan parasites tightly controls, in time and space, the biogenesis of specialized structures and organelles required for invasion and intracellular survival. In other systems, regulation of protein trafficking can occur by phosphorylation of vesicle fusion machinery. Previously, we have shown that Toxoplasma gondii αSNAP - a protein that controls the disassembly of cis-SNARE complexes--is phosphorylated. Here, we show that this post-translational modification is required for the correct function of αSNAP in controlling secretory traffic. We demonstrate that during intracellular development conditional expression of a non-phosphorylatable form of αSNAP results in Golgi fragmentation and vesiculation of all downstream secretory organelles. In addition, we show that the vestigial plastid (termed apicoplast), although reported not to be reliant on Golgi trafficking for biogenesis, is also affected upon overexpression of αSNAP and is much more sensitive to the levels of this protein than targeting to other organelles. This work highlights the importance of αSNAP and its phosphorylation in Toxoplasma organelle biogenesis and exposes a hereto fore-unexplored mechanism of regulation of vesicle fusion during secretory pathway trafficking in apicomplexan parasites.

  12. RNase III-independent microRNA biogenesis in mammalian cells

    PubMed Central

    Maurin, Thomas; Cazalla, Demián; Yang, Jr-Shiuan; Bortolamiol-Becet, Diane; Lai, Eric C.

    2012-01-01

    RNase III enzymes are fundamental to the biogenesis of microRNAs (miRNAs) and small interfering RNAs (siRNAs) in all species studied. Although alternative miRNA pathways independent of Drosha or Dicer exist, each still requires one RNase III-type enzyme. Here, we describe two strategies that marry either RNase Z or the Integrator complex with the slicing activity of Argonaute2 to generate highly functional mature miRNAs. We provide stringent validation of their RNase III independence by demonstrating efficient miRNA biogenesis and activity in Drosha and Dicer knockout cells. These data provide proof-of-principle evidence for additional mechanistic possibilities for efficient generation of small regulatory RNAs, and represent novel silencing triggers that may be exploited for technical purposes. PMID:23097423

  13. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms.

    PubMed

    Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K; Osvath, Sarah R; Cárcamo-Oyarce, Gerardo; Gloag, Erin S; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G; Cavaliere, Rosalia; Ahrens, Christian H; Charles, Ian G; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B

    2016-01-01

    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs. PMID:27075392

  14. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms.

    PubMed

    Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K; Osvath, Sarah R; Cárcamo-Oyarce, Gerardo; Gloag, Erin S; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G; Cavaliere, Rosalia; Ahrens, Christian H; Charles, Ian G; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B

    2016-04-14

    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs.

  15. A role for mRNA trafficking and localized translation in peroxisome biogenesis and function?

    PubMed

    Haimovich, Gal; Cohen-Zontag, Osnat; Gerst, Jeffrey E

    2016-05-01

    Peroxisomes are distinct membrane-enclosed organelles involved in the β-oxidation of fatty acids and synthesis of ether phospholipids (e.g. plasmalogens), as well as cholesterol and its derivatives (e.g. bile acids). Peroxisomes comprise a distinct and highly segregated subset of cellular proteins, including those of the peroxisome membrane and the interior matrix, and while the mechanisms of protein import into peroxisomes have been extensively studied, they are not fully understood. Here we will examine the potential role of RNA trafficking and localized translation on protein import into peroxisomes and its role in peroxisome biogenesis and function. Given that RNAs encoding peroxisome biogenesis (PEX) and matrix proteins have been found in association with the endoplasmic reticulum and peroxisomes, it suggests that localized translation may play a significant role in the import pathways of these different peroxisomal constituents.

  16. A role for mRNA trafficking and localized translation in peroxisome biogenesis and function?

    PubMed

    Haimovich, Gal; Cohen-Zontag, Osnat; Gerst, Jeffrey E

    2016-05-01

    Peroxisomes are distinct membrane-enclosed organelles involved in the β-oxidation of fatty acids and synthesis of ether phospholipids (e.g. plasmalogens), as well as cholesterol and its derivatives (e.g. bile acids). Peroxisomes comprise a distinct and highly segregated subset of cellular proteins, including those of the peroxisome membrane and the interior matrix, and while the mechanisms of protein import into peroxisomes have been extensively studied, they are not fully understood. Here we will examine the potential role of RNA trafficking and localized translation on protein import into peroxisomes and its role in peroxisome biogenesis and function. Given that RNAs encoding peroxisome biogenesis (PEX) and matrix proteins have been found in association with the endoplasmic reticulum and peroxisomes, it suggests that localized translation may play a significant role in the import pathways of these different peroxisomal constituents. PMID:26367800

  17. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms

    PubMed Central

    Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L.; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K.; Osvath, Sarah R.; Cárcamo-Oyarce, Gerardo; Gloag, Erin S.; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G.; Cavaliere, Rosalia; Ahrens, Christian H.; Charles, Ian G.; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B.

    2016-01-01

    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs. PMID:27075392

  18. Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems?

    PubMed

    Allen, James W A; Jackson, Andrew P; Rigden, Daniel J; Willis, Antony C; Ferguson, Stuart J; Ginger, Michael L

    2008-05-01

    Mitochondrial cytochromes c and c(1) are present in all eukaryotes that use oxygen as the terminal electron acceptor in the respiratory chain. Maturation of c-type cytochromes requires covalent attachment of the heme cofactor to the protein, and there are at least five distinct biogenesis systems that catalyze this post-translational modification in different organisms and organelles. In this study, we use biochemical data, comparative genomic and structural bioinformatics investigations to provide a holistic view of mitochondrial c-type cytochrome biogenesis and its evolution. There are three pathways for mitochondrial c-type cytochrome maturation, only one of which is present in prokaryotes. We analyze the evolutionary distribution of these biogenesis systems, which include the Ccm system (System I) and the enzyme heme lyase (System III). We conclude that heme lyase evolved once and, in many lineages, replaced the multicomponent Ccm system (present in the proto-mitochondrial endosymbiont), probably as a consequence of lateral gene transfer. We find no evidence of a System III precursor in prokaryotes, and argue that System III is incompatible with multi-heme cytochromes common to bacteria, but absent from eukaryotes. The evolution of the eukaryotic-specific protein heme lyase is strikingly unusual, given that this protein provides a function (thioether bond formation) that is also ubiquitous in prokaryotes. The absence of any known c-type cytochrome biogenesis system from the sequenced genomes of various trypanosome species indicates the presence of a third distinct mitochondrial pathway. Interestingly, this system attaches heme to mitochondrial cytochromes c that contain only one cysteine residue, rather than the usual two, within the heme-binding motif. The isolation of single-cysteine-containing mitochondrial cytochromes c from free-living kinetoplastids, Euglena and the marine flagellate Diplonema papillatum suggests that this unique form of heme attachment

  19. Human telomerase: biogenesis, trafficking, recruitment, and activation.

    PubMed

    Schmidt, Jens C; Cech, Thomas R

    2015-06-01

    Telomerase is the ribonucleoprotein enzyme that catalyzes the extension of telomeric DNA in eukaryotes. Recent work has begun to reveal key aspects of the assembly of the human telomerase complex, its intracellular trafficking involving Cajal bodies, and its recruitment to telomeres. Once telomerase has been recruited to the telomere, it appears to undergo a separate activation step, which may include an increase in its repeat addition processivity. This review covers human telomerase biogenesis, trafficking, and activation, comparing key aspects with the analogous events in other species.

  20. Biogenesis, delivery, and function of extracellular RNA

    PubMed Central

    Patton, James G.; Franklin, Jeffrey L.; Weaver, Alissa M.; Vickers, Kasey; Zhang, Bing; Coffey, Robert J.; Ansel, K. Mark; Blelloch, Robert; Goga, Andrei; Huang, Bo; L'Etoille, Noelle; Raffai, Robert L.; Lai, Charles P.; Krichevsky, Anna M.; Mateescu, Bogdan; Greiner, Vanille J.; Hunter, Craig; Voinnet, Olivier; McManus, Michael T.

    2015-01-01

    The Extracellular RNA (exRNA) Communication Consortium was launched by the National Institutes of Health to focus on the extent to which RNA might function in a non-cell-autonomous manner. With the availability of increasingly sensitive tools, small amounts of RNA can be detected in serum, plasma, and other bodily fluids. The exact mechanism(s) by which RNA can be secreted from cells and the mechanisms for the delivery and uptake by recipient cells remain to be determined. This review will summarize current knowledge about the biogenesis and delivery of exRNA and outline projects seeking to understand the functional impact of exRNA. PMID:26320939

  1. Iron-sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery

    PubMed Central

    Maio, Nunziata; Rouault, Tracey. A.

    2014-01-01

    Iron-sulfur (Fe-S) clusters are ancient, ubiquitous cofactors composed of iron and inorganic sulfur. The combination of the chemical reactivity of iron and sulfur, together with many variations of cluster composition, oxidation states and protein environments, enables Fe-S clusters to participate in numerous biological processes. Fe-S clusters are essential to redox catalysis in nitrogen fixation, mitochondrial respiration and photosynthesis, to regulatory sensing in key metabolic pathways (i. e. cellular iron homeostasis and oxidative stress response), and to the replication and maintenance of the nuclear genome. Fe-S cluster biogenesis is a multistep process that involves a complex sequence of catalyzed protein- protein interactions and coupled conformational changes between the components of several dedicated multimeric complexes. Intensive studies of the assembly process have clarified key points in the biogenesis of Fe-S proteins. However several critical questions still remain, such as: what is the role of frataxin? Why do some defects of Fe-S cluster biogenesis cause mitochondrial iron overload? How are specific Fe-S recipient proteins recognized in the process of Fe-S transfer? This review focuses on the basic steps of Fe-S cluster biogenesis, drawing attention to recent advances achieved on the identification of molecular features that guide selection of specific subsets of nascent Fe-S recipients by the cochaperone HSC20. Additionally, it outlines the distinctive phenotypes of human diseases due to mutations in the components of the basic pathway. PMID:25245479

  2. Atomic Resolution Insights into Curli Fiber Biogenesis

    PubMed Central

    Taylor, Jonathan D.; Zhou, Yizhou; Salgado, Paula S.; Patwardhan, Ardan; McGuffie, Matt; Pape, Tillmann; Grabe, Grzegorz; Ashman, Elisabeth; Constable, Sean C.; Simpson, Peter J.; Lee, Wei-chao; Cota, Ernesto; Chapman, Matthew R.; Matthews, Steve J.

    2011-01-01

    Summary Bacteria produce functional amyloid fibers called curli in a controlled, noncytotoxic manner. These extracellular fimbriae enable biofilm formation and promote pathogenicity. Understanding curli biogenesis is important for appreciating microbial lifestyles and will offer clues as to how disease-associated human amyloid formation might be ameliorated. Proteins encoded by the curli specific genes (csgA-G) are required for curli production. We have determined the structure of CsgC and derived the first structural model of the outer-membrane subunit translocator CsgG. Unexpectedly, CsgC is related to the N-terminal domain of DsbD, both in structure and oxido-reductase capability. Furthermore, we show that CsgG belongs to the nascent class of helical outer-membrane macromolecular exporters. A cysteine in a CsgG transmembrane helix is a potential target of CsgC, and mutation of this residue influences curli assembly. Our study provides the first high-resolution structural insights into curli biogenesis. PMID:21893289

  3. Keeping FIT, storing fat: Lipid droplet biogenesis.

    PubMed

    Choudhary, Vineet; Golden, Andy; Prinz, William A

    2016-01-01

    All eukaryotes store excess lipids in organelles known as lipid droplets (LDs), which play central roles in lipid metabolism. Understanding LD biogenesis and metabolism is critical for understanding the pathophysiology of lipid metabolic disorders like obesity and atherosclerosis. LDs are composed of a core of neutral lipids surrounded by a monolayer of phospholipids that often contains coat proteins. Nascent LDs bud from the endoplasmic reticulum (ER) but the mechanism is not known. In this commentary we discuss our recent finding that a conserved family of proteins called fat storage-inducing transmembrane (FIT) proteins is necessary for LDs budding from the ER. In cells lacking FIT proteins, LDs remain in the ER membrane. C. elegans has a single FIT protein (FITM-2), which we found is essential; almost all homozygous fitm-2 animals die as larvae and those that survive to adulthood give rise to embryos that die as L1 and L2 larvae. Homozygous fitm-2 animals have a number of abnormalities including a significant decrease in intestinal LDs and dramatic defects in muscle development. Understanding how FIT proteins mediate LD biogenesis and what roles they play in lipid metabolism and development are fascinating challenges for the future. PMID:27383728

  4. Biogenesis of inner membrane proteins in Escherichia coli.

    PubMed

    Luirink, Joen; Yu, Zhong; Wagner, Samuel; de Gier, Jan-Willem

    2012-06-01

    The inner membrane proteome of the model organism Escherichia coli is composed of inner membrane proteins, lipoproteins and peripherally attached soluble proteins. Our knowledge of the biogenesis of inner membrane proteins is rapidly increasing. This is in particular true for the early steps of biogenesis - protein targeting to and insertion into the membrane. However, our knowledge of inner membrane protein folding and quality control is still fragmentary. Furthering our knowledge in these areas will bring us closer to understand the biogenesis of individual inner membrane proteins in the context of the biogenesis of the inner membrane proteome of Escherichia coli as a whole. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.

  5. Satratoxin G Interaction with 40S and 60S Ribosomal Subunits Precedes Apoptosis in the Macrophage

    PubMed Central

    Bae, Hee Kyong; Shinozuka, Junko; Islam, Zahidul; Pestka, James J.

    2011-01-01

    Satratoxin G (SG) and other macrocyclic trichothecene mycotoxins are potent inhibitors of eukaryotic translation that are potentially immunosuppressive. The purpose of this research was to test the hypothesis that SG-induced apoptosis in the macrophage correlates with binding of this toxin to the ribosome. Exposure of RAW 264.7 murine macrophages to SG at concentrations of 10 to 80 ng/ml induced DNA fragmentation within 4 h that was indicative of apoptosis. To relate these findings to ribosome binding of SG, RAW cells were exposed to different toxin concentrations for various time intervals, ribosomal fractions isolated by sucrose density gradient ultracentrifugation and resultant fractions analyzed for SG by competitive ELISA. SG was found to specifically interact with 40S and 60S ribosomal subunits as early as 5 min. and that, at high concentrations or extended incubation times, the toxin induced polysome disaggregation. While co-incubation with the simple Type B trichothecene DON had no effect on SG uptake into cell cytoplasm, it inhibited SG binding to the ribosome, suggesting that the two toxins bound to identical sites and that SG binding was reversible. Although both SG and DON induced mobilization of p38 and JNK 1/2 to the ribosome, phosphorylation of ribosomal bound MAPKs occurred only after DON treatment. SG association with the 40S and 60S subunits was also observed in the PC-12 neuronal cell model which is similarly susceptible to apoptosis. To summarize, SG rapidly binds small and large ribosomal subunits in a concentration- and time-dependent manner that was consistent with induction of apoptosis. PMID:19306889

  6. Satratoxin G interaction with 40S and 60S ribosomal subunits precedes apoptosis in the macrophage

    SciTech Connect

    Bae, Hee Kyong; Shinozuka, Junko; Islam, Zahidul; Pestka, James J.

    2009-06-01

    Satratoxin G (SG) and other macrocyclic trichothecene mycotoxins are potent inhibitors of eukaryotic translation that are potentially immunosuppressive. The purpose of this research was to test the hypothesis that SG-induced apoptosis in the macrophage correlates with binding of this toxin to the ribosome. Exposure of RAW 264.7 murine macrophages to SG at concentrations of 10 to 80 ng/ml induced DNA fragmentation within 4 h that was indicative of apoptosis. To relate these findings to ribosome binding of SG, RAW cells were exposed to different toxin concentrations for various time intervals, ribosomal fractions isolated by sucrose density gradient ultracentrifugation and resultant fractions analyzed for SG by competitive ELISA. SG was found to specifically interact with 40S and 60S ribosomal subunits as early as 5 min and that, at high concentrations or extended incubation times, the toxin induced polysome disaggregation. While co-incubation with the simple Type B trichothecene DON had no effect on SG uptake into cell cytoplasm, it inhibited SG binding to the ribosome, suggesting that the two toxins bound to identical sites and that SG binding was reversible. Although both SG and DON induced mobilization of p38 and JNK 1/2 to the ribosome, phosphorylation of ribosomal bound MAPKs occurred only after DON treatment. SG association with the 40S and 60S subunits was also observed in the PC-12 neuronal cell model which is similarly susceptible to apoptosis. To summarize, SG rapidly binds small and large ribosomal subunits in a concentration- and time-dependent manner that was consistent with induction of apoptosis.

  7. Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site.

    PubMed

    Calviño, Fabiola R; Kharde, Satyavati; Ori, Alessandro; Hendricks, Astrid; Wild, Klemens; Kressler, Dieter; Bange, Gert; Hurt, Ed; Beck, Martin; Sinning, Irmgard

    2015-04-07

    During 60S biogenesis, mature 5S RNP consisting of 5S RNA, RpL5 and RpL11, assembles into a pre-60S particle, where docking relies on RpL11 interacting with helix 84 (H84) of the 25S RNA. How 5S RNP is assembled for recruitment into the pre-60S is not known. Here we report the crystal structure of a ternary symportin Syo1-RpL5-N-RpL11 complex and provide biochemical and structural insights into 5S RNP assembly. Syo1 guards the 25S RNA-binding surface on RpL11 and competes with H84 for binding. Pull-down experiments show that H84 releases RpL11 from the ternary complex, but not in the presence of 5S RNA. Crosslinking mass spectrometry visualizes structural rearrangements on incorporation of 5S RNA into the Syo1-RpL5-RpL11 complex supporting the formation of a pre-5S RNP. Our data underline the dual role of Syo1 in ribosomal protein transport and as an assembly platform for 5S RNP.

  8. Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site

    NASA Astrophysics Data System (ADS)

    Calviño, Fabiola R.; Kharde, Satyavati; Ori, Alessandro; Hendricks, Astrid; Wild, Klemens; Kressler, Dieter; Bange, Gert; Hurt, Ed; Beck, Martin; Sinning, Irmgard

    2015-04-01

    During 60S biogenesis, mature 5S RNP consisting of 5S RNA, RpL5 and RpL11, assembles into a pre-60S particle, where docking relies on RpL11 interacting with helix 84 (H84) of the 25S RNA. How 5S RNP is assembled for recruitment into the pre-60S is not known. Here we report the crystal structure of a ternary symportin Syo1-RpL5-N-RpL11 complex and provide biochemical and structural insights into 5S RNP assembly. Syo1 guards the 25S RNA-binding surface on RpL11 and competes with H84 for binding. Pull-down experiments show that H84 releases RpL11 from the ternary complex, but not in the presence of 5S RNA. Crosslinking mass spectrometry visualizes structural rearrangements on incorporation of 5S RNA into the Syo1-RpL5-RpL11 complex supporting the formation of a pre-5S RNP. Our data underline the dual role of Syo1 in ribosomal protein transport and as an assembly platform for 5S RNP.

  9. Quality control of mRNP biogenesis: networking at the transcription site.

    PubMed

    Eberle, Andrea B; Visa, Neus

    2014-08-01

    Eukaryotic cells carry out quality control (QC) over the processes of RNA biogenesis to inactivate or eliminate defective transcripts, and to avoid their production. In the case of protein-coding transcripts, the quality controls can sense defects in the assembly of mRNA-protein complexes, in the processing of the precursor mRNAs, and in the sequence of open reading frames. Different types of defect are monitored by different specialized mechanisms. Some of them involve dedicated factors whose function is to identify faulty molecules and target them for degradation. Others are the result of a more subtle balance in the kinetics of opposing activities in the mRNA biogenesis pathway. One way or another, all such mechanisms hinder the expression of the defective mRNAs through processes as diverse as rapid degradation, nuclear retention and transcriptional silencing. Three major degradation systems are responsible for the destruction of the defective transcripts: the exosome, the 5'-3' exoribonucleases, and the nonsense-mediated mRNA decay (NMD) machinery. This review summarizes recent findings on the cotranscriptional quality control of mRNA biogenesis, and speculates that a protein-protein interaction network integrates multiple mRNA degradation systems with the transcription machinery.

  10. AP-1 and clathrin are essential for secretory granule biogenesis in Drosophila

    PubMed Central

    Burgess, Jason; Jauregui, Miluska; Tan, Julie; Rollins, Janet; Lallet, Sylvie; Leventis, Peter A.; Boulianne, Gabrielle L.; Chang, Henry C.; Le Borgne, Roland; Krämer, Helmut; Brill, Julie A.

    2011-01-01

     Regulated secretion of hormones, digestive enzymes, and other biologically active molecules requires the formation of secretory granules. Clathrin and the clathrin adaptor protein complex 1 (AP-1) are necessary for maturation of exocrine, endocrine, and neuroendocrine secretory granules. However, the initial steps of secretory granule biogenesis are only minimally understood. Powerful genetic approaches available in the fruit fly Drosophila melanogaster were used to investigate the molecular pathway for biogenesis of the mucin-containing “glue granules” that form within epithelial cells of the third-instar larval salivary gland. Clathrin and AP-1 colocalize at the trans-Golgi network (TGN) and clathrin recruitment requires AP-1. Furthermore, clathrin and AP-1 colocalize with secretory cargo at the TGN and on immature granules. Finally, loss of clathrin or AP-1 leads to a profound block in secretory granule formation. These findings establish a novel role for AP-1– and clathrin-dependent trafficking in the biogenesis of mucin-containing secretory granules. PMID:21490149

  11. Ribosome biogenesis adaptation in resistance training-induced human skeletal muscle hypertrophy.

    PubMed

    Figueiredo, Vandre C; Caldow, Marissa K; Massie, Vivien; Markworth, James F; Cameron-Smith, David; Blazevich, Anthony J

    2015-07-01

    Resistance training (RT) has the capacity to increase skeletal muscle mass, which is due in part to transient increases in the rate of muscle protein synthesis during postexercise recovery. The role of ribosome biogenesis in supporting the increased muscle protein synthetic demands is not known. This study examined the effect of both a single acute bout of resistance exercise (RE) and a chronic RT program on the muscle ribosome biogenesis response. Fourteen healthy young men performed a single bout of RE both before and after 8 wk of chronic RT. Muscle cross-sectional area was increased by 6 ± 4.5% in response to 8 wk of RT. Acute RE-induced activation of the ERK and mTOR pathways were similar before and after RT, as assessed by phosphorylation of ERK, MNK1, p70S6K, and S6 ribosomal protein 1 h postexercise. Phosphorylation of TIF-IA was also similarly elevated following both RE sessions. Cyclin D1 protein levels, which appeared to be regulated at the translational rather than transcriptional level, were acutely increased after RE. UBF was the only protein found to be highly phosphorylated at rest after 8 wk of training. Also, muscle levels of the rRNAs, including the precursor 45S and the mature transcripts (28S, 18S, and 5.8S), were increased in response to RT. We propose that ribosome biogenesis is an important yet overlooked event in RE-induced muscle hypertrophy that warrants further investigation.

  12. Redox and Reactive Oxygen Species Regulation of Mitochondrial Cytochrome c Oxidase Biogenesis

    PubMed Central

    Bourens, Myriam; Fontanesi, Flavia; Soto, Iliana C.; Liu, Jingjing

    2013-01-01

    Abstract Significance: Cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is the major oxygen consumer enzyme in the cell. COX biogenesis involves several redox-regulated steps. The process is highly regulated to prevent the formation of pro-oxidant intermediates. Recent Advances: Regulation of COX assembly involves several reactive oxygen species and redox-regulated steps. These include: (i) Intricate redox-controlled machineries coordinate the expression of COX isoenzymes depending on the environmental oxygen concentration. (ii) COX is a heme A-copper metalloenzyme. COX copper metallation involves the copper chaperone Cox17 and several other recently described cysteine-rich proteins, which are oxidatively folded in the mitochondrial intermembrane space. Copper transfer to COX subunits 1 and 2 requires concomitant transfer of redox power. (iii) To avoid the accumulation of reactive assembly intermediates, COX is regulated at the translational level to minimize synthesis of the heme A-containing Cox1 subunit when assembly is impaired. Critical Issues: An increasing number of regulatory pathways converge to facilitate efficient COX assembly, thus preventing oxidative stress. Future Directions: Here we will review on the redox-regulated COX biogenesis steps and will discuss their physiological relevance. Forthcoming insights into the precise regulation of mitochondrial COX biogenesis in normal and stress conditions will likely open future perspectives for understanding mitochondrial redox regulation and prevention of oxidative stress. Antioxid. Redox Signal. 19, 1940–1952. PMID:22937827

  13. Arabidopsis NMD3 Is Required for Nuclear Export of 60S Ribosomal Subunits and Affects Secondary Cell Wall Thickening

    PubMed Central

    Chen, Mei-Qin; Zhang, Ai-Hong; Zhang, Quan; Zhang, Bao-Cai; Nan, Jie; Li, Xia; Liu, Na; Qu, Hong; Lu, Cong-Ming; Sudmorgen; Zhou, Yi-Hua; Xu, Zhi-Hong; Bai, Shu-Nong

    2012-01-01

    NMD3 is required for nuclear export of the 60S ribosomal subunit in yeast and vertebrate cells, but no corresponding function of NMD3 has been reported in plants. Here we report that Arabidopsis thaliana NMD3 (AtNMD3) showed a similar function in the nuclear export of the 60S ribosomal subunit. Interference with AtNMD3 function by overexpressing a truncated dominant negative form of the protein lacking the nuclear export signal sequence caused retainment of the 60S ribosomal subunits in the nuclei. More interestingly, the transgenic Arabidopsis with dominant negative interference of AtNMD3 function showed a striking failure of secondary cell wall thickening, consistent with the altered expression of related genes and composition of cell wall components. Observation of a significant decrease of rough endoplasmic reticulum (RER) in the differentiating interfascicular fiber cells of the transgenic plant stems suggested a link between the defective nuclear export of 60S ribosomal subunits and the abnormal formation of the secondary cell wall. These findings not only clarified the evolutionary conservation of NMD3 functions in the nuclear export of 60S ribosomal subunits in yeast, animals and plants, but also revealed a new facet of the regulatory mechanism underlying secondary cell wall thickening in Arabidopsis. This new facet is that the nuclear export of 60S ribosomal subunits and the formation of RER may play regulatory roles in coordinating protein synthesis in cytoplasm and transcription in nuclei. PMID:22558264

  14. Staphylococcus aureus Sepsis Induces Early Renal Mitochondrial DNA Repair and Mitochondrial Biogenesis in Mice

    PubMed Central

    Bartz, Raquel R.; Fu, Ping; Suliman, Hagir B.; Crowley, Stephen D.; MacGarvey, Nancy Chou; Welty-Wolf, Karen; Piantadosi, Claude A.

    2014-01-01

    Acute kidney injury (AKI) contributes to the high morbidity and mortality of multi-system organ failure in sepsis. However, recovery of renal function after sepsis-induced AKI suggests active repair of energy-producing pathways. Here, we tested the hypothesis in mice that Staphyloccocus aureus sepsis damages mitochondrial DNA (mtDNA) in the kidney and activates mtDNA repair and mitochondrial biogenesis. Sepsis was induced in wild-type C57Bl/6J and Cox-8 Gfp-tagged mitochondrial-reporter mice via intraperitoneal fibrin clots embedded with S. aureus. Kidneys from surviving mice were harvested at time zero (control), 24, or 48 hours after infection and evaluated for renal inflammation, oxidative stress markers, mtDNA content, and mitochondrial biogenesis markers, and OGG1 and UDG mitochondrial DNA repair enzymes. We examined the kidneys of the mitochondrial reporter mice for changes in staining density and distribution. S. aureus sepsis induced sharp amplification of renal Tnf, Il-10, and Ngal mRNAs with decreased renal mtDNA content and increased tubular and glomerular cell death and accumulation of protein carbonyls and 8-OHdG. Subsequently, mtDNA repair and mitochondrial biogenesis was evidenced by elevated OGG1 levels and significant increases in NRF-1, NRF-2, and mtTFA expression. Overall, renal mitochondrial mass, tracked by citrate synthase mRNA and protein, increased in parallel with changes in mitochondrial GFP-fluorescence especially in proximal tubules in the renal cortex and medulla. Sub-lethal S. aureus sepsis thus induces widespread renal mitochondrial damage that triggers the induction of the renal mtDNA repair protein, OGG1, and mitochondrial biogenesis as a conspicuous resolution mechanism after systemic bacterial infection. PMID:24988481

  15. Exercise-Mediated Wall Shear Stress Increases Mitochondrial Biogenesis in Vascular Endothelium

    PubMed Central

    Kim, Boa; Lee, Hojun; Kawata, Keisuke; Park, Joon-Young

    2014-01-01

    Objective Enhancing structural and functional integrity of mitochondria is an emerging therapeutic option against endothelial dysfunction. In this study, we sought to investigate the effect of fluid shear stress on mitochondrial biogenesis and mitochondrial respiratory function in endothelial cells (ECs) using in vitro and in vivo complementary studies. Methods and Results Human aortic- or umbilical vein-derived ECs were exposed to laminar shear stress (20 dyne/cm2) for various durations using a cone-and-plate shear apparatus. We observed significant increases in the expression of key genes related to mitochondrial biogenesis and mitochondrial quality control as well as mtDNA content and mitochondrial mass under the shear stress conditions. Mitochondrial respiratory function was enhanced when cells were intermittently exposed to laminar shear stress for 72 hrs. Also, shear-exposed cells showed diminished glycolysis and decreased mitochondrial membrane potential (ΔΨm). Likewise, in in vivo experiments, mice that were subjected to a voluntary wheel running exercise for 5 weeks showed significantly higher mitochondrial content determined by en face staining in the conduit (greater and lesser curvature of the aortic arch and thoracic aorta) and muscle feed (femoral artery) arteries compared to the sedentary control mice. Interestingly, however, the mitochondrial biogenesis was not observed in the mesenteric artery. This region-specific adaptation is likely due to the differential blood flow redistribution during exercise in the different vessel beds. Conclusion Taken together, our findings suggest that exercise enhances mitochondrial biogenesis in vascular endothelium through a shear stress-dependent mechanism. Our findings may suggest a novel mitochondrial pathway by which a chronic exercise may be beneficial for vascular function. PMID:25375175

  16. Hydroxytyrosol promotes mitochondrial biogenesis and mitochondrial function in 3T3-L1 adipocytes.

    PubMed

    Hao, Jiejie; Shen, Weili; Yu, Guangli; Jia, Haiqun; Li, Xuesen; Feng, Zhihui; Wang, Ying; Weber, Peter; Wertz, Karin; Sharman, Edward; Liu, Jiankang

    2010-07-01

    Hydroxytyrosol (HT) in extra-virgin olive oil is considered one of the most important polyphenolic compounds responsible for the health benefits of the Mediterranean diet for lowering incidence of cardiovascular disease, the most common and most serious complication of diabetes. We propose that HT may prevent these diseases by a stimulation of mitochondrial biogenesis that leads to enhancement of mitochondrial function and cellular defense systems. In the present study, we investigated effects of HT that stimulate mitochondrial biogenesis and promote mitochondrial function in 3T3-L1 adipocytes. HT over the concentration range of 0.1-10 micromol/L stimulated the promoter transcriptional activation and protein expression of peroxisome proliferator-activated receptor (PPAR) coactivator 1 alpha (PPARGC1 alpha, the central factor for mitochondrial biogenesis) and its downstream targets; these included nuclear respiration factors 1 and 2 and mitochondrial transcription factor A, which leads to an increase in mitochondrial DNA (mtDNA) and in the number of mitochondria. Knockdown of Ppargc1 alpha by siRNA blocked HT's stimulating effect on Complex I expression and mtDNA copy number. The HT treatment resulted in an enhancement of mitochondrial function, including an increase in activity and protein expression of Mitochondrial Complexes I, II, III and V; increased oxygen consumption; and a decrease in free fatty acid contents in the adipocytes. The mechanistic study of the PPARGC1 alpha activation signaling pathway demonstrated that HT is an activator of 5'AMP-activated protein kinase and also up-regulates gene expression of PPAR alpha, CPT-1 and PPAR gamma. These data suggest that HT is able to promote mitochondrial function by stimulating mitochondrial biogenesis. PMID:19576748

  17. Biogenesis and Function of Multivesicular Bodies

    PubMed Central

    Piper, Robert C.; Katzmann, David J.

    2010-01-01

    The two major cellular sites for membrane protein degradation are the proteasome and the lysosome. Ubiquitin attachment is a sorting signal for both degradation routes. For lysosomal degradation, ubiquitination triggers the sorting of cargo proteins into the lumen of late endosomal multivesicular bodies (MVBs)/endosomes. MVB formation occurs when a portion of the limiting membrane of an endosome invaginates and buds into its own lumen. Intralumenal vesicles are degraded when MVBs fuse to lysosomes. The proper delivery of proteins to the MVB interior relies on specific ubiquitination of cargo, recognition and sorting of ubiquitinated cargo to endosomal subdomains, and the formation and scission of cargo-filled intralumenal vesicles. Over the past five years, a number of proteins that may directly participate in these aspects of MVB function and biogenesis have been identified. However, major questions remain as to exactly what these proteins do at the molecular level and how they may accomplish these tasks. PMID:17506697

  18. Evolution of the holozoan ribosome biogenesis regulon

    PubMed Central

    Brown, Seth J; Cole, Michael D; Erives, Albert J

    2008-01-01

    Background The ribosome biogenesis (RiBi) genes encode a highly-conserved eukaryotic set of nucleolar proteins involved in rRNA transcription, assembly, processing, and export from the nucleus. While the mode of regulation of this suite of genes has been studied in the yeast, Saccharomyces cerevisiae, how this gene set is coordinately regulated in the larger and more complex metazoan genomes is not understood. Results Here we present genome-wide analyses indicating that a distinct mode of RiBi regulation co-evolved with the E(CG)-binding, Myc:Max bHLH heterodimer complex in a stem-holozoan, the ancestor of both Metazoa and Choanoflagellata, the protozoan group most closely related to animals. These results show that this mode of regulation, characterized by an E(CG)-bearing core-promoter, is specific to almost all of the known genes involved in ribosome biogenesis in these genomes. Interestingly, this holozoan RiBi promoter signature is absent in nematode genomes, which have not only secondarily lost Myc but are marked by invariant cell lineages typically producing small body plans of 1000 somatic cells. Furthermore, a detailed analysis of 10 fungal genomes shows that this holozoan signature in RiBi genes is not found in hemiascomycete fungi, which evolved their own unique regulatory signature for the RiBi regulon. Conclusion These results indicate that a Myc regulon, which is activated in proliferating cells during normal development as well as during tumor progression, has primordial roots in the evolution of an inducible growth regime in a protozoan ancestor of animals. Furthermore, by comparing divergent bHLH repertoires, we conclude that regulation by Myc but not by other bHLH genes is responsible for the evolutionary maintenance of E(CG) sites across the RiBi suite of genes. PMID:18816399

  19. Study of Phagolysosome Biogenesis in Live Macrophages

    PubMed Central

    Bronietzki, Marc; Kasmapour, Bahram; Gutierrez, Maximiliano Gabriel

    2014-01-01

    Phagocytic cells play a major role in the innate immune system by removing and eliminating invading microorganisms in their phagosomes. Phagosome maturation is the complex and tightly regulated process during which a nascent phagosome undergoes drastic transformation through well-orchestrated interactions with various cellular organelles and compartments in the cytoplasm. This process, which is essential for the physiological function of phagocytic cells by endowing phagosomes with their lytic and bactericidal properties, culminates in fusion of phagosomes with lysosomes and biogenesis of phagolysosomes which is considered to be the last and critical stage of maturation for phagosomes. In this report, we describe a live cell imaging based method for qualitative and quantitative analysis of the dynamic process of lysosome to phagosome content delivery, which is a hallmark of phagolysosome biogenesis. This approach uses IgG-coated microbeads as a model for phagocytosis and fluorophore-conjugated dextran molecules as a luminal lysosomal cargo probe, in order to follow the dynamic delivery of lysosmal content to the phagosomes in real time in live macrophages using time-lapse imaging and confocal laser scanning microscopy. Here we describe in detail the background, the preparation steps and the step-by-step experimental setup to enable easy and precise deployment of this method in other labs. Our described method is simple, robust, and most importantly, can be easily adapted to study phagosomal interactions and maturation in different systems and under various experimental settings such as use of various phagocytic cells types, loss-of-function experiments, different probes, and phagocytic particles. PMID:24638150

  20. Iron-sulfur cluster biogenesis in mammalian cells: New insights into the molecular mechanisms of cluster delivery.

    PubMed

    Maio, Nunziata; Rouault, Tracey A

    2015-06-01

    Iron-sulfur (Fe-S) clusters are ancient, ubiquitous cofactors composed of iron and inorganic sulfur. The combination of the chemical reactivity of iron and sulfur, together with many variations of cluster composition, oxidation states and protein environments, enables Fe-S clusters to participate in numerous biological processes. Fe-S clusters are essential to redox catalysis in nitrogen fixation, mitochondrial respiration and photosynthesis, to regulatory sensing in key metabolic pathways (i.e. cellular iron homeostasis and oxidative stress response), and to the replication and maintenance of the nuclear genome. Fe-S cluster biogenesis is a multistep process that involves a complex sequence of catalyzed protein-protein interactions and coupled conformational changes between the components of several dedicated multimeric complexes. Intensive studies of the assembly process have clarified key points in the biogenesis of Fe-S proteins. However several critical questions still remain, such as: what is the role of frataxin? Why do some defects of Fe-S cluster biogenesis cause mitochondrial iron overload? How are specific Fe-S recipient proteins recognized in the process of Fe-S transfer? This review focuses on the basic steps of Fe-S cluster biogenesis, drawing attention to recent advances achieved on the identification of molecular features that guide selection of specific subsets of nascent Fe-S recipients by the cochaperone HSC20. Additionally, it outlines the distinctive phenotypes of human diseases due to mutations in the components of the basic pathway. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases. PMID:25245479

  1. Iron-sulfur cluster biogenesis in mammalian cells: New insights into the molecular mechanisms of cluster delivery.

    PubMed

    Maio, Nunziata; Rouault, Tracey A

    2015-06-01

    Iron-sulfur (Fe-S) clusters are ancient, ubiquitous cofactors composed of iron and inorganic sulfur. The combination of the chemical reactivity of iron and sulfur, together with many variations of cluster composition, oxidation states and protein environments, enables Fe-S clusters to participate in numerous biological processes. Fe-S clusters are essential to redox catalysis in nitrogen fixation, mitochondrial respiration and photosynthesis, to regulatory sensing in key metabolic pathways (i.e. cellular iron homeostasis and oxidative stress response), and to the replication and maintenance of the nuclear genome. Fe-S cluster biogenesis is a multistep process that involves a complex sequence of catalyzed protein-protein interactions and coupled conformational changes between the components of several dedicated multimeric complexes. Intensive studies of the assembly process have clarified key points in the biogenesis of Fe-S proteins. However several critical questions still remain, such as: what is the role of frataxin? Why do some defects of Fe-S cluster biogenesis cause mitochondrial iron overload? How are specific Fe-S recipient proteins recognized in the process of Fe-S transfer? This review focuses on the basic steps of Fe-S cluster biogenesis, drawing attention to recent advances achieved on the identification of molecular features that guide selection of specific subsets of nascent Fe-S recipients by the cochaperone HSC20. Additionally, it outlines the distinctive phenotypes of human diseases due to mutations in the components of the basic pathway. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.

  2. Architecture of the Rix1-Rea1 checkpoint machinery during pre-60S-ribosome remodeling.

    PubMed

    Barrio-Garcia, Clara; Thoms, Matthias; Flemming, Dirk; Kater, Lukas; Berninghausen, Otto; Baßler, Jochen; Beckmann, Roland; Hurt, Ed

    2016-01-01

    Ribosome synthesis is catalyzed by ∼200 assembly factors, which facilitate efficient production of mature ribosomes. Here, we determined the cryo-EM structure of a Saccharomyces cerevisiae nucleoplasmic pre-60S particle containing the dynein-related 550-kDa Rea1 AAA(+) ATPase and the Rix1 subcomplex. This particle differs from its preceding state, the early Arx1 particle, by two massive structural rearrangements: an ∼180° rotation of the 5S ribonucleoprotein complex and the central protuberance (CP) rRNA helices, and the removal of the 'foot' structure from the 3' end of the 5.8S rRNA. Progression from the Arx1 to the Rix1 particle was blocked by mutational perturbation of the Rix1-Rea1 interaction but not by a dominant-lethal Rea1 AAA(+) ATPase-ring mutant. After remodeling, the Rix1 subcomplex and Rea1 become suitably positioned to sense correct structural maturation of the CP, which allows unidirectional progression toward mature ribosomes. PMID:26619264

  3. Architecture of the Rix1-Rea1 checkpoint machinery during pre-60S-ribosome remodeling.

    PubMed

    Barrio-Garcia, Clara; Thoms, Matthias; Flemming, Dirk; Kater, Lukas; Berninghausen, Otto; Baßler, Jochen; Beckmann, Roland; Hurt, Ed

    2016-01-01

    Ribosome synthesis is catalyzed by ∼200 assembly factors, which facilitate efficient production of mature ribosomes. Here, we determined the cryo-EM structure of a Saccharomyces cerevisiae nucleoplasmic pre-60S particle containing the dynein-related 550-kDa Rea1 AAA(+) ATPase and the Rix1 subcomplex. This particle differs from its preceding state, the early Arx1 particle, by two massive structural rearrangements: an ∼180° rotation of the 5S ribonucleoprotein complex and the central protuberance (CP) rRNA helices, and the removal of the 'foot' structure from the 3' end of the 5.8S rRNA. Progression from the Arx1 to the Rix1 particle was blocked by mutational perturbation of the Rix1-Rea1 interaction but not by a dominant-lethal Rea1 AAA(+) ATPase-ring mutant. After remodeling, the Rix1 subcomplex and Rea1 become suitably positioned to sense correct structural maturation of the CP, which allows unidirectional progression toward mature ribosomes.

  4. Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer.

    PubMed

    Mori, Masaki; Triboulet, Robinson; Mohseni, Morvarid; Schlegelmilch, Karin; Shrestha, Kriti; Camargo, Fernando D; Gregory, Richard I

    2014-02-27

    Global downregulation of microRNAs (miRNAs) is commonly observed in human cancers and can have a causative role in tumorigenesis. The mechanisms responsible for this phenomenon remain poorly understood. Here, we show that YAP, the downstream target of the tumor-suppressive Hippo-signaling pathway regulates miRNA biogenesis in a cell-density-dependent manner. At low cell density, nuclear YAP binds and sequesters p72 (DDX17), a regulatory component of the miRNA-processing machinery. At high cell density, Hippo-mediated cytoplasmic retention of YAP facilitates p72 association with Microprocessor and binding to a specific sequence motif in pri-miRNAs. Inactivation of the Hippo pathway or expression of constitutively active YAP causes widespread miRNA suppression in cells and tumors and a corresponding posttranscriptional induction of MYC expression. Thus, the Hippo pathway links contact-inhibition regulation to miRNA biogenesis and may be responsible for the widespread miRNA repression observed in cancer.

  5. A Synergistic Antiobesity Effect by a Combination of Capsinoids and Cold Temperature Through Promoting Beige Adipocyte Biogenesis.

    PubMed

    Ohyama, Kana; Nogusa, Yoshihito; Shinoda, Kosaku; Suzuki, Katsuya; Bannai, Makoto; Kajimura, Shingo

    2016-05-01

    Beige adipocytes emerge postnatally within the white adipose tissue in response to certain environmental cues, such as chronic cold exposure. Because of its highly recruitable nature and relevance to adult humans, beige adipocytes have gained much attention as an attractive cellular target for antiobesity therapy. However, molecular circuits that preferentially promote beige adipocyte biogenesis remain poorly understood. We report that a combination of mild cold exposure at 17°C and capsinoids, a nonpungent analog of capsaicin, synergistically and preferentially promotes beige adipocyte biogenesis and ameliorates diet-induced obesity. Gain- and loss-of-function studies show that the combination of capsinoids and cold exposure synergistically promotes beige adipocyte development through the β2-adrenoceptor signaling pathway. This synergistic effect on beige adipocyte biogenesis occurs through an increased half-life of PRDM16, a dominant transcriptional regulator of brown/beige adipocyte development. We document a previously unappreciated molecular circuit that controls beige adipocyte biogenesis and suggest a plausible approach to increase whole-body energy expenditure by combining dietary components and environmental cues. PMID:26936964

  6. A Synergistic Antiobesity Effect by a Combination of Capsinoids and Cold Temperature Through Promoting Beige Adipocyte Biogenesis.

    PubMed

    Ohyama, Kana; Nogusa, Yoshihito; Shinoda, Kosaku; Suzuki, Katsuya; Bannai, Makoto; Kajimura, Shingo

    2016-05-01

    Beige adipocytes emerge postnatally within the white adipose tissue in response to certain environmental cues, such as chronic cold exposure. Because of its highly recruitable nature and relevance to adult humans, beige adipocytes have gained much attention as an attractive cellular target for antiobesity therapy. However, molecular circuits that preferentially promote beige adipocyte biogenesis remain poorly understood. We report that a combination of mild cold exposure at 17°C and capsinoids, a nonpungent analog of capsaicin, synergistically and preferentially promotes beige adipocyte biogenesis and ameliorates diet-induced obesity. Gain- and loss-of-function studies show that the combination of capsinoids and cold exposure synergistically promotes beige adipocyte development through the β2-adrenoceptor signaling pathway. This synergistic effect on beige adipocyte biogenesis occurs through an increased half-life of PRDM16, a dominant transcriptional regulator of brown/beige adipocyte development. We document a previously unappreciated molecular circuit that controls beige adipocyte biogenesis and suggest a plausible approach to increase whole-body energy expenditure by combining dietary components and environmental cues.

  7. Autophagy induction is a Tor- and Tp53-independent cell survival response in a zebrafish model of disrupted ribosome biogenesis.

    PubMed

    Boglev, Yeliz; Badrock, Andrew P; Trotter, Andrew J; Du, Qian; Richardson, Elsbeth J; Parslow, Adam C; Markmiller, Sebastian J; Hall, Nathan E; de Jong-Curtain, Tanya A; Ng, Annie Y; Verkade, Heather; Ober, Elke A; Field, Holly A; Shin, Donghun; Shin, Chong H; Hannan, Katherine M; Hannan, Ross D; Pearson, Richard B; Kim, Seok-Hyung; Ess, Kevin C; Lieschke, Graham J; Stainier, Didier Y R; Heath, Joan K

    2013-01-01

    Ribosome biogenesis underpins cell growth and division. Disruptions in ribosome biogenesis and translation initiation are deleterious to development and underlie a spectrum of diseases known collectively as ribosomopathies. Here, we describe a novel zebrafish mutant, titania (tti(s450)), which harbours a recessive lethal mutation in pwp2h, a gene encoding a protein component of the small subunit processome. The biochemical impacts of this lesion are decreased production of mature 18S rRNA molecules, activation of Tp53, and impaired ribosome biogenesis. In tti(s450), the growth of the endodermal organs, eyes, brain, and craniofacial structures is severely arrested and autophagy is up-regulated, allowing intestinal epithelial cells to evade cell death. Inhibiting autophagy in tti(s450) larvae markedly reduces their lifespan. Somewhat surprisingly, autophagy induction in tti(s450) larvae is independent of the state of the Tor pathway and proceeds unabated in Tp53-mutant larvae. These data demonstrate that autophagy is a survival mechanism invoked in response to ribosomal stress. This response may be of relevance to therapeutic strategies aimed at killing cancer cells by targeting ribosome biogenesis. In certain contexts, these treatments may promote autophagy and contribute to cancer cells evading cell death. PMID:23408911

  8. Structure and function of Zucchini endoribonuclease in piRNA biogenesis.

    PubMed

    Nishimasu, Hiroshi; Ishizu, Hirotsugu; Saito, Kuniaki; Fukuhara, Satoshi; Kamatani, Miharu K; Bonnefond, Luc; Matsumoto, Naoki; Nishizawa, Tomohiro; Nakanaga, Keita; Aoki, Junken; Ishitani, Ryuichiro; Siomi, Haruhiko; Siomi, Mikiko C; Nureki, Osamu

    2012-11-01

    PIWI-interacting RNAs (piRNAs) silence transposons to maintain genome integrity in animal germ lines. piRNAs are classified as primary and secondary piRNAs, depending on their biogenesis machinery. Primary piRNAs are processed from long non-coding RNA precursors transcribed from piRNA clusters in the genome through the primary processing pathway. Although the existence of a ribonuclease participating in this pathway has been predicted, its molecular identity remained unknown. Here we show that Zucchini (Zuc), a mitochondrial phospholipase D (PLD) superfamily member, is an endoribonuclease essential for primary piRNA biogenesis. We solved the crystal structure of Drosophila melanogaster Zuc (DmZuc) at 1.75 Å resolution. The structure revealed that DmZuc has a positively charged, narrow catalytic groove at the dimer interface, which could accommodate a single-stranded, but not a double-stranded, RNA. DmZuc and the mouse homologue MmZuc (also known as Pld6 and MitoPLD) showed endoribonuclease activity for single-stranded RNAs in vitro. The RNA cleavage products bear a 5'-monophosphate group, a hallmark of mature piRNAs. Mutational analyses revealed that the conserved active-site residues of DmZuc are critical for the ribonuclease activity in vitro, and for piRNA maturation and transposon silencing in vivo. We propose a model for piRNA biogenesis in animal germ lines, in which the Zuc endoribonuclease has a key role in primary piRNA maturation.

  9. MICROTUBULE BIOGENESIS AND CELL SHAPE IN OCHROMONAS

    PubMed Central

    Bouck, G. Benjamin; Brown, David L.

    1973-01-01

    In the first of two companion papers which attempt to correlate microtubules and their nucleating sites with developmental and cell division patterns in the unicellular flagellate, Ochromonas, the distribution of cytoplasmic and mitotic microtubules and various kinetosome-related fibers are detailed. Of the five kinetosome-related fibers, which have been found in Ochromonas, two, the kineto-beak fibers and the rhizoplast fibers are utilized as attachment sites for distinct groups of microtubules. The set of microtubules attached to the kineto-beak fibers apparently shape the anterior beak region of the cell whereas the rhizoplast microtubules appear to extend into and shape the tail in vegetative cells. In mitotic cells a rhizoplast is found at each spindle pole apparently serving as foci for the spindle microtubules. These findings are discussed in relation to the less well defined attachment sites for vegetative and mitotic microtubules in other kinds of cells. It is noted that the effects of depolymerizing microtubules in vivo might be easily quantitated in whole populations since no external wall or pellicle contributes to the maintenance or the biogenesis of the characteristic cell form of Ochromonas. PMID:4682900

  10. Cilostazol attenuates murine hepatic ischemia and reperfusion injury via heme oxygenase-dependent activation of mitochondrial biogenesis.

    PubMed

    Joe, Yeonsoo; Zheng, Min; Kim, Hyo Jeong; Uddin, Md Jamal; Kim, Seul-Ki; Chen, Yingqing; Park, Jeongmin; Cho, Gyeong Jae; Ryter, Stefan W; Chung, Hun Taeg

    2015-07-01

    Hepatic ischemia-reperfusion (I/R) can cause hepatocellular injury associated with the inflammatory response and mitochondrial dysfunction. We studied the protective effects of the phosphodiesterase inhibitor cilostazol in hepatic I/R and the roles of mitochondria and the Nrf2/heme oxygenase-1 (HO-1) system. Wild-type, Hmox1(-/-), or Nrf2(-/-) mice were subjected to hepatic I/R in the absence or presence of cilostazol followed by measurements of liver injury. Primary hepatocytes were subjected to cilostazol with the HO-1 inhibitor ZnPP, or Nrf2-specific siRNA, followed by assessment of mitochondrial biogenesis. Preconditioning with cilostazol prior to hepatic I/R protected against hepatocellular injury and mitochondrial dysfunction. Cilostazol reduced the serum levels of alanine aminotransferase, TNF-α, and liver myeloperoxidase content relative to control I/R-treated mice. In primary hepatocytes, cilostazol increased the expression of HO-1, and markers of mitochondrial biogenesis, PGC-1α, NRF-1, and TFAM, induced the mitochondrial proteins COX III and COX IV and increased mtDNA and mitochondria content. Pretreatment of primary hepatocytes with ZnPP inhibited cilostazol-induced PGC-1α, NRF-1, and TFAM mRNA expression and reduced mtDNA and mitochondria content. Genetic silencing of Nrf2 prevented the induction of HO-1 and mitochondrial biogenesis by cilostazol in HepG2 cells. Cilostazol induced hepatic HO-1 production and mitochondrial biogenesis in wild-type mice, but not in Hmox1(-/-) or Nrf2(-/-) mice, and failed to protect against liver injury in Nrf2(-/-) mice. These results suggest that I/R injury can impair hepatic mitochondrial function, which can be reversed by cilostazol treatment. These results also suggest that cilostazol-induced mitochondrial biogenesis was mediated by an Nrf-2- and HO-1-dependent pathway.

  11. Nitazoxanide Inhibits Pilus Biogenesis by Interfering with Folding of the Usher Protein in the Outer Membrane

    PubMed Central

    Chahales, Peter; Hoffman, Paul S.

    2016-01-01

    Many bacterial pathogens assemble surface fibers termed pili or fimbriae that facilitate attachment to host cells and colonization of host tissues. The chaperone/usher (CU) pathway is a conserved secretion system that is responsible for the assembly of virulence-associated pili by many different Gram-negative bacteria. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and an integral outer membrane (OM) assembly and secretion platform termed the usher. Nitazoxanide (NTZ), an antiparasitic drug, was previously shown to inhibit the function of aggregative adherence fimbriae and type 1 pili assembled by the CU pathway in enteroaggregative Escherichia coli, an important causative agent of diarrhea. We show here that NTZ also inhibits the function of type 1 and P pili from uropathogenic E. coli (UPEC). UPEC is the primary causative agent of urinary tract infections, and type 1 and P pili mediate colonization of the bladder and kidneys, respectively. By analysis of the different stages of the CU pilus biogenesis pathway, we show that treatment of bacteria with NTZ causes a reduction in the number of usher molecules in the OM, resulting in a loss of pilus assembly on the bacterial surface. In addition, we determine that NTZ specifically prevents proper folding of the usher β-barrel domain in the OM. Our findings demonstrate that NTZ is a pilicide with a novel mechanism of action and activity against diverse CU pathways. This suggests that further development of the NTZ scaffold may lead to new antivirulence agents that target the usher to prevent pilus assembly. PMID:26824945

  12. Activation of Peroxisome Proliferator-activated Receptor α Induces Lysosomal Biogenesis in Brain Cells

    PubMed Central

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J.; Sims, Katherine B.; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-01-01

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role. PMID:25750174

  13. Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes.

    PubMed

    Ferreira-Cerca, Sébastien; Kiburu, Irene; Thomson, Emma; LaRonde, Nicole; Hurt, Ed

    2014-07-01

    During eukaryotic ribosome biogenesis, members of the conserved atypical serine/threonine protein kinase family, the RIO kinases (Rio1, Rio2 and Rio3) function in small ribosomal subunit biogenesis. Structural analysis of Rio2 indicated a role as a conformation-sensing ATPase rather than a kinase to regulate its dynamic association with the pre-40S subunit. However, it remained elusive at which step and by which mechanism the other RIO kinase members act. Here, we have determined the crystal structure of the human Rio1-ATP-Mg(2+) complex carrying a phosphoaspartate in the active site indicative of ATPase activity. Structure-based mutations in yeast showed that Rio1's catalytic activity regulates its pre-40S association. Furthermore, we provide evidence that Rio1 associates with a very late pre-40S via its conserved C-terminal domain. Moreover, a rio1 dominant-negative mutant defective in ATP hydrolysis induced trapping of late biogenesis factors in pre-ribosomal particles, which turned out not to be pre-40S but 80S-like ribosomes. Thus, the RIO kinase fold generates a versatile ATPase enzyme, which in the case of Rio1 is activated following the Rio2 step to regulate one of the final 40S maturation events, at which time the 60S subunit is recruited for final quality control check.

  14. cDNA Cloning, expression and characterization of an allergenic 60s ribosomal protein of almond (prunus dulcis).

    PubMed

    Abolhassani, Mohsen; Roux, Kenneth H

    2009-06-01

    Tree nuts, including almond (prunus dulcis) are a source of food allergens often associated with life-threatening allergic reactions in susceptible individuals. Although the proteins in almonds have been biochemically characterized, relatively little has been reported regarding the identity of the allergens involved in almond sensitivity. The present study was undertaken to identify the allergens of the almond by cDNA library approach. cDNA library of almond seeds was constructed in Uni-Zap XR lamda vector and expressed in E. coli XL-1 blue. Plaques were immunoscreened with pooled sera of allergic patients. The cDNA clone reacting significantly with specific IgE antibodies was selected and subcloned and subsequently expressed in E. coli. The amino acids deducted from PCR product of clone showed homology to 60s acidic ribosomal protein of almond. The expressed protein was 11,450 Dalton without leader sequence. Immunoreactivity of the recombinant 60s ribosomal protein (r60sRP) was evaluated with dot blot analysis using pooled and individual sera of allergic patients. The data showed that r60sRP and almond extract (as positive control) possess the ability to bind the IgE antibodies. The results showed that expressed protein is an almond allergen.Whether this r60sRP represents a major allergen of almond needs to be further studied which requires a large number of sera from the almond atopic patients and also need to determine the IgE-reactive frequencies of each individual allergen.

  15. Pre-40S ribosome biogenesis factor Tsr1 is an inactive structural mimic of translational GTPases.

    PubMed

    McCaughan, Urszula M; Jayachandran, Uma; Shchepachev, Vadim; Chen, Zhuo Angel; Rappsilber, Juri; Tollervey, David; Cook, Atlanta G

    2016-01-01

    Budding yeast Tsr1 is a ribosome biogenesis factor with sequence similarity to GTPases, which is essential for cytoplasmic steps in 40S subunit maturation. Here we present the crystal structure of Tsr1 at 3.6 Å. Tsr1 has a similar domain architecture to translational GTPases such as EF-Tu and the selenocysteine incorporation factor SelB. However, active site residues required for GTP binding and hydrolysis are absent, explaining the lack of enzymatic activity in previous analyses. Modelling of Tsr1 into cryo-electron microscopy maps of pre-40S particles shows that a highly acidic surface of Tsr1 is presented on the outside of pre-40S particles, potentially preventing premature binding to 60S subunits. Late pre-40S maturation also requires the GTPase eIF5B and the ATPase Rio1. The location of Tsr1 is predicted to block binding by both factors, strongly indicating that removal of Tsr1 is an essential step during cytoplasmic maturation of 40S ribosomal subunits. PMID:27250689

  16. Pre-40S ribosome biogenesis factor Tsr1 is an inactive structural mimic of translational GTPases

    PubMed Central

    McCaughan, Urszula M.; Jayachandran, Uma; Shchepachev, Vadim; Chen, Zhuo Angel; Rappsilber, Juri; Tollervey, David; Cook, Atlanta G.

    2016-01-01

    Budding yeast Tsr1 is a ribosome biogenesis factor with sequence similarity to GTPases, which is essential for cytoplasmic steps in 40S subunit maturation. Here we present the crystal structure of Tsr1 at 3.6 Å. Tsr1 has a similar domain architecture to translational GTPases such as EF-Tu and the selenocysteine incorporation factor SelB. However, active site residues required for GTP binding and hydrolysis are absent, explaining the lack of enzymatic activity in previous analyses. Modelling of Tsr1 into cryo-electron microscopy maps of pre-40S particles shows that a highly acidic surface of Tsr1 is presented on the outside of pre-40S particles, potentially preventing premature binding to 60S subunits. Late pre-40S maturation also requires the GTPase eIF5B and the ATPase Rio1. The location of Tsr1 is predicted to block binding by both factors, strongly indicating that removal of Tsr1 is an essential step during cytoplasmic maturation of 40S ribosomal subunits. PMID:27250689

  17. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells

    PubMed Central

    Peiris-Pagès, Maria; Ozsvari, Bela; Smith, Duncan L.; Sanchez-Alvarez, Rosa; Martinez-Outschoorn, Ubaldo E.; Cappello, Anna Rita; Pezzi, Vincenzo; Lisanti, Michael P.; Sotgia, Federica

    2015-01-01

    Here, we show that new mitochondrial biogenesis is required for the anchorage independent survival and propagation of cancer stem-like cells (CSCs). More specifically, we used the drug XCT790 as an investigational tool, as it functions as a specific inhibitor of the ERRα-PGC1 signaling pathway, which governs mitochondrial biogenesis. Interestingly, our results directly demonstrate that XCT790 efficiently blocks both the survival and propagation of tumor initiating stem-like cells (TICs), using the MCF7 cell line as a model system. Mechanistically, we show that XCT790 suppresses the activity of several independent signaling pathways that are normally required for the survival of CSCs, such as Sonic hedgehog, TGFβ-SMAD, STAT3, and Wnt signaling. We also show that XCT790 markedly reduces oxidative mitochondrial metabolism (OXPHOS) and that XCT790-mediated inhibition of CSC propagation can be prevented or reversed by Acetyl-L-Carnitine (ALCAR), a mitochondrial fuel. Consistent with our findings, over-expression of ERRα significantly enhances the efficiency of mammosphere formation, which can be blocked by treatment with mitochondrial inhibitors. Similarly, mammosphere formation augmented by FOXM1, a downstream target of Wnt/β-catenin signaling, can also be blocked by treatment with three different classes of mitochondrial inhibitors (XCT790, oligomycin A, or doxycycline). In this context, our unbiased proteomics analysis reveals that FOXM1 drives the expression of >90 protein targets associated with mitochondrial biogenesis, glycolysis, the EMT and protein synthesis in MCF7 cells, processes which are characteristic of an anabolic CSC phenotype. Finally, doxycycline is an FDA-approved antibiotic, which is very well-tolerated in patients. As such, doxycycline could be re-purposed clinically as a ‘safe’ mitochondrial inhibitor, to target FOXM1 and mitochondrial biogenesis in CSCs, to prevent tumor recurrence and distant metastasis, thereby avoiding patient relapse

  18. The impact of age, biogenesis, and genomic clustering on Drosophila microRNA evolution.

    PubMed

    Mohammed, Jaaved; Flynt, Alex S; Siepel, Adam; Lai, Eric C

    2013-09-01

    The molecular evolutionary signatures of miRNAs inform our understanding of their emergence, biogenesis, and function. The known signatures of miRNA evolution have derived mostly from the analysis of deeply conserved, canonical loci. In this study, we examine the impact of age, biogenesis pathway, and genomic arrangement on the evolutionary properties of Drosophila miRNAs. Crucial to the accuracy of our results was our curation of high-quality miRNA alignments, which included nearly 150 corrections to ortholog calls and nucleotide sequences of the global 12-way Drosophilid alignments currently available. Using these data, we studied primary sequence conservation, normalized free-energy values, and types of structure-preserving substitutions. We expand upon common miRNA evolutionary patterns that reflect fundamental features of miRNAs that are under functional selection. We observe that melanogaster-subgroup-specific miRNAs, although recently emerged and rapidly evolving, nonetheless exhibit evolutionary signatures that are similar to well-conserved miRNAs and distinct from other structured noncoding RNAs and bulk conserved non-miRNA hairpins. This provides evidence that even young miRNAs may be selected for regulatory activities. More strikingly, we observe that mirtrons and clustered miRNAs both exhibit distinct evolutionary properties relative to solo, well-conserved miRNAs, even after controlling for sequence depth. These studies highlight the previously unappreciated impact of biogenesis strategy and genomic location on the evolutionary dynamics of miRNAs, and affirm that miRNAs do not evolve as a unitary class.

  19. Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes

    SciTech Connect

    Huang, Chenglin; Chen, Dongrui; Xie, Qihai; Yang, Ying; Shen, Weili

    2013-08-16

    Highlights: •Nebivolol may act as a partial agonist of β3-adrenergic receptor (AR). •Nebivolol stimulates mitochondrial DNA replication and protein expression. •Nebivolol promotes mitochondrial synthesis via activation of eNOS by β3-AR. -- Abstract: Nebivolol is a third-generation β-adrenergic receptor (β-AR) blocker with additional beneficial effects, including the improvement of lipid and glucose metabolism in obese individuals. However, the underlying mechanism of nebivolol’s role in regulating the lipid profile remains largely unknown. In this study, we investigated the role of nebivolol in mitochondrial biogenesis in 3T3-L1 adipocytes. Exposure of 3T3-L1 cells to nebivolol for 24 h increased mitochondrial DNA copy number, mitochondrial protein levels and the expression of transcription factors involved in mitochondrial biogenesis, including PPAR-γ coactivator-1α (PGC-1α), Sirtuin 3 (Sirt3), mitochondrial transcription factor A (Tfam) and nuclear related factor 1 (Nrf1). These changes were accompanied by an increase in oxygen consumption and in the expression of genes involved in fatty acid oxidation and antioxidant enzymes in 3T3-L1 adipocytes, including nebivolol-induced endothelial nitric oxide synthase (eNOS), as well as an increase in the formation of cyclic guanosine monophosphate (cGMP). Pretreatment with NG-nitro-L-arginine methyl ester (l-NAME) attenuated nebivolol-induced mitochondrial biogenesis, as did the soluble guanylate cyclase inhibitor, ODQ. Treatment with nebivolol and β3-AR blocker SR59230A markedly attenuated PGC-1α, Sirt3 and manganese superoxide dismutase (MnSOD) protein levels in comparison to treatment with nebivolol alone. These data indicate that the mitochondrial synthesis and metabolism in adipocytes that is promoted by nebivolol is primarily mediated through the eNOS/cGMP-dependent pathway and is initiated by the activation of β3-AR receptors.

  20. The DraC usher in Dr fimbriae biogenesis of uropathogenic E. coli Dr(+) strains.

    PubMed

    Zalewska-Piatek, Beata; Kur, Marta; Wilkanowicz, Sabina; Piatek, Rafał; Kur, Józef

    2010-05-01

    Biogenesis of Dr fimbriae encoded by the dra gene cluster of uropathogenic Escherichia coli strains requires the chaperone-usher pathway. This secretion system is based on two non-structural assembly components, the DraB periplasmic chaperone and DraC outer-membrane usher. The DraB controls the folding of DraE subunits, and DraC forms the assembly and secretion platform for polymerization of subunits in linear fibers. In this study, mutagenesis of the DraC N-terminus was undertaken to select residues critical for Dr fimbriae bioassembly. The DraC-F4A, DraC-C64, DraC-C100A and DraC-W142A significantly reduced the adhesive ability of E. coli strains. The biological activity of the DraC mutants as a assembly platform for Dr fimbriae polymerization was verified by agglutination of human erythrocytes and adhesion to DAF localized at the surface of CHO-DAF(+) and HeLa cells. The residue F4 of the DraC usher conserved among FGL and FGS chaperone-assembled adhesive organelles can be used to design pillicides blocking the biogenesis of Dr fimbriae. Because the draC and afaC-III genes share 100% identity the range of the virulence determinant inhibitors could also be extended to E. coli strains encoding afa-3 gene cluster. The investigations performed showed that the usher N-terminus plays an important role in biogenesis of complete fiber.

  1. The Ribosome Biogenesis Protein Nol9 Is Essential for Definitive Hematopoiesis and Pancreas Morphogenesis in Zebrafish.

    PubMed

    Bielczyk-Maczyńska, Ewa; Lam Hung, Laure; Ferreira, Lauren; Fleischmann, Tobias; Weis, Félix; Fernández-Pevida, Antonio; Harvey, Steven A; Wali, Neha; Warren, Alan J; Barroso, Inês; Stemple, Derek L; Cvejic, Ana

    2015-12-01

    Ribosome biogenesis is a ubiquitous and essential process in cells. Defects in ribosome biogenesis and function result in a group of human disorders, collectively known as ribosomopathies. In this study, we describe a zebrafish mutant with a loss-of-function mutation in nol9, a gene that encodes a non-ribosomal protein involved in rRNA processing. nol9sa1022/sa1022 mutants have a defect in 28S rRNA processing. The nol9sa1022/sa1022 larvae display hypoplastic pancreas, liver and intestine and have decreased numbers of hematopoietic stem and progenitor cells (HSPCs), as well as definitive erythrocytes and lymphocytes. In addition, ultrastructural analysis revealed signs of pathological processes occurring in endothelial cells of the caudal vein, emphasizing the complexity of the phenotype observed in nol9sa1022/sa1022 larvae. We further show that both the pancreatic and hematopoietic deficiencies in nol9sa1022/sa1022 embryos were due to impaired cell proliferation of respective progenitor cells. Interestingly, genetic loss of Tp53 rescued the HSPCs but not the pancreatic defects. In contrast, activation of mRNA translation via the mTOR pathway by L-Leucine treatment did not revert the erythroid or pancreatic defects. Together, we present the nol9sa1022/sa1022 mutant, a novel zebrafish ribosomopathy model, which recapitulates key human disease characteristics. The use of this genetically tractable model will enhance our understanding of the tissue-specific mechanisms following impaired ribosome biogenesis in the context of an intact vertebrate. PMID:26624285

  2. The Ribosome Biogenesis Protein Nol9 Is Essential for Definitive Hematopoiesis and Pancreas Morphogenesis in Zebrafish

    PubMed Central

    Ferreira, Lauren; Fleischmann, Tobias; Weis, Félix; Fernández-Pevida, Antonio; Harvey, Steven A.; Wali, Neha; Warren, Alan J.; Barroso, Inês; Stemple, Derek L.; Cvejic, Ana

    2015-01-01

    Ribosome biogenesis is a ubiquitous and essential process in cells. Defects in ribosome biogenesis and function result in a group of human disorders, collectively known as ribosomopathies. In this study, we describe a zebrafish mutant with a loss-of-function mutation in nol9, a gene that encodes a non-ribosomal protein involved in rRNA processing. nol9 sa1022/sa1022 mutants have a defect in 28S rRNA processing. The nol9 sa1022/sa1022 larvae display hypoplastic pancreas, liver and intestine and have decreased numbers of hematopoietic stem and progenitor cells (HSPCs), as well as definitive erythrocytes and lymphocytes. In addition, ultrastructural analysis revealed signs of pathological processes occurring in endothelial cells of the caudal vein, emphasizing the complexity of the phenotype observed in nol9 sa1022/sa1022 larvae. We further show that both the pancreatic and hematopoietic deficiencies in nol9 sa1022/sa1022 embryos were due to impaired cell proliferation of respective progenitor cells. Interestingly, genetic loss of Tp53 rescued the HSPCs but not the pancreatic defects. In contrast, activation of mRNA translation via the mTOR pathway by L-Leucine treatment did not revert the erythroid or pancreatic defects. Together, we present the nol9 sa1022/sa1022 mutant, a novel zebrafish ribosomopathy model, which recapitulates key human disease characteristics. The use of this genetically tractable model will enhance our understanding of the tissue-specific mechanisms following impaired ribosome biogenesis in the context of an intact vertebrate. PMID:26624285

  3. Chemical modulators of ribosome biogenesis as biological probes.

    PubMed

    Stokes, Jonathan M; Brown, Eric D

    2015-12-01

    Small-molecule inhibitors of protein biosynthesis have been instrumental in the dissection of the complexities of ribosome structure and function. Ribosome biogenesis, on the other hand, is a complex and largely enigmatic process for which there is a paucity of chemical probes. Indeed, ribosome biogenesis has been studied almost exclusively using genetic and biochemical approaches without the benefit of small-molecule inhibitors of this process. Here, we provide a perspective on the promise of chemical inhibitors of ribosome assembly for future research. We explore key obstacles that complicate the interpretation of studies aimed at perturbing ribosome biogenesis in vivo using genetic methods, and we argue that chemical inhibitors are especially powerful because they can be used to induce perturbations in a manner that obviates these difficulties. Thus, in combination with leading-edge biochemical and structural methods, chemical probes offer unique advantages toward elucidating the molecular events that define the assembly of ribosomes. PMID:26575239

  4. Role of AAA(+)-proteins in peroxisome biogenesis and function.

    PubMed

    Grimm, Immanuel; Erdmann, Ralf; Girzalsky, Wolfgang

    2016-05-01

    Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.

  5. Prokaryotic membrane vesicles: new insights on biogenesis and biological roles.

    PubMed

    Haurat, M Florencia; Elhenawy, Wael; Feldman, Mario F

    2015-02-01

    Biogenesis and trafficking of membrane vesicles are essential and well-studied processes in eukaryotes. In contrast, vesiculation in bacteria is not well understood. Outer membrane vesicles (OMVs) are produced in Gram-negative bacteria by blebbing of the outer membrane. In addition to the roles in pathogenesis, cell-to-cell communication and stress response, recent work has suggested that OMVs play important roles in immunomodulation and the establishment and balance of the gut microbiota. In this review we discuss the known and novel roles of OMVs and the different biogenesis models proposed, and address the evidence for cargo selection into OMVs. We also discuss the growing evidence for the existence of membrane vesicles in Gram-positive bacteria and Archaea. Due to their biological importance and promising applications in vaccinology, the biogenesis of OMVs is an important topic in microbiology.

  6. What can Rapid Terrestrial Biogenesis Tell Us about Life in the Universe?

    NASA Astrophysics Data System (ADS)

    Lineweaver, Charles H.; Davis, Tamara M.

    2004-06-01

    It is sometimes asserted that the rapidity of biogenesis on Earth suggests that life is common in the Universe. We critically examine the assumptions inherent in this argument. Using a lottery model for biogenesis in the Universe, we convert the observational constraints on the rapidity of biogenesis on Earth into constraints on the probability of biogenesis on other terrestrial planets. For example, if terrestrial biogenesis took less than 200 Myr (and we assume that it could have taken 1 billion years) then we find the probability of biogenesis on terrestrial planets older than ˜ 1 Gyr, is > 36% at the 95% confidence level. However, there are assumptions and selection effects that complicate this result: although we correct the analysis for the fact that biogenesis is a prerequisite for our existence, our result depends on the plausible assumption that rapid biogenesis is not such a prerequisite.

  7. Emerging properties of nuclear RNP biogenesis and export.

    PubMed

    Oeffinger, Marlene; Montpetit, Ben

    2015-06-01

    RNA biology has recently seen an explosion of data due to advances in RNA sequencing, proteomic, and RNA imaging technologies. In this review, we highlight progress that has been made using these approaches in the area of nuclear RNP biogenesis and export. Excitingly, the ability to collect quantitative data at the 'omics' scale combined with measurements of transcription, decay, and transport kinetics is providing the information needed to address RNP biogenesis at a systems level. We believe this to be a necessary and critical next step that will lead to a better understanding of how RNP quality, diversity, and fate emerge from a defined set of nuclear RNP assembly and maturation steps.

  8. Random mutagenesis of yeast 25S rRNA identify bases critical for 60S subunit structural integrity and function

    PubMed Central

    Nemoto, Naoki; Udagawa, Tsuyoshi; Chowdhury, Wasimul; Kitabatake, Makoto; Shin, Byung-shik; Hiraishi, Hiroyuki; Wang, Suzhi; Singh, Chingakham Ranjit; Brown, Susan J.; Ohno, Mutsuhito; Asano, Katsura

    2013-01-01

    In yeast Saccharomyces cerevisiae, 25S rRNA makes up the major mass and shape of the 60S ribosomal subunit. During translation initiation, the 60S subunit joins the 40S initiation complex, producing the 80S initiation complex. During elongation, the 60S subunit binds the CCA-ends of aminoacyl- and peptidyl-tRNAs at the A-loop and P-loop, respectively, transferring the peptide onto the α-amino group of the aminoacyl-tRNA. To study the role of 25S rRNA in translation in vivo, we randomly mutated 25S rRNA and isolated and characterized seven point mutations that affected yeast cell growth and polysome profiles. Four of these mutations, G651A, A1435U, A1446G and A1587G, change a base involved in base triples crucial for structural integrity. Three other mutations change bases near the ribosomal surface: C2879U and U2408C alter the A-loop and P-loop, respectively, and G1735A maps near a Eukarya-specific bridge to the 40S subunit. By polysome profiling in mmslΔ mutants defective in nonfunctional 25S rRNA decay, we show that some of these mutations are defective in both the initiation and elongation phases of translation. Of the mutants characterized, C2879U displays the strongest defect in translation initiation. The ribosome transit-time assay directly shows that this mutation is also defective in peptide elongation/termination. Thus, our genetic analysis not only identifies bases critical for structural integrity of the 60S subunit, but also suggests a role for bases near the peptidyl transferase center in translation initiation. PMID:26824023

  9. Biogenesis, Function, and Applications of Virus-Derived Small RNAs in Plants

    PubMed Central

    Zhang, Chao; Wu, Zujian; Li, Yi; Wu, Jianguo

    2015-01-01

    RNA silencing, an evolutionarily conserved and sequence-specific gene-inactivation system, has a pivotal role in antiviral defense in most eukaryotic organisms. In plants, a class of exogenous small RNAs (sRNAs) originating from the infecting virus called virus-derived small interfering RNAs (vsiRNAs) are predominantly responsible for RNA silencing-mediated antiviral immunity. Nowadays, the process of vsiRNA formation and the role of vsiRNAs in plant viral defense have been revealed through deep sequencing of sRNAs and diverse genetic analysis. The biogenesis of vsiRNAs is analogous to that of endogenous sRNAs, which require diverse essential components including dicer-like (DCL), argonaute (AGO), and RNA-dependent RNA polymerase (RDR) proteins. vsiRNAs trigger antiviral defense through post-transcriptional gene silencing (PTGS) or transcriptional gene silencing (TGS) of viral RNA, and they hijack the host RNA silencing system to target complementary host transcripts. Additionally, several applications that take advantage of the current knowledge of vsiRNAs research are being used, such as breeding antiviral plants through genetic engineering technology, reconstructing of viral genomes, and surveying viral ecology and populations. Here, we will provide an overview of vsiRNA pathways, with a primary focus on the advances in vsiRNA biogenesis and function, and discuss their potential applications as well as the future challenges in vsiRNAs research. PMID:26617580

  10. Mitochondria Biogenesis and Bioenergetics Gene Profiles in Isogenic Prostate Cells with Different Malignant Phenotypes

    PubMed Central

    Burch, Tanya C.; Rhim, Johng S.

    2016-01-01

    Background. The most significant hallmarks of cancer are directly or indirectly linked to deregulated mitochondria. In this study, we sought to profile mitochondria associated genes in isogenic prostate cell lines with different tumorigenic phenotypes from the same patient. Results. Two isogenic human prostate cell lines RC77N/E (nonmalignant cells) and RC77T/E (malignant cells) were profiled for expression of mitochondrial biogenesis and energy metabolism genes by qRT-PCR using the Human Mitochondria and the Mitochondrial Energy Metabolism RT2 PCR arrays. Forty-seven genes were differentially regulated between the two cell lines. The interaction and regulatory networks of these genes were generated by Ingenuity Pathway Analysis. UCP2 was the most significantly upregulated gene in primary adenocarcinoma cells in the current study. The overexpression of UCP2 upon malignant transformation was further validated using human prostatectomy clinical specimens. Conclusions. This study demonstrates the overexpression of multiple genes that are involved in mitochondria biogenesis, bioenergetics, and modulation of apoptosis. These genes may play a role in malignant transformation and disease progression. The upregulation of some of these genes in clinical samples indicates that some of the differentially transcribed genes could be the potential targets for therapeutic interventions. PMID:27478826

  11. Mitochondrial Biogenesis: A Therapeutic Target for Neurodevelopmental Disorders and Neurodegenerative Diseases

    PubMed Central

    Uittenbogaard, Martine; Chiaramello, Anne

    2014-01-01

    In the developing and mature brain, mitochondria act as central hubs for distinct but interwined pathways, necessary for neural development, survival, activity, connectivity and plasticity. In neurons, mitochondria assume diverse functions, such as energy production in the form of ATP, calcium buffering and generation of reactive oxygen species. Mitochondrial dysfunction contributes to a range of neurodevelopmental and neurodegenerative diseases, making mitochondria a potential target for pharmacological-based therapies. Pathogenesis associated with these diseases is accompanied by an increase in mitochondrial mass, a quantitative increase to overcome a qualitative deficiency due to mutated mitochondrial proteins that are either nuclear- or mitochondrial-encoded. This compensatory biological response is maladaptive, as it fails to sufficiently augment the bioenergetically functional mitochondrial mass and correct for the ATP deficit. Since regulation of neuronal mitochondrial biogenesis has been scantily investigated, our current understanding on the network of transcriptional regulators, co-activators and signaling regulators mainly derives from other cellular systems. The purpose of this review is to present the current state of our knowledge and understanding of the transcriptional and signaling cascades controlling neuronal mitochondrial biogenesis and the various therapeutic approaches to enhance the functional mitochondrial mass in the context of neurodevelopmental disorders and adult-onset neurodegenerative diseases. PMID:24606804

  12. Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy

    PubMed Central

    Woldt, Estelle; Sebti, Yasmine; Solt, Laura A.; Duhem, Christian; Lancel, Steve; Eeckhoute, Jérôme; Hesselink, Matthijs K.C.; Paquet, Charlotte; Delhaye, Stéphane; Shin, Youseung; Kamenecka, Theodore M.; Schaart, Gert; Lefebvre, Philippe; Nevière, Rémi; Burris, Thomas P.; Schrauwen, Patrick; Staels, Bart; Duez, Hélène

    2013-01-01

    The nuclear receptor Rev-erb-α modulates hepatic lipid and glucose metabolism, adipogenesis and the inflammatory response in macrophages. We show here that Rev-erb-α is highly expressed in oxidative skeletal muscle and plays a role in mitochondrial biogenesis and oxidative function, in gain- and loss-of function studies. Rev-erb-α-deficiency in skeletal muscle leads to reduced mitochondrial content and oxidative function, resulting in compromised exercise capacity. This phenotype was recapitulated in isolated fibers and in muscle cells upon Rev-erbα knock-down, while Rev-erb-α over-expression increased the number of mitochondria with improved respiratory capacity. Rev-erb-α-deficiency resulted in deactivation of the Stk11–Ampk–Sirt1–Ppargc1-α signaling pathway, whereas autophagy was up-regulated, resulting in both impaired mitochondrial biogenesis and increased clearance. Muscle over-expression or pharmacological activation of Rev-erb-α increased respiration and exercise capacity. This study identifies Rev-erb-α as a pharmacological target which improves muscle oxidative function by modulating gene networks controlling mitochondrial number and function. PMID:23852339

  13. Lipids implicated in the journey of a secretory granule: from biogenesis to fusion.

    PubMed

    Tanguy, Emeline; Carmon, Ophélie; Wang, Qili; Jeandel, Lydie; Chasserot-Golaz, Sylvette; Montero-Hadjadje, Maité; Vitale, Nicolas

    2016-06-01

    The regulated secretory pathway begins with the formation of secretory granules by budding from the Golgi apparatus and ends by their fusion with the plasma membrane leading to the release of their content into the extracellular space, generally following a rise in cytosolic calcium. Generation of these membrane-bound transport carriers can be classified into three steps: (i) cargo sorting that segregates the cargo from resident proteins of the Golgi apparatus, (ii) membrane budding that encloses the cargo and depends on the creation of appropriate membrane curvature, and (iii) membrane fission events allowing the nascent carrier to separate from the donor membrane. These secretory vesicles then mature as they are actively transported along microtubules toward the cortical actin network at the cell periphery. The final stage known as regulated exocytosis involves the docking and the priming of the mature granules, necessary for merging of vesicular and plasma membranes, and the subsequent partial or total release of the secretory vesicle content. Here, we review the latest evidence detailing the functional roles played by lipids during secretory granule biogenesis, recruitment, and exocytosis steps. In this review, we highlight evidence supporting the notion that lipids play important functions in secretory vesicle biogenesis, maturation, recruitment, and membrane fusion steps. These effects include regulating various protein distribution and activity, but also directly modulating membrane topology. The challenges ahead to understand the pleiotropic functions of lipids in a secretory granule's journey are also discussed. This article is part of a mini review series on Chromaffin cells (ISCCB Meeting, 2015).

  14. Aroma biogenesis and distribution between olive pulps and seeds with identification of aroma trends among cultivars.

    PubMed

    Reboredo-Rodríguez, P; González-Barreiro, C; Cancho-Grande, B; Simal-Gándara, J

    2013-11-01

    The two constitutive parts of four cultivars (Arbequina, Picual, Local and Manzanilla de Sevilla) grown in Spain were separately analysed in order to establish the role of pulp and seed in the biogenesis of extra virgin olive oil (EVOO) aroma through the lipoxygenase (LOX) pathway. C6 and C5 volatile compounds responsible of EVOO aroma were produced by endogenous enzymes in both parts of olive fruits and the differences can be attributed to different enzymes distribution in pulp and seed. According to results, C6 and C5 volatile compounds have mainly their biogenesis in pulp (80-90%) vs. seed (20-10%), independently of the cultivar considered. A linear discriminant analysis was used to establish discriminant aroma compounds between pulp and seed related to the maturity index. A decrease in trans-2-hexen-1-al and an increase in 1-hexanol with ripeness were observed independently of the cultivar considered. Finally, Partial Least Squares (PLS) regression analysis between pulp and seed aroma compounds allowed to establish those volatile compounds that better describe each cultivar. PMID:23768404

  15. Mitochondrial Biogenesis: Regulation By Endogenous Gases during Inflammation and Organ Stress

    PubMed Central

    Suliman, Hagir B.; Piantadosi, Claude A.

    2014-01-01

    The influence of mitochondrial dysfunction on pathological states involving inflammatory and/or oxidative stress in tissues that do not show frank cellular apoptosis or necrosis has been rather difficult to unravel, and the literature is replete with contradictory information. Although such discrepancies have many potential causes related to the type of injurious agent, the severity and duration of the injury, and the particular cells and tissues and the functions involved, it is the successful induction of cellular adaptive responses that ultimately governs the resolution of mitochondrial dysfunction and survival of the cell. Much recent attention has been devoted to unraveling the signaling pathways that activate mitochondrial biogenesis and other processes involved in mitochondrial quality control (QC) during inflammatory and oxidative stress with an eye towards the development of novel targets for therapeutic mitigation of the resultant tissue damage. This review provides a brief overview of this emerging field with an emphasis on the role of signaling through the endogenous gases (NO, CO and H2S) and a redox-based approach that brings transparency to key factors that contribute to the resolution of mitochondrial dysfunction and the maintenance of cell vitality. We make the case that targeted stimulation of mitochondrial biogenesis could be a potentially valuable approach for the development of new therapies for the treatment of diseases for which mitochondrial damage is a major consideration. PMID:24606800

  16. Nitric Oxide in Skeletal Muscle: Role on Mitochondrial Biogenesis and Function

    PubMed Central

    Tengan, Celia Harumi; Rodrigues, Gabriela Silva; Godinho, Rosely Oliveira

    2012-01-01

    Nitric oxide (NO) has been implicated in several cellular processes as a signaling molecule and also as a source of reactive nitrogen species (RNS). NO is produced by three isoenzymes called nitric oxide synthases (NOS), all present in skeletal muscle. While neuronal NOS (nNOS) and endothelial NOS (eNOS) are isoforms constitutively expressed, inducible NOS (iNOS) is mainly expressed during inflammatory responses. Recent studies have demonstrated that NO is also involved in the mitochondrial biogenesis pathway, having PGC-1α as the main signaling molecule. Increased NO synthesis has been demonstrated in the sarcolemma of skeletal muscle fiber and NO can also reversibly inhibit cytochrome c oxidase (Complex IV of the respiratory chain). Investigation on cultured skeletal myotubes treated with NO donors, NO precursors or NOS inhibitors have also showed a bimodal effect of NO that depends on the concentration used. The present review will discuss the new insights on NO roles on mitochondrial biogenesis and function in skeletal muscle. We will also focus on potential therapeutic strategies based on NO precursors or analogs to treat patients with myopathies and mitochondrial deficiency. PMID:23242154

  17. Toward a Whole-Cell Model of Ribosome Biogenesis: Kinetic Modeling of SSU Assembly

    PubMed Central

    Earnest, Tyler M.; Lai, Jonathan; Chen, Ke; Hallock, Michael J.; Williamson, James R.; Luthey-Schulten, Zaida

    2015-01-01

    Central to all life is the assembly of the ribosome: a coordinated process involving the hierarchical association of ribosomal proteins to the RNAs forming the small and large ribosomal subunits. The process is further complicated by effects arising from the intracellular heterogeneous environment and the location of ribosomal operons within the cell. We provide a simplified model of ribosome biogenesis in slow-growing Escherichia coli. Kinetic models of in vitro small-subunit reconstitution at the level of individual protein/ribosomal RNA interactions are developed for two temperature regimes. The model at low temperatures predicts the existence of a novel 5′→3′→central assembly pathway, which we investigate further using molecular dynamics. The high-temperature assembly network is incorporated into a model of in vivo ribosome biogenesis in slow-growing E. coli. The model, described in terms of reaction-diffusion master equations, contains 1336 reactions and 251 species that dynamically couple transcription and translation to ribosome assembly. We use the Lattice Microbes software package to simulate the stochastic production of mRNA, proteins, and ribosome intermediates over a full cell cycle of 120 min. The whole-cell model captures the correct growth rate of ribosomes, predicts the localization of early assembly intermediates to the nucleoid region, and reproduces the known assembly timescales for the small subunit with no modifications made to the embedded in vitro assembly network. PMID:26333594

  18. Inhibition of Human Dyskerin as a New Approach to Target Ribosome Biogenesis

    PubMed Central

    Onofrillo, Carmine; Del Rio, Alberto; Montanaro, Lorenzo

    2014-01-01

    The product of the DKC1 gene, dyskerin, is required for both ribosome biogenesis and telomerase complex stabilization. Targeting these cellular processes has been explored for the development of drugs to selectively or preferentially kill cancer cells. Presently, intense research is conducted involving the identification of new biological targets whose modulation may simultaneously interfere with multiple cellular functions that are known to be hyper-activated by neoplastic transformations. Here, we report, for the first time, the computational identification of small molecules able to inhibit dyskerin catalytic activity. Different in silico techniques were applied to select compounds and analyze the binding modes and the interaction patterns of ligands in the human dyskerin catalytic site. We also describe a newly developed and optimized fast real-time PCR assay that was used to detect dyskerin pseudouridylation activity in vitro. The identification of new dyskerin inhibitors constitutes the first proof of principle that the pseudouridylation activity can be modulated by means of small molecule agents. Therefore, the presented results, obtained through the usage of computational tools and experimental validation, indicate an alternative therapeutic strategy to target ribosome biogenesis pathway. PMID:25010840

  19. 5'-AMP-activated protein kinase alpha regulates stress granule biogenesis.

    PubMed

    Mahboubi, Hicham; Barisé, Ramla; Stochaj, Ursula

    2015-07-01

    Stress granule (SG) assembly represents a conserved eukaryotic defense strategy against various insults. Although essential for the ability to cope with deleterious conditions, the signaling pathways controlling SG formation are not fully understood. The energy sensor AMP-activated protein kinase (AMPK) is critical for the cellular stress response. Human cells produce two AMPK catalytic α-subunits with not only partially overlapping, but also unique functions. Here, we provide direct support for structural and functional links between AMPK-α isoforms and SGs. As such, several stressors promote SG association of AMPK-α2, but not AMPK-α1. Multiple lines of evidence link AMPK activity to SG biogenesis. First, pharmacological kinase inhibition interfered with SG formation. Second, AMPK-α knockdown combined with in-depth quantitative SG analysis revealed isoform-specific changes of SG characteristics. Third, overexpression of mutant α-subunits further substantiated that AMPK regulates SG parameters. Finally, we identified the SG-nucleating protein G3BP1 as an AMPK-α2 binding partner. This interaction is stimulated by stress and notably occurs in SGs. Collectively, our data define the master metabolic regulator AMPK as a novel SG constituent that also controls their biogenesis.

  20. Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development.

    PubMed

    Kobayashi, Koichi

    2016-07-01

    The lipid bilayer of the thylakoid membrane in plant chloroplasts and cyanobacterial cells is predominantly composed of four unique lipid classes; monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG). MGDG and DGDG are uncharged galactolipids that constitute the bulk of thylakoid membrane lipids and provide a lipid bilayer matrix for photosynthetic complexes as the main constituents. The glycolipid SQDG and phospholipid PG are anionic lipids with a negative charge on their head groups. SQDG and PG substitute for each other to maintain the amount of total anionic lipids in the thylakoid membrane, with PG having indispensable functions in photosynthesis. In addition to biochemical studies, extensive analyses of mutants deficient in thylakoid lipids have revealed important roles of these lipids in photosynthesis and thylakoid membrane biogenesis. Moreover, recent studies of Arabidopsis thaliana suggest that thylakoid lipid biosynthesis triggers the expression of photosynthesis-associated genes in both the nucleus and plastids and activates the formation of photosynthetic machineries and chloroplast development. Meanwhile, galactolipid biosynthesis is regulated in response to chloroplast functionality and lipid metabolism at transcriptional and post-translational levels. This review summarizes the roles of thylakoid lipids with their biosynthetic pathways in plants and discusses the coordinated regulation of thylakoid lipid biosynthesis with the development of photosynthetic machinery during chloroplast biogenesis. PMID:27114097

  1. Measuring the dynamics of E. coli ribosome biogenesis using pulse-labeling and quantitative mass spectrometry

    PubMed Central

    Chen, Stephen S.; Sperling, Edit; Silverman, Joshua M.; Davis, Joseph H.; Williamson, James R.

    2012-01-01

    The ribosome is an essential organelle responsible for cellular protein synthesis. Until recently, the study of ribosome assembly has been largely limited to in vitro assays, with few attempts to reconcile these results with the more complex in vivo ribosome biogenesis process. Here, we characterize the ribosome synthesis and assembly pathway for each E. coli ribosomal protein (r-protein) in vivo using a stable isotope pulse-labeling timecourse. Isotope incorporation into assembled ribosomes was measured by quantitative mass spectrometry (qMS) and fit using steady-state flux models. Most r-proteins exhibit precursor pools ranging in size from 0% to 7% of completed ribosomes, and that the sizes of these individual r-protein pools correlate well with the order of r-protein binding in vitro. Additionally, we observe anomalously large precursor pools for specific r-proteins with known extra-ribosomal functions and we have detected three r-proteins with significant turnover during steady-state growth. Taken together, this highly precise, time-dependent proteomic qMS approach should prove useful in future studies of ribosome biogenesis and could be easily extended to explore other complex biological processes in a cellular context. PMID:23090316

  2. Biogenesis, Function, and Applications of Virus-Derived Small RNAs in Plants.

    PubMed

    Zhang, Chao; Wu, Zujian; Li, Yi; Wu, Jianguo

    2015-01-01

    RNA silencing, an evolutionarily conserved and sequence-specific gene-inactivation system, has a pivotal role in antiviral defense in most eukaryotic organisms. In plants, a class of exogenous small RNAs (sRNAs) originating from the infecting virus called virus-derived small interfering RNAs (vsiRNAs) are predominantly responsible for RNA silencing-mediated antiviral immunity. Nowadays, the process of vsiRNA formation and the role of vsiRNAs in plant viral defense have been revealed through deep sequencing of sRNAs and diverse genetic analysis. The biogenesis of vsiRNAs is analogous to that of endogenous sRNAs, which require diverse essential components including dicer-like (DCL), argonaute (AGO), and RNA-dependent RNA polymerase (RDR) proteins. vsiRNAs trigger antiviral defense through post-transcriptional gene silencing (PTGS) or transcriptional gene silencing (TGS) of viral RNA, and they hijack the host RNA silencing system to target complementary host transcripts. Additionally, several applications that take advantage of the current knowledge of vsiRNAs research are being used, such as breeding antiviral plants through genetic engineering technology, reconstructing of viral genomes, and surveying viral ecology and populations. Here, we will provide an overview of vsiRNA pathways, with a primary focus on the advances in vsiRNA biogenesis and function, and discuss their potential applications as well as the future challenges in vsiRNAs research. PMID:26617580

  3. Mitochondria Biogenesis and Bioenergetics Gene Profiles in Isogenic Prostate Cells with Different Malignant Phenotypes.

    PubMed

    Burch, Tanya C; Rhim, Johng S; Nyalwidhe, Julius O

    2016-01-01

    Background. The most significant hallmarks of cancer are directly or indirectly linked to deregulated mitochondria. In this study, we sought to profile mitochondria associated genes in isogenic prostate cell lines with different tumorigenic phenotypes from the same patient. Results. Two isogenic human prostate cell lines RC77N/E (nonmalignant cells) and RC77T/E (malignant cells) were profiled for expression of mitochondrial biogenesis and energy metabolism genes by qRT-PCR using the Human Mitochondria and the Mitochondrial Energy Metabolism RT(2) PCR arrays. Forty-seven genes were differentially regulated between the two cell lines. The interaction and regulatory networks of these genes were generated by Ingenuity Pathway Analysis. UCP2 was the most significantly upregulated gene in primary adenocarcinoma cells in the current study. The overexpression of UCP2 upon malignant transformation was further validated using human prostatectomy clinical specimens. Conclusions. This study demonstrates the overexpression of multiple genes that are involved in mitochondria biogenesis, bioenergetics, and modulation of apoptosis. These genes may play a role in malignant transformation and disease progression. The upregulation of some of these genes in clinical samples indicates that some of the differentially transcribed genes could be the potential targets for therapeutic interventions. PMID:27478826

  4. Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy.

    PubMed

    Ivankovic, Davor; Chau, Kai-Yin; Schapira, Anthony H V; Gegg, Matthew E

    2016-01-01

    Impairment of the autophagy-lysosome pathway is implicated with the changes in α-synuclein and mitochondrial dysfunction observed in Parkinson's disease (PD). Damaged mitochondria accumulate PINK1, which then recruits parkin, resulting in ubiquitination of mitochondrial proteins. These can then be bound by the autophagic proteins p62/SQSTM1 and LC3, resulting in degradation of mitochondria by mitophagy. Mutations in PINK1 and parkin genes are a cause of familial PD. We found a significant increase in the expression of p62/SQSTM1 mRNA and protein following mitophagy induction in human neuroblastoma SH-SY5Y cells. p62 protein not only accumulated on mitochondria, but was also greatly increased in the cytosol. Increased p62/SQSMT1 expression was prevented in PINK1 knock-down cells, suggesting increased p62 expression was a consequence of mitophagy induction. The transcription factors Nrf2 and TFEB, which play roles in mitochondrial and lysosomal biogenesis, respectively, can regulate p62/SQSMT1. We report that both Nrf2 and TFEB translocate to the nucleus following mitophagy induction and that the increase in p62 mRNA levels was significantly impaired in cells with Nrf2 or TFEB knockdown. TFEB translocation also increased expression of itself and lysosomal proteins such as glucocerebrosidase and cathepsin D following mitophagy induction. We also report that cells with increased TFEB protein have significantly higher PGC-1α mRNA levels, a regulator of mitochondrial biogenesis, resulting in increased mitochondrial content. Our data suggests that TFEB is activated following mitophagy to maintain autophagy-lysosome pathway and mitochondrial biogenesis. Therefore, strategies to increase TFEB may improve both the clearance of α-synuclein and mitochondrial dysfunction in PD. Damaged mitochondria are degraded by the autophagy-lysosome pathway and is termed mitophagy. Following mitophagy induction, the transcription factors Nrf2 and TFEB translocate to the nucleus, inducing

  5. Genome-Wide Screens in Saccharomyces cerevisiae Highlight a Role for Cardiolipin in Biogenesis of Mitochondrial Outer Membrane Multispan Proteins.

    PubMed

    Sauerwald, Julia; Jores, Tobias; Eisenberg-Bord, Michal; Chuartzman, Silvia Gabriela; Schuldiner, Maya; Rapaport, Doron

    2015-09-01

    A special group of mitochondrial outer membrane (MOM) proteins spans the membrane several times via multiple helical segments. Such multispan proteins are synthesized on cytosolic ribosomes before their targeting to mitochondria and insertion into the MOM. Previous work recognized the import receptor Tom70 and the mitochondrial import (MIM) complex, both residents of the MOM, as required for optimal biogenesis of these proteins. However, their involvement is not sufficient to explain either the entire import pathway or its regulation. To identify additional factors that are involved in the biogenesis of MOM multispan proteins, we performed complementary high-throughput visual and growth screens in Saccharomyces cerevisiae. Cardiolipin (CL) synthase (Crd1) appeared as a candidate in both screens. Our results indeed demonstrate lower steady-state levels of the multispan proteins Ugo1, Scm4, and Om14 in mitochondria from crd1Δ cells. Importantly, MOM single-span proteins were not affected by this mutation. Furthermore, organelles lacking Crd1 had a lower in vitro capacity to import newly synthesized Ugo1 and Scm4 molecules. Crd1, which is located in the mitochondrial inner membrane, condenses phosphatidylglycerol together with CDP-diacylglycerol to obtain de novo synthesized CL molecules. Hence, our findings suggest that CL is an important component in the biogenesis of MOM multispan proteins. PMID:26149385

  6. AKT3 controls mitochondrial biogenesis and autophagy via regulation of the major nuclear export protein CRM-1.

    PubMed

    Corum, Daniel G; Tsichlis, Philip N; Muise-Helmericks, Robin C

    2014-01-01

    Our previous work has shown that Akt3 is required for mitochondrial biogenesis in primary human endothelial cells (ECs) and in Akt3-null mice; Akt3 affects subcellular localization of peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α), the master regulator of mitochondrial biogenesis. The purpose of this study is to determine the mechanism by which Akt3 controls the subcellular distribution of PGC-1α and to explore the effect on mitochondrial biogenesis and turnover during angiogenesis. Here we use standard biochemical analyses and Akt3-knockdown strategies to show that Akt3 controls the stabilization of chromosome maintenance region-1 (CRM-1), the major nuclear export receptor. Site-directed mutagenesis and association analyses show that PGC-1α nuclear export is CRM-1 dependent. Akt3 knockdown and CRM-1 overexpression cause 3-fold reductions in PGC-1α target gene expression, compared to control levels. Akt3 inhibition causes autophagy, as measured by autophagosome formation, in a CRM-1-dependent, Akt1/mTOR-independent pathway. In vivo, Akt3-null and heterozygous mice show dose-dependent decreases in angiogenesis compared to wild-type littermates (~5- and 2.5-fold decreases, respectively), as assessed by Matrigel plug assays. This correlates with an ~1.5-fold decrease in mitochondrial Cox IV expression. Our studies suggest that Akt3 is a regulator of mitochondrial dynamics in the vasculature via regulation of CRM-1-dependent nuclear export.

  7. Dysregulated miRNA biogenesis downstream of cellular stress and ALS-causing mutations: a new mechanism for ALS.

    PubMed

    Emde, Anna; Eitan, Chen; Liou, Lee-Loung; Libby, Ryan T; Rivkin, Natali; Magen, Iddo; Reichenstein, Irit; Oppenheim, Hagar; Eilam, Raya; Silvestroni, Aurelio; Alajajian, Betty; Ben-Dov, Iddo Z; Aebischer, Julianne; Savidor, Alon; Levin, Yishai; Sons, Robert; Hammond, Scott M; Ravits, John M; Möller, Thomas; Hornstein, Eran

    2015-11-01

    Interest in RNA dysfunction in amyotrophic lateral sclerosis (ALS) recently aroused upon discovering causative mutations in RNA-binding protein genes. Here, we show that extensive down-regulation of miRNA levels is a common molecular denominator for multiple forms of human ALS. We further demonstrate that pathogenic ALS-causing mutations are sufficient to inhibit miRNA biogenesis at the Dicing step. Abnormalities of the stress response are involved in the pathogenesis of neurodegeneration, including ALS. Accordingly, we describe a novel mechanism for modulating microRNA biogenesis under stress, involving stress granule formation and re-organization of DICER and AGO2 protein interactions with their partners. In line with this observation, enhancing DICER activity by a small molecule, enoxacin, is beneficial for neuromuscular function in two independent ALS mouse models. Characterizing miRNA biogenesis downstream of the stress response ties seemingly disparate pathways in neurodegeneration and further suggests that DICER and miRNAs affect neuronal integrity and are possible therapeutic targets.

  8. Peroxisome Biogenesis Disorders: Biological, Clinical and Pathophysiological Perspectives

    ERIC Educational Resources Information Center

    Braverman, Nancy E.; D'Agostino, Maria Daniela; MacLean, Gillian E.

    2013-01-01

    The peroxisome biogenesis disorders (PBD) are a heterogeneous group of autosomal recessive disorders in which peroxisome assembly is impaired, leading to multiple peroxisome enzyme deficiencies, complex developmental sequelae and progressive disabilities. Mammalian peroxisome assembly involves the protein products of 16 "PEX" genes;…

  9. PLK4 trans-Autoactivation Controls Centriole Biogenesis in Space.

    PubMed

    Lopes, Carla A M; Jana, Swadhin Chandra; Cunha-Ferreira, Inês; Zitouni, Sihem; Bento, Inês; Duarte, Paulo; Gilberto, Samuel; Freixo, Francisco; Guerrero, Adán; Francia, Maria; Lince-Faria, Mariana; Carneiro, Jorge; Bettencourt-Dias, Mónica

    2015-10-26

    Centrioles are essential for cilia and centrosome assembly. In centriole-containing cells, centrioles always form juxtaposed to pre-existing ones, motivating a century-old debate on centriole biogenesis control. Here, we show that trans-autoactivation of Polo-like kinase 4 (PLK4), the trigger of centriole biogenesis, is a critical event in the spatial control of that process. We demonstrate that centrioles promote PLK4 activation through its recruitment and local accumulation. Though centriole removal reduces the proportion of active PLK4, this is rescued by concentrating PLK4 to the peroxisome lumen. Moreover, while mild overexpression of PLK4 only triggers centriole amplification at the existing centriole, higher PLK4 levels trigger both centriolar and cytoplasmatic (de novo) biogenesis. Hence, centrioles promote their assembly locally and disfavor de novo synthesis. Similar mechanisms enforcing the local concentration and/or activity of other centriole components are likely to contribute to the spatial control of centriole biogenesis under physiological conditions.

  10. The Role of the Endoplasmic Reticulum in Peroxisome Biogenesis

    PubMed Central

    Dimitrov, Lazar; Lam, Sheung Kwan; Schekman, Randy

    2013-01-01

    Peroxisomes are essential cellular organelles involved in lipid metabolism. Patients affected by severe peroxisome biogenesis disorders rarely survive their first year. Genetic screens in several model organisms have identified more than 30 PEX genes that are required for the formation of functional peroxisomes. Despite significant work on the PEX genes, the biogenic origin of peroxisomes remains controversial. For at least two decades, the prevailing model postulated that peroxisomes propagate by growth and fission of preexisting peroxisomes. In this review, we focus on the recent evidence supporting a new, semiautonomous model of peroxisomal biogenesis. According to this model, peroxisomal membrane proteins (PMPs) traffic from the endoplasmic reticulum (ER) to the peroxisome by a vesicular budding, targeting, and fusion process while peroxisomal matrix proteins are imported into the organelle by an autonomous, posttranslational mechanism. We highlight the contradictory conclusions reached to answer the question of how PMPs are inserted into the ER. We then review what we know and what still remains to be elucidated about the mechanism of PMP exit from the ER and the contribution of preperoxisomal vesicles to mature peroxisomes. Finally, we discuss discrepancies in our understanding of de novo peroxisome biogenesis in wild-type cells. We anticipate that resolving these key issues will lead to a more complete picture of peroxisome biogenesis. PMID:23637287

  11. An AP-3-dependent mechanism drives synaptic-like microvesicle biogenesis in pancreatic islet β-cells

    PubMed Central

    Suckow, Arthur T.; Craige, Branch; Faundez, Victor; Cain, William J.

    2010-01-01

    Pancreatic islet β-cells contain synaptic-like microvesicles (SLMVs). The origin, trafficking, and role of these SLMVs are poorly understood. In neurons, synaptic vesicle (SV) biogenesis is mediated by two different cytosolic adaptor protein complexes, a ubiquitous AP-2 complex and the neuron-specific AP-3B complex. Mice lacking AP-3B subunits exhibit impaired GABAergic (inhibitory) neurotransmission and reduced neuronal vesicular GABA transporter (VGAT) content. Since β-cell maturation and exocytotic function seem to parallel that of the inhibitory synapse, we predicted that AP-3B-associated vesicles would be present in β-cells. Here, we test the hypothesis that AP-3B is expressed in islets and mediates β-cell SLMV biogenesis. A secondary aim was to test whether the sedimentation properties of INS-1 β-cell microvesicles are identical to those of bona fide SLMVs isolated from PC12 cells. Our results show that the two neuron-specific AP-3 subunits β3B and μ3B are expressed in β-cells, the first time these proteins have been found to be expressed outside the nervous system. We found that β-cell SLMVs share the same sedimentation properties as PC12 SLMVs and contain SV proteins that sort specifically to AP-3B-associated vesicles in the brain. Brefeldin A, a drug that interferes with AP-3-mediated SV biogenesis, inhibits the delivery of AP-3 cargoes to β-cell SLMVs. Consistent with a role for AP-3 in the biogenesis of GABAergic SLMV in β-cells, INS-1 cell VGAT content decreases upon inhibition of AP-3 δ-subunit expression. Our findings suggest that β-cells and neurons share molecules and mechanisms important for mediating the neuron-specific membrane trafficking pathways that underlie synaptic vesicle formation. PMID:20442321

  12. The Mechanism of Variegation in immutans Provides Insight into Chloroplast Biogenesis

    PubMed Central

    Foudree, Andrew; Putarjunan, Aarthi; Kambakam, Sekhar; Nolan, Trevor; Fussell, Jenna; Pogorelko, Gennady; Rodermel, Steve

    2012-01-01

    The immutans (im) variegation mutant of Arabidopsis has green and white-sectored leaves due to the absence of fully functional plastid terminal oxidase (PTOX), a plastoquinol oxidase in thylakoid membranes. PTOX appears to be at the nexus of a growing number of biochemical pathways in the plastid, including carotenoid biosynthesis, PSI cyclic electron flow, and chlororespiration. During the early steps of chloroplast biogenesis, PTOX serves as an alternate electron sink and is a prime determinant of the redox poise of the developing photosynthetic apparatus. Whereas a lack of PTOX causes the formation of photooxidized plastids in the white sectors of im, compensating mechanisms allow the green sectors to escape the effects of the mutation. This manuscript provides an update on PTOX, the mechanism of im variegation, and findings about im compensatory mechanisms. PMID:23205022

  13. Biogenesis of extracellular vesicles in yeast

    PubMed Central

    Oliveira, Débora L; Nakayasu, Ernesto S; Joffe, Luna S; Guimarães, Allan J; Sobreira, Tiago JP; Nosanchuk, Joshua D; Cordero, Radames JB; Frases, Susana; Casadevall, Arturo; Almeida, Igor C; Nimrichter, Leonardo

    2010-01-01

    The cellular events required for unconventional protein secretion in eukaryotic pathogens are beginning to be revealed. In fungi, extracellular release of proteins involves passage through the cell wall by mechanisms that are poorly understood. In recent years, several studies demonstrated that yeast cells produce vesicles that traverse the cell wall to release a wide range of cellular components into the extracellular space. These studies suggested that extracellular vesicle release involves components of both conventional and unconventional secretory pathways, although the precise mechanisms required for this process are still unknown. We discuss here cellular events that are candidates for regulating this interesting but elusive event in the biology of yeast cells. PMID:21331232

  14. Role of cAMP-responsive element-binding protein (CREB)-regulated transcription coactivator 3 (CRTC3) in the initiation of mitochondrial biogenesis and stress response in liver cells.

    PubMed

    Than, Tin Aung; Lou, Huan; Ji, Cheng; Win, Sanda; Kaplowitz, Neil

    2011-06-24

    Peroxisome proliferator-activated receptor α, coactivator 1α (PGC-1α) is the master regulator of mitochondrial biogenesis. PGC-1α expression is under the control of the transcription factor, cAMP-responsive element-binding protein (CREB). In searching for candidate transcription factors that mediate mitochondrial stress-initiated mitochondria-to-nucleus signaling in the regulation of mitochondrial biogenesis, we assessed the effect of silencing CREB-regulated transcription co-activators (CRTC). CRTC isoforms are co-activators of CREB-regulated transcription by a CREB phosphorylation-independent pathway. Using cultured HepG2 cells and primary mouse hepatocytes, we determined that mitochondrial stress imposed by the complex I inhibitor rotenone elicited mitochondrial biogenesis, which was dependent on an induction of PGC-1α, which was inhibited by silencing PGC-1α. PGC-1α induction in response to rotenone was inhibited by silencing the expression of CRTC3, which blocked downstream mitochondria biogenesis. In contrast, silencing CRTC2 did not affect the induction of this pathway in response to rotenone. Thus, CRTC3 plays a selective role in mitochondrial biogenesis in response to rotenone.

  15. Protein translocation and thylakoid biogenesis in cyanobacteria.

    PubMed

    Frain, Kelly M; Gangl, Doris; Jones, Alexander; Zedler, Julie A Z; Robinson, Colin

    2016-03-01

    Cyanobacteria exhibit a complex form of membrane differentiation that sets them apart from most bacteria. Many processes take place in the plasma membrane, but photosynthetic light capture, electron transport and ATP synthesis take place in an abundant internal thylakoid membrane. This review considers how this system of subcellular compartmentalisation is maintained, and how proteins are directed towards the various subcompartments--specifically the plasma membrane, periplasm, thylakoid membrane and thylakoid lumen. The involvement of Sec-, Tat- and signal recognition particle- (SRP)-dependent protein targeting pathways is discussed, together with the possible involvement of a so-called 'spontaneous' pathway for the insertion of membrane proteins, previously characterised for chloroplast thylakoid membrane proteins. An intriguing aspect of cyanobacterial cell biology is that most contain only a single set of genes encoding Sec, Tat and SRP components, yet the proteomes of the plasma and thylakoid membranes are very different. The implications for protein sorting mechanisms are considered. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux.

  16. CTRP9 induces mitochondrial biogenesis and protects high glucose-induced endothelial oxidative damage via AdipoR1 -SIRT1- PGC-1α activation.

    PubMed

    Cheng, Liang; Li, Bin; Chen, Xu; Su, Jie; Wang, Hongbing; Yu, Shiqiang; Zheng, Qijun

    2016-09-01

    Vascular lesions caused by endothelial dysfunction are the most common and serious complication of diabetes. The vasoactive potency of CTRP9 has been reported in our previous study via nitric oxide (NO) production. However, the effect of CTRP9 on vascular endothelial cells remains unknown. This study aimed to investigate the protection role of CTRP9 in the primary aortic vascular endothelial cells and HAECs under high-glucose condition. We found that the aortic vascular endothelial cells isolated from mice fed with a high fat diet generated more ROS production than normal cells, along with decreased mitochondrial biogenesis, which was also found in HAECs treated with high glucose. However, the treatment of CTPR9 significantly reduced ROS production and increased the activities of endogenous antioxidant enzymes, the expression of PGC-1α, NRF1, TFAM, ATP5A1 and SIRT1, and the activity of cytochrome c oxidase, indicating an induction of mitochondrial biogenesis. Furthermore, silencing the expression of SIRT1 in HAECs impeded the effect of CTRP9 on mitochondrial biogenesis, while silencing the expression of AdipoR1 in HAECs reversed the expression of SIRT1 and PGC-1α. Based on these findings, this study showed that CTRP9 might induce mitochondrial biogenesis and protect high glucose-induced endothelial oxidative damage via AdipoR1-SIRT1-PGC-1α signaling pathway. PMID:27349872

  17. 60S ribosomal protein L35 regulates β-casein translational elongation and secretion in bovine mammary epithelial cells.

    PubMed

    Jiang, Nan; Hu, Lijun; Liu, Chaonan; Gao, Xueli; Zheng, Shimin

    2015-10-01

    60S ribosomal protein L35 (RPL35) is an important component of the 60S ribosomal subunit and has a role in protein translation and endoplasmic reticulum (ER) docking. However, few studies have investigated RPL35 in eukaryotes and much remains to be learned. Here, we analyzed the function of RPL35 in β-casein (CSN2) synthesis and secretion in bovine mammary epithelial cells (BMECs). We found that methionine (Met) could promote the expressions of CSN2 and RPL35. Analysis of overexpression and inhibition of RPL35 confirmed that it could mediate the Met signal and regulate CSN2 expression. The mechanism of CSN2 regulation by RPL35 was analyzed by coimmunoprecipitation (Co-IP), colocalization, fluorescence resonance energy transfer (FRET) and gene mutation. We found that RPL35 could control ribosome translational elongation during synthesis of CSN2 by interacting with eukaryotic translational elongation factor 2 (eEF2), and that eEF2 was the signaling molecule downstream of RPL35 controlling this process. RPL35 could also control the secretion of CSN2 by locating it to the ER. Taken together, these results revealed that, RPL35 was an important positive regulatory factor involving in the Met-mediated regulation of CSN2 translational elongation and secretion.

  18. Upper Tropospheric Ozone Between Latitudes 60S and 60N Derived from Nimbus 7 TOMS/THIR Cloud Slicing

    NASA Technical Reports Server (NTRS)

    Ziemke, Jerald R.; Chandra, Sushil; Bhartia, P. K.

    2002-01-01

    This study evaluates the spatial distributions and seasonal cycles in upper tropospheric ozone (pressure range 200-500 hPa) from low to high latitudes (60S to 60N) derived from the satellite retrieval method called "Cloud Slicing." Cloud Slicing is a unique technique for determining ozone profile information in the troposphere by combining co-located measurements of cloud-top, pressure and above-cloud column ozone. For upper tropospheric ozone, co-located measurements of Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) above-cloud column ozone, and Nimbus 7 Temperature Humidity Infrared Radiometer (THIR) cloud-top pressure during 1979-1984 were incorporated. In the tropics, upper tropospheric ozone shows year-round enhancement in the Atlantic region and evidence of a possible semiannual variability. Upper tropospheric ozone outside the tropics shows greatest abundance in winter and spring seasons in both hemispheres with largest seasonal and largest amounts in the NH. These characteristics are similar to lower stratospheric ozone. Comparisons of upper tropospheric column ozone with both stratospheric ozone and a proxy of lower stratospheric air mass (i.e., tropopause pressure) from National Centers for Environmental Prediction (NCEP) suggest that stratosphere-troposphere exchange (STE) may be a significant source for the seasonal variability of upper tropospheric ozone almost everywhere between 60S and 60N except in low latitudes around 10S to 25N where other sources (e.g., tropospheric transport, biomass burning, aerosol effects, lightning, etc.) may have a greater role.

  19. Final pre-40S maturation depends on the functional integrity of the 60S subunit ribosomal protein L3.

    PubMed

    García-Gómez, Juan J; Fernández-Pevida, Antonio; Lebaron, Simon; Rosado, Iván V; Tollervey, David; Kressler, Dieter; de la Cruz, Jesús

    2014-03-01

    Ribosomal protein L3 is an evolutionarily conserved protein that participates in the assembly of early pre-60S particles. We report that the rpl3[W255C] allele, which affects the affinity and function of translation elongation factors, impairs cytoplasmic maturation of 20S pre-rRNA. This was not seen for other mutations in or depletion of L3 or other 60S ribosomal proteins. Surprisingly, pre-40S particles containing 20S pre-rRNA form translation-competent 80S ribosomes, and translation inhibition partially suppresses 20S pre-rRNA accumulation. The GTP-dependent translation initiation factor Fun12 (yeast eIF5B) shows similar in vivo binding to ribosomal particles from wild-type and rpl3[W255C] cells. However, the GTPase activity of eIF5B failed to stimulate processing of 20S pre-rRNA when assayed with ribosomal particles purified from rpl3[W255C] cells. We conclude that L3 plays an important role in the function of eIF5B in stimulating 3' end processing of 18S rRNA in the context of 80S ribosomes that have not yet engaged in translation. These findings indicate that the correct conformation of the GTPase activation region is assessed in a quality control step during maturation of cytoplasmic pre-ribosomal particles.

  20. A more flexible lipoprotein sorting pathway.

    PubMed

    Chahales, Peter; Thanassi, David G

    2015-05-01

    Lipoprotein biogenesis in Gram-negative bacteria occurs by a conserved pathway, each step of which is considered essential. In contrast to this model, LoVullo and colleagues demonstrate that the N-acyl transferase Lnt is not required in Francisella tularensis or Neisseria gonorrhoeae. This suggests the existence of a more flexible lipoprotein pathway, likely due to a modified Lol transporter complex, and raises the possibility that pathogens may regulate lipoprotein processing to modulate interactions with the host. PMID:25755190

  1. Structure and mechanism of COPI vesicle biogenesis.

    PubMed

    Jackson, Lauren P

    2014-08-01

    Distinct trafficking pathways within the secretory and endocytic systems ensure prompt and precise delivery of specific cargo molecules to different cellular compartments via small vesicular (50-150nm) and tubular carriers. The COPI vesicular coat is required for retrograde trafficking from the cis-Golgi back to the ER and within the Golgi stack. Recent structural data have been obtained from X-ray crystallographic studies on COPI coat components alone and on COPI subunits in complex with either cargo motifs or Arf1, and from reconstructions of COPI coated vesicles by electron tomography. These studies provide important molecular information and indicate key differences in COPI coat assembly as compared with clathrin-based and COPII-based coats. PMID:24840894

  2. Biogenesis and Assembly of Eukaryotic Cytochrome c Oxidase Catalytic Core

    PubMed Central

    Soto, Ileana C.; Fontanesi, Flavia; Liu, Jingjing; Barrientos, Antoni

    2011-01-01

    Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is a multimeric enzyme formed by subunits of dual genetic origin which assembly is intricate and highly regulated. The COX catalytic core is formed by three mitochondrial DNA encoded subunits, Cox1, Cox2 and Cox3, conserved in the bacterial enzyme. Their biogenesis requires the action of messenger-specific and subunit-specific factors which facilitate the synthesis, membrane insertion, maturation or assembly of the core subunits. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits and COX assembly factors has been invaluable to identify these ancillary factors. Here we review the current state of knowledge of the biogenesis and assembly of the eukaryotic COX catalytic core and discuss the degree of conservation of the players and mechanisms operating from yeast to human. PMID:21958598

  3. Biogenesis of protein bodies during vicilin accumulation in Medicago truncatula immature seeds

    PubMed Central

    2012-01-01

    Background Grain legumes play a worldwide role as a source of plant proteins for feed and food. In the model legume Medicago truncatula, the organisation of protein storage vacuoles (PSV) in maturing seeds remains unknown. Findings The sub-cellular events accompanying the accumulation of vicilin (globulin7S) were analysed during seed mid-maturation. Immuno-detection of vicilin in light microscopy, allowed a semi-quantitative assessment of the protein body complement. The identified populations of vicilin-containing protein bodies are distinguished by their number and size which allowed to propose a model of their biogenesis. Two distributions were detected, enabling a separation of their processing at early and mid maturation stages. The largest protein bodies, at 16 and 20 days after pollination (DAP), were formed by the fusion of small bodies. They have probably attained their final size and correspond to mature vicilin aggregations. Electron microscopic observations revealed the association of the dense protein bodies with rough endoplasmic reticulum. The presence of a ribosome layer surrounding protein bodies, would support an endoplasmic reticulum–vacuole trafficking pathway. Conclusions The stastistic analysis may be useful for screening mutations of candidate genes governing protein content. The definitive evidence for an ER-storage vacuole pathway corresponds to a challenge, for the storage of post-translationally unstable proteins. It was proposed for the accumulation of one class of storage protein, the vicilins. This alternative pathway is a matter of controversy in dicotyledonous seeds. PMID:22862819

  4. The Dedicated Chaperone Acl4 Escorts Ribosomal Protein Rpl4 to Its Nuclear Pre-60S Assembly Site

    PubMed Central

    Pillet, Benjamin; García-Gómez, Juan J.; Pausch, Patrick; Falquet, Laurent; Bange, Gert; de la Cruz, Jesús; Kressler, Dieter

    2015-01-01

    Ribosomes are the highly complex macromolecular assemblies dedicated to the synthesis of all cellular proteins from mRNA templates. The main principles underlying the making of ribosomes are conserved across eukaryotic organisms and this process has been studied in most detail in the yeast Saccharomyces cerevisiae. Yeast ribosomes are composed of four ribosomal RNAs (rRNAs) and 79 ribosomal proteins (r-proteins). Most r-proteins need to be transported from the cytoplasm to the nucleus where they get incorporated into the evolving pre-ribosomal particles. Due to the high abundance and difficult physicochemical properties of r-proteins, their correct folding and fail-safe targeting to the assembly site depends largely on general, as well as highly specialized, chaperone and transport systems. Many r-proteins contain universally conserved or eukaryote-specific internal loops and/or terminal extensions, which were shown to mediate their nuclear targeting and association with dedicated chaperones in a growing number of cases. The 60S r-protein Rpl4 is particularly interesting since it harbours a conserved long internal loop and a prominent C-terminal eukaryote-specific extension. Here we show that both the long internal loop and the C-terminal eukaryote-specific extension are strictly required for the functionality of Rpl4. While Rpl4 contains at least five distinct nuclear localization signals (NLS), the C-terminal part of the long internal loop associates with a specific binding partner, termed Acl4. Absence of Acl4 confers a severe slow-growth phenotype and a deficiency in the production of 60S subunits. Genetic and biochemical evidence indicates that Acl4 can be considered as a dedicated chaperone of Rpl4. Notably, Acl4 localizes to both the cytoplasm and nucleus and it has the capacity to capture nascent Rpl4 in a co-translational manner. Taken together, our findings indicate that the dedicated chaperone Acl4 accompanies Rpl4 from the cytoplasm to its pre-60S

  5. The miRNA biogenesis in marine bivalves

    PubMed Central

    Rosani, Umberto; Pallavicini, Alberto

    2016-01-01

    Small non-coding RNAs include powerful regulators of gene expression, transposon mobility and virus activity. Among the various categories, mature microRNAs (miRNAs) guide the translational repression and decay of several targeted mRNAs. The biogenesis of miRNAs depends on few gene products, essentially conserved from basal to higher metazoans, whose protein domains allow specific interactions with dsRNA. Here, we report the identification of key genes responsible of the miRNA biogenesis in 32 bivalves, with particular attention to the aquaculture species Mytilus galloprovincialis and Crassostrea gigas. In detail, we have identified and phylogenetically compared eight evolutionary conserved proteins: DROSHA, DGCR8, EXP5, RAN, DICER TARBP2, AGO and PIWI. In mussels, we recognized several other proteins participating in the miRNA biogenesis or in the subsequent RNA silencing. According to digital expression analysis, these genes display low and not inducible expression levels in adult mussels and oysters whereas they are considerably expressed during development. As miRNAs play an important role also in the antiviral responses, knowledge on their production and regulative effects can shed light on essential molecular processes and provide new hints for disease prevention in bivalves. PMID:26989613

  6. Microprocessor activity controls differential miRNA biogenesis In Vivo.

    PubMed

    Conrad, Thomas; Marsico, Annalisa; Gehre, Maja; Orom, Ulf Andersson

    2014-10-23

    In miRNA biogenesis, pri-miRNA transcripts are converted into pre-miRNA hairpins. The in vivo properties of this process remain enigmatic. Here, we determine in vivo transcriptome-wide pri-miRNA processing using next-generation sequencing of chromatin-associated pri-miRNAs. We identify a distinctive Microprocessor signature in the transcriptome profile from which efficiency of the endogenous processing event can be accurately quantified. This analysis reveals differential susceptibility to Microprocessor cleavage as a key regulatory step in miRNA biogenesis. Processing is highly variable among pri-miRNAs and a better predictor of miRNA abundance than primary transcription itself. Processing is also largely stable across three cell lines, suggesting a major contribution of sequence determinants. On the basis of differential processing efficiencies, we define functionality for short sequence features adjacent to the pre-miRNA hairpin. In conclusion, we identify Microprocessor as the main hub for diversified miRNA output and suggest a role for uncoupling miRNA biogenesis from host gene expression.

  7. Bmi1 promotes erythroid development through regulating ribosome biogenesis

    PubMed Central

    Gao, Rui; Chen, Sisi; Kobayashi, Michihiro; Yu, Hao; Zhang, Yingchi; Wan, Yang; Young, Sara K.; Soltis, Anthony; Yu, Ming; Vemula, Sasidhar; Fraenkel, Ernest; Cantor, Alan; Antipin, Yevgeniy; Xu, Yang; Yoder, Mervin C.; Wek, Ronald C.; Ellis, Steven R.; Kapur, Reuben; Zhu, Xiaofan; Liu, Yan

    2015-01-01

    While Polycomb group protein Bmi1 is important for stem cell maintenance, its role in lineage commitment is largely unknown. We have identified Bmi1 as a novel regulator of erythroid development. Bmi1 is highly expressed in mouse erythroid progenitor cells and its deficiency impairs erythroid differentiation. BMI1 is also important for human erythroid development. Furthermore, we discovered that loss of Bmi1 in erythroid progenitor cells results in down-regulation of transcription of multiple ribosomal protein genes and impaired ribosome biogenesis. Bmi1 deficiency stabilizes p53 protein, leading to upregulation of p21 expression and subsequent G0/G1 cell cycle arrest. Genetic inhibition of p53 activity rescues the erythroid defects seen in the Bmi1 null mice, demonstrating that a p53-dependent mechanism underlies the pathophysiology of the anemia. Mechanistically, Bmi1 is associated with multiple ribosomal protein genes and may positively regulate their expression in erythroid progenitor cells. Thus, Bmi1 promotes erythroid development, at least in part through regulating ribosome biogenesis. Ribosomopathies are human disorders of ribosome dysfunction, including diamond blackfan anemia (DBA) and 5q- syndrome, in which genetic abnormalities cause impaired ribosome biogenesis, resulting in specific clinical phenotypes. We observed that BMI1 expression in human hematopoietic stem and progenitor cells (HSPCs) from patients with DBA is correlated with the expression of some ribosomal protein genes, suggesting that BMI1 deficiency may play a pathological role in DBA and other ribosomopathies. PMID:25385494

  8. Bmi1 promotes erythroid development through regulating ribosome biogenesis.

    PubMed

    Gao, Rui; Chen, Sisi; Kobayashi, Michihiro; Yu, Hao; Zhang, Yingchi; Wan, Yang; Young, Sara K; Soltis, Anthony; Yu, Ming; Vemula, Sasidhar; Fraenkel, Ernest; Cantor, Alan; Antipin, Yevgeniy; Xu, Yang; Yoder, Mervin C; Wek, Ronald C; Ellis, Steven R; Kapur, Reuben; Zhu, Xiaofan; Liu, Yan

    2015-03-01

    While Polycomb group protein Bmi1 is important for stem cell maintenance, its role in lineage commitment is largely unknown. We have identified Bmi1 as a novel regulator of erythroid development. Bmi1 is highly expressed in mouse erythroid progenitor cells and its deficiency impairs erythroid differentiation. BMI1 is also important for human erythroid development. Furthermore, we discovered that loss of Bmi1 in erythroid progenitor cells results in decreased transcription of multiple ribosomal protein genes and impaired ribosome biogenesis. Bmi1 deficiency stabilizes p53 protein, leading to upregulation of p21 expression and subsequent G0/G1 cell cycle arrest. Genetic inhibition of p53 activity rescues the erythroid defects seen in the Bmi1 null mice, demonstrating that a p53-dependent mechanism underlies the pathophysiology of the anemia. Mechanistically, Bmi1 is associated with multiple ribosomal protein genes and may positively regulate their expression in erythroid progenitor cells. Thus, Bmi1 promotes erythroid development, at least in part through regulating ribosome biogenesis. Ribosomopathies are human disorders of ribosome dysfunction, including Diamond-Blackfan anemia (DBA) and 5q- syndrome, in which genetic abnormalities cause impaired ribosome biogenesis, resulting in specific clinical phenotypes. We observed that BMI1 expression in human hematopoietic stem and progenitor cells from patients with DBA is correlated with the expression of some ribosomal protein genes, suggesting that BMI1 deficiency may play a pathological role in DBA and other ribosomopathies. PMID:25385494

  9. Abnormal Synaptic Vesicle Biogenesis in Drosophila Synaptogyrin Mutants

    PubMed Central

    Stevens, Robin J.; Akbergenova, Yulia; Jorquera, Ramon A.; Littleton, J. Troy

    2012-01-01

    Sustained neuronal communication relies on the coordinated activity of multiple proteins that regulate synaptic vesicle biogenesis and cycling within the presynaptic terminal. Synaptogyrin and synaptophysin are conserved MARVEL domain-containing transmembrane proteins that are among the most abundant synaptic vesicle constituents, although their role in the synaptic vesicle cycle has remained elusive. To further investigate the function of these proteins, we generated and characterized a synaptogyrin (gyr) null mutant in Drosophila, whose genome encodes a single synaptogyrin isoform and lacks a synaptophysin homolog. We demonstrate that Drosophila synaptogyrin plays a modulatory role in synaptic vesicle biogenesis at larval neuromuscular junctions. Drosophila lacking synaptogyrin are viable and fertile and have no overt deficits in motor function. However, ultrastructural analysis of gyr larvae revealed increased synaptic vesicle diameter and enhanced variability in the size of synaptic vesicles. In addition, the resolution of endocytic cisternae into synaptic vesicles in response to strong stimulation is defective in gyr mutants. Electrophysiological analysis demonstrated an increase in quantal size and a concomitant decrease in quantal content, suggesting functional consequences for transmission caused by the loss of synaptogyrin. Furthermore, high-frequency stimulation resulted in increased facilitation and a delay in recovery from synaptic depression, indicating that synaptic vesicle exo-endocytosis is abnormally regulated during intense stimulation conditions. These results suggest that synaptogyrin modulates the synaptic vesicle exo-endocytic cycle and is required for the proper biogenesis of synaptic vesicles at nerve terminals. PMID:23238721

  10. Biogenesis of Golgi Stacks in Imaginal Discs of Drosophila melanogaster

    PubMed Central

    Kondylis, Vangelis; Goulding, Sarah E.; Dunne, Jonathan C.; Rabouille, Catherine

    2001-01-01

    We provide a detailed description of Golgi stack biogenesis that takes place in vivo during one of the morphogenetic events in the lifespan of Drosophila melanogaster. In early third-instar larvae, small clusters consisting mostly of vesicles and tubules were present in epithelial imaginal disk cells. As larvae progressed through mid- and late-third instar, these larval clusters became larger but also increasingly formed cisternae, some of which were stacked. In white pupae, the typical Golgi stack was observed. We show that larval clusters are Golgi stack precursors by 1) localizing various Golgi-specific markers to the larval clusters by electron and immunofluorescence confocal microscopy, 2) driving this conversion in wild-type larvae incubated at 37°C for 2 h, and 3) showing that this conversion does not take place in an NSF1 mutant (comt 17). The biological significance of this conversion became clear when we found that the steroid hormone 20-hydroxyecdysone (ecdysone) is critically involved in this conversion. In its absence, Golgi stack biogenesis did not occur and the larval clusters remained unaltered. We showed that dGM130 and sec23p expression increases approximately three- and fivefold, respectively, when discs are exposed to ecdysone in vivo and in vitro. Taken together, these results suggest that we have developed an in vivo system to study the ecdysone-triggered Golgi stack biogenesis. PMID:11514618

  11. The miRNA biogenesis in marine bivalves.

    PubMed

    Rosani, Umberto; Pallavicini, Alberto; Venier, Paola

    2016-01-01

    Small non-coding RNAs include powerful regulators of gene expression, transposon mobility and virus activity. Among the various categories, mature microRNAs (miRNAs) guide the translational repression and decay of several targeted mRNAs. The biogenesis of miRNAs depends on few gene products, essentially conserved from basal to higher metazoans, whose protein domains allow specific interactions with dsRNA. Here, we report the identification of key genes responsible of the miRNA biogenesis in 32 bivalves, with particular attention to the aquaculture species Mytilus galloprovincialis and Crassostrea gigas. In detail, we have identified and phylogenetically compared eight evolutionary conserved proteins: DROSHA, DGCR8, EXP5, RAN, DICER TARBP2, AGO and PIWI. In mussels, we recognized several other proteins participating in the miRNA biogenesis or in the subsequent RNA silencing. According to digital expression analysis, these genes display low and not inducible expression levels in adult mussels and oysters whereas they are considerably expressed during development. As miRNAs play an important role also in the antiviral responses, knowledge on their production and regulative effects can shed light on essential molecular processes and provide new hints for disease prevention in bivalves. PMID:26989613

  12. Regulation of flagellar biogenesis by a calcium dependent protein kinase in Chlamydomonas reinhardtii.

    PubMed

    Liang, Yinwen; Pan, Junmin

    2013-01-01

    Chlamydomonas reinhardtii, a bi-flagellated green alga, is a model organism for studies of flagella or cilia related activities including cilia-based signaling, flagellar motility and flagellar biogenesis. Calcium has been shown to be a key regulator of these cellular processes whereas the signaling pathways linking calcium to these cellular functions are less understood. Calcium-dependent protein kinases (CDPKs), which are present in plants but not in animals, are also present in ciliated microorganisms which led us to examine their possible functions and mechanisms in flagellar related activities. By in silico analysis of Chlamydomonas genome we have identified 14 CDPKs and studied one of the flagellar localized CDPKs--CrCDPK3. CrCDPK3 was a protein of 485 amino acids and predicted to have a protein kinase domain at the N-terminus and four EF-hand motifs at the C-terminus. In flagella, CrCDPK3 was exclusively localized in the membrane matrix fraction and formed an unknown 20 S protein complex. Knockdown of CrCDPK3 expression by using artificial microRNA did not affect flagellar motility as well as flagellar adhesion and mating. Though flagellar shortening induced by treatment with sucrose or sodium pyrophosphate was not affected in RNAi strains, CrCDPK3 increased in the flagella, and pre-formed protein complex was disrupted. During flagellar regeneration, CrCDPK3 also increased in the flagella. When extracellular calcium was lowered to certain range by the addition of EGTA after deflagellation, flagellar regeneration was severely affected in RNAi cells compared with wild type cells. In addition, during flagellar elongation induced by LiCl, RNAi cells exhibited early onset of bulbed flagella. This work expands new functions of CDPKs in flagellar activities by showing involvement of CrCDPK3 in flagellar biogenesis in Chlamydomonas.

  13. Pyrroloquinoline Quinone Biogenesis: Demonstration that PqqE from Klebsiella pneumoniae is a Radical SAM Enzyme†

    PubMed Central

    Wecksler, Stephen R.; Stoll, Stefan; Tran, Ha; Magnusson, Olafur T.; Wu, Shu-pao; King, David; Britt, R. David; Klinman, Judith P.

    2009-01-01

    Biogenesis of pyrroloquinoline quinone (PQQ) in Klebsiella pneumoniae requires the expression of six genes (pqqA-F). One of these genes (pqqE) encodes a 43 kDa protein (PqqE) that plays a role in the initial steps in PQQ formation (Veletrop et al. (1995) J. Bacteriol. 177, 5088-5098). PqqE contains two highly conserved cysteine motifs at the N and C-termini, with the N-terminal motif comprised of a consensus sequence of CX3CX2C that is unique to a family of proteins known as radical S-adenosyl-L-methionine (SAM) enzymes (Sofia et al. (2001) Nucleic Acids Res. 29, 1097-1106). PqqE from K. pneumoniae was cloned into E. coli and expressed as the native protein and with an N-terminal His6-tag. Anaerobic expression and purification of the His6-tag PqqE results in an enzyme with a brownish-red hue indicative of Fe-S cluster formation. Spectroscopic and physical analyses indicate that PqqE contains a mixture of Fe-S clusters, with the predominant form of the enzyme containing two [4Fe-4S] clusters. PqqE isolated anaerobically yields active enzyme capable of cleaving SAM to methionine and 5′-deoxyadenosine in an uncoupled reaction (kobs = 0.011 ± 0.001 min-1). In this reaction, the 5′-deoxyadenosyl radical either abstracts a hydrogen atom from a solvent accessible position in the enzyme or obtains a proton and electron from buffer. The putative PQQ substrate PqqA has not yet been shown to be modified by PqqE, implying either that PqqA must be modified before becoming the substrate for PqqE and/or that another protein in the biosynthetic pathway is critical for the initial steps in PQQ biogenesis. PMID:19746930

  14. The Effect of Natural LCAT Mutations on the Biogenesis of HDL.

    PubMed

    Fotakis, Panagiotis; Kuivenhoven, Jan Albert; Dafnis, Eugene; Kardassis, Dimitris; Zannis, Vassilis I

    2015-06-01

    We have investigated how the natural LCAT[T147I] and LCAT[P274S] mutations affect the pathway of biogenesis of HDL. Gene transfer of WT LCAT in LCAT(-/-) mice increased 11.8-fold the plasma cholesterol, whereas the LCAT[T147I] and LCAT[P274S] mutants caused a 5.2- and 2.9-fold increase, respectively. The LCAT[P274S] and the WT LCAT caused a monophasic distribution of cholesterol in the HDL region, whereas the LCAT[T147I] caused a biphasic distribution of cholesterol in the LDL and HDL region. Fractionation of plasma showed that the expression of WT LCAT increased plasma apoE and apoA-IV levels and shifted the distribution of apoA-I to lower densities. The LCAT[T147I] and LCAT[P274S] mutants restored partially apoA-I in the HDL3 fraction and LCAT[T147I] increased apoE in the VLD/IDL/LDL fractions. The in vivo functionality of LCAT was further assessed based on is its ability to correct the aberrant HDL phenotype that was caused by the apoA-I[L159R]FIN mutation. Co-infection of apoA-I(-/-) mice with this apoA-I mutant and either of the two mutant LCAT forms restored only partially the HDL biogenesis defect that was caused by the apoA-I[L159R]FIN and generated a distinct aberrant HDL phenotype. PMID:25948084

  15. Rg3 Improves Mitochondrial Function and the Expression of Key Genes Involved in Mitochondrial Biogenesis in C2C12 Myotubes

    PubMed Central

    Kim, Min Joo; Koo, Young Do; Kim, Min; Lim, Soo; Park, Young Joo; Chung, Sung Soo; Jang, Hak C.

    2016-01-01

    Background Panax ginseng has glucose-lowering effects, some of which are associated with the improvement in insulin resistance in skeletal muscle. Because mitochondria play a pivotal role in the insulin resistance of skeletal muscle, we investigated the effects of the ginsenoside Rg3, one of the active components of P. ginseng, on mitochondrial function and biogenesis in C2C12 myotubes. Methods C2C12 myotubes were treated with Rg3 for 24 hours. Insulin signaling pathway proteins were examined by Western blot. Cellular adenosine triphosphate (ATP) levels and the oxygen consumption rate were measured. The protein or mRNA levels of mitochondrial complexes were evaluated by Western blot and quantitative reverse transcription polymerase chain reaction analysis. Results Rg3 treatment to C2C12 cells activated the insulin signaling pathway proteins, insulin receptor substrate-1 and Akt. Rg3 increased ATP production and the oxygen consumption rate, suggesting improved mitochondrial function. Rg3 increased the expression of peroxisome proliferator-activated receptor γ coactivator 1α, nuclear respiratory factor 1, and mitochondrial transcription factor, which are transcription factors related to mitochondrial biogenesis. Subsequent increased expression of mitochondrial complex IV and V was also observed. Conclusion Our results suggest that Rg3 improves mitochondrial function and the expression of key genes involved in mitochondrial biogenesis, leading to an improvement in insulin resistance in skeletal muscle. Rg3 may have the potential to be developed as an anti-hyperglycemic agent.

  16. The DEAD-box Protein Rok1 Orchestrates 40S and 60S Ribosome Assembly by Promoting the Release of Rrp5 from Pre-40S Ribosomes to Allow for 60S Maturation

    PubMed Central

    Khoshnevis, Sohail; Askenasy, Isabel; Dattolo, Maria D.; Young-Erdos, Crystal L.; Stroupe, M. Elizabeth; Karbstein, Katrin

    2016-01-01

    DEAD-box proteins are ubiquitous regulators of RNA biology. While commonly dubbed “helicases,” their activities also include duplex annealing, adenosine triphosphate (ATP)-dependent RNA binding, and RNA-protein complex remodeling. Rok1, an essential DEAD-box protein, and its cofactor Rrp5 are required for ribosome assembly. Here, we use in vivo and in vitro biochemical analyses to demonstrate that ATP-bound Rok1, but not adenosine diphosphate (ADP)-bound Rok1, stabilizes Rrp5 binding to 40S ribosomes. Interconversion between these two forms by ATP hydrolysis is required for release of Rrp5 from pre-40S ribosomes in vivo, thereby allowing Rrp5 to carry out its role in 60S subunit assembly. Furthermore, our data also strongly suggest that the previously described accumulation of snR30 upon Rok1 inactivation arises because Rrp5 release is blocked and implicate a previously undescribed interaction between Rrp5 and the DEAD-box protein Has1 in mediating snR30 accumulation when Rrp5 release from pre-40S subunits is blocked. PMID:27280440

  17. The DEAD-box Protein Rok1 Orchestrates 40S and 60S Ribosome Assembly by Promoting the Release of Rrp5 from Pre-40S Ribosomes to Allow for 60S Maturation.

    PubMed

    Khoshnevis, Sohail; Askenasy, Isabel; Johnson, Matthew C; Dattolo, Maria D; Young-Erdos, Crystal L; Stroupe, M Elizabeth; Karbstein, Katrin

    2016-06-01

    DEAD-box proteins are ubiquitous regulators of RNA biology. While commonly dubbed "helicases," their activities also include duplex annealing, adenosine triphosphate (ATP)-dependent RNA binding, and RNA-protein complex remodeling. Rok1, an essential DEAD-box protein, and its cofactor Rrp5 are required for ribosome assembly. Here, we use in vivo and in vitro biochemical analyses to demonstrate that ATP-bound Rok1, but not adenosine diphosphate (ADP)-bound Rok1, stabilizes Rrp5 binding to 40S ribosomes. Interconversion between these two forms by ATP hydrolysis is required for release of Rrp5 from pre-40S ribosomes in vivo, thereby allowing Rrp5 to carry out its role in 60S subunit assembly. Furthermore, our data also strongly suggest that the previously described accumulation of snR30 upon Rok1 inactivation arises because Rrp5 release is blocked and implicate a previously undescribed interaction between Rrp5 and the DEAD-box protein Has1 in mediating snR30 accumulation when Rrp5 release from pre-40S subunits is blocked. PMID:27280440

  18. Biogenesis of iron-sulphur clusters in amitochondriate and apicomplexan protists.

    PubMed

    Seeber, Frank

    2002-09-01

    During the last 4 years there has been an enormous interest in the question how iron-sulphur ([Fe-S]) clusters, which are essential building blocks for life, are synthesised and assembled into apo-proteins, both in prokaryotes and in eukaryotes. The emerging picture is that the basic mechanism of this pathway has been well conserved during evolution. In yeast and probably all other eukaryotes the mitochondrion is the place where [Fe-S] clusters are synthesised, even for extramitochondrial [Fe-S] cluster-containing proteins, and a number of proteins have been functionally characterised to a certain extent within this pathway. However, almost nothing is known about this aspect in parasitic protists, although recent studies of amitochondriate protists and on the plastid-like organelle of apicomplexan parasites, the apicoplast, have started to change this. In this article I will summarise the current view of [Fe-S] cluster biogenesis in eukaryotes and discuss its implications for amitochondriate protists and for the plastid-like organelle of apicomplexan parasites.

  19. Constitutive Expressor of Pathogenesis-Related Genes5 affects cell wall biogenesis and trichome development

    PubMed Central

    Brininstool, Ginger; Kasili, Remmy; Simmons, L Alice; Kirik, Viktor; Hülskamp, Martin; Larkin, John C

    2008-01-01

    Background The Arabidopsis thaliana CONSTITUTIVE EXPRESSOR OF PATHOGENESIS-RELATED GENES5 (CPR5) gene has been previously implicated in disease resistance, cell proliferation, cell death, and sugar sensing, and encodes a putative membrane protein of unknown biochemical function. Trichome development is also affected in cpr5 plants, which have leaf trichomes that are reduced in size and branch number. Results In the work presented here, the role of CPR5 in trichome development was examined. Trichomes on cpr5 mutants had reduced birefringence, suggesting a difference in cell wall structure between cpr5 and wild-type trichomes. Consistent with this, leaf cell walls of cpr5 plants contained significantly less paracrystalline cellulose and had an altered wall carbohydrate composition. We also found that the effects of cpr5 on trichome size and endoreplication of trichome nuclear DNA were epistatic to the effects of mutations in triptychon (try) or overexpression of GLABRA3, indicating that these trichome developmental regulators are dependant on CPR5 function for their effects on trichome expansion and endoreplication. Conclusion Our results suggest that CPR5 is unlikely to be a specific regulator of pathogen response pathways or senescence, but rather functions either in cell wall biogenesis or in multiple cell signaling or transcription response pathways. PMID:18485217

  20. Ribosome biogenesis in replicating cells: Integration of experiment and theory.

    PubMed

    Earnest, Tyler M; Cole, John A; Peterson, Joseph R; Hallock, Michael J; Kuhlman, Thomas E; Luthey-Schulten, Zaida

    2016-10-01

    Ribosomes-the primary macromolecular machines responsible for translating the genetic code into proteins-are complexes of precisely folded RNA and proteins. The ways in which their production and assembly are managed by the living cell is of deep biological importance. Here we extend a recent spatially resolved whole-cell model of ribosome biogenesis in a fixed volume [Earnest et al., Biophys J 2015, 109, 1117-1135] to include the effects of growth, DNA replication, and cell division. All biological processes are described in terms of reaction-diffusion master equations and solved stochastically using the Lattice Microbes simulation software. In order to determine the replication parameters, we construct and analyze a series of Escherichia coli strains with fluorescently labeled genes distributed evenly throughout their chromosomes. By measuring these cells' lengths and number of gene copies at the single-cell level, we could fit a statistical model of the initiation and duration of chromosome replication. We found that for our slow-growing (120 min doubling time) E. coli cells, replication was initiated 42 min into the cell cycle and completed after an additional 42 min. While simulations of the biogenesis model produce the correct ribosome and mRNA counts over the cell cycle, the kinetic parameters for transcription and degradation are lower than anticipated from a recent analytical time dependent model of in vivo mRNA production. Describing expression in terms of a simple chemical master equation, we show that the discrepancies are due to the lack of nonribosomal genes in the extended biogenesis model which effects the competition of mRNA for ribosome binding, and suggest corrections to parameters to be used in the whole-cell model when modeling expression of the entire transcriptome. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 735-751, 2016. PMID:27294303

  1. Ribosome biogenesis in replicating cells: Integration of experiment and theory.

    PubMed

    Earnest, Tyler M; Cole, John A; Peterson, Joseph R; Hallock, Michael J; Kuhlman, Thomas E; Luthey-Schulten, Zaida

    2016-10-01

    Ribosomes-the primary macromolecular machines responsible for translating the genetic code into proteins-are complexes of precisely folded RNA and proteins. The ways in which their production and assembly are managed by the living cell is of deep biological importance. Here we extend a recent spatially resolved whole-cell model of ribosome biogenesis in a fixed volume [Earnest et al., Biophys J 2015, 109, 1117-1135] to include the effects of growth, DNA replication, and cell division. All biological processes are described in terms of reaction-diffusion master equations and solved stochastically using the Lattice Microbes simulation software. In order to determine the replication parameters, we construct and analyze a series of Escherichia coli strains with fluorescently labeled genes distributed evenly throughout their chromosomes. By measuring these cells' lengths and number of gene copies at the single-cell level, we could fit a statistical model of the initiation and duration of chromosome replication. We found that for our slow-growing (120 min doubling time) E. coli cells, replication was initiated 42 min into the cell cycle and completed after an additional 42 min. While simulations of the biogenesis model produce the correct ribosome and mRNA counts over the cell cycle, the kinetic parameters for transcription and degradation are lower than anticipated from a recent analytical time dependent model of in vivo mRNA production. Describing expression in terms of a simple chemical master equation, we show that the discrepancies are due to the lack of nonribosomal genes in the extended biogenesis model which effects the competition of mRNA for ribosome binding, and suggest corrections to parameters to be used in the whole-cell model when modeling expression of the entire transcriptome. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 735-751, 2016.

  2. Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis.

    PubMed

    Kim, Young-Kook; Kim, Boseon; Kim, V Narry

    2016-03-29

    Biogenesis of canonical microRNAs (miRNAs) involves multiple steps: nuclear processing of primary miRNA (pri-miRNA) by DROSHA, nuclear export of precursor miRNA (pre-miRNA) by Export in 5 (XPO5), and cytoplasmic processing of pre-miRNA by DICER. To gain a deeper understanding of the contribution of each of these maturation steps, we deleted DROSHA, XPO5, and DICER in the same human cell line, and analyzed their effects on miRNA biogenesis. Canonical miRNA production was completely abolished in DROSHA-deleted cells, whereas we detected a few DROSHA-independent miRNAs including three previously unidentified noncanonical miRNAs (miR-7706, miR-3615, and miR-1254). In contrast to DROSHA knockout, many canonical miRNAs were still detected without DICER albeit at markedly reduced levels. In the absence of DICER, pre-miRNAs are loaded directly onto AGO and trimmed at the 3' end, yielding miRNAs from the 5' strand (5p miRNAs). Interestingly, in XPO5 knockout cells, most miRNAs are affected only modestly, suggesting that XPO5 is necessary but not critical for miRNA maturation. Our study demonstrates an essential role of DROSHA and an important contribution of DICER in the canonical miRNA pathway, and reveals that the function of XPO5 can be complemented by alternative mechanisms. Thus, this study allows us to understand differential contributions of key biogenesis factors, and provides with valuable resources for miRNA research. PMID:26976605

  3. Genetic variations in micro-RNA biogenesis genes and clinical outcomes in non-muscle-invasive bladder cancer.

    PubMed

    Ke, Hung-Lung; Chen, Meng; Ye, Yuanqing; Hildebrandt, Michelle A T; Wu, Wen-Jeng; Wei, Hua; Huang, Maosheng; Chang, David W; Dinney, Colin P; Wu, Xifeng

    2013-05-01

    Micro-RNAs (miRNAs) are small non-coding RNA molecules, which can act as either oncogenes or tumor suppressors. Dysregulated expression of miRNA genes have been implicated in the development of many different cancers. We hypothesize that genetic variations in miRNA biogenesis genes may be associated with the prognosis of bladder cancer. We genotyped 76 single nucleotide polymorphisms (SNPs) in eight miRNA biogenesis genes in 421 patients with non-muscle-invasive bladder cancer (NMIBC). We analyzed the associations of SNPs with recurrence and progression in all patients as well as stratified by treatment: transurethral resection (TUR) alone or TUR plus intravesical bacillus Calmette-Guérin (BCG) instillation. Two SNPs were significantly associated with tumor recurrence in TUR only subgroup after adjustment for multiple comparisons (Q < 0.1). The most significant SNP was rs197412 in DDX20: the variant allele conferred a decreased risk of recurrence [hazard ratio (HR) = 0.58, 95% confidence interval (95% CI) = 0.40-0.82]. This SNP was validated in a separate group of 586 NMIBC patients and the pooled HR was 0.62 (95% CI = 0.48-0.81, P < 0.001). Two linked SNPs (rs2073778 and rs720012) in DGCR8 showed significant association with tumor progression (HR = 4.00, 95% CI = 1.53-10.46, P = 0.005). A strong gene-dosage effect was observed with higher risk for tumor recurrence and progression with increasing number of unfavorable genotypes. Haplotype and survival tree analyses further characterized the association of miRNA-related SNPs with tumor recurrence and progression. Taken together, our results indicate that genetic variants in miRNA biogenesis pathway may influence bladder cancer clinical outcome in NMIBC patients.

  4. Skeletal muscle plasticity induced by seasonal acclimatization involves IGF1 signaling: implications in ribosomal biogenesis and protein synthesis.

    PubMed

    Fuentes, Eduardo N; Zuloaga, Rodrigo; Valdes, Juan Antonio; Molina, Alfredo; Alvarez, Marco

    2014-10-01

    One of the most fundamental biological processes in living organisms that are affected by environmental fluctuations is growth. In fish, skeletal muscle accounts for the largest proportion of body mass, and the growth of this tissue is mainly controlled by the insulin-like growth factor (IGF) system. By using the carp (Cyprinus carpio), a fish that inhabits extreme conditions during winter and summer, we assessed the skeletal muscle plasticity induced by seasonal acclimatization and the relation of IGF signaling with protein synthesis and ribosomal biogenesis. The expression of igf1 in muscle decreased during winter in comparison with summer, whereas the expression for both paralogues of igf2 did not change significantly between seasons. The expression of igf1 receptor a (igf1ra), but not of igf1rb, was down-regulated in muscle during the winter as compared to the summer. A decrease in protein contents and protein phosphorylation for IGF signaling molecules in muscle was observed in winter-acclimatized carp. This was related with a decreased expression in muscle for markers of myogenesis (myoblast determination factor (myod), myogenic factor 5 (myf5), and myogenin (myog)); protein synthesis (myosin heavy chain (mhc) and myosin light chain (mlc3 and mlc1b)); and ribosomal biogenesis (pre-rRNA and ribosomal proteins). IGF signaling, and key markers of ribosomal biogenesis, protein synthesis, and myogenesis were affected by seasonal acclimatization, with differential regulation in gene expression and signaling pathway activation observed in muscle between both seasons. This suggests that these molecules are responsible for the muscle plasticity induced by seasonal acclimatization in carp.

  5. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest.

    PubMed

    Fratti, R A; Backer, J M; Gruenberg, J; Corvera, S; Deretic, V

    2001-08-01

    Phagosomal biogenesis is a fundamental biological process of particular significance for the function of phagocytic and antigen-presenting cells. The precise mechanisms governing maturation of phagosomes into phagolysosomes are not completely understood. Here, we applied the property of pathogenic mycobacteria to cause phagosome maturation arrest in infected macrophages as a tool to dissect critical steps in phagosomal biogenesis. We report the requirement for 3-phosphoinositides and acquisition of Rab5 effector early endosome autoantigen (EEA1) as essential molecular events necessary for phagosomal maturation. Unlike the model phagosomes containing latex beads, which transiently recruited EEA1, mycobacterial phagosomes excluded this regulator of vesicular trafficking that controls membrane tethering and fusion processes within the endosomal pathway and is recruited to endosomal membranes via binding to phosphatidylinositol 3-phosphate (PtdIns[3]P). Inhibitors of phosphatidylinositol 3'(OH)-kinase (PI-3K) activity diminished EEA1 recruitment to newly formed latex bead phagosomes and blocked phagosomal acquisition of late endocytic properties, indicating that generation of PtdIns(3)P plays a role in phagosomal maturation. Microinjection into macrophages of antibodies against EEA1 and the PI-3K hVPS34 reduced acquisition of late endocytic markers by latex bead phagosomes, demonstrating an essential role of these Rab5 effectors in phagosomal biogenesis. The mechanism of EEA1 exclusion from mycobacterial phagosomes was investigated using mycobacterial products. Coating of latex beads with the major mycobacterial cell envelope glycosylated phosphatidylinositol lipoarabinomannan isolated from the virulent Mycobacterium tuberculosis H37Rv, inhibited recruitment of EEA1 to latex bead phagosomes, and diminished their maturation. These findings define the generation of phosphatidylinositol 3-phosphate and EEA1 recruitment as: (a) important regulatory events in phagosomal

  6. Biogenesis and Functions of Exosomes and Extracellular Vesicles.

    PubMed

    Dreyer, Florian; Baur, Andreas

    2016-01-01

    Research on extracellular vesicles (EVs) is a new and emerging field that is rapidly growing. Many features of these structures still need to be described and discovered. This concerns their biogenesis, their release and cellular entrance mechanisms, as well as their functions, particularly in vivo. Hence our knowledge on EV is constantly evolving and sometimes changing. In our review we summarize the most important facts of our current knowledge about extracellular vesicles and described some of the assumed functions in the context of cancer and HIV infection. PMID:27317183

  7. Serine Protease Autotransporters of Enterobacteriaceae (SPATEs): Biogenesis and Function

    PubMed Central

    Dautin, Nathalie

    2010-01-01

    Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) constitute a large family of proteases secreted by Escherichia coli and Shigella. SPATEs exhibit two distinct proteolytic activities. First, a C-terminal catalytic site triggers an intra-molecular cleavage that releases the N-terminal portion of these proteins in the extracellular medium. Second, the secreted N-terminal domains of SPATEs are themselves proteases; each contains a canonical serine-protease catalytic site. Some of these secreted proteases are toxins, eliciting various effects on mammalian cells. Here, we discuss the biogenesis of SPATEs and their function as toxins. PMID:22069633

  8. Mitochondrial biogenesis during differentiation of Artemia salina cysts.

    PubMed

    Schmitt, H; Grossfeld, H; Littauer, U Z

    1973-09-01

    Mitochondria isolated from cysts of Artemia salina (brine shrimp) were found to be devoid of cristae and to possess a low respiratory capability. Hydration of the cysts induces marked biochemical and morphological changes in the mitochondria. Their biogenesis proceeds in two stages. The first stage is completed within 1 h and is characterized by a rapid increase in the respiratory capability of the mitochondria, their cytochrome oxidase, cytochrome b, cytochrome c and perhaps some morphological changes. In the second stage there is an increase in the protein-synthesizing capacity of the mitochondria as well as striking changes in mitochondrial morphology leading to the formation of cristae. PMID:4355924

  9. The biogenesis and emerging roles of circular RNAs.

    PubMed

    Chen, Ling-Ling

    2016-04-01

    Circular RNAs (circRNAs) are produced from precursor mRNA (pre-mRNA) back-splicing of thousands of genes in eukaryotes. Although circRNAs are generally expressed at low levels, recent findings have shed new light on their cell type-specific and tissue-specific expression and on the regulation of their biogenesis. Furthermore, the data indicate that circRNAs shape gene expression by titrating microRNAs, regulating transcription and interfering with splicing, thus effectively expanding the diversity and complexity of eukaryotic transcriptomes. PMID:26908011

  10. Mitochondrial biogenesis in the pulmonary vasculature during inhalation lung injury and fibrosis

    EPA Science Inventory

    Cell survival and injury repair is facilitated by mitochondrial biogenesis; however, the role of this process in lung repair is unknown. We evaluated mitochondrial biogenesis in the mouse lung in two injuries that cause acute inflammation and in two that cause chronic inflammatio...

  11. Microalgal lipid droplets: composition, diversity, biogenesis and functions.

    PubMed

    Goold, Hugh; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2015-04-01

    Lipid droplet is the major site of neutral lipid storage in eukaryotic cells, and increasing evidence show its involvement in numerous cellular processes such as lipid homeostasis, signaling, trafficking and inter-organelle communications. Although the biogenesis, structure, and functions of lipid droplets have been well documented for seeds of vascular plants, mammalian adipose tissues, insects and yeasts, relative little is known about lipid droplets in microalgae. Over the past 5 years, the growing interest of microalgae as a platform for biofuel, green chemicals or value-added polyunsaturated fatty acid production has brought algal lipid droplets into spotlight. Studies conducted on the green microalga Chlamydomonas reinhardtii and other model microalgae such as Haematococcus and Nannochloropsis species have led to the identification of proteins associated with lipid droplets, which include putative structural proteins different from plant oleosins and animal perilipins, as well as candidate proteins for lipid biosynthesis, mobilization, trafficking and homeostasis. Biochemical and microscopy studies have also started to shed light on the role of chloroplasts in the biogenesis of lipid droplets in Chlamydomonas. PMID:25433857

  12. Dynamic evolution and biogenesis of small RNAs during sex reversal

    PubMed Central

    Liu, Jie; Luo, Majing; Sheng, Yue; Hong, Qiang; Cheng, Hanhua; Zhou, Rongjia

    2015-01-01

    Understanding origin, evolution and functions of small RNA (sRNA) genes has been a great challenge in the past decade. Molecular mechanisms underlying sexual reversal in vertebrates, particularly sRNAs involved in this process, are largely unknown. By deep-sequencing of small RNA transcriptomes in combination with genomic analysis, we identified a large amount of piRNAs and miRNAs including over 1,000 novel miRNAs, which were differentially expressed during gonad reversal from ovary to testis via ovotesis. Biogenesis and expressions of miRNAs were dynamically changed during the reversal. Notably, phylogenetic analysis revealed dynamic expansions of miRNAs in vertebrates and an evolutionary trajectory of conserved miR-17-92 cluster in the Eukarya. We showed that the miR-17-92 cluster in vertebrates was generated through multiple duplications from ancestor miR-92 in invertebrates Tetranychus urticae and Daphnia pulex from the Chelicerata around 580 Mya. Moreover, we identified the sexual regulator Dmrt1 as a direct target of the members miR-19a and -19b in the cluster. These data suggested dynamic biogenesis and expressions of small RNAs during sex reversal and revealed multiple expansions and evolutionary trajectory of miRNAs from invertebrates to vertebrates, which implicate small RNAs in sexual reversal and provide new insight into evolutionary and molecular mechanisms underlying sexual reversal. PMID:25944477

  13. Biogenesis and Function of T Cell-Derived Exosomes.

    PubMed

    Ventimiglia, Leandro N; Alonso, Miguel A

    2016-01-01

    Exosomes are a particular type of extracellular vesicle, characterized by their endosomal origin as intraluminal vesicles present in large endosomes with a multivesicular structure. After these endosomes fuse with the plasma membrane, exosomes are secreted into the extracellular space. The ability of exosomes to carry and selectively deliver bioactive molecules (e.g., lipids, proteins, and nucleic acids) confers on them the capacity to modulate the activity of receptor cells, even if these cells are located in distant tissues or organs. Since exosomal cargo depends on cell type, a detailed understanding of the mechanisms that regulate the biochemical composition of exosomes is fundamental to a comprehensive view of exosome function. Here, we review the latest advances concerning exosome function and biogenesis in T cells, with particular focus on the mechanism of protein sorting at multivesicular endosomes. Exosomes secreted by specific T-cell subsets can modulate the activity of immune cells, including other T-cell subsets. Ceramide, tetraspanins and MAL have been revealed to be important in exosome biogenesis by T cells. These molecules, therefore, constitute potential molecular targets for artificially modulating exosome production and, hence, the immune response for therapeutic purposes. PMID:27583248

  14. Probing peroxisome dynamics and biogenesis by fluorescence imaging.

    PubMed

    Jauregui, Miluska; Kim, Peter K

    2014-03-03

    Peroxisomes are the most recently discovered classical organelles, and only lately have their diverse functions been truly recognized. Peroxisomes are highly dynamic structures, changing both morphologically and in number in response to both extracellular and intracellular signals. This metabolic organelle came to prominence due to the many genetic disorders caused by defects in its biogenesis or enzymatic functions. There is now growing evidence that suggests peroxisomes are involved in lipid biosynthesis, innate immunity, redox homeostasis, and metabolite scavenging, among other functions. Therefore, it is important to have available suitable methods and techniques to visualize and quantify peroxisomes in response to various cellular signals. This unit includes a number of protocols that will enable researchers to image, qualify, and quantify peroxisome numbers and morphology-with both steady-state and time-lapse imaging using mammalian cells. The use of photoactivatable fluorescent proteins to detect and measure peroxisome biogenesis is also described. Altogether, the protocols described here will facilitate understanding of the dynamic changes that peroxisomes undergo in response to various cellular signals.

  15. Discovery of a small molecule that inhibits bacterial ribosome biogenesis

    PubMed Central

    Stokes, Jonathan M; Davis, Joseph H; Mangat, Chand S; Williamson, James R; Brown, Eric D

    2014-01-01

    While small molecule inhibitors of the bacterial ribosome have been instrumental in understanding protein translation, no such probes exist to study ribosome biogenesis. We screened a diverse chemical collection that included previously approved drugs for compounds that induced cold sensitive growth inhibition in the model bacterium Escherichia coli. Among the most cold sensitive was lamotrigine, an anticonvulsant drug. Lamotrigine treatment resulted in the rapid accumulation of immature 30S and 50S ribosomal subunits at 15°C. Importantly, this was not the result of translation inhibition, as lamotrigine was incapable of perturbing protein synthesis in vivo or in vitro. Spontaneous suppressor mutations blocking lamotrigine activity mapped solely to the poorly characterized domain II of translation initiation factor IF2 and prevented the binding of lamotrigine to IF2 in vitro. This work establishes lamotrigine as a widely available chemical probe of bacterial ribosome biogenesis and suggests a role for E. coli IF2 in ribosome assembly. DOI: http://dx.doi.org/10.7554/eLife.03574.001 PMID:25233066

  16. Leukocyte lipid bodies - biogenesis and functions in inflammation

    PubMed Central

    Bozza, Patricia T.; Magalhães, Kelly G.; Weller, Peter F.

    2009-01-01

    Lipid body accumulation within leukocytes is a common feature in both clinical and experimental infectious, neoplasic and other inflammatory conditions. Here, we will review the contemporary evidence related to the biogenesis and structure of leukocyte lipid bodies (also known as lipid droplets) as inflammatory organelles. Studies of leukocyte lipid bodies are providing functional, ultrastructural and protein compositional evidences that lipid bodies are not solely storage depots of neutral lipid. Over the past years substantial progresses have been made to demonstrate that lipid body biogenesis is a highly regulated process, that culminate in the compartmentalization of a specific set of proteins and lipids, that place leukocyte lipid bodies as inducible cytoplasmic organelles with roles in cell signaling and activation, regulation of lipid metabolism, membrane trafficking and control of the synthesis and secretion of inflammatory mediators. Pertinent to the roles of lipid bodies in inflammation and cell signaling, enzymes involved in eicosanoid synthesis are localized at lipid bodies and lipid bodies are sites for eicosanoid generation. Collectively, lipid bodies in leukocytes are emerging as critical regulators of different inflammatory diseases, key markers of leukocyte activation and attractive targets for novel anti-inflammatory therapies. PMID:19416659

  17. Transcriptional coactivator PGC-1alpha promotes peroxisomal remodeling and biogenesis.

    PubMed

    Bagattin, Alessia; Hugendubler, Lynne; Mueller, Elisabetta

    2010-11-23

    Mitochondria and peroxisomes execute some analogous, nonredundant functions including fatty acid oxidation and detoxification of reactive oxygen species, and, in response to select metabolic cues, undergo rapid remodeling and division. Although these organelles share some components of their division machinery, it is not known whether a common regulator coordinates their remodeling and biogenesis. Here we show that in response to thermogenic stimuli, peroxisomes in brown fat tissue (BAT) undergo selective remodeling and expand in number and demonstrate that ectopic expression of the transcriptional coactivator PGC-1α recapitulates these effects on the peroxisomal compartment, both in vitro and in vivo. Conversely, β-adrenergic stimulation of PGC-1α(-/-) cells results in blunted induction of peroxisomal gene expression. Surprisingly, PPARα was not required for the induction of critical biogenesis factors, suggesting that PGC-1α orchestrates peroxisomal remodeling through a PPARα-independent mechanism. Our data suggest that PGC-1α is critical to peroxisomal physiology, establishing a role for this factor as a fundamental orchestrator of cellular adaptation to energy demands.

  18. Biogenesis and Function of T Cell-Derived Exosomes

    PubMed Central

    Ventimiglia, Leandro N.; Alonso, Miguel A.

    2016-01-01

    Exosomes are a particular type of extracellular vesicle, characterized by their endosomal origin as intraluminal vesicles present in large endosomes with a multivesicular structure. After these endosomes fuse with the plasma membrane, exosomes are secreted into the extracellular space. The ability of exosomes to carry and selectively deliver bioactive molecules (e.g., lipids, proteins, and nucleic acids) confers on them the capacity to modulate the activity of receptor cells, even if these cells are located in distant tissues or organs. Since exosomal cargo depends on cell type, a detailed understanding of the mechanisms that regulate the biochemical composition of exosomes is fundamental to a comprehensive view of exosome function. Here, we review the latest advances concerning exosome function and biogenesis in T cells, with particular focus on the mechanism of protein sorting at multivesicular endosomes. Exosomes secreted by specific T-cell subsets can modulate the activity of immune cells, including other T-cell subsets. Ceramide, tetraspanins and MAL have been revealed to be important in exosome biogenesis by T cells. These molecules, therefore, constitute potential molecular targets for artificially modulating exosome production and, hence, the immune response for therapeutic purposes. PMID:27583248

  19. Removal of copper (II) from aqueous solutions by flotation using polyaluminum chloride silicate (PAX-XL60 S) as coagulant and carbonate ion as activator.

    PubMed

    Ghazy, S E; Mahmoud, I A; Ragab, A H

    2006-01-01

    Flotation is a separation technology for removing toxic heavy metal ions from aqueous solutions. Here a simple and rapid flotation procedure is presented for the removal of copper(II) from aqueous solutions. It is based on the use of polyaluminum chloride silicate (PAX-XL60 S) as coagulant and flocculent, carbonate ion as activator and oleic acid (HOL) as surfactant. Both ion and precipitate flotation are included depending on the solution pH. Ion and precipitate flotation in the aqueous HOL-PAX-XL60 S-Cu2+-CO3(2-) system gave powerful preferential removal of Cu2+ (F -100%) over the HOL-PAX-XL60 S-Cu2+ system containing no CO3(2+) ion (F approximately 86%). The role of CO3(2-) ion is also evident from decreasing the dose of PAX-XL60 S from 700 mg l(-1) to 200 mg l(-1). The other parameters, influencing the flotation process, namely: metal ion, surfactant and PAX-XL60 S concentrations, ionic strength, temperature and foreign ions were examined. Moreover, the procedure was successfully applied to recover Cu2+ ions from different volumes up to 11 and from natural water samples. PMID:16457175

  20. Studies on ribosomal proteins in the cellular slime mold Dictyostelium discoideum. Resolution, nomenclature and molecular weights of proteins in the 40-S and 60-S ribosomal subunits.

    PubMed

    Ramagopal, S; Ennis, H L

    1980-04-01

    This study is concerned with the identification and subunit localization of ribosomal proteins in Dictyostelium discoideum. The characterization is based on the resolution of ribosomal proteins by various methods of electrophoresis. 34 and 42 unique proteins were identified in the 40-S and 60-S ribosomal subunits respectively. The total mass of proteins in the 40-S subunit was 746,100 daltons and 981,900 daltons in the 60-S subunit. The molecular weights of individual proteins in the 40-S subunit ranged from 13,200 to 40,900 with a number-average molecular weight of 21,900. The molecular weight range for the 60-S subunit was 13,800--51,100 with a number-average molecular weight of 23,400. The 80-S ribosome contained 78 proteins, two of which were lost upon its dissociation into subunits. All the proteins of the 40-S and 60-S subunits could be identified individually in a 80-S map as well as in unfractionated proteins from whole cells. Purification of ribosomes in high-ionic-strength buffers resulted in non-specific loss of the various proteins from the 40-S and 60-S subunits. In addition, the undissociated ribosomes contained about 10 acidic proteins in the molecular weight range 50,000--100,000, which were retained after washing the ribosomes in high-salt buffers. They were found in polysomes, run-off ribosomes and could also be identified in the 40-S subunit after dissociation.

  1. Removal of copper (II) from aqueous solutions by flotation using polyaluminum chloride silicate (PAX-XL60 S) as coagulant and carbonate ion as activator.

    PubMed

    Ghazy, S E; Mahmoud, I A; Ragab, A H

    2006-01-01

    Flotation is a separation technology for removing toxic heavy metal ions from aqueous solutions. Here a simple and rapid flotation procedure is presented for the removal of copper(II) from aqueous solutions. It is based on the use of polyaluminum chloride silicate (PAX-XL60 S) as coagulant and flocculent, carbonate ion as activator and oleic acid (HOL) as surfactant. Both ion and precipitate flotation are included depending on the solution pH. Ion and precipitate flotation in the aqueous HOL-PAX-XL60 S-Cu2+-CO3(2-) system gave powerful preferential removal of Cu2+ (F -100%) over the HOL-PAX-XL60 S-Cu2+ system containing no CO3(2+) ion (F approximately 86%). The role of CO3(2-) ion is also evident from decreasing the dose of PAX-XL60 S from 700 mg l(-1) to 200 mg l(-1). The other parameters, influencing the flotation process, namely: metal ion, surfactant and PAX-XL60 S concentrations, ionic strength, temperature and foreign ions were examined. Moreover, the procedure was successfully applied to recover Cu2+ ions from different volumes up to 11 and from natural water samples.

  2. Markers of Human Skeletal Muscle Mitochondrial Biogenesis and Quality Control: Effects of Age and Aerobic Exercise Training

    PubMed Central

    2014-01-01

    Perturbations in mitochondrial health may foster age-related losses of aerobic capacity (VO2peak) and skeletal muscle size. However, limited data exist regarding mitochondrial dynamics in aging human skeletal muscle and the influence of exercise. The purpose of this study was to examine proteins regulating mitochondrial biogenesis and dynamics, VO2peak, and skeletal muscle size before and after aerobic exercise training in young men (20 ± 1 y) and older men (74 ± 3 y). Exercise-induced skeletal muscle hypertrophy occurred independent of age, whereas the improvement in VO2peak was more pronounced in young men. Aerobic exercise training increased proteins involved with mitochondrial biogenesis, fusion, and fission, independent of age. This is the first study to examine pathways of mitochondrial quality control in aging human skeletal muscle with aerobic exercise training. These data indicate normal aging does not influence proteins associated with mitochondrial health or the ability to respond to aerobic exercise training at the mitochondrial and skeletal muscle levels. PMID:23873965

  3. Mia40 and MINOS act in parallel with Ccs1 in the biogenesis of mitochondrial Sod1.

    PubMed

    Varabyova, Aksana; Topf, Ulrike; Kwiatkowska, Paulina; Wrobel, Lidia; Kaus-Drobek, Magdalena; Chacinska, Agnieszka

    2013-10-01

    Superoxide dismutase 1 (Sod1) is a major superoxide-scavenging enzyme in the eukaryotic cell, and is localized in the cytosol and intermembrane space of mitochondria. Sod1 requires its specific chaperone Ccs1 and disulfide bond formation in order to be retained in the intermembrane space. Our study identified a pool of Sod1 that is present in the reduced state in mitochondria that lack Ccs1. We created yeast mutants with mutations in highly conserved amino acid residues corresponding to human mutations that cause amyotrophic lateral sclerosis, and found that some of the mutant proteins were present in the reduced state. These mutant variants of Sod1 were efficiently localized in mitochondria. Localization of the reduced, Ccs1-independent forms of Sod1 relied on Mia40, an essential component of the mitochondrial intermembrane space import and assembly pathway that is responsible for the biogenesis of intermembrane space proteins. Furthermore, the mitochondrial inner membrane organizing system (MINOS), which is responsible for mitochondrial membrane architecture, differentially modulated the presence of reduced Sod1 in mitochondria. Thus, we identified novel mitochondrial players that are possibly involved in pathological conditions caused by changes in the biogenesis of Sod1.

  4. Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training.

    PubMed

    Konopka, Adam R; Suer, Miranda K; Wolff, Christopher A; Harber, Matthew P

    2014-04-01

    Perturbations in mitochondrial health may foster age-related losses of aerobic capacity (VO2peak) and skeletal muscle size. However, limited data exist regarding mitochondrial dynamics in aging human skeletal muscle and the influence of exercise. The purpose of this study was to examine proteins regulating mitochondrial biogenesis and dynamics, VO2peak, and skeletal muscle size before and after aerobic exercise training in young men (20 ± 1 y) and older men (74 ± 3 y). Exercise-induced skeletal muscle hypertrophy occurred independent of age, whereas the improvement in VO2peak was more pronounced in young men. Aerobic exercise training increased proteins involved with mitochondrial biogenesis, fusion, and fission, independent of age. This is the first study to examine pathways of mitochondrial quality control in aging human skeletal muscle with aerobic exercise training. These data indicate normal aging does not influence proteins associated with mitochondrial health or the ability to respond to aerobic exercise training at the mitochondrial and skeletal muscle levels.

  5. Insights into the biogenesis of lysosome-related organelles from the study of the Hermansky-Pudlak syndrome.

    PubMed

    Bonifacino, Juan S

    2004-12-01

    Lysosome-related organelles (LROs) are a family of cell-type-specific organelles that include melanosomes, platelet dense bodies, and cytotoxic T cell granules. The name, LRO, recognizes the fact that all of these organelles contain subsets of lysosomal proteins in addition to cell-type-specific proteins. The recent identification of genetic disorders that cause combined defects in several of these organelles indicates that they share common biogenetic pathways. Studies of one of these disorders, the Hermansky-Pudlak syndrome (HPS), have provided helpful insights into the molecular machinery involved in LRO biogenesis. HPS is a genetically heterogeneous disorder caused by mutations in any of 7 genes in humans and 15 genes in mice. These genes encode subunits of 4 multi-protein complexes named AP-3, BLOC-1, BLOC-2 and BLOC-3, in addition to miscellaneous components of the general protein trafficking machinery. The AP-3 complex is a coat protein involved in vesicle formation and cargo selection in the endosomal-lysosomal system. One of these cargo molecules is the melanosomal enzyme, tyrosinase, the missorting of which may explain the defective melanosomes in AP-3-deficient humans and mice. The function of the BLOC complexes is unknown, although they are thought to mediate either vesicle tethering/fusion or cytoplasmic dispersal of LROs. Further studies of these complexes should contribute to the elucidation of the mechanisms of LRO biogenesis and the pathogenesis of HPS. PMID:15838104

  6. Biogenesis and functions of lipid droplets in plants: Thematic Review Series: Lipid Droplet Synthesis and Metabolism: from Yeast to Man.

    PubMed

    Chapman, Kent D; Dyer, John M; Mullen, Robert T

    2012-02-01

    The compartmentation of neutral lipids in plants is mostly associated with seed tissues, where triacylglycerols (TAGs) stored within lipid droplets (LDs) serve as an essential physiological energy and carbon reserve during postgerminative growth. However, some nonseed tissues, such as leaves, flowers and fruits, also synthesize and store TAGs, yet relatively little is known about the formation or function of LDs in these tissues. Characterization of LD-associated proteins, such as oleosins, caleosins, and sterol dehydrogenases (steroleosins), has revealed surprising features of LD function in plants, including stress responses, hormone signaling pathways, and various aspects of plant growth and development. Although oleosin and caleosin proteins are specific to plants, LD-associated sterol dehydrogenases also are present in mammals, and in both plants and mammals these enzymes have been shown to be important in (steroid) hormone metabolism and signaling. In addition, several other proteins known to be important in LD biogenesis in yeasts and mammals are conserved in plants, suggesting that at least some aspects of LD biogenesis and/or function are evolutionarily conserved. PMID:22045929

  7. Epigallocatechin-3-gallate prevents oxidative phosphorylation deficit and promotes mitochondrial biogenesis in human cells from subjects with Down's syndrome.

    PubMed

    Valenti, Daniela; De Rasmo, Domenico; Signorile, Anna; Rossi, Leonardo; de Bari, Lidia; Scala, Iris; Granese, Barbara; Papa, Sergio; Vacca, Rosa Anna

    2013-04-01

    A critical role for mitochondrial dysfunction has been proposed in the pathogenesis of Down's syndrome (DS), a human multifactorial disorder caused by trisomy of chromosome 21, associated with mental retardation and early neurodegeneration. Previous studies from our group demonstrated in DS cells a decreased capacity of the mitochondrial ATP production system and overproduction of reactive oxygen species (ROS) in mitochondria. In this study we have tested the potential of epigallocatechin-3-gallate (EGCG) - a natural polyphenol component of green tea - to counteract the mitochondrial energy deficit found in DS cells. We found that EGCG, incubated with cultured lymphoblasts and fibroblasts from DS subjects, rescued mitochondrial complex I and ATP synthase catalytic activities, restored oxidative phosphorylation efficiency and counteracted oxidative stress. These effects were associated with EGCG-induced promotion of PKA activity, related to increased cellular levels of cAMP and PKA-dependent phosphorylation of the NDUFS4 subunit of complex I. In addition, EGCG strongly promoted mitochondrial biogenesis in DS cells, as associated with increase in Sirt1-dependent PGC-1α deacetylation, NRF-1 and T-FAM protein levels and mitochondrial DNA content. In conclusion, this study shows that EGCG is a promoting effector of oxidative phosphorylation and mitochondrial biogenesis in DS cells, acting through modulation of the cAMP/PKA- and sirtuin-dependent pathways. EGCG treatment promises thus to be a therapeutic approach to counteract mitochondrial energy deficit and oxidative stress in DS. PMID:23291000

  8. 20-Hydroxyecdysone stimulates nuclear accumulation of BmNep1, a nuclear ribosome biogenesis-related protein in the silkworm, Bombyx mori.

    PubMed

    Ji, M-M; Liu, A-Q; Sima, Y-H; Xu, S-Q

    2016-10-01

    The pathway of communication between endocrine hormones and ribosome biogenesis critical for physiological adaptation is largely unknown. Nucleolar essential protein 1 (Nep1) is an essential gene for ribosome biogenesis and is functionally conserved in many in vertebrate and invertebrate species. In this study, we cloned Bombyx mori Nep1 (BmNep1) due to its high expression in silk glands of silkworms on day 3 of the fifth instar. We found that BmNep1 mRNA and protein levels were upregulated in silk glands during fourth-instar ecdysis and larval-pupal metamorphosis. By immunoprecipitation with the anti-BmNep1 antibody and liquid chromatography-tandem mass spectrometry analyses, it was shown that BmNep1 probably interacts with proteins related to ribosome structure formation. Immunohistochemistry, biochemical fractionation and immunocytochemistry revealed that BmNep1 is localized to the nuclei in Bombyx cells. Using BmN cells originally derived from ovaries, we demonstrated that 20-hydroxyecdysone (20E) induced BmNep1 expression and stimulated nuclear accumulation of BmNep1. Under physiological conditions, BmNep1 was also upregulated in ovaries during larval-pupal metamorphosis. Overall, our results indicate that the endocrine hormone 20E facilitates nuclear accumulation of BmNep1, which is involved in nuclear ribosome biogenesis in Bombyx. PMID:27329527

  9. A yeast phenomic model for the gene interaction network modulating CFTR-ΔF508 protein biogenesis

    PubMed Central

    2012-01-01

    Background The overall influence of gene interaction in human disease is unknown. In cystic fibrosis (CF) a single allele of the cystic fibrosis transmembrane conductance regulator (CFTR-ΔF508) accounts for most of the disease. In cell models, CFTR-ΔF508 exhibits defective protein biogenesis and degradation rather than proper trafficking to the plasma membrane where CFTR normally functions. Numerous genes function in the biogenesis of CFTR and influence the fate of CFTR-ΔF508. However it is not known whether genetic variation in such genes contributes to disease severity in patients. Nor is there an easy way to study how numerous gene interactions involving CFTR-ΔF would manifest phenotypically. Methods To gain insight into the function and evolutionary conservation of a gene interaction network that regulates biogenesis of a misfolded ABC transporter, we employed yeast genetics to develop a 'phenomic' model, in which the CFTR-ΔF508-equivalent residue of a yeast homolog is mutated (Yor1-ΔF670), and where the genome is scanned quantitatively for interaction. We first confirmed that Yor1-ΔF undergoes protein misfolding and has reduced half-life, analogous to CFTR-ΔF. Gene interaction was then assessed quantitatively by growth curves for approximately 5,000 double mutants, based on alteration in the dose response to growth inhibition by oligomycin, a toxin extruded from the cell at the plasma membrane by Yor1. Results From a comparative genomic perspective, yeast gene interactions influencing Yor1-ΔF biogenesis were representative of human homologs previously found to modulate processing of CFTR-ΔF in mammalian cells. Additional evolutionarily conserved pathways were implicated by the study, and a ΔF-specific pro-biogenesis function of the recently discovered ER membrane complex (EMC) was evident from the yeast screen. This novel function was validated biochemically by siRNA of an EMC ortholog in a human cell line expressing CFTR-ΔF508. The precision and

  10. Identification of nucleolus-localized PTEN and its function in regulating ribosome biogenesis.

    PubMed

    Li, Pingdong; Wang, Danni; Li, Haiyang; Yu, Zhenkun; Chen, Xiaohong; Fang, Jugao

    2014-10-01

    The tumor suppressor PTEN is a lipid phosphatase that is found mutated in different types of human cancers. PTEN suppresses cell proliferation by inhibiting the PI3K-Akt signaling pathway at the cell membrane. However, PTEN is also demonstrated to localize in the cell nucleus where it exhibits tumor suppressive activity via a different, unknown mechanism. In this study we report that PTEN also localizes to the nucleolus and that nucleolar PTEN plays an important role in regulating nucleolar homeostasis and maintaining nucleolar morphology. Overexpression of nuclear PTEN in PTEN null cells inhibits Akt phosphorylation and reduces cell size. Knockdown of PTEN in PTEN positive cells leads to nucleolar morphologic changes and an increase in the proportion of cells with a greater number of nucleoli. In addition, knockdown of PTEN in PTEN positive cells increased ribosome biogenesis. These findings expand current understanding of function and relevance of nuclear localized PTEN and provide a foundation for the development of novel therapies targeting PTEN.

  11. Cytochrome c Biogenesis System I: an Intricate Process Catalyzed by a Maturase Supercomplex?

    PubMed Central

    Verissimo, Andreia F.; Daldal, Fevzi

    2014-01-01

    Cytochromes c are ubiquitous heme proteins that are found in most living organisms and are essential for various energy production pathways as well as other cellular processes. Their biosynthesis relies on a complex post-translational process, called cytochrome c biogenesis, responsible for the formation of stereo-specific thioether bonds between the vinyl groups of heme b (protoporphyrin IX-Fe) and the thiol groups of apocytochromes c heme-binding site (C1XXC2H) cysteine residues. In some organisms this process involves up to nine (CcmABCDEFGHI) membrane proteins working together to achieve heme ligation, designated the Cytochrome c maturation (Ccm)-System I. Here, we review recent findings related to the Ccm-System I found in bacteria, archaea and plant mitochondria, with an emphasis on protein interactions between the Ccm components and their substrates (apocytochrome c and heme). We discuss the possibility that the Ccm proteins may form a multi subunit supercomplex (dubbed “Ccm machine”), and based on the currently available data, we present an updated version of a mechanistic model for Ccm. PMID:24631867

  12. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress.

    PubMed

    Sloan, Katherine E; Bohnsack, Markus T; Watkins, Nicholas J

    2013-10-17

    Several proto-oncogenes and tumor suppressors regulate the production of ribosomes. Ribosome biogenesis is a major consumer of cellular energy, and defects result in p53 activation via repression of mouse double minute 2 (MDM2) homolog by the ribosomal proteins RPL5 and RPL11. Here, we report that RPL5 and RPL11 regulate p53 from the context of a ribosomal subcomplex, the 5S ribonucleoprotein particle (RNP). We provide evidence that the third component of this complex, the 5S rRNA, is critical for p53 regulation. In addition, we show that the 5S RNP is essential for the activation of p53 by p14(ARF), a protein that is activated by oncogene overexpression. Our data show that the abundance of the 5S RNP, and therefore p53 levels, is determined by factors regulating 5S complex formation and ribosome integration, including the tumor suppressor PICT1. The 5S RNP therefore emerges as the critical coordinator of signaling pathways that couple cell proliferation with ribosome production.

  13. Cytochrome c Biogenesis Genes Involved in Arsenate Respiration by Shewanella trabarsenatis ANA-3

    NASA Astrophysics Data System (ADS)

    Newman, D. K.

    2002-12-01

    Arsenate can be used as a terminal electron acceptor in anaerobic respiration by diverse bacteria. The detection of these bacteria in numerous contaminated environments suggests that they are widespread and metabolically active in nature. Arsenate-respiring bacteria have been implicated in the mobilization of arsenic from arsenic-contaminated sediments. However, the enzymatic mechanisms supporting arsenate respiration are largely unknown. Here, we describe c-type cytochromes that are involved in arsenate respiration by the bacterium Shewanella trabarsenatis strain ANA-3, a facultative anaerobe that is able to use a variety of electron acceptors for growth. We performed transposon mutagenesis to study the electron transport pathway in ANA-3 during arsenate respiration. 10 arsenate-respiration deficient mutants were found after screening up to 7,000 mutants, and 4 were shown to have unique transposon insertions through Southern Blot analysis. The physiological properties of these mutants were determined, including characterization of their growth on different electron acceptors. The genes flanking the transposon insertions were sequenced for each mutant, and several were found to encode c-type cytochrome biogenesis genes. UV/VIS spectra and SDS/PAGE were used to confirm the absence of c-type cytochromes in the mutants. Based on these findings, we proposed a model for respiratory electron transport to arsenate.

  14. Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase

    PubMed Central

    Farha, Maya A.; Czarny, Tomasz L.; Myers, Cullen L.; Worrall, Liam J.; French, Shawn; Conrady, Deborah G.; Wang, Yang; Oldfield, Eric; Strynadka, Natalie C. J.; Brown, Eric D.

    2015-01-01

    Drug combinations are valuable tools for studying biological systems. Although much attention has been given to synergistic interactions in revealing connections between cellular processes, antagonistic interactions can also have tremendous value in elucidating genetic networks and mechanisms of drug action. Here, we exploit the power of antagonism in a high-throughput screen for molecules that suppress the activity of targocil, an inhibitor of the wall teichoic acid (WTA) flippase in Staphylococcus aureus. Well-characterized antagonism within the WTA biosynthetic pathway indicated that early steps would be sensitive to this screen; however, broader interactions with cell wall biogenesis components suggested that it might capture additional targets. A chemical screening effort using this approach identified clomiphene, a widely used fertility drug, as one such compound. Mechanistic characterization revealed the target was the undecaprenyl diphosphate synthase, an enzyme that catalyzes the synthesis of a polyisoprenoid essential for both peptidoglycan and WTA synthesis. The work sheds light on mechanisms contributing to the observed suppressive interactions of clomiphene and in turn reveals aspects of the biology that underlie cell wall synthesis in S. aureus. Further, this effort highlights the utility of antagonistic interactions both in high-throughput screening and in compound mode of action studies. Importantly, clomiphene represents a lead for antibacterial drug discovery. PMID:26283394

  15. Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase.

    PubMed

    Farha, Maya A; Czarny, Tomasz L; Myers, Cullen L; Worrall, Liam J; French, Shawn; Conrady, Deborah G; Wang, Yang; Oldfield, Eric; Strynadka, Natalie C J; Brown, Eric D

    2015-09-01

    Drug combinations are valuable tools for studying biological systems. Although much attention has been given to synergistic interactions in revealing connections between cellular processes, antagonistic interactions can also have tremendous value in elucidating genetic networks and mechanisms of drug action. Here, we exploit the power of antagonism in a high-throughput screen for molecules that suppress the activity of targocil, an inhibitor of the wall teichoic acid (WTA) flippase in Staphylococcus aureus. Well-characterized antagonism within the WTA biosynthetic pathway indicated that early steps would be sensitive to this screen; however, broader interactions with cell wall biogenesis components suggested that it might capture additional targets. A chemical screening effort using this approach identified clomiphene, a widely used fertility drug, as one such compound. Mechanistic characterization revealed the target was the undecaprenyl diphosphate synthase, an enzyme that catalyzes the synthesis of a polyisoprenoid essential for both peptidoglycan and WTA synthesis. The work sheds light on mechanisms contributing to the observed suppressive interactions of clomiphene and in turn reveals aspects of the biology that underlie cell wall synthesis in S. aureus. Further, this effort highlights the utility of antagonistic interactions both in high-throughput screening and in compound mode of action studies. Importantly, clomiphene represents a lead for antibacterial drug discovery. PMID:26283394

  16. Small G proteins in peroxisome biogenesis: the potential involvement of ADP-ribosylation factor 6

    PubMed Central

    2009-01-01

    Background Peroxisomes execute diverse and vital functions in virtually every eukaryote. New peroxisomes form by budding from pre-existing organelles or de novo by vesiculation of the ER. It has been suggested that ADP-ribosylation factors and COPI coatomer complexes are involved in these processes. Results Here we show that all viable Saccharomyces cerevisiae strains deficient in one of the small GTPases which have an important role in the regulation of vesicular transport contain functional peroxisomes, and that the number of these organelles in oleate-grown cells is significantly upregulated in the arf1 and arf3 null strains compared to the wild-type strain. In addition, we provide evidence that a portion of endogenous Arf6, the mammalian orthologue of yeast Arf3, is associated with the cytoplasmic face of rat liver peroxisomes. Despite this, ablation of Arf6 did neither influence the regulation of peroxisome abundance nor affect the localization of peroxisomal proteins in cultured fetal hepatocytes. However, co-overexpression of wild-type, GTP hydrolysis-defective or (dominant-negative) GTP binding-defective forms of Arf1 and Arf6 caused mislocalization of newly-synthesized peroxisomal proteins and resulted in an alteration of peroxisome morphology. Conclusion These observations suggest that Arf6 is a key player in mammalian peroxisome biogenesis. In addition, they also lend strong support to and extend the concept that specific Arf isoform pairs may act in tandem to regulate exclusive trafficking pathways. PMID:19686593

  17. Senataxin suppresses the antiviral transcriptional response and controls viral biogenesis.

    PubMed

    Miller, Matthew S; Rialdi, Alexander; Ho, Jessica Sook Yuin; Tilove, Micah; Martinez-Gil, Luis; Moshkina, Natasha P; Peralta, Zuleyma; Noel, Justine; Melegari, Camilla; Maestre, Ana M; Mitsopoulos, Panagiotis; Madrenas, Joaquín; Heinz, Sven; Benner, Chris; Young, John A T; Feagins, Alicia R; Basler, Christopher F; Fernandez-Sesma, Ana; Becherel, Olivier J; Lavin, Martin F; van Bakel, Harm; Marazzi, Ivan

    2015-05-01

    The human helicase senataxin (SETX) has been linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS4) and ataxia with oculomotor apraxia (AOA2). Here we identified a role for SETX in controlling the antiviral response. Cells that had undergone depletion of SETX and SETX-deficient cells derived from patients with AOA2 had higher expression of antiviral mediators in response to infection than did wild-type cells. Mechanistically, we propose a model whereby SETX attenuates the activity of RNA polymerase II (RNAPII) at genes stimulated after a virus is sensed and thus controls the magnitude of the host response to pathogens and the biogenesis of various RNA viruses (e.g., influenza A virus and West Nile virus). Our data indicate a potentially causal link among inborn errors in SETX, susceptibility to infection and the development of neurologic disorders.

  18. Deciphering the roles of phosphoinositide lipids in phagolysosome biogenesis

    PubMed Central

    Jeschke, Andreas; Haas, Albert

    2016-01-01

    ABSTRACT Professional phagocytes engulf microbial invaders into plasma membrane-derived phagosomes. These mature into microbicidal phagolysosomes, leading to killing of the ingested microbe. Phagosome maturation involves sequential fusion of the phagosome with early endosomes, late endosomes, and the main degradative compartments in cells, lysosomes. Some bacterial pathogens manipulate the phosphoinositide (PIP) composition of phagosome membranes and are not delivered to phagolysosomes, pointing at a role of PIPs in phagosome maturation. This hypothesis is supported by comprehensive microscopic studies. Recently, cell-free reconstitution of fusion between phagosomes and endo(lyso)somes identified phosphatidylinositol 4-phosphate [PI(4)P] and phosphatidylinositol 3-phosphate [PI(3)P] as key regulators of phagolysosome biogenesis. Here, we describe the emerging roles of PIPs in phagosome maturation and we present tools to study PIP involvement in phagosome trafficking using intact cells or purified compartments. PMID:27489580

  19. The Virus-Host Interplay: Biogenesis of +RNA Replication Complexes

    PubMed Central

    Reid, Colleen R.; Airo, Adriana M.; Hobman, Tom C.

    2015-01-01

    Positive-strand RNA (+RNA) viruses are an important group of human and animal pathogens that have significant global health and economic impacts. Notable members include West Nile virus, Dengue virus, Chikungunya, Severe acute respiratory syndrome (SARS) Coronavirus and enteroviruses of the Picornaviridae family.Unfortunately, prophylactic and therapeutic treatments against these pathogens are limited. +RNA viruses have limited coding capacity and thus rely extensively on host factors for successful infection and propagation. A common feature among these viruses is their ability to dramatically modify cellular membranes to serve as platforms for genome replication and assembly of new virions. These viral replication complexes (VRCs) serve two main functions: To increase replication efficiency by concentrating critical factors and to protect the viral genome from host anti-viral systems. This review summarizes current knowledge of critical host factors recruited to or demonstrated to be involved in the biogenesis and stabilization of +RNA virus VRCs. PMID:26287230

  20. The emerging roles of ribosome biogenesis in craniofacial development.

    PubMed

    Ross, Adam P; Zarbalis, Konstantinos S

    2014-01-01

    Neural crest cells (NCCs) are a transient, migratory cell population, which originates during neurulation at the neural folds and contributes to the majority of tissues, including the mesenchymal structures of the craniofacial skeleton. The deregulation of the complex developmental processes that guide migration, proliferation, and differentiation of NCCs may result in a wide range of pathological conditions grouped together as neurocristopathies. Recently, due to their multipotent properties neural crest stem cells have received considerable attention as a possible source for stem cell based regenerative therapies. This exciting prospect underlines the need to further explore the developmental programs that guide NCC differentiation. This review explores the particular importance of ribosome biogenesis defects in this context since a specific interface between ribosomopathies and neurocristopathies exists as evidenced by disorders such as Treacher-Collins-Franceschetti syndrome (TCS) and Diamond-Blackfan anemia (DBA). PMID:24550838

  1. An inventory of peroxisomal proteins and pathways in Drosophila melanogaster

    PubMed Central

    Faust, Joseph E.; Verma, Avani; Peng, Chengwei; McNew, James A.

    2012-01-01

    Peroxisomes are ubiquitous organelles housing a variety of essential biochemical pathways. Peroxisome dysfunction causes a spectrum of human diseases known as peroxisome biogenesis disorders (PBD). While much is known regarding the mechanism of peroxisome biogenesis, it is still unclear how peroxisome dysfunction leads to the disease state. Several recent studies have shown that mutations in Drosophila peroxin genes cause phenotypes similar to those seen in humans with PBDs suggesting that Drosophila might be a useful system to model PBDs. We have analyzed the proteome of Drosophila to identify the proteins involved in peroxisomal biogenesis and homeostasis as well as metabolic enzymes that function within the organelle. The subcellular localization of five of these predicted peroxisomal proteins was confirmed. Similar to C. elegans, Drosophila appears to only utilize the peroxisome targeting signal (PTS) type 1 system for matrix protein import. This work will further our understanding of peroxisomes in Drosophila and add to the usefulness of this emerging model system. PMID:22758915

  2. New tricks for an old dog: ribosome biogenesis contributes to stem cell homeostasis.

    PubMed

    Brombin, Alessandro; Joly, Jean-Stéphane; Jamen, Françoise

    2015-10-01

    Although considered a 'house-keeping' function, ribosome biogenesis is regulated differently between cells and can be modulated in a cell-type-specific manner. These differences are required to generate specialized ribosomes that contribute to the translational control of gene expression by selecting mRNA subsets to be translated. Thus, differences in ribosome biogenesis between stem and differentiated cells indirectly contribute to determine cell identity. The concept of the existence of stem cell-specific mechanisms of ribosome biogenesis has progressed from an attractive theory to a useful working model with important implications for basic and medical research. PMID:26343009

  3. Resveratrol Induces Hepatic Mitochondrial Biogenesis Through the Sequential Activation of Nitric Oxide and Carbon Monoxide Production

    PubMed Central

    Kim, Seul-Ki; Joe, Yeonsoo; Zheng, Min; Kim, Hyo Jeong; Yu, Jae-Kyoung; Cho, Gyeong Jae; Chang, Ki Churl; Kim, Hyoung Kyu; Han, Jin; Ryter, Stefan W.

    2014-01-01

    Abstract Aims: Nitric oxide (NO) can induce mitochondrial biogenesis in cultured cells, through increased guanosine 3′,5′-monophosphate (cGMP), and activation of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). We sought to determine the role of NO, heme oxygenase-1 (HO-1), and its reaction product (carbon monoxide [CO]) in the induction of mitochondrial biogenesis by the natural antioxidant resveratrol. Results: S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, induced mitochondrial biogenesis in HepG2 hepatoma cells, and in vivo, through stimulation of PGC-1α. NO-induced mitochondrial biogenesis required cGMP, and was mimicked by the cGMP analogue (8-bromoguanosine 3′,5′-cyclic monophosphate [8-Br-cGMP]). Activation of mitochondrial biogenesis by SNAP required HO-1, as it could be reversed by genetic interference of HO-1; and by treatment with the HO inhibitor tin-protoporphyrin-IX (SnPP) in vitro and in vivo. Cobalt protoporphyrin (CoPP)-IX, an HO-1 inducing agent, stimulated mitochondrial biogenesis in HepG2 cells, which could be reversed by the CO scavenger hemoglobin. Application of CO, using the CO-releasing molecule-3 (CORM-3), stimulated mitochondrial biogenesis in HepG2 cells, in a cGMP-dependent manner. Both CoPP and CORM-3-induced mitochondrial biogenesis required NF-E2-related factor-2 (Nrf2) activation and phosphorylation of Akt. The natural antioxidant resveratrol induced mitochondrial biogenesis in HepG2 cells, in a manner dependent on NO biosynthesis, cGMP synthesis, Nrf2-dependent HO-1 activation, and endogenous CO production. Furthermore, resveratrol preserved mitochondrial biogenesis during lipopolysaccharides-induced hepatic inflammation in vivo. Innovation and Conclusions: The complex interplay between endogenous NO and CO production may underlie the mechanism by which natural antioxidants induce mitochondrial biogenesis. Strategies aimed at improving mitochondrial biogenesis may be used as therapeutics

  4. MicroRNA Biogenesis and Hedgehog-Patched Signaling Cooperate to Regulate an Important Developmental Transition in Granule Cell Development.

    PubMed

    Constantin, Lena; Constantin, Myrna; Wainwright, Brandon J

    2016-03-01

    The Dicer1, Dcr-1 homolog (Drosophila) gene encodes a type III ribonuclease required for the canonical maturation and functioning of microRNAs (miRNAs). Subsets of miRNAs are known to regulate normal cerebellar granule cell development, in addition to the growth and progression of medulloblastoma, a neoplasm that often originates from granule cell precursors. Multiple independent studies have also demonstrated that deregulation of Sonic Hedgehog (Shh)-Patched (Ptch) signaling, through miRNAs, is causative of granule cell pathologies. In the present study, we investigated the genetic interplay between miRNA biogenesis and Shh-Ptch signaling in granule cells of the cerebellum by way of the Cre/lox recombination system in genetically engineered models of Mus musculus (mouse). We demonstrate that, although the miRNA biogenesis and Shh-Ptch-signaling pathways, respectively, regulate the opposing growth processes of cerebellar hypoplasia and hyperplasia leading to medulloblastoma, their concurrent deregulation was nonadditive and did not bring the growth phenotypes toward an expected equilibrium. Instead, mice developed either hypoplasia or medulloblastoma, but of a greater severity. Furthermore, some genotypes were bistable, whereby subsets of mice developed hypoplasia or medulloblastoma. This implies that miRNAs and Shh-Ptch signaling regulate an important developmental transition in granule cells of the cerebellum. We also conclusively show that the Dicer1 gene encodes a haploinsufficient tumor suppressor gene for Ptch1-induced medulloblastoma, with the monoallielic loss of Dicer1 more severe than biallelic loss. These findings exemplify how genetic interplay between pathways may produce nonadditive effects with a substantial and unpredictable impact on biology. Furthermore, these findings suggest that the functional dosage of Dicer1 may nonadditively influence a wide range of Shh-Ptch-dependent pathologies. PMID:26773048

  5. CHLOROPLAST BIOGENESIS genes act cell and noncell autonomously in early chloroplast development.

    PubMed

    Gutiérrez-Nava, María de la Luz; Gillmor, C Stewart; Jiménez, Luis F; Guevara-García, Arturo; León, Patricia

    2004-05-01

    In order to identify nuclear genes required for early chloroplast development, a collection of photosynthetic pigment mutants of Arabidopsis was assembled and screened for lines with extremely low levels of chlorophyll. Nine chloroplast biogenesis (clb) mutants that affect proplastid growth and thylakoid membrane formation and result in an albino seedling phenotype were identified. These mutations identify six new genes as well as a novel allele of cla1. clb mutants have less than 2% of wild-type chlorophyll levels, and little or no expression of nuclear and plastid-encoded genes required for chloroplast development and function. In all but one mutant, proplastids do not differentiate enough to form elongated stroma thylakoid membranes. Analysis of mutants during embryogenesis allows differentiation between CLB genes that act noncell autonomously, where partial maternal complementation of chloroplast development is observed in embryos, and those that act cell autonomously, where complementation during embryogenesis is not observed. Molecular characterization of the noncell autonomous clb4 mutant established that the CLB4 gene encodes for hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (HDS), the next to the last enzyme of the methylerythritol 4-phosphate (MEP) pathway for the synthesis of plastidic isoprenoids. The noncell autonomous nature of the clb4 mutant suggests that products of the MEP pathway can travel between tissues, and provides in vivo evidence that some movement of MEP intermediates exists from the cytoplasm to the plastid. The isolation and characterization of clb mutants represents the first systematic study of genes required for early chloroplast development in Arabidopsis.

  6. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis

    PubMed Central

    Van Vranken, Jonathan G; Jeong, Mi-Young; Wei, Peng; Chen, Yu-Chan; Gygi, Steven P; Winge, Dennis R; Rutter, Jared

    2016-01-01

    Mitochondrial fatty acid synthesis (FASII) and iron sulfur cluster (FeS) biogenesis are both vital biosynthetic processes within mitochondria. In this study, we demonstrate that the mitochondrial acyl carrier protein (ACP), which has a well-known role in FASII, plays an unexpected and evolutionarily conserved role in FeS biogenesis. ACP is a stable and essential subunit of the eukaryotic FeS biogenesis complex. In the absence of ACP, the complex is destabilized resulting in a profound depletion of FeS throughout the cell. This role of ACP depends upon its covalently bound 4’-phosphopantetheine (4-PP)-conjugated acyl chain to support maximal cysteine desulfurase activity. Thus, it is likely that ACP is not simply an obligate subunit but also exploits the 4-PP-conjugated acyl chain to coordinate mitochondrial fatty acid and FeS biogenesis. DOI: http://dx.doi.org/10.7554/eLife.17828.001 PMID:27540631

  7. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis.

    PubMed

    Van Vranken, Jonathan G; Jeong, Mi-Young; Wei, Peng; Chen, Yu-Chan; Gygi, Steven P; Winge, Dennis R; Rutter, Jared

    2016-01-01

    Mitochondrial fatty acid synthesis (FASII) and iron sulfur cluster (FeS) biogenesis are both vital biosynthetic processes within mitochondria. In this study, we demonstrate that the mitochondrial acyl carrier protein (ACP), which has a well-known role in FASII, plays an unexpected and evolutionarily conserved role in FeS biogenesis. ACP is a stable and essential subunit of the eukaryotic FeS biogenesis complex. In the absence of ACP, the complex is destabilized resulting in a profound depletion of FeS throughout the cell. This role of ACP depends upon its covalently bound 4'-phosphopantetheine (4-PP)-conjugated acyl chain to support maximal cysteine desulfurase activity. Thus, it is likely that ACP is not simply an obligate subunit but also exploits the 4-PP-conjugated acyl chain to coordinate mitochondrial fatty acid and FeS biogenesis. PMID:27540631

  8. Quercetin induces mitochondrial biogenesis in experimental traumatic brain injury via the PGC-1α signaling pathway

    PubMed Central

    Li, Xiang; Wang, Handong; Gao, Yongyue; Li, Liwen; Tang, Chao; Wen, Guodao; Yang, Youqing; Zhuang, Zong; Zhou, Mengliang; Mao, Lei; Fan, Youwu

    2016-01-01

    Quercetin, a dietary flavonoid used as a food supplement, has been found to have protective effect against mitochondria damage after traumatic brain injury (TBI) in mice. However, the mechanisms underlying these effects are still not well understood. The aim of the present study was to investigate the effect of quercetin on the potential mechanism mediating these effects in the weight-drop model of TBI in male mice that were treated with quercetin or vehicle via intraperitoneal injection administration 30 min after TBI. Brain samples were collected 24 h later for analysis. Quercetin treatment upregulated the expression of PGC-1α and restored the level of cytochrome c, malondialdehyde (MDA) and superoxide dismutase (SOD). These results demonstrate that quercetin improves mitochondrial function in mice by improving the level of PGC-1α following TBI. PMID:27648146

  9. Quercetin induces mitochondrial biogenesis in experimental traumatic brain injury via the PGC-1α signaling pathway

    PubMed Central

    Li, Xiang; Wang, Handong; Gao, Yongyue; Li, Liwen; Tang, Chao; Wen, Guodao; Yang, Youqing; Zhuang, Zong; Zhou, Mengliang; Mao, Lei; Fan, Youwu

    2016-01-01

    Quercetin, a dietary flavonoid used as a food supplement, has been found to have protective effect against mitochondria damage after traumatic brain injury (TBI) in mice. However, the mechanisms underlying these effects are still not well understood. The aim of the present study was to investigate the effect of quercetin on the potential mechanism mediating these effects in the weight-drop model of TBI in male mice that were treated with quercetin or vehicle via intraperitoneal injection administration 30 min after TBI. Brain samples were collected 24 h later for analysis. Quercetin treatment upregulated the expression of PGC-1α and restored the level of cytochrome c, malondialdehyde (MDA) and superoxide dismutase (SOD). These results demonstrate that quercetin improves mitochondrial function in mice by improving the level of PGC-1α following TBI.

  10. Quercetin induces mitochondrial biogenesis in experimental traumatic brain injury via the PGC-1α signaling pathway.

    PubMed

    Li, Xiang; Wang, Handong; Gao, Yongyue; Li, Liwen; Tang, Chao; Wen, Guodao; Yang, Youqing; Zhuang, Zong; Zhou, Mengliang; Mao, Lei; Fan, Youwu

    2016-01-01

    Quercetin, a dietary flavonoid used as a food supplement, has been found to have protective effect against mitochondria damage after traumatic brain injury (TBI) in mice. However, the mechanisms underlying these effects are still not well understood. The aim of the present study was to investigate the effect of quercetin on the potential mechanism mediating these effects in the weight-drop model of TBI in male mice that were treated with quercetin or vehicle via intraperitoneal injection administration 30 min after TBI. Brain samples were collected 24 h later for analysis. Quercetin treatment upregulated the expression of PGC-1α and restored the level of cytochrome c, malondialdehyde (MDA) and superoxide dismutase (SOD). These results demonstrate that quercetin improves mitochondrial function in mice by improving the level of PGC-1α following TBI. PMID:27648146

  11. Impaired Muscle Mitochondrial Biogenesis and Myogenesis in Spinal Muscular Atrophy

    PubMed Central

    Ripolone, Michela; Ronchi, Dario; Violano, Raffaella; Vallejo, Dionis; Fagiolari, Gigliola; Barca, Emanuele; Lucchini, Valeria; Colombo, Irene; Villa, Luisa; Berardinelli, Angela; Balottin, Umberto; Morandi, Lucia; Mora, Marina; Bordoni, Andreina; Fortunato, Francesco; Corti, Stefania; Parisi, Daniela; Toscano, Antonio; Sciacco, Monica; DiMauro, Salvatore; Comi, Giacomo P.; Moggio, Maurizio

    2016-01-01

    , implying depression of the entire mitochondrial biogenesis. Results of Western blot analysis confirmed the reduced levels of the respiratory chain subunits that included mitochondrially encoded COX1 (47.5%; P = .004), COX2 (32.4%; P < .001), COX4 (26.6%; P < .001), and succinate dehydrogenase complex subunit A (65.8%; P = .03) as well as the structural outer membrane mitochondrial porin (33.1%; P < .001). Conversely, the levels of expression of 3 myogenic regulatory factors—muscle-specificmyogenic factor 5, myoblast determination 1, and myogenin—were higher in muscles from patients with SMA compared with muscles from age-matched controls (P < .05). CONCLUSIONS AND RELEVANCE Our results strongly support the conclusion that an altered regulation of myogenesis and a downregulated mitochondrial biogenesis contribute to pathologic change in the muscle of patients with SMA. Therapeutic strategies should aim at counteracting these changes. PMID:25844556

  12. Arginine improves peroxisome functioning in cells from patients with a mild peroxisome biogenesis disorder

    PubMed Central

    2013-01-01

    Background Zellweger spectrum disorders (ZSDs) are multisystem genetic disorders caused by a lack of functional peroxisomes, due to mutations in one of the PEX genes, encoding proteins involved in peroxisome biogenesis. The phenotypic spectrum of ZSDs ranges from an early lethal form to much milder presentations. In cultured skin fibroblasts from mildly affected patients, peroxisome biogenesis can be partially impaired which results in a mosaic catalase immunofluorescence pattern. This peroxisomal mosaicism has been described for specific missense mutations in various PEX genes. In cell lines displaying peroxisomal mosaicism, peroxisome biogenesis can be improved when these are cultured at 30°C. This suggests that these missense mutations affect the folding and/or stability of the encoded protein. We have studied if the function of mutant PEX1, PEX6 and PEX12 can be improved by promoting protein folding using the chemical chaperone arginine. Methods Fibroblasts from three PEX1 patients, one PEX6 and one PEX12 patient were cultured in the presence of different concentrations of arginine. To determine the effect on peroxisome biogenesis we studied the following parameters: number of peroxisome-positive cells, levels of PEX1 protein and processed thiolase, and the capacity to β-oxidize very long chain fatty acids and pristanic acid. Results Peroxisome biogenesis and function in fibroblasts with mild missense mutations in PEX1, 6 and 12 can be improved by arginine. Conclusion Arginine may be an interesting compound to promote peroxisome function in patients with a mild peroxisome biogenesis disorder. PMID:24016303

  13. Regulation of Mitoflash Biogenesis and Signaling by Mitochondrial Dynamics

    PubMed Central

    Li, Wenwen; Sun, Tao; Liu, Beibei; Wu, Di; Qi, Wenfeng; Wang, Xianhua; Ma, Qi; Cheng, Heping

    2016-01-01

    Mitochondria are highly dynamic organelles undergoing constant network reorganization and exhibiting stochastic signaling events in the form of mitochondrial flashes (mitoflashes). Here we investigate whether and how mitochondrial network dynamics regulate mitoflash biogenesis and signaling. We found that mitoflash frequency was largely invariant when network fragmentized or redistributed in the absence of mitofusin (Mfn) 1, Mfn2, or Kif5b. However, Opa1 deficiency decreased spontaneous mitoflash frequency due to superimposing changes in respiratory function, whereas mitoflash response to non-metabolic stimulation was unchanged despite network fragmentation. In Drp1- or Mff-deficient cells whose mitochondria hyperfused into a single whole-cell reticulum, the frequency of mitoflashes of regular amplitude and duration was again unaltered, although brief and low-amplitude “miniflashes” emerged because of improved detection ability. As the network reorganized, however, the signal mass of mitoflash signaling was dynamically regulated in accordance with the degree of network connectivity. These findings demonstrate a novel functional role of mitochondrial network dynamics and uncover a magnitude- rather than frequency-modulatory mechanism in the regulation of mitoflash signaling. In addition, our data support a stochastic trigger model for the ignition of mitoflashes. PMID:27623243

  14. Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum.

    PubMed

    Jayaprakasha, G K; Rao, L Jagan Mohan

    2011-07-01

    The genus Cinnamomum comprises of several hundreds of species, which are distributed in Asia and Australia. Cinnamomum zeylanicum, the source of cinnamon bark and leaf oils, is an indigenous tree of Sri Lanka, although most oil now comes from cultivated areas. C. zeylanicum is an important spice and aromatic crop having wide applications in flavoring, perfumery, beverages, and medicines. Volatile oils from different parts of cinnamon such as leaves, bark, fruits, root bark, flowers, and buds have been isolated by hydro distillation/steam distillation and supercritical fluid extraction. The chemical compositions of the volatile oils have been identified by GC and GC-MS. More than 80 compounds were identified from different parts of cinnamon. The leaf oil has a major component called eugenol. Cinnamaldehyde and camphor have been reported to be the major components of volatile oils from stem bark and root bark, respectively. Trans-cinnamyl acetate was found to be the major compound in fruits, flowers, and fruit stalks. These volatile oils were found to exhibit antioxidant, antimicrobial, and antidiabetic activities. C. zeylanicum bark and fruits were found to contain proanthocyandins with doubly linked bis-flavan-3-ol units in the molecule. The present review provides a coherent presentation of scattered literature on the chemistry, biogenesis, and biological activities of cinnamon.

  15. Periplasmic quality control in biogenesis of outer membrane proteins.

    PubMed

    Lyu, Zhi Xin; Zhao, Xin Sheng

    2015-04-01

    The β-barrel outer membrane proteins (OMPs) are integral membrane proteins that reside in the outer membrane of Gram-negative bacteria and perform a diverse range of biological functions. Synthesized in the cytoplasm, OMPs must be transported across the inner membrane and through the periplasmic space before they are assembled in the outer membrane. In Escherichia coli, Skp, SurA and DegP are the most prominent factors identified to guide OMPs across the periplasm and to play the role of quality control. Although extensive genetic and biochemical analyses have revealed many basic functions of these periplasmic proteins, the mechanism of their collaboration in assisting the folding and insertion of OMPs is much less understood. Recently, biophysical approaches have shed light on the identification of the intricate network. In the present review, we summarize recent advances in the characterization of these key factors, with a special emphasis on the multifunctional protein DegP. In addition, we present our proposed model on the periplasmic quality control in biogenesis of OMPs.

  16. Distal anastomotic intimal hyperplasia: histopathologic character and biogenesis.

    PubMed

    Sottiurai, V S; Yao, J S; Batson, R C; Sue, S L; Jones, R; Nakamura, Y A

    1989-01-01

    Although thrombogenicity of the prosthetic graft, progression of the atherosclerotic disease and distal anastomotic intimal hyperplasia are known etiologic factors of late graft failure, its occurrence is frequently encountered in the late graft occlusion. Forth-two canine PTFE iliofemoral grafts (all with end-to-side distal anastomosis) were studied. Computer digitization revealed that distal anastomotic intimal hyperplasia occurred exclusively at the heel and the toe of the graft and the floor of the host artery. The distal anastomotic intimal hyperplasia was 80-130 cells thick. Light microscopy and transmission electron microscopy revealed a similar architecture of interlamination of cellular elements and extracellular matrix in the hyperplastic cells. Transmission electron microscopy further defined a gradual cell transformation and orientation from the graft to the lumen. The cells near the graft were characterized by a gradual reduction of rough endoplasmic reticulum with a concomitant acquisition of myofilaments, transforming ovoid mesenchymoid cells to slender myofibroblasts. The orientation of cells in distal anastomotic intimal hyperplasia was embodied by random cell distribution at the periphery to a well-organized interlamination of myofibroblasts and extracellular matrix near the lumen. Distal anastomotic intimal hyperplasia is a biologic entity with active cellular and subcellular events. Its biogenesis appears to be influenced by the hemodynamics of blood flow at the distal anastomosis. PMID:2713229

  17. Regulation of Senescence by microRNA Biogenesis Factors

    PubMed Central

    Abdelmohsen, Kotb; Srikantan, Subramanya; Kang, Min-Ju; Gorospe, Myriam

    2012-01-01

    Senescence represents a state of indefinite growth arrest in cells that have reached their replicative life span, have become damaged, or express aberrant levels of cancer-related proteins. While senescence is widely considered to represent tumor-suppressive mechanism, the accumulation of senescent cells in tissues of older organisms is believed to underlie age-associated losses in physiologic function and age-related diseases. With the emergence of microRNAs (miRNAs) as a major class of molecular regulators of senescence, we review the transcriptional and post-transcriptional factors that control senescence-associated microRNA biosynthesis. Focusing on their enhancement or repression of senescence, we describe the transcription factors that govern the synthesis of primary (pri-)miRNAs, the proteins that control the nuclear processing of pri-miRNAs into precursor (pre-)miRNAs, including RNA editing enzymes, RNases, and RNA helicases, and the cytoplasmic proteins that affect the final processing of pre-miRNAs into mature miRNAs. We discuss how miRNA biogenesis proteins enhance or repress senescence, and thus influence the senescent phenotype that affects normal tissue function and pathology. PMID:22306790

  18. Autophagy-mediated longevity is modulated by lipoprotein biogenesis

    PubMed Central

    Seah, Nicole E.; de Magalhaes Filho, C. Daniel; Petrashen, Anna P.; Henderson, Hope R.; Laguer, Jade; Gonzalez, Julissa; Dillin, Andrew; Hansen, Malene; Lapierre, Louis R.

    2016-01-01

    ABSTRACT Autophagy-dependent longevity models in C. elegans display altered lipid storage profiles, but the contribution of lipid distribution to life-span extension is not fully understood. Here we report that lipoprotein production, autophagy and lysosomal lipolysis are linked to modulate life span in a conserved fashion. We find that overexpression of the yolk lipoprotein VIT/vitellogenin reduces the life span of long-lived animals by impairing the induction of autophagy-related and lysosomal genes necessary for longevity. Accordingly, reducing vitellogenesis increases life span via induction of autophagy and lysosomal lipolysis. Life-span extension due to reduced vitellogenesis or enhanced lysosomal lipolysis requires nuclear hormone receptors (NHRs) NHR-49 and NHR-80, highlighting novel roles for these NHRs in lysosomal lipid signaling. In dietary-restricted worms and mice, expression of VIT and hepatic APOB (apolipoprotein B), respectively, are significantly reduced, suggesting a conserved longevity mechanism. Altogether, our study demonstrates that lipoprotein biogenesis is an important mechanism that modulates aging by impairing autophagy and lysosomal lipolysis. PMID:26671266

  19. Regulation of Mitoflash Biogenesis and Signaling by Mitochondrial Dynamics.

    PubMed

    Li, Wenwen; Sun, Tao; Liu, Beibei; Wu, Di; Qi, Wenfeng; Wang, Xianhua; Ma, Qi; Cheng, Heping

    2016-01-01

    Mitochondria are highly dynamic organelles undergoing constant network reorganization and exhibiting stochastic signaling events in the form of mitochondrial flashes (mitoflashes). Here we investigate whether and how mitochondrial network dynamics regulate mitoflash biogenesis and signaling. We found that mitoflash frequency was largely invariant when network fragmentized or redistributed in the absence of mitofusin (Mfn) 1, Mfn2, or Kif5b. However, Opa1 deficiency decreased spontaneous mitoflash frequency due to superimposing changes in respiratory function, whereas mitoflash response to non-metabolic stimulation was unchanged despite network fragmentation. In Drp1- or Mff-deficient cells whose mitochondria hyperfused into a single whole-cell reticulum, the frequency of mitoflashes of regular amplitude and duration was again unaltered, although brief and low-amplitude "miniflashes" emerged because of improved detection ability. As the network reorganized, however, the signal mass of mitoflash signaling was dynamically regulated in accordance with the degree of network connectivity. These findings demonstrate a novel functional role of mitochondrial network dynamics and uncover a magnitude- rather than frequency-modulatory mechanism in the regulation of mitoflash signaling. In addition, our data support a stochastic trigger model for the ignition of mitoflashes. PMID:27623243

  20. Extracellular Streptomyces lividans vesicles: composition, biogenesis and antimicrobial activity.

    PubMed

    Schrempf, Hildgund; Merling, Philipp

    2015-07-01

    We selected Streptomyces lividans to elucidate firstly the biogenesis and antimicrobial activities of extracellular vesicles that a filamentous and highly differentiated Gram-positive bacterium produces. Vesicle types range in diameter from 110 to 230 nm and 20 to 60 nm, respectively; they assemble to clusters, and contain lipids and phospholipids allowing their in situ imaging by specific fluorescent dyes. The presence of the identified secondary metabolite undecylprodigiosin provokes red fluorescence of a portion of the heterogeneous vesicle populations facilitating in vivo monitoring. Protuberances containing vesicles generate at tips, and alongside of substrate hyphae, and enumerate during late vegetative growth to droplet-like exudates. Owing to in situ imaging in the presence and absence of a green fluorescent vancomycin derivative, we conclude that protuberances comprising vesicles arise at sites with enhanced levels of peptidoglycan subunits [pentapeptide of lipid II (C55)-linked disaccharides], and reduced levels of polymerized and cross-linked peptidoglycan within hyphae. These sites correlate with enhanced levels of anionic phospholipids and lipids. Vesicles provoke pronounced damages of Aspergillus proliferans, Verticillium dahliae and induced clumping and distortion of Escherichia coli. These harmful effects are likely attributable to the action of the identified vesicular compounds including different enzyme types, components of signal transduction cascades and undecylprodigiosin. Based on our pioneering findings, we highlight novel clues with environmental implications and application potential.

  1. Extracellular Streptomyces lividans vesicles: composition, biogenesis and antimicrobial activity

    PubMed Central

    Schrempf, Hildgund; Merling, Philipp

    2015-01-01

    We selected Streptomyces lividans to elucidate firstly the biogenesis and antimicrobial activities of extracellular vesicles that a filamentous and highly differentiated Gram-positive bacterium produces. Vesicle types range in diameter from 110 to 230 nm and 20 to 60 nm, respectively; they assemble to clusters, and contain lipids and phospholipids allowing their in situ imaging by specific fluorescent dyes. The presence of the identified secondary metabolite undecylprodigiosin provokes red fluorescence of a portion of the heterogeneous vesicle populations facilitating in vivo monitoring. Protuberances containing vesicles generate at tips, and alongside of substrate hyphae, and enumerate during late vegetative growth to droplet-like exudates. Owing to in situ imaging in the presence and absence of a green fluorescent vancomycin derivative, we conclude that protuberances comprising vesicles arise at sites with enhanced levels of peptidoglycan subunits [pentapeptide of lipid II (C55)-linked disaccharides], and reduced levels of polymerized and cross-linked peptidoglycan within hyphae. These sites correlate with enhanced levels of anionic phospholipids and lipids. Vesicles provoke pronounced damages of Aspergillus proliferans, Verticillium dahliae and induced clumping and distortion of Escherichia coli. These harmful effects are likely attributable to the action of the identified vesicular compounds including different enzyme types, components of signal transduction cascades and undecylprodigiosin. Based on our pioneering findings, we highlight novel clues with environmental implications and application potential. PMID:25851532

  2. Lipid partitioning at the nuclear envelope controls membrane biogenesis

    PubMed Central

    Barbosa, Antonio Daniel; Sembongi, Hiroshi; Su, Wen-Min; Abreu, Susana; Reggiori, Fulvio; Carman, George M.; Siniossoglou, Symeon

    2015-01-01

    Partitioning of lipid precursors between membranes and storage is crucial for cell growth, and its disruption underlies pathologies such as cancer, obesity, and type 2 diabetes. However, the mechanisms and signals that regulate this process are largely unknown. In yeast, lipid precursors are mainly used for phospholipid synthesis in nutrient-rich conditions in order to sustain rapid proliferation but are redirected to triacylglycerol (TAG) stored in lipid droplets during starvation. Here we investigate how cells reprogram lipid metabolism in the endoplasmic reticulum. We show that the conserved phosphatidate (PA) phosphatase Pah1, which generates diacylglycerol from PA, targets a nuclear membrane subdomain that is in contact with growing lipid droplets and mediates TAG synthesis. We find that cytosol acidification activates the master regulator of Pah1, the Nem1-Spo7 complex, thus linking Pah1 activity to cellular metabolic status. In the absence of TAG storage capacity, Pah1 still binds the nuclear membrane, but lipid precursors are redirected toward phospholipids, resulting in nuclear deformation and a proliferation of endoplasmic reticulum membrane. We propose that, in response to growth signals, activation of Pah1 at the nuclear envelope acts as a switch to control the balance between membrane biogenesis and lipid storage. PMID:26269581

  3. Functional characterization of the ribosome biogenesis factors PES, BOP1, and WDR12 (PeBoW), and mechanisms of defective cell growth and proliferation caused by PeBoW deficiency in Arabidopsis.

    PubMed

    Ahn, Chang Sook; Cho, Hui Kyung; Lee, Du-Hwa; Sim, Hee-Jung; Kim, Sang-Gyu; Pai, Hyun-Sook

    2016-09-01

    The nucleolar protein pescadillo (PES) controls biogenesis of the 60S ribosomal subunit through functional interactions with Block of Proliferation 1 (BOP1) and WD Repeat Domain 12 (WDR12) in plants. In this study, we determined protein characteristics and in planta functions of BOP1 and WDR12, and characterized defects in plant cell growth and proliferation caused by a deficiency of PeBoW (PES-BOP1-WDR12) proteins. Dexamethasone-inducible RNAi of BOP1 and WDR12 caused developmental arrest and premature senescence in Arabidopsis, similar to the phenotype of PES RNAi. Both the N-terminal domain and WD40 repeats of BOP1 and WDR12 were critical for specific associations with 60S/80S ribosomes. In response to nucleolar stress or DNA damage, PeBoW proteins moved from the nucleolus to the nucleoplasm. Kinematic analyses of leaf growth revealed that depletion of PeBoW proteins led to dramatically suppressed cell proliferation, cell expansion, and epidermal pavement cell differentiation. A deficiency in PeBoW proteins resulted in reduced cyclin-dependent kinase Type A activity, causing reduced phosphorylation of histone H1 and retinoblastoma-related (RBR) protein. PeBoW silencing caused rapid transcriptional modulation of cell-cycle genes, including reduction of E2Fa and Cyclin D family genes, and induction of several KRP genes, accompanied by down-regulation of auxin-related genes and up-regulation of jasmonic acid-related genes. Taken together, these results suggest that the PeBoW proteins involved in ribosome biogenesis play a critical role in plant cell growth and survival, and their depletion leads to inhibition of cell-cycle progression, possibly modulated by phytohormone signaling. PMID:27440937

  4. Functional characterization of the ribosome biogenesis factors PES, BOP1, and WDR12 (PeBoW), and mechanisms of defective cell growth and proliferation caused by PeBoW deficiency in Arabidopsis

    PubMed Central

    Ahn, Chang Sook; Cho, Hui Kyung; Lee, Du-Hwa; Sim, Hee-Jung; Kim, Sang-Gyu; Pai, Hyun-Sook

    2016-01-01

    The nucleolar protein pescadillo (PES) controls biogenesis of the 60S ribosomal subunit through functional interactions with Block of Proliferation 1 (BOP1) and WD Repeat Domain 12 (WDR12) in plants. In this study, we determined protein characteristics and in planta functions of BOP1 and WDR12, and characterized defects in plant cell growth and proliferation caused by a deficiency of PeBoW (PES-BOP1-WDR12) proteins. Dexamethasone-inducible RNAi of BOP1 and WDR12 caused developmental arrest and premature senescence in Arabidopsis, similar to the phenotype of PES RNAi. Both the N-terminal domain and WD40 repeats of BOP1 and WDR12 were critical for specific associations with 60S/80S ribosomes. In response to nucleolar stress or DNA damage, PeBoW proteins moved from the nucleolus to the nucleoplasm. Kinematic analyses of leaf growth revealed that depletion of PeBoW proteins led to dramatically suppressed cell proliferation, cell expansion, and epidermal pavement cell differentiation. A deficiency in PeBoW proteins resulted in reduced cyclin-dependent kinase Type A activity, causing reduced phosphorylation of histone H1 and retinoblastoma-related (RBR) protein. PeBoW silencing caused rapid transcriptional modulation of cell-cycle genes, including reduction of E2Fa and Cyclin D family genes, and induction of several KRP genes, accompanied by down-regulation of auxin-related genes and up-regulation of jasmonic acid-related genes. Taken together, these results suggest that the PeBoW proteins involved in ribosome biogenesis play a critical role in plant cell growth and survival, and their depletion leads to inhibition of cell-cycle progression, possibly modulated by phytohormone signaling. PMID:27440937

  5. Outer membrane biogenesis in Escherichia coli, Neisseria meningitidis, and Helicobacter pylori: paradigm deviations in H. pylori.

    PubMed

    Liechti, George; Goldberg, Joanna B

    2012-01-01

    The bacterial pathogen Helicobacter pylori is capable of colonizing the gastric mucosa of the human stomach using a variety of factors associated with or secreted from its outer membrane (OM). Lipopolysaccharide (LPS) and numerous OM proteins have been shown to be involved in adhesion and immune stimulation/evasion. Many of these factors are essential for colonization and/or pathogenesis in a variety of animal models. Despite this wide array of potential targets present on the bacterial surface, the ability of H. pylori to vary its OM profile limits the effectiveness of vaccines or therapeutics that target any single one of these components. However, it has become evident that the proteins comprising the complexes that transport the majority of these molecules to the OM are highly conserved and often essential. The field of membrane biogenesis has progressed remarkably in the last few years, and the possibility now exists for targeting the mechanisms by which β-barrel proteins, lipoproteins, and LPS are transported to the OM, resulting in loss of bacterial fitness and significant altering of membrane permeability. In this review, the OM transport machinery for LPS, lipoproteins, and outer membrane proteins (OMPs) are discussed. While the principal investigations of these transport mechanisms have been conducted in Escherichia coli and Neisseria meningitidis, here these systems will be presented in the genetic context of ε proteobacteria. Bioinformatic analysis reveals that minimalist genomes, such as that of Helicobacter pylori, offer insight into the smallest number of components required for these essential pathways to function. Interestingly, in the majority of ε proteobacteria, while the inner and OM associated apparatus of LPS, lipoprotein, and OMP transport pathways appear to all be intact, most of the components associated with the periplasmic compartment are either missing or are almost unrecognizable when compared to their E. coli counterparts. Eventual

  6. Outer membrane biogenesis in Escherichia coli, Neisseria meningitidis, and Helicobacter pylori: paradigm deviations in H. pylori

    PubMed Central

    Liechti, George; Goldberg, Joanna B.

    2012-01-01

    The bacterial pathogen Helicobacter pylori is capable of colonizing the gastric mucosa of the human stomach using a variety of factors associated with or secreted from its outer membrane (OM). Lipopolysaccharide (LPS) and numerous OM proteins have been shown to be involved in adhesion and immune stimulation/evasion. Many of these factors are essential for colonization and/or pathogenesis in a variety of animal models. Despite this wide array of potential targets present on the bacterial surface, the ability of H. pylori to vary its OM profile limits the effectiveness of vaccines or therapeutics that target any single one of these components. However, it has become evident that the proteins comprising the complexes that transport the majority of these molecules to the OM are highly conserved and often essential. The field of membrane biogenesis has progressed remarkably in the last few years, and the possibility now exists for targeting the mechanisms by which β-barrel proteins, lipoproteins, and LPS are transported to the OM, resulting in loss of bacterial fitness and significant altering of membrane permeability. In this review, the OM transport machinery for LPS, lipoproteins, and outer membrane proteins (OMPs) are discussed. While the principal investigations of these transport mechanisms have been conducted in Escherichia coli and Neisseria meningitidis, here these systems will be presented in the genetic context of ε proteobacteria. Bioinformatic analysis reveals that minimalist genomes, such as that of Helicobacter pylori, offer insight into the smallest number of components required for these essential pathways to function. Interestingly, in the majority of ε proteobacteria, while the inner and OM associated apparatus of LPS, lipoprotein, and OMP transport pathways appear to all be intact, most of the components associated with the periplasmic compartment are either missing or are almost unrecognizable when compared to their E. coli counterparts. Eventual

  7. Δ1-Pyrroline-5-Carboxylate/Glutamate Biogenesis Is Required for Fungal Virulence and Sporulation

    PubMed Central

    Yao, Ziting; Zou, Chengwu; Zhou, Hui; Wang, Jinzi; Lu, Lidan; Li, Yang; Chen, Baoshan

    2013-01-01

    Proline dehydrogenase (Prodh) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5Cdh) are two key enzymes in the cellular biogenesis of glutamate. Recombinant Prodh and P5Cdh proteins of the chestnut blight fungus Cryphonectria parasitica were investigated and showed activity in in vitro assays. Additionally, the C. parasitica Prodh and P5Cdh genes were able to complement the Saccharomyces cerevisiae put1 and put2 null mutants, respectively, to allow these proline auxotrophic yeast mutants to grow on media with proline as the sole source of nitrogen. Deletion of the Prodh gene in C. parasitica resulted in hypovirulence and a lower level of sporulation, whereas deletion of P5Cdh resulted in hypovirulence though no effect on sporulation; both Δprodh and Δp5cdh mutants were unable to grow on minimal medium with proline as the sole nitrogen source. In a wild-type strain, the intracellular level of proline and the activity of Prodh and P5Cdh increased after supplementation of exogenous proline, though the intracellular Δ1-pyrroline-5-carboxylate (P5C) content remained unchanged. Prodh and P5Cdh were both transcriptionally down-regulated in cells infected with hypovirus. The disruption of other genes with products involved in the conversion of arginine to ornithine, ornithine and glutamate to P5C, and P5C to proline in the cytosol did not appear to affect virulence; however, asexual sporulation was reduced in the Δpro1 and Δpro2 mutants. Taken together, our results showed that Prodh, P5Cdh and related mitochondrial functions are essential for virulence and that proline/glutamate pathway components may represent down-stream targets of hypovirus regulation in C. parasitica. PMID:24039956

  8. Autophagy plays a role in skeletal muscle mitochondrial biogenesis in an endurance exercise-trained condition.

    PubMed

    Ju, Jeong-Sun; Jeon, Sei-Il; Park, Je-Young; Lee, Jong-Young; Lee, Seong-Cheol; Cho, Ki-Jung; Jeong, Jong-Moon

    2016-09-01

    Mitochondrial homeostasis is tightly regulated by two major processes: mitochondrial biogenesis and mitochondrial degradation by autophagy (mitophagy). Research in mitochondrial biogenesis in skeletal muscle in response to endurance exercise training has been well established, while the mechanisms regulating mitophagy and the interplay between mitochondrial biogenesis and degradation following endurance exercise training are not yet well defined. The purpose of this study was to examine the effects of a short-term inhibition of autophagy in response to acute endurance exercise on skeletal muscle mitochondrial biogenesis and dynamics in an exercise-trained condition. Male wild-type C57BL/6 mice performed five daily bouts of 1-h swimming per week for 8 weeks. In order to measure autophagy flux in mouse skeletal muscle, mice were treated with or without 2 days of 0.4 mg/kg/day intraperitoneal colchicine (blocking the degradation of autophagosomes) following swimming exercise training. The autophagic flux assay demonstrated that swimming training resulted in an increase in the autophagic flux (~100 % increase in LC3-II) in mouse skeletal muscle. Mitochondrial fusion proteins, Opa1 and MFN2, were significantly elevated, and mitochondrial fission protein, Drp1, was also increased in trained mouse skeletal muscle, suggesting that endurance exercise training promotes both mitochondrial fusion and fission processes. A mitochondrial receptor, Bnip3, was further increased in exercised muscle when treated with colchicine while Pink/Parkin protein levels were unchanged. The endurance exercise training induced increases in mitochondrial biogenesis marker proteins, SDH, COX IV, and a mitochondrial biogenesis promoting factor, PGC-1α but this effect was abolished in colchicine-treated mouse skeletal muscle. This suggests that autophagy plays an important role in mitochondrial biogenesis and this coordination between these opposing processes is involved in the cellular

  9. Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease

    PubMed Central

    Rouault, Tracey A.

    2012-01-01

    Iron-sulfur (Fe-S) clusters are ubiquitous cofactors composed of iron and inorganic sulfur. They are required for the function of proteins involved in a wide range of activities, including electron transport in respiratory chain complexes, regulatory sensing, photosynthesis and DNA repair. The proteins involved in the biogenesis of Fe-S clusters are evolutionarily conserved from bacteria to humans, and many insights into the process of Fe-S cluster biogenesis have come from studies of model organisms, including bacteria, fungi and plants. It is now clear that several rare and seemingly dissimilar human diseases are attributable to defects in the basic process of Fe-S cluster biogenesis. Although these diseases –which include Friedreich’s ataxia (FRDA), ISCU myopathy, a rare form of sideroblastic anemia, an encephalomyopathy caused by dysfunction of respiratory chain complex I and multiple mitochondrial dysfunctions syndrome – affect different tissues, a feature common to many of them is that mitochondrial iron overload develops as a secondary consequence of a defect in Fe-S cluster biogenesis. This Commentary outlines the basic steps of Fe-S cluster biogenesis as they have been defined in model organisms. In addition, it draws attention to refinements of the process that might be specific to the subcellular compartmentalization of Fe-S cluster biogenesis proteins in some eukaryotes, including mammals. Finally, it outlines several important unresolved questions in the field that, once addressed, should offer important clues into how mitochondrial iron homeostasis is regulated, and how dysfunction in Fe-S cluster biogenesis can contribute to disease. PMID:22382365

  10. Novel Flp pilus biogenesis-dependent natural transformation

    PubMed Central

    Angelov, Angel; Bergen, Paul; Nadler, Florian; Hornburg, Philipp; Lichev, Antoni; Übelacker, Maria; Pachl, Fiona; Kuster, Bernhard; Liebl, Wolfgang

    2015-01-01

    Natural transformation has been described in bacterial species spread through nearly all major taxonomic groups. However, the current understanding of the structural components and the regulation of competence development is derived from only a few model organisms. Although natural transformation was discovered in members of the Actinobacteria (high GC Gram-positive bacteria) more than four decades ago, the structural components or the regulation of the competence system have not been studied in any representative of the entire phylum. In this report we identify a new role for a distinct type of pilus biogenesis genes (tad genes, for tight adherence), which so far have been connected only with biofilm formation, adherence and virulence traits. The tad-like genes found in the genome of Micrococcus luteus were shown to be required for genetic transformation in this actinobacterial species. We generated and analyzed individual knockout mutants for every open reading frame of the two predicted tad gene clusters as well as for a potential prepilin processing peptidase and identified the major component of the putative pili. By expressing a tagged variant of the major prepilin subunit and immunofluorescence microscopy we visualized filamentous structures extending from the cell surface. Our data indicate that the two tad gene islands complementarily contribute to the formation of a functional competence pilus in this organism. It seems likely that the involvement of tad genes in natural transformation is not unique only for M. luteus but may also prove to be the case in other representatives of the Actinobacteria, which contains important medically and biotechnologically relevant species. PMID:25713572

  11. Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis

    SciTech Connect

    Palmeira, Carlos M. Rolo, Anabela P.; Berthiaume, Jessica; Bjork, James A.; Wallace, Kendall B.

    2007-12-01

    Increased generation of reactive oxygen species (ROS) is implicated in 'glucose toxicity' in diabetes. However, little is known about the action of glucose on the expression of transcription factors in hepatocytes, especially those involved in mitochondrial DNA (mtDNA) replication and transcription. Since mitochondrial functional capacity is dynamically regulated, we hypothesized that stressful conditions of hyperglycemia induce adaptations in the transcriptional control of cellular energy metabolism, including inhibition of mitochondrial biogenesis and oxidative metabolism. Cell viability, mitochondrial respiration, ROS generation and oxidized proteins were determined in HepG2 cells cultured in the presence of either 5.5 mM (control) or 30 mM glucose (high glucose) for 48 h, 96 h and 7 days. Additionally, mtDNA abundance, plasminogen activator inhibitor-1 (PAI-1), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF-1) transcripts were evaluated by real time PCR. High glucose induced a progressive increase in ROS generation and accumulation of oxidized proteins, with no changes in cell viability. Increased expression of PAI-1 was observed as early as 96 h of exposure to high glucose. After 7 days in hyperglycemia, HepG2 cells exhibited inhibited uncoupled respiration and decreased MitoTracker Red fluorescence associated with a 25% decrease in mtDNA and 16% decrease in TFAM transcripts. These results indicate that glucose may regulate mtDNA copy number by modulating the transcriptional activity of TFAM in response to hyperglycemia-induced ROS production. The decrease of mtDNA content and inhibition of mitochondrial function may be pathogenic hallmarks in the altered metabolic status associated with diabetes.

  12. Biochemical pathways in seed oil synthesis.

    PubMed

    Bates, Philip D; Stymne, Sten; Ohlrogge, John

    2013-06-01

    Oil produced in plant seeds is utilized as a major source of calories for human nutrition, as feedstocks for non-food uses such as soaps and polymers, and can serve as a high-energy biofuel. The biochemical pathways leading to oil (triacylglycerol) synthesis in seeds involve multiple subcellular organelles, requiring extensive lipid trafficking. Phosphatidylcholine plays a central role in these pathways as a substrate for acyl modifications and likely as a carrier for the trafficking of acyl groups between organelles and membrane subdomains. Although much has been clarified regarding the enzymes and pathways responsible for acyl-group flux, there are still major gaps in our understanding. These include the identity of several key enzymes, how flux between alternative pathways is controlled and the specialized cell biology leading to biogenesis of oil bodies that store up to 80% of carbon in seeds.

  13. microRNA Expression and Biogenesis in Cellular Response to Ionizing Radiation

    PubMed Central

    Mao, Aihong; Liu, Yang; Di, Cuixia; Sun, Chao

    2014-01-01

    Increasing evidence demonstrates that the expression levels of microRNAs (miRNAs) significantly change upon ionizing radiation (IR) and play a critical role in cellular response to IR. Although several radiation responsive miRNAs and their targets have been identified, little is known about how miRNAs expression and biogenesis is regulated by IR-caused DNA damage response (DDR). Hence, in this review, we summarize miRNA expression and biogenesis in cellular response to IR and mainly elucidate the regulatory mechanisms of miRNA expression and biogenesis from different aspects including ataxia-telangiectasia mutated (ATM) kinase, p53/p63/p73 family and other potential factors. Furthermore, we focus on ΔNp73, which might be a potential regulator of miRNA expression and biogenesis in cellular response to IR. miRNAs could effectively activate the IR-induced DDR and modulate the radiation response and cellular radiosensitivity, which have an important potential clinical application. Therefore, thoroughly understanding the regulatory mechanisms of miRNAs expression and biogenesis in radiation response will provide new insights for clinical cancer radiotherapy. PMID:24905898

  14. Eukaryote-specific rRNA expansion segments function in ribosome biogenesis.

    PubMed

    Ramesh, Madhumitha; Woolford, John L

    2016-08-01

    The secondary structure of ribosomal RNA (rRNA) is largely conserved across all kingdoms of life. However, eukaryotes have evolved extra blocks of rRNA sequences, relative to those of prokaryotes, called expansion segments (ES). A thorough characterization of the potential roles of ES remains to be done, possibly because of limitations in the availability of robust systems to study rRNA mutants. We sought to systematically investigate the potential functions, if any, of the ES in 25S rRNA of Saccharomyces cerevisiae by deletion mutagenesis. We deleted 14 of the 16 different eukaryote-specific ES in yeast 25S rRNA individually and assayed their phenotypes. Our results show that all but two of the ES tested are necessary for optimal growth and are required for production of 25S rRNA, suggesting that ES play roles in ribosome biogenesis. Further, we classified expansion segments into groups that participate in early nucleolar, middle, and late nucleoplasmic steps of ribosome biogenesis, by assaying their pre-rRNA processing phenotypes. This study is the first of its kind to systematically identify the functions of eukaryote-specific expansion segments by showing that they play roles in specific steps of ribosome biogenesis. The catalog of phenotypes we identified, combined with previous investigations of the roles ribosomal proteins in large subunit biogenesis, leads us to infer that assembling ribosomes are composed of distinct RNA and protein structural neighborhood clusters that participate in specific steps of ribosome biogenesis. PMID:27317789

  15. A liaison between mTOR signaling, ribosome biogenesis and cancer☆

    PubMed Central

    Gentilella, Antonio; Kozma, Sara C.; Thomas, George

    2016-01-01

    The ability to translate genetic information into functional proteins is considered a landmark in evolution. Ribosomes have evolved to take on this responsibility and, although there are some differences in their molecular make-up, both prokaryotes and eukaryotes share a common structural architecture and similar underlying mechanisms of protein synthesis. Understanding ribosome function and biogenesis has been the focus of extensive research since the early days of their discovery. In the last decade however, new and unexpected roles have emerged that place deregulated ribosome biogenesis and protein synthesis at the crossroads of pathological settings, particularly cancer, revealing a set of novel cellular checkpoints. Moreover, it is also becoming evident that mTOR signaling, which regulates an array of anabolic processes, including ribosome biogenesis, is often exploited by cancer cells to sustain proliferation through the upregulation of global protein synthesis. The use of pharmacological agents that interfere with ribosome biogenesis and mTOR signaling has proven to be an effective strategy to control cancer development clinically. Here we discuss the most recent findings concerning the underlying mechanisms by which mTOR signaling controls ribosome production and the potential impact of ribosome bio-genesis in tumor development. This article is part of a Special Issue entitled: Translation and Cancer. PMID:25735853

  16. A liaison between mTOR signaling, ribosome biogenesis and cancer.

    PubMed

    Gentilella, Antonio; Kozma, Sara C; Thomas, George

    2015-07-01

    The ability to translate genetic information into functional proteins is considered a landmark in evolution. Ribosomes have evolved to take on this responsibility and, although there are some differences in their molecular make-up, both prokaryotes and eukaryotes share a common structural architecture and similar underlying mechanisms of protein synthesis. Understanding ribosome function and biogenesis has been the focus of extensive research since the early days of their discovery. In the last decade however, new and unexpected roles have emerged that place deregulated ribosome biogenesis and protein synthesis at the crossroads of pathological settings, particularly cancer, revealing a set of novel cellular checkpoints. Moreover, it is also becoming evident that mTOR signaling, which regulates an array of anabolic processes, including ribosome biogenesis, is often exploited by cancer cells to sustain proliferation through the upregulation of global protein synthesis. The use of pharmacological agents that interfere with ribosome biogenesis and mTOR signaling has proven to be an effective strategy to control cancer development clinically. Here we discuss the most recent findings concerning the underlying mechanisms by which mTOR signaling controls ribosome production and the potential impact of ribosome biogenesis in tumor development. This article is part of a Special Issue entitled: Translation and Cancer.

  17. Echinochrome A Increases Mitochondrial Mass and Function by Modulating Mitochondrial Biogenesis Regulatory Genes

    PubMed Central

    Jeong, Seung Hun; Kim, Hyoung Kyu; Song, In-Sung; Noh, Su Jin; Marquez, Jubert; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Mishchenko, Natalia P.; Fedoreyev, Sergey A.; Stonik, Valentin A.; Han, Jin

    2014-01-01

    Echinochrome A (Ech A) is a natural pigment from sea urchins that has been reported to have antioxidant properties and a cardio protective effect against ischemia reperfusion injury. In this study, we ascertained whether Ech A enhances the mitochondrial biogenesis and oxidative phosphorylation in rat cardio myoblast H9c2 cells. To study the effects of Ech A on mitochondrial biogenesis, we measured mitochondrial mass, level of oxidative phosphorylation, and mitochondrial biogenesis regulatory gene expression. Ech A treatment did not induce cytotoxicity. However, Ech A treatment enhanced oxygen consumption rate and mitochondrial ATP level. Likewise, Ech A treatment increased mitochondrial contents in H9c2 cells. Furthermore, Ech A treatment up-regulated biogenesis of regulatory transcription genes, including proliferator-activated receptor gamma co-activator (PGC)-1α, estrogen-related receptor (ERR)-α, peroxisome proliferator-activator receptor (PPAR)-γ, and nuclear respiratory factor (NRF)-1 and such mitochondrial transcription regulatory genes as mitochondrial transcriptional factor A (TFAM), mitochondrial transcription factor B2 (TFB2M), mitochondrial DNA direct polymerase (POLMRT), single strand binding protein (SSBP) and Tu translation elongation factor (TUFM). In conclusion, these data suggest that Ech A is a potentiated marine drug which enhances mitochondrial biogenesis. PMID:25196935

  18. A liaison between mTOR signaling, ribosome biogenesis and cancer.

    PubMed

    Gentilella, Antonio; Kozma, Sara C; Thomas, George

    2015-07-01

    The ability to translate genetic information into functional proteins is considered a landmark in evolution. Ribosomes have evolved to take on this responsibility and, although there are some differences in their molecular make-up, both prokaryotes and eukaryotes share a common structural architecture and similar underlying mechanisms of protein synthesis. Understanding ribosome function and biogenesis has been the focus of extensive research since the early days of their discovery. In the last decade however, new and unexpected roles have emerged that place deregulated ribosome biogenesis and protein synthesis at the crossroads of pathological settings, particularly cancer, revealing a set of novel cellular checkpoints. Moreover, it is also becoming evident that mTOR signaling, which regulates an array of anabolic processes, including ribosome biogenesis, is often exploited by cancer cells to sustain proliferation through the upregulation of global protein synthesis. The use of pharmacological agents that interfere with ribosome biogenesis and mTOR signaling has proven to be an effective strategy to control cancer development clinically. Here we discuss the most recent findings concerning the underlying mechanisms by which mTOR signaling controls ribosome production and the potential impact of ribosome biogenesis in tumor development. This article is part of a Special Issue entitled: Translation and Cancer. PMID:25735853

  19. Vacuole Membrane Protein 1 Is an Endoplasmic Reticulum Protein Required for Organelle Biogenesis, Protein Secretion, and Development

    PubMed Central

    Calvo-Garrido, Javier; Carilla-Latorre, Sergio; Lázaro-Diéguez, Francisco; Egea, Gustavo

    2008-01-01

    Vacuole membrane protein 1 (Vmp1) is membrane protein of unknown molecular function that has been associated with pancreatitis and cancer. The social amoeba Dictyostelium discoideum has a vmp1-related gene that we identified previously in a functional genomic study. Loss-of-function of this gene leads to a severe phenotype that compromises Dictyostelium growth and development. The expression of mammalian Vmp1 in a vmp1− Dictyostelium mutant complemented the phenotype, suggesting a functional conservation of the protein among evolutionarily distant species and highlights Dictyostelium as a valid experimental system to address the function of this gene. Dictyostelium Vmp1 is an endoplasmic reticulum protein necessary for the integrity of this organelle. Cells deficient in Vmp1 display pleiotropic defects in the secretory pathway and organelle biogenesis. The contractile vacuole, which is necessary to survive under hypoosmotic conditions, is not functional in the mutant. The structure of the Golgi apparatus, the function of the endocytic pathway and conventional protein secretion are also affected in these cells. Transmission electron microscopy of vmp1− cells showed the accumulation of autophagic features that suggests a role of Vmp1 in macroautophagy. In addition to these defects observed at the vegetative stage, the onset of multicellular development and early developmental gene expression are also compromised. PMID:18550798

  20. The complexity of elastic fibre biogenesis in the skin--a perspective to the clinical heterogeneity of cutis laxa.

    PubMed

    Uitto, Jouni; Li, Qiaoli; Urban, Zsolt

    2013-02-01

    Elastic fibres are critical connective tissue components providing elasticity and resilience to skin and other tissues. These fibres are composed of elastin and a number of elastin-associated microfibrillar proteins that assemble in a complex fibre network in a multi-step process. Multiple cellular processes, including mitochondrial function, specific molecules in the secretory pathways and temporally and spatially ordered production of elastic fibre components, are required for the biogenesis of functional elastic fibres. Abnormalities in these processes can lead to loss of functional elastic fibres manifesting phenotypically as a skin disease. The paradigm of elastic fibre diseases affecting the skin is cutis laxa, a clinically and genetically heterogeneous group of disorders characterized by loose and sagging skin, frequently associated with extracutaneous manifestations in the lungs and the arterial blood vessels. The complexity of cutis laxa is emphasized by the fact that as many as 10 distinct genes can harbour mutations in this and related disorders. Understanding of the pathomechanistic pathways involved in perturbed elastic fibre assembly in cutis laxa provides information potentially helpful for the development of molecular strategies towards treatment of these, currently intractable, diseases.

  1. Specific sequences in the fragile X syndrome protein FMR1 and the FXR proteins mediate their binding to 60S ribosomal subunits and the interactions among them.

    PubMed Central

    Siomi, M C; Zhang, Y; Siomi, H; Dreyfuss, G

    1996-01-01

    Fragile X syndrome, the most common form of hereditary mental retardation, usually results from lack of expression of the FMR1 gene. The FMR1 protein is a cytoplasmic RNA-binding protein. The RNA-binding activity of FMR1 is an essential feature of FMR1, as fragile X syndrome can also result from the expression of mutant FMR1 protein that is impaired in RNA binding. Recently, we described two novel cytoplasmic proteins, FXR1 and FXR2, which are both very similar in amino acid sequence to FMR1 and which also interact strongly with FMR1 and with each other. To understand the function of FMR1 and the FXR proteins, we carried out cell fractionation and sedimentation experiments with monoclonal antibodies to these proteins to characterize the complexes they form. Here, we report that the FMR1 and FXR proteins are associated with ribosomes, predominantly with 60S large ribosomal subunits. The FXR proteins are associated with 60S ribosomal subunits even in cells that lack FMR1 and that are derived from a fragile X syndrome patient, indicating that FMR1 is not required for this association. We delineated the regions of FMR1 that mediate its binding to 60S ribosomal subunits and the interactions among the FMR1-FXR family members. Both regions contain sequences predicted to have a high propensity to form coiled coil interactions, and the sequences are highly evolutionarily conserved in this protein family. The association of the FMR1, FXR1, and FXR2 proteins with ribosomes suggests they have functions in translation or mRNA stability. PMID:8668200

  2. A methods review on use of nonsense suppression to study 3′ end formation and other aspects of tRNA biogenesis

    PubMed Central

    Rijal, Keshab; Maraia, Richard J.; Arimbasseri, Aneeshkumar G.

    2014-01-01

    Suppressor tRNAs bear anticodon mutations that allow them to decode premature stop codons in metabolic marker gene mRNAs, that can be used as in vivo reporters of functional tRNA biogenesis. Here, we review key components of a suppressor tRNA system specific to S. pombe and its adaptations for use to study specific steps in tRNA biogenesis. Eukaryotic tRNA biogenesis begins with transcription initiation by RNA polymerase (pol) III. The nascent pre-tRNAs must undergo folding, 5′ and 3′ processing to remove the leader and trailer, nuclear export, and splicing if applicable, while multiple complex chemical modifications occur throughout the process. We review evidence that precursor-tRNA processing begins with transcription termination at the oligo(T) terminator element, which forms a 3′ oligo(U) tract on the nascent RNA, a sequence-specific binding site for the RNA chaperone, La protein. The processing pathway bifurcates depending on a poorly understood property of pol III termination that determines the 3′ oligo(U) length and therefore the affinity for La. We thus review the pol III termination process and the factors involved including advances using gene-specific random mutagenesis by dNTP analogs that identify key residues important for transcription termination in certain pol III subunits. The review ends with a ‘technical approaches’ section that includes a parts lists of suppressor-tRNA alleles, strains and plasmids, and graphic examples of its diverse uses. PMID:25447915

  3. Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing

    PubMed Central

    Le Thomas, Adrien; Stuwe, Evelyn; Li, Sisi; Marinov, Georgi; Rozhkov, Nikolay; Chen, Yung-Chia Ariel; Luo, Yicheng; Sachidanandam, Ravi; Toth, Katalin Fejes; Patel, Dinshaw; Aravin, Alexei A.

    2014-01-01

    Small noncoding RNAs that associate with Piwi proteins, called piRNAs, serve as guides for repression of diverse transposable elements in germ cells of metazoa. In Drosophila, the genomic regions that give rise to piRNAs, the so-called piRNA clusters, are transcribed to generate long precursor molecules that are processed into mature piRNAs. How genomic regions that give rise to piRNA precursor transcripts are differentiated from the rest of the genome and how these transcripts are specifically channeled into the piRNA biogenesis pathway are not known. We found that transgenerationally inherited piRNAs provide the critical trigger for piRNA production from homologous genomic regions in the next generation by two different mechanisms. First, inherited piRNAs enhance processing of homologous transcripts into mature piRNAs by initiating the ping-pong cycle in the cytoplasm. Second, inherited piRNAs induce installment of the histone 3 Lys9 trimethylation (H3K9me3) mark on genomic piRNA cluster sequences. The heterochromatin protein 1 (HP1) homolog Rhino binds to the H3K9me3 mark through its chromodomain and is enriched over piRNA clusters. Rhino recruits the piRNA biogenesis factor Cutoff to piRNA clusters and is required for efficient transcription of piRNA precursors. We propose that transgenerationally inherited piRNAs act as an epigenetic memory for identification of substrates for piRNA biogenesis on two levels: by inducing a permissive chromatin environment for piRNA precursor synthesis and by enhancing processing of these precursors. PMID:25085419

  4. NOT2 Proteins Promote Polymerase II–Dependent Transcription and Interact with Multiple MicroRNA Biogenesis Factors in Arabidopsis[C][W

    PubMed Central

    Wang, Lulu; Song, Xianwei; Gu, Lianfeng; Li, Xin; Cao, Shouyun; Chu, Chengcai; Cui, Xia; Chen, Xuemei; Cao, Xiaofeng

    2013-01-01

    MicroRNAs (miRNAs) play key regulatory roles in numerous developmental and physiological processes in animals and plants. The elaborate mechanism of miRNA biogenesis involves transcription and multiple processing steps. Here, we report the identification of a pair of evolutionarily conserved NOT2_3_5 domain–containing-proteins, NOT2a and NOT2b (previously known as At-Negative on TATA less2 [NOT2] and VIRE2-INTERACTING PROTEIN2, respectively), as components involved in Arabidopsis thaliana miRNA biogenesis. NOT2 was identified by its interaction with the Piwi/Ago/Zwille domain of DICER-LIKE1 (DCL1), an interaction that is conserved between rice (Oryza sativa) and Arabidopsis thaliana. Inactivation of both NOT2 genes in Arabidopsis caused severe defects in male gametophytes, and weak lines show pleiotropic defects reminiscent of miRNA pathway mutants. Impairment of NOT2s decreases the accumulation of primary miRNAs and mature miRNAs and affects DCL1 but not HYPONASTIC LEAVES1 (HYL1) localization in vivo. In addition, NOT2b protein interacts with polymerase II and other miRNA processing factors, including two cap binding proteins, CBP80/ABH1, CBP20, and SERRATE (SE). Finally, we found that the mRNA levels of some protein coding genes were also affected. Therefore, these results suggest that NOT2 proteins act as general factors to promote the transcription of protein coding as well as miRNA genes and facilitate efficient DCL1 recruitment in miRNA biogenesis. PMID:23424246

  5. Genomic and non-genomic regulation of PGC1 isoforms by estrogen to increase cerebral vascular mitochondrial biogenesis and reactive oxygen species protection.

    PubMed

    Kemper, Martin F; Stirone, Chris; Krause, Diana N; Duckles, Sue P; Procaccio, Vincent

    2014-01-15

    We previously found that estrogen exerts a novel protective effect on mitochondria in brain vasculature. Here we demonstrate in rat cerebral blood vessels that 17β-estradiol (estrogen), both in vivo and ex vivo, affects key transcriptional coactivators responsible for mitochondrial regulation. Treatment of ovariectomized rats with estrogen in vivo lowered mRNA levels of peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α) but increased levels of the other PGC-1 isoforms: PGC-1β and PGC-1 related coactivator (PRC). In vessels ex vivo, estrogen decreased protein levels of PGC-1α via activation of phosphatidylinositol 3-kinase (PI3K). Estrogen treatment also increased phosphorylation of forkhead transcription factor, FoxO1, a known pathway for PGC-1α downregulation. In contrast to the decrease in PGC-1α, estrogen increased protein levels of nuclear respiratory factor 1, a known PGC target and mediator of mitochondrial biogenesis. The latter effect of estrogen was independent of PI3K, suggesting a separate mechanism consistent with increased expression of PGC-1β and PRC. We demonstrated increased mitochondrial biogenesis following estrogen treatment in vivo; cerebrovascular levels of mitochondrial transcription factor A and electron transport chain subunits as well as the mitochondrial/nuclear DNA ratio were increased. We examined a downstream target of PGC-1β, glutamate-cysteine ligase (GCL), the rate-limiting enzyme for glutathione synthesis. In vivo estrogen increased protein levels of both GCL subunits and total glutathione levels. Together these data show estrogen differentially regulates PGC-1 isoforms in brain vasculature, underscoring the importance of these coactivators in adapting mitochondria in specific tissues. By upregulating PGC-1β and/or PRC, estrogen appears to enhance mitochondrial biogenesis, function and reactive oxygen species protection.

  6. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet

    PubMed Central

    Aiken, Catherine E.; Tarry-Adkins, Jane L.; Penfold, Naomi C.; Dearden, Laura; Ozanne, Susan E.

    2016-01-01

    Maternal diet during pregnancy influences the later life reproductive potential of female offspring. We investigate the molecular mechanisms underlying the depletion of ovarian follicular reserve in young adult females following exposure to obesogenic diet in early life. Furthermore, we explore the interaction between adverse maternal diet and postweaning diet in generating reduced ovarian reserve. Female mice were exposed to either maternal obesogenic (high fat/high sugar) or maternal control diet in utero and during lactation, then weaned onto either obesogenic or control diet. At 12 wk of age, the offspring ovarian reserve was depleted following exposure to maternal obesogenic diet (P < 0.05), but not postweaning obesogenic diet. Maternal obesogenic diet was associated with increased mitochondrial DNA biogenesis (copy number P < 0.05; transcription factor A, mitochondrial expression P < 0.05), increased mitochondrial antioxidant defenses [manganese superoxide dismutase (MnSOD) P < 0.05; copper/zinc superoxide dismutase P < 0.05; glutathione peroxidase 4 P < 0.01] and increased lipoxygenase expression (arachidonate 12-lipoxygenase P < 0.05; arachidonate 15-lipoxygenase P < 0.05) in the ovary. There was also significantly increased expression of the transcriptional regulator NF-κB (P < 0.05). There was no effect of postweaning diet on any measured ovarian parameters. Maternal diet thus plays a central role in determining follicular reserve in adult female offspring. Our observations suggest that lipid peroxidation and mitochondrial biogenesis are the key intracellular pathways involved in programming of ovarian reserve.—Aiken, C. E., Tarry-Adkins, J. L., Penfold, N. C., Dearden, L., Ozanne, S. E. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet. PMID:26700734

  7. RNA Binding Proteins in the miRNA Pathway

    PubMed Central

    Connerty, Patrick; Ahadi, Alireza; Hutvagner, Gyorgy

    2015-01-01

    microRNAs (miRNAs) are short ~22 nucleotides (nt) ribonucleic acids which post-transcriptionally regulate gene expression. miRNAs are key regulators of all cellular processes, and the correct expression of miRNAs in an organism is crucial for proper development and cellular function. As a result, the miRNA biogenesis pathway is highly regulated. In this review, we outline the basic steps of miRNA biogenesis and miRNA mediated gene regulation focusing on the role of RNA binding proteins (RBPs). We also describe multiple mechanisms that regulate the canonical miRNA pathway, which depends on a wide range of RBPs. Moreover, we hypothesise that the interaction between miRNA regulation and RBPs is potentially more widespread based on the analysis of available high-throughput datasets. PMID:26712751

  8. RNA Binding Proteins in the miRNA Pathway.

    PubMed

    Connerty, Patrick; Ahadi, Alireza; Hutvagner, Gyorgy

    2016-01-01

    microRNAs (miRNAs) are short ~22 nucleotides (nt) ribonucleic acids which post-transcriptionally regulate gene expression. miRNAs are key regulators of all cellular processes, and the correct expression of miRNAs in an organism is crucial for proper development and cellular function. As a result, the miRNA biogenesis pathway is highly regulated. In this review, we outline the basic steps of miRNA biogenesis and miRNA mediated gene regulation focusing on the role of RNA binding proteins (RBPs). We also describe multiple mechanisms that regulate the canonical miRNA pathway, which depends on a wide range of RBPs. Moreover, we hypothesise that the interaction between miRNA regulation and RBPs is potentially more widespread based on the analysis of available high-throughput datasets. PMID:26712751

  9. Basal body structure and cell cycle-dependent biogenesis in Trypanosoma brucei.

    PubMed

    Vaughan, Sue; Gull, Keith

    2015-01-01

    Basal bodies are microtubule-based organelles that assemble cilia and flagella, which are critical for motility and sensory functions in all major eukaryotic lineages. The core structure of the basal body is highly conserved, but there is variability in biogenesis and additional functions that are organism and cell type specific. Work carried out in the protozoan parasite Trypanosoma brucei has arguably produced one of the most detailed dissections of basal body structure and biogenesis within the context of the flagellar pocket and associated organelles. In this review, we provide a detailed overview of the basic basal body structure in T. brucei along with the accessory structures and show how basal body movements during the basal body duplication cycle orchestrate cell and organelle morphogenesis. With this in-depth three-dimensional knowledge, identification of many basal body genes coupled with excellent genetic tools makes it an attractive model organism to study basal body biogenesis and maintenance. PMID:26862392

  10. Artemisinin mimics calorie restriction to trigger mitochondrial biogenesis and compromise telomere shortening in mice.

    PubMed

    Wang, Da-Ting; He, Jiang; Wu, Ming; Li, Si-Ming; Gao, Qian; Zeng, Qing-Ping

    2015-01-01

    Calorie restriction is known to extend lifespan among organisms by a debating mechanism underlying nitric oxide-driven mitochondrial biogenesis. We report here that nitric oxide generators including artemisinin, sodium nitroprusside, and L-arginine mimics calorie restriction and resembles hydrogen peroxide to initiate the nitric oxide signaling cascades and elicit the global antioxidative responses in mice. The large quantities of antioxidant enzymes are correlated with the low levels of reactive oxygen species, which allow the down-regulation of tumor suppressors and accessory DNA repair partners, eventually leading to the compromise of telomere shortening. Accompanying with the up-regulation of signal transducers and respiratory chain signatures, mitochondrial biogenesis occurs with the elevation of adenosine triphosphate levels upon exposure of mouse skeletal muscles to the mimetics of calorie restriction. In conclusion, calorie restriction-triggered nitric oxide provides antioxidative protection and alleviates telomere attrition via mitochondrial biogenesis, thereby maintaining chromosomal stability and integrity, which are the hallmarks of longevity.

  11. Ribosome biogenesis in skeletal development and the pathogenesis of skeletal disorders.

    PubMed

    Trainor, Paul A; Merrill, Amy E

    2014-06-01

    The skeleton affords a framework and structural support for vertebrates, while also facilitating movement, protecting vital organs, and providing a reservoir of minerals and cells for immune system and vascular homeostasis. The mechanical and biological functions of the skeleton are inextricably linked to the size and shape of individual bones, the diversity of which is dependent in part upon differential growth and proliferation. Perturbation of bone development, growth and proliferation, can result in congenital skeletal anomalies, which affect approximately 1 in 3000 live births [1]. Ribosome biogenesis is integral to all cell growth and proliferation through its roles in translating mRNAs and building proteins. Disruption of any steps in the process of ribosome biogenesis can lead to congenital disorders termed ribosomopathies. In this review, we discuss the role of ribosome biogenesis in skeletal development and in the pathogenesis of congenital skeletal anomalies. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. PMID:24252615

  12. FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment.

    PubMed

    Morlando, Mariangela; Dini Modigliani, Stefano; Torrelli, Giulia; Rosa, Alessandro; Di Carlo, Valerio; Caffarelli, Elisa; Bozzoni, Irene

    2012-12-12

    microRNA abundance has been shown to depend on the amount of the microprocessor components or, in some cases, on specific auxiliary co-factors. In this paper, we show that the FUS/TLS (fused in sarcoma/translocated in liposarcoma) protein, associated with familial forms of Amyotrophic Lateral Sclerosis (ALS), contributes to the biogenesis of a specific subset of microRNAs. Among them, species with roles in neuronal function, differentiation and synaptogenesis were identified. We also show that FUS/TLS is recruited to chromatin at sites of their transcription and binds the corresponding pri-microRNAs. Moreover, FUS/TLS depletion leads to decreased Drosha level at the same chromatin loci. Limited FUS/TLS depletion leads to a reduced microRNA biogenesis and we suggest a possible link between FUS mutations affecting nuclear/cytoplasmic partitioning of the protein and altered neuronal microRNA biogenesis in ALS pathogenesis.

  13. N-acetylcysteine inhibits the up-regulation of mitochondrial biogenesis genes in livers from rats fed ethanol chronically

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Chronic ethanol (EtOH) administration to experimental animals induces hepatic oxidative stress and up-regulates mitochondrial biogenesis. The mechanisms by which chronic EtOH up-regulates mitochondrial biogenesis have not been fully explored. In this work, we hypothesized that oxidative ...

  14. Assay Methods for H2S Biogenesis and Catabolism Enzymes

    PubMed Central

    Banerjee, Ruma; Chiku, Taurai; Kabil, Omer; Libiad, Marouane; Motl, Nicole; Yadav, Pramod K.

    2015-01-01

    H2S is produced from sulfur-containing amino acids, cysteine and homocysteine, or a catabolite, 3-mercaptopyruvate, by three known enzymes: cystathionine β-synthase, γ-cystathionase, and 3-mercaptopyruvate sulfurtransferase. Of these, the first two enzymes reside in the cytoplasm and comprise the transsulfuration pathway, while the third enzyme is found both in the cytoplasm and in the mitochondrion. The following mitochondrial enzymes oxidize H2S: sulfide quinone oxidoreductase, sulfur dioxygenase, rhodanese, and sulfite oxidase. The products of the sulfide oxidation pathway are thiosulfate and sulfate. Assays for enzymes involved in the production and oxidative clearance of sulfide to thiosulfate are described in this chapter. PMID:25725523

  15. Repression of microRNA biogenesis by silencing of OsDCL1 activates the basal resistance to Magnaporthe oryzae in rice.

    PubMed

    Zhang, Dandan; Liu, Muxing; Tang, Mingzhi; Dong, Bo; Wu, Dianxing; Zhang, Zhengguang; Zhou, Bo

    2015-08-01

    The RNaseIII enzyme Dicer-like 1 (DCL1) processes the microRNA biogenesis and plays a determinant role in plant development. In this study, we reported the function of OsDCL1 in the immunity to rice blast, the devastating disease caused by the fungal pathogen, Magnaporthe oryzae. Expression profiling demonstrated that different OsDCLs responded dynamically and OsDCL1 reduced its expression upon the challenge of rice blast pathogen. In contrast, miR162a predicted to target OsDCL1 increased its expression, implying a negative feedback loop between OsDCL1 and miR162a in rice. In addition to developmental defects, the OsDCL1-silencing mutants showed enhanced resistance to virulent rice blast strains in a non-race specific manner. Accumulation of hydrogen peroxide and cell death were observed in the contact cells with infectious hyphae, revealing that silencing of OsDCL1 activated cellular defense responses. In OsDCL1 RNAi lines, 12 differentially expressed miRNAs were identified, of which 5 and 7 were down- and up-regulated, respectively, indicating that miRNAs responded dynamically in the interaction between rice and rice blast. Moreover, silencing of OsDCL1 activated the constitutive expression of defense related genes. Taken together, our results indicate that rice is capable of activating basal resistance against rice blast by perturbing OsDCL1-dependent miRNA biogenesis pathway. PMID:26089149

  16. Rrp12 and the Exportin Crm1 participate in late assembly events in the nucleolus during 40S ribosomal subunit biogenesis.

    PubMed

    Moriggi, Giulia; Nieto, Blanca; Dosil, Mercedes

    2014-12-01

    During the biogenesis of small ribosomal subunits in eukaryotes, the pre-40S particles formed in the nucleolus are rapidly transported to the cytoplasm. The mechanisms underlying the nuclear export of these particles and its coordination with other biogenesis steps are mostly unknown. Here we show that yeast Rrp12 is required for the exit of pre-40S particles to the cytoplasm and for proper maturation dynamics of upstream 90S pre-ribosomes. Due to this, in vivo elimination of Rrp12 leads to an accumulation of nucleoplasmic 90S to pre-40S transitional particles, abnormal 35S pre-rRNA processing, delayed elimination of processing byproducts, and no export of intermediate pre-40S complexes. The exportin Crm1 is also required for the same pre-ribosome maturation events that involve Rrp12. Thus, in addition to their implication in nuclear export, Rrp12 and Crm1 participate in earlier biosynthetic steps that take place in the nucleolus. Our results indicate that, in the 40S subunit synthesis pathway, the completion of early pre-40S particle assembly, the initiation of byproduct degradation and the priming for nuclear export occur in an integrated manner in late 90S pre-ribosomes.

  17. The RCC1 family protein RUG3 is required for splicing of nad2 and complex I biogenesis in mitochondria of Arabidopsis thaliana.

    PubMed

    Kühn, Kristina; Carrie, Chris; Giraud, Estelle; Wang, Yan; Meyer, Etienne H; Narsai, Reena; des Francs-Small, Catherine Colas; Zhang, Botao; Murcha, Monika W; Whelan, James

    2011-09-01

    We have identified a mitochondrial protein (RUG3) that is required for accumulation of mitochondrial respiratory chain complex I. RUG3 is related to human REGULATOR OF CHROMOSOME CONDENSATION 1 (RCC1) and Arabidopsis UV-B RESISTANCE 8 (UVR8). Although the family of RCC1-like proteins in Arabidopsis has over 20 members, UVR8 is the sole plant representative of this family to have been functionally characterized. Mitochondria from Arabidopsis plants lacking a functional RUG3 gene showed greatly reduced complex I abundance and activity. In contrast, accumulation of complexes III, IV and V of the oxidative phosphorylation system and the capacity for succinate-dependent respiration were unaffected. A comprehensive study of processes contributing to complex I biogenesis in rug3 mutants revealed that RUG3 is required for efficient splicing of the nad2 mRNA, which encodes a complex I subunit. A comparison of the formation of complex I assembly intermediates between rug3 and wild type mitochondria indicated that NAD2 enters the assembly pathway at an early stage. Remarkably, rug3 mutants displayed increased capacities for import of nucleus-encoded mitochondrial proteins into the organelle and showed moderately increased mitochondrial transcript levels. This observation is consistent with global transcript changes indicating enhanced mitochondrial biogenesis in the rug3 mutant in response to the complex I defect.

  18. Protection of scaffold protein Isu from degradation by the Lon protease Pim1 as a component of Fe–S cluster biogenesis regulation

    PubMed Central

    Ciesielski, Szymon J.; Schilke, Brenda; Marszalek, Jaroslaw; Craig, Elizabeth A.

    2016-01-01

    Iron–sulfur (Fe–S) clusters, essential protein cofactors, are assembled on the mitochondrial scaffold protein Isu and then transferred to recipient proteins via a multistep process in which Isu interacts sequentially with multiple protein factors. This pathway is in part regulated posttranslationally by modulation of the degradation of Isu, whose abundance increases >10-fold upon perturbation of the biogenesis process. We tested a model in which direct interaction with protein partners protects Isu from degradation by the mitochondrial Lon-type protease. Using purified components, we demonstrated that Isu is indeed a substrate of the Lon-type protease and that it is protected from degradation by Nfs1, the sulfur donor for Fe–S cluster assembly, as well as by Jac1, the J-protein Hsp70 cochaperone that functions in cluster transfer from Isu. Nfs1 and Jac1 variants known to be defective in interaction with Isu were also defective in protecting Isu from degradation. Furthermore, overproduction of Jac1 protected Isu from degradation in vivo, as did Nfs1. Taken together, our results lead to a model of dynamic interplay between a protease and protein factors throughout the Fe–S cluster assembly and transfer process, leading to up-regulation of Isu levels under conditions when Fe–S cluster biogenesis does not meet cellular demands. PMID:26842892

  19. Suppressing the activity of ERRalpha in 3T3-L1 adipocytes reduces mitochondrial biogenesis but enhances glycolysis and basal glucose uptake.

    PubMed

    Nie, Yaohui; Wong, Chiwai

    2009-09-01

    Estrogen-related receptor alpha (ERRalpha) is thought to primarily regulate lipid oxidation and control the transcription of genes in the oxidative phosphorylation pathway in skeletal and cardiac muscles. However, its role in white adipose tissue is not well studied. In this study, we aimed to establish a role for ERRalpha in adipocytes by down-regulating its activity through its inverse agonist XCT-790 in differentiated 3T3-L1 adipocytes. We found that XCT-790 differentially reduced the expression of ERRalpha target genes. Specifically, XCT-790 reduced the expressions of peroxisome proliferator-activated receptor gamma co-activator-1beta (PGC-1beta), resulting in reductions of mitochondrial biogenesis, adiogenesis and lipogeneis. Through suppressing the expression of another ERRalpha target gene pyruvate dehydrogenase kinase 2 (PDK2), we found that XCT-790 not only enhanced the conversion of pyruvate to acetyl-CoA and hyper-activated the tricarboxylic acid (TCA) cycle, but also led to higher levels of mitochondrial membrane potential and reactive oxidant species (ROS) production. Additionally, XCT-790 treatment also resulted in enhanced rates of glycolysis and basal glucose uptake. Therefore, ERRalpha stands at the crossroad of glucose and fatty acid utilization and acts as a homeostatic switch to regulate the flux of TCA cycle, mitochondrial membrane potential and glycolysis to maintain a steady level of ATP production, particularly, when mitochondrial biogenesis is reduced. PMID:18544047

  20. Deficiency of the ribosome biogenesis gene Sbds in hematopoietic stem and progenitor cells causes neutropenia in mice by attenuating lineage progression in myelocytes.

    PubMed

    Zambetti, Noemi A; Bindels, Eric M J; Van Strien, Paulina M H; Valkhof, Marijke G; Adisty, Maria N; Hoogenboezem, Remco M; Sanders, Mathijs A; Rommens, Johanna M; Touw, Ivo P; Raaijmakers, Marc H G P

    2015-10-01

    Shwachman-Diamond syndrome is a congenital bone marrow failure disorder characterized by debilitating neutropenia. The disease is associated with loss-of-function mutations in the SBDS gene, implicated in ribosome biogenesis, but the cellular and molecular events driving cell specific phenotypes in ribosomopathies remain poorly defined. Here, we established what is to our knowledge the first mammalian model of neutropenia in Shwachman-Diamond syndrome through targeted downregulation of Sbds in hematopoietic stem and progenitor cells expressing the myeloid transcription factor CCAAT/enhancer binding protein α (Cebpa). Sbds deficiency in the myeloid lineage specifically affected myelocytes and their downstream progeny while, unexpectedly, it was well tolerated by rapidly cycling hematopoietic progenitor cells. Molecular insights provided by massive parallel sequencing supported cellular observations of impaired cell cycle exit and formation of secondary granules associated with the defect of myeloid lineage progression in myelocytes. Mechanistically, Sbds deficiency activated the p53 tumor suppressor pathway and induced apoptosis in these cells. Collectively, the data reveal a previously unanticipated, selective dependency of myelocytes and downstream progeny, but not rapidly cycling progenitors, on this ubiquitous ribosome biogenesis protein, thus providing a cellular basis for the understanding of myeloid lineage biased defects in Shwachman-Diamond syndrome. PMID:26185170

  1. Deficiency of the ribosome biogenesis gene Sbds in hematopoietic stem and progenitor cells causes neutropenia in mice by attenuating lineage progression in myelocytes

    PubMed Central

    Zambetti, Noemi A.; Bindels, Eric M. J.; Van Strien, Paulina M. H.; Valkhof, Marijke G.; Adisty, Maria N.; Hoogenboezem, Remco M.; Sanders, Mathijs A.; Rommens, Johanna M.; Touw, Ivo P.; Raaijmakers, Marc H. G. P.

    2015-01-01

    Shwachman-Diamond syndrome is a congenital bone marrow failure disorder characterized by debilitating neutropenia. The disease is associated with loss-of-function mutations in the SBDS gene, implicated in ribosome biogenesis, but the cellular and molecular events driving cell specific phenotypes in ribosomopathies remain poorly defined. Here, we established what is to our knowledge the first mammalian model of neutropenia in Shwachman-Diamond syndrome through targeted downregulation of Sbds in hematopoietic stem and progenitor cells expressing the myeloid transcription factor CCAAT/enhancer binding protein α (Cebpa). Sbds deficiency in the myeloid lineage specifically affected myelocytes and their downstream progeny while, unexpectedly, it was well tolerated by rapidly cycling hematopoietic progenitor cells. Molecular insights provided by massive parallel sequencing supported cellular observations of impaired cell cycle exit and formation of secondary granules associated with the defect of myeloid lineage progression in myelocytes. Mechanistically, Sbds deficiency activated the p53 tumor suppressor pathway and induced apoptosis in these cells. Collectively, the data reveal a previously unanticipated, selective dependency of myelocytes and downstream progeny, but not rapidly cycling progenitors, on this ubiquitous ribosome biogenesis protein, thus providing a cellular basis for the understanding of myeloid lineage biased defects in Shwachman-Diamond syndrome. PMID:26185170

  2. Mitochondrial Retrograde Signaling: Triggers, Pathways, and Outcomes

    PubMed Central

    da Cunha, Fernanda Marques; Torelli, Nicole Quesada; Kowaltowski, Alicia J.

    2015-01-01

    Mitochondria are essential organelles for eukaryotic homeostasis. Although these organelles possess their own DNA, the vast majority (>99%) of mitochondrial proteins are encoded in the nucleus. This situation makes systems that allow the communication between mitochondria and the nucleus a requirement not only to coordinate mitochondrial protein synthesis during biogenesis but also to communicate eventual mitochondrial malfunctions, triggering compensatory responses in the nucleus. Mitochondria-to-nucleus retrograde signaling has been described in various organisms, albeit with differences in effector pathways, molecules, and outcomes, as discussed in this review. PMID:26583058

  3. The Bacterial Twin-Arginine Translocation Pathway

    PubMed Central

    Lee, Philip A.; Tullman-Ercek, Danielle; Georgiou, George

    2009-01-01

    The twin-arginine translocation (Tat) pathway is responsible for the export of folded proteins across the cytoplasmic membrane of bacteria. Substrates for the Tat pathway include redox enzymes requiring cofactor insertion in the cytoplasm, multimeric proteins that have to assemble into a complex prior to export, certain membrane proteins, and proteins whose folding is incompatible with Sec export. These proteins are involved in a diverse range of cellular activities including anaerobic metabolism, cell envelope biogenesis, metal acquisition and detoxification, and virulence. The Escherichia coli translocase consists of the TatA, TatB, and TatC proteins, but little is known about the precise sequence of events that leads to protein translocation, the energetic requirements, or the mechanism that prevents the export of misfolded proteins. Owing to the unique characteristics of the pathway, it holds promise for biotechnological applications. PMID:16756481

  4. Small RNA pathways in Schmidtea mediterranea.

    PubMed

    Resch, Alissa M; Palakodeti, Dasaradhi

    2012-01-01

    Planarians are bilaterally symmetrical fresh water organisms capable of regenerating body parts from small fragments following bodily injury. Planarians possess a specialized population of pluripotent cells called neoblasts, which are responsible for their unique regenerative ability. The study of planarian stem cell biology and regeneration has traditionally focused on the transcription factors and proteins that regulate signal transduction pathways. New evidence shows that small RNA molecules are important players in stem cell function and regeneration, yet little is known about the exact nature of their regulatory roles during the regenerative process. In this review, we discuss biogenesis of microRNAs and piwiRNAs and their functional role in key developmental pathways in vertebrates and invertebrates with an emphasis on recent studies on planarian small RNA pathways.

  5. Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness.

    PubMed

    Cotney, Justin; McKay, Sharen E; Shadel, Gerald S

    2009-07-15

    Mitochondrial biogenesis is controlled by signaling networks that relay information to and from the organelles. However, key mitochondrial factors that mediate such pathways and how they contribute to human disease are not understood fully. Here we demonstrate that the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 are key downstream effectors of mitochondrial biogenesis that perform unique, yet cooperative functions. The primary function of h-mtTFB2 is mtDNA transcription and maintenance, which is independent of its rRNA methyltransferase activity, while that of h-mtTFB1 is mitochondrial 12S rRNA methylation needed for normal mitochondrial translation, metabolism and cell growth. Over-expression of h-mtTFB1 causes 12S rRNA hypermethylation, aberrant mitochondrial biogenesis and increased sorbitol-induced cell death. These phenotypes are recapitulated in cells harboring the pathogenic A1555G mtDNA mutation, implicating a deleterious rRNA methylation-dependent retrograde signal in maternally inherited deafness pathology and shedding significant insight into how h-mtTFB1 acts as a nuclear modifier of this disease.

  6. Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness

    PubMed Central

    Cotney, Justin; McKay, Sharen E.; Shadel, Gerald S.

    2009-01-01

    Mitochondrial biogenesis is controlled by signaling networks that relay information to and from the organelles. However, key mitochondrial factors that mediate such pathways and how they contribute to human disease are not understood fully. Here we demonstrate that the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 are key downstream effectors of mitochondrial biogenesis that perform unique, yet cooperative functions. The primary function of h-mtTFB2 is mtDNA transcription and maintenance, which is independent of its rRNA methyltransferase activity, while that of h-mtTFB1 is mitochondrial 12S rRNA methylation needed for normal mitochondrial translation, metabolism and cell growth. Over-expression of h-mtTFB1 causes 12S rRNA hypermethylation, aberrant mitochondrial biogenesis and increased sorbitol-induced cell death. These phenotypes are recapitulated in cells harboring the pathogenic A1555G mtDNA mutation, implicating a deleterious rRNA methylation-dependent retrograde signal in maternally inherited deafness pathology and shedding significant insight into how h-mtTFB1 acts as a nuclear modifier of this disease. PMID:19417006

  7. The Ribosomal Protein-Mdm2-p53 Pathway and Energy Metabolism

    PubMed Central

    Deisenroth, Chad; Zhang, Yanping

    2011-01-01

    Cellular growth and division are two fundamental processes that are exquisitely sensitive and responsive to environmental fluctuations. One of the most energetically demanding functions of these processes is ribosome biogenesis, the key component to regulating overall protein synthesis and cell growth. Perturbations to ribosome biogenesis have been demonstrated to induce an acute stress response leading to p53 activation through the inhibition of Mdm2 by a number of ribosomal proteins. The energy status of a cell is a highly dynamic variable that naturally contributes to metabolic fluctuations, which can affect both the rates of ribosome biogenesis and p53 function. This, in turn, determines whether a cell is in an anabolic, growth-promoting state or a catabolic, growth-suppressing state. Here the authors integrate the known functions of p53 to postulate how changes in nutrient availability may induce the ribosomal protein–Mdm2-p53 signaling pathway to modulate p53-dependent metabolic regulation. PMID:21779508

  8. Expression of Flotilin-2 and Acrosome Biogenesis Are Regulated by MiR-124 during Spermatogenesis

    PubMed Central

    Zheng, Haoyu; Jiang, Min; Xia, Zhengrong; Yu, Jinjin; Chen, Ling; Huang, Xiaoyan

    2015-01-01

    MicroRNAs (miRNAs) are a class of short non-coding RNA molecules, which diversely regulate gene expression in organisms. Although the regulatory role of these small RNA molecules has been recently explored in animal spermatogenesis, the role of miR-124 in male germ cells is poorly defined. In our previous study, flotillin-2 was investigated as a novel Golgi-related protein involved in sperm acrosome biogenesis. The current study was designed to analyze the contribution of miR-124 in the regulation of flotillin-2 expression during mouse acrosome biogenesis. Luciferase assays revealed the target effects of miR-124 on flotillin-2 expression. Following intratesticular injection of miR-124 in 3-week-old male mice, quantitative real-time RT-PCR and western blot analysis were employed to confirm the function of miR-124 in regulating flotillin-2 after 48 hours. Sperm abnormalities were assessed 3 weeks later by ordinary optical microscopy, the acrosome abnormalities were also assessed by PNA staining and transmission electron microscopy. The results showed the proportion of sperm acrosome abnormalities was significantly higher than that of the control group. The expression of flotillin-2 and caveolin-1 was significantly downregulated during acrosome biogenesis. These results indicated that miR-124 could potentially play a role in caveolin-independent vesicle trafficking and modulation of flotillin-2 expression in mouse acrosome biogenesis. PMID:26313572

  9. [Bacterial Outer Membrane Nanovesicles: Structure, Biogenesis, Functions, and Application in Biotechnology and Medicine (Review)].

    PubMed

    Lusta, K A

    2015-01-01

    The review summarizes the comprehensive biochemical and physicochemical characteristics of extracellular membrane nanovesicles (EMN) derived from different kinds of bacteria. The EMN structure, composition, biogenesis, secretion mechanisms, formation conditions, functions, involvement in pathogenesis, and application in biotechnology and medicine are discussed.

  10. E3 ubiquitin ligase SP1 regulates peroxisome biogenesis in Arabidopsis

    DOE PAGES

    Pan, Ronghui; Satkovich, John; Hu, Jianping

    2016-10-31

    Peroxisomes are ubiquitous eukaryotic organelles that play pivotal roles in a suite of metabolic processes and often act coordinately with other organelles, such as chloroplasts and mitochondria. Peroxisomes import proteins to the peroxisome matrix by peroxins (PEX proteins), but how the function of the PEX proteins is regulated is poorly understood. In this study, we identified the Arabidopsis RING (really interesting new gene) type E3 ubiquitin ligase SP1 [suppressor of plastid protein import locus 1 (ppi1) 1] as a peroxisome membrane protein with a regulatory role in peroxisome protein import. SP1 interacts physically with the two components of the peroxisomemore » protein docking complex PEX13–PEX14 and the (RING)-finger peroxin PEX2. Loss of SP1 function suppresses defects of the pex14-2 and pex13-1 mutants, and SP1 is involved in the degradation of PEX13 and possibly PEX14 and all three RING peroxins. An in vivo ubiquitination assay showed that SP1 has the ability to promote PEX13 ubiquitination. Our study has revealed that, in addition to its previously reported function in chloroplast biogenesis, SP1 plays a role in peroxisome biogenesis. The same E3 ubiquitin ligase promotes the destabilization of components of two distinct protein-import machineries, indicating that degradation of organelle biogenesis factors by the ubiquitin–proteasome system may constitute an important regulatory mechanism in coordinating the biogenesis of metabolically linked organelles in eukaryotes.« less

  11. Mitochondrial Biogenesis in the Pulmonary Vasculature During Inhalational Lung Injury and Fibrosis

    PubMed Central

    CARRAWAY, MARTHA S.; SULIMAN, HAGIR B.; KLIMENT, CORRINE; WELTY-WOLF, KAREN E.; OURY, TIM D.; PIANTADOSI, CLAUDE A.

    2008-01-01

    Cell survival and injury repair is facilitated by mitochondrial biogenesis; however, the role of this process in lung repair is unknown. We evaluated mitochondrial biogenesis in the mouse lung in two injuries that cause acute inflammation and in two that cause chronic inflammation and pulmonary fibrosis. By using reporter mice that express green fluorescent protein (GFP) exclusively in mitochondria, we tracked mitochondrial biogenesis and correlated it with histologic lung injury, proliferation, and fibrosis. At 72 hours after acute LPS or continuous exposure to hyperoxia (Fio2, 1.0), the lungs showed diffuse infiltration by inflammatory cells in the alveolar region. In reporter mice, patchy new mitochondrial fluorescence was found in the alveolar region but was most prominent and unexpected in perivascular regions. At 14 days after instillation of asbestos or bleomycin, diffuse chronic inflammation had developed, and green fluorescence appeared in inflammatory cells in the expanded interstitium and was most intense in smooth muscle cells of pulmonary vessels. In all four lung injuries, mitochondrial fluorescence colocalized with mitochondrial superoxide dismutase, but not with proliferating cell nuclear antigen. These data indicate that vascular mitochondrial biogenesis is activated in diverse inhalational lung injuries along with oxidative stress. This finding indicates a unique and unexpected mechanism of metabolic adaptation to pulmonary fibrotic injuries. PMID:17999632

  12. Reactive oxygen species mediates homocysteine-induced mitochondrial biogenesis in human endothelial cells: Modulation by antioxidants

    SciTech Connect

    Perez-de-Arce, Karen; Foncea, Rocio . E-mail: rfoncea@med.puc.cl; Leighton, Federico

    2005-12-16

    It has been proposed that homocysteine (Hcy)-induces endothelial dysfunction and atherosclerosis by generation of reactive oxygen species (ROS). A previous report has shown that Hcy promotes mitochondrial damage. Considering that oxidative stress can affect mitochondrial biogenesis, we hypothesized that Hcy-induced ROS in endothelial cells may lead to increased mitochondrial biogenesis. We found that Hcy-induced ROS (1.85-fold), leading to a NF-{kappa}B activation and increase the formation of 3-nitrotyrosine. Furthermore, expression of the mitochondrial biogenesis factors, nuclear respiratory factor-1 and mitochondrial transcription factor A, was significantly elevated in Hcy-treated cells. These changes were accompanied by increase in mitochondrial mass and higher mRNA and protein expression of the subunit III of cytochrome c oxidase. These effects were significantly prevented by pretreatment with the antioxidants, catechin and trolox. Taken together, our results suggest that ROS is an important mediator of mitochondrial biogenesis induced by Hcy, and that modulation of oxidative stress by antioxidants may protect against the adverse vascular effects of Hcy.

  13. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    PubMed

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation. PMID:26801560

  14. Peroxynitrite induced mitochondrial biogenesis following MnSOD knockdown in normal rat kidney (NRK) cells.

    PubMed

    Marine, Akira; Krager, Kimberly J; Aykin-Burns, Nukhet; Macmillan-Crow, Lee Ann

    2014-01-01

    Superoxide is widely regarded as the primary reactive oxygen species (ROS) which initiates downstream oxidative stress. Increased oxidative stress contributes, in part, to many disease conditions such as cancer, atherosclerosis, ischemia/reperfusion, diabetes, aging, and neurodegeneration. Manganese superoxide dismutase (MnSOD) catalyzes the dismutation of superoxide into hydrogen peroxide which can then be further detoxified by other antioxidant enzymes. MnSOD is critical in maintaining the normal function of mitochondria, thus its inactivation is thought to lead to compromised mitochondria. Previously, our laboratory observed increased mitochondrial biogenesis in a novel kidney-specific MnSOD knockout mouse. The current study used transient siRNA mediated MnSOD knockdown of normal rat kidney (NRK) cells as the in vitro model, and confirmed functional mitochondrial biogenesis evidenced by increased PGC1α expression, mitochondrial DNA copy numbers and integrity, electron transport chain protein CORE II, mitochondrial mass, oxygen consumption rate, and overall ATP production. Further mechanistic studies using mitoquinone (MitoQ), a mitochondria-targeted antioxidant and L-NAME, a nitric oxide synthase (NOS) inhibitor demonstrated that peroxynitrite (at low micromolar levels) induced mitochondrial biogenesis. These findings provide the first evidence that low levels of peroxynitrite can initiate a protective signaling cascade involving mitochondrial biogenesis which may help to restore mitochondrial function following transient MnSOD inactivation. PMID:24563852

  15. Effects of Resveratrol and SIRT1 on PGC-1α Activity and Mitochondrial Biogenesis: A Reevaluation

    PubMed Central

    Jung, Su Ryun; Asaka, Meiko; Holloszy, John O.; Han, Dong-Ho

    2013-01-01

    It has been reported that feeding mice resveratrol activates AMPK and SIRT1 in skeletal muscle leading to deacetylation and activation of PGC-1α, increased mitochondrial biogenesis, and improved running endurance. This study was done to further evaluate the effects of resveratrol, SIRT1, and PGC-1α deacetylation on mitochondrial biogenesis in muscle. Feeding rats or mice a diet containing 4 g resveratrol/kg diet had no effect on mitochondrial protein levels in muscle. High concentrations of resveratrol lowered ATP concentration and activated AMPK in C2C12 myotubes, resulting in an increase in mitochondrial proteins. Knockdown of SIRT1, or suppression of SIRT1 activity with a dominant-negative (DN) SIRT1 construct, increased PGC-1α acetylation, PGC-1α coactivator activity, and mitochondrial proteins in C2C12 cells. Expression of a DN SIRT1 in rat triceps muscle also induced an increase in mitochondrial proteins. Overexpression of SIRT1 decreased PGC-1α acetylation, PGC-1α coactivator activity, and mitochondrial proteins in C2C12 myotubes. Overexpression of SIRT1 also resulted in a decrease in mitochondrial proteins in rat triceps muscle. We conclude that, contrary to some previous reports, the mechanism by which SIRT1 regulates mitochondrial biogenesis is by inhibiting PGC-1α coactivator activity, resulting in a decrease in mitochondria. We also conclude that feeding rodents resveratrol has no effect on mitochondrial biogenesis in muscle. PMID:23874150

  16. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    PubMed

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation.

  17. CDK1 Prevents Unscheduled PLK4-STIL Complex Assembly in Centriole Biogenesis.

    PubMed

    Zitouni, Sihem; Francia, Maria E; Leal, Filipe; Montenegro Gouveia, Susana; Nabais, Catarina; Duarte, Paulo; Gilberto, Samuel; Brito, Daniela; Moyer, Tyler; Kandels-Lewis, Steffi; Ohta, Midori; Kitagawa, Daiju; Holland, Andrew J; Karsenti, Eric; Lorca, Thierry; Lince-Faria, Mariana; Bettencourt-Dias, Mónica

    2016-05-01

    Centrioles are essential for the assembly of both centrosomes and cilia. Centriole biogenesis occurs once and only once per cell cycle and is temporally coordinated with cell-cycle progression, ensuring the formation of the right number of centrioles at the right time. The formation of new daughter centrioles is guided by a pre-existing, mother centriole. The proximity between mother and daughter centrioles was proposed to restrict new centriole formation until they separate beyond a critical distance. Paradoxically, mother and daughter centrioles overcome this distance in early mitosis, at a time when triggers for centriole biogenesis Polo-like kinase 4 (PLK4) and its substrate STIL are abundant. Here we show that in mitosis, the mitotic kinase CDK1-CyclinB binds STIL and prevents formation of the PLK4-STIL complex and STIL phosphorylation by PLK4, thus inhibiting untimely onset of centriole biogenesis. After CDK1-CyclinB inactivation upon mitotic exit, PLK4 can bind and phosphorylate STIL in G1, allowing pro-centriole assembly in the subsequent S phase. Our work shows that complementary mechanisms, such as mother-daughter centriole proximity and CDK1-CyclinB interaction with centriolar components, ensure that centriole biogenesis occurs once and only once per cell cycle, raising parallels to the cell-cycle regulation of DNA replication and centromere formation.

  18. Proteome distribution between nucleoplasm and nucleolus and its relation to ribosome biogenesis in Arabidopsis thaliana.

    PubMed

    Palm, Denise; Simm, Stefan; Darm, Katrin; Weis, Benjamin L; Ruprecht, Maike; Schleiff, Enrico; Scharf, Christian

    2016-01-01

    Ribosome biogenesis is an essential process initiated in the nucleolus. In eukaryotes, multiple ribosome biogenesis factors (RBFs) can be found in the nucleolus, the nucleus and in the cytoplasm. They act in processing, folding and modification of the pre-ribosomal (r)RNAs, incorporation of ribosomal proteins (RPs), export of pre-ribosomal particles to the cytoplasm, and quality control mechanisms. Ribosome biogenesis is best established for Saccharomyces cerevisiae. Plant ortholog assignment to yeast RBFs revealed the absence of about 30% of the yeast RBFs in plants. In turn, few plant specific proteins have been identified by biochemical experiments to act in plant ribosome biogenesis. Nevertheless, a complete inventory of plant RBFs has not been established yet. We analyzed the proteome of the nucleus and nucleolus of Arabidopsis thaliana and the post-translational modifications of these proteins. We identified 1602 proteins in the nucleolar and 2544 proteins in the nuclear fraction with an overlap of 1429 proteins. For a randomly selected set of proteins identified by the proteomic approach we confirmed the localization inferred from the proteomics data by the localization of GFP fusion proteins. We assigned the identified proteins to various complexes and functions and found about 519 plant proteins that have a potential to act as a RBFs, but which have not been experimentally characterized yet. Last, we compared the distribution of RBFs and RPs in the various fractions with the distribution established for yeast. PMID:26980300

  19. PICK1 Deficiency Impairs Secretory Vesicle Biogenesis and Leads to Growth Retardation and Decreased Glucose Tolerance

    PubMed Central

    Jansen, Anna M.; Jin, Chunyu; Rickhag, Mattias; Lund, Viktor K.; Jensen, Morten; Bhatia, Vikram; Sørensen, Gunnar; Madsen, Andreas N.; Xue, Zhichao; Møller, Siri K.; Woldbye, David; Qvortrup, Klaus; Huganir, Richard; Stamou, Dimitrios; Kjærulff, Ole; Gether, Ulrik

    2013-01-01

    Secretory vesicles in endocrine cells store hormones such as growth hormone (GH) and insulin before their release into the bloodstream. The molecular mechanisms governing budding of immature secretory vesicles from the trans-Golgi network (TGN) and their subsequent maturation remain unclear. Here, we identify the lipid binding BAR (Bin/amphiphysin/Rvs) domain protein PICK1 (protein interacting with C kinase 1) as a key component early in the biogenesis of secretory vesicles in GH-producing cells. Both PICK1-deficient Drosophila and mice displayed somatic growth retardation. Growth retardation was rescued in flies by reintroducing PICK1 in neurosecretory cells producing somatotropic peptides. PICK1-deficient mice were characterized by decreased body weight and length, increased fat accumulation, impaired GH secretion, and decreased storage of GH in the pituitary. Decreased GH storage was supported by electron microscopy showing prominent reduction in secretory vesicle number. Evidence was also obtained for impaired insulin secretion associated with decreased glucose tolerance. PICK1 localized in cells to immature secretory vesicles, and the PICK1 BAR domain was shown by live imaging to associate with vesicles budding from the TGN and to possess membrane-sculpting properties in vitro. In mouse pituitary, PICK1 co-localized with the BAR domain protein ICA69, and PICK1 deficiency abolished ICA69 protein expression. In the Drosophila brain, PICK1 and ICA69 co-immunoprecipitated and showed mutually dependent expression. Finally, both in a Drosophila model of type 2 diabetes and in high-fat-diet-induced obese mice, we observed up-regulation of PICK1 mRNA expression. Our findings suggest that PICK1, together with ICA69, is critical during budding of immature secretory vesicles from the TGN and thus for vesicular storage of GH and possibly other hormones. The data link two BAR domain proteins to membrane remodeling processes in the secretory pathway of peptidergic endocrine

  20. Biogenesis of a photosystem I light-harvesting complex. Evidence for a membrane intermediate.

    PubMed Central

    Adam, Z; Hoffman, N E

    1993-01-01

    CAB-7p is a chlorophyll a/b binding protein of photosystem I (PSI). It is found in light-harvesting complex I 680 (LHCI-680), one of the chlorophyll complexes produced by detergent solubilization of PSI. Two types of evidence are presented to indicate that assembly of CAB-7p into PSI proceeds through a membrane intermediate. First, when CAB-7p is briefly imported into chloroplasts or isolated thylakoids, we initially observe a fast-migrating membrane form of CAB-7p that is subsequently converted into PSI. The conversion of the fast-migrating form into PSI does not require stroma or ATP. Second, trypsin treatment of thylakoids containing radiolabeled CAB-7p indicates that there are at least two membrane forms of the mature 23-kD protein. The predominant form is completely resistant to proteolysis; a second form of the protein is cleaved by trypsin into 12- and 7-kD polypeptides. We interpret this to mean that the intermediate is a cleavable form that becomes protease resistant during assembly. This notion is supported by the observation that CAB-7p in LHCI-680 is largely cleaved by trypsin into 12- and 7-kD polypeptides, whereas CAB-7p in isolated PSI particles is trypsin resistant. In vitro, we generated a mutant form of CAB-7p, CAB-7/BgI2p, that was able to integrate into thylakoid membranes but was unable to assemble into PSI. The membrane form of CAB-7/BgI2p, like LHCI-680, was predominantly cleaved by trypsin into 12- and 7-kD fragments. We suggest that the mutant protein is arrested at an intermediate stage in the assembly pathway of PSI. Based on its mobility in nondenaturing gels and its susceptibility to protease cleavage, we suggest that the intermediate form is LHCI-680. We propose the following distinct stages in the biogenesis of LHCI: (a) apoprotein is integrated into the thylakoid, (b) chlorophyll is rapidly bound to apoprotein forming LHCI-680, and (c) LHCI-680 assembles into the native PSI complex. PMID:8108505

  1. Biogenesis of cytochrome b6 in photosynthetic membranes

    PubMed Central

    Saint-Marcoux, Denis; Wollman, Francis-André

    2009-01-01

    In chloroplasts, binding of a c′-heme to cytochrome b6 on the stromal side of the thylakoid membranes requires a specific mechanism distinct from the one at work for c-heme binding to cytochromes f and c6 on the lumenal side of membranes. Here, we show that the major protein components of this pathway, the CCBs, are bona fide transmembrane proteins. We demonstrate their association in a series of hetero-oligomeric complexes, some of which interact transiently with cytochrome b6 in the process of heme delivery to the apoprotein. In addition, we provide preliminary evidence for functional assembly of cytochrome b6f complexes even in the absence of c′-heme binding to cytochrome b6. Finally, we present a sequential model for apo- to holo-cytochrome b6 maturation integrated within the assembly pathway of b6f complexes in the thylakoid membranes. PMID:19564403

  2. Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis.

    PubMed

    Dresios, John; Aschrafi, Armaz; Owens, Geoffrey C; Vanderklish, Peter W; Edelman, Gerald M; Mauro, Vincent P

    2005-02-01

    The expression of Rbm3, a glycine-rich RNA-binding protein, is enhanced under conditions of mild hypothermia, and Rbm3 has been postulated to facilitate protein synthesis at colder temperatures. To investigate this possibility, Rbm3 was overexpressed as a c-Myc fusion protein in mouse neuroblastoma N2a cells. Cells expressing this fusion protein showed a 3-fold increase in protein synthesis at both 37 degrees C and 32 degrees C compared with control cells. Although polysome profiles of cells expressing the fusion protein and control cells were similar, several differences were noted, suggesting that Rbm3 might enhance the association of 40S and 60S ribosomal subunits at 32 degrees C. Studies to assess a direct interaction of Rbm3 with ribosomes showed that a fraction of Rbm3 was associated with 60S ribosomal subunits in an RNA-independent manner. It appeared unlikely that this association could explain the global enhancement of protein synthesis, however, because cells expressing the Rbm3 fusion protein showed no substantial increase in the size of their monosome and polysome peaks, suggesting that similar numbers of mRNAs were being translated at approximately the same rates. In contrast, a complex that sedimented between the top of the gradient and 40S subunits was less abundant in cells expressing recombinant Rbm3. Further analysis showed that the RNA component of this fraction was microRNA. We discuss the possibility that Rbm3 expression alters global protein synthesis by affecting microRNA levels and suggest that both Rbm3 and microRNAs are part of a homeostatic mechanism that regulates global levels of protein synthesis under normal and cold-stress conditions.

  3. Acyl-CoA N-acyltransferase influences fertility by regulating lipid metabolism and jasmonic acid biogenesis in cotton

    PubMed Central

    Fu, Wenfeng; Shen, Ying; Hao, Juan; Wu, Jianyong; Ke, Liping; Wu, Caiyun; Huang, Kai; Luo, Binglun; Xu, Mingfeng; Cheng, Xiaofei; Zhou, Xueping; Sun, Jie; Xing, Chaozhu; Sun, Yuqiang

    2015-01-01

    Cotton (Gossypium spp.) is an important economic crop and there is obvious heterosis in cotton, fertility has played an important role in this heterosis. However, the genes that exhibit critical roles in anther development and fertility are not well understood. Here, we report an acyl-CoA N-acyltransferase (EC2.3; GhACNAT) that plays a key role in anther development and fertility. Suppression of GhACNAT by virus-induced gene silencing in transgenic cotton (G. hirsutum L. cv. C312) resulted in indehiscent anthers that were full of pollen, diminished filaments and stamens, and plant sterility. We found GhACNAT was involved in lipid metabolism and jasmonic acid (JA) biosynthesis. The genes differentially expressed in GhACNAT-silenced plants and C312 were mainly involved in catalytic activity and transcription regulator activity in lipid metabolism. In GhACNAT-silenced plants, the expression levels of genes involved in lipid metabolism and jasmonic acid biosynthesis were significantly changed, the amount of JA in leaves and reproductive organs was significantly decreased compared with the amounts in C312. Treatments with exogenous methyl jasmonate rescued anther dehiscence and pollen release in GhACNAT-silenced plants and caused self-fertility. The GhACNAT gene may play an important role in controlling cotton fertility by regulating the pathways of lipid synthesis and JA biogenesis. PMID:26134787

  4. Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in Saccharomyces cerevisiae.

    PubMed

    Kursu, V A Samuli; Pietikäinen, Laura P; Fontanesi, Flavia; Aaltonen, Mari J; Suomi, Fumi; Raghavan Nair, Remya; Schonauer, Melissa S; Dieckmann, Carol L; Barrientos, Antoni; Hiltunen, J Kalervo; Kastaniotis, Alexander J

    2013-11-01

    Mitochondrial fatty acid synthesis (mtFAS) shares acetyl-CoA with the Krebs cycle as a common substrate and is required for the production of octanoic acid (C8) precursors of lipoic acid (LA) in mitochondria. MtFAS is a conserved pathway essential for respiration. In a genetic screen in Saccharomyces cerevisiae designed to further elucidate the physiological role of mtFAS, we isolated mutants with defects in mitochondrial post-translational gene expression processes, indicating a novel link to mitochondrial gene expression and respiratory chain biogenesis. In our ensuing analysis, we show that mtFAS, but not lipoylation per se, is required for respiratory competence. We demonstrate that mtFAS is required for mRNA splicing, mitochondrial translation and respiratory complex assembly, and provide evidence that not LA per se, but fatty acids longer than C8 play a role in these processes. We also show that mtFAS- and LA-deficient strains suffer from a mild haem deficiency that may contribute to the respiratory complex assembly defect. Based on our data and previously published information, we propose a model implicating mtFAS as a sensor for mitochondrial acetyl-CoA availability and a co-ordinator of nuclear and mitochondrial gene expression by adapting the mitochondrial compartment to changes in the metabolic status of the cell.

  5. Role of pri-miRNA tertiary structure in miR-17~92 miRNA biogenesis.

    PubMed

    Chaulk, Steven G; Thede, Gina L; Kent, Oliver A; Xu, Zhizhong; Gesner, Emily M; Veldhoen, Richard A; Khanna, Suneil K; Goping, Ing Swie; MacMillan, Andrew M; Mendell, Joshua T; Young, Howard S; Fahlman, Richard P; Glover, J N Mark

    2011-01-01

    MicroRNAs (miRNAs) regulate gene expression in a variety of biological pathways such as development and tumourigenesis. miRNAs are initially expressed as long primary transcripts (pri-miRNAs) that undergo sequential processing by Drosha and then Dicer to yield mature miRNAs. miR-17~92 is a miRNA cluster that encodes 6 miRNAs and while it is essential for development it also has reported oncogenic activity. To date, the role of RNA structure in miRNA biogenesis has only been considered in terms of the secondary structural elements required for processing of pri-miRNAs by Drosha. Here we report that the miR-17~92 cluster has a compact globular tertiary structure where miRNAs internalized within the core of the folded structure are processed less efficiently than miRNAs on the surface of the structure. Increased miR-92 expression resulting from disruption of the compact miR-17~92 structure results in increased repression of integrin α5 mRNA, a known target of miR-92a. In summary, we describe the first example of pri-miRNA structure modulating differential expression of constituent miRNAs.

  6. Short-Chain Fatty Acid Acetate Stimulates Adipogenesis and Mitochondrial Biogenesis via GPR43 in Brown Adipocytes.

    PubMed

    Hu, Jiamiao; Kyrou, Ioannis; Tan, Bee K; Dimitriadis, Georgios K; Ramanjaneya, Manjunath; Tripathi, Gyanendra; Patel, Vanlata; James, Sean; Kawan, Mohamed; Chen, Jing; Randeva, Harpal S

    2016-05-01

    Short-chain fatty acids play crucial roles in a range of physiological functions. However, the effects of short-chain fatty acids on brown adipose tissue have not been fully investigated. We examined the role of acetate, a short-chain fatty acid formed by fermentation in the gut, in the regulation of brown adipocyte metabolism. Our results show that acetate up-regulates adipocyte protein 2, peroxisomal proliferator-activated receptor-γ coactivator-1α, and uncoupling protein-1 expression and affects the morphological changes of brown adipocytes during adipogenesis. Moreover, an increase in mitochondrial biogenesis was observed after acetate treatment. Acetate also elicited the activation of ERK and cAMP response element-binding protein, and these responses were sensitive to G(i/o)-type G protein inactivator, Gβγ-subunit inhibitor, phospholipase C inhibitor, and MAPK kinase inhibitor, indicating a role for the G(i/o)βγ/phospholipase C/protein kinase C/MAPK kinase signaling pathway in these responses. These effects of acetate were mimicked by treatment with 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide, a synthetic G protein-coupled receptor 43 (GPR43) agonist and were impaired in GPR43 knockdown cells. Taken together, our results indicate that acetate may have important physiological roles in brown adipocytes through the activation of GPR43. PMID:26990063

  7. Aberrant cell proliferation by enhanced mitochondrial biogenesis via mtTFA in arsenical skin cancers.

    PubMed

    Lee, Chih-Hung; Wu, Shi-Bei; Hong, Chien-Hui; Liao, Wei-Ting; Wu, Ching-Ying; Chen, Gwo-Shing; Wei, Yau-Huei; Yu, Hsin-Su

    2011-05-01

    Arsenic-induced Bowen's disease (As-BD), a cutaneous carcinoma in situ, is thought to arise from gene mutation and uncontrolled proliferation. However, how mitochondria regulate the arsenic-induced cell proliferation remains unclear. The aim of this study was to clarify whether arsenic interfered with mitochondrial biogenesis and function, leading to aberrant cell proliferation in As-BD. Skin biopsy samples from patients with As-BD and controls were stained for cytochrome c oxidase (Complex IV), measured for mitochondrial DNA (mtDNA) copy number and the expression levels of mitochondrial biogenesis-related genes, including peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF-1), and mitochondrial transcription factor A (mtTFA). The results showed that expression of cytochrome c oxidase, mtTFA, NRF-1, and PGC-1α was increased in As-BD compared with in healthy subjects. Treatment of primary keratinocytes with arsenic at concentrations lower than 1.0 μmol/L induced cell proliferation, along with enhanced mitochondrial biogenesis. Furthermore, we observed that the mitochondrial oxygen consumption rate and intracellular ATP level were increased in arsenic-treated keratinocytes. Blocking of mitochondrial function by oligomycin A (Complex V inhibitor) or knockdown of mtTFA by RNA interference abrogated arsenic-induced cell proliferation without affecting cyclin D1 expression. We concluded that mtTFA up-regulation, augmented mitochondrial biogenesis, and enhanced mitochondrial functions may contribute to arsenic-induced cell proliferation. Targeting mitochondrial biogenesis may help treat arsenical cancers at the stage of cell proliferation.

  8. Stimulatory Effects of Balanced Deep Sea Water on Mitochondrial Biogenesis and Function

    PubMed Central

    Ha, Byung Geun; Park, Jung-Eun; Cho, Hyun-Jung; Shon, Yun Hee

    2015-01-01

    The worldwide prevalence of metabolic diseases, including obesity and diabetes, is increasing. Mitochondrial dysfunction is recognized as a core feature of these diseases. Emerging evidence also suggests that defects in mitochondrial biogenesis, number, morphology, fusion, and fission, contribute to the development and progression of metabolic diseases. Our previous studies revealed that balanced deep-sea water (BDSW) has potential as a treatment for diabetes and obesity. In this study, we aimed to investigate the mechanism by which BDSW regulates diabetes and obesity by studying its effects on mitochondrial metabolism. To determine whether BDSW regulates mitochondrial biogenesis and function, we investigated its effects on mitochondrial DNA (mtDNA) content, mitochondrial enzyme activity, and the expression of transcription factors and mitochondria specific genes, as well as on the phosphorylation of signaling molecules associated with mitochondria biogenesis and its function in C2C12 myotubes. BDSW increased mitochondrial biogenesis in a time and dose-dependent manner. Quantitative real-time PCR revealed that BDSW enhances gene expression of PGC-1α, NRF1, and TFAM for mitochondrial transcription; MFN1/2 and DRP1 for mitochondrial fusion; OPA1 for mitochondrial fission; TOMM40 and TIMM44 for mitochondrial protein import; CPT-1α and MCAD for fatty acid oxidation; CYTC for oxidative phosphorylation. Upregulation of these genes was validated by increased mitochondria staining, CS activity, CytC oxidase activity, NAD+ to NADH ratio, and the phosphorylation of signaling molecules such as AMPK and SIRT1. Moreover, drinking BDSW remarkably improved mtDNA content in the muscles of HFD-induced obese mice. Taken together, these results suggest that the stimulatory effect of BDSW on mitochondrial biogenesis and function may provide further insights into the regulatory mechanism of BDSW-induced anti-diabetic and anti-obesity action. PMID:26068191

  9. Stimulatory Effects of Balanced Deep Sea Water on Mitochondrial Biogenesis and Function.

    PubMed

    Ha, Byung Geun; Park, Jung-Eun; Cho, Hyun-Jung; Shon, Yun Hee

    2015-01-01

    The worldwide prevalence of metabolic diseases, including obesity and diabetes, is increasing. Mitochondrial dysfunction is recognized as a core feature of these diseases. Emerging evidence also suggests that defects in mitochondrial biogenesis, number, morphology, fusion, and fission, contribute to the development and progression of metabolic diseases. Our previous studies revealed that balanced deep-sea water (BDSW) has potential as a treatment for diabetes and obesity. In this study, we aimed to investigate the mechanism by which BDSW regulates diabetes and obesity by studying its effects on mitochondrial metabolism. To determine whether BDSW regulates mitochondrial biogenesis and function, we investigated its effects on mitochondrial DNA (mtDNA) content, mitochondrial enzyme activity, and the expression of transcription factors and mitochondria specific genes, as well as on the phosphorylation of signaling molecules associated with mitochondria biogenesis and its function in C2C12 myotubes. BDSW increased mitochondrial biogenesis in a time and dose-dependent manner. Quantitative real-time PCR revealed that BDSW enhances gene expression of PGC-1α, NRF1, and TFAM for mitochondrial transcription; MFN1/2 and DRP1 for mitochondrial fusion; OPA1 for mitochondrial fission; TOMM40 and TIMM44 for mitochondrial protein import; CPT-1α and MCAD for fatty acid oxidation; CYTC for oxidative phosphorylation. Upregulation of these genes was validated by increased mitochondria staining, CS activity, CytC oxidase activity, NAD+ to NADH ratio, and the phosphorylation of signaling molecules such as AMPK and SIRT1. Moreover, drinking BDSW remarkably improved mtDNA content in the muscles of HFD-induced obese mice. Taken together, these results suggest that the stimulatory effect of BDSW on mitochondrial biogenesis and function may provide further insights into the regulatory mechanism of BDSW-induced anti-diabetic and anti-obesity action. PMID:26068191

  10. Evaluation of the effects of Streptococcus mutans chaperones and protein secretion machinery components on cell surface protein biogenesis, competence, and mutacin production.

    PubMed

    Crowley, P J; Brady, L J

    2016-02-01

    The respective contributions of components of the protein translocation/maturation machinery to cell surface biogenesis in Streptococcus mutans are not fully understood. Here we used a genetic approach to characterize the effects of deletion of genes encoding the ribosome-associated chaperone RopA (Trigger Factor), the surface-localized foldase PrsA, and the membrane-localized chaperone insertases YidC1 and YidC2, both singly and in combination, on bacterial growth, chain length, self-aggregation, cell surface hydrophobicity, autolysis, and antigenicity of surface proteins P1 (AgI/II, PAc), WapA, GbpC, and GtfD. The single and double deletion mutants, as well as additional mutant strains lacking components of the signal recognition particle pathway, were also evaluated for their effects on mutacin production and genetic competence. PMID:26386361

  11. RNA Interference Pathways in Fungi: Mechanisms and Functions

    PubMed Central

    Chang, Shwu-Shin; Zhang, Zhenyu; Liu, Yi

    2015-01-01

    RNA interference (RNAi) is a conserved eukaryotic gene regulatory mechanism that uses small non-coding RNAs to mediate post-transcriptional/transcriptional gene silencing. The fission yeast Schizosaccharomyces pombe and the filamentous fungus Neurospora crassa have served as important model systems since the beginning of RNAi studies. Studies in these two organisms and other fungi have contributed significantly to our understanding of the mechanisms and functions of RNAi in eukaryotes. In addition, surprisingly diverse RNAi-mediated processes and small RNA biogenesis pathways have been discovered in fungi. In this review, an overview is given of different fungal RNAi pathways with a focus on their mechanisms and functions. PMID:22746336

  12. Splicing Factor 2-Associated Protein p32 Participates in Ribosome Biogenesis by Regulating the Binding of Nop52 and Fibrillarin to Preribosome Particles*

    PubMed Central

    Yoshikawa, Harunori; Komatsu, Wataru; Hayano, Toshiya; Miura, Yutaka; Homma, Keiichi; Izumikawa, Keiichi; Ishikawa, Hideaki; Miyazawa, Naoki; Tachikawa, Hiroyuki; Yamauchi, Yoshio; Isobe, Toshiaki; Takahashi, Nobuhiro

    2011-01-01

    Ribosome biogenesis starts with transcription of the large ribosomal RNA precursor (47S pre-rRNA), which soon combines with numerous factors to form the 90S pre-ribosome in the nucleolus. Although the subsequent separation of the pre-90S particle into pre-40S and pre-60S particles is critical for the production process of mature small and large ribosomal subunits, its molecular mechanisms remain undetermined. Here, we present evidence that p32, fibrillarin (FBL), and Nop52 play key roles in this separation step. Mass-based analyses combined with immunoblotting showed that p32 associated with 155 proteins including 31 rRNA-processing factors (of which nine were components of small subunit processome, and six were those of RIX1 complex), 13 chromatin remodeling components, and six general transcription factors required for RNA polymerase III-mediated transcription. Of these, a late rRNA-processing factor Nop52 interacted directly with p32. Immunocytochemical analyses demonstrated that p32 colocalized with an early rRNA-processing factor FBL or Nop52 in the nucleolus and Cajal bodies, but was excluded from the nucleolus after actinomycin D treatment. p32 was present in the pre-ribosomal fractions prepared by cell fractionation or separated by ultracentrifugation of the nuclear extract. p32 also associated with pre-rRNAs including 47S/45S and 32S pre-rRNAs. Furthermore, knockdown of p32 with a small interfering RNA slowed the early processing from 47S/45S pre-rRNAs to 18S rRNA and 32S pre-rRNA. Finally, Nop52 was found to compete with FBL for binding to p32 probably in the nucleolus. Given the fact that FBL and Nop52 are associated with pre-ribosome particles distinctly different from each other, we suggest that p32 is a new rRNA maturation factor involved in the remodeling from pre-90S particles to pre-40S and pre-60S particles that requires the exchange of FBL for Nop52. PMID:21536856

  13. Augmentation of aerobic respiration and mitochondrial biogenesis in skeletal muscle by hypoxia preconditioning with cobalt chloride

    SciTech Connect

    Saxena, Saurabh; Shukla, Dhananjay; Bansal, Anju

    2012-11-01

    High altitude/hypoxia training is known to improve physical performance in athletes. Hypoxia induces hypoxia inducible factor-1 (HIF-1) and its downstream genes that facilitate hypoxia adaptation in muscle to increase physical performance. Cobalt chloride (CoCl{sub 2}), a hypoxia mimetic, stabilizes HIF-1, which otherwise is degraded in normoxic conditions. We studied the effects of hypoxia preconditioning by CoCl{sub 2} supplementation on physical performance, glucose metabolism, and mitochondrial biogenesis using rodent model. The results showed significant increase in physical performance in cobalt supplemented rats without (two times) or with training (3.3 times) as compared to control animals. CoCl{sub 2} supplementation in rats augmented the biological activities of enzymes of TCA cycle, glycolysis and cytochrome c oxidase (COX); and increased the expression of glucose transporter-1 (Glut-1) in muscle showing increased glucose metabolism by aerobic respiration. There was also an increase in mitochondrial biogenesis in skeletal muscle observed by increased mRNA expressions of mitochondrial biogenesis markers which was further confirmed by electron microscopy. Moreover, nitric oxide production increased in skeletal muscle in cobalt supplemented rats, which seems to be the major reason for peroxisome proliferator activated receptor-gamma coactivator-1α (PGC-1α) induction and mitochondrial biogenesis. Thus, in conclusion, we state that hypoxia preconditioning by CoCl{sub 2} supplementation in rats increases mitochondrial biogenesis, glucose uptake and metabolism by aerobic respiration in skeletal muscle, which leads to increased physical performance. The significance of this study lies in understanding the molecular mechanism of hypoxia adaptation and improvement of work performance in normal as well as extreme conditions like hypoxia via hypoxia preconditioning. -- Highlights: ► We supplemented rats with CoCl{sub 2} for 15 days along with training. ► Co

  14. Redox processes controlling the biogenesis of c-type cytochromes.

    PubMed

    Bonnard, Géraldine; Corvest, Vincent; Meyer, Etienne H; Hamel, Patrice P

    2010-11-01

    In mitochondria, two mono heme c-type cytochromes are essential electron shuttles of the respiratory chain. They are characterized by the covalent attachment of their heme C to a CXXCH motif in the apoproteins. This post-translational modification occurs in the intermembrane space compartment. Dedicated assembly pathways have evolved to achieve this chemical reaction that requires a strict reducing environment. In mitochondria, two unrelated machineries operate, the rather simple System III in yeast and animals and System I in plants and some protozoans. System I is also found in bacteria and shares some common features with System II that operates in bacteria and plastids. This review aims at presenting how different systems control the chemical requirements for the heme ligation in the compartments where cytochrome c maturation takes place. A special emphasis will be given on the redox processes that are required for the heme attachment reaction onto apocytochromes c.

  15. VAMP7 Modulates Ciliary Biogenesis in Kidney Cells

    PubMed Central

    Szalinski, Christina M.; Labilloy, Anatália; Bruns, Jennifer R.; Weisz, Ora A.

    2014-01-01

    Epithelial cells elaborate specialized domains that have distinct protein and lipid compositions, including the apical and basolateral surfaces and primary cilia. Maintaining the identity of these domains is required for proper cell function, and requires the efficient and selective SNARE-mediated fusion of vesicles containing newly synthesized and recycling proteins with the proper target membrane. Multiple pathways exist to deliver newly synthesized proteins to the apical surface of kidney cells, and the post-Golgi SNAREs, or VAMPs, involved in these distinct pathways have not been identified. VAMP7 has been implicated in apical protein delivery in other cell types, and we hypothesized that this SNARE would have differential effects on the trafficking of apical proteins known to take distinct routes to the apical surface in kidney cells. VAMP7 expressed in polarized Madin Darby canine kidney cells colocalized primarily with LAMP2-positive compartments, and siRNA-mediated knockdown modulated lysosome size, consistent with the known function of VAMP7 in lysosomal delivery. Surprisingly, VAMP7 knockdown had no effect on apical delivery of numerous cargoes tested, but did decrease the length and frequency of primary cilia. Additionally, VAMP7 knockdown disrupted cystogenesis in cells grown in a three-dimensional basement membrane matrix. The effects of VAMP7 depletion on ciliogenesis and cystogenesis are not directly linked to the disruption of lysosomal function, as cilia lengths and cyst morphology were unaffected in an MDCK lysosomal storage disorder model. Together, our data suggest that VAMP7 plays an essential role in ciliogenesis and lumen formation. To our knowledge, this is the first study implicating an R-SNARE in ciliogenesis and cystogenesis. PMID:24466086

  16. Correction: Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis.

    PubMed

    Alqahtani, Norah; Porwal, Suheel K; James, Elle D; Bis, Dana M; Karty, Jonathan A; Lane, Amy L; Viswanathan, Rajesh

    2015-09-21

    Correction for 'Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis' by Norah Alqahtani et al., Org. Biomol. Chem., 2015, 13, 7177-7192.

  17. Amyloid beta-protein and lipid rafts: focused on biogenesis and catabolism.

    PubMed

    Araki, Wataru; Tamaoka, Akira

    2015-01-01

    Cerebral accumulation of amyloid β-protein (Aβ) is thought to play a key role in the molecular pathology of Alzheimer's disease (AD). Three secretases (β-, γ-, and α-secretase) are proteases that control the production of Aβ from amyloid precursor protein. Increasing evidence suggests that cholesterol-rich membrane microdomains termed 'lipid rafts' are involved in the biogenesis and accumulation of Aβ as well as Aβ-mediated neurotoxicity. γ-Secretase is enriched in lipid rafts, which are considered an important site for Aβ generation. Additionally, Aβ-degrading peptidases located in lipid rafts, such as neprilysin, appear to play a role in Aβ catabolism. This mini-review focuses on the roles of lipid rafts in the biogenesis and catabolism of Aβ, covering recent research on the relationship between lipid rafts and the three secretases or Aβ-degrading peptidases. Furthermore, the significance of lipid rafts in Aβ aggregation and neurotoxicity is briefly summarized.

  18. Phytoestrogens and mitochondrial biogenesis in breast cancer. Influence of estrogen receptors ratio.

    PubMed

    Roca, Pilar; Sastre-Serra, Jorge; Nadal-Serrano, Mercedes; Pons, Daniel Gabriel; Blanquer-Rosselló, Ma del Mar; Oliver, Jordi

    2014-01-01

    Phytoestrogens were originally identified as compounds having a close similarity in structure to estrogens and harboring weak estrogen activity. The interest in phytoestrogens as potential therapeutic agents has recently risen in the field of oncology, since population based studies have linked phytoestrogens consumption with a decreased risk of mortality due to several types of cancer. This review departs from the main focus of these articles by describing recent advances in our understanding of phytoestrogen potential action on mitochondria, specifically on mitochondrial biogenesis, dynamics and functionality, as well as mitoptosis in breast cancer. Further studies are necessary to explain the effects of individual phytoestrogens on mitochondrial biogenesis and dynamics and for designing of new therapy targets for cancer treatment, nevertheless area promising therapeutic approach.

  19. The effect of ethidium bromide and chloramphenicol on mitochondrial biogenesis in primary human fibroblasts

    SciTech Connect

    Kao, Li-Pin; Ovchinnikov, Dmitry; Wolvetang, Ernst

    2012-05-15

    The expression of mitochondrial components is controlled by an intricate interplay between nuclear transcription factors and retrograde signaling from mitochondria. The role of mitochondrial DNA (mtDNA) and mtDNA-encoded proteins in mitochondrial biogenesis is, however, poorly understood and thus far has mainly been studied in transformed cell lines. We treated primary human fibroblasts with ethidium bromide (EtBr) or chloramphenicol for six weeks to inhibit mtDNA replication or mitochondrial protein synthesis, respectively, and investigated how the cells recovered from these insults two weeks after removal of the drugs. Although cellular growth and mitochondrial gene expression were severely impaired after both inhibitor treatments we observed marked differences in mitochondrial structure, membrane potential, glycolysis, gene expression, and redox status between fibroblasts treated with EtBr and chloramphenicol. Following removal of the drugs we further detected clear differences in expression of both mtDNA-encoded genes and nuclear transcription factors that control mitochondrial biogenesis, suggesting that the cells possess different compensatory mechanisms to recover from drug-induced mitochondrial dysfunction. Our data reveal new aspects of the interplay between mitochondrial retrograde signaling and the expression of nuclear regulators of mitochondrial biogenesis, a process with direct relevance to mitochondrial diseases and chloramphenicol toxicity in humans. -- Highlights: ► Cells respond to certain environmental toxins by increasing mitochondrial biogenesis. ► We investigated the effect of Chloramphenicol and EtBr in primary human fibroblasts. ► Inhibiting mitochondrial protein synthesis or DNA replication elicit different effects. ► We provide novel insights into the cellular responses toxins and antibiotics.

  20. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis

    NASA Astrophysics Data System (ADS)

    Finley, Daniel; Bartel, Bonnie; Varshavsky, Alexander

    1989-03-01

    Three of the four yeast ubiquitin genes encode hybrid proteins which are cleaved to yield ubiquitin and previously unidentified ribosomal proteins. The transient association between ubiquitin and these proteins promotes their incorporation into nascent ribosomes and is required for efficient ribosome biogenesis. These results suggest a novel 'chaperone' function for ubiquitin, in which its covalent association with other proteins promotes the formation of specific cellular structures.

  1. Structures of the double-ring AAA ATPase Pex1-Pex6 involved in peroxisome biogenesis.

    PubMed

    Tan, Dongyan; Blok, Neil B; Rapoport, Tom A; Walz, Thomas

    2016-03-01

    The Pex1 and Pex6 proteins are members of the AAA family of ATPases and are involved in peroxisome biogenesis. Recently, cryo-electron microscopy structures of the Pex1-Pex6 complex in different nucleotide states have been determined. This Structural Snapshot describes the structural features of the complex and their implications for its function, as well as questions that still await answers.

  2. Yeast Mitochondria as a Model System to Study the Biogenesis of Bacterial β-Barrel Proteins.

    PubMed

    Ulrich, Thomas; Oberhettinger, Philipp; Autenrieth, Ingo B; Rapaport, Doron

    2015-01-01

    Beta-barrel proteins are found in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. The evolutionary conservation in the biogenesis of these proteins allows mitochondria to assemble bacterial β-barrel proteins in their functional form. In this chapter, we describe exemplarily how the capacity of yeast mitochondria to process the trimeric autotransporter YadA can be used to study the role of bacterial periplasmic chaperones in this process. PMID:26427673

  3. PBR1 selectively controls biogenesis of photosynthetic complexes by modulating translation of the large chloroplast gene Ycf1 in Arabidopsis

    PubMed Central

    Yang, Xiao-Fei; Wang, Yu-Ting; Chen, Si-Ting; Li, Ji-Kai; Shen, Hong-Tao; Guo, Fang-Qing

    2016-01-01

    The biogenesis of photosystem I (PSI), cytochrome b6f (Cytb6f) and NADH dehydrogenase (NDH) complexes relies on the spatially and temporally coordinated expression and translation of both nuclear and chloroplast genes. Here we report the identification of photosystem biogenesis regulator 1 (PBR1), a nuclear-encoded chloroplast RNA-binding protein that regulates the concerted biogenesis of NDH, PSI and Cytb6f complexes. We identified Ycf1, one of the two largest chloroplast genome-encoded open reading frames as the direct downstream target protein of PBR1. Biochemical and molecular analyses reveal that PBR1 regulates Ycf1 translation by directly binding to its mRNA. Surprisingly, we further demonstrate that relocation of the chloroplast gene Ycf1 fused with a plastid-transit sequence to the nucleus bypasses the requirement of PBR1 for Ycf1 translation, which sufficiently complements the defects in biogenesis of NDH, PSI and Cytb6f complexes in PBR1-deficient plants. Remarkably, the nuclear-encoded PBR1 tightly controls the expression of the chloroplast gene Ycf1 at the translational level, which is sufficient to sustain the coordinated biogenesis of NDH, PSI and Cytb6f complexes as a whole. Our findings provide deep insights into better understanding of how a predominant nuclear-encoded factor can act as a migratory mediator and undergoes selective translational regulation of the target plastid gene in controlling biogenesis of photosynthetic complexes. PMID:27462450

  4. PBR1 selectively controls biogenesis of photosynthetic complexes by modulating translation of the large chloroplast gene Ycf1 in Arabidopsis.

    PubMed

    Yang, Xiao-Fei; Wang, Yu-Ting; Chen, Si-Ting; Li, Ji-Kai; Shen, Hong-Tao; Guo, Fang-Qing

    2016-01-01

    The biogenesis of photosystem I (PSI), cytochrome b 6 f (Cytb 6 f) and NADH dehydrogenase (NDH) complexes relies on the spatially and temporally coordinated expression and translation of both nuclear and chloroplast genes. Here we report the identification of photosystem biogenesis regulator 1 (PBR1), a nuclear-encoded chloroplast RNA-binding protein that regulates the concerted biogenesis of NDH, PSI and Cytb 6 f complexes. We identified Ycf1, one of the two largest chloroplast genome-encoded open reading frames as the direct downstream target protein of PBR1. Biochemical and molecular analyses reveal that PBR1 regulates Ycf1 translation by directly binding to its mRNA. Surprisingly, we further demonstrate that relocation of the chloroplast gene Ycf1 fused with a plastid-transit sequence to the nucleus bypasses the requirement of PBR1 for Ycf1 translation, which sufficiently complements the defects in biogenesis of NDH, PSI and Cytb 6 f complexes in PBR1-deficient plants. Remarkably, the nuclear-encoded PBR1 tightly controls the expression of the chloroplast gene Ycf1 at the translational level, which is sufficient to sustain the coordinated biogenesis of NDH, PSI and Cytb 6 f complexes as a whole. Our findings provide deep insights into better understanding of how a predominant nuclear-encoded factor can act as a migratory mediator and undergoes selective translational regulation of the target plastid gene in controlling biogenesis of photosynthetic complexes. PMID:27462450

  5. Geminating pollen has tubular vacuoles, displays highly dynamic vacuole biogenesis, and requires VACUOLESS1 for proper function.

    PubMed

    Hicks, Glenn R; Rojo, Enrique; Hong, Seho; Carter, David G; Raikhel, Natasha V

    2004-03-01

    Vacuoles perform multiple functions in plants, and VCL1 (VACUOLESS1) is essential for biogenesis with loss of expression in the vcl1 mutant leading to lethality. Vacuole biogenesis plays a prominent role in gametophytes, yet is poorly understood. Given the importance of VCL1, we asked if it contributes to vacuole biogenesis during pollen germination. To address this question, it was essential to first understand the dynamics of vacuoles. A tonoplast marker, delta-TIP::GFP, under a pollen-specific promoter permitted the examination of vacuole morphology in germinating pollen of Arabidopsis. Our results demonstrate that germination involves a complex, yet definable, progression of vacuole biogenesis. Pollen vacuoles are extremely dynamic with remarkable features such as elongated (tubular) vacuoles and highly mobile cytoplasmic invaginations. Surprisingly, vcl1 did not adversely impact vacuole morphology in pollen germinated in vitro. To focus further on VCL1 in pollen, reciprocal backcrosses demonstrated reduced transmission of vcl1 through male gametophytes, indicating that vcl1 was expressive after germination. Interestingly, vcl1 affected the fertility of female gametophytes that undergo similarly complex vacuole biogenesis. Our results indicate that vcl1 is lethal in the sporophyte but is not fully expressive in the gametophytes. They also point to the complexity of pollen vacuoles and suggest that the mechanism of vacuole biogenesis in pollen may differ from that in other plant tissues.

  6. Role of dimerization in dopamine D(4) receptor biogenesis.

    PubMed

    Van Craenenbroeck, Kathleen; Borroto-Escuela, Dasiel O; Skieterska, Kamila; Duchou, Jolien; Romero-Fernandez, Wilber; Fuxe, Kjell

    2014-01-01

    Dopamine receptors are G protein-coupled receptors critically involved in locomotion, reward, and cognitive processes. Export of dopamine receptors to the plasma membrane is thought to follow the default secretory pathway, whereby proteins travel from the endoplasmatic reticulum (ER), through the Golgi apparatus, to arrive at the cell surface. Several observations indicate that trafficking from the ER to the plasma membrane is tightly regulated, and that correct folding in the ER acts as a bottle neck to the maturation of the dopamine D4 receptors. The dopamine D(4) receptor is an interesting receptor since it has a polymorphic region in its third intracellular loop, resulting in receptor isoforms of varying length and amino acid composition. Correct folding is enhanced by: (1) interaction with specific proteins, such as ER resident chaperones, (2) interaction with pharmacological chaperones, for example, ligands that are membrane permeable and can bind to the receptor in the ER, and (3) receptor dimerization; the assembly of multisubunit proteins into a quaternary structure is started in the ER before cell surface delivery, which helps in correct folding and subsequent expression. These interactions help the process of GPCR folding, but more importantly they ensure that only properly folded proteins proceed from the ER to the trans-Golgi network. In this review we will mainly focus on the role of receptor dimerization in dopamine D(4) receptor maturation. PMID:25175456

  7. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex.

    PubMed

    Kawai, Shinji; Amano, Atsuo

    2012-04-16

    MicroRNAs (miRNAs) are noncoding RNAs that function as key posttranscriptional regulators of gene expression. miRNA maturation is controlled by the DROSHA microprocessor complex. However, the detailed mechanism of miRNA biogenesis remains unclear. We show that the tumor suppressor breast cancer 1 (BRCA1) accelerates the processing of miRNA primary transcripts. BRCA1 increased the expressions of both precursor and mature forms of let-7a-1, miR-16-1, miR-145, and miR-34a. In addition, this tumor suppressor was shown to be directly associated with DROSHA and DDX5 of the DROSHA microprocessor complex, and it interacted with Smad3, p53, and DHX9 RNA helicase. We also found that BRCA1 recognizes the RNA secondary structure and directly binds with primary transcripts of miRNAs via a DNA-binding domain. Together, these results suggest that BRCA1 regulates miRNA biogenesis via the DROSHA microprocessor complex and Smad3/p53/DHX9. Our findings also indicate novel functions of BRCA1 in miRNA biogenesis, which may be linked to its tumor suppressor mechanism and maintenance of genomic stability.

  8. All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes[S

    PubMed Central

    Tourniaire, Franck; Musinovic, Hana; Gouranton, Erwan; Astier, Julien; Marcotorchino, Julie; Arreguin, Andrea; Bernot, Denis; Palou, Andreu; Bonet, M. Luisa; Ribot, Joan; Landrier, Jean-François

    2015-01-01

    A positive effect of all-trans retinoic acid (ATRA) on white adipose tissue (WAT) oxidative and thermogenic capacity has been described and linked to an in vivo fat-lowering effect of ATRA in mice. However, little is known about the effects of ATRA on mitochondria in white fat. Our objective has been to characterize the effect of ATRA on mitochondria biogenesis and oxidative phosphorylation (OXPHOS) capacity in mature white adipocytes. Transcriptome analysis, oxygraphy, analysis of mitochondrial DNA (mtDNA), and flow cytometry-based analysis of mitochondria density were performed in mature 3T3-L1 adipocytes after 24 h incubation with ATRA (2 µM) or vehicle. Selected genes linked to mitochondria biogenesis and function and mitochondria immunostaining were analyzed in WAT tissues of ATRA-treated as compared with vehicle-treated mice. ATRA upregulated the expression of a large set of genes linked to mtDNA replication and transcription, mitochondrial biogenesis, and OXPHOS in adipocytes, as indicated by transcriptome analysis. Oxygen consumption rate, mtDNA content, and staining of mitochondria were increased in the ATRA-treated adipocytes. Similar results were obtained in WAT depots of ATRA-treated mice. We conclude that ATRA impacts mitochondria in adipocytes, leading to increased OXPHOS capacity and mitochondrial content in these cells. PMID:25914170

  9. Promotion of mitochondrial biogenesis by necdin protects neurons against mitochondrial insults

    PubMed Central

    Hasegawa, Koichi; Yasuda, Toru; Shiraishi, Chinatsu; Fujiwara, Kazushiro; Przedborski, Serge; Mochizuki, Hideki; Yoshikawa, Kazuaki

    2016-01-01

    Neurons rely heavily on mitochondria for their function and survival. Mitochondrial dysfunction contributes to the pathogenesis of neurodegenerative diseases such as Parkinson's disease. PGC-1α is a master regulator of mitochondrial biogenesis and function. Here we identify necdin as a potent PGC-1α stabilizer that promotes mitochondrial biogenesis via PGC-1α in mammalian neurons. Expression of genes encoding mitochondria-specific proteins decreases significantly in necdin-null cortical neurons, where mitochondrial function and expression of the PGC-1α protein are reduced. Necdin strongly stabilizes PGC-1α by inhibiting its ubiquitin-dependent degradation. Forced expression of necdin enhances mitochondrial function in primary cortical neurons and human SH-SY5Y neuroblastoma cells to prevent mitochondrial respiratory chain inhibitor-induced degeneration. Moreover, overexpression of necdin in the substantia nigra in vivo of adult mice protects dopaminergic neurons against degeneration in experimental Parkinson's disease. These data reveal that necdin promotes mitochondrial biogenesis through stabilization of endogenous PGC-1α to exert neuroprotection against mitochondrial insults. PMID:26971449

  10. Increased mitochondrial biogenesis in muscle improves aging phenotypes in the mtDNA mutator mouse.

    PubMed

    Dillon, Lloye M; Williams, Siôn L; Hida, Aline; Peacock, Jacqueline D; Prolla, Tomas A; Lincoln, Joy; Moraes, Carlos T

    2012-05-15

    Aging is an intricate process that increases susceptibility to sarcopenia and cardiovascular diseases. The accumulation of mitochondrial DNA (mtDNA) mutations is believed to contribute to mitochondrial dysfunction, potentially shortening lifespan. The mtDNA mutator mouse, a mouse model with a proofreading-deficient mtDNA polymerase γ, was shown to develop a premature aging phenotype, including sarcopenia, cardiomyopathy and decreased lifespan. This phenotype was associated with an accumulation of mtDNA mutations and mitochondrial dysfunction. We found that increased expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a crucial regulator of mitochondrial biogenesis and function, in the muscle of mutator mice increased mitochondrial biogenesis and function and also improved the skeletal muscle and heart phenotypes of the mice. Deep sequencing analysis of their mtDNA showed that the increased mitochondrial biogenesis did not reduce the accumulation of mtDNA mutations but rather caused a small increase. These results indicate that increased muscle PGC-1α expression is able to improve some premature aging phenotypes in the mutator mice without reverting the accumulation of mtDNA mutations.

  11. Promotion of mitochondrial biogenesis by necdin protects neurons against mitochondrial insults.

    PubMed

    Hasegawa, Koichi; Yasuda, Toru; Shiraishi, Chinatsu; Fujiwara, Kazushiro; Przedborski, Serge; Mochizuki, Hideki; Yoshikawa, Kazuaki

    2016-01-01

    Neurons rely heavily on mitochondria for their function and survival. Mitochondrial dysfunction contributes to the pathogenesis of neurodegenerative diseases such as Parkinson's disease. PGC-1α is a master regulator of mitochondrial biogenesis and function. Here we identify necdin as a potent PGC-1α stabilizer that promotes mitochondrial biogenesis via PGC-1α in mammalian neurons. Expression of genes encoding mitochondria-specific proteins decreases significantly in necdin-null cortical neurons, where mitochondrial function and expression of the PGC-1α protein are reduced. Necdin strongly stabilizes PGC-1α by inhibiting its ubiquitin-dependent degradation. Forced expression of necdin enhances mitochondrial function in primary cortical neurons and human SH-SY5Y neuroblastoma cells to prevent mitochondrial respiratory chain inhibitor-induced degeneration. Moreover, overexpression of necdin in the substantia nigra in vivo of adult mice protects dopaminergic neurons against degeneration in experimental Parkinson's disease. These data reveal that necdin promotes mitochondrial biogenesis through stabilization of endogenous PGC-1α to exert neuroprotection against mitochondrial insults.

  12. All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes.

    PubMed

    Tourniaire, Franck; Musinovic, Hana; Gouranton, Erwan; Astier, Julien; Marcotorchino, Julie; Arreguin, Andrea; Bernot, Denis; Palou, Andreu; Bonet, M Luisa; Ribot, Joan; Landrier, Jean-François

    2015-06-01

    A positive effect of all-trans retinoic acid (ATRA) on white adipose tissue (WAT) oxidative and thermogenic capacity has been described and linked to an in vivo fat-lowering effect of ATRA in mice. However, little is known about the effects of ATRA on mitochondria in white fat. Our objective has been to characterize the effect of ATRA on mitochondria biogenesis and oxidative phosphorylation (OXPHOS) capacity in mature white adipocytes. Transcriptome analysis, oxygraphy, analysis of mitochondrial DNA (mtDNA), and flow cytometry-based analysis of mitochondria density were performed in mature 3T3-L1 adipocytes after 24 h incubation with ATRA (2 µM) or vehicle. Selected genes linked to mitochondria biogenesis and function and mitochondria immunostaining were analyzed in WAT tissues of ATRA-treated as compared with vehicle-treated mice. ATRA upregulated the expression of a large set of genes linked to mtDNA replication and transcription, mitochondrial biogenesis, and OXPHOS in adipocytes, as indicated by transcriptome analysis. Oxygen consumption rate, mtDNA content, and staining of mitochondria were increased in the ATRA-treated adipocytes. Similar results were obtained in WAT depots of ATRA-treated mice. We conclude that ATRA impacts mitochondria in adipocytes, leading to increased OXPHOS capacity and mitochondrial content in these cells.

  13. Protein biogenesis machinery is a driver of replicative aging in yeast

    PubMed Central

    Janssens, Georges E; Meinema, Anne C; González, Javier; Wolters, Justina C; Schmidt, Alexander; Guryev, Victor; Bischoff, Rainer; Wit, Ernst C; Veenhoff, Liesbeth M; Heinemann, Matthias

    2015-01-01

    An integrated account of the molecular changes occurring during the process of cellular aging is crucial towards understanding the underlying mechanisms. Here, using novel culturing and computational methods as well as latest analytical techniques, we mapped the proteome and transcriptome during the replicative lifespan of budding yeast. With age, we found primarily proteins involved in protein biogenesis to increase relative to their transcript levels. Exploiting the dynamic nature of our data, we reconstructed high-level directional networks, where we found the same protein biogenesis-related genes to have the strongest ability to predict the behavior of other genes in the system. We identified metabolic shifts and the loss of stoichiometry in protein complexes as being consequences of aging. We propose a model whereby the uncoupling of protein levels of biogenesis-related genes from their transcript levels is causal for the changes occurring in aging yeast. Our model explains why targeting protein synthesis, or repairing the downstream consequences, can serve as interventions in aging. DOI: http://dx.doi.org/10.7554/eLife.08527.001 PMID:26422514

  14. Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis.

    PubMed

    Giancaspero, Teresa A; Colella, Matilde; Brizio, Carmen; Difonzo, Graziana; Fiorino, Giuseppina M; Leone, Piero; Brandsch, Roderich; Bonomi, Francesco; Iametti, Stefania; Barile, Maria

    2015-01-01

    The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in a broad spectrum of biological activities, among which energetic metabolism and chromatin remodeling. Subcellular localisation of FAD synthase (EC 2.7.7.2, FADS), the second enzyme in the FAD forming pathway, is addressed here in HepG2 cells by confocal microscopy, in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalyzed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesizing activity, hFADS is able to operate as a FAD "chaperone." The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear lysine-specific demethylase 1 (LSD1) or a mitochondrial dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4). Both enzymes carry out similar reactions of oxidative demethylation, in which tetrahydrofolate is converted into 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells. PMID:25954742

  15. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis.

    PubMed Central

    van der Rest, M E; Kamminga, A H; Nakano, A; Anraku, Y; Poolman, B; Konings, W N

    1995-01-01

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an extensive flux of lipids from these organelles to the plasma membrane is required. Although the pathway of protein traffic to the plasma membrane is similar to that of most of the lipids, the bulk flow of lipids is separate from vesicle-mediated protein transport. Recent advances in the analysis of membrane budding and membrane fusion indicate that the mechanisms of protein transport from the endoplasmic reticulum to the Golgi and from the Golgi to plasma membrane are similar. The majority of plasma membrane proteins transport solutes across the membrane. A number of ATP-dependent export systems have been detected that couple the hydrolysis of ATP to transport of molecules out of the cell. The hydrolysis of ATP by the plasma membrane H(+)-ATPase generates a proton motive force which is used to drive secondary transport processes. In S. cerevisiae, many substrates are transported by more than one system. Transport of monosaccharide is catalyzed by uniport systems, while transport of disaccharides, amino acids, and nucleosides is mediated by proton symport systems. Transport activity can be regulated at the level of transcription, e.g., induction and (catabolite) repression, but transport proteins can also be affected posttranslationally by a process termed catabolite inactivation. Catabolite inactivation is triggered by the addition of fermentable sugars, intracellular acidification, stress conditions, and/or nitrogen starvation. Phosphorylation and/or ubiquitination of the transport proteins has been proposed as an initial step in the controlled inactivation and degradation of the target enzyme. The use of artificial membranes, like secretory vesicles and plasma membranes

  16. Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis

    PubMed Central

    Giancaspero, Teresa A.; Colella, Matilde; Brizio, Carmen; Difonzo, Graziana; Fiorino, Giuseppina M.; Leone, Piero; Brandsch, Roderich; Bonomi, Francesco; Iametti, Stefania; Barile, Maria

    2015-01-01

    The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in a broad spectrum of biological activities, among which energetic metabolism and chromatin remodeling. Subcellular localisation of FAD synthase (EC 2.7.7.2, FADS), the second enzyme in the FAD forming pathway, is addressed here in HepG2 cells by confocal microscopy, in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalyzed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesizing activity, hFADS is able to operate as a FAD “chaperone.” The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear lysine-specific demethylase 1 (LSD1) or a mitochondrial dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4). Both enzymes carry out similar reactions of oxidative demethylation, in which tetrahydrofolate is converted into 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells. PMID:25954742

  17. Serpinin: A Novel Chromogranin A-Derived, Secreted Peptide Up-Regulates Protease Nexin-1 Expression and Granule Biogenesis in Endocrine Cells

    PubMed Central

    Koshimizu, Hisatsugu; Cawley, Niamh X.; Kim, Taeyoon; Yergey, Alfred L.

    2011-01-01

    Previously we demonstrated that chromogranin A (CgA) promoted secretory granule biogenesis in endocrine cells by stabilizing and preventing granule protein degradation in the Golgi, through up-regulation of expression of the protease inhibitor, protease nexin-1 (PN-1). However, the mechanism by which CgA signals the increase of PN-1 expression is unknown. Here we identified a 2.9-kDa CgA-C-terminus peptide, which we named serpinin, in conditioned media from AtT-20 cells, a corticotroph cell line, which up-regulated PN-1 mRNA expression. Serpinin was secreted from AtT-20 cells upon high potassium stimulation and increased PN-1 mRNA transcription in these cells, in an actinomycin D-inhibitable manner. CgA itself and other CgA-derived peptides, when added to AtT-20 cell media, had no effect on PN-1 expression. Treatment of AtT-20 cells with 10 nm serpinin elevated cAMP levels and PN-1 mRNA expression, and this effect was inhibited by a protein kinase A inhibitor, 6–22 amide. Serpinin and a cAMP analog, 8-bromo-cAMP, promoted the translocation of the transcription factor Sp1 into the nucleus, which is known to drive PN-1 expression. Additionally, an Sp1 inhibitor, mithramycin A inhibited the serpinin-induced PN-1 mRNA up-regulation. Furthermore, a luciferase reporter assay demonstrated serpinin-induced up-regulation of PN-1 promoter activity in an Sp1-dependent manner. When added to CgB-transfected 6T3 cells, a mutant AtT20 cell line, serpinin induced granule biogenesis as evidenced by the presence of CgB puncta accumulation in the processes and tips. Our findings taken together show that serpinin, a novel CgA-derived peptide, is secreted upon stimulation of corticotrophs and plays an important autocrine role in up-regulating PN-1-dependent granule biogenesis via a cAMP-protein kinase A-Sp1 pathway to replenish released granules. PMID:21436258

  18. Impaired Telomere Maintenance and Decreased Canonical WNT Signaling but Normal Ribosome Biogenesis in Induced Pluripotent Stem Cells from X-Linked Dyskeratosis Congenita Patients

    PubMed Central

    Gu, Bai-Wei; Apicella, Marisa; Mills, Jason; Fan, Jian-Meng; Reeves, Dara A.; French, Deborah; Podsakoff, Gregory M.; Bessler, Monica; Mason, Philip J.

    2015-01-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome characterized by the presence of short telomeres at presentation. Mutations in ten different genes, whose products are involved in the telomere maintenance pathway, have been shown to cause DC. The X-linked form is the most common form of the disease and is caused by mutations in the gene DKC1, encoding the protein dyskerin. Dyskerin is required for the assembly and stability of telomerase and is also involved in ribosomal RNA (rRNA) processing where it converts specific uridines to pseudouridine. DC is thought to result from failure to maintain tissues, like blood, that are renewed by stem cell activity, but research into pathogenic mechanisms has been hampered by the difficulty of obtaining stem cells from patients. We reasoned that induced pluripotent stem (iPS) cells from X-linked DC patients may provide information about the mechanisms involved. Here we describe the production of iPS cells from DC patients with DKC1 mutations Q31E, A353V and ΔL37. In addition we constructed “corrected” lines with a copy of the wild type dyskerin cDNA expressed from the AAVS1 safe harbor locus. We show that in iPS cells with DKC1 mutations telomere maintenance is compromised with short telomere lengths and decreased telomerase activity. The degree to which telomere lengths are affected by expression of telomerase during reprograming, or with ectopic expression of wild type dyskerin, is variable. The recurrent mutation A353V shows the most severe effect on telomere maintenance. A353V cells but not Q31E or ΔL37 cells, are refractory to correction by expression of wild type DKC1 cDNA. Because dyskerin is involved in both telomere maintenance and ribosome biogenesis it has been postulated that defective ribosome biogenesis and translation may contribute to the disease phenotype. Evidence from mouse and zebra fish models has supported the involvement of ribosome biogenesis but primary cells from human

  19. The Yb body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells.

    PubMed

    Qi, Hongying; Watanabe, Toshiaki; Ku, Hsueh-Yen; Liu, Na; Zhong, Mei; Lin, Haifan

    2011-02-01

    Despite exciting progress in understanding the Piwi-interacting RNA (piRNA) pathway in the germ line, less is known about this pathway in somatic cells. We showed previously that Piwi, a key component of the piRNA pathway in Drosophila, is regulated in somatic cells by Yb, a novel protein containing an RNA helicase-like motif and a Tudor-like domain. Yb is specifically expressed in gonadal somatic cells and regulates piwi in somatic niche cells to control germ line and somatic stem cell self-renewal. However, the molecular basis of the regulation remains elusive. Here, we report that Yb recruits Armitage (Armi), a putative RNA helicase involved in the piRNA pathway, to the Yb body, a cytoplasmic sphere to which Yb is exclusively localized. Moreover, co-immunoprecipitation experiments show that Yb forms a complex with Armi. In Yb mutants, Armi is dispersed throughout the cytoplasm, and Piwi fails to enter the nucleus and is rarely detectable in the cytoplasm. Furthermore, somatic piRNAs are drastically diminished, and soma-expressing transposons are desilenced. These observations indicate a crucial role of Yb and the Yb body in piRNA biogenesis, possibly by regulating the activity of Armi that controls the entry of Piwi into the nucleus for its function. Finally, we discovered putative endo-siRNAs in the flamenco locus and the Yb dependence of their expression. These observations further implicate a role for Yb in transposon silencing via both the piRNA and endo-siRNA pathways.

  20. The Yb body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells.

    PubMed

    Qi, Hongying; Watanabe, Toshiaki; Ku, Hsueh-Yen; Liu, Na; Zhong, Mei; Lin, Haifan

    2011-02-01

    Despite exciting progress in understanding the Piwi-interacting RNA (piRNA) pathway in the germ line, less is known about this pathway in somatic cells. We showed previously that Piwi, a key component of the piRNA pathway in Drosophila, is regulated in somatic cells by Yb, a novel protein containing an RNA helicase-like motif and a Tudor-like domain. Yb is specifically expressed in gonadal somatic cells and regulates piwi in somatic niche cells to control germ line and somatic stem cell self-renewal. However, the molecular basis of the regulation remains elusive. Here, we report that Yb recruits Armitage (Armi), a putative RNA helicase involved in the piRNA pathway, to the Yb body, a cytoplasmic sphere to which Yb is exclusively localized. Moreover, co-immunoprecipitation experiments show that Yb forms a complex with Armi. In Yb mutants, Armi is dispersed throughout the cytoplasm, and Piwi fails to enter the nucleus and is rarely detectable in the cytoplasm. Furthermore, somatic piRNAs are drastically diminished, and soma-expressing transposons are desilenced. These observations indicate a crucial role of Yb and the Yb body in piRNA biogenesis, possibly by regulating the activity of Armi that controls the entry of Piwi into the nucleus for its function. Finally, we discovered putative endo-siRNAs in the flamenco locus and the Yb dependence of their expression. These observations further implicate a role for Yb in transposon silencing via both the piRNA and endo-siRNA pathways. PMID:21106531

  1. Functional remodeling of RNA processing in replacement chloroplasts by pathways retained from their predecessors.

    PubMed

    Dorrell, Richard G; Howe, Christopher J

    2012-11-13

    Chloroplasts originate through the endosymbiotic integration of a host and a photosynthetic symbiont, with processes established within the host for the biogenesis and maintenance of the nascent chloroplast. It is thought that several photosynthetic eukaryotes have replaced their original chloroplasts with others derived from different source organisms in a process termed "serial endosymbiosis of chloroplasts." However, it is not known whether replacement chloroplasts are affected by the biogenesis and maintenance pathways established to support their predecessors. Here, we investigate whether pathways established during a previous chloroplast symbiosis function in the replacement chloroplasts of the dinoflagellate alga Karenia mikimotoi. We show that chloroplast transcripts in K. mikimotoi are subject to 3' polyuridylylation and extensive sequence editing. We confirm that these processes do not occur in free-living relatives of the replacement chloroplast lineage, but are otherwise found only in the ancestral, red algal-derived chloroplasts of dinoflagellates and their closest relatives. This indicates that these unusual RNA-processing pathways have been retained from the original symbiont lineage and made use of by the replacement chloroplast. Our results constitute an addition to current theories of chloroplast evolution in which chloroplast biogenesis may be radically remodeled by pathways remaining from previous symbioses.

  2. Similarities and differences in the biogenesis, processing and lysosomal targeting between zebrafish and human pro-Cathepsin D: functional implications.

    PubMed

    Follo, Carlo; Ozzano, Matteo; Montalenti, Claudia; Ekkapongpisit, Maneerat; Isidoro, Ciro

    2013-02-01

    The lysosomal protease Cathepsin D (CD) plays a role in neurodegenerative diseases, cancer, and embryo-fetus abnormalities. It is therefore of interest to know how this protein is synthesized in animal species used for modeling human diseases. Zebrafish (Danio rerio) is emerging as a valuable 'in vivo' vertebrate model for several human diseases. We have characterized the biogenetic pathways of zebrafish and human CD transgenically expressed in both human SH-SY5Y cells and zebrafish PAC2 cells. Differently from human CD, zebrafish CD was synthesized as a mono-glycosylated precursor (pro-CD) that was eventually processed into a single-chain mature polypeptide. In PAC2 cells, ammonium chloride and chloroquine impaired the N-glycosylation, and greatly stimulated the secretion, of pro-CD; still, a portion of un-glycosylated pro-CD reached the lysosomes and was processed to mature CD. The treatment with tunicamycin, which abrogates N-glycosylation, resulted in a similar effect. Zebrafish pro-CD was correctly processed when expressed in human cells, and its glycosylation, transport and maturation were not impaired by ammonium chloride. On the contrary, the transport and processing of human pro-CD expressed in zebrafish cells were profoundly altered: while the intermediate single-chain was not detectable, a small amount of double-chain mature CD still formed. This fact indicates that the enzyme machinery for single- to double-chain processing of mammal CD is present in zebrafish. Our data highlight the respective impact of the information imparted by the primary sequence and of the cellular transport and processing machineries in the biogenesis of lysosomal CD. PMID:23107604

  3. Comparison of ZetaPlus 60S and nitrocellulose membrane filters for the simultaneous concentration of F-RNA coliphages, porcine teschovirus and porcine adenovirus from river water.

    PubMed

    Jones, T H; Muehlhauser, V; Thériault, G

    2014-09-01

    Increasing attention is being paid to the impact of agricultural activities on water quality to understand the impact on public health. F-RNA coliphages have been proposed as viral indicators of fecal contamination while porcine teschovirus (PTV) and porcine adenovirus (PAdV) are proposed indicators of fecal contamination of swine origin. Viruses and coliphages are present in water in very low concentrations and must be concentrated to permit their detection. There is little information comparing the effectiveness of the methods for concentrating F-RNA coliphages with concentration methods for other viruses and vice versa. The objective of this study was to compare 5 current published methods for recovering F-RNA coliphages, PTV and PAdV from river water samples concentrated by electronegative nitrocellulose membrane filters (methods A and B) or electropositive Zeta Plus 60S filters (methods C-E). Method A is used routinely for the detection of coliphages (Méndez et al., 2004) and method C (Brassard et al., 2005) is the official method in Health Canada's compendium for the detection of viruses in bottled mineral or spring water. When river water was inoculated with stocks of F-RNA MS2, PAdV, and PTV to final concentrations of 1×10(6) PFU/100 mL, 1×10(5) gc/100 mL and 3×10(5) gc/100 mL, respectively, a significantly higher recovery for each virus was consistently obtained for method A with recoveries of 52% for MS2, 95% for PAdV, and 1.5% for PTV. When method A was compared with method C for the detection of F-coliphages, PAdV and PTV in river water samples, viruses were detected with higher frequencies and at higher mean numbers with method A than with method C. With method A, F-coliphages were detected in 11/12 samples (5-154 PFU/100 mL), PTV in 12/12 samples (397-10,951 gc/100 mL), PAdV in 1/12 samples (15 gc/100 mL), and F-RNA GIII in 1/12 samples (750 gc/100 mL) while F-RNA genotypes I, II, and IV were not detected by qRT-PCR.

  4. Infectious Entry Pathway of Enterovirus B Species

    PubMed Central

    Marjomäki, Varpu; Turkki, Paula; Huttunen, Moona

    2015-01-01

    Enterovirus B species (EV-B) are responsible for a vast number of mild and serious acute infections. They are also suspected of remaining in the body, where they cause persistent infections contributing to chronic diseases such as type I diabetes. Recent studies of the infectious entry pathway of these viruses revealed remarkable similarities, including non-clathrin entry of large endosomes originating from the plasma membrane invaginations. Many cellular factors regulating the efficient entry have recently been associated with macropinocytic uptake, such as Rac1, serine/threonine p21-activated kinase (Pak1), actin, Na/H exchanger, phospholipace C (PLC) and protein kinase Cα (PKCα). Another characteristic feature is the entry of these viruses to neutral endosomes, independence of endosomal acidification and low association with acidic lysosomes. The biogenesis of neutral multivesicular bodies is crucial for their infection, at least for echovirus 1 (E1) and coxsackievirus A9 (CVA9). These pathways are triggered by the virus binding to their receptors on the plasma membrane, and they are not efficiently recycled like other cellular pathways used by circulating receptors. Therefore, the best “markers” of these pathways may be the viruses and often their receptors. A deeper understanding of this pathway and associated endosomes is crucial in elucidating the mechanisms of enterovirus uncoating and genome release from the endosomes to start efficient replication. PMID:26690201

  5. The presequence pathway is involved in protein sorting to the mitochondrial outer membrane.

    PubMed

    Wenz, Lena-Sophie; Opaliński, Lukasz; Schuler, Max-Hinderk; Ellenrieder, Lars; Ieva, Raffaele; Böttinger, Lena; Qiu, Jian; van der Laan, Martin; Wiedemann, Nils; Guiard, Bernard; Pfanner, Nikolaus; Becker, Thomas

    2014-06-01

    The mitochondrial outer membrane contains integral α-helical and β-barrel proteins that are imported from the cytosol. The machineries importing β-barrel proteins have been identified, however, different views exist on the import of α-helical proteins. It has been reported that the biogenesis of Om45, the most abundant signal-anchored protein, does not depend on proteinaceous components, but involves direct insertion into the outer membrane. We show that import of Om45 occurs via the translocase of the outer membrane and the presequence translocase of the inner membrane. Assembly of Om45 in the outer membrane involves the MIM machinery. Om45 thus follows a new mitochondrial biogenesis pathway that uses elements of the presequence import pathway to direct a protein to the outer membrane.

  6. Non-cytotoxic concentrations of acetaminophen induced mitochondrial biogenesis and antioxidant response in HepG2 cells.

    PubMed

    Zhang, Tingfen; Zhang, Qiang; Guo, Jiabin; Yuan, Haitao; Peng, Hui; Cui, Lan; Yin, Jian; Zhang, Li; Zhao, Jun; Li, Jin; White, Andrew; Carmichael, Paul L; Westmoreland, Carl; Peng, Shuangqing

    2016-09-01

    Mitochondrial dysfunction has been implicated in acute, severe liver injury caused by overdose of acetaminophen (APAP). However, whether mitochondrial biogenesis is involved is unclear. Here we demonstrated that mitochondrial biogenesis, as indicated by the amounts of mitochondrial DNA and proteins, increased significantly in HepG2 cells exposed to low, non-cytotoxic concentrations of APAP. This heightened response was accompanied by upregulated expression of PGC-1α, NRF-1 and TFAM, which are key transcriptional regulators of mitochondrial biogenesis. Additionally, antioxidants including glutathione, MnSOD, HO-1, NQO1, and Nrf2 were also significantly upregulated. In contrast, for HepG2 cells exposed to high, cytotoxic concentration of APAP, mitochondrial biogenesis was inhibited and the expression of its regulatory proteins and antioxidants were concentration-dependently downregulated. In summary, our study indicated that mitochondrial biogenesis, along with antioxidant induction, may be an important cellular adaptive mechanism counteracting APAP-induced toxicity and overwhelming this cytoprotective capacity could result in liver injury. PMID:27438896

  7. eIF1A augments Ago2-mediated Dicer-independent miRNA biogenesis and RNA interference

    NASA Astrophysics Data System (ADS)

    Yi, Tingfang; Arthanari, Haribabu; Akabayov, Barak; Song, Huaidong; Papadopoulos, Evangelos; Qi, Hank H.; Jedrychowski, Mark; Güttler, Thomas; Guo, Cuicui; Luna, Rafael E.; Gygi, Steven P.; Huang, Stephen A.; Wagner, Gerhard

    2015-05-01

    MicroRNA (miRNA) biogenesis and miRNA-guided RNA interference (RNAi) are essential for gene expression in eukaryotes. Here we report that translation initiation factor eIF1A directly interacts with Ago2 and promotes Ago2 activities in RNAi and miR-451 biogenesis. Biochemical and NMR analyses demonstrate that eIF1A binds to the MID domain of Ago2 and this interaction does not impair translation initiation. Alanine mutation of the Ago2-facing Lys56 in eIF1A impairs RNAi activities in human cells and zebrafish. The eIF1A-Ago2 assembly facilitates Dicer-independent biogenesis of miR-451, which mediates erythrocyte maturation. Human eIF1A (heIF1A), but not heIF1A(K56A), rescues the erythrocyte maturation delay in eif1axb knockdown zebrafish. Consistently, miR-451 partly compensates erythrocyte maturation defects in zebrafish with eif1axb knockdown and eIF1A(K56A) expression, supporting a role of eIF1A in miRNA-451 biogenesis in this model. Our results suggest that eIF1A is a novel component of the Ago2-centred RNA-induced silencing complexes (RISCs) and augments Ago2-dependent RNAi and miRNA biogenesis.

  8. Cybrid Models of Parkinson's Disease Show Variable Mitochondrial Biogenesis and Genotype-Respiration Relationships

    PubMed Central

    Keeney, Paula M.; Dunham, Lisa D.; Quigley, Caitlin K.; Morton, Stephanie L.; Bergquist, Kristen E.; Bennett, James P.

    2009-01-01

    Sporadic Parkinson's disease (sPD) is a nervous system-wide disease that presents with a bradykinetic movement disorder and frequently progresses to include depression and cognitive impairment. Cybrid models of sPD are based on expression of sPD platelet mitochondrial DNA (mtDNA) in neural cells and demonstrate some similarities to sPD brains. In sPD and CTL cybrids we characterized aspects of mitochondrial biogenesis, mtDNA genomics, composition of the respirasome and the relationships among isolated mitochondrial and intact cell respiration. Cybrid mtDNA levels varied and correlated with expression of PGC-1α a transcriptional co-activator regulator of mitochondrial biogenesis. Levels of mtDNA heteroplasmic mutations were asymmetrically distributed across the mitochondrial genome; numbers of heteroplasmies were more evenly distributed. Neither levels nor numbers of heteroplasmies distinguished sPD from CTL. sPD cybrid mitochondrial ETC subunit protein levels were not altered. Isolated mitochondrial complex I respiration rates showed limited correlation with whole cell complex I respiration rates in both sPD and CTL cybrids. Intact cell respiration during the normoxic-anoxic transition yielded Km values for oxygen that directly related to respiration rates in CTL but not in sPD cell lines. Both sPD and CTL cybrid cells are substantially heterogeneous in mitochondrial genomic and physiologic properties. Our results suggest that mtDNA depletion may occur in sPD neurons and could reflect impairment of mitochondrial biogenesis. Cybrids remain a valuable model for some aspects of sPD but their heterogeneity mitigates against a simple designation of sPD phenotype in this cell model. PMID:19815014

  9. Pilus Biogenesis in Lactococcus lactis: Molecular Characterization and Role in Aggregation and Biofilm Formation

    PubMed Central

    Oxaran, Virginie; Ledue-Clier, Florence; Dieye, Yakhya; Herry, Jean-Marie; Péchoux, Christine; Meylheuc, Thierry; Briandet, Romain; Juillard, Vincent; Piard, Jean-Christophe

    2012-01-01

    The genome of Lactococcus lactis strain IL1403 harbors a putative pilus biogenesis cluster consisting of a sortase C gene flanked by 3 LPxTG protein encoding genes (yhgD, yhgE, and yhhB), called here pil. However, pili were not detected under standard growth conditions. Over-expression of the pil operon resulted in production and display of pili on the surface of lactococci. Functional analysis of the pilus biogenesis machinery indicated that the pilus shaft is formed by oligomers of the YhgE pilin, that the pilus cap is formed by the YhgD pilin and that YhhB is the basal pilin allowing the tethering of the pilus fibers to the cell wall. Oligomerization of pilin subunits was catalyzed by sortase C while anchoring of pili to the cell wall was mediated by sortase A. Piliated L. lactis cells exhibited an auto-aggregation phenotype in liquid cultures, which was attributed to the polymerization of major pilin, YhgE. The piliated lactococci formed thicker, more aerial biofilms compared to those produced by non-piliated bacteria. This phenotype was attributed to oligomers of YhgE. This study provides the first dissection of the pilus biogenesis machinery in a non-pathogenic Gram-positive bacterium. Analysis of natural lactococci isolates from clinical and vegetal environments showed pili production under standard growth conditions. The identification of functional pili in lactococci suggests that the changes they promote in aggregation and biofilm formation may be important for the natural lifestyle as well as for applications in which these bacteria are used. PMID:23236417

  10. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells

    PubMed Central

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M.; Eguchi, Satoru; Brown, Michael D.

    2015-01-01

    The concept of enhancing structural integrity of mitochondria has emerged as a novel therapeutic option for cardiovascular disease. Flow-induced increase in laminar shear stress is a potent physiological stimulant associated with exercise, which exerts atheroprotective effects in the vasculature. However, the effect of laminar shear stress on mitochondrial remodeling within the vascular endothelium and its related functional consequences remain largely unknown. Using in vitro and in vivo complementary studies, here, we report that aerobic exercise alleviates the release of endothelial microparticles in prehypertensive individuals and that these salutary effects are, in part, mediated by shear stress-induced mitochondrial biogenesis. Circulating levels of total (CD31+/CD42a−) and activated (CD62E+) microparticles released by endothelial cells were significantly decreased (∼40% for both) after a 6-mo supervised aerobic exercise training program in individuals with prehypertension. In cultured human endothelial cells, laminar shear stress reduced the release of endothelial microparticles, which was accompanied by an increase in mitochondrial biogenesis through a sirtuin 1 (SIRT1)-dependent mechanism. Resveratrol, a SIRT1 activator, treatment showed similar effects. SIRT1 knockdown using small-interfering RNA completely abolished the protective effect of shear stress. Disruption of mitochondrial integrity by either antimycin A or peroxisome proliferator-activated receptor-γ coactivator-1α small-interfering RNA significantly increased the number of total, and activated, released endothelial microparticles, and shear stress restored these back to basal levels. Collectively, these data demonstrate a critical role of endothelial mitochondrial integrity in preserving endothelial homeostasis. Moreover, prolonged laminar shear stress, which is systemically elevated during aerobic exercise in the vessel wall, mitigates endothelial dysfunction by promoting mitochondrial

  11. Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis

    PubMed Central

    Hurwitz, Stephanie N.; Conlon, Meghan M.; Rider, Mark A.; Brownstein, Naomi C.; Meckes, David G.

    2016-01-01

    Background Extracellular vesicles (EVs) are important mediators of cell-to-cell communication in healthy and pathological environments. Because EVs are present in a variety of biological fluids and contain molecular signatures of their cell or tissue of origin, they have great diagnostic and prognostic value. The ability of EVs to deliver biologically active proteins, RNAs and lipids to cells has generated interest in developing novel therapeutics. Despite their potential medical use, many of the mechanisms underlying EV biogenesis and secretion remain unknown. Methods Here, we characterized vesicle secretion across the NCI-60 panel of human cancer cells by nanoparticle tracking analysis. Using CellMiner, the quantity of EVs secreted by each cell line was compared to reference transcriptomics data to identify gene products associated with vesicle secretion. Results Gene products positively associated with the quantity of exosomal-sized vesicles included vesicular trafficking classes of proteins with Rab GTPase function and sphingolipid metabolism. Positive correlates of larger microvesicle-sized vesicle secretion included gene products involved in cytoskeletal dynamics and exocytosis, as well as Rab GTPase activation. One of the identified targets, CD63, was further evaluated for its role in vesicle secretion. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 knockout of the CD63 gene in HEK293 cells resulted in a decrease in small vesicle secretion, suggesting the importance of CD63 in exosome biogenesis. Conclusion These observations reveal new insights into genes involved in exosome and microvesicle formation, and may provide a means to distinguish EV sub-populations. This study offers a foundation for further exploration of targets involved in EV biogenesis and secretion. PMID:27421995

  12. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle.

    PubMed

    Lesmana, Ronny; Sinha, Rohit A; Singh, Brijesh K; Zhou, Jin; Ohba, Kenji; Wu, Yajun; Yau, Winifred W Y; Bay, Boon-Huat; Yen, Paul M

    2016-01-01

    Thyroid hormone (TH) and autophagy share similar functions in regulating skeletal muscle growth, regeneration, and differentiation. Although TH recently has been shown to increase autophagy in liver, the regulation and role of autophagy by this hormone in skeletal muscle is not known. Here, using both in vitro and in vivo models, we demonstrated that TH induces autophagy in a dose- and time-dependent manner in skeletal muscle. TH induction of autophagy involved reactive oxygen species (ROS) stimulation of 5'adenosine monophosphate-activated protein kinase (AMPK)-Mammalian target of rapamycin (mTOR)-Unc-51-like kinase 1 (Ulk1) signaling. TH also increased mRNA and protein expression of key autophagy genes, microtubule-associated protein light chain 3 (LC3), Sequestosome 1 (p62), and Ulk1, as well as genes that modulated autophagy and Forkhead box O (FOXO) 1/3a. TH increased mitochondrial protein synthesis and number as well as basal mitochondrial O2 consumption, ATP turnover, and maximal respiratory capacity. Surprisingly, mitochondrial activity and biogenesis were blunted when autophagy was blocked in muscle cells by Autophagy-related gene (Atg)5 short hairpin RNA (shRNA). Induction of ROS and 5'adenosine monophosphate-activated protein kinase (AMPK) by TH played a significant role in the up-regulation of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A), the key regulator of mitochondrial synthesis. In summary, our findings showed that TH-mediated autophagy was essential for stimulation of mitochondrial biogenesis and activity in skeletal muscle. Moreover, autophagy and mitochondrial biogenesis were coupled in skeletal muscle via TH induction of mitochondrial activity and ROS generation. PMID:26562261

  13. Cybrid models of Parkinson's disease show variable mitochondrial biogenesis and genotype-respiration relationships.

    PubMed

    Keeney, Paula M; Dunham, Lisa D; Quigley, Caitlin K; Morton, Stephanie L; Bergquist, Kristen E; Bennett, James P

    2009-12-01

    Sporadic Parkinson's disease (sPD) is a nervous system-wide disease that presents with a bradykinetic movement disorder and frequently progresses to include depression and cognitive impairment. Cybrid models of sPD are based on expression of sPD platelet mitochondrial DNA (mtDNA) in neural cells and demonstrate some similarities to sPD brains. In sPD and CTL cybrids we characterized aspects of mitochondrial biogenesis, mtDNA genomics, composition of the respirasome and the relationships among isolated mitochondrial and intact cell respiration. Cybrid mtDNA levels varied and correlated with expression of PGC-1 alpha, a transcriptional co-activator regulator of mitochondrial biogenesis. Levels of mtDNA heteroplasmic mutations were asymmetrically distributed across the mitochondrial genome; numbers of heteroplasmies were more evenly distributed. Neither levels nor numbers of heteroplasmies distinguished sPD from CTL. sPD cybrid mitochondrial ETC subunit protein levels were not altered. Isolated mitochondrial complex I respiration rates showed limited correlation with whole cell complex I respiration rates in both sPD and CTL cybrids. Intact cell respiration during the normoxic-anoxic transition yielded K(m) values for oxygen that directly related to respiration rates in CTL but not in sPD cell lines. Both sPD and CTL cybrid cells are substantially heterogeneous in mitochondrial genomic and physiologic properties. Our results suggest that mtDNA depletion may occur in sPD neurons and could reflect impairment of mitochondrial biogenesis. Cybrids remain a valuable model for some aspects of sPD but their heterogeneity mitigates against a simple designation of sPD phenotype in this cell model.

  14. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis.

    PubMed

    Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2015-01-06

    Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may

  15. Turn up the power –pharmacological activation of mitochondrial biogenesis in mouse models

    PubMed Central

    Komen, J C; Thorburn, D R

    2014-01-01

    The oxidative phosphorylation (OXPHOS) system in mitochondria is responsible for the generation of the majority of cellular energy in the form of ATP. Patients with genetic OXPHOS disorders form the largest group of inborn errors of metabolism. Unfortunately, there is still a lack of efficient therapies for these disorders other than management of symptoms. Developing therapies has been complicated because, although the total group of OXPHOS patients is relatively large, there is enormous clinical and genetic heterogeneity within this patient population. Thus there has been a lot of interest in generating relevant mouse models for the different kinds of OXPHOS disorders. The most common treatment strategies tested in these mouse models have aimed to up-regulate mitochondrial biogenesis, in order to increase the residual OXPHOS activity present in affected animals and thereby to ameliorate the energy deficiency. Drugs such as bezafibrate, resveratrol and AICAR target the master regulator of mitochondrial biogenesis PGC-1α either directly or indirectly to manipulate mitochondrial metabolism. This review will summarize the outcome of preclinical treatment trials with these drugs in mouse models of OXPHOS disorders and discuss similar treatments in a number of mouse models of common diseases in which pathology is closely linked to mitochondrial dysfunction. In the majority of these studies the pharmacological activation of the PGC-1α axis shows true potential as therapy; however, other effects besides mitochondrial biogenesis may be contributing to this as well. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24102298

  16. Blunted hypertrophic response in aged skeletal muscle is associated with decreased ribosome biogenesis

    PubMed Central

    Kirby, Tyler J.; Lee, Jonah D.; England, Jonathan H.; Chaillou, Thomas; Esser, Karyn A.

    2015-01-01

    The ability of skeletal muscle to hypertrophy in response to a growth stimulus is known to be compromised in older individuals. We hypothesized that a change in the expression of protein-encoding genes in response to a hypertrophic stimulus contributes to the blunted hypertrophy observed with aging. To test this hypothesis, we determined gene expression by microarray analysis of plantaris muscle from 5- and 25-mo-old mice subjected to 1, 3, 5, 7, 10, and 14 days of synergist ablation to induce hypertrophy. Overall, 1,607 genes were identified as being differentially expressed across the time course between young and old groups; however, the difference in gene expression was modest, with cluster analysis showing a similar pattern of expression between the two groups. Despite ribosome protein gene expression being higher in the aged group, ribosome biogenesis was significantly blunted in the skeletal muscle of aged mice compared with mice young in response to the hypertrophic stimulus (50% vs. 2.5-fold, respectively). The failure to upregulate pre-47S ribosomal RNA (rRNA) expression in muscle undergoing hypertrophy of old mice indicated that rDNA transcription by RNA polymerase I was impaired. Contrary to our hypothesis, the findings of the study suggest that impaired ribosome biogenesis was a primary factor underlying the blunted hypertrophic response observed in skeletal muscle of old mice rather than dramatic differences in the expression of protein-encoding genes. The diminished increase in total RNA, pre-47S rRNA, and 28S rRNA expression in aged muscle suggest that the primary dysfunction in ribosome biogenesis occurs at the level of rRNA transcription and processing. PMID:26048973

  17. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis

    PubMed Central

    Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2015-01-01

    Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX’s cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may

  18. Gibberellin indirectly promotes chloroplast biogenesis as a means to maintain the chloroplast population of expanded cells.

    PubMed

    Jiang, Xingshan; Li, Heying; Wang, Ting; Peng, Changlian; Wang, Haiyang; Wu, Hong; Wang, Xiaojing

    2012-12-01

    Chloroplast biogenesis needs to be well coordinated with cell division and cell expansion during plant growth and development to achieve optimal photosynthesis rates. Previous studies showed that gibberellins (GAs) regulate many important plant developmental processes, including cell division and cell expansion. However, the relationship between chloroplast biogenesis with cell division and cell expansion, and how GA coordinately regulates these processes, remains poorly understood. In this study, we showed that chloroplast division was significantly reduced in the GA-deficient mutants of Arabidopsis (ga1-3) and Oryza sativa (d18-AD), accompanied by the reduced expression of several chloroplast division-related genes. However, the chloroplasts of both mutants exhibited increased grana stacking compared with their respective wild-type plants, suggesting that there might be a compensation mechanism linking chloroplast division and grana stacking. A time-course analysis showed that cell expansion-related genes tended to be upregulated earlier and more significantly than the genes related to chloroplast division and cell division in GA-treated ga1-3 leaves, suggesting the possibility that GA may promote chloroplast division indirectly through impacting leaf mesophyll cell expansion. Furthermore, our cellular and molecular analysis of the GA-response signaling mutants suggest that RGA and GAI are the major repressors regulating GA-induced chloroplast division, but other DELLA proteins (RGL1, RGL2 and RGL3) also play a role in repressing chloroplast division in Arabidopsis. Taken together, our data show that GA plays a critical role in controlling and coordinating cell division, cell expansion and chloroplast biogenesis through influencing the DELLA protein family in both dicot and monocot plant species.

  19. Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone.

    PubMed

    Whitney, Spencer M; Birch, Rosemary; Kelso, Celine; Beck, Jennifer L; Kapralov, Maxim V

    2015-03-17

    Enabling improvements to crop yield and resource use by enhancing the catalysis of the photosynthetic CO2-fixing enzyme Rubisco has been a longstanding challenge. Efforts toward realization of this goal have been greatly assisted by advances in understanding the complexities of Rubisco's biogenesis in plastids and the development of tailored chloroplast transformation tools. Here we generate transplastomic tobacco genotypes expressing Arabidopsis Rubisco large subunits (AtL), both on their own (producing tob(AtL) plants) and with a cognate Rubisco accumulation factor 1 (AtRAF1) chaperone (producing tob(AtL-R1) plants) that has undergone parallel functional coevolution with AtL. We show AtRAF1 assembles as a dimer and is produced in tob(AtL-R1) and Arabidopsis leaves at 10-15 nmol AtRAF1 monomers per square meter. Consistent with a postchaperonin large (L)-subunit assembly role, the AtRAF1 facilitated two to threefold improvements in the amount and biogenesis rate of hybrid L8(A)S8(t) Rubisco [comprising AtL and tobacco small (S) subunits] in tob(AtL-R1) leaves compared with tob(AtL), despite >threefold lower steady-state Rubisco mRNA levels in tob(AtL-R1). Accompanying twofold increases in photosynthetic CO2-assimilation rate and plant growth were measured for tob(AtL-R1) lines. These findings highlight the importance of ancillary protein complementarity during Rubisco biogenesis in plastids, the possible constraints this has imposed on Rubisco adaptive evolution, and the likely need for such interaction specificity to be considered when optimizing recombinant Rubisco bioengineering in plants. PMID:25733857

  20. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis.

    PubMed

    Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2015-01-01

    Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may

  1. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis.

    PubMed

    Ipsaro, Jonathan J; Haase, Astrid D; Knott, Simon R; Joshua-Tor, Leemor; Hannon, Gregory J

    2012-11-01

    PIWI-family proteins and their associated small RNAs (piRNAs) act in an evolutionarily conserved innate immune mechanism to provide essential protection for germ-cell genomes against the activity of mobile genetic elements. piRNA populations comprise a molecular definition of transposons, which permits them to distinguish transposons from host genes and selectively silence them. piRNAs can be generated in two distinct ways, forming either primary or secondary piRNAs. Primary piRNAs come from discrete genomic loci, termed piRNA clusters, and seem to be derived from long, single-stranded precursors. The biogenesis of primary piRNAs involves at least two nucleolytic steps. An unknown enzyme cleaves piRNA cluster transcripts to generate monophosphorylated piRNA 5' ends. piRNA 3' ends are probably formed by exonucleolytic trimming, after a piRNA precursor is loaded into its PIWI partner. Secondary piRNAs arise during the adaptive 'ping-pong' cycle, with their 5' termini being formed by the activity of PIWIs themselves. A number of proteins have been implicated genetically in primary piRNA biogenesis. One of these, Drosophila melanogaster Zucchini, is a member of the phospholipase-D family of phosphodiesterases, which includes both phospholipases and nucleases. Here we produced a dimeric, soluble fragment of the mouse Zucchini homologue (mZuc; also known as PLD6) and show that it possesses single-strand-specific nuclease activity. A crystal structure of mZuc at 1.75 Å resolution indicates greater architectural similarity to phospholipase-D family nucleases than to phospholipases. Together, our data suggest that the Zucchini proteins act in primary piRNA biogenesis as nucleases, perhaps generating the 5' ends of primary piRNAs.

  2. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary optic neuropathy.

    PubMed

    Giordano, Carla; Iommarini, Luisa; Giordano, Luca; Maresca, Alessandra; Pisano, Annalinda; Valentino, Maria Lucia; Caporali, Leonardo; Liguori, Rocco; Deceglie, Stefania; Roberti, Marina; Fanelli, Francesca; Fracasso, Flavio; Ross-Cisneros, Fred N; D'Adamo, Pio; Hudson, Gavin; Pyle, Angela; Yu-Wai-Man, Patrick; Chinnery, Patrick F; Zeviani, Massimo; Salomao, Solange R; Berezovsky, Adriana; Belfort, Rubens; Ventura, Dora Fix; Moraes, Milton; Moraes Filho, Milton; Barboni, Piero; Sadun, Federico; De Negri, Annamaria; Sadun, Alfredo A; Tancredi, Andrea; Mancini, Massimiliano; d'Amati, Giulia; Loguercio Polosa, Paola; Cantatore, Palmiro; Carelli, Valerio

    2014-02-01

    Leber's hereditary optic neuropathy is a maternally inherited blinding disease caused as a result of homoplasmic point mutations in complex I subunit genes of mitochondrial DNA. It is characterized by incomplete penetrance, as only some mutation carriers become affected. Thus, the mitochondrial DNA mutation is necessary but not sufficient to cause optic neuropathy. Environmental triggers and genetic modifying factors have been considered to explain its variable penetrance. We measured the mitochondrial DNA copy number and mitochondrial mass indicators in blood cells from affected and carrier individuals, screening three large pedigrees and 39 independently collected smaller families with Leber's hereditary optic neuropathy, as well as muscle biopsies and cells isolated by laser capturing from post-mortem specimens of retina and optic nerves, the latter being the disease targets. We show that unaffected mutation carriers have a significantly higher mitochondrial DNA copy number and mitochondrial mass compared with their affected relatives and control individuals. Comparative studies of fibroblasts from affected, carriers and controls, under different paradigms of metabolic demand, show that carriers display the highest capacity for activating mitochondrial biogenesis. Therefore we postulate that the increased mitochondrial biogenesis in carriers may overcome some of the pathogenic effect of mitochondrial DNA mutations. Screening of a few selected genetic variants in candidate genes involved in mitochondrial biogenesis failed to reveal any significant association. Our study provides a valuable mechanism to explain variability of penetrance in Leber's hereditary optic neuropathy and clues for high throughput genetic screening to identify the nuclear modifying gene(s), opening an avenue to develop predictive genetic tests on disease risk and therapeutic strategies.

  3. In vivo roles of BamA, BamB and BamD in the biogenesis of BamA, a core protein of the β-barrel assembly machine of Escherichia coli.

    PubMed

    Misra, Rajeev; Stikeleather, Ryan; Gabriele, Rebecca

    2015-03-13

    Assembly of the β-barrel outer membrane proteins (OMPs) is an essential cellular process in Gram-negative bacteria and in the mitochondria and chloroplasts of eukaryotes--two organelles of bacterial origin. Central to this process is the conserved β-barrel OMP that belongs to the Omp85 superfamily. In Escherichia coli, BamA is the core β-barrel OMP and, together with four outer membrane lipoproteins, BamBCDE, constitutes the β-barrel assembly machine (BAM). In this paper, we investigated the roles of BamD, an essential lipoprotein, and BamB in BamA biogenesis. Depletion of BamD caused impairment in BamA biogenesis and cessation of cell growth. These defects of BamD depletion were partly reversed by single-amino-acid substitutions mapping within the β-barrel domain of BamA. However, in the absence of BamB, the positive effects of the β-barrel substitutions on BamA biogenesis under BamD depletion conditions were nullified. By employing a BamA protein bearing one such substitution, F474L, it was demonstrated that the mutant BamA protein could not only assemble without BamD but also facilitate the assembly of wild-type BamA expressed in trans. Based on these data, we propose a model in which the Bam lipoproteins, which are localized to the outer membrane by the BAM-independent Lol pathway, aid in the creation of new BAM complexes by serving as outer membrane receptors and folding factors for nascent BamA molecules. The newly assembled BAM holocomplex then catalyzes the assembly of substrate OMPs and BamA. These in vivo findings are corroborated by recently published in vitro data. PMID:24792419

  4. Disruption of snRNP biogenesis factors Tgs1 and pICln induces phenotypes that mirror aspects of SMN-Gemins complex perturbation in Drosophila, providing new insights into spinal muscular atrophy.

    PubMed

    Borg, Rebecca M; Fenech Salerno, Benji; Vassallo, Neville; Bordonne, Rémy; Cauchi, Ruben J

    2016-10-01

    The neuromuscular disorder, spinal muscular atrophy (SMA), results from insufficient levels of the survival motor neuron (SMN) protein. Together with Gemins 2-8 and Unrip, SMN forms the large macromolecular SMN-Gemins complex, which is known to be indispensable for chaperoning the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). It remains unclear whether disruption of this function is responsible for the selective neuromuscular degeneration in SMA. In the present study, we first show that loss of wmd, the Drosophila Unrip orthologue, has a negative impact on the motor system. However, due to lack of a functional relationship between wmd/Unrip and Gemin3, it is likely that Unrip joined the SMN-Gemins complex only recently in evolution. Second, we uncover that disruption of either Tgs1 or pICln, two cardinal players in snRNP biogenesis, results in viability and motor phenotypes that closely resemble those previously uncovered on loss of the constituent members of the SMN-Gemins complex. Interestingly, overexpression of both factors leads to motor dysfunction in Drosophila, a situation analogous to that of Gemin2. Toxicity is conserved in the yeast S. pombe where pICln overexpression induces a surplus of Sm proteins in the cytoplasm, indicating that a block in snRNP biogenesis is partly responsible for this phenotype. Importantly, we show a strong functional relationship and a physical interaction between Gemin3 and either Tgs1 or pICln. We propose that snRNP biogenesis is the pathway connecting the SMN-Gemins complex to a functional neuromuscular system, and its disturbance most likely leads to the motor dysfunction that is typical in SMA. PMID:27388936

  5. Peroxisome biogenesis, protein targeting mechanisms and PEX gene functions in plants.

    PubMed

    Cross, Laura L; Ebeed, Heba Talat; Baker, Alison

    2016-05-01

    Peroxisomes play diverse and important roles in plants. The functions of peroxisomes are dependent upon their steady state protein composition which in turn reflects the balance of formation and turnover of the organelle. Protein import and turnover of constituent peroxisomal proteins are controlled by the state of cell growth and environment. The evolutionary origin of the peroxisome and the role of the endoplasmic reticulum in peroxisome biogenesis are discussed, as informed by studies of the trafficking of peroxisome membrane proteins. The process of matrix protein import in plants and its similarities and differences with peroxisomes in other organisms is presented and discussed in the context of peroxin distribution across the green plants.

  6. Ribosome biogenesis requires a highly diverged XRN family 5'->3' exoribonuclease for rRNA processing in Trypanosoma brucei.

    PubMed

    Sakyiama, Joseph; Zimmer, Sara L; Ciganda, Martin; Williams, Noreen; Read, Laurie K

    2013-10-01

    Although biogenesis of ribosomes is a crucial process in all organisms and is thus well conserved, Trypanosoma brucei ribosome biogenesis, of which maturation of rRNAs is an early step, has multiple points of divergence. Our aim was to determine whether in the processing of the pre-rRNA precursor molecule, 5'→3' exoribonuclease activity in addition to endonucleolytic cleavage is necessary in T. brucei as in other organisms. Our approach initiated with the bioinformatic identification of a putative 5'→3' exoribonuclease, XRNE, which is highly diverged from the XRN2/Rat1 enzyme responsible for rRNA processing in other organisms. Tagging this protein in vivo allowed us to classify XRNE as nucleolar by indirect immunofluorescence and identify by copurification interacting proteins, many of which were ribosomal proteins, ribosome biogenesis proteins, and/or RNA processing proteins. To determine whether XRNE plays a role in ribosome biogenesis in procyclic form cells, we inducibly depleted the protein by RNA interference. This resulted in the generation of aberrant preprocessed 18S rRNA and 5' extended 5.8S rRNA, implicating XRNE in rRNA processing. Polysome profiles of XRNE-depleted cells demonstrated abnormal features including an increase in ribosome small subunit abundance, a decrease in large subunit abundance, and defects in polysome assembly. Furthermore, the 5' extended 5.8S rRNA in XRNE-depleted cells was observed in the large subunit, monosomes, and polysomes in this gradient. Therefore, the function of XRNE in rRNA processing, presumably due to exonucleolytic activity very early in ribosome biogenesis, has consequences that persist throughout all biogenesis stages.

  7. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis

    SciTech Connect

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting; Zheng, Ruimao; Zhu, Shigong

    2014-07-18

    Highlights: • 14,15-EET inhibits OGD-induced apoptosis in cortical neurons. • Mitochondrial biogenesis of cortical neurons is promoted by 14,15-EET. • 14,15-EET preserves mitochondrial function of cortical neurons under OGD. • CREB mediates effect of 14,15-EET on mitochondrial biogenesis and function. - Abstract: 14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen–glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1.

  8. A Genome-Wide Screen for Bacterial Envelope Biogenesis Mutants Identifies a Novel Factor Involved in Cell Wall Precursor Metabolism

    PubMed Central

    Paradis-Bleau, Catherine; Kritikos, George; Orlova, Katya; Typas, Athanasios; Bernhardt, Thomas G.

    2014-01-01

    The cell envelope of Gram-negative bacteria is a formidable barrier that is difficult for antimicrobial drugs to penetrate. Thus, the list of treatments effective against these organisms is small and with the rise of new resistance mechanisms is shrinking rapidly. New therapies to treat Gram-negative bacterial infections are therefore sorely needed. This goal will be greatly aided by a detailed mechanistic understanding of envelope assembly. Although excellent progress in the identification of essential envelope biogenesis systems has been made in recent years, many aspects of the process remain to be elucidated. We therefore developed a simple, quantitative, and high-throughput assay for mutants with envelope biogenesis defects and used it to screen an ordered single-gene deletion library of Escherichia coli. The screen was robust and correctly identified numerous mutants known to be involved in envelope assembly. Importantly, the screen also implicated 102 genes of unknown function as encoding factors that likely impact envelope biogenesis. As a proof of principle, one of these factors, ElyC (YcbC), was characterized further and shown to play a critical role in the metabolism of the essential lipid carrier used for the biogenesis of cell wall and other bacterial surface polysaccharides. Further analysis of the function of ElyC and other hits identified in our screen is likely to uncover a wealth of new information about the biogenesis of the Gram-negative envelope and the vulnerabilities in the system suitable for drug targeting. Moreover, the screening assay described here should be readily adaptable to other organisms to study the biogenesis of different envelope architectures. PMID:24391520

  9. Standardized Boesenbergia pandurata Extract Stimulates Exercise Endurance Through Increasing Mitochondrial Biogenesis.

    PubMed

    Kim, Taeyoon; Kim, Mi-Bo; Kim, Changhee; Jung, Hoe-Yune; Hwang, Jae-Kwan

    2016-07-01

    In the present study, the effect of standardized Boesenbergia pandurata (Roxb.) Schltr. (fingerroot) ethanol extract on exercise endurance was investigated in L6 rat skeletal muscle cells and C57BL/6J mice. Standardized B. pandurata ethanol extract (BPE) increased mitochondrial mass and stimulated the mRNA expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) in vitro. BPE also elevated the mRNA expression of key factors of mitochondrial biogenesis and function, which are activated by PGC-1α, such as estrogen-related receptor α (ERRα), nuclear respiratory factor 1 (NRF-1), and mitochondrial transcription factor A (Tfam). In animal models, both normal and high-fat diet (HFD)-induced obese mice treated with BPE ran much longer than their respective controls. In addition, BPE increased the protein expressions of phosphorylated AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), PGC-1α, and peroxisome proliferator-activated receptor delta (PPARδ), which are stimulated by exercise. These results indicate that B. pandurata could be a potential nutraceutical candidate for enhancing exercise endurance based on its mitochondrial biogenesis and exercise-mimicking effects. PMID:27331877

  10. Mutant p53 inhibits miRNA biogenesis by interfering with the microprocessor complex.

    PubMed

    Garibaldi, F; Falcone, E; Trisciuoglio, D; Colombo, T; Lisek, K; Walerych, D; Del Sal, G; Paci, P; Bossi, G; Piaggio, G; Gurtner, A

    2016-07-21

    Downregulation of microRNAs (miRNAs) is commonly observed in cancers and promotes tumorigenesis suggesting that miRNAs may function as tumor suppressors. However, the mechanism through which miRNAs are regulated in cancer, and the connection between oncogenes and miRNA biogenesis remain poorly understood. The TP53 tumor-suppressor gene is mutated in half of human cancers resulting in an oncogene with gain-of-function activities. Here we demonstrate that mutant p53 (mutp53) oncoproteins modulate the biogenesis of a subset of miRNAs in cancer cells inhibiting their post-transcriptional maturation. Interestingly, among these miRNAs several are also downregulated in human tumors. By confocal, co-immunoprecipitation and RNA-chromatin immunoprecipitation experiments, we show that endogenous mutp53 binds and sequesters RNA helicases p72/82 from the microprocessor complex, interfering with Drosha-pri-miRNAs association. In agreement with this, the overexpression of p72 leads to an increase of mature miRNAs levels. Moreover, functional experiments demonstrate the oncosuppressive role of mutp53-dependent miRNAs (miR-517a, -519a, -218, -105). Our study highlights a previously undescribed mechanism by which mutp53 interferes with Drosha-p72/82 association leading, at least in part, to miRNA deregulation observed in cancer.

  11. A Biogenesis Step Upstream of Microprocessor Controls miR-17∼92 Expression.

    PubMed

    Du, Peng; Wang, Longfei; Sliz, Piotr; Gregory, Richard I

    2015-08-13

    The precise control of miR-17∼92 microRNA (miRNA) is essential for normal development, and overexpression of certain miRNAs from this cluster is oncogenic. Here, we find that the relative expression of the six miRNAs processed from the primary (pri-miR-17∼92) transcript is dynamically regulated during embryonic stem cell (ESC) differentiation. Pri-miR-17∼92 is processed to a biogenesis intermediate, termed "progenitor-miRNA" (pro-miRNA). Pro-miRNA is an efficient substrate for Microprocessor and is required to selectively license production of pre-miR-17, pre-miR-18a, pre-miR-19a, pre-miR-20a, and pre-miR-19b from this cluster. Two complementary cis-regulatory repression domains within pri-miR-17∼92 are required for the blockade of miRNA processing through the formation of an autoinhibitory RNA conformation. The endonuclease CPSF3 (CPSF73) and the spliceosome-associated ISY1 are responsible for pro-miRNA biogenesis and expression of all miRNAs within the cluster except miR-92. Thus, developmentally regulated pro-miRNA processing is a key step controlling miRNA expression and explains the posttranscriptional control of miR-17∼92 expression in development.

  12. Identification and Expression Analysis of Ribosome Biogenesis Factor Co-orthologs in Solanum lycopersicum

    PubMed Central

    Simm, Stefan; Fragkostefanakis, Sotirios; Paul, Puneet; Keller, Mario; Einloft, Jens; Scharf, Klaus-Dieter; Schleiff, Enrico

    2015-01-01

    Ribosome biogenesis involves a large inventory of proteinaceous and RNA cofactors. More than 250 ribosome biogenesis factors (RBFs) have been described in yeast. These factors are involved in multiple aspects like rRNA processing, folding, and modification as well as in ribosomal protein (RP) assembly. Considering the importance of RBFs for particular developmental processes, we examined the complexity of RBF and RP (co-)orthologs by bioinformatic assignment in 14 different plant species and expression profiling in the model crop Solanum lycopersicum. Assigning (co-)orthologs to each RBF revealed that at least 25% of all predicted RBFs are encoded by more than one gene. At first we realized that the occurrence of multiple RBF co-orthologs is not globally correlated to the existence of multiple RP co-orthologs. The transcript abundance of genes coding for predicted RBFs and RPs in leaves and anthers of S. lycopersicum was determined by next generation sequencing (NGS). In combination with existing expression profiles, we can conclude that co-orthologs of RBFs by large account for a preferential function in different tissue or at distinct developmental stages. This notion is supported by the differential expression of selected RBFs during male gametophyte development. In addition, co-regulated clusters of RBF and RP coding genes have been observed. The relevance of these results is discussed. PMID:25698879

  13. Reevaluation of the role of Pex1 and dynamin-related proteins in peroxisome membrane biogenesis

    PubMed Central

    Motley, Alison M.; Galvin, Paul C.; Ekal, Lakhan; Nuttall, James M.

    2015-01-01

    A recent model for peroxisome biogenesis postulates that peroxisomes form de novo continuously in wild-type cells by heterotypic fusion of endoplasmic reticulum–derived vesicles containing distinct sets of peroxisomal membrane proteins. This model proposes a role in vesicle fusion for the Pex1/Pex6 complex, which has an established role in matrix protein import. The growth and division model proposes that peroxisomes derive from existing peroxisomes. We tested these models by reexamining the role of Pex1/Pex6 and dynamin-related proteins in peroxisome biogenesis. We found that induced depletion of Pex1 blocks the import of matrix proteins but does not affect membrane protein delivery to peroxisomes; markers for the previously reported distinct vesicles colocalize in pex1 and pex6 cells; peroxisomes undergo continued growth if fission is blocked. Our data are compatible with the established primary role of the Pex1/Pex6 complex in matrix protein import and show that peroxisomes in Saccharomyces cerevisiae multiply mainly by growth and division. PMID:26644516

  14. Sarcoplasmic-reticulum biogenesis in contraction-inhibited skeletal-muscle cultures.