Science.gov

Sample records for 60s biogenesis pathway

  1. A protein inventory of human ribosome biogenesis reveals an essential function of exportin 5 in 60S subunit export.

    PubMed

    Wild, Thomas; Horvath, Peter; Wyler, Emanuel; Widmann, Barbara; Badertscher, Lukas; Zemp, Ivo; Kozak, Karol; Csucs, Gabor; Lund, Elsebet; Kutay, Ulrike

    2010-10-26

    The assembly of ribosomal subunits in eukaryotes is a complex, multistep process so far mostly studied in yeast. In S. cerevisiae, more than 200 factors including ribosomal proteins and trans-acting factors are required for the ordered assembly of 40S and 60S ribosomal subunits. To date, only few human homologs of these yeast ribosome synthesis factors have been characterized. Here, we used a systematic RNA interference (RNAi) approach to analyze the contribution of 464 candidate factors to ribosomal subunit biogenesis in human cells. The screen was based on visual readouts, using inducible, fluorescent ribosomal proteins as reporters. By performing computer-based image analysis utilizing supervised machine-learning techniques, we obtained evidence for a functional link of 153 human proteins to ribosome synthesis. Our data show that core features of ribosome assembly are conserved from yeast to human, but differences exist for instance with respect to 60S subunit export. Unexpectedly, our RNAi screen uncovered a requirement for the export receptor Exportin 5 (Exp5) in nuclear export of 60S subunits in human cells. We show that Exp5, like the known 60S exportin Crm1, binds to pre-60S particles in a RanGTP-dependent manner. Interference with either Exp5 or Crm1 function blocks 60S export in both human cells and frog oocytes, whereas 40S export is compromised only upon inhibition of Crm1. Thus, 60S subunit export is dependent on at least two RanGTP-binding exportins in vertebrate cells.

  2. MicroRNA biogenesis pathways in cancer

    PubMed Central

    Lin, Shuibin; Gregory, Richard I.

    2016-01-01

    MicroRNAs (miRNAs) are critical regulators of gene expression. Amplification and overexpression of individual ‘oncomiRs’ or genetic loss of tumour suppressor miRNAs are associated with human cancer and are sufficient to drive tumorigenesis in mouse models. Furthermore, global miRNA depletion caused by genetic and epigenetic alterations in components of the miRNA biogenesis machinery is oncogenic. This, together with the recent identification of novel miRNA regulatory factors and pathways, highlights the importance of miRNA dysregulation in cancer. PMID:25998712

  3. SIGNALING PATHWAYS IN MELANOSOME BIOGENESIS AND PATHOLOGY

    PubMed Central

    Schiaffino, Maria Vittoria

    2010-01-01

    Melanosomes are the specialized intracellular organelles of pigment cells devoted to the synthesis, storage and transport of melanin pigments, which are responsible for most visible pigmentation in mammals and other vertebrates. As a direct consequence, any genetic mutation resulting in alteration of melanosomal function, either because affecting pigment cell survival, migration and differentiation, or because interfering with melanosome biogenesis, transport and transfer to keratinocytes, is immediately translated into color variations of skin, fur, hair or eyes. Thus, over one hundred genes and proteins have been identified as pigmentary determinants in mammals, providing us with a deep understanding of this biological system, which functions by using mechanisms and processes that have parallels in other tissues and organs. In particular, many genes implicated in melanosome biogenesis have been characterized, so that melanosomes represent an incredible source of information and a model for organelles belonging to the secretory pathway. Furthermore, the function of melanosomes can be associated with common physiological phenotypes, such as variation of pigmentation among individuals, and with rare pathological conditions, such as albinism, characterized by severe visual defects. Among the most relevant mechanisms operating in melanosome biogenesis are the signal transduction pathways mediated by two peculiar G protein-coupled receptors: the melanocortin-1 receptor (MC1R), involved in the fair skin/red hair phenotype and skin cancer; and OA1 (GPR143), whose loss-of-function results in X-linked ocular albinism. This review will focus on the most recent novelties regarding the functioning of these two receptors, by highlighting emerging signaling mechanisms and general implications for cell biology and pathology. PMID:20381640

  4. Dbp9p, a putative ATP-dependent RNA helicase involved in 60S-ribosomal-subunit biogenesis, functionally interacts with Dbp6p.

    PubMed Central

    Daugeron, M C; Kressler, D; Linder, P

    2001-01-01

    Ribosome synthesis is a highly complex process and constitutes a major cellular activity. The biogenesis of this ribonucleoprotein assembly requires a multitude of protein trans-acting factors including several putative ATP-dependent RNA helicases of the DEAD-box and related protein families. Here we show that the previously uncharacterized Saccharomyces cerevisiae open reading frame YLR276C, hereafter named DBP9 (DEAD-box protein 9), encodes an essential nucleolar protein involved in 60S-ribosomal-subunit biogenesis. Genetic depletion of Dbp9p results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. This terminal phenotype is likely due to the instability of early pre-ribosomal particles, as evidenced by the low steady-state levels and the decreased synthesis of the 27S precursors to mature 25S and 5.8S rRNAs. In agreement with a role of Dbp9p in 60S subunit synthesis, we find that increased Dbp9p dosage efficiently suppresses certain dbp6 alleles and that dbp6/dbp9 double mutants show synthetic lethality. Furthermore, Dbp6p and Dbp9p weakly interact in a yeast two-hybrid assay. Altogether, our findings indicate an intimate functional interaction between Dbp6p and Dbp9p during the process of 60S-ribosomal-subunit assembly. PMID:11565753

  5. Ribosome-stalk biogenesis is coupled with recruitment of nuclear-export factor to the nascent 60S subunit.

    PubMed

    Sarkar, Anshuk; Pech, Markus; Thoms, Matthias; Beckmann, Roland; Hurt, Ed

    2016-12-01

    Nuclear export of preribosomal subunits is a key step during eukaryotic ribosome formation. To efficiently pass through the FG-repeat meshwork of the nuclear pore complex, the large pre-60S subunit requires several export factors. Here we describe the mechanism of recruitment of the Saccharomyces cerevisiae RNA-export receptor Mex67-Mtr2 to the pre-60S subunit at the proper time. Mex67-Mtr2 binds at the premature ribosomal-stalk region, which later during translation serves as a binding platform for translational GTPases on the mature ribosome. The assembly factor Mrt4, a structural homolog of cytoplasmic-stalk protein P0, masks this site, thus preventing untimely recruitment of Mex67-Mtr2 to nuclear pre-60S particles. Subsequently, Yvh1 triggers Mrt4 release in the nucleus, thereby creating a narrow time window for Mex67-Mtr2 association at this site and facilitating nuclear export of the large subunit. Thus, a spatiotemporal mark on the ribosomal stalk controls the recruitment of an RNA-export receptor to the nascent 60S subunit.

  6. The Arabidopsis gene DIG6 encodes a large 60S subunit nuclear export GTPase 1 that is involved in ribosome biogenesis and affects multiple auxin-regulated development processes.

    PubMed

    Zhao, Huayan; Lü, Shiyou; Li, Ruixi; Chen, Tao; Zhang, Huoming; Cui, Peng; Ding, Feng; Liu, Pei; Wang, Guangchao; Xia, Yiji; Running, Mark P; Xiong, Liming

    2015-11-01

    The circularly permuted GTPase large subunit GTPase 1 (LSG1) is involved in the maturation step of the 60S ribosome and is essential for cell viability in yeast. Here, an Arabidopsis mutant dig6 (drought inhibited growth of lateral roots) was isolated. The mutant exhibited multiple auxin-related phenotypes, which included reduced lateral root number, altered leaf veins, and shorter roots. Genetic mapping combined with next-generation DNA sequencing identified that the mutation occurred in AtLSG1-2. This gene was highly expressed in regions of auxin accumulation. Ribosome profiling revealed that a loss of function of AtLSG1-2 led to decreased levels of monosomes, further demonstrating its role in ribosome biogenesis. Quantitative proteomics showed that the expression of certain proteins involved in ribosome biogenesis was differentially regulated, indicating that ribosome biogenesis processes were impaired in the mutant. Further investigations showed that an AtLSG1-2 deficiency caused the alteration of auxin distribution, response, and transport in plants. It is concluded that AtLSG1-2 is integral to ribosome biogenesis, consequently affecting auxin homeostasis and plant development.

  7. The evolution of the ribosome biogenesis pathway from a yeast perspective

    PubMed Central

    Ebersberger, Ingo; Simm, Stefan; Leisegang, Matthias S.; Schmitzberger, Peter; Mirus, Oliver; von Haeseler, Arndt; Bohnsack, Markus T.; Schleiff, Enrico

    2014-01-01

    Ribosome biogenesis is fundamental for cellular life, but surprisingly little is known about the underlying pathway. In eukaryotes a comprehensive collection of experimentally verified ribosome biogenesis factors (RBFs) exists only for Saccharomyces cerevisiae. Far less is known for other fungi, animals or plants, and insights are even more limited for archaea. Starting from 255 yeast RBFs, we integrated ortholog searches, domain architecture comparisons and, in part, manual curation to investigate the inventories of RBF candidates in 261 eukaryotes, 26 archaea and 57 bacteria. The resulting phylogenetic profiles reveal the evolutionary ancestry of the yeast pathway. The oldest core comprising 20 RBF lineages dates back to the last universal common ancestor, while the youngest 20 factors are confined to the Saccharomycotina. On this basis, we outline similarities and differences of ribosome biogenesis across contemporary species. Archaea, so far a rather uncharted domain, possess 38 well-supported RBF candidates of which some are known to form functional sub-complexes in yeast. This provides initial evidence that ribosome biogenesis in eukaryotes and archaea follows similar principles. Within eukaryotes, RBF repertoires vary considerably. A comparison of yeast and human reveals that lineage-specific adaptation via RBF exclusion and addition characterizes the evolution of this ancient pathway. PMID:24234440

  8. Analysis of membrane lipid biogenesis pathways using yeast genetics.

    PubMed

    Gsell, Martina; Daum, Günther

    2013-01-01

    The yeast Saccharomyces cerevisiae has become a valuable eukaryotic model organism to study biochemical and cellular processes at a molecular basis. A common strategy for such studies is the use of single and multiple mutants constructed by genetic manipulation which are compromised in individual enzymatic steps or certain metabolic pathways. Here, we describe selected examples of yeast research on phospholipid metabolism with emphasis on our own work dealing with investigations of phosphatidylethanolamine synthesis. Such studies start with the selection and construction of appropriate mutants and lead to phenotype analysis, lipid profiling, enzymatic analysis, and in vivo experiments. Comparing results obtained with wild-type and mutant strains allows us to understand the role of gene products and metabolic processes in more detail. Such studies are valuable not only for contributing to our knowledge of the complex network of lipid metabolism, but also of effects of lipids on structure and function of cellular membranes.

  9. Recent advances in the Suf Fe-S cluster biogenesis pathway: Beyond the Proteobacteria.

    PubMed

    Outten, F Wayne

    2015-06-01

    Fe-S clusters play critical roles in cellular function throughout all three kingdoms of life. Consequently, Fe-S cluster biogenesis systems are present in most organisms. The Suf (sulfur formation) system is the most ancient of the three characterized Fe-S cluster biogenesis pathways, which also include the Isc and Nif systems. Much of the first work on the Suf system took place in Gram-negative Proteobacteria used as model organisms. These early studies led to a wealth of biochemical, genetic, and physiological information on Suf function. From those studies we have learned that SufB functions as an Fe-S scaffold in conjunction with SufC (and in some cases SufD). SufS and SufE together mobilize sulfur for cluster assembly and SufA traffics the complete Fe-S cluster from SufB to target apo-proteins. However, recent progress on the Suf system in other organisms has opened up new avenues of research and new hypotheses about Suf function. This review focuses primarily on the most recent discoveries about the Suf pathway and where those new models may lead the field. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.

  10. Interplay between Oxygen and Fe–S Cluster Biogenesis: Insights from the Suf Pathway

    PubMed Central

    2015-01-01

    Iron–sulfur (Fe–S) cluster metalloproteins conduct essential functions in nearly all contemporary forms of life. The nearly ubiquitous presence of Fe–S clusters and the fundamental requirement for Fe–S clusters in both aerobic and anaerobic Archaea, Bacteria, and Eukarya suggest that these clusters were likely integrated into central metabolic pathways early in the evolution of life prior to the widespread oxidation of Earth’s atmosphere. Intriguingly, Fe–S cluster-dependent metabolism is sensitive to disruption by oxygen because of the decreased bioavailability of ferric iron as well as direct oxidation of sulfur trafficking intermediates and Fe–S clusters by reactive oxygen species. This fact, coupled with the ubiquity of Fe–S clusters in aerobic organisms, suggests that organisms evolved with mechanisms that facilitate the biogenesis and use of these essential cofactors in the presence of oxygen, which gradually began to accumulate around 2.5 billion years ago as oxygenic photosynthesis proliferated and reduced minerals that buffered against oxidation were depleted. This review highlights the most ancient of the Fe–S cluster biogenesis pathways, the Suf system, which likely was present in early anaerobic forms of life. Herein, we use the evolution of the Suf pathway to assess the relationships between the biochemical functions and physiological roles of Suf proteins, with an emphasis on the selective pressure of oxygen toxicity. Our analysis suggests that diversification into oxygen-containing environments disrupted iron and sulfur metabolism and was a main driving force in the acquisition of accessory Suf proteins (such as SufD, SufE, and SufS) by the core SufB–SufC scaffold complex. This analysis provides a new framework for the study of Fe–S cluster biogenesis pathways and Fe–S cluster-containing metalloenzymes and their complicated patterns of divergence in response to oxygen. PMID:25153801

  11. Recent advances in the Suf Fe-S cluster biogenesis pathway: Beyond the Proteobacteria

    PubMed Central

    Outten, F. Wayne

    2014-01-01

    Fe-S clusters play critical roles in cellular function throughout all three kingdoms of life. Consequently, Fe-S cluster biogenesis systems are present in most organisms. The Suf (sulfur formation) system is the most ancient of the three characterized Fe-S cluster biogenesis pathways, which also include the Isc and Nif systems. Much of the first work on the Suf system took place in Gram-negative Proteobacteria used as model organisms. These early studies led to a wealth of biochemical, genetic, and physiological information on Suf function. From those studies we have learned that SufB functions as an Fe-S scaffold in conjunction with SufC (and in some cases SufD). SufS and SufE together mobilize sulfur for cluster assembly and SufA traffics the complete Fe-S cluster from SufB to target apo-proteins. However, recent progress on the Suf system in other organisms has opened up new avenues of research and new hypotheses about Suf function. This review focuses primarily on the most recent discoveries about the Suf pathway and where those new models may lead the field. PMID:25447545

  12. Secretory granule biogenesis and neuropeptide sorting to the regulated secretory pathway in neuroendocrine cells.

    PubMed

    Loh, Y Peng; Kim, Taeyoon; Rodriguez, Yazmin M; Cawley, Niamh X

    2004-01-01

    Neuropeptide precursors synthesized at the rough endoplasmic reticulum are transported and sorted at the trans-Golgi network (TGN) to the granules of the regulated secretory pathway (RSP) of neuroendocrine cells. They are then processed into active peptides and stored in large dense-core granules (LDCGs) until secreted upon stimulation. We have studied the regulation of biogenesis of the LDCGs and the mechanism by which neuropeptide precursors, such as pro-opiomelanocortin (POMC), are sorted into these LDCGs of the RSP in neuroendocrine and endocrine cells. We provide evidence that chromogranin A (CgA), one of the most abundant acidic glycoproteins ubiquitously present in neuroendocrine/endocrine cells, plays an important role in the regulation of LDCG biogenesis. Specific depletion of CgA expression by antisense RNAs in PC12 cells led to a profound loss of secretory granule formation. Exogenously expressed POMC was neither stored nor secreted in a regulated manner in these CgA-deficient PC12 cells. Overexpression of CgA in a CgA- and LDCG-deficient endocrine cell line, 6T3, restored regulated secretion of transfected POMC and the presence of immunoreactive CgA at the tips of the processes of these cells. Unlike CgA, CgB, another granin protein, could not substitute for the role of CgA in regulating LDCG biogenesis. Thus, we conclude that CgA is a key player in the regulation of the biogenesis of LDCGs in neuroendocrine cells. To examine the mechanism of sorting POMC to the LDCGs, we carried out site-directed mutagenesis, transfected the POMC mutants into PC12 cells, and assayed for regulated secretion. Our previous molecular modeling studies predicted a three-dimensional sorting motif in POMC that can bind to a sorting receptor, membrane carboxypeptidase E (CPE). The sorting signal consists of four conserved residues at the N-terminal loop structure of POMC: two acidic residues and two hydrophobic residues. The two acidic residues were predicted to bind to a

  13. Oxaloacetate activates brain mitochondrial biogenesis, enhances the insulin pathway, reduces inflammation and stimulates neurogenesis.

    PubMed

    Wilkins, Heather M; Harris, Janna L; Carl, Steven M; E, Lezi; Lu, Jianghua; Eva Selfridge, J; Roy, Nairita; Hutfles, Lewis; Koppel, Scott; Morris, Jill; Burns, Jeffrey M; Michaelis, Mary L; Michaelis, Elias K; Brooks, William M; Swerdlow, Russell H

    2014-12-15

    Brain bioenergetic function declines in some neurodegenerative diseases, this may influence other pathologies and administering bioenergetic intermediates could have therapeutic value. To test how one intermediate, oxaloacetate (OAA) affects brain bioenergetics, insulin signaling, inflammation and neurogenesis, we administered intraperitoneal OAA, 1-2 g/kg once per day for 1-2 weeks, to C57Bl/6 mice. OAA altered levels, distributions or post-translational modifications of mRNA and proteins (proliferator-activated receptor-gamma coactivator 1α, PGC1 related co-activator, nuclear respiratory factor 1, transcription factor A of the mitochondria, cytochrome oxidase subunit 4 isoform 1, cAMP-response element binding, p38 MAPK and adenosine monophosphate-activated protein kinase) in ways that should promote mitochondrial biogenesis. OAA increased Akt, mammalian target of rapamycin and P70S6K phosphorylation. OAA lowered nuclear factor κB nucleus-to-cytoplasm ratios and CCL11 mRNA. Hippocampal vascular endothelial growth factor mRNA, doublecortin mRNA, doublecortin protein, doublecortin-positive neuron counts and neurite length increased in OAA-treated mice. (1)H-MRS showed OAA increased brain lactate, GABA and glutathione thereby demonstrating metabolic changes are detectable in vivo. In mice, OAA promotes brain mitochondrial biogenesis, activates the insulin signaling pathway, reduces neuroinflammation and activates hippocampal neurogenesis.

  14. Tor1 and CK2 kinases control a switch between alternative ribosome biogenesis pathways in a growth-dependent manner

    PubMed Central

    Kos-Braun, Isabelle C.; Jung, Ilona; Koš, Martin

    2017-01-01

    Ribosome biogenesis is a major energy-consuming process in the cell that has to be rapidly down-regulated in response to stress or nutrient depletion. The target of rapamycin 1 (Tor1) pathway regulates synthesis of ribosomal RNA (rRNA) at the level of transcription initiation. It remains unclear whether ribosome biogenesis is also controlled directly at the posttranscriptional level. We show that Tor1 and casein kinase 2 (CK2) kinases regulate a rapid switch between a productive and a non-productive pre-rRNA processing pathways in yeast. Under stress, the pre-rRNA continues to be synthesized; however, it is processed differently, and no new ribosomes are produced. Strikingly, the control of the switch does not require the Sch9 kinase, indicating that an unrecognized Tor Complex 1 (TORC1) signaling branch involving CK2 kinase directly regulates ribosome biogenesis at the posttranscriptional level. PMID:28282370

  15. Disparate Pathways for the Biogenesis of Cytochrome Oxidases in Bradyrhizobium japonicum*

    PubMed Central

    Bühler, Doris; Rossmann, Reinhild; Landolt, Sarah; Balsiger, Sylvia; Fischer, Hans-Martin; Hennecke, Hauke

    2010-01-01

    This work addresses the biogenesis of heme-copper terminal oxidases in Bradyrhizobium japonicum, the nitrogen-fixing root nodule symbiont of soybean. B. japonicum has four quinol oxidases and four cytochrome oxidases. The latter include the aa3- and cbb3-type oxidases. Although both have a CuB center in subunit I, the subunit II proteins differ in having either a CuA center (in aa3) or a covalently bound heme c (in cbb3). Two biogenesis factors were genetically studied here, the periplasmically exposed CoxG and ScoI proteins, which are the respective homologs of the mitochondrial copper-trafficking chaperones Cox11 and Sco1 for the formation of the CuB center in subunit I and the CuA center in subunit II of cytochrome aa3. We could demonstrate copper binding to ScoI in vitro, a process for which the thiols of cysteine residues 74 and 78 in the ScoI polypeptide were shown to be essential. Knock-out mutations in the B. japonicum coxG and scoI genes led to loss of cytochrome aa3 assembly and activity in the cytoplasmic membrane, whereas the cbb3-type cytochrome oxidase apparently remained unaffected. This suggests that subunit I of the cbb3-type oxidase obtains its copper cofactor via a different pathway than cytochrome aa3. In contrast to the coxG mutation, the scoI mutation caused a decreased symbiotic nitrogen fixation activity. We hypothesize that a periplasmic B. japonicum protein other than any of the identified CuA proteins depends on ScoI and is required for an effective symbiosis. PMID:20335176

  16. Disparate pathways for the biogenesis of cytochrome oxidases in Bradyrhizobium japonicum.

    PubMed

    Bühler, Doris; Rossmann, Reinhild; Landolt, Sarah; Balsiger, Sylvia; Fischer, Hans-Martin; Hennecke, Hauke

    2010-05-21

    This work addresses the biogenesis of heme-copper terminal oxidases in Bradyrhizobium japonicum, the nitrogen-fixing root nodule symbiont of soybean. B. japonicum has four quinol oxidases and four cytochrome oxidases. The latter include the aa(3)- and cbb(3)-type oxidases. Although both have a Cu(B) center in subunit I, the subunit II proteins differ in having either a Cu(A) center (in aa(3)) or a covalently bound heme c (in cbb(3)). Two biogenesis factors were genetically studied here, the periplasmically exposed CoxG and ScoI proteins, which are the respective homologs of the mitochondrial copper-trafficking chaperones Cox11 and Sco1 for the formation of the Cu(B) center in subunit I and the Cu(A) center in subunit II of cytochrome aa(3). We could demonstrate copper binding to ScoI in vitro, a process for which the thiols of cysteine residues 74 and 78 in the ScoI polypeptide were shown to be essential. Knock-out mutations in the B. japonicum coxG and scoI genes led to loss of cytochrome aa(3) assembly and activity in the cytoplasmic membrane, whereas the cbb(3)-type cytochrome oxidase apparently remained unaffected. This suggests that subunit I of the cbb(3)-type oxidase obtains its copper cofactor via a different pathway than cytochrome aa(3). In contrast to the coxG mutation, the scoI mutation caused a decreased symbiotic nitrogen fixation activity. We hypothesize that a periplasmic B. japonicum protein other than any of the identified Cu(A) proteins depends on ScoI and is required for an effective symbiosis.

  17. The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis.

    PubMed

    Mordas, Amelia; Tokatlidis, Kostas

    2015-08-18

    Mitochondria are fundamental intracellular organelles with key roles in important cellular processes like energy production, Fe/S cluster biogenesis, and homeostasis of lipids and inorganic ions. Mitochondrial dysfunction is consequently linked to many human pathologies (cancer, diabetes, neurodegeneration, stroke) and apoptosis. Mitochondrial biogenesis relies on protein import as most mitochondrial proteins (about 10-15% of the human proteome) are imported after their synthesis in the cytosol. Over the last several years many mitochondrial translocation pathways have been discovered. Among them, the import pathway that targets proteins to the intermembrane space (IMS) stands out as it is the only one that couples import to folding and oxidation and results in the covalent modification of the incoming precursor that adopt internal disulfide bonds in the process (the MIA pathway). The discovery of this pathway represented a significant paradigm shift as it challenged the prevailing dogma that the endoplasmic reticulum is the only compartment of eukaryotic cells where oxidative folding can occur. The concept of the oxidative folding pathway was first proposed on the basis of folding and import data for the small Tim proteins that have conserved cysteine motifs and must adopt intramolecular disulfides after import so that they are retained in the organelle. The introduction of disulfides in the IMS is catalyzed by Mia40 that functions as a chaperone inducing their folding. The sulfhydryl oxidase Erv1 generates the disulfide pairs de novo using either molecular oxygen or, cytochrome c and other proteins as terminal electron acceptors that eventually link this folding process to respiration. The solution NMR structure of Mia40 (and supporting biochemical experiments) showed that Mia40 is a novel type of disulfide donor whose recognition capacity for its substrates relies on a hydrophobic binding cleft found adjacent to a thiol active CPC motif. Targeting of the

  18. The MIA Pathway: A Key Regulator of Mitochondrial Oxidative Protein Folding and Biogenesis

    PubMed Central

    2015-01-01

    Conspectus Mitochondria are fundamental intracellular organelles with key roles in important cellular processes like energy production, Fe/S cluster biogenesis, and homeostasis of lipids and inorganic ions. Mitochondrial dysfunction is consequently linked to many human pathologies (cancer, diabetes, neurodegeneration, stroke) and apoptosis. Mitochondrial biogenesis relies on protein import as most mitochondrial proteins (about 10–15% of the human proteome) are imported after their synthesis in the cytosol. Over the last several years many mitochondrial translocation pathways have been discovered. Among them, the import pathway that targets proteins to the intermembrane space (IMS) stands out as it is the only one that couples import to folding and oxidation and results in the covalent modification of the incoming precursor that adopt internal disulfide bonds in the process (the MIA pathway). The discovery of this pathway represented a significant paradigm shift as it challenged the prevailing dogma that the endoplasmic reticulum is the only compartment of eukaryotic cells where oxidative folding can occur. The concept of the oxidative folding pathway was first proposed on the basis of folding and import data for the small Tim proteins that have conserved cysteine motifs and must adopt intramolecular disulfides after import so that they are retained in the organelle. The introduction of disulfides in the IMS is catalyzed by Mia40 that functions as a chaperone inducing their folding. The sulfhydryl oxidase Erv1 generates the disulfide pairs de novo using either molecular oxygen or, cytochrome c and other proteins as terminal electron acceptors that eventually link this folding process to respiration. The solution NMR structure of Mia40 (and supporting biochemical experiments) showed that Mia40 is a novel type of disulfide donor whose recognition capacity for its substrates relies on a hydrophobic binding cleft found adjacent to a thiol active CPC motif. Targeting

  19. Four distinct secretory pathways serve protein secretion, cell surface growth, and peroxisome biogenesis in the yeast Yarrowia lipolytica.

    PubMed Central

    Titorenko, V I; Ogrydziak, D M; Rachubinski, R A

    1997-01-01

    We have identified and characterized mutants of the yeast Yarrowia lipolytica that are deficient in protein secretion, in the ability to undergo dimorphic transition from the yeast to the mycelial form, and in peroxisome biogenesis. Mutations in the SEC238, SRP54, PEX1, PEX2, PEX6, and PEX9 genes affect protein secretion, prevent the exit of the precursor form of alkaline extracellular protease from the endoplasmic reticulum, and compromise peroxisome biogenesis. The mutants sec238A, srp54KO, pex2KO, pex6KO, and pex9KO are also deficient in the dimorphic transition from the yeast to the mycelial form and are affected in the export of only plasma membrane and cell wall-associated proteins specific for the mycelial form. Mutations in the SEC238, SRP54, PEX1, and PEX6 genes prevent or significantly delay the exit of two peroxisomal membrane proteins, Pex2p and Pex16p, from the endoplasmic reticulum en route to the peroxisomal membrane. Mutations in the PEX5, PEX16, and PEX17 genes, which have previously been shown to be essential for peroxisome biogenesis, affect the export of plasma membrane and cell wall-associated proteins specific for the mycelial form but do not impair exit from the endoplasmic reticulum of either Pex2p and Pex16p or of proteins destined for secretion. Biochemical analyses of these mutants provide evidence for the existence of four distinct secretory pathways that serve to deliver proteins for secretion, plasma membrane and cell wall synthesis during yeast and mycelial modes of growth, and peroxisome biogenesis. At least two of these secretory pathways, which are involved in the export of proteins to the external medium and in the delivery of proteins for assembly of the peroxisomal membrane, diverge at the level of the endoplasmic reticulum. PMID:9271399

  20. A role of uridylation pathway for blockade of let-7 microRNA biogenesis by Lin28B

    PubMed Central

    Suzuki, Hiroshi I; Katsura, Akihiro; Miyazono, Kohei

    2015-01-01

    The precise control of microRNA (miRNA) biosynthesis is crucial for gene regulation. Lin28A and Lin28B are selective inhibitors of biogenesis of let-7 miRNAs involved in development and tumorigenesis. Lin28A selectively inhibits let-7 biogenesis through cytoplasmic uridylation of precursor let-7 by TUT4 terminal uridyl transferase and subsequent degradation by Dis3l2 exonuclease. However, a role of this uridylation pathway remains unclear in let-7 blockade by Lin28B, a paralog of Lin28A, while Lin28B is reported to engage a distinct mechanism in the nucleus to suppress let-7. Here we revisit a functional link between Lin28B and the uridylation pathway with a focus on let-7 metabolism in cancer cells. Both Lin28A and Lin28B interacted with Dis3l2 in the cytoplasm, and silencing of Dis3l2 upregulated uridylated pre-let-7 in both Lin28A- and Lin28B-expressing cancer cell lines. In addition, we found that amounts of let-7 precursors influenced intracellular localization of Lin28B. Furthermore, we found that MCPIP1 (Zc3h12a) ribonuclease was also involved in degradation of both non-uridylated and uridylated pre-let-7. Cancer transcriptome analysis showed association of expression levels of Lin28B and uridylation pathway components, TUT4 and Dis3l2, in various human cancer cells and hepatocellular carcinoma. Collectively, these results suggest that cytoplasmic uridylation pathway actively participates in blockade of let-7 biogenesis by Lin28B. PMID:26080928

  1. The Extracellular Vesicles of the Helminth Pathogen, Fasciola hepatica: Biogenesis Pathways and Cargo Molecules Involved in Parasite Pathogenesis.

    PubMed

    Cwiklinski, Krystyna; de la Torre-Escudero, Eduardo; Trelis, Maria; Bernal, Dolores; Dufresne, Philippe J; Brennan, Gerard P; O'Neill, Sandra; Tort, Jose; Paterson, Steve; Marcilla, Antonio; Dalton, John P; Robinson, Mark W

    2015-12-01

    Extracellular vesicles (EVs) released by parasites have important roles in establishing and maintaining infection. Analysis of the soluble and vesicular secretions of adult Fasciola hepatica has established a definitive characterization of the total secretome of this zoonotic parasite. Fasciola secretes at least two subpopulations of EVs that differ according to size, cargo molecules and site of release from the parasite. The larger EVs are released from the specialized cells that line the parasite gastrodermus and contain the zymogen of the 37 kDa cathepsin L peptidase that performs a digestive function. The smaller exosome-like vesicle population originate from multivesicular bodies within the tegumental syncytium and carry many previously described immunomodulatory molecules that could be delivered into host cells. By integrating our proteomics data with recently available transcriptomic data sets we have detailed the pathways involved with EV biogenesis in F. hepatica and propose that the small exosome biogenesis occurs via ESCRT-dependent MVB formation in the tegumental syncytium before being shed from the apical plasma membrane. Furthermore, we found that the molecular "machinery" required for EV biogenesis is constitutively expressed across the intramammalian development stages of the parasite. By contrast, the cargo molecules packaged within the EVs are developmentally regulated, most likely to facilitate the parasites migration through host tissue and to counteract host immune attack.

  2. Cytochrome c Oxidase Biogenesis and Metallochaperone Interactions: Steps in the Assembly Pathway of a Bacterial Complex

    PubMed Central

    Ludwig, Bernd

    2017-01-01

    Biogenesis of mitochondrial cytochrome c oxidase (COX) is a complex process involving the coordinate expression and assembly of numerous subunits (SU) of dual genetic origin. Moreover, several auxiliary factors are required to recruit and insert the redox-active metal compounds, which in most cases are buried in their protein scaffold deep inside the membrane. Here we used a combination of gel electrophoresis and pull-down assay techniques in conjunction with immunostaining as well as complexome profiling to identify and analyze the composition of assembly intermediates in solubilized membranes of the bacterium Paracoccus denitrificans. Our results show that the central SUI passes through at least three intermediate complexes with distinct subunit and cofactor composition before formation of the holoenzyme and its subsequent integration into supercomplexes. We propose a model for COX biogenesis in which maturation of newly translated COX SUI is initially assisted by CtaG, a chaperone implicated in CuB site metallation, followed by the interaction with the heme chaperone Surf1c to populate the redox-active metal-heme centers in SUI. Only then the remaining smaller subunits are recruited to form the mature enzyme which ultimately associates with respiratory complexes I and III into supercomplexes. PMID:28107462

  3. GAIP interacting protein C-terminus regulates autophagy and exosome biogenesis of pancreatic cancer through metabolic pathways.

    PubMed

    Bhattacharya, Santanu; Pal, Krishnendu; Sharma, Anil K; Dutta, Shamit K; Lau, Julie S; Yan, Irene K; Wang, Enfeng; Elkhanany, Ahmed; Alkharfy, Khalid M; Sanyal, Arunik; Patel, Tushar C; Chari, Suresh T; Spaller, Mark R; Mukhopadhyay, Debabrata

    2014-01-01

    GAIP interacting protein C terminus (GIPC) is known to play an important role in a variety of physiological and disease states. In the present study, we have identified a novel role for GIPC as a master regulator of autophagy and the exocytotic pathways in cancer. We show that depletion of GIPC-induced autophagy in pancreatic cancer cells, as evident from the upregulation of the autophagy marker LC3II. We further report that GIPC regulates cellular trafficking pathways by modulating the secretion, biogenesis, and molecular composition of exosomes. We also identified the involvement of GIPC on metabolic stress pathways regulating autophagy and microvesicular shedding, and observed that GIPC status determines the loading of cellular cargo in the exosome. Furthermore, we have shown the overexpression of the drug resistance gene ABCG2 in exosomes from GIPC-depleted pancreatic cancer cells. We also demonstrated that depletion of GIPC from cancer cells sensitized them to gemcitabine treatment, an avenue that can be explored as a potential therapeutic strategy to overcome drug resistance in cancer.

  4. Mitochondrial biogenesis and turnover.

    PubMed

    Diaz, Francisca; Moraes, Carlos T

    2008-07-01

    Mitochondrial biogenesis is a complex process involving the coordinated expression of mitochondrial and nuclear genes, the import of the products of the latter into the organelle and turnover. The mechanisms associated with these events have been intensively studied in the last 20 years and our understanding of their details is much improved. Mitochondrial biogenesis requires the participation of calcium signaling that activates a series of calcium-dependent protein kinases that in turn activate transcription factors and coactivators such as PGC-1alpha that regulates the expression of genes coding for mitochondrial components. In addition, mitochondrial biogenesis involves the balance of mitochondrial fission-fusion. Mitochondrial malfunction or defects in any of the many pathways involved in mitochondrial biogenesis can lead to degenerative diseases and possibly play an important part in aging.

  5. Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation

    PubMed Central

    D’Souza, Anthony D.; Parikh, Neal; Kaech, Susan M.; Shadel, Gerald S.

    2009-01-01

    The quantity and activity of mitochondria vary dramatically in tissues and are modulated in response to changing cellular energy demands and environmental factors. The amount of mitochondrial DNA (mtDNA), which encodes essential subunits of the oxidative phosphorylation complexes required for cellular ATP production, is also tightly regulated, but by largely unknown mechanisms. Using murine T cells as a model system, we have addressed how specific signaling pathways influence mitochondrial biogenesis and mtDNA levels. T cell receptor (TCR) activation results in a large increase in mitochondrial mass and membrane potential and a corresponding increase of mtDNA copy number, indicating the vital role for mitochondrial function for the growth and proliferation of these cells. Independent activation of protein kinase C (via PMA) or calcium-related pathways (via ionomycin) had differential and sub-maximal effects on these mitochondrial parameters, as did activation of naïve T cells with proliferative cytokines. Thus, the robust mitochondrial biogenesis response observed upon TCR activation requires synergy of multiple downstream signaling pathways. One such pathway involves AMP-activated protein kinase (AMPK), which we show has an unprecedented role in negatively regulating mitochondrial biogenesis that is mammalian target of rapamycin (mTOR)-dependent. That is, inhibition of AMPK after TCR signaling commences results in excessive, but uncoordinated mitochondrial proliferation. We propose that mitochondrial biogenesis is not under control of a master regulatory circuit, but rather requires the convergence of multiple signaling pathways with distinct downstream consequences on the organelle’s structure, composition, and function. PMID:17890163

  6. Protective Effects of Quercetin on Mitochondrial Biogenesis in Experimental Traumatic Brain Injury via the Nrf2 Signaling Pathway

    PubMed Central

    Li, Xiang; Wang, Handong; Gao, Yongyue; Li, Liwen; Tang, Chao; Wen, Guodao; Zhou, Yuan; Zhou, Mengliang; Mao, Lei; Fan, Youwu

    2016-01-01

    The present investigation was carried out to elucidate a possible molecular mechanism related to the protective effect of quercetin administration against oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in mitochondrial biogenesis. Recently, quercetin has been proved to have a protective effect against mitochondria damage after traumatic brain injury (TBI). However, its precise role and underlying mechanisms in traumatic brain injury are not yet fully understood. The aim of the present study was to investigate the effect of quercetin on the potential mechanism of these effects in a weight-drop model of TBI in male mice that were treated with quercetin or vehicle via intraperitoneal injection administrated 30 min after TBI. In this experiment, ICR mice were divided into four groups: A sham group, TBI group, TBI + vehicle group, and TBI + quercetin group. Brain samples were collected 24 h later for analysis. Quercetin treatment resulted in an upregulation of Nrf2 expression and cytochrome c, malondialdehyde (MDA) and superoxide dismutase (SOD) levels were restored by quercetin treatment. Quercetin markedly promoted the translocation of Nrf2 protein from the cytoplasm to the nucleus. These observations suggest that quercetin improves mitochondrial function in TBI models, possibly by activating the Nrf2 pathway. PMID:27780244

  7. Protective Effects of Quercetin on Mitochondrial Biogenesis in Experimental Traumatic Brain Injury via the Nrf2 Signaling Pathway.

    PubMed

    Li, Xiang; Wang, Handong; Gao, Yongyue; Li, Liwen; Tang, Chao; Wen, Guodao; Zhou, Yuan; Zhou, Mengliang; Mao, Lei; Fan, Youwu

    2016-01-01

    The present investigation was carried out to elucidate a possible molecular mechanism related to the protective effect of quercetin administration against oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in mitochondrial biogenesis. Recently, quercetin has been proved to have a protective effect against mitochondria damage after traumatic brain injury (TBI). However, its precise role and underlying mechanisms in traumatic brain injury are not yet fully understood. The aim of the present study was to investigate the effect of quercetin on the potential mechanism of these effects in a weight-drop model of TBI in male mice that were treated with quercetin or vehicle via intraperitoneal injection administrated 30 min after TBI. In this experiment, ICR mice were divided into four groups: A sham group, TBI group, TBI + vehicle group, and TBI + quercetin group. Brain samples were collected 24 h later for analysis. Quercetin treatment resulted in an upregulation of Nrf2 expression and cytochrome c, malondialdehyde (MDA) and superoxide dismutase (SOD) levels were restored by quercetin treatment. Quercetin markedly promoted the translocation of Nrf2 protein from the cytoplasm to the nucleus. These observations suggest that quercetin improves mitochondrial function in TBI models, possibly by activating the Nrf2 pathway.

  8. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways.

    PubMed

    Mishanina, Tatiana V; Libiad, Marouane; Banerjee, Ruma

    2015-07-01

    The chemical species involved in H2S signaling remain elusive despite the profound and pleiotropic physiological effects elicited by this molecule. The dominant candidate mechanism for sulfide signaling is persulfidation of target proteins. However, the relatively poor reactivity of H2S toward oxidized thiols, such as disulfides, the low concentration of disulfides in the reducing milieu of the cell and the low steady-state concentration of H2S raise questions about the plausibility of persulfide formation via reaction between an oxidized thiol and a sulfide anion or a reduced thiol and oxidized hydrogen disulfide. In contrast, sulfide oxidation pathways, considered to be primarily mechanisms for disposing of excess sulfide, generate a series of reactive sulfur species, including persulfides, polysulfides and thiosulfate, that could modify target proteins. We posit that sulfide oxidation pathways mediate sulfide signaling and that sulfurtransferases ensure target specificity.

  9. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways

    PubMed Central

    Mishanina, Tatiana V; Libiad, Marouane; Banerjee, Ruma

    2016-01-01

    The chemical species involved in H2S signaling remain elusive despite the profound and pleiotropic physiological effects elicited by this molecule. The dominant candidate mechanism for sulfide signaling is persulfidation of target proteins. However, the relatively poor reactivity of H2S toward oxidized thiols, such as disulfides, the low concentration of disulfides in the reducing milieu of the cell and the low steady-state concentration of H2S raise questions about the plausibility of persulfide formation via reaction between an oxidized thiol and a sulfide anion or a reduced thiol and oxidized hydrogen disulfide. In contrast, sulfide oxidation pathways, considered to be primarily mechanisms for disposing of excess sulfide, generate a series of reactive sulfur species, including persulfides, polysulfides and thiosulfate, that could modify target proteins. We posit that sulfide oxidation pathways mediate sulfide signaling and that sulfurtransferases ensure target specificity. PMID:26083070

  10. Sub-lethal oxidative stress induces lysosome biogenesis via a lysosomal membrane permeabilization-cathepsin-caspase 3-transcription factor EB-dependent pathway.

    PubMed

    Leow, San Min; Chua, Shu Xian Serene; Venkatachalam, Gireedhar; Shen, Liang; Luo, Le; Clement, Marie-Veronique

    2016-12-18

    Here we provide evidence to link sub-lethal oxidative stress to lysosomal biogenesis. Exposure of cells to sub-lethal concentrations of exogenously added hydrogen peroxide resulted in cytosol to nuclear translocation of the Transcription Factor EB (TFEB), the master controller of lysosome biogenesis and function. Nuclear translocation of TFEB was dependent upon the activation of a cathepsin-caspase 3 signaling pathway, downstream of a lysosomal membrane permeabilization and accompanied by a significant increase in lysosome numbers as well as induction of TFEB dependent lysosome-associated genes expression such as Ctsl, Lamp2 and its spliced variant Lamp2a, Neu1and Ctsb and Sqstm1 and Atg9b. The effects of sub-lethal oxidative stress on lysosomal gene expression and biogenesis were rescued upon gene silencing of caspase 3 and TFEB. Notably, caspase 3 activation was not associated with phenotypic hallmarks of apoptosis, evidenced by the absence of caspase 3 substrate cleavage, such as PARP, Lamin A/C or gelsolin. Taken together, these data demonstrate for the first time an unexpected and non-canonical role of a cathepsin-caspase 3 axis in the nuclear translocation of TFEB leading to lysosomes biogenesis under conditions of sub-lethal oxidative stress.

  11. The ribosome biogenesis pathway as an early target of benzyl butyl phthalate (BBP) toxicity in Chironomus riparius larvae.

    PubMed

    Herrero, Óscar; Planelló, Rosario; Morcillo, Gloria

    2016-02-01

    Butyl benzyl phthalate (BBP) is a ubiquitous contaminant whose presence in the environment is expected for decades, since it has been extensively used worldwide as a plasticizer in the polyvinyl chloride (PVC) industry and the manufacturing of many other products. In the present study, the interaction of BBP with the ribosome biogenesis pathway and the general transcriptional profile of Chironomus riparius aquatic larvae were investigated by means of changes in the rDNA activity (through the study of the internal transcribed spacer 2, ITS2) and variations in the expression profile of ribosomal protein genes (rpL4, rpL11, and rpL13) after acute 24-h and 48-h exposures to a wide range of BBP doses. Furthermore, cytogenetic assays were conducted to evaluate the transcriptional activity of polytene chromosomes from salivary gland cells, with special attention to the nucleolus and the Balbiani rings (BRs) of chromosome IV. BBP caused a dose and time-dependent toxicity in most of the selected biomarkers, with a general depletion in the gene expression levels and the activity of BR2 after 48-h treatments. At the same time, decondensation and activation of some centromeres took place, while the activity of nucleolus remained unaltered. Withdrawal of the xenobiotic allowed the larvae to reach control levels in the case of rpL4 and rpL13 genes, which were previously slightly downregulated in 24-h tests. These data provide the first evidence on the interaction of BBP with the ribosome synthesis pathways, which results in a significant impairment of the functional activity of ribosomal protein genes. Thus, the depletion of ribosomes would be a long-term effect of BBP-induced cellular damage. These findings may have important implications for understanding the adverse biological effects of BBP in C. riparius, since they provide new sensitive biomarkers of BBP exposure and highlight the suitability of this organism for ecotoxicological risk assessment, especially in aquatic

  12. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis.

    PubMed

    Piek, Susannah; Kahler, Charlene M

    2012-01-01

    The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism.

  13. Cutis laxa: intersection of elastic fiber biogenesis, TGFβ signaling, the secretory pathway and metabolism.

    PubMed

    Urban, Zsolt; Davis, Elaine C

    2014-01-01

    Cutis laxa (CL), a disease characterized by redundant and inelastic skin, displays extensive locus heterogeneity. Together with geroderma osteodysplasticum and arterial tortuosity syndrome, which show phenotypic overlap with CL, eleven CL-related genes have been identified to date, which encode proteins within 3 groups. Elastin, fibulin-4, fibulin-5 and latent transforming growth factor-β-binding protein 4 are secreted proteins which form elastic fibers and are involved in the sequestration and subsequent activation of transforming growth factor-β (TGFβ). Proteins within the second group, localized to the secretory pathway, perform transport and membrane trafficking functions necessary for the modification and secretion of elastic fiber components. Key proteins include a subunit of the vacuolar-type proton pump, which ensures the efficient secretion of tropoelastin, the precursor or elastin. A copper transporter is required for the activity of lysyl oxidases, which crosslink collagen and elastin. A Rab6-interacting goglin recruits kinesin motors to Golgi-vesicles facilitating the transport from the Golgi to the plasma membrane. The Rab and Ras interactor 2 regulates the activity of Rab5, a small guanosine triphosphatase essential for the endocytosis of various cell surface receptors, including integrins. Proteins of the third group related to CL perform metabolic functions within the mitochondria, inhibiting the accumulation of reactive oxygen species. Two of these proteins catalyze subsequent steps in the conversion of glutamate to proline. The third transports dehydroascorbate into mitochondria. Recent studies on CL-related proteins highlight the intricate connections among membrane trafficking, metabolism, extracellular matrix assembly, and TGFβ signaling.

  14. General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae.

    PubMed

    Sandkvist, M; Michel, L O; Hough, L P; Morales, V M; Bagdasarian, M; Koomey, M; DiRita, V J; Bagdasarian, M

    1997-11-01

    The general secretion pathway (GSP) of Vibrio cholerae is required for secretion of proteins including chitinase, enterotoxin, and protease through the outer membrane. In this study, we report the cloning and sequencing of a DNA fragment from V. cholerae, containing 12 open reading frames, epsC to -N, which are similar to GSP genes of Aeromonas, Erwinia, Klebsiella, Pseudomonas, and Xanthomonas spp. In addition to the two previously described genes, epsE and epsM (M. Sandkvist, V. Morales, and M. Bagdasarian, Gene 123: 81-86, 1993; L. J. Overbye, M. Sandkvist, and M. Bagdasarian, Gene 132:101-106, 1993), it is shown here that epsC, epsF, epsG, and epsL also encode proteins essential for GSP function. Mutations in the eps genes result in aberrant outer membrane protein profiles, which indicates that the GSP, or at least some of its components, is required not only for secretion of soluble proteins but also for proper outer membrane assembly. Several of the Eps proteins have been identified by use of the T7 polymerase-promoter system in Escherichia coli. One of them, a pilin-like protein, EpsG, was analyzed also in V. cholerae and found to migrate as two bands on polyacrylamide gels, suggesting that in this organism it might be processed or otherwise modified by a prepilin peptidase. We believe that TcpJ prepilin peptidase, which processes the subunit of the toxin-coregulated pilus, TcpA, is not involved in this event. This is supported by the observations that apparent processing of EpsG occurs in a tcpJ mutant of V. cholerae and that, when coexpressed in E. coli, TcpJ cannot process EpsG although the PilD peptidase from Neisseria gonorrhoeae can.

  15. FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis.

    PubMed

    Wang, Xiaobo; Huang, Ning; Yang, Min; Wei, Dandan; Tai, Haoran; Han, Xiaojuan; Gong, Hui; Zhou, Jiao; Qin, Jianqiong; Wei, Xiawei; Chen, Honghan; Fang, Tingting; Xiao, Hengyi

    2017-03-23

    Global germ line loss of fat mass- and obesity-associated (FTO) gene results in both the reduction of fat mass and lean mass in mice. The role of FTO in adipogenesis has been proposed, however, that in myogenesis has not. Skeletal muscle is the main component of body lean mass, so its connection with FTO physiologic significance need to be clarified. Here, we assessed the impact of FTO on murine skeletal muscle differentiation by in vitro and in vivo experiments. We found that FTO expression increased during myoblasts differentiation, while the silence of FTO inhibited the differentiation; in addition, skeletal muscle development was impaired in skeletal muscle FTO-deficient mice. Significantly, FTO-promoted myogenic differentiation was dependent on its m6A demethylase activity. Mechanically, we found that FTO downregulation suppressed mitochondria biogenesis and energy production, showing as the decreased mitochondria mass and mitochondrial DNA (mtDNA) content, the downregulated expression of mtDNA-encoding genes and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) gene, together with declined ATP level. Moreover, the involvement of mTOR-PGC-1α pathway in the connection between FTO and muscle differentiation is displayed, since the expression of FTO affected the activity of mTOR and rapamycin blocked FTO-induced PGC-1α transcription, along with the parallel alteration pattern of FTO expression and mTOR phosphorylation during myoblasts differentiation. Summarily, our findings provide the first evidence for the contribution of FTO for skeletal muscle differentiation and a new insight to study the physiologic significance of RNA methylation.

  16. Mitochondrial biogenesis in kidney disease.

    PubMed

    Weinberg, Joel M

    2011-03-01

    The transcriptional regulation of mitochondrial biogenesis by normal metabolic adaptation or injury has been clarified over the past decade. Mitochondrial biogenesis and its attendant processes enhance metabolic pathways such as fatty acid oxidation and increase antioxidant defense mechanisms that ameliorate injury from aging, tissue hypoxia, and glucose or fatty acid overload, all of which contribute to the pathogenesis of acute and chronic kidney disease. There has been considerable interest in peroxisome proliferator-activated receptors (PPAR) in the kidney, which affect multiple processes in addition to mitochondrial biogenesis. As yet there is relatively little information focused specifically on mitochondrial biogenesis and its regulation by PPARγ coactivators and their modulators such as SIRT1. The available data indicate that these pathways will be fruitful areas for study in the modification of renal disease.

  17. Coordinate Regulation of the Suf and Isc Fe-S Cluster Biogenesis Pathways by IscR Is Essential for Viability of Escherichia coli

    PubMed Central

    Mettert, Erin L.

    2014-01-01

    Fe-S cluster biogenesis is essential for the viability of most organisms. In Escherichia coli, this process requires either the housekeeping Isc or the stress-induced Suf pathway. The global regulator IscR coordinates cluster synthesis by repressing transcription of the isc operon by [2Fe-2S]-IscR and activating expression of the suf operon. We show that either [2Fe-2S]-IscR or apo-IscR can activate suf, making expression sensitive to mainly IscR levels and not the cluster state, unlike isc expression. We also demonstrate that in the absence of isc, IscR-dependent suf activation is essential since strains lacking both the Isc pathway and IscR were not viable unless Suf was expressed ectopically. Similarly, removal of the IscR binding site in the sufA promoter also led to a requirement for isc. Furthermore, suf expression was increased in a Δisc mutant, presumably due to increased IscR levels in this mutant. This was surprising because the iron-dependent repressor Fur, whose higher-affinity binding at the sufA promoter should occlude IscR binding, showed only partial repression. In addition, Fur derepression was not sufficient for viability in the absence of IscR and the Isc pathway, highlighting the importance of direct IscR activation. Finally, a mutant lacking Fur and the Isc pathway increased suf expression to the highest observed levels and nearly restored [2Fe-2S]-IscR activity, providing a mechanism for regulating IscR activity under stress conditions. Together, these findings have enhanced our understanding of the homeostatic mechanism by which cells use one regulator, IscR, to differentially control Fe-S cluster biogenesis pathways to ensure viability. PMID:25266384

  18. A novel pathway of cytochrome c biogenesis is involved in the assembly of the cytochrome b6f complex in arabidopsis chloroplasts.

    PubMed

    Lezhneva, Lina; Kuras, Richard; Ephritikhine, Geneviève; de Vitry, Catherine

    2008-09-05

    We recently characterized a novel heme biogenesis pathway required for heme c(i)' covalent binding to cytochrome b6 in Chlamydomonas named system IV or CCB (cofactor assembly, complex C (b6f), subunit B (PetB)). To find out whether this CCB pathway also operates in higher plants and extend the knowledge of the c-type cytochrome biogenesis, we studied Arabidopsis insertion mutants in the orthologs of the CCB genes. The ccb1, ccb2, and ccb4 mutants show a phenotype characterized by a deficiency in the accumulation of the subunits of the cytochrome b6f complex and lack covalent heme binding to cytochrome b6. These mutants were functionally complemented with the corresponding wild type cDNAs. Using fluorescent protein reporters, we demonstrated that the CCB1, CCB2, CCB3, and CCB4 proteins are targeted to the chloroplast compartment of Arabidopsis. We have extended our study to the YGGT family, to which CCB3 belongs, by studying insertion mutants of two additional members of this family for which no mutants were previously characterized, and we showed that they are not functionally involved in the CCB system. Thus, we demonstrate the ubiquity of the CCB proteins in chloroplast heme c(i)' binding.

  19. A Novel Pathway of Cytochrome c Biogenesis Is Involved in the Assembly of the Cytochrome b6f Complex in Arabidopsis Chloroplasts*S⃞

    PubMed Central

    Lezhneva, Lina; Kuras, Richard; Ephritikhine, Geneviève; de Vitry, Catherine

    2008-01-01

    We recently characterized a novel heme biogenesis pathway required for heme ci′ covalent binding to cytochrome b6 in Chlamydomonas named system IV or CCB (cofactor assembly, complex C (b6f), subunit B (PetB)). To find out whether this CCB pathway also operates in higher plants and extend the knowledge of the c-type cytochrome biogenesis, we studied Arabidopsis insertion mutants in the orthologs of the CCB genes. The ccb1, ccb2, and ccb4 mutants show a phenotype characterized by a deficiency in the accumulation of the subunits of the cytochrome b6f complex and lack covalent heme binding to cytochrome b6. These mutants were functionally complemented with the corresponding wild type cDNAs. Using fluorescent protein reporters, we demonstrated that the CCB1, CCB2, CCB3, and CCB4 proteins are targeted to the chloroplast compartment of Arabidopsis. We have extended our study to the YGGT family, to which CCB3 belongs, by studying insertion mutants of two additional members of this family for which no mutants were previously characterized, and we showed that they are not functionally involved in the CCB system. Thus, we demonstrate the ubiquity of the CCB proteins in chloroplast heme ci′ binding. PMID:18593701

  20. Fast-suppressor screening for new components in protein trafficking, organelle biogenesis and silencing pathway in Arabidopsis thaliana using DEX-inducible FREE1-RNAi plants.

    PubMed

    Zhao, Qiong; Gao, Caiji; Lee, PoShing; Liu, Lin; Li, Shaofang; Hu, Tangjin; Shen, Jinbo; Pan, Shuying; Ye, Hao; Chen, Yunru; Cao, Wenhan; Cui, Yong; Zeng, Peng; Yu, Sheng; Gao, Yangbin; Chen, Liang; Mo, Beixin; Liu, Xin; Xiao, Shi; Zhao, Yunde; Zhong, Silin; Chen, Xuemei; Jiang, Liwen

    2015-06-20

    Membrane trafficking is essential for plant growth and responses to external signals. The plant unique FYVE domain-containing protein FREE1 is a component of the ESCRT complex (endosomal sorting complex required for transport). FREE1 plays multiple roles in regulating protein trafficking and organelle biogenesis including the formation of intraluminal vesicles of multivesicular body (MVB), vacuolar protein transport and vacuole biogenesis, and autophagic degradation. FREE1 knockout plants show defective MVB formation, abnormal vacuolar transport, fragmented vacuoles, accumulated autophagosomes, and seedling lethality. To further uncover the underlying mechanisms of FREE1 function in plants, we performed a forward genetic screen for mutants that suppressed the seedling lethal phenotype of FREE1-RNAi transgenic plants. The obtained mutants are termed as suppressors of free1 (sof). To date, 229 putative sof mutants have been identified. Barely detecting of FREE1 protein with M3 plants further identified 84 FREE1-related suppressors. Also 145 mutants showing no reduction of FREE1 protein were termed as RNAi-related mutants. Through next-generation sequencing (NGS) of bulked DNA from F2 mapping population of two RNAi-related sof mutants, FREE1-RNAi T-DNA inserted on chromosome 1 was identified and the causal mutation of putative sof mutant is being identified similarly. These FREE1- and RNAi-related sof mutants will be useful tools and resources for illustrating the underlying mechanisms of FREE1 function in intracellular trafficking and organelle biogenesis, as well as for uncovering the new components involved in the regulation of silencing pathways in plants.

  1. Distinct and concurrent pathways of Pol II- and Pol IV-dependent siRNA biogenesis at a repetitive trans-silencer locus in Arabidopsis thaliana.

    PubMed

    Sasaki, Taku; Lee, Tzuu-fen; Liao, Wen-Wei; Naumann, Ulf; Liao, Jo-Ling; Eun, Changho; Huang, Ya-Yi; Fu, Jason L; Chen, Pao-Yang; Meyers, Blake C; Matzke, Antonius J M; Matzke, Marjori

    2014-07-01

    Short interfering RNAs (siRNAs) homologous to transcriptional regulatory regions can induce RNA-directed DNA methylation (RdDM) and transcriptional gene silencing (TGS) of target genes. In our system, siRNAs are produced by transcribing an inverted DNA repeat (IR) of enhancer sequences, yielding a hairpin RNA that is processed by several Dicer activities into siRNAs of 21-24 nt. Primarily 24-nt siRNAs trigger RdDM of the target enhancer in trans and TGS of a downstream GFP reporter gene. We analyzed siRNA accumulation from two different structural forms of a trans-silencer locus in which tandem repeats are embedded in the enhancer IR and distinguished distinct RNA polymerase II (Pol II)- and Pol IV-dependent pathways of siRNA biogenesis. At the original silencer locus, Pol-II transcription of the IR from a 35S promoter produces a hairpin RNA that is diced into abundant siRNAs of 21-24 nt. A silencer variant lacking the 35S promoter revealed a normally masked Pol IV-dependent pathway that produces low levels of 24-nt siRNAs from the tandem repeats. Both pathways operate concurrently at the original silencer locus. siRNAs accrue only from specific regions of the enhancer and embedded tandem repeat. Analysis of these sequences and endogenous tandem repeats producing siRNAs revealed the preferential accumulation of siRNAs at GC-rich regions containing methylated CG dinucleotides. In addition to supporting a correlation between base composition, DNA methylation and siRNA accumulation, our results highlight the complexity of siRNA biogenesis at repetitive loci and show that Pol II and Pol IV use different promoters to transcribe the same template.

  2. Genetic variants in microRNA and microRNA biogenesis pathway genes and breast cancer risk among women of African ancestry.

    PubMed

    Qian, Frank; Feng, Ye; Zheng, Yonglan; Ogundiran, Temidayo O; Ojengbede, Oladosu; Zheng, Wei; Blot, William; Ambrosone, Christine B; John, Esther M; Bernstein, Leslie; Hu, Jennifer J; Ziegler, Regina G; Nyante, Sarah; Bandera, Elisa V; Ingles, Sue A; Press, Michael F; Nathanson, Katherine L; Hennis, Anselm; Nemesure, Barbara; Ambs, Stefan; Kolonel, Laurence N; Olopade, Olufunmilayo I; Haiman, Christopher A; Huo, Dezheng

    2016-10-01

    MicroRNAs (miRNA) regulate breast biology by binding to specific RNA sequences, leading to RNA degradation and inhibition of translation of their target genes. While germline genetic variations may disrupt some of these interactions between miRNAs and their targets, studies assessing the relationship between genetic variations in the miRNA network and breast cancer risk are still limited, particularly among women of African ancestry. We systematically put together a list of 822 and 10,468 genetic variants among primary miRNA sequences and 38 genes in the miRNA biogenesis pathway, respectively; and examined their association with breast cancer risk in the ROOT consortium which includes women of African ancestry. Findings were replicated in an independent consortium. Logistic regression was used to estimate the odds ratio (OR) and 95 % confidence intervals (CI). For overall breast cancer risk, three single-nucleotide polymorphisms (SNPs) in miRNA biogenesis genes DROSHA rs78393591 (OR = 0.69, 95 % CI: 0.55-0.88, P = 0.003), ESR1 rs523736 (OR = 0.88, 95 % CI: 0.82-0.95, P = 3.99 × 10(-4)), and ZCCHC11 rs114101502 (OR = 1.33, 95 % CI: 1.11-1.59, P = 0.002), and one SNP in primary miRNA sequence (rs116159732 in miR-6826, OR = 0.74, 95 % CI: 0.63-0.89, P = 0.001) were found to have significant associations in both discovery and validation phases. In a subgroup analysis, two SNPs were associated with risk of estrogen receptor (ER)-negative breast cancer, and three SNPs were associated with risk of ER-positive breast cancer. Several variants in miRNA and miRNA biogenesis pathway genes were associated with breast cancer risk. Risk associations varied by ER status, suggesting potential new mechanisms in etiology.

  3. Quercetin protects against aluminium induced oxidative stress and promotes mitochondrial biogenesis via activation of the PGC-1α signaling pathway.

    PubMed

    Sharma, Deep Raj; Sunkaria, Aditya; Wani, Willayat Yousuf; Sharma, Reeta Kumari; Verma, Deepika; Priyanka, Kumari; Bal, Amanjit; Gill, Kiran Dip

    2015-12-01

    The present investigation was carried out to elucidate a possible molecular mechanism related to the protective effect of quercetin administration against aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of PGC-1α and its downstream targets, i.e. NRF-1, NRF-2 and Tfam in mitochondrial biogenesis. Aluminium lactate (10mg/kg b.wt./day) was administered intragastrically to rats, which were pre-treated with quercetin 6h before aluminium (10mg/kg b.wt./day, intragastrically) for 12 weeks. We found a decrease in ROS levels, mitochondrial DNA oxidation and citrate synthase activity in the hippocampus (HC) and corpus striatum (CS) regions of rat brain treated with quercetin. Besides this an increase in the mRNA levels of the mitochondrial encoded subunits - ND1, ND2, ND3, Cyt b, COX1, COX3 and ATPase6 along with increased expression of nuclear encoded subunits COX4, COX5A and COX5B of electron transport chain (ETC). In quercetin treated group an increase in the mitochondrial DNA copy number and mitochondrial content in both the regions of rat brain was observed. The PGC-1α was up regulated in quercetin treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α. Electron microscopy results revealed a significant decrease in the mitochondrial cross-section area, mitochondrial perimeter length and increase in mitochondrial number in case of quercetin treated rats as compared to aluminium treated ones. Therefore it seems quercetin increases mitochondrial biogenesis and makes it an almost ideal flavanoid to control or limit the damage that has been associated with the defective mitochondrial function seen in many neurodegenerative diseases.

  4. Rab GTPases and the Autophagy Pathway: Bacterial Targets for a Suitable Biogenesis and Trafficking of Their Own Vacuoles

    PubMed Central

    López de Armentia, María Milagros; Amaya, Celina; Colombo, María Isabel

    2016-01-01

    Autophagy is an intracellular process that comprises degradation of damaged organelles, protein aggregates and intracellular pathogens, having an important role in controlling the fate of invading microorganisms. Intracellular pathogens are internalized by professional and non-professional phagocytes, localizing in compartments called phagosomes. To degrade the internalized microorganism, the microbial phagosome matures by fusion events with early and late endosomal compartments and lysosomes, a process that is regulated by Rab GTPases. Interestingly, in order to survive and replicate in the phagosome, some pathogens employ different strategies to manipulate vesicular traffic, inhibiting phagolysosomal biogenesis (e.g., Staphylococcus aureus and Mycobacterium tuberculosis) or surviving in acidic compartments and forming replicative vacuoles (e.g., Coxiella burnetti and Legionella pneumophila). The bacteria described in this review often use secretion systems to control the host’s response and thus disseminate. To date, eight types of secretion systems (Type I to Type VIII) are known. Some of these systems are used by bacteria to translocate pathogenic proteins into the host cell and regulate replicative vacuole formation, apoptosis, cytokine responses, and autophagy. Herein, we have focused on how bacteria manipulate small Rab GTPases to control many of these processes. The growing knowledge in this field may facilitate the development of new treatments or contribute to the prevention of these types of bacterial infections. PMID:27005665

  5. Mitochondrial biogenesis: pharmacological approaches.

    PubMed

    Valero, Teresa

    2014-01-01

    ), myoclonic epilepsy with ragged-red fibers (MERRF), mitochondrial encephalomyopathy, lactic acidosis and strokelike episodes (MELAS), Leber's hereditary optic neuropathy (LHON), the syndrome of neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP), and Leigh's syndrome. Likewise, other diseases in which mitochondrial dysfunction plays a very important role include neurodegenerative diseases, diabetes or cancer. Generally, in mitochondrial diseases a mutation in the mitochondrial DNA leads to a loss of functionality of the OXPHOS system and thus to a depletion of ATP and overproduction of ROS, which can, in turn, induce further mtDNA mutations. The work by Yu-Ting Wu, Shi-Bei Wu, and Yau-Huei Wei (Department of Biochemistry and Molecular Biology, National Yang-Ming University, Taiwan) [4] focuses on the aforementioned mitochondrial diseases with special attention to the compensatory mechanisms that prompt mitochondria to produce more energy even under mitochondrial defect-conditions. These compensatory mechanisms include the overexpression of antioxidant enzymes, mitochondrial biogenesis and overexpression of respiratory complex subunits, as well as metabolic shift to glycolysis. The pathways observed to be related to mitochondrial biogenesis as a compensatory adaptation to the energetic deficits in mitochondrial diseases are described (PGC- 1, Sirtuins, AMPK). Several pharmacological strategies to trigger these signaling cascades, according to these authors, are the use of bezafibrate to activate the PPAR-PGC-1α axis, the activation of AMPK by resveratrol and the use of Sirt1 agonists such as quercetin or resveratrol. Other strategies currently used include the addition of antioxidant supplements to the diet (dietary supplementation with antioxidants) such as L-carnitine, coenzyme Q10,MitoQ10 and other mitochondria-targeted antioxidants,N-acetylcysteine (NAC), vitamin C, vitamin E vitamin K1, vitamin B, sodium pyruvate or -lipoic acid. As aforementioned, other

  6. DEMONSTRATION BULLETIN: BIOGENESIS SOIL WASHING TECHNOLOGY - BIOGENESIS

    EPA Science Inventory

    The BioGenesisSM soil washing technology was developed by BioGenesis Enterprises, Inc. to remove organic compounds from soil. The technology uses a proprietary solution (BioGenesisSM cleaner) to transfer organic compounds from the soil matrix to a liquid phase. BioGenesis claims...

  7. Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast.

    PubMed

    Konikkat, Salini; Woolford, John L

    2017-01-15

    Ribosome biogenesis requires the intertwined processes of folding, modification, and processing of ribosomal RNA, together with binding of ribosomal proteins. In eukaryotic cells, ribosome assembly begins in the nucleolus, continues in the nucleoplasm, and is not completed until after nascent particles are exported to the cytoplasm. The efficiency and fidelity of ribosome biogenesis are facilitated by >200 assembly factors and ∼76 different small nucleolar RNAs. The pathway is driven forward by numerous remodeling events to rearrange the ribonucleoprotein architecture of pre-ribosomes. Here, we describe principles of ribosome assembly that have emerged from recent studies of biogenesis of the large ribosomal subunit in the yeast Saccharomyces cerevisiae We describe tools that have empowered investigations of ribosome biogenesis, and then summarize recent discoveries about each of the consecutive steps of subunit assembly.

  8. SNP Variation in MicroRNA Biogenesis Pathway Genes as a New Innovation Strategy for Alzheimer Disease Diagnostics: A Study of 10 Candidate Genes in an Understudied Population From the Eastern Mediterranean.

    PubMed

    Görücü Yilmaz, Şenay; Erdal, Mehmet E; Avci Özge, Aynur; Sungur, Mehmet A

    2016-01-01

    Alzheimer disease (AD) is a common complex neurodegenerative disorder accounting for nearly 50% to 70% of dementias worldwide. Yet the current diagnostic options for AD are limited. New diagnostic innovation strategies focusing on novel molecules and pathways are sorely needed. In this connection, microRNAs (miRNAs) are conserved small noncoding RNAs that regulate posttranscriptional gene expression and are vital for neuronal development and its functional sustainability. Conceivably, biological pathways responsible for the biogenesis of miRNAs represent a veritable set of upstream candidate genes that can be potentially associated with the AD pathophysiology. Notably, whereas functional single-nucleotide polymorphisms (SNPs) in miRNA biogenesis pathway genes have been studied in other complex diseases, surprisingly, virtually no such study has been conducted on their relevance in AD. Moreover, novel diagnostics identified in easily accessible peripheral tissues such as the whole blood samples represent the initial entry or gateway points on the biomarker discovery critical path for AD. To the best of our knowledge, we report here the first association study of functional SNPs, as measured by real-time PCR in 10 "upstream" candidate genes critically situated on the miRNA biogenesis pathway, in a large sample of AD patients (N=172) and healthy controls (N=109) in a hitherto understudied world population from the Mersin region of the Eastern Mediterranean. We observed a significant association between 2 candidate genes and AD, TARBP2 rs784567 genotype and AD (χ=6.292, P=0.043), and a trend for RNASEN rs10719 genotype (χ=4.528, P=0.104) and allele (P=0.035). Functional SNP variations in the other 8 candidate genes (DGCR8, XPO5, RAN, DICER1, AGO1, AGO2, GEMIN3, and GEMIN4) did not associate with AD in our sample. Given the putative biological importance of miRNA biogenesis pathways, these emerging data can provide a new foundation to stimulate future debate and

  9. In Polytomella sp. mitochondria, biogenesis of the heterodimeric COX2 subunit of cytochrome c oxidase requires two different import pathways.

    PubMed

    Jiménez-Suárez, Alejandra; Vázquez-Acevedo, Miriam; Rojas-Hernández, Andrés; Funes, Soledad; Uribe-Carvajal, Salvador; González-Halphen, Diego

    2012-05-01

    In the vast majority of eukaryotic organisms, the mitochondrial cox2 gene encodes subunit II of cytochrome c oxidase (COX2). However, in some lineages including legumes and chlorophycean algae, the cox2 gene migrated to the nucleus. Furthermore, in chlorophycean algae, this gene was split in two different units. Thereby the COX2 subunit is encoded by two independent nuclear genes, cox2a and cox2b, and mitochondria have to import the cytosol-synthesized COX2A and COX2B subunits and assemble them into the cytochrome c oxidase complex. In the chlorophycean algae Chlamydomonas reinhardtii and Polytomella sp., the COX2A precursor exhibits a long (130-140 residues), cleavable mitochondrial targeting sequence (MTS). In contrast, COX2B lacks an MTS, suggesting that mitochondria use different mechanisms to import each subunit. Here, we explored the in vitro import processes of both, the Polytomella sp. COX2A precursor and the COX2B protein. We used isolated, import-competent mitochondria from this colorless alga. Our results suggest that COX2B is imported directly into the intermembrane space, while COX2A seems to follow an energy-dependent import pathway, through which it finally integrates into the inner mitochondrial membrane. In addition, the MTS of the COX2A precursor is eliminated. This is the first time that the in vitro import of split COX2 subunits into mitochondria has been achieved.

  10. Biogenesis of endosome-derived transport carriers.

    PubMed

    Chi, Richard J; Harrison, Megan S; Burd, Christopher G

    2015-09-01

    Sorting of macromolecules within the endosomal system is vital for physiological control of nutrient homeostasis, cell motility, and proteostasis. Trafficking routes that export macromolecules from the endosome via vesicle and tubule transport carriers constitute plasma membrane recycling and retrograde endosome-to-Golgi pathways. Proteins of the sorting nexin family have been discovered to function at nearly every step of endosomal transport carrier biogenesis and it is becoming increasingly clear that they form the core machineries of cargo-specific transport pathways that are closely integrated with cellular physiology. Here, we summarize recent progress in elucidating the pathways that mediate the biogenesis of endosome-derived transport carriers.

  11. NADPH Oxidase 4 (Nox4) Suppresses Mitochondrial Biogenesis and Bioenergetics in Lung Fibroblasts via a Nuclear Factor Erythroid-derived 2-like 2 (Nrf2)-dependent Pathway.

    PubMed

    Bernard, Karen; Logsdon, Naomi J; Miguel, Veronica; Benavides, Gloria A; Zhang, Jianhua; Carter, A Brent; Darley-Usmar, Victor M; Thannickal, Victor J

    2017-02-17

    Mitochondrial bioenergetics are critical for cellular homeostasis and stress responses. The reactive oxygen species-generating enzyme, NADPH oxidase 4 (Nox4), regulates a number of physiological and pathological processes, including cellular differentiation, host defense, and tissue fibrosis. In this study we explored the role of constitutive Nox4 activity in regulating mitochondrial function. An increase in mitochondrial oxygen consumption and reserve capacity was observed in murine and human lung fibroblasts with genetic deficiency (or silencing) of Nox4. Inhibition of Nox4 expression/activity by genetic or pharmacological approaches resulted in stimulation of mitochondrial biogenesis, as evidenced by elevated mitochondrial-to-nuclear DNA ratio and increased expression of the mitochondrial markers transcription factor A (TFAM), citrate synthase, voltage-dependent anion channel (VDAC), and cytochrome c oxidase subunit 4 (COX IV). Induction of mitochondrial biogenesis was dependent on TFAM up-regulation but was independent of the activation of the peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α). The enhancement of mitochondrial bioenergetics as well as the increase in mitochondrial proteins in Nox4-deficient lung fibroblasts is inhibited by silencing of nuclear factor erythroid-derived 2-like 2 (Nrf2), supporting a key role for Nrf2 in control of mitochondrial biogenesis. Together, these results indicate a critical role for both Nox4 and Nrf2 in counter-regulation of mitochondrial biogenesis and metabolism.

  12. Interaction of frataxin, an iron binding protein, with IscU of Fe-S clusters biogenesis pathway and its upregulation in AmpB resistant Leishmania donovani.

    PubMed

    Zaidi, Amir; Singh, Krishn Pratap; Anwar, Shadab; Suman, Shashi S; Equbal, Asif; Singh, Kuljit; Dikhit, Manas R; Bimal, Sanjeeva; Pandey, Krishna; Das, Pradeep; Ali, Vahab

    2015-08-01

    Leishmania donovani is a unicellular protozoon parasite that causes visceral leishmaniasis (VL), which is a fatal disease if left untreated. Certain Fe-S proteins of the TCA cycle and respiratory chain have been found in the Leishmania parasite but the precise mechanisms for their biogenesis and the maturation of Fe-S clusters remains unknown. Fe-S clusters are ubiquitous cofactors of proteins that perform critical cellular functions. The clusters are biosynthesized by the mitochondrial Iron-Sulphur Cluster (ISC) machinery with core protein components that include the catalytic cysteine desulphurase IscS, the scaffold proteins IscU and IscA, and frataxin as an iron carrier/donor. However, no information regarding frataxin, its regulation, or its role in drug resistance is available for the Leishmania parasite. In this study, we characterized Ld-frataxin to investigate its role in the ISC machinery of L. donovani. We expressed and purified the recombinant Ld-frataxin protein and observed its interaction with Ld-IscU by co-purification and pull-down assay. Furthermore, we observed that the cysteine desulphurase activity of the purified Ld-IscS protein was stimulated in the presence of Ld-frataxin and Ld-IscU, particularly in the presence of iron; neither Ld-frataxin nor Ld-IscU alone had significant effects on Ld-IscS activity. Interestingly, RT-PCR and western blotting showed that Ld-frataxin is upregulated in AmpB-resistant isolates compared to sensitive strains, which may support higher Fe-S protein activity in AmpB-resistant L. donovani. Additionally, Ld-frataxin was localized in the mitochondria, as revealed by digitonin fractionation and indirect immunofluorescence. Thus, our results suggest the role of Ld-frataxin as an iron binding/carrier protein for Fe-S cluster biogenesis that physically interacts with other core components of the ISC machinery within the mitochondria.

  13. Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes.

    PubMed

    Wu, Shan; Tutuncuoglu, Beril; Yan, Kaige; Brown, Hailey; Zhang, Yixiao; Tan, Dan; Gamalinda, Michael; Yuan, Yi; Li, Zhifei; Jakovljevic, Jelena; Ma, Chengying; Lei, Jianlin; Dong, Meng-Qiu; Woolford, John L; Gao, Ning

    2016-06-02

    Ribosome biogenesis is a highly complex process in eukaryotes, involving temporally and spatially regulated ribosomal protein (r-protein) binding and ribosomal RNA remodelling events in the nucleolus, nucleoplasm and cytoplasm. Hundreds of assembly factors, organized into sequential functional groups, facilitate and guide the maturation process into productive assembly branches in and across different cellular compartments. However, the precise mechanisms by which these assembly factors function are largely unknown. Here we use cryo-electron microscopy to characterize the structures of yeast nucleoplasmic pre-60S particles affinity-purified using the epitope-tagged assembly factor Nog2. Our data pinpoint the locations and determine the structures of over 20 assembly factors, which are enriched in two areas: an arc region extending from the central protuberance to the polypeptide tunnel exit, and the domain including the internal transcribed spacer 2 (ITS2) that separates 5.8S and 25S ribosomal RNAs. In particular, two regulatory GTPases, Nog2 and Nog1, act as hub proteins to interact with multiple, distant assembly factors and functional ribosomal RNA elements, manifesting their critical roles in structural remodelling checkpoints and nuclear export. Moreover, our snapshots of compositionally and structurally different pre-60S intermediates provide essential mechanistic details for three major remodelling events before nuclear export: rotation of the 5S ribonucleoprotein, construction of the active centre and ITS2 removal. The rich structural information in our structures provides a framework to dissect molecular roles of diverse assembly factors in eukaryotic ribosome assembly.

  14. TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae

    PubMed Central

    Welch, Aaron Z.; Gibney, Patrick A.; Botstein, David; Koshland, Douglas E.

    2013-01-01

    Tolerance to desiccation in cultures of Saccharomyces cerevisiae is inducible; only one in a million cells from an exponential culture survive desiccation compared with one in five cells in stationary phase. Here we exploit the desiccation sensitivity of exponentially dividing cells to understand the stresses imposed by desiccation and their stress response pathways. We found that induction of desiccation tolerance is cell autonomous and that there is an inverse correlation between desiccation tolerance and growth rate in glucose-, ammonia-, or phosphate-limited continuous cultures. A transient heat shock induces a 5000–fold increase in desiccation tolerance, whereas hyper-ionic, -reductive, -oxidative, or -osmotic stress induced much less. Furthermore, we provide evidence that the Sch9p-regulated branch of the TOR and Ras-cAMP pathway inhibits desiccation tolerance by inhibiting the stress response transcription factors Gis1p, Msn2p, and Msn4p and by activating Sfp1p, a ribosome biogenesis transcription factor. Among 41 mutants defective in ribosome biogenesis, a subset defective in 60S showed a dramatic increase in desiccation tolerance independent of growth rate. We suggest that reduction of a specific intermediate in 60S biogenesis, resulting from conditions such as heat shock and nutrient deprivation, increases desiccation tolerance. PMID:23171550

  15. Physiological function of IspE, a plastid MEP pathway gene for isoprenoid biosynthesis, in organelle biogenesis and cell morphogenesis in Nicotiana benthamiana.

    PubMed

    Ahn, Chang Sook; Pai, Hyun-Sook

    2008-03-01

    Isoprenoid biosynthesis in plants occurs by two independent pathways: the cytosolic mevalonate (MVA) pathway and the plastidic methylerythritol phosphate (MEP) pathway. In this study, we investigated the cellular effects of depletion of IspE, a protein involved in the MEP pathway, using virus-induced gene silencing (VIGS). The IspE gene is preferentially expressed in young tissues, and induced by light and methyl jasmonate. The GFP fusion protein of IspE was targeted to chloroplasts. Reduction of IspE expression by VIGS resulted in a severe leaf yellowing phenotype. At the cellular level, depletion of IspE severely affected chloroplast development, dramatically reducing both the number and size of chloroplasts. Interestingly, mitochondrial development was also impaired, suggesting a possibility that the plastidic MEP pathway contributes to mitochondrial isoprenoid biosynthesis in leaves. A deficiency in IspE activity decreased cellular levels of the metabolites produced by the MEP pathway, such as chlorophylls and carotenoids, and stimulated expression of some of the downstream MEP pathway genes, particularly IspF and IspG. Interestingly, the IspE VIGS lines had significantly increased numbers of cells of reduced size in all leaf layers, compared with TRV control and other VIGS lines for the MEP pathway genes. The increased cell division in the IspE VIGS lines was particularly pronounced in the abaxial epidermal layer, in which the over-proliferated cells bulged out of the plane, making the surface uneven. In addition, trichome numbers dramatically increased and the stomata size varied in the affected tissues. Our results show that IspE deficiency causes novel developmental phenotypes distinct from the phenotypes of other MEP pathway mutants, indicating that IspE may have an additional role in plant development besides its role in isoprenoid biosynthesis.

  16. Structural snapshot of cytoplasmic pre-60S ribosomal particles bound by Nmd3, Lsg1, Tif6 and Reh1.

    PubMed

    Ma, Chengying; Wu, Shan; Li, Ningning; Chen, Yan; Yan, Kaige; Li, Zhifei; Zheng, Lvqin; Lei, Jianlin; Woolford, John L; Gao, Ning

    2017-03-01

    A key step in ribosome biogenesis is the nuclear export of pre-ribosomal particles. Nmd3, a highly conserved protein in eukaryotes, is a specific adaptor required for the export of pre-60S particles. Here we used cryo-electron microscopy (cryo-EM) to characterize Saccharomyces cerevisiae pre-60S particles purified with epitope-tagged Nmd3. Our structural analysis indicates that these particles belong to a specific late stage of cytoplasmic pre-60S maturation in which ribosomal proteins uL16, uL10, uL11, eL40 and eL41 are deficient, but ribosome assembly factors Nmd3, Lsg1, Tif6 and Reh1 are present. Nmd3 and Lsg1 are located near the peptidyl-transferase center (PTC). In particular, Nmd3 recognizes the PTC in its near-mature conformation. In contrast, Reh1 is anchored to the exit of the polypeptide tunnel, with its C terminus inserted into the tunnel. These findings pinpoint a structural checkpoint role for Nmd3 in PTC assembly, and provide information about functional and mechanistic roles of these assembly factors in the maturation of the 60S ribosomal subunit.

  17. DNAJC21 Mutations Link a Cancer-Prone Bone Marrow Failure Syndrome to Corruption in 60S Ribosome Subunit Maturation.

    PubMed

    Tummala, Hemanth; Walne, Amanda J; Williams, Mike; Bockett, Nicholas; Collopy, Laura; Cardoso, Shirleny; Ellison, Alicia; Wynn, Rob; Leblanc, Thierry; Fitzgibbon, Jude; Kelsell, David P; van Heel, David A; Payne, Elspeth; Plagnol, Vincent; Dokal, Inderjeet; Vulliamy, Tom

    2016-07-07

    A substantial number of individuals with bone marrow failure (BMF) present with one or more extra-hematopoietic abnormality. This suggests a constitutional or inherited basis, and yet many of them do not fit the diagnostic criteria of the known BMF syndromes. Through exome sequencing, we have now identified a subgroup of these individuals, defined by germline biallelic mutations in DNAJC21 (DNAJ homolog subfamily C member 21). They present with global BMF, and one individual developed a hematological cancer (acute myeloid leukemia) in childhood. We show that the encoded protein associates with rRNA and plays a highly conserved role in the maturation of the 60S ribosomal subunit. Lymphoblastoid cells obtained from an affected individual exhibit increased sensitivity to the transcriptional inhibitor actinomycin D and reduced amounts of rRNA. Characterization of mutations revealed impairment in interactions with cofactors (PA2G4, HSPA8, and ZNF622) involved in 60S maturation. DNAJC21 deficiency resulted in cytoplasmic accumulation of the 60S nuclear export factor PA2G4, aberrant ribosome profiles, and increased cell death. Collectively, these findings demonstrate that mutations in DNAJC21 cause a cancer-prone BMF syndrome due to corruption of early nuclear rRNA biogenesis and late cytoplasmic maturation of the 60S subunit.

  18. Human disorders of peroxisome metabolism and biogenesis.

    PubMed

    Waterham, Hans R; Ferdinandusse, Sacha; Wanders, Ronald J A

    2016-05-01

    Peroxisomes are dynamic organelles that play an essential role in a variety of cellular catabolic and anabolic metabolic pathways, including fatty acid alpha- and beta-oxidation, and plasmalogen and bile acid synthesis. Defects in genes encoding peroxisomal proteins can result in a large variety of peroxisomal disorders either affecting specific metabolic pathways, i.e., the single peroxisomal enzyme deficiencies, or causing a generalized defect in function and assembly of peroxisomes, i.e., peroxisome biogenesis disorders. In this review, we discuss the clinical, biochemical, and genetic aspects of all human peroxisomal disorders currently known.

  19. Peroxisome Biogenesis and Function

    PubMed Central

    Kaur, Navneet; Reumann, Sigrun; Hu, Jianping

    2009-01-01

    Peroxisomes are small and single membrane-delimited organelles that execute numerous metabolic reactions and have pivotal roles in plant growth and development. In recent years, forward and reverse genetic studies along with biochemical and cell biological analyses in Arabidopsis have enabled researchers to identify many peroxisome proteins and elucidate their functions. This review focuses on the advances in our understanding of peroxisome biogenesis and metabolism, and further explores the contribution of large-scale analysis, such as in sillco predictions and proteomics, in augmenting our knowledge of peroxisome function In Arabidopsis. PMID:22303249

  20. Two New Plant-Like Pathways Link Hemoglobin Degradation to Lipid Biogenesis in Falciparum Malaria: Novel Targets for Anti-Malarial Chemotherapy

    DTIC Science & Technology

    2005-03-01

    0.1 M sodium borate as a standard. (75:45:12:4.5) as mobile phase. The identity of the radioactive spots was determined by TLC analysis using...formation of both PtdEtn and PtdCho (Fig. IA), (253aa) indicating the presence of a functional CDP- ethano [amine pathway for PtdEtn synthesis and

  1. Curli Biogenesis and Function

    PubMed Central

    Barnhart, Michelle M.; Chapman, Matthew R.

    2010-01-01

    Curli are the major proteinaceous component of a complex extra-cellular matrix produced by many Enterobacteriaceae. Curli were first discovered in the late 1980s on Escherichia coli strains that caused bovine mastitis, and have since been implicated in many physiological and pathogenic processes of E. coli and Salmonella spp. Curli fibers are involved in adhesion to surfaces, cell aggregation, and biofilm formation. Curli also mediate host cell adhesion and invasion, and they are potent inducers of the host inflammatory response. The structure and biogenesis of curli are unique among bacterial fibers that have been described to date. Structurally and biochemically, curli belong to a growing class of fibers known as amyloids. Amyloid fiber formation is responsible for several human diseases including Alzheimer's, Huntington's, and prion diseases, although the process of in vivo amyloid formation is not well understood. Curli provide a unique system to study macromolecular assembly in bacteria and in vivo amyloid fiber formation. Here, we review curli biogenesis, regulation, role in biofilm formation, and role in pathogenesis. PMID:16704339

  2. Interaction between sulphur mobilisation proteins SufB and SufC: evidence for an iron-sulphur cluster biogenesis pathway in the apicoplast of Plasmodium falciparum.

    PubMed

    Kumar, Bijay; Chaubey, Sushma; Shah, Priyanka; Tanveer, Aiman; Charan, Manish; Siddiqi, Mohammad Imran; Habib, Saman

    2011-08-01

    The plastid of Plasmodium falciparum, the apicoplast, performs metabolic functions essential to the parasite. Various reactions in the plastid require the assembly of [Fe-S] prosthetic groups on participating proteins as well as the reductant activity of ferredoxin that is converted from its apo-form by the assembly of [Fe-S] clusters inside the apicoplast. The [Fe-S] assembly pathway involving sulphur mobilising Suf proteins has been predicted to function in the apicoplast with one component (PfSufB) encoded by the plastid genome itself. We demonstrate the ATPase activity of recombinant P. falciparum nuclear-encoded SufC and its localisation in the apicoplast. Further, an internal region of apicoplast SufB was used to detect PfSufB-PfSufC interaction in vitro; co-elution of SufB from parasite lysate with recombinant PfSufC on an affinity column also indicated an interaction of the two proteins. As a departure from bacterial SufB and similar to reported plant plastid SufB, apicoplast SufB exhibited ATPase activity, suggesting the evolution of specialised functions in the plastid counterparts. Our results provide experimental evidence for an active Suf pathway in the Plasmodium apicoplast.

  3. Dynamic periplasmic chaperone reservoir facilitates biogenesis of outer membrane proteins

    PubMed Central

    Costello, Shawn M.; Plummer, Ashlee M.; Fleming, Patrick J.; Fleming, Karen G.

    2016-01-01

    Outer membrane protein (OMP) biogenesis is critical to bacterial physiology because the cellular envelope is vital to bacterial pathogenesis and antibiotic resistance. The process of OMP biogenesis has been studied in vivo, and each of its components has been studied in isolation in vitro. This work integrates parameters and observations from both in vivo and in vitro experiments into a holistic computational model termed “Outer Membrane Protein Biogenesis Model” (OMPBioM). We use OMPBioM to assess OMP biogenesis mathematically in a global manner. Using deterministic and stochastic methods, we are able to simulate OMP biogenesis under varying genetic conditions, each of which successfully replicates experimental observations. We observe that OMPs have a prolonged lifetime in the periplasm where an unfolded OMP makes, on average, hundreds of short-lived interactions with chaperones before folding into its native state. We find that some periplasmic chaperones function primarily as quality-control factors; this function complements the folding catalysis function of other chaperones. Additionally, the effective rate for the β-barrel assembly machinery complex necessary for physiological folding was found to be higher than has currently been observed in vitro. Overall, we find a finely tuned balance between thermodynamic and kinetic parameters maximizes OMP folding flux and minimizes aggregation and unnecessary degradation. In sum, OMPBioM provides a global view of OMP biogenesis that yields unique insights into this essential pathway. PMID:27482090

  4. Poxvirus membrane biogenesis.

    PubMed

    Moss, Bernard

    2015-05-01

    Poxviruses differ from most DNA viruses by replicating entirely within the cytoplasm. The first discernible viral structures are crescents and spherical immature virions containing a single lipoprotein membrane bilayer with an external honeycomb lattice. Because this viral membrane displays no obvious continuity with a cellular organelle, a de novo origin was suggested. Nevertheless, transient connections between viral and cellular membranes could be difficult to resolve. Despite the absence of direct evidence, the intermediate compartment (ERGIC) between the endoplasmic reticulum (ER) and Golgi apparatus and the ER itself were considered possible sources of crescent membranes. A break-through in understanding poxvirus membrane biogenesis has come from recent studies of the abortive replication of several vaccinia virus null mutants. Novel images showing continuity between viral crescents and the ER and the accumulation of immature virions in the expanded ER lumen provide the first direct evidence for a cellular origin of this poxvirus membrane.

  5. Biogenesis and Function of Ago-Associated RNAs.

    PubMed

    Daugaard, Iben; Hansen, Thomas Birkballe

    2017-03-01

    Numerous sophisticated high-throughput sequencing technologies have been developed over the past decade, and these have enabled the discovery of a diverse catalog of small non-coding (nc)RNA molecules that function as regulatory entities by associating with Argonaute (Ago) proteins. MicroRNAs (miRNAs) are currently the best-described class of post-transcriptional regulators that follow a specific biogenesis pathway characterized by Drosha/DGCR8 and Dicer processing. However, more exotic miRNA-like species that bypass particular steps of the canonical miRNA biogenesis pathway continue to emerge, with one of the most recent additions being the agotrons, which escape both Drosha/DGCR8- and Dicer-processing. We review here the current knowledge and most recent discoveries relating to alternative functions and biogenesis strategies for Ago-associated RNAs in mammals.

  6. Storage pool diseases illuminate platelet dense granule biogenesis.

    PubMed

    Ambrosio, Andrea L; Di Pietro, Santiago M

    2016-11-16

    Platelet dense granules (DGs) are membrane bound compartments that store polyphosphate and small molecules such as ADP, ATP, Ca(2+), and serotonin. The release of DG contents plays a central role in platelet aggregation to form a hemostatic plug. Accordingly, congenital deficiencies in the biogenesis of platelet DGs underlie human genetic disorders that cause storage pool disease and manifest with prolonged bleeding. DGs belong to a family of lysosome-related organelles, which also includes melanosomes, the compartments where the melanin pigments are synthesized. These organelles share several characteristics including an acidic lumen and, at least in part, the molecular machinery involved in their biogenesis. As a result, many genes affect both DG and melanosome biogenesis and the corresponding patients present not only with bleeding but also with oculocutaneous albinism. The identification and characterization of such genes has been instrumental in dissecting the pathways responsible for organelle biogenesis. Because the study of melanosome biogenesis has advanced more rapidly, this knowledge has been extrapolated to explain how DGs are produced. However, some progress has recently been made in studying platelet DG biogenesis directly in megakaryocytes and megakaryocytoid cells. DGs originate from an endosomal intermediate compartment, the multivesicular body. Maturation and differentiation into a DG begins when newly synthesized DG-specific proteins are delivered from early/recycling endosomal compartments. The machinery that orchestrates this vesicular trafficking is composed of a combination of both ubiquitous and cell type-specific proteins. Here, we review the current knowledge on DG biogenesis. In particular, we focus on the individual human and murine genes encoding the molecular machinery involved in this process and how their deficiencies result in disease.

  7. Minotaur is critical for primary piRNA biogenesis.

    PubMed

    Vagin, Vasily V; Yu, Yang; Jankowska, Anna; Luo, Yicheng; Wasik, Kaja A; Malone, Colin D; Harrison, Emily; Rosebrock, Adam; Wakimoto, Barbara T; Fagegaltier, Delphine; Muerdter, Felix; Hannon, Gregory J

    2013-08-01

    Piwi proteins and their associated small RNAs are essential for fertility in animals. In part, this is due to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and, as such, form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur.

  8. Minotaur is critical for primary piRNA biogenesis

    PubMed Central

    Vagin, Vasily V.; Yu, Yang; Jankowska, Anna; Luo, Yicheng; Wasik, Kaja A.; Malone, Colin D.; Harrison, Emily; Rosebrock, Adam; Wakimoto, Barbara T.; Fagegaltier, Delphine; Muerdter, Felix; Hannon, Gregory J.

    2013-01-01

    Piwi proteins and their associated small RNAs are essential for fertility in animals. In part, this is due to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and, as such, form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur. PMID:23788724

  9. Peroxisome biogenesis and human peroxisome-deficiency disorders

    PubMed Central

    FUJIKI, Yukio

    2016-01-01

    Peroxisome is a single-membrane-bounded ubiquitous organelle containing a hundred different enzymes that catalyze various metabolic pathways such as β-oxidation of very long-chain fatty acids and synthesis of plasmalogens. To investigate peroxisome biogenesis and human peroxisome biogenesis disorders (PBDs) including Zellweger syndrome, more than a dozen different complementation groups of Chinese hamster ovary (CHO) cell mutants impaired in peroxisome biogenesis are isolated as a model experimental system. By taking advantage of rapid functional complementation assay of the CHO cell mutants, successful cloning of PEX genes encoding peroxins required for peroxisome assembly invaluably contributed to the accomplishment of cloning of pathogenic genes responsible for PBDs. Peroxins are divided into three groups: 1) peroxins including Pex3p, Pex16p and Pex19p, are responsible for peroxisome membrane biogenesis via Pex19p- and Pex3p-dependent class I and Pex19p- and Pex16p-dependent class II pathways; 2) peroxins that function in matrix protein import; 3) those such as Pex11pβ are involved in peroxisome division where DLP1, Mff, and Fis1 coordinately function. PMID:27941306

  10. Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors

    PubMed Central

    Zhang, Gao; Frederick, Dennie T.; Wu, Lawrence; Wei, Zhi; Krepler, Clemens; Srinivasan, Satish; Chae, Young Chan; Xu, Xiaowei; Choi, Harry; Dimwamwa, Elaida; Shannan, Batool; Basu, Devraj; Zhang, Dongmei; Guha, Manti; Xiao, Min; Randell, Sergio; Sproesser, Katrin; Xu, Wei; Liu, Jephrey; Karakousis, Giorgos C.; Schuchter, Lynn M.; Gangadhar, Tara C.; Amaravadi, Ravi K.; Gu, Mengnan; Xu, Caiyue; Ghosh, Abheek; Xu, Weiting; Tian, Tian; Zhang, Jie; Zha, Shijie; Brafford, Patricia; Weeraratna, Ashani; Davies, Michael A.; Wargo, Jennifer A.; Avadhani, Narayan G.; Lu, Yiling; Mills, Gordon B.; Altieri, Dario C.; Flaherty, Keith T.

    2016-01-01

    Targeting multiple components of the MAPK pathway can prolong the survival of patients with BRAFV600E melanoma. This approach is not curative, as some BRAF-mutated melanoma cells are intrinsically resistant to MAPK inhibitors (MAPKi). At the systemic level, our knowledge of how signaling pathways underlie drug resistance needs to be further expanded. Here, we have shown that intrinsically resistant BRAF-mutated melanoma cells with a low basal level of mitochondrial biogenesis depend on this process to survive MAPKi. Intrinsically resistant cells exploited an integrated stress response, exhibited an increase in mitochondrial DNA content, and required oxidative phosphorylation to meet their bioenergetic needs. We determined that intrinsically resistant cells rely on the genes encoding TFAM, which controls mitochondrial genome replication and transcription, and TRAP1, which regulates mitochondrial protein folding. Therefore, we targeted mitochondrial biogenesis with a mitochondrium-targeted, small-molecule HSP90 inhibitor (Gamitrinib), which eradicated intrinsically resistant cells and augmented the efficacy of MAPKi by inducing mitochondrial dysfunction and inhibiting tumor bioenergetics. A subset of tumor biopsies from patients with disease progression despite MAPKi treatment showed increased mitochondrial biogenesis and tumor bioenergetics. A subset of acquired drug-resistant melanoma cell lines was sensitive to Gamitrinib. Our study establishes mitochondrial biogenesis, coupled with aberrant tumor bioenergetics, as a potential therapy escape mechanism and paves the way for a rationale-based combinatorial strategy to improve the efficacy of MAPKi. PMID:27043285

  11. The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon.

    PubMed

    von der Malsburg, Karina; Shao, Sichen; Hegde, Ramanujan S

    2015-06-15

    Cytosolic ribosomes that stall during translation are split into subunits, and nascent polypeptides trapped in the 60S subunit are ubiquitinated by the ribosome quality control (RQC) pathway. Whether the RQC pathway can also target stalls during cotranslational translocation into the ER is not known. Here we report that listerin and NEMF, core RQC components, are bound to translocon-engaged 60S subunits on native ER membranes. RQC recruitment to the ER in cultured cells is stimulated by translation stalling. Biochemical analyses demonstrated that translocon-targeted nascent polypeptides that subsequently stall are polyubiquitinated in 60S complexes. Ubiquitination at the translocon requires cytosolic exposure of the polypeptide at the ribosome-Sec61 junction. This exposure can result from either failed insertion into the Sec61 channel or partial backsliding of translocating nascent chains. Only Sec61-engaged nascent chains early in their biogenesis were relatively refractory to ubiquitination. Modeling based on recent 60S-RQC and 80S-Sec61 structures suggests that the E3 ligase listerin accesses nascent polypeptides via a gap in the ribosome-translocon junction near the Sec61 lateral gate. Thus the RQC pathway can target stalled translocation intermediates for degradation from the Sec61 channel.

  12. The essential function of Rrs1 in ribosome biogenesis is conserved in budding and fission yeasts.

    PubMed

    Wan, Kun; Kawara, Haruka; Yamamoto, Tomoyuki; Kume, Kazunori; Yabuki, Yukari; Goshima, Tetsuya; Kitamura, Kenji; Ueno, Masaru; Kanai, Muneyoshi; Hirata, Dai; Funato, Kouichi; Mizuta, Keiko

    2015-09-01

    The Rrs1 protein plays an essential role in the biogenesis of 60S ribosomal subunits in budding yeast (Saccharomyces cerevisiae). Here, we examined whether the fission yeast (Schizosaccharomyces pombe) homologue of Rrs1 also plays a role in ribosome biogenesis. To this end, we constructed two temperature-sensitive fission yeast strains, rrs1-D14/22G and rrs1-L51P, which had amino acid substitutions corresponding to those of the previously characterized budding yeast rrs1-84 (D22/30G) and rrs1-124 (L61P) strains, respectively. The fission yeast mutants exhibited severe defects in growth and 60S ribosomal subunit biogenesis at high temperatures. In addition, expression of the Rrs1 protein of fission yeast suppressed the growth defects of the budding yeast rrs1 mutants at high temperatures. Yeast two-hybrid analyses revealed that the interactions of Rrs1 with the Rfp2 and Ebp2 proteins were conserved in budding and fission yeasts. These results suggest that the essential function of Rrs1 in ribosome biogenesis may be conserved in budding and fission yeasts.

  13. Mitochondrial biogenesis in cardiac pathophysiology.

    PubMed

    Rimbaud, Stéphanie; Garnier, Anne; Ventura-Clapier, Renée

    2009-01-01

    Cardiac performance depends on a fine balance between the work the heart has to perform to satisfy the needs of the body and the energy that it is able to produce. Thus, energy production by oxidative metabolism, the main energy source of the cardiac muscle, has to be strictly regulated to adapt to cardiac work. Mitochondrial biogenesis is the mechanism responsible for mitochondrial component synthesis and assembly. This process controls mitochondrial content and thus correlates with energy production that, in turn, sustains cardiac contractility. Mitochondrial biogenesis should be finely controlled to match cardiac growth and cardiac work. When the heart is subjected to an increase in work in response to physiological and pathological challenges, it adapts by increasing its mass and expressing a new genetic program. In response to physiological stimuli such as endurance training, mitochondrial biogenesis seems to follow a program involving increased cardiac mass. But in the context of pathological hypertrophy, the modifications of this mechanism remain unclear. What appears clear is that mitochondrial biogenesis is altered in heart failure, and the imbalance between cardiac work demand and energy production represents a major factor in the development of heart failure.

  14. Cellulose biogenesis in Dictyostelium discoideum

    SciTech Connect

    Blanton, R.L.

    1993-12-31

    Organisms that synthesize cellulose can be found amongst the bacteria, protistans, fungi, and animals, but it is in plants that the importance of cellulose in function (as the major structural constituent of plant cell walls) and economic use (as wood and fiber) can be best appreciated. The structure of cellulose and its biosynthesis have been the subjects of intense investigation. One of the most important insights gained from these studies is that the synthesis of cellulose by living organisms involves much more than simply the polymerization of glucose into a (1{r_arrow}4)-{beta}-linked polymer. The number of glucoses in a polymer (the degree of polymerization), the crystalline form assumed by the glucan chains when they crystallize to form a microfibril, and the dimensions and orientation of the microfibrils are all subject to cellular control. Instead of cellulose biosynthesis, a more appropriate term might be cellulose biogenesis, to emphasize the involvement of cellular structures and mechanisms in controlling polymerization and directing crystallization and deposition. Dictyostelium discoideum is uniquely suitable for the study of cellulose biogenesis because of its amenability to experimental study and manipulation and the extent of our knowledge of its basic cellular mechanisms (as will be evident from the rest of this volume). In this chapter, I will summarize what is known about cellulose biogenesis in D. discoideum, emphasizing its potential to illuminate our understanding both of D. discoideum development and plant cellulose biogenesis.

  15. Regulation of chloroplast biogenesis: the immutans mutant of Arabidopsis

    SciTech Connect

    Rodermel, Steven

    2015-11-16

    The immutans (im) variegation mutant of Arabidopsis is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GIGANTEA (GI), a central component of the circadian clock that plays a poorly-understood role in diverse plant developmental processes. imgi2 mutants are late-flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a developmental-specific de-repression of cytokinin signaling that involves crosstalk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, sex1, perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GIGANTEA and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis.

  16. The structure of Rpf2–Rrs1 explains its role in ribosome biogenesis

    PubMed Central

    Kharde, Satyavati; Calviño, Fabiola R.; Gumiero, Andrea; Wild, Klemens; Sinning, Irmgard

    2015-01-01

    The assembly of eukaryotic ribosomes is a hierarchical process involving about 200 biogenesis factors and a series of remodeling steps. The 5S RNP consisting of the 5S rRNA, RpL5 and RpL11 is recruited at an early stage, but has to rearrange during maturation of the pre-60S ribosomal subunit. Rpf2 and Rrs1 have been implicated in 5S RNP biogenesis, but their precise role was unclear. Here, we present the crystal structure of the Rpf2–Rrs1 complex from Aspergillus nidulans at 1.5 Å resolution and describe it as Brix domain of Rpf2 completed by Rrs1 to form two anticodon-binding domains with functionally important tails. Fitting the X-ray structure into the cryo-EM density of a previously described pre-60S particle correlates with biochemical data. The heterodimer forms specific contacts with the 5S rRNA, RpL5 and the biogenesis factor Rsa4. The flexible protein tails of Rpf2–Rrs1 localize to the central protuberance. Two helices in the Rrs1 C-terminal tail occupy a strategic position to block the rotation of 25S rRNA and the 5S RNP. Our data provide a structural model for 5S RNP recruitment to the pre-60S particle and explain why removal of Rpf2–Rrs1 is necessary for rearrangements to drive 60S maturation. PMID:26117542

  17. Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer.

    PubMed

    Yu, Min; Li, Ruishu; Zhang, Juan

    2016-03-18

    Targeting mitochondrial biogenesis has become a potential therapeutic strategy in cancer due to their unique metabolic dependencies. In this study, we show that levofloxacin, a FDA-approved antibiotic, is an attractive candidate for breast cancer treatment. This is achieved by the inhibition of proliferation and induction of apoptosis in a panel of breast cancer cell lines while sparing normal breast cells. It also acts synergistically with conventional chemo drug in two independent in vivo breast xenograft mouse models. Importantly, levofloxacin inhibits mitochondrial biogenesis as shown by the decreased level of mitochondrial respiration, membrane potential and ATP. In addition, the anti-proliferative and pro-apoptotic effects of levofloxacin are reversed by acetyl-L-Carnitine (ALCAR, a mitochondrial fuel), confirming that levofloxacin's action in breast cancer cells is through inhibition of mitochondrial biogenesis. A consequence of mitochondrial biogenesis inhibition by levofloxacin in breast cancer cells is the deactivation of PI3K/Akt/mTOR and MAPK/ERK pathways. We further demonstrate that breast cancer cells have increased mitochondrial biogenesis than normal breast cells, and this explains their different sensitivity to levofloxacin. Our work suggest that levofloxacin is a useful addition to breast cancer treatment. Our work also establish the essential role of mitochondrial biogenesis on the activation of PI3K/Akt/mTOR and MAPK/ERK pathways in breast cancer cells.

  18. Moesin and cortactin control actin-dependent multivesicular endosome biogenesis

    PubMed Central

    Muriel, Olivia; Tomas, Alejandra; Scott, Cameron C.; Gruenberg, Jean

    2016-01-01

    We used in vivo and in vitro strategies to study the mechanisms of multivesicular endosome biogenesis. We found that, whereas annexinA2 and ARP2/3 mediate F-actin nucleation and branching, respectively, the ERM protein moesin supports the formation of F-actin networks on early endosomes. We also found that moesin plays no role during endocytosis and recycling to the plasma membrane but is absolutely required, much like actin, for early-to-late-endosome transport and multivesicular endosome formation. Both actin network formation in vitro and early-to-late endosome transport in vivo also depend on the F-actin–binding protein cortactin. Our data thus show that moesin and cortactin are necessary for formation of F-actin networks that mediate endosome biogenesis or maturation and transport through the degradative pathway. We propose that the primary function of endosomal F-actin is to control the membrane remodeling that accompanies endosome biogenesis. We also speculate that this mechanism helps segregate tubular and multivesicular membranes along the recycling and degradation pathways, respectively. PMID:27605702

  19. Mitochondrial cytochrome c biogenesis: no longer an enigma.

    PubMed

    Babbitt, Shalon E; Sutherland, Molly C; San Francisco, Brian; Mendez, Deanna L; Kranz, Robert G

    2015-08-01

    Cytochromes c (cyt c) and c1 are heme proteins that are essential for aerobic respiration. Release of cyt c from mitochondria is an important signal in apoptosis initiation. Biogenesis of c-type cytochromes involves covalent attachment of heme to two cysteines (at a conserved CXXCH sequence) in the apocytochrome. Heme attachment is catalyzed in most mitochondria by holocytochrome c synthase (HCCS), which is also necessary for the import of apocytochrome c (apocyt c). Thus, HCCS affects cellular levels of cyt c, impacting mitochondrial physiology and cell death. Here, we review the mechanisms of HCCS function and the roles of heme and residues in the CXXCH motif. Additionally, we consider concepts emerging within the two prokaryotic cytochrome c biogenesis pathways.

  20. Mitochondrial cytochrome c biogenesis: no longer an enigma

    PubMed Central

    Babbitt, Shalon E.; Sutherland, Molly C.; Francisco, Brian San; Mendez, Deanna L.; Kranz, Robert G.

    2015-01-01

    Cytochromes c and c1are heme proteins that are essential for aerobic respiration. Release of cytochrome c from mitochondria is an important signal in apoptosis initiation. Biogenesis of c-type cytochromes involves covalent attachment of heme to two cysteines (at a conserved CXXCH sequence) in the apocytochrome. Heme attachment is catalyzed in most mitochondria by holocytochrome c synthase (HCCS), which is also necessary for import of apocytochrome c. Thus, HCCS affects cellular levels of cytochrome c, impacting mitochondrial physiology and cell death. Here, we review the mechanisms of HCCS function and the roles played by heme and residues in the CXXCH motif. Additionally, we consider concepts emerging within the two prokaryotic cytochrome c biogenesis pathways. PMID:26073510

  1. Dbp7p, a putative ATP-dependent RNA helicase from Saccharomyces cerevisiae, is required for 60S ribosomal subunit assembly.

    PubMed Central

    Daugeron, M C; Linder, P

    1998-01-01

    Putative ATP-dependent RNA helicases are ubiquitous, highly conserved proteins that are found in most organisms and they are implicated in all aspects of cellular RNA metabolism. Here we present the functional characterization of the Dbp7 protein, a putative ATP-dependent RNA helicase of the DEAD-box protein family from Saccharomyces cerevisiae. The complete deletion of the DBP7 ORF causes a severe slow-growth phenotype. In addition, the absence of Dbp7p results in a reduced amount of 60S ribosomal subunits and an accumulation of halfmer polysomes. Subsequent analysis of pre-rRNA processing indicates that this 60S ribosomal subunit deficit is due to a strong decrease in the production of 27S and 7S precursor rRNAs, which leads to reduced levels of the mature 25S and 5.8S rRNAs. Noticeably, the overall decrease of the 27S pre-rRNA species is neither associated with the accumulation of preceding precursors nor with the emergence of abnormal processing intermediates, suggesting that these 27S pre-rRNA species are degraded rapidly in the absence of Dbp7p. Finally, an HA epitope-tagged Dbp7 protein is localized in the nucleolus. We propose that Dbp7p is involved in the assembly of the pre-ribosomal particle during the biogenesis of the 60S ribosomal subunit. PMID:9582098

  2. EVALUATION OF THE BIOGENESIS SOIL WASHING TECHNOLOGY

    EPA Science Inventory

    The BioGenesis Enterprises, Inc. (BioGenesis) soil washing technology was demonstrated as part of the US Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) program in November 1992. The demonstration was conducted over three days at a petrol...

  3. The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon

    PubMed Central

    von der Malsburg, Karina; Shao, Sichen; Hegde, Ramanujan S.

    2015-01-01

    Cytosolic ribosomes that stall during translation are split into subunits, and nascent polypeptides trapped in the 60S subunit are ubiquitinated by the ribosome quality control (RQC) pathway. Whether the RQC pathway can also target stalls during cotranslational translocation into the ER is not known. Here we report that listerin and NEMF, core RQC components, are bound to translocon-engaged 60S subunits on native ER membranes. RQC recruitment to the ER in cultured cells is stimulated by translation stalling. Biochemical analyses demonstrated that translocon-targeted nascent polypeptides that subsequently stall are polyubiquitinated in 60S complexes. Ubiquitination at the translocon requires cytosolic exposure of the polypeptide at the ribosome–Sec61 junction. This exposure can result from either failed insertion into the Sec61 channel or partial backsliding of translocating nascent chains. Only Sec61-engaged nascent chains early in their biogenesis were relatively refractory to ubiquitination. Modeling based on recent 60S–RQC and 80S–Sec61 structures suggests that the E3 ligase listerin accesses nascent polypeptides via a gap in the ribosome–translocon junction near the Sec61 lateral gate. Thus the RQC pathway can target stalled translocation intermediates for degradation from the Sec61 channel. PMID:25877867

  4. Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products.

    PubMed

    Defenouillère, Quentin; Yao, Yanhua; Mouaikel, John; Namane, Abdelkader; Galopier, Aurélie; Decourty, Laurence; Doyen, Antonia; Malabat, Christophe; Saveanu, Cosmin; Jacquier, Alain; Fromont-Racine, Micheline

    2013-03-26

    Ribosome stalling on eukaryotic mRNAs triggers cotranslational RNA and protein degradation through conserved mechanisms. For example, mRNAs lacking a stop codon are degraded by the exosome in association with its cofactor, the SKI complex, whereas the corresponding aberrant nascent polypeptides are ubiquitinated by the E3 ligases Ltn1 and Not4 and become proteasome substrates. How translation arrest is linked with polypeptide degradation is still unclear. Genetic screens with SKI and LTN1 mutants allowed us to identify translation-associated element 2 (Tae2) and ribosome quality control 1 (Rqc1), two factors that we found associated, together with Ltn1 and the AAA-ATPase Cdc48, to 60S ribosomal subunits. Translation-associated element 2 (Tae2), Rqc1, and Cdc48 were all required for degradation of polypeptides synthesized from Non-Stop mRNAs (Non-Stop protein decay; NSPD). Both Ltn1 and Rqc1 were essential for the recruitment of Cdc48 to 60S particles. Polysome gradient analyses of mutant strains revealed unique intermediates of this pathway, showing that the polyubiquitination of Non-Stop peptides is a progressive process. We propose that ubiquitination of the nascent peptide starts on the 80S and continues on the 60S, on which Cdc48 is recruited to escort the substrate for proteasomal degradation.

  5. Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy.

    PubMed

    Ossareh-Nazari, Batool; Niño, Carlos A; Bengtson, Mario H; Lee, Joong-Won; Joazeiro, Claudio A P; Dargemont, Catherine

    2014-03-17

    Autophagy, the process by which proteins or organelles are engulfed by autophagosomes and delivered for vacuolar/lysosomal degradation, is induced to ensure survival under starvation and other stresses. A selective autophagic pathway for 60S ribosomal subunits elicited by nitrogen starvation in yeast-ribophagy-was recently described and requires the Ubp3-Bre5 deubiquitylating enzyme. This discovery implied that an E3 ligases act upstream, whether inhibiting the process or providing an initial required signal. In this paper, we show that Ltn1/Rkr1, a 60S ribosome-associated E3 implicated in translational surveillance, acts as an inhibitor of 60S ribosomal subunit ribophagy and is antagonized by Ubp3. The ribosomal protein Rpl25 is a relevant target. Its ubiquitylation is Ltn1 dependent and Ubp3 reversed, and mutation of its ubiquitylation site rendered ribophagy less dependent on Ubp3. Consistently, the expression of Ltn1-but not Ubp3-rapidly decreased after starvation, presumably to allow ribophagy to proceed. Thus, Ltn1 and Ubp3-Bre5 likely contribute to adapt ribophagy activity to both nutrient supply and protein translation.

  6. Dissecting Escherichia coli Outer Membrane Biogenesis Using Differential Proteomics

    PubMed Central

    Martorana, Alessandra M.; Motta, Sara; Di Silvestre, Dario; Falchi, Federica; Dehò, Gianni; Mauri, Pierluigi; Sperandeo, Paola; Polissi, Alessandra

    2014-01-01

    The cell envelope of Gram-negative bacteria is a complex multi-layered structure comprising an inner cytoplasmic membrane and an additional asymmetric lipid bilayer, the outer membrane, which functions as a selective permeability barrier and is essential for viability. Lipopolysaccharide, an essential glycolipid located in the outer leaflet of the outer membrane, greatly contributes to the peculiar properties exhibited by the outer membrane. This complex molecule is transported to the cell surface by a molecular machine composed of seven essential proteins LptABCDEFG that form a transenvelope complex and function as a single device. While advances in understanding the mechanisms that govern the biogenesis of the cell envelope have been recently made, only few studies are available on how bacterial cells respond to severe envelope biogenesis defects on a global scale. Here we report the use of differential proteomics based on Multidimensional Protein Identification Technology (MudPIT) to investigate how Escherichia coli cells respond to a block of lipopolysaccharide transport to the outer membrane. We analysed the envelope proteome of a lptC conditional mutant grown under permissive and non permissive conditions and identified 123 proteins whose level is modulated upon LptC depletion. Most such proteins belong to pathways implicated in cell envelope biogenesis, peptidoglycan remodelling, cell division and protein folding. Overall these data contribute to our understanding on how E. coli cells respond to LPS transport defects to restore outer membrane functionality. PMID:24967819

  7. The fungal vacuole: composition, function, and biogenesis.

    PubMed Central

    Klionsky, D J; Herman, P K; Emr, S D

    1990-01-01

    The fungal vacuole is an extremely complex organelle that is involved in a wide variety of functions. The vacuole not only carries out degradative processes, the role most often ascribed to it, but also is the primary storage site for certain small molecules and biosynthetic precursors such as basic amino acids and polyphosphate, plays a role in osmoregulation, and is involved in the precise homeostatic regulation of cytosolic ion and basic amino acid concentration and intracellular pH. These many functions necessitate an intricate interaction between the vacuole and the rest of the cell; the vacuole is part of both the secretory and endocytic pathways and is also directly accessible from the cytosol. Because of the various roles and properties of the vacuole, it has been possible to isolate mutants which are defective in various vacuolar functions including the storage and uptake of metabolites, regulation of pH, sorting and processing of vacuolar proteins, and vacuole biogenesis. These mutants show a remarkable degree of genetic overlap, suggesting that these functions are not individual, discrete properties of the vacuole but, rather, are closely interrelated. Images PMID:2215422

  8. Ribosome Biogenesis in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Woolford, John L.; Baserga, Susan J.

    2013-01-01

    Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes. PMID:24190922

  9. Secretory granule biogenesis: rafting to the SNARE.

    PubMed

    Tooze, S A; Martens, G J; Huttner, W B

    2001-03-01

    Regulated secretion of hormones occurs when a cell receives an external stimulus, triggering the secretory granules to undergo fusion with the plasma membrane and release their content into the extracellular milieu. The formation of a mature secretory granule (MSG) involves a series of discrete and unique events such as protein sorting, formation of immature secretory granules (ISGs), prohormone processing and vesicle fusion. Regulated secretory proteins (RSPs), the proteins stored and secreted from MSGs, contain signals or domains to direct them into the regulated secretory pathway. Recent data on the role of specific domains in RSPs involved in sorting and aggregation suggest that the cell-type-specific composition of RSPs in the trans-Golgi network (TGN) has an important role in determining how the RSPs get into ISGs. The realization that lipid rafts are implicated in sorting RSPs in the TGN and the identification of SNARE molecules represent further major advances in our understanding of how MSGs are formed. At the heart of these findings is the elucidation of molecular mechanisms driving protein--lipid and protein--protein interactions specific for secretory granule biogenesis.

  10. Multiple crosstalks between mRNA biogenesis and SUMO.

    PubMed

    Rouvière, Jérôme O; Geoffroy, Marie-Claude; Palancade, Benoit

    2013-10-01

    mRNA metabolism involves the orchestration of multiple nuclear events, including transcription, processing (e.g., capping, splicing, polyadenylation), and quality control. This leads to the accurate formation of messenger ribonucleoparticles (mRNPs) that are finally exported to the cytoplasm for translation. The production of defined sets of mRNAs in given environmental or physiological situations relies on multiple regulatory mechanisms that target the mRNA biogenesis machineries. Among other regulations, post-translational modification by the small ubiquitin-like modifier SUMO, whose prominence in several cellular processes has been largely demonstrated, also plays a key role in mRNA biogenesis. Analysis of the multiple available SUMO proteomes and functional validations of an increasing number of sumoylated targets have revealed the key contribution of SUMO-dependent regulation in nuclear mRNA metabolism. While sumoylation of transcriptional activators and repressors is so far best documented, SUMO contribution to other stages of mRNA biogenesis is also emerging. Modification of mRNA metabolism factors by SUMO determine their subnuclear targeting and biological activity, notably by regulating their molecular interactions with nucleic acids or protein partners. In particular, sumoylation of DNA-bound transcriptional regulators interfere with their association to target sequences or chromatin modifiers. In addition, the recent identification of enzymes of the SUMO pathway within specialized mRNA biogenesis machineries may provide a further level of regulation to their specificity. These multiple crosstalks between mRNA metabolism and SUMO appear therefore as important players in cellular regulatory networks.

  11. The fusogenic lipid phosphatidic acid promotes the biogenesis of mitochondrial outer membrane protein Ugo1

    PubMed Central

    Keller, Michael; Taskin, Asli A.; Horvath, Susanne E.; Guan, Xue Li; Prinz, Claudia; Opalińska, Magdalena; Zorzin, Carina; van der Laan, Martin; Wenk, Markus R.; Schubert, Rolf; Wiedemann, Nils; Holzer, Martin

    2015-01-01

    Import and assembly of mitochondrial proteins depend on a complex interplay of proteinaceous translocation machineries. The role of lipids in this process has been studied only marginally and so far no direct role for a specific lipid in mitochondrial protein biogenesis has been shown. Here we analyzed a potential role of phosphatidic acid (PA) in biogenesis of mitochondrial proteins in Saccharomyces cerevisiae. In vivo remodeling of the mitochondrial lipid composition by lithocholic acid treatment or by ablation of the lipid transport protein Ups1, both leading to an increase of mitochondrial PA levels, specifically stimulated the biogenesis of the outer membrane protein Ugo1, a component of the mitochondrial fusion machinery. We reconstituted the import and assembly pathway of Ugo1 in protein-free liposomes, mimicking the outer membrane phospholipid composition, and found a direct dependency of Ugo1 biogenesis on PA. Thus, PA represents the first lipid that is directly involved in the biogenesis pathway of a mitochondrial membrane protein. PMID:26347140

  12. Outer membrane lipoprotein biogenesis: Lol is not the end.

    PubMed

    Konovalova, Anna; Silhavy, Thomas J

    2015-10-05

    Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology.

  13. Eukaryotic ribosome biogenesis at a glance.

    PubMed

    Thomson, Emma; Ferreira-Cerca, Sébastien; Hurt, Ed

    2013-11-01

    Ribosomes play a pivotal role in the molecular life of every cell. Moreover, synthesis of ribosomes is one of the most energetically demanding of all cellular processes. In eukaryotic cells, ribosome biogenesis requires the coordinated activity of all three RNA polymerases and the orchestrated work of many (>200) transiently associated ribosome assembly factors. The biogenesis of ribosomes is a tightly regulated activity and it is inextricably linked to other fundamental cellular processes, including growth and cell division. Furthermore, recent studies have demonstrated that defects in ribosome biogenesis are associated with several hereditary diseases. In this Cell Science at a Glance article and the accompanying poster, we summarise the current knowledge on eukaryotic ribosome biogenesis, with an emphasis on the yeast model system.

  14. The synthesis of glutamic acid in the absence of enzymes: Implications for biogenesis

    NASA Technical Reports Server (NTRS)

    Morowitz, Harold; Peterson, Eta; Chang, Sherwood

    1995-01-01

    This paper reports on the non-enzymatic aqueous phase synthesis of amino acids from keto acids, ammonia and reducing agents. The facile synthesis of key metabolic intermediates, particularly in the glycolytic pathway, the citric acid cycle, and the first step of amino acid synthesis, lead to new ways of looking at the problem of biogenesis.

  15. A novel mechanism involved in the coupling of mitochondrial biogenesis to oxidative phosphorylation

    PubMed Central

    Ostojić, Jelena; Rago, Jean-Paul; Dujardin, Geneviève

    2014-01-01

    Mitochondria are essential organelles that are central to a multitude of cellular processes, including oxidative phosphorylation (OXPHOS), which produces most of the ATP in animal cells. Thus it is important to understand not only the mechanisms and biogenesis of this energy production machinery but also how it is regulated in both physiological and pathological contexts. A recent study by Ostojić et al. [Cell Metabolism (2013) 18, 567-577] has uncovered a regulatory loop by which the biogenesis of a major enzyme of the OXPHOS pathway, the respiratory complex III, is coupled to the energy producing activity of the mitochondria. PMID:28357209

  16. Nonequilibrium description of de novo biogenesis and transport through Golgi-like cisternae

    PubMed Central

    Sachdeva, Himani; Barma, Mustansir; Rao, Madan

    2016-01-01

    A central issue in cell biology is the physico-chemical basis of organelle biogenesis in intracellular trafficking pathways, its most impressive manifestation being the biogenesis of Golgi cisternae. At a basic level, such morphologically and chemically distinct compartments should arise from an interplay between the molecular transport and chemical maturation. Here, we formulate analytically tractable, minimalist models, that incorporate this interplay between transport and chemical progression in physical space, and explore the conditions for de novo biogenesis of distinct cisternae. We propose new quantitative measures that can discriminate between the various models of transport in a qualitative manner–this includes measures of the dynamics in steady state and the dynamical response to perturbations of the kind amenable to live-cell imaging. PMID:27991496

  17. Nonequilibrium description of de novo biogenesis and transport through Golgi-like cisternae.

    PubMed

    Sachdeva, Himani; Barma, Mustansir; Rao, Madan

    2016-12-19

    A central issue in cell biology is the physico-chemical basis of organelle biogenesis in intracellular trafficking pathways, its most impressive manifestation being the biogenesis of Golgi cisternae. At a basic level, such morphologically and chemically distinct compartments should arise from an interplay between the molecular transport and chemical maturation. Here, we formulate analytically tractable, minimalist models, that incorporate this interplay between transport and chemical progression in physical space, and explore the conditions for de novo biogenesis of distinct cisternae. We propose new quantitative measures that can discriminate between the various models of transport in a qualitative manner-this includes measures of the dynamics in steady state and the dynamical response to perturbations of the kind amenable to live-cell imaging.

  18. Nonequilibrium description of de novo biogenesis and transport through Golgi-like cisternae

    NASA Astrophysics Data System (ADS)

    Sachdeva, Himani; Barma, Mustansir; Rao, Madan

    2016-12-01

    A central issue in cell biology is the physico-chemical basis of organelle biogenesis in intracellular trafficking pathways, its most impressive manifestation being the biogenesis of Golgi cisternae. At a basic level, such morphologically and chemically distinct compartments should arise from an interplay between the molecular transport and chemical maturation. Here, we formulate analytically tractable, minimalist models, that incorporate this interplay between transport and chemical progression in physical space, and explore the conditions for de novo biogenesis of distinct cisternae. We propose new quantitative measures that can discriminate between the various models of transport in a qualitative manner–this includes measures of the dynamics in steady state and the dynamical response to perturbations of the kind amenable to live-cell imaging.

  19. Acute and chronic mitochondrial respiratory chain deficiency differentially regulate lysosomal biogenesis

    PubMed Central

    Fernández-Mosquera, Lorena; Diogo, Cátia V.; Yambire, King Faisal; Santos, Gabriela L.; Luna Sánchez, Marta; Bénit, Paule; Rustin, Pierre; Lopez, Luis Carlos; Milosevic, Ira; Raimundo, Nuno

    2017-01-01

    Mitochondria are key cellular signaling platforms, affecting fundamental processes such as cell proliferation, differentiation and death. However, it remains unclear how mitochondrial signaling affects other organelles, particularly lysosomes. Here, we demonstrate that mitochondrial respiratory chain (RC) impairments elicit a stress signaling pathway that regulates lysosomal biogenesis via the microphtalmia transcription factor family. Interestingly, the effect of mitochondrial stress over lysosomal biogenesis depends on the timeframe of the stress elicited: while RC inhibition with rotenone or uncoupling with CCCP initially triggers lysosomal biogenesis, the effect peaks after few hours and returns to baseline. Long-term RC inhibition by long-term treatment with rotenone, or patient mutations in fibroblasts and in a mouse model result in repression of lysosomal biogenesis. The induction of lysosomal biogenesis by short-term mitochondrial stress is dependent on TFEB and MITF, requires AMPK signaling and is independent of calcineurin signaling. These results reveal an integrated view of how mitochondrial signaling affects lysosomes, which is essential to fully comprehend the consequences of mitochondrial malfunction, particularly in the context of mitochondrial diseases. PMID:28345620

  20. Mitochondrial biogenesis in plants during seed germination.

    PubMed

    Law, Simon R; Narsai, Reena; Whelan, James

    2014-11-01

    Mitochondria occupy a central role in the eukaryotic cell. In addition to being major sources of cellular energy, mitochondria are also involved in a diverse range of functions including signalling, the synthesis of many essential organic compounds and a role in programmed cell death. The active proliferation and differentiation of mitochondria is termed mitochondrial biogenesis and necessitates the coordinated communication of mitochondrial status within an integrated cellular network. Two models of mitochondrial biogenesis have been defined previously, the growth and division model and the maturation model. The former describes the growth and division of pre-existing mature organelles through a form of binary fission, while the latter describes the propagation of mitochondria from structurally and biochemically simple promitochondrial structures that upon appropriate stimuli, mature into fully functional mitochondria. In the last decade, a number of studies have utilised seed germination in plants as a platform for the examination of the processes occurring during mitochondrial biogenesis. These studies have revealed many new aspects of the tightly regulated procession of events that define mitochondrial biogenesis during this period of rapid development. A model for mitochondrial biogenesis that supports the maturation of mitochondria from promitochondrial structures has emerged, where mitochondrial signalling plays a crucial role in the early steps of seed germination.

  1. Insights into chloroplast biogenesis and development.

    PubMed

    Pogson, Barry J; Ganguly, Diep; Albrecht-Borth, Verónica

    2015-09-01

    In recent years many advances have been made to obtain insight into chloroplast biogenesis and development. In plants several plastids types exist such as the proplastid (which is the progenitor of all plastids), leucoplasts (group of colourless plastids important for storage including elaioplasts (lipids), amyloplasts (starch) or proteinoplasts (proteins)), chromoplasts (yellow to orange-coloured due to carotenoids, in flowers or in old leaves as gerontoplasts), and the green chloroplasts. Chloroplasts are indispensable for plant development; not only by performing photosynthesis and thus rendering the plant photoautotrophic, but also for biochemical processes (which in some instances can also take place in other plastids types), such as the synthesis of pigments, lipids, and plant hormones and sensing environmental stimuli. Although we understand many aspects of these processes there are gaps in our understanding of the establishment of functional chloroplasts and their regulation. Why is that so? Even though chloroplast function is comparable in all plants and most of the algae, ferns and moss, detailed analyses have revealed many differences, specifically with respect to its biogenesis. As an update to our prior review on the genetic analysis of chloroplast biogenesis and development [1] herein we will focus on recent advances in Angiosperms (monocotyledonous and dicotyledonous plants) that provide novel insights and highlight the challenges and prospects for unravelling the regulation of chloroplast biogenesis specifically during the establishment of the young plants. This article is part of a Special Issue entitled: Chloroplast Biogenesis.

  2. Getting ready for building: signaling and autophagosome biogenesis

    PubMed Central

    Abada, Adi; Elazar, Zvulun

    2014-01-01

    Autophagy is the main cellular catabolic process responsible for degrading organelles and large protein aggregates. It is initiated by the formation of a unique membrane structure, the phagophore, which engulfs part of the cytoplasm and forms a double-membrane vesicle termed the autophagosome. Fusion of the outer autophagosomal membrane with the lysosome and degradation of the inner membrane contents complete the process. The extent of autophagy must be tightly regulated to avoid destruction of proteins and organelles essential for cell survival. Autophagic activity is thus regulated by external and internal cues, which initiate the formation of well-defined autophagy-related protein complexes that mediate autophagosome formation and selective cargo recruitment into these organelles. Autophagosome formation and the signaling pathways that regulate it have recently attracted substantial attention. In this review, we analyze the different signaling pathways that regulate autophagy and discuss recent progress in our understanding of autophagosome biogenesis. PMID:25027988

  3. Getting ready for building: signaling and autophagosome biogenesis.

    PubMed

    Abada, Adi; Elazar, Zvulun

    2014-08-01

    Autophagy is the main cellular catabolic process responsible for degrading organelles and large protein aggregates. It is initiated by the formation of a unique membrane structure, the phagophore, which engulfs part of the cytoplasm and forms a double-membrane vesicle termed the autophagosome. Fusion of the outer autophagosomal membrane with the lysosome and degradation of the inner membrane contents complete the process. The extent of autophagy must be tightly regulated to avoid destruction of proteins and organelles essential for cell survival. Autophagic activity is thus regulated by external and internal cues, which initiate the formation of well-defined autophagy-related protein complexes that mediate autophagosome formation and selective cargo recruitment into these organelles. Autophagosome formation and the signaling pathways that regulate it have recently attracted substantial attention. In this review, we analyze the different signaling pathways that regulate autophagy and discuss recent progress in our understanding of autophagosome biogenesis.

  4. Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice

    SciTech Connect

    Park, Eun-Jung; Kim, Hero; Kim, Younghun; Yi, Jongheop; Choi, Kyunghee; Park, Kwangsik

    2010-04-15

    Fullerenes (C60s) occur in the environment due to natural and anthropogenic sources such as volcanic eruptions, forest fires, and the combustion of carbon-based materials. Recently, production and application of engineered C60s have also rapidly increased in diverse industrial fields and biomedicine due to C60' unique physico-chemical properties, so toxicity assessment on environmental and human health is being evaluated as a valuable work. However, data related to the toxicity of C60s have not been abundant up to now. In this study, we studied the immunotoxic mechanism and change of gene expression caused by the instillation of C60s. As a result, C60s induced an increase in sub G1 and G1 arrest in BAL cells, an increase in pro-inflammatory cytokines such as IL-1, TNF-alpha, and IL-6, and an increase of Th1 cytokines such as IL-12 and IFN-r in BAL fluid. In addition, IgE reached the maximum at 1 day after treatment in both BAL fluid and the blood, and decreased in a time-dependent manner. Gene expression of the MHC class II (H2-Eb1) molecule was stronger than that of the MHC class I (H2-T23), and an increase in T cell distribution was also observed during the experiment period. Furthermore, cell infiltration and expression of tissue damage related genes in lung tissue were constantly observed during the experiment period. Based on this, C60s may induce inflammatory responses in the lung of mice.

  5. Mitochondrial OXA Translocase Plays a Major Role in Biogenesis of Inner-Membrane Proteins.

    PubMed

    Stiller, Sebastian B; Höpker, Jan; Oeljeklaus, Silke; Schütze, Conny; Schrempp, Sandra G; Vent-Schmidt, Jens; Horvath, Susanne E; Frazier, Ann E; Gebert, Natalia; van der Laan, Martin; Bohnert, Maria; Warscheid, Bettina; Pfanner, Nikolaus; Wiedemann, Nils

    2016-05-10

    The mitochondrial inner membrane harbors three protein translocases. Presequence translocase and carrier translocase are essential for importing nuclear-encoded proteins. The oxidase assembly (OXA) translocase is required for exporting mitochondrial-encoded proteins; however, different views exist about its relevance for nuclear-encoded proteins. We report that OXA plays a dual role in the biogenesis of nuclear-encoded mitochondrial proteins. First, a systematic analysis of OXA-deficient mitochondria led to an unexpected expansion of the spectrum of OXA substrates imported via the presequence pathway. Second, biogenesis of numerous metabolite carriers depends on OXA, although they are not imported by the presequence pathway. We show that OXA is crucial for the biogenesis of the Tim18-Sdh3 module of the carrier translocase. The export translocase OXA is thus required for the import of metabolite carriers by promoting assembly of the carrier translocase. We conclude that OXA is of central importance for the biogenesis of the mitochondrial inner membrane.

  6. Vulnerability of microRNA biogenesis in FTD-ALS.

    PubMed

    Eitan, Chen; Hornstein, Eran

    2016-09-15

    The genetics of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) turn our attention to RNA metabolism, primarily because many of the identified diseases-associated genes encode for RNA-binding proteins. microRNAs (miRNAs) are endogenous noncoding RNAs that play critical roles in maintaining brain integrity. The current review sheds light on miRNA dysregulation in neurodegenerative diseases, focusing on FTD-ALS. We propose that miRNAs are susceptible to fail when protein factors that are critical for miRNA biogenesis malfunction. Accordingly, potential insufficiencies of the 'microprocessor' complex, the nucleo-cytoplasmic export of miRNA precursors or their processing by Dicer were recently reported. Furthermore, specific miRNAs are involved in the regulation of pathways that are essential for neuronal survival or function. Any change in the expression of these specific miRNAs or in their ability to recognize their target sequences will have negative consequences. Taken together, recent reports strengthens the hypothesis that dysregulation of miRNAs might play an important role in the pathogenesis of neurodegenerative diseases, and highlights the miRNA biogenesis machinery as an interesting target for therapeutic interventions for ALS as well as FTD. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.

  7. Outer membrane protein biogenesis in Gram-negative bacteria

    PubMed Central

    Rollauer, Sarah E.; Sooreshjani, Moloud A.; Noinaj, Nicholas; Buchanan, Susan K.

    2015-01-01

    Gram-negative bacteria contain a double membrane which serves for both protection and for providing nutrients for viability. The outermost of these membranes is called the outer membrane (OM), and it contains a host of fully integrated membrane proteins which serve essential functions for the cell, including nutrient uptake, cell adhesion, cell signalling and waste export. For pathogenic strains, many of these outer membrane proteins (OMPs) also serve as virulence factors for nutrient scavenging and evasion of host defence mechanisms. OMPs are unique membrane proteins in that they have a β-barrel fold and can range in size from 8 to 26 strands, yet can still serve many different functions for the cell. Despite their essential roles in cell survival and virulence, the exact mechanism for the biogenesis of these OMPs into the OM has remained largely unknown. However, the past decade has witnessed significant progress towards unravelling the pathways and mechanisms necessary for moulding a nascent polypeptide into a functional OMP within the OM. Here, we will review some of these recent discoveries that have advanced our understanding of the biogenesis of OMPs in Gram-negative bacteria, starting with synthesis in the cytoplasm to folding and insertion into the OM. PMID:26370935

  8. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria.

    PubMed

    Pinkner, Jerome S; Remaut, Han; Buelens, Floris; Miller, Eric; Aberg, Veronica; Pemberton, Nils; Hedenström, Mattias; Larsson, Andreas; Seed, Patrick; Waksman, Gabriel; Hultgren, Scott J; Almqvist, Fredrik

    2006-11-21

    A chemical synthesis platform with broad applications and flexibility was rationally designed to inhibit biogenesis of adhesive pili assembled by the chaperone-usher pathway in Gram-negative pathogens. The activity of a family of bicyclic 2-pyridones, termed pilicides, was evaluated in two different pilus biogenesis systems in uropathogenic Escherichia coli. Hemagglutination mediated by either type 1 or P pili, adherence to bladder cells, and biofilm formation mediated by type 1 pili were all reduced by approximately 90% in laboratory and clinical E. coli strains. The structure of the pilicide bound to the P pilus chaperone PapD revealed that the pilicide bound to the surface of the chaperone known to interact with the usher, the outer-membrane assembly platform where pili are assembled. Point mutations in the pilicide-binding site dramatically reduced pilus formation but did not block the ability of PapD to bind subunits and mediate their folding. Surface plasmon resonance experiments confirmed that the pilicide interfered with the binding of chaperone-subunit complexes to the usher. These pilicides thus target key virulence factors in pathogenic bacteria and represent a promising proof of concept for developing drugs that function by targeting virulence factors.

  9. Biogenesis and functions of lipid droplets in plants

    PubMed Central

    Chapman, Kent D.; Dyer, John M.; Mullen, Robert T.

    2012-01-01

    The compartmentation of neutral lipids in plants is mostly associated with seed tissues, where triacylglycerols (TAGs) stored within lipid droplets (LDs) serve as an essential physiological energy and carbon reserve during postgerminative growth. However, some nonseed tissues, such as leaves, flowers and fruits, also synthesize and store TAGs, yet relatively little is known about the formation or function of LDs in these tissues. Characterization of LD-associated proteins, such as oleosins, caleosins, and sterol dehydrogenases (steroleosins), has revealed surprising features of LD function in plants, including stress responses, hormone signaling pathways, and various aspects of plant growth and development. Although oleosin and caleosin proteins are specific to plants, LD-associated sterol dehydrogenases also are present in mammals, and in both plants and mammals these enzymes have been shown to be important in (steroid) hormone metabolism and signaling. In addition, several other proteins known to be important in LD biogenesis in yeasts and mammals are conserved in plants, suggesting that at least some aspects of LD biogenesis and/or function are evolutionarily conserved. PMID:22045929

  10. Cilostazol promotes mitochondrial biogenesis in human umbilical vein endothelial cells through activating the expression of PGC-1α

    SciTech Connect

    Zuo, Luning; Li, Qiang; Sun, Bei; Xu, Zhiying; Ge, Zhiming

    2013-03-29

    Highlights: ► First time to show that cilostazol promotes the expressions of PGC-1α. ► First time to show that cilostazol stimulates mitochondrial biogenesis in HUVECs. ► PKA/CREB pathway mediates the effect of cilostazol on PGC-1α expression. ► Suggesting the roles of cilostazol in mitochondrial dysfunction related disease. -- Abstract: Mitochondrial dysfunction is frequently observed in vascular diseases. Cilostazol is a drug approved by the US Food and Drug Administration for the treatment of intermittent claudication. Cilostazol increases intracellular cyclic adenosine monophosphate (cAMP) levels through inhibition of type III phosphodiesterase. The effects of cilostazol in mitochondrial biogenesis in human umbilical vein endothelial cells (HUVECs) were investigated in this study. Cilostazol treated HUVECs displayed increased levels of ATP, mitochondrial DNA/nuclear DNA ratio, expressions of cytochrome B, and mitochondrial mass, suggesting an enhanced mitochondrial biogenesis induced by cilostazol. The promoted mitochondrial biogenesis could be abolished by Protein kinase A (PKA) specific inhibitor H-89, implying that PKA pathway played a critical role in increased mitochondrial biogenesis after cilostazol treatment. Indeed, expression levels of peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), NRF 1 and mitochondrial transcription factor A (TFAM) were significantly increased in HUVECs after incubation with cilostazol at both mRNA levels and protein levels. Importantly, knockdown of PGC-1α could abolish cilostazol-induced mitochondrial biogenesis. Enhanced expression of p-CREB and PGC-1α induced by cilostazol could be inhibited by H-89. Moreover, the increased expression of PGC-1α induced by cilostazol could be inhibited by downregulation of CREB using CREB siRNA at both mRNA and protein levels. All the results indicated that cilostazol promoted mitochondrial biogenesis through activating the expression of PGC-1α in

  11. DExD/H-box RNA helicases in ribosome biogenesis

    PubMed Central

    Martin, Roman; Straub, Annika U.; Doebele, Carmen; Bohnsack, Markus T.

    2013-01-01

    Ribosome synthesis requires a multitude of cofactors, among them DExD/H-box RNA helicases. Bacterial RNA helicases involved in ribosome assembly are not essential, while eukaryotes strictly require multiple DExD/H-box proteins that are involved in the much more complex ribosome biogenesis pathway. Here, RNA helicases are thought to act in structural remodeling of the RNPs including the modulation of protein binding, and they are required for allowing access or the release of specific snoRNPs from pre-ribosomes. Interestingly, helicase action is modulated by specific cofactors that can regulate recruitment and enzymatic activity. This review summarizes the current knowledge and focuses on recent findings and open questions on RNA helicase function and regulation in ribosome synthesis. PMID:22922795

  12. Flexibility in targeting and insertion during bacterial membrane protein biogenesis

    SciTech Connect

    Bloois, Edwin van; Hagen-Jongman, Corinne M. ten; Luirink, Joen

    2007-10-26

    The biogenesis of Escherichia coli inner membrane proteins (IMPs) is assisted by targeting and insertion factors such as the signal recognition particle (SRP), the Sec-translocon and YidC with translocation of (large) periplasmic domains energized by SecA and the proton motive force (pmf). The use of these factors and forces is probably primarily determined by specific structural features of an IMP. To analyze these features we have engineered a set of model IMPs based on endogenous E. coli IMPs known to follow distinct targeting and insertion pathways. The modified model IMPs were analyzed for altered routing using an in vivo protease mapping approach. The data suggest a facultative use of different combinations of factors.

  13. Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay.

    PubMed

    Fredericks, Christine E; Shibata, Satoshi; Aizawa, Shin-Ichi; Reimann, Sylvia A; Wolfe, Alan J

    2006-08-01

    As part of our attempt to map the impact of acetyl phosphate (acetyl approximately P) on the entire network of two-component signal transduction pathways in Escherichia coli, we asked whether the influence of acetyl approximately P on capsular biosynthesis and flagellar biogenesis depends on the Rcs phosphorelay. To do so, we performed a series of epistasis experiments: mutations in the components of the pathway that controls acetyl approximately P levels were combined with mutations in components of the Rcs phosphorelay. Cells that did not synthesize acetyl approximately P produced no capsule under normally permissive conditions, while those that accumulated acetyl approximately P synthesized capsule under conditions previously considered to be non-permissive. Acetyl approximately P-dependent capsular biosynthesis required both RcsB and RcsA, while the lack of RcsC restored capsular biosynthesis to acetyl approximately P-deficient cells. Similarly, acetyl approximately P-sensitive repression of flagellar biogenesis was suppressed by the loss of RcsB (but not of RcsA), while it was enhanced by the lack of RcsC. Taken together, these results show that both acetyl approximately P-sensitive activation of capsular biosynthesis and acetyl approximately P-sensitive repression of flagellar biogenesis require the Rcs phosphorelay. Moreover, they provide strong genetic support for the hypothesis that RcsC can function as either a kinase or a phosphatase dependent on environmental conditions. Finally, we learned that RcsB and RcsC inversely regulated the timing of flagellar biogenesis: rcsB mutants elaborated flagella prematurely, while rcsC mutants delayed their display of flagella. Temporal control of flagella biogenesis implicates the Rcs phosphorelay (and, by extension, acetyl approximately P) in the transition of motile, planktonic individuals into sessile biofilm communities.

  14. Alternative NF-κB Regulates RANKL-induced Osteoclast Differentiation and Mitochondrial Biogenesis via Independent Mechanisms

    PubMed Central

    Zeng, Rong; Faccio, Roberta; Novack, Deborah V

    2016-01-01

    Mitochondrial biogenesis, the generation of new mitochondrial DNA and proteins, has been linked to osteoclast (OC) differentiation and function. In this study we used mice with mutations in key alternative NF-κB pathway proteins, RelB and NIK, to dissect the complex relationship between mitochondrial biogenesis and osteoclastogenesis. OC precursors lacking either NIK or RelB, RANKL were unable to increase mitochondrial DNA or OxPhos protein expression, associated with lower oxygen consumption rates. Transgenic OC precursors expressing constitutively active NIK showed normal RANKL-induced mitochondrial biogenesis (OxPhos expression and mitochondria copy number) compared to controls, but larger mitochondrial dimensions and increased oxygen consumption rates, suggesting increased mitochondrial function. To deduce the mechanism for mitochondrial biogenesis defects in NIK- and RelB-deficient precursors, we examined expression of genes known to control this process. PGC-1β (Ppargc1b) expression, but not PGC-1α, PPRC1 or ERRα, was significantly reduced in RelB−/− and NIK−/− OCs. Because PGC-1β has been reported to positively regulate both mitochondrial biogenesis and differentiation in OCs, we retrovirally overexpressed PGC-1β in RelB−/− cells, but surprisingly found that it did not affect differentiation, nor restore RANKL-induced mitochondrial biogenesis. To determine whether the blockade in osteoclastogenesis in RelB-deficient cells precludes mitochondrial biogenesis, we rescued RelB−/− differentiation via overexpression of NFATc1. Mitochondrial parameters in neither WT nor RelB-deficient cultures were affected by NFATc1 overexpression, and bone resorption in RelB −/− was not restored. Furthermore, NFATc1 co-overexpression with PGC-1β, while allowing OC differentiation, did not rescue mitochondrial biogenesis or bone resorption in RelB−/− OCs, by CTX-I levels. Thus, our results indicate that the alternative NF-κB pathway plays dual, but

  15. Optimizing intramuscular adaptations to aerobic exercise: effects of carbohydrate restriction and protein supplementation on mitochondrial biogenesis.

    PubMed

    Margolis, Lee M; Pasiakos, Stefan M

    2013-11-01

    Mitochondrial biogenesis is a critical metabolic adaptation to aerobic exercise training that results in enhanced mitochondrial size, content, number, and activity. Recent evidence has shown that dietary manipulation can further enhance mitochondrial adaptations to aerobic exercise training, which may delay skeletal muscle fatigue and enhance exercise performance. Specifically, studies have demonstrated that combining carbohydrate restriction (endogenous and exogenous) with a single bout of aerobic exercise potentiates the beneficial effects of exercise on markers of mitochondrial biogenesis. Additionally, studies have demonstrated that high-quality protein supplementation enhances anabolic skeletal muscle intracellular signaling and mitochondrial protein synthesis following a single bout of aerobic exercise. Mitochondrial biogenesis is stimulated by complex intracellular signaling pathways that appear to be primarily regulated by 5'AMP-activated protein kinase and p38 mitogen-activated protein kinase mediated through proliferator-activated γ receptor co-activator 1 α activation, resulting in increased mitochondrial DNA expression and enhanced skeletal muscle oxidative capacity. However, the mechanisms by which concomitant carbohydrate restriction and dietary protein supplementation modulates mitochondrial adaptations to aerobic exercise training remains unclear. This review summarizes intracellular regulation of mitochondrial biogenesis and the effects of carbohydrate restriction and protein supplementation on mitochondrial adaptations to aerobic exercise.

  16. Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis.

    PubMed

    Drygin, Denis; Siddiqui-Jain, Adam; O'Brien, Sean; Schwaebe, Michael; Lin, Amy; Bliesath, Josh; Ho, Caroline B; Proffitt, Chris; Trent, Katy; Whitten, Jeffrey P; Lim, John K C; Von Hoff, Daniel; Anderes, Kenna; Rice, William G

    2009-10-01

    Hallmark deregulated signaling in cancer cells drives excessive ribosome biogenesis within the nucleolus, which elicits unbridled cell growth and proliferation. The rate-limiting step of ribosome biogenesis is synthesis of rRNA (building blocks of ribosomes) by RNA Polymerase I (Pol I). Numerous kinase pathways and products of proto-oncogenes can up-regulate Pol I, whereas tumor suppressor proteins can inhibit rRNA synthesis. In tumorigenesis, activating mutations in certain cancer-associated kinases and loss-of-function mutations in tumor suppressors lead to deregulated signaling that stimulates Pol I transcription with resultant increases in ribosome biogenesis, protein synthesis, cell growth, and proliferation. Certain anticancer therapeutics, such as cisplatin and 5-fluorouracil, reportedly exert, at least partially, their activity through disruption of ribosome biogenesis, yet many prime targets for anticancer drugs within the ribosome synthetic machinery of the nucleolus remain largely unexploited. Herein, we describe CX-3543, a small molecule nucleolus-targeting agent that selectively disrupts nucleolin/rDNA G-quadruplex complexes in the nucleolus, thereby inhibiting Pol I transcription and inducing apoptosis in cancer cells. CX-3543 is the first G-quadruplex interactive agent to enter human clinical trials, and it is currently under evaluation against carcinoid/neuroendocrine tumors in a phase II clinical trial.

  17. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    PubMed Central

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  18. Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline

    PubMed Central

    Saxe, Jonathan P; Chen, Mengjie; Zhao, Hongyu; Lin, Haifan

    2013-01-01

    Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposition, regulate translation, and guide epigenetic programming in the germline. Here, we show that an evolutionarily conserved Tudor and KH domain-containing protein, Tdrkh (a.k.a. Tdrd2), is required for spermatogenesis and involved in piRNA biogenesis. Tdrkh partners with Miwi and Miwi2 via symmetrically dimethylated arginine residues in Miwi and Miwi2. Tdrkh is a mitochondrial protein often juxtaposed to pi-bodies and piP-bodies and is required for Tdrd1 cytoplasmic localization and Miwi2 nuclear localization. Tdrkh mutants display meiotic arrest at the zygotene stage, attenuate methylation of Line1 DNA, and upregulate Line1 RNA and protein, without inducing apoptosis. Furthermore, Tdrkh mutants have severely reduced levels of mature piRNAs but accumulate a distinct population of 1′U-containing, 2′O-methylated 31–37 nt RNAs that largely complement the missing mature piRNAs. Our results demonstrate that the primary piRNA biogenesis pathway involves 3′→5′ processing of 31–37 nt intermediates and that Tdrkh promotes this final step of piRNA biogenesis but not the ping-pong cycle. These results shed light on mechanisms underlying primary piRNA biogenesis, an area in which information is conspicuously absent. PMID:23714778

  19. Tissue specific roles for the ribosome biogenesis factor Wdr43 in zebrafish development.

    PubMed

    Zhao, Chengtian; Andreeva, Viktoria; Gibert, Yann; LaBonty, Melissa; Lattanzi, Victoria; Prabhudesai, Shubhangi; Zhou, Yi; Zon, Leonard; McCann, Kathleen L; Baserga, Susan; Yelick, Pamela C

    2014-01-01

    During vertebrate craniofacial development, neural crest cells (NCCs) contribute to most of the craniofacial pharyngeal skeleton. Defects in NCC specification, migration and differentiation resulting in malformations in the craniofacial complex are associated with human craniofacial disorders including Treacher-Collins Syndrome, caused by mutations in TCOF1. It has been hypothesized that perturbed ribosome biogenesis and resulting p53 mediated neuroepithelial apoptosis results in NCC hypoplasia in mouse Tcof1 mutants. However, the underlying mechanisms linking ribosome biogenesis and NCC development remain poorly understood. Here we report a new zebrafish mutant, fantome (fan), which harbors a point mutation and predicted premature stop codon in zebrafish wdr43, the ortholog to yeast UTP5. Although wdr43 mRNA is widely expressed during early zebrafish development, and its deficiency triggers early neural, eye, heart and pharyngeal arch defects, later defects appear fairly restricted to NCC derived craniofacial cartilages. Here we show that the C-terminus of Wdr43, which is absent in fan mutant protein, is both necessary and sufficient to mediate its nucleolar localization and protein interactions in metazoans. We demonstrate that Wdr43 functions in ribosome biogenesis, and that defects observed in fan mutants are mediated by a p53 dependent pathway. Finally, we show that proper localization of a variety of nucleolar proteins, including TCOF1, is dependent on that of WDR43. Together, our findings provide new insight into roles for Wdr43 in development, ribosome biogenesis, and also ribosomopathy-induced craniofacial phenotypes including Treacher-Collins Syndrome.

  20. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions.

    PubMed

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-02-23

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis.

  1. Utilizing small nutrient compounds as enhancers of exercise-induced mitochondrial biogenesis

    PubMed Central

    Craig, Daniel M.; Ashcroft, Stephen P.; Belew, Micah Y.; Stocks, Ben; Currell, Kevin; Baar, Keith; Philp, Andrew

    2015-01-01

    Endurance exercise, when performed regularly as part of a training program, leads to increases in whole-body and skeletal muscle-specific oxidative capacity. At the cellular level, this adaptive response is manifested by an increased number of oxidative fibers (Type I and IIA myosin heavy chain), an increase in capillarity and an increase in mitochondrial biogenesis. The increase in mitochondrial biogenesis (increased volume and functional capacity) is fundamentally important as it leads to greater rates of oxidative phosphorylation and an improved capacity to utilize fatty acids during sub-maximal exercise. Given the importance of mitochondrial biogenesis for skeletal muscle performance, considerable attention has been given to understanding the molecular cues stimulated by endurance exercise that culminate in this adaptive response. In turn, this research has led to the identification of pharmaceutical compounds and small nutritional bioactive ingredients that appear able to amplify exercise-responsive signaling pathways in skeletal muscle. The aim of this review is to discuss these purported exercise mimetics and bioactive ingredients in the context of mitochondrial biogenesis in skeletal muscle. We will examine proposed modes of action, discuss evidence of application in skeletal muscle in vivo and finally comment on the feasibility of such approaches to support endurance-training applications in humans. PMID:26578969

  2. Enantiomeric Natural Products: Occurrence and Biogenesis**

    PubMed Central

    Finefield, Jennifer M.; Sherman, David H.; Kreitman, Martin; Williams, Robert M.

    2012-01-01

    In Nature, chiral natural products are usually produced in optically pure form; however, on occasion Nature is known to produce enantiomerically opposite metabolites. These enantiomeric natural products can arise in Nature from a single species, or from different genera and/or species. Extensive research has been carried out over the years in an attempt to understand the biogenesis of naturally occurring enantiomers, however, many fascinating puzzles and stereochemical anomalies still remain. PMID:22555867

  3. Biogenesis of a bacterial organelle: the carboxysome assembly pathway.

    PubMed

    Cameron, Jeffrey C; Wilson, Steven C; Bernstein, Susan L; Kerfeld, Cheryl A

    2013-11-21

    The carboxysome is a protein-based organelle for carbon fixation in cyanobacteria, keystone organisms in the global carbon cycle. It is composed of thousands of subunits including hexameric and pentameric proteins that form a shell to encapsulate the enzymes ribulose 1,5-bisphosphate carboxylase/oxygenase and carbonic anhydrase. Here, we describe the stages of carboxysome assembly and the requisite gene products necessary for progression through each. Our results demonstrate that, unlike membrane-bound organelles of eukaryotes, in carboxysomes the interior of the compartment forms first, at a distinct site within the cell. Subsequently, shell proteins encapsulate this procarboxysome, inducing budding and distribution of functional organelles within the cell. We propose that the principles of carboxysome assembly that we have uncovered extend to diverse bacterial microcompartments.

  4. Myristoylated CIL-7 regulates ciliary extracellular vesicle biogenesis

    PubMed Central

    Maguire, Julie E.; Silva, Malan; Nguyen, Ken C.Q.; Hellen, Elizabeth; Kern, Andrew D.; Hall, David H.; Barr, Maureen M.

    2015-01-01

    The cilium both releases and binds to extracellular vesicles (EVs). EVs may be used by cells as a form of intercellular communication and mediate a broad range of physiological and pathological processes. The mammalian polycystins (PCs) localize to cilia, as well as to urinary EVs released from renal epithelial cells. PC ciliary trafficking defects may be an underlying cause of autosomal dominant polycystic kidney disease (PKD), and ciliary–EV interactions have been proposed to play a central role in the biology of PKD. In Caenorhabditis elegans and mammals, PC1 and PC2 act in the same genetic pathway, act in a sensory capacity, localize to cilia, and are contained in secreted EVs, suggesting ancient conservation. However, the relationship between cilia and EVs and the mechanisms generating PC-containing EVs remain an enigma. In a forward genetic screen for regulators of C. elegans PKD-2 ciliary localization, we identified CIL-7, a myristoylated protein that regulates EV biogenesis. Loss of CIL-7 results in male mating behavioral defects, excessive accumulation of EVs in the lumen of the cephalic sensory organ, and failure to release PKD-2::GFP-containing EVs to the environment. Fatty acylation, such as myristoylation and palmitoylation, targets proteins to cilia and flagella. The CIL-7 myristoylation motif is essential for CIL-7 function and for targeting CIL-7 to EVs. C. elegans is a powerful model with which to study ciliary EV biogenesis in vivo and identify cis-targeting motifs such as myristoylation that are necessary for EV–cargo association and function. PMID:26041936

  5. Expression Profiling of Ribosome Biogenesis Factors Reveals Nucleolin as a Novel Potential Marker to Predict Outcome in AML Patients.

    PubMed

    Marcel, Virginie; Catez, Frédéric; Berger, Caroline M; Perrial, Emeline; Plesa, Adriana; Thomas, Xavier; Mattei, Eve; Hayette, Sandrine; Saintigny, Pierre; Bouvet, Philippe; Diaz, Jean-Jacques; Dumontet, Charles

    2017-01-01

    Acute myeloid leukemia (AML) is a heterogeneous disease. Prognosis is mainly influenced by patient age at diagnosis and cytogenetic alterations, two of the main factors currently used in AML patient risk stratification. However, additional criteria are required to improve the current risk classification and better adapt patient care. In neoplastic cells, ribosome biogenesis is increased to sustain the high proliferation rate and ribosome composition is altered to modulate specific gene expression driving tumorigenesis. Here, we investigated the usage of ribosome biogenesis factors as clinical markers in adult patients with AML. We showed that nucleoli, the nucleus compartments where ribosome production takes place, are modified in AML by analyzing a panel of AML and healthy donor cells using immunofluorescence staining. Using four AML series, including the TCGA dataset, altogether representing a total of about 270 samples, we showed that not all factors involved in ribosome biogenesis have clinical values although ribosome biogenesis is increased in AML. Interestingly, we identified the regulator of ribosome production nucleolin (NCL) as over-expressed in AML blasts. Moreover, we found in two series that high NCL mRNA expression level was associated with a poor overall survival, particular in elderly patients. Multivariate analyses taking into account age and cytogenetic risk indicated that NCL expression in blast cells is an independent marker of reduced survival. Our study identifies NCL as a potential novel prognostic factor in AML. Altogether, our results suggest that the ribosome biogenesis pathway may be of interest as clinical markers in AML.

  6. miR-203 enhances let-7 biogenesis by targeting LIN28B to suppress tumor growth in lung cancer

    PubMed Central

    Zhou, Yong; Liang, Hongwei; Liao, Zhicong; Wang, Yanbo; Hu, Xiuting; Chen, Xi; Xu, Lin; Hu, Zhibin

    2017-01-01

    Human cancers often exhibit increased microRNA (miRNA) biogenesis and global aberrant expression of miRNAs; thus, targeting the miRNA biogenesis pathway represents a novel strategy for cancer therapy. Here, we report that miR-203 enhances the biogenesis of tumor suppressor let-7 in lung cancer by directly targeting LIN28B. Specially, we found that the LIN28B protein levels were dramatically increased in lung cancer tissues, but its mRNA levels did not differ significantly, suggesting that a post-transcriptional mechanism is involved in LIN28B regulation. Interestingly, miR-203 overexpression was accompanied by massive upregulation of a group of miRNAs, especially let-7, and the let-7 expression level was concordant with the miR-203 expression in lung cancer tissues, implying its biological relevance. Furthermore, we showed that miR-203 played a critical role in inhibiting the proliferation and promoting the apoptosis of lung cancer cells by suppressing LIN28B and enhancing let-7 biogenesis. In summary, our results establish a novel mechanism by which miR-203, LIN28B and let-7 are tightly linked to form a regulatory network in lung cancer cells. The findings shed light on the role of a specific miRNA as a modulator of miRNA biogenesis and provide basis for developing new strategies for lung cancer therapy. PMID:28218277

  7. The Centriole Cartwheel Protein SAS-6 in Trypanosoma brucei Is Required for Probasal Body Biogenesis and Flagellum Assembly.

    PubMed

    Hu, Huiqing; Liu, Yi; Zhou, Qing; Siegel, Sara; Li, Ziyin

    2015-09-01

    The centriole in eukaryotes functions as the cell's microtubule-organizing center (MTOC) to nucleate spindle assembly, and its biogenesis requires an evolutionarily conserved protein, SAS-6, which assembles the centriole cartwheel. Trypanosoma brucei, an early branching protozoan, possesses the basal body as its MTOC to nucleate flagellum biogenesis. However, little is known about the components of the basal body and their roles in basal body biogenesis and flagellum assembly. Here, we report that the T. brucei SAS-6 homolog, TbSAS-6, is localized to the mature basal body and the probasal body throughout the cell cycle. RNA interference (RNAi) of TbSAS-6 inhibited probasal body biogenesis, compromised flagellum assembly, and caused cytokinesis arrest. Surprisingly, overexpression of TbSAS-6 in T. brucei also impaired probasal body duplication and flagellum assembly, contrary to SAS-6 overexpression in humans, which produces supernumerary centrioles. Furthermore, we showed that depletion of T. brucei Polo-like kinase, TbPLK, or inhibition of TbPLK activity did not abolish TbSAS-6 localization to the basal body, in contrast to the essential role of Polo-like kinase in recruiting SAS-6 to centrioles in animals. Altogether, these results identified the essential role of TbSAS-6 in probasal body biogenesis and flagellum assembly and suggest the presence of a TbPLK-independent pathway governing basal body duplication in T. brucei.

  8. miR-203 enhances let-7 biogenesis by targeting LIN28B to suppress tumor growth in lung cancer.

    PubMed

    Zhou, Yong; Liang, Hongwei; Liao, Zhicong; Wang, Yanbo; Hu, Xiuting; Chen, Xi; Xu, Lin; Hu, Zhibin

    2017-02-20

    Human cancers often exhibit increased microRNA (miRNA) biogenesis and global aberrant expression of miRNAs; thus, targeting the miRNA biogenesis pathway represents a novel strategy for cancer therapy. Here, we report that miR-203 enhances the biogenesis of tumor suppressor let-7 in lung cancer by directly targeting LIN28B. Specially, we found that the LIN28B protein levels were dramatically increased in lung cancer tissues, but its mRNA levels did not differ significantly, suggesting that a post-transcriptional mechanism is involved in LIN28B regulation. Interestingly, miR-203 overexpression was accompanied by massive upregulation of a group of miRNAs, especially let-7, and the let-7 expression level was concordant with the miR-203 expression in lung cancer tissues, implying its biological relevance. Furthermore, we showed that miR-203 played a critical role in inhibiting the proliferation and promoting the apoptosis of lung cancer cells by suppressing LIN28B and enhancing let-7 biogenesis. In summary, our results establish a novel mechanism by which miR-203, LIN28B and let-7 are tightly linked to form a regulatory network in lung cancer cells. The findings shed light on the role of a specific miRNA as a modulator of miRNA biogenesis and provide basis for developing new strategies for lung cancer therapy.

  9. Expression Profiling of Ribosome Biogenesis Factors Reveals Nucleolin as a Novel Potential Marker to Predict Outcome in AML Patients

    PubMed Central

    Berger, Caroline M.; Perrial, Emeline; Plesa, Adriana; Thomas, Xavier; Mattei, Eve; Hayette, Sandrine; Saintigny, Pierre; Bouvet, Philippe; Diaz, Jean-Jacques; Dumontet, Charles

    2017-01-01

    Acute myeloid leukemia (AML) is a heterogeneous disease. Prognosis is mainly influenced by patient age at diagnosis and cytogenetic alterations, two of the main factors currently used in AML patient risk stratification. However, additional criteria are required to improve the current risk classification and better adapt patient care. In neoplastic cells, ribosome biogenesis is increased to sustain the high proliferation rate and ribosome composition is altered to modulate specific gene expression driving tumorigenesis. Here, we investigated the usage of ribosome biogenesis factors as clinical markers in adult patients with AML. We showed that nucleoli, the nucleus compartments where ribosome production takes place, are modified in AML by analyzing a panel of AML and healthy donor cells using immunofluorescence staining. Using four AML series, including the TCGA dataset, altogether representing a total of about 270 samples, we showed that not all factors involved in ribosome biogenesis have clinical values although ribosome biogenesis is increased in AML. Interestingly, we identified the regulator of ribosome production nucleolin (NCL) as over-expressed in AML blasts. Moreover, we found in two series that high NCL mRNA expression level was associated with a poor overall survival, particular in elderly patients. Multivariate analyses taking into account age and cytogenetic risk indicated that NCL expression in blast cells is an independent marker of reduced survival. Our study identifies NCL as a potential novel prognostic factor in AML. Altogether, our results suggest that the ribosome biogenesis pathway may be of interest as clinical markers in AML. PMID:28103300

  10. Interfacing mitochondrial biogenesis and elimination to enhance host pathogen defense and longevity

    PubMed Central

    Palikaras, Konstantinos; Lionaki, Eirini; Tavernarakis, Nektarios

    2015-01-01

    Mitochondria are highly dynamic and semi-autonomous organelles, essential for many fundamental cellular processes, including energy production, metabolite synthesis and calcium homeostasis, among others. Alterations in mitochondrial activity not only influence individual cell function but also, through non-cell autonomous mechanisms, whole body metabolism, healthspan and lifespan. Energy homeostasis is orchestrated by the complex interplay between mitochondrial biogenesis and mitochondria-selective autophagy (mitophagy). However, the cellular and molecular pathways that coordinate these 2 opposing processes remained obscure. In our recent study, we demonstrate that DCT-1, the Caenorhabditis elegans homolog of the mammalian BNIP3 and BNIP3L/NIX, is a key mediator of mitophagy, and functions in the same genetic pathway with PINK-1 and PDR-1 (the nematode homologs of PINK1 and Parkin respectively) to promote longevity and prevent cell damage under stress conditions. Interestingly, accumulation of damaged mitochondria activates SKN-1 (SKiNhead-1), the nematode homolog of NRF2, which in turn initiates a compensatory retrograde signaling response that impinges on both mitochondrial biogenesis and removal. In this commentary, we discuss the implications of these new findings in the context of innate immunity and aging. Unraveling the regulatory network that governs the crosstalk between mitochondrial biogenesis and mitophagy will enhance our understanding of the molecular mechanisms that link aberrant energy metabolism to aging and disease. PMID:26430570

  11. Interfacing mitochondrial biogenesis and elimination to enhance host pathogen defense and longevity.

    PubMed

    Palikaras, Konstantinos; Lionaki, Eirini; Tavernarakis, Nektarios

    2015-01-01

    Mitochondria are highly dynamic and semi-autonomous organelles, essential for many fundamental cellular processes, including energy production, metabolite synthesis and calcium homeostasis, among others. Alterations in mitochondrial activity not only influence individual cell function but also, through non-cell autonomous mechanisms, whole body metabolism, healthspan and lifespan. Energy homeostasis is orchestrated by the complex interplay between mitochondrial biogenesis and mitochondria-selective autophagy (mitophagy). However, the cellular and molecular pathways that coordinate these 2 opposing processes remained obscure. In our recent study, we demonstrate that DCT-1, the Caenorhabditis elegans homolog of the mammalian BNIP3 and BNIP3L/NIX, is a key mediator of mitophagy, and functions in the same genetic pathway with PINK-1 and PDR-1 (the nematode homologs of PINK1 and Parkin respectively) to promote longevity and prevent cell damage under stress conditions. Interestingly, accumulation of damaged mitochondria activates SKN-1 (SKiNhead-1), the nematode homolog of NRF2, which in turn initiates a compensatory retrograde signaling response that impinges on both mitochondrial biogenesis and removal. In this commentary, we discuss the implications of these new findings in the context of innate immunity and aging. Unraveling the regulatory network that governs the crosstalk between mitochondrial biogenesis and mitophagy will enhance our understanding of the molecular mechanisms that link aberrant energy metabolism to aging and disease.

  12. A Rab escort protein integrates the secretion system with TOR signaling and ribosome biogenesis.

    PubMed

    Singh, Jaspal; Tyers, Mike

    2009-08-15

    The coupling of environmental conditions to cell growth and division is integral to cell fitness. In Saccharomyces cerevisiae, the transcription factor Sfp1 couples nutrient status to cell growth rate by controlling the expression of ribosome biogenesis (Ribi) and ribosomal protein (RP) genes. Sfp1 is localized to the nucleus in rich nutrients, but upon nutrient limitation or target of rapamycin (TOR) pathway inhibition by rapamycin, Sfp1 rapidly exits the nucleus, leading to repression of the Ribi/RP regulons. Through systematic cell-based screens we found that many components of the secretory system influence Sfp1 localization. Notably, the essential Rab escort protein Mrs6 exhibited a nutrient-sensitive interaction with Sfp1. Overexpression of Mrs6 prevented nuclear localization of Sfp1 in rich nutrients, whereas loss of Mrs6 resulted in nuclear Sfp1 localization in poor nutrients. These effects were specific to Sfp1 and independent of the protein kinase C (PKC) pathway, suggesting that Mrs6 lies in a distinct branch of TOR and ribosome biogenesis regulation. Rapamycin-resistant alleles of MRS6 were defective in the cytoplasmic retention of Sfp1, the control of cell size, and in the repression of the Ribi/RP regulons. The Sfp1-Mrs6 interaction is a nexus for growth regulation that links the secretory system and TOR-dependent nutrient signaling to ribosome biogenesis.

  13. Phosphorylation of αSNAP is Required for Secretory Organelle Biogenesis in Toxoplasma gondii.

    PubMed

    Stewart, Rebecca J; Ferguson, David J P; Whitehead, Lachlan; Bradin, Clare H; Wu, Hong J; Tonkin, Christopher J

    2016-02-01

    Upon infection, apicomplexan parasites quickly invade host cells and begin a replicative cycle rapidly increasing in number over a short period of time, leading to tissue lysis and disease. The secretory pathway of these highly polarized protozoan parasites tightly controls, in time and space, the biogenesis of specialized structures and organelles required for invasion and intracellular survival. In other systems, regulation of protein trafficking can occur by phosphorylation of vesicle fusion machinery. Previously, we have shown that Toxoplasma gondii αSNAP - a protein that controls the disassembly of cis-SNARE complexes--is phosphorylated. Here, we show that this post-translational modification is required for the correct function of αSNAP in controlling secretory traffic. We demonstrate that during intracellular development conditional expression of a non-phosphorylatable form of αSNAP results in Golgi fragmentation and vesiculation of all downstream secretory organelles. In addition, we show that the vestigial plastid (termed apicoplast), although reported not to be reliant on Golgi trafficking for biogenesis, is also affected upon overexpression of αSNAP and is much more sensitive to the levels of this protein than targeting to other organelles. This work highlights the importance of αSNAP and its phosphorylation in Toxoplasma organelle biogenesis and exposes a hereto fore-unexplored mechanism of regulation of vesicle fusion during secretory pathway trafficking in apicomplexan parasites.

  14. Human telomerase: biogenesis, trafficking, recruitment, and activation.

    PubMed

    Schmidt, Jens C; Cech, Thomas R

    2015-06-01

    Telomerase is the ribonucleoprotein enzyme that catalyzes the extension of telomeric DNA in eukaryotes. Recent work has begun to reveal key aspects of the assembly of the human telomerase complex, its intracellular trafficking involving Cajal bodies, and its recruitment to telomeres. Once telomerase has been recruited to the telomere, it appears to undergo a separate activation step, which may include an increase in its repeat addition processivity. This review covers human telomerase biogenesis, trafficking, and activation, comparing key aspects with the analogous events in other species.

  15. Mitochondrial Biogenesis and Function in Arabidopsis†

    PubMed Central

    Millar, A. Harvey; Small, Ian D.; Day, David A.; Whelan, James

    2008-01-01

    Mitochondria represent the powerhouse of cells through their synthesis of ATP. However, understanding the role of mitochondria in the growth and development of plants will rely on a much deeper appreciation of the complexity of this organelle. Arabidopsis research has provided clear identification of mitochondrial components, allowed wide-scale analysis of gene expression, and has aided reverse genetic manipulation to test the impact of mitochondrial component loss on plant function. Forward genetics in Arabidopsis has identified mitochondrial involvement in mutations with notable impacts on plant metabolism, growth and development. Here we consider the evidence for components involved in mitochondria biogenesis, metabolism and signalling to the nucleus. PMID:22303236

  16. Human telomerase: biogenesis, trafficking, recruitment, and activation

    PubMed Central

    Schmidt, Jens C.

    2015-01-01

    Telomerase is the ribonucleoprotein enzyme that catalyzes the extension of telomeric DNA in eukaryotes. Recent work has begun to reveal key aspects of the assembly of the human telomerase complex, its intracellular trafficking involving Cajal bodies, and its recruitment to telomeres. Once telomerase has been recruited to the telomere, it appears to undergo a separate activation step, which may include an increase in its repeat addition processivity. This review covers human telomerase biogenesis, trafficking, and activation, comparing key aspects with the analogous events in other species. PMID:26063571

  17. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms.

    PubMed

    Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K; Osvath, Sarah R; Cárcamo-Oyarce, Gerardo; Gloag, Erin S; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G; Cavaliere, Rosalia; Ahrens, Christian H; Charles, Ian G; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B

    2016-04-14

    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs.

  18. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms

    PubMed Central

    Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L.; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K.; Osvath, Sarah R.; Cárcamo-Oyarce, Gerardo; Gloag, Erin S.; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G.; Cavaliere, Rosalia; Ahrens, Christian H.; Charles, Ian G.; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B.

    2016-01-01

    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs. PMID:27075392

  19. Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems?

    PubMed

    Allen, James W A; Jackson, Andrew P; Rigden, Daniel J; Willis, Antony C; Ferguson, Stuart J; Ginger, Michael L

    2008-05-01

    Mitochondrial cytochromes c and c(1) are present in all eukaryotes that use oxygen as the terminal electron acceptor in the respiratory chain. Maturation of c-type cytochromes requires covalent attachment of the heme cofactor to the protein, and there are at least five distinct biogenesis systems that catalyze this post-translational modification in different organisms and organelles. In this study, we use biochemical data, comparative genomic and structural bioinformatics investigations to provide a holistic view of mitochondrial c-type cytochrome biogenesis and its evolution. There are three pathways for mitochondrial c-type cytochrome maturation, only one of which is present in prokaryotes. We analyze the evolutionary distribution of these biogenesis systems, which include the Ccm system (System I) and the enzyme heme lyase (System III). We conclude that heme lyase evolved once and, in many lineages, replaced the multicomponent Ccm system (present in the proto-mitochondrial endosymbiont), probably as a consequence of lateral gene transfer. We find no evidence of a System III precursor in prokaryotes, and argue that System III is incompatible with multi-heme cytochromes common to bacteria, but absent from eukaryotes. The evolution of the eukaryotic-specific protein heme lyase is strikingly unusual, given that this protein provides a function (thioether bond formation) that is also ubiquitous in prokaryotes. The absence of any known c-type cytochrome biogenesis system from the sequenced genomes of various trypanosome species indicates the presence of a third distinct mitochondrial pathway. Interestingly, this system attaches heme to mitochondrial cytochromes c that contain only one cysteine residue, rather than the usual two, within the heme-binding motif. The isolation of single-cysteine-containing mitochondrial cytochromes c from free-living kinetoplastids, Euglena and the marine flagellate Diplonema papillatum suggests that this unique form of heme attachment

  20. Iron-sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery

    PubMed Central

    Maio, Nunziata; Rouault, Tracey. A.

    2014-01-01

    Iron-sulfur (Fe-S) clusters are ancient, ubiquitous cofactors composed of iron and inorganic sulfur. The combination of the chemical reactivity of iron and sulfur, together with many variations of cluster composition, oxidation states and protein environments, enables Fe-S clusters to participate in numerous biological processes. Fe-S clusters are essential to redox catalysis in nitrogen fixation, mitochondrial respiration and photosynthesis, to regulatory sensing in key metabolic pathways (i. e. cellular iron homeostasis and oxidative stress response), and to the replication and maintenance of the nuclear genome. Fe-S cluster biogenesis is a multistep process that involves a complex sequence of catalyzed protein- protein interactions and coupled conformational changes between the components of several dedicated multimeric complexes. Intensive studies of the assembly process have clarified key points in the biogenesis of Fe-S proteins. However several critical questions still remain, such as: what is the role of frataxin? Why do some defects of Fe-S cluster biogenesis cause mitochondrial iron overload? How are specific Fe-S recipient proteins recognized in the process of Fe-S transfer? This review focuses on the basic steps of Fe-S cluster biogenesis, drawing attention to recent advances achieved on the identification of molecular features that guide selection of specific subsets of nascent Fe-S recipients by the cochaperone HSC20. Additionally, it outlines the distinctive phenotypes of human diseases due to mutations in the components of the basic pathway. PMID:25245479

  1. Satratoxin G interaction with 40S and 60S ribosomal subunits precedes apoptosis in the macrophage

    SciTech Connect

    Bae, Hee Kyong; Shinozuka, Junko; Islam, Zahidul; Pestka, James J.

    2009-06-01

    Satratoxin G (SG) and other macrocyclic trichothecene mycotoxins are potent inhibitors of eukaryotic translation that are potentially immunosuppressive. The purpose of this research was to test the hypothesis that SG-induced apoptosis in the macrophage correlates with binding of this toxin to the ribosome. Exposure of RAW 264.7 murine macrophages to SG at concentrations of 10 to 80 ng/ml induced DNA fragmentation within 4 h that was indicative of apoptosis. To relate these findings to ribosome binding of SG, RAW cells were exposed to different toxin concentrations for various time intervals, ribosomal fractions isolated by sucrose density gradient ultracentrifugation and resultant fractions analyzed for SG by competitive ELISA. SG was found to specifically interact with 40S and 60S ribosomal subunits as early as 5 min and that, at high concentrations or extended incubation times, the toxin induced polysome disaggregation. While co-incubation with the simple Type B trichothecene DON had no effect on SG uptake into cell cytoplasm, it inhibited SG binding to the ribosome, suggesting that the two toxins bound to identical sites and that SG binding was reversible. Although both SG and DON induced mobilization of p38 and JNK 1/2 to the ribosome, phosphorylation of ribosomal bound MAPKs occurred only after DON treatment. SG association with the 40S and 60S subunits was also observed in the PC-12 neuronal cell model which is similarly susceptible to apoptosis. To summarize, SG rapidly binds small and large ribosomal subunits in a concentration- and time-dependent manner that was consistent with induction of apoptosis.

  2. Chronic Arsenic Exposure-Induced Oxidative Stress is Mediated by Decreased Mitochondrial Biogenesis in Rat Liver.

    PubMed

    Prakash, Chandra; Kumar, Vijay

    2016-09-01

    The present study was executed to study the effect of chronic arsenic exposure on generation of mitochondrial oxidative stress and biogenesis in rat liver. Chronic sodium arsenite treatment (25 ppm for 12 weeks) decreased mitochondrial complexes activity in rat liver. There was a decrease in mitochondrial superoxide dismutase (MnSOD) activity in arsenic-treated rats that might be responsible for increased protein and lipid oxidation as observed in our study. The messenger RNA (mRNA) expression of mitochondrial and nuclear-encoded subunits of complexes I (ND1 and ND2) and IV (COX I and COX IV) was downregulated in arsenic-treated rats only. The protein and mRNA expression of MnSOD was reduced suggesting increased mitochondrial oxidative damage after arsenic treatment. There was activation of Bax and caspase-3 followed by release of cytochrome c from mitochondria suggesting induction of apoptotic pathway under oxidative stress. The entire phenomenon was associated with decrease in mitochondrial biogenesis as evident by decreased protein and mRNA expression of nuclear respiratory factor 1 (NRF-1), nuclear respiratory factor 2 (NRF-2), peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), and mitochondrial transcription factor A (Tfam) in arsenic-treated rat liver. The results of the present study indicate that arsenic-induced mitochondrial oxidative stress is associated with decreased mitochondrial biogenesis in rat liver that may present one of the mechanisms for arsenic-induced hepatotoxicity.

  3. Emerging roles of mitochondria in the evolution, biogenesis, and function of peroxisomes

    PubMed Central

    Mohanty, Abhishek; McBride, Heidi M.

    2013-01-01

    In the last century peroxisomes were thought to have an endosymbiotic origin. Along with mitochondria and chloroplasts, peroxisomes primarily regulate their numbers through the growth and division of pre-existing organelles, and they house specific machinery for protein import. These features were considered unique to endosymbiotic organelles, prompting the idea that peroxisomes were key cellular elements that helped facilitate the evolution of multicellular organisms. The functional similarities to mitochondria within mammalian systems expanded these ideas, as both organelles scavenge peroxide and reactive oxygen species, both organelles oxidize fatty acids, and at least in higher eukaryotes, the biogenesis of both organelles is controlled by common nuclear transcription factors of the PPAR family. Over the last decade it has been demonstrated that the fission machinery of both organelles is also shared, and that both organelles act as critical signaling platforms for innate immunity and other pathways. Taken together it is clear that the mitochondria and peroxisomes are functionally coupled, regulating cellular metabolism and signaling through a number of common mechanisms. However, recent work has focused primarily on the role of the ER in the biogenesis of peroxisomes, potentially overshadowing the critical importance of the mitochondria as a functional partner. In this review, we explore the mechanisms of functional coupling of the peroxisomes to the mitochondria/ER networks, providing some new perspectives on the potential contribution of the mitochondria to peroxisomal biogenesis. PMID:24133452

  4. The Potential of Targeting Ribosome Biogenesis in High-Grade Serous Ovarian Cancer

    PubMed Central

    Yan, Shunfei; Frank, Daniel; Son, Jinbae; Hannan, Katherine M.; Hannan, Ross D.; Chan, Keefe T.; Pearson, Richard B.; Sanij, Elaine

    2017-01-01

    Overall survival for patients with ovarian cancer (OC) has shown little improvement for decades meaning new therapeutic options are critical. OC comprises multiple histological subtypes, of which the most common and aggressive subtype is high-grade serous ovarian cancer (HGSOC). HGSOC is characterized by genomic structural variations with relatively few recurrent somatic mutations or dominantly acting oncogenes that can be targeted for the development of novel therapies. However, deregulation of pathways controlling homologous recombination (HR) and ribosome biogenesis has been observed in a high proportion of HGSOC, raising the possibility that targeting these basic cellular processes may provide improved patient outcomes. The poly (ADP-ribose) polymerase (PARP) inhibitor olaparib has been approved to treat women with defects in HR due to germline BRCA mutations. Recent evidence demonstrated the efficacy of targeting ribosome biogenesis with the specific inhibitor of ribosomal RNA synthesis, CX-5461 in v-myc avian myelocytomatosis viral oncogene homolog (MYC)-driven haematological and prostate cancers. CX-5461 has now progressed to a phase I clinical trial in patients with haematological malignancies and phase I/II trial in breast cancer. Here we review the currently available targeted therapies for HGSOC and discuss the potential of targeting ribosome biogenesis as a novel therapeutic approach against HGSOC. PMID:28117679

  5. Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site.

    PubMed

    Calviño, Fabiola R; Kharde, Satyavati; Ori, Alessandro; Hendricks, Astrid; Wild, Klemens; Kressler, Dieter; Bange, Gert; Hurt, Ed; Beck, Martin; Sinning, Irmgard

    2015-04-07

    During 60S biogenesis, mature 5S RNP consisting of 5S RNA, RpL5 and RpL11, assembles into a pre-60S particle, where docking relies on RpL11 interacting with helix 84 (H84) of the 25S RNA. How 5S RNP is assembled for recruitment into the pre-60S is not known. Here we report the crystal structure of a ternary symportin Syo1-RpL5-N-RpL11 complex and provide biochemical and structural insights into 5S RNP assembly. Syo1 guards the 25S RNA-binding surface on RpL11 and competes with H84 for binding. Pull-down experiments show that H84 releases RpL11 from the ternary complex, but not in the presence of 5S RNA. Crosslinking mass spectrometry visualizes structural rearrangements on incorporation of 5S RNA into the Syo1-RpL5-RpL11 complex supporting the formation of a pre-5S RNP. Our data underline the dual role of Syo1 in ribosomal protein transport and as an assembly platform for 5S RNP.

  6. Study of Phagolysosome Biogenesis in Live Macrophages

    PubMed Central

    Bronietzki, Marc; Kasmapour, Bahram; Gutierrez, Maximiliano Gabriel

    2014-01-01

    Phagocytic cells play a major role in the innate immune system by removing and eliminating invading microorganisms in their phagosomes. Phagosome maturation is the complex and tightly regulated process during which a nascent phagosome undergoes drastic transformation through well-orchestrated interactions with various cellular organelles and compartments in the cytoplasm. This process, which is essential for the physiological function of phagocytic cells by endowing phagosomes with their lytic and bactericidal properties, culminates in fusion of phagosomes with lysosomes and biogenesis of phagolysosomes which is considered to be the last and critical stage of maturation for phagosomes. In this report, we describe a live cell imaging based method for qualitative and quantitative analysis of the dynamic process of lysosome to phagosome content delivery, which is a hallmark of phagolysosome biogenesis. This approach uses IgG-coated microbeads as a model for phagocytosis and fluorophore-conjugated dextran molecules as a luminal lysosomal cargo probe, in order to follow the dynamic delivery of lysosmal content to the phagosomes in real time in live macrophages using time-lapse imaging and confocal laser scanning microscopy. Here we describe in detail the background, the preparation steps and the step-by-step experimental setup to enable easy and precise deployment of this method in other labs. Our described method is simple, robust, and most importantly, can be easily adapted to study phagosomal interactions and maturation in different systems and under various experimental settings such as use of various phagocytic cells types, loss-of-function experiments, different probes, and phagocytic particles. PMID:24638150

  7. A role for Yip1p in COPII vesicle biogenesis

    PubMed Central

    Heidtman, Matthew; Chen, Catherine Z.; Collins, Ruth N.; Barlowe, Charles

    2003-01-01

    Yeast Ypt1p-interacting protein (Yip1p) belongs to a conserved family of transmembrane proteins that interact with Rab GTPases. We encountered Yip1p as a constituent of ER-derived transport vesicles, leading us to hypothesize a direct role for this protein in transport through the early secretory pathway. Using a cell-free assay that recapitulates protein transport from the ER to the Golgi complex, we find that affinity-purified antibodies directed against the hydrophilic amino terminus of Yip1p potently inhibit transport. Surprisingly, inhibition is specific to the COPII-dependent budding stage. In support of this in vitro observation, strains bearing the temperature-sensitive yip1-4 allele accumulate ER membranes at a nonpermissive temperature, with no apparent accumulation of vesicle intermediates. Genetic interaction analyses of the yip1-4 mutation corroborate a function in ER budding. Finally, ordering experiments show that preincubation of ER membranes with COPII proteins decreases sensitivity to anti-Yip1p antibodies, indicating an early requirement for Yip1p in vesicle formation. We propose that Yip1p has a previously unappreciated role in COPII vesicle biogenesis. PMID:14557247

  8. A role for Yip1p in COPII vesicle biogenesis.

    PubMed

    Heidtman, Matthew; Chen, Catherine Z; Collins, Ruth N; Barlowe, Charles

    2003-10-13

    Yeast Ypt1p-interacting protein (Yip1p) belongs to a conserved family of transmembrane proteins that interact with Rab GTPases. We encountered Yip1p as a constituent of ER-derived transport vesicles, leading us to hypothesize a direct role for this protein in transport through the early secretory pathway. Using a cell-free assay that recapitulates protein transport from the ER to the Golgi complex, we find that affinity-purified antibodies directed against the hydrophilic amino terminus of Yip1p potently inhibit transport. Surprisingly, inhibition is specific to the COPII-dependent budding stage. In support of this in vitro observation, strains bearing the temperature-sensitive yip1-4 allele accumulate ER membranes at a nonpermissive temperature, with no apparent accumulation of vesicle intermediates. Genetic interaction analyses of the yip1-4 mutation corroborate a function in ER budding. Finally, ordering experiments show that preincubation of ER membranes with COPII proteins decreases sensitivity to anti-Yip1p antibodies, indicating an early requirement for Yip1p in vesicle formation. We propose that Yip1p has a previously unappreciated role in COPII vesicle biogenesis.

  9. Nuclear/nucleolar GTPase 2 proteins as a subfamily of YlqF/YawG GTPases function in pre-60S ribosomal subunit maturation of mono- and dicotyledonous plants.

    PubMed

    Im, Chak Han; Hwang, Sung Min; Son, Young Sim; Heo, Jae Bok; Bang, Woo Young; Suwastika, I Nengah; Shiina, Takashi; Bahk, Jeong Dong

    2011-03-11

    The YlqF/YawG families are important GTPases involved in ribosome biogenesis, cell proliferation, or cell growth, however, no plant homologs have yet to be characterized. Here we isolated rice (Oryza sativa) and Arabidopsis nuclear/nucleolar GTPase 2 (OsNug2 and AtNug2, respectively) that belong to the YawG subfamily and characterized them for pre-60S ribosomal subunit maturation. They showed typical intrinsic YlqF/YawG family GTPase activities in bacteria and yeasts with k(cat) values 0.12 ± 0.007 min(-1) (n = 6) and 0.087 ± 0.002 min(-1) (n = 4), respectively, and addition of 60S ribosomal subunits stimulated their activities in vitro. In addition, OsNug2 rescued the lethality of the yeast nug2 null mutant through recovery of 25S pre-rRNA processing. By yeast two-hybrid screening five clones, including a putative one of 60S ribosomal proteins, OsL10a, were isolated. Subcellular localization and pulldown assays resulted in that the N-terminal region of OsNug2 is sufficient for nucleolar/nuclear targeting and association with OsL10a. OsNug2 is physically associated with pre-60S ribosomal complexes highly enriched in the 25S, 5.8S, and 5S rRNA, and its interaction was stimulated by exogenous GTP. Furthermore, the AtNug2 knockdown mutant constructed by the RNAi method showed defective growth on the medium containing cycloheximide. Expression pattern analysis revealed that the distribution of AtNug2 mainly in the meristematic region underlies its potential role in active plant growth. Finally, it is concluded that Nug2/Nog2p GTPase from mono- and didicotyledonous plants is linked to the pre-60S ribosome complex and actively processed 27S into 25S during the ribosomal large subunit maturation process, i.e. prior to export to the cytoplasm.

  10. Staphylococcus aureus Sepsis Induces Early Renal Mitochondrial DNA Repair and Mitochondrial Biogenesis in Mice

    PubMed Central

    Bartz, Raquel R.; Fu, Ping; Suliman, Hagir B.; Crowley, Stephen D.; MacGarvey, Nancy Chou; Welty-Wolf, Karen; Piantadosi, Claude A.

    2014-01-01

    Acute kidney injury (AKI) contributes to the high morbidity and mortality of multi-system organ failure in sepsis. However, recovery of renal function after sepsis-induced AKI suggests active repair of energy-producing pathways. Here, we tested the hypothesis in mice that Staphyloccocus aureus sepsis damages mitochondrial DNA (mtDNA) in the kidney and activates mtDNA repair and mitochondrial biogenesis. Sepsis was induced in wild-type C57Bl/6J and Cox-8 Gfp-tagged mitochondrial-reporter mice via intraperitoneal fibrin clots embedded with S. aureus. Kidneys from surviving mice were harvested at time zero (control), 24, or 48 hours after infection and evaluated for renal inflammation, oxidative stress markers, mtDNA content, and mitochondrial biogenesis markers, and OGG1 and UDG mitochondrial DNA repair enzymes. We examined the kidneys of the mitochondrial reporter mice for changes in staining density and distribution. S. aureus sepsis induced sharp amplification of renal Tnf, Il-10, and Ngal mRNAs with decreased renal mtDNA content and increased tubular and glomerular cell death and accumulation of protein carbonyls and 8-OHdG. Subsequently, mtDNA repair and mitochondrial biogenesis was evidenced by elevated OGG1 levels and significant increases in NRF-1, NRF-2, and mtTFA expression. Overall, renal mitochondrial mass, tracked by citrate synthase mRNA and protein, increased in parallel with changes in mitochondrial GFP-fluorescence especially in proximal tubules in the renal cortex and medulla. Sub-lethal S. aureus sepsis thus induces widespread renal mitochondrial damage that triggers the induction of the renal mtDNA repair protein, OGG1, and mitochondrial biogenesis as a conspicuous resolution mechanism after systemic bacterial infection. PMID:24988481

  11. Diurnal evolution of cycling biomechanical parameters during a 60-s Wingate test.

    PubMed

    Lericollais, R; Gauthier, A; Bessot, N; Davenne, D

    2011-12-01

    The purpose of this study was to assess the evolution of pedaling kinetics and kinematics during a short-term fatigue cycling exercise at two times of day. Twenty active male subjects were asked to perform a 60-s Wingate test against a constant braking resistance during two experimental sessions at 06:00 and 18:00 hours, i.e., very close to the hours of core temperature values, which are, respectively, the lowest and the highest. The results showed that the fatigue index was higher (P<0.05) at 18:00 hours (71.4%) than at 06:00 hours (69.2%) and power output was higher (P<0.05) in the evening than in the morning during the first 20 s of the test, after which no difference was observed. Taken together, these results showed a greater progression of fatigue in the evening than in the morning. The diurnal variations in performance and fatigue were associated (P<0.001) with diurnal changes in cycling kinematic parameters, characterized by a reduction in the range of motion of the ankle angle in the evening. These findings show that a time-of-day effect on movement patterns occurs during an anaerobic cycling exercise and that this phenomenon has a direct influence on performance and fatigue.

  12. Architecture of the Rix1-Rea1 checkpoint machinery during pre-60S-ribosome remodeling.

    PubMed

    Barrio-Garcia, Clara; Thoms, Matthias; Flemming, Dirk; Kater, Lukas; Berninghausen, Otto; Baßler, Jochen; Beckmann, Roland; Hurt, Ed

    2016-01-01

    Ribosome synthesis is catalyzed by ∼200 assembly factors, which facilitate efficient production of mature ribosomes. Here, we determined the cryo-EM structure of a Saccharomyces cerevisiae nucleoplasmic pre-60S particle containing the dynein-related 550-kDa Rea1 AAA(+) ATPase and the Rix1 subcomplex. This particle differs from its preceding state, the early Arx1 particle, by two massive structural rearrangements: an ∼180° rotation of the 5S ribonucleoprotein complex and the central protuberance (CP) rRNA helices, and the removal of the 'foot' structure from the 3' end of the 5.8S rRNA. Progression from the Arx1 to the Rix1 particle was blocked by mutational perturbation of the Rix1-Rea1 interaction but not by a dominant-lethal Rea1 AAA(+) ATPase-ring mutant. After remodeling, the Rix1 subcomplex and Rea1 become suitably positioned to sense correct structural maturation of the CP, which allows unidirectional progression toward mature ribosomes.

  13. Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites.

    PubMed

    Pol, Albert; Gross, Steven P; Parton, Robert G

    2014-03-03

    Lipid droplets (LDs) are ubiquitous dynamic organelles that store and supply lipids in all eukaryotic and some prokaryotic cells for energy metabolism, membrane synthesis, and production of essential lipid-derived molecules. Interest in the organelle's cell biology has exponentially increased over the last decade due to the link between LDs and prevalent human diseases and the discovery of new and unexpected functions of LDs. As a result, there has been significant recent progress toward understanding where and how LDs are formed, and the specific lipid pathways that coordinate LD biogenesis.

  14. PID-1 is a novel factor that operates during 21U-RNA biogenesis in Caenorhabditis elegans

    PubMed Central

    de Albuquerque, Bruno F.M.; Luteijn, Maartje J.; Cordeiro Rodrigues, Ricardo J.; van Bergeijk, Petra; Waaijers, Selma; Kaaij, Lucas J.T.; Klein, Holger; Boxem, Mike; Ketting, René F.

    2014-01-01

    The Piwi–piRNA pathway represents a small RNA-based mechanism responsible for the recognition and silencing of invading DNA. Biogenesis of piRNAs (21U-RNAs) is poorly understood. In Caenorhabditis elegans, the piRNA-binding Argonaute protein PRG-1 is the only known player acting downstream from precursor transcription. From a screen aimed at the isolation of piRNA-induced silencing-defective (Pid) mutations, we identified, among known Piwi pathway components, PID-1 as a novel player. PID-1 is a mostly cytoplasmic, germline-specific factor essential for 21U-RNA biogenesis, affecting an early step in the processing or transport of 21U precursor transcripts. We also show that maternal 21U-RNAs are essential to initiate silencing. PMID:24696453

  15. Hippo signaling regulates Microprocessor and links cell density-dependent miRNA biogenesis to cancer

    PubMed Central

    Mori, Masaki; Triboulet, Robinson; Mohseni, Morvarid; Schlegelmilch, Karin; Shrestha, Kriti; Camargo, Fernando D.; Gregory, Richard I.

    2014-01-01

    SUMMARY Global downregulation of microRNAs (miRNAs) is commonly observed in human cancers and can have a causative role in tumorigenesis. The mechanisms responsible for this phenomenon remain poorly understood. Here we show that YAP, the downstream target of the tumor-suppressive Hippo signaling pathway regulates miRNA biogenesis in a cell density-dependent manner. At low cell density, nuclear YAP binds and sequesters p72 (DDX17), a regulatory component of the miRNA processing machinery. At high cell density, Hippo-mediated cytoplasmic retention of YAP facilitates p72 association with Microprocessor and binding to a specific sequence motif in pri-miRNAs. Inactivation of the Hippo pathway or expression of constitutively active YAP causes widespread miRNA suppression in cells and tumors and a corresponding post-transcriptional induction of MYC expression. Thus, the Hippo pathway links contact-inhibition regulation to miRNA biogenesis and may be responsible for the widespread miRNA repression observed in cancer. PMID:24581491

  16. Autophagy Induction Is a Tor- and Tp53-Independent Cell Survival Response in a Zebrafish Model of Disrupted Ribosome Biogenesis

    PubMed Central

    Boglev, Yeliz; Badrock, Andrew P.; Trotter, Andrew J.; Du, Qian; Richardson, Elsbeth J.; Parslow, Adam C.; Markmiller, Sebastian J.; Hall, Nathan E.; de Jong-Curtain, Tanya A.; Ng, Annie Y.; Verkade, Heather; Ober, Elke A.; Field, Holly A.; Shin, Donghun; Shin, Chong H.; Hannan, Katherine M.; Hannan, Ross D.; Pearson, Richard B.; Kim, Seok-Hyung; Ess, Kevin C.; Lieschke, Graham J.; Stainier, Didier Y. R.; Heath, Joan K.

    2013-01-01

    Ribosome biogenesis underpins cell growth and division. Disruptions in ribosome biogenesis and translation initiation are deleterious to development and underlie a spectrum of diseases known collectively as ribosomopathies. Here, we describe a novel zebrafish mutant, titania (ttis450), which harbours a recessive lethal mutation in pwp2h, a gene encoding a protein component of the small subunit processome. The biochemical impacts of this lesion are decreased production of mature 18S rRNA molecules, activation of Tp53, and impaired ribosome biogenesis. In ttis450, the growth of the endodermal organs, eyes, brain, and craniofacial structures is severely arrested and autophagy is up-regulated, allowing intestinal epithelial cells to evade cell death. Inhibiting autophagy in ttis450 larvae markedly reduces their lifespan. Somewhat surprisingly, autophagy induction in ttis450 larvae is independent of the state of the Tor pathway and proceeds unabated in Tp53-mutant larvae. These data demonstrate that autophagy is a survival mechanism invoked in response to ribosomal stress. This response may be of relevance to therapeutic strategies aimed at killing cancer cells by targeting ribosome biogenesis. In certain contexts, these treatments may promote autophagy and contribute to cancer cells evading cell death. PMID:23408911

  17. A Synergistic Antiobesity Effect by a Combination of Capsinoids and Cold Temperature Through Promoting Beige Adipocyte Biogenesis.

    PubMed

    Ohyama, Kana; Nogusa, Yoshihito; Shinoda, Kosaku; Suzuki, Katsuya; Bannai, Makoto; Kajimura, Shingo

    2016-05-01

    Beige adipocytes emerge postnatally within the white adipose tissue in response to certain environmental cues, such as chronic cold exposure. Because of its highly recruitable nature and relevance to adult humans, beige adipocytes have gained much attention as an attractive cellular target for antiobesity therapy. However, molecular circuits that preferentially promote beige adipocyte biogenesis remain poorly understood. We report that a combination of mild cold exposure at 17°C and capsinoids, a nonpungent analog of capsaicin, synergistically and preferentially promotes beige adipocyte biogenesis and ameliorates diet-induced obesity. Gain- and loss-of-function studies show that the combination of capsinoids and cold exposure synergistically promotes beige adipocyte development through the β2-adrenoceptor signaling pathway. This synergistic effect on beige adipocyte biogenesis occurs through an increased half-life of PRDM16, a dominant transcriptional regulator of brown/beige adipocyte development. We document a previously unappreciated molecular circuit that controls beige adipocyte biogenesis and suggest a plausible approach to increase whole-body energy expenditure by combining dietary components and environmental cues.

  18. Optimizing Intramuscular Adaptations to Aerobic Exercise: Effects of Carbohydrate Restriction and Protein Supplementation on Mitochondrial Biogenesis12

    PubMed Central

    Margolis, Lee M.; Pasiakos, Stefan M.

    2013-01-01

    Mitochondrial biogenesis is a critical metabolic adaptation to aerobic exercise training that results in enhanced mitochondrial size, content, number, and activity. Recent evidence has shown that dietary manipulation can further enhance mitochondrial adaptations to aerobic exercise training, which may delay skeletal muscle fatigue and enhance exercise performance. Specifically, studies have demonstrated that combining carbohydrate restriction (endogenous and exogenous) with a single bout of aerobic exercise potentiates the beneficial effects of exercise on markers of mitochondrial biogenesis. Additionally, studies have demonstrated that high-quality protein supplementation enhances anabolic skeletal muscle intracellular signaling and mitochondrial protein synthesis following a single bout of aerobic exercise. Mitochondrial biogenesis is stimulated by complex intracellular signaling pathways that appear to be primarily regulated by 5′AMP-activated protein kinase and p38 mitogen-activated protein kinase mediated through proliferator-activated γ receptor co-activator 1 α activation, resulting in increased mitochondrial DNA expression and enhanced skeletal muscle oxidative capacity. However, the mechanisms by which concomitant carbohydrate restriction and dietary protein supplementation modulates mitochondrial adaptations to aerobic exercise training remains unclear. This review summarizes intracellular regulation of mitochondrial biogenesis and the effects of carbohydrate restriction and protein supplementation on mitochondrial adaptations to aerobic exercise. PMID:24228194

  19. Diabetes regulates mitochondrial biogenesis and fission in neurons

    PubMed Central

    Edwards, J.L.; Quattrini, A.; Lentz, S.I.; Figueroa-Romero, C.; Cerri, F.; Backus, C.; Hong, Y.; Feldman, E.L.

    2014-01-01

    Aims Normal mitochondrial (Mt) activity is a critical component of neuronal metabolism and function. Disruption of Mt activity by altered Mt fission and fusion is the root cause of both neurodegenerative disorders and Charcot-Marie-Tooth Type 2A inherited neuropathy. The current study addressed the role of Mt fission in the pathogenesis of diabetic neuropathy (DN). Methods Mt biogenesis and fission were assayed in both in vivo and in vitro models of DN. Gene, protein, mitochondrial DNA and ultrastructural analyses were used to assess Mt biogenesis and fission. Results Our data reveal increased Mt biogenesis in dorsal root ganglion (DRG) neurons from diabetic compared to non-diabetic mice. An essential step in Mt biogenesis is Mt fission, regulated by the Mt fission protein Drp1. Evaluation of in vivo diabetic neurons indicated small, fragmented Mt, suggesting increased fission. In vitro studies reveal short-term hyperglycemic exposure increased expression of Drp1. The influence of hyperglycemia-mediated Mt fission on cellular viability was evaluated by knockdown of Drp1. Knockdown of Drp1 resulted in decreased susceptibility to hyperglycemic damage. Conclusions We propose that: 1) Mt undergo biogenesis in response to hyperglycemia, but the increased biogenesis is insufficient to accommodate the metabolic load; 2) hyperglycemia causes an excess of Mt fission, creating small, damaged mitochondria; and 3) reduction of aberrant Mt fission increases neuronal survival and indicates an important role for the fission-fusion equilibrium in the pathogenesis of DN. PMID:19847394

  20. Structure and function of Zucchini endoribonuclease in piRNA biogenesis.

    PubMed

    Nishimasu, Hiroshi; Ishizu, Hirotsugu; Saito, Kuniaki; Fukuhara, Satoshi; Kamatani, Miharu K; Bonnefond, Luc; Matsumoto, Naoki; Nishizawa, Tomohiro; Nakanaga, Keita; Aoki, Junken; Ishitani, Ryuichiro; Siomi, Haruhiko; Siomi, Mikiko C; Nureki, Osamu

    2012-11-08

    PIWI-interacting RNAs (piRNAs) silence transposons to maintain genome integrity in animal germ lines. piRNAs are classified as primary and secondary piRNAs, depending on their biogenesis machinery. Primary piRNAs are processed from long non-coding RNA precursors transcribed from piRNA clusters in the genome through the primary processing pathway. Although the existence of a ribonuclease participating in this pathway has been predicted, its molecular identity remained unknown. Here we show that Zucchini (Zuc), a mitochondrial phospholipase D (PLD) superfamily member, is an endoribonuclease essential for primary piRNA biogenesis. We solved the crystal structure of Drosophila melanogaster Zuc (DmZuc) at 1.75 Å resolution. The structure revealed that DmZuc has a positively charged, narrow catalytic groove at the dimer interface, which could accommodate a single-stranded, but not a double-stranded, RNA. DmZuc and the mouse homologue MmZuc (also known as Pld6 and MitoPLD) showed endoribonuclease activity for single-stranded RNAs in vitro. The RNA cleavage products bear a 5'-monophosphate group, a hallmark of mature piRNAs. Mutational analyses revealed that the conserved active-site residues of DmZuc are critical for the ribonuclease activity in vitro, and for piRNA maturation and transposon silencing in vivo. We propose a model for piRNA biogenesis in animal germ lines, in which the Zuc endoribonuclease has a key role in primary piRNA maturation.

  1. Biogenesis of the Saccharomyces cerevisiae Pheromone a-Factor, from Yeast Mating to Human Disease

    PubMed Central

    Barrowman, Jemima

    2012-01-01

    Summary: The mating pheromone a-factor secreted by Saccharomyces cerevisiae is a farnesylated and carboxylmethylated peptide and is unusually hydrophobic compared to other extracellular signaling molecules. Mature a-factor is derived from a precursor with a C-terminal CAAX motif that directs a series of posttranslational reactions, including prenylation, endoproteolysis, and carboxylmethylation. Historically, a-factor has served as a valuable model for the discovery and functional analysis of CAAX-processing enzymes. In this review, we discuss the three modules comprising the a-factor biogenesis pathway: (i) the C-terminal CAAX-processing steps carried out by Ram1/Ram2, Ste24 or Rce1, and Ste14; (ii) two sequential N-terminal cleavage steps, mediated by Ste24 and Axl1; and (iii) export by a nonclassical mechanism, mediated by the ATP binding cassette (ABC) transporter Ste6. The small size and hydrophobicity of a-factor present both challenges and advantages for biochemical analysis, as discussed here. The enzymes involved in a-factor biogenesis are conserved from yeasts to mammals. Notably, studies of the zinc metalloprotease Ste24 in S. cerevisiae led to the discovery of its mammalian homolog ZMPSTE24, which cleaves the prenylated C-terminal tail of the nuclear scaffold protein lamin A. Mutations that alter ZMPSTE24 processing of lamin A in humans cause the premature-aging disease progeria and related progeroid disorders. Intriguingly, recent evidence suggests that the entire a-factor pathway, including all three biogenesis modules, may be used to produce a prenylated, secreted signaling molecule involved in germ cell migration in Drosophila. Thus, additional prenylated signaling molecules resembling a-factor, with as-yet-unknown roles in metazoan biology, may await discovery. PMID:22933563

  2. Activation of Peroxisome Proliferator-activated Receptor α Induces Lysosomal Biogenesis in Brain Cells

    PubMed Central

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J.; Sims, Katherine B.; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-01-01

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role. PMID:25750174

  3. Mitochondrial iron-sulfur protein biogenesis and human disease.

    PubMed

    Stehling, Oliver; Wilbrecht, Claudia; Lill, Roland

    2014-05-01

    Work during the past 14 years has shown that mitochondria are the primary site for the biosynthesis of iron-sulfur (Fe/S) clusters. In fact, it is this process that renders mitochondria essential for viability of virtually all eukaryotes, because they participate in the synthesis of the Fe/S clusters of key nuclear and cytosolic proteins such as DNA polymerases, DNA helicases, and ABCE1 (Rli1), an ATPase involved in protein synthesis. As a consequence, mitochondrial function is crucial for nuclear DNA synthesis and repair, ribosomal protein synthesis, and numerous other extra-mitochondrial pathways including nucleotide metabolism and cellular iron regulation. Within mitochondria, the synthesis of Fe/S clusters and their insertion into apoproteins is assisted by 17 proteins forming the ISC (iron-sulfur cluster) assembly machinery. Biogenesis of mitochondrial Fe/S proteins can be dissected into three main steps: First, a Fe/S cluster is generated de novo on a scaffold protein. Second, the Fe/S cluster is dislocated from the scaffold and transiently bound to transfer proteins. Third, the latter components, together with specific ISC targeting factors insert the Fe/S cluster into client apoproteins. Disturbances of the first two steps impair the maturation of extra-mitochondrial Fe/S proteins and affect cellular and systemic iron homeostasis. In line with the essential function of mitochondria, genetic mutations in a number of ISC genes lead to severe neurological, hematological and metabolic diseases, often with a fatal outcome in early childhood. In this review we briefly summarize our current functional knowledge on the ISC assembly machinery, and we present a comprehensive overview of the various Fe/S protein assembly diseases.

  4. cDNA Cloning, expression and characterization of an allergenic 60s ribosomal protein of almond (prunus dulcis).

    PubMed

    Abolhassani, Mohsen; Roux, Kenneth H

    2009-06-01

    Tree nuts, including almond (prunus dulcis) are a source of food allergens often associated with life-threatening allergic reactions in susceptible individuals. Although the proteins in almonds have been biochemically characterized, relatively little has been reported regarding the identity of the allergens involved in almond sensitivity. The present study was undertaken to identify the allergens of the almond by cDNA library approach. cDNA library of almond seeds was constructed in Uni-Zap XR lamda vector and expressed in E. coli XL-1 blue. Plaques were immunoscreened with pooled sera of allergic patients. The cDNA clone reacting significantly with specific IgE antibodies was selected and subcloned and subsequently expressed in E. coli. The amino acids deducted from PCR product of clone showed homology to 60s acidic ribosomal protein of almond. The expressed protein was 11,450 Dalton without leader sequence. Immunoreactivity of the recombinant 60s ribosomal protein (r60sRP) was evaluated with dot blot analysis using pooled and individual sera of allergic patients. The data showed that r60sRP and almond extract (as positive control) possess the ability to bind the IgE antibodies. The results showed that expressed protein is an almond allergen.Whether this r60sRP represents a major allergen of almond needs to be further studied which requires a large number of sera from the almond atopic patients and also need to determine the IgE-reactive frequencies of each individual allergen.

  5. Mitochondrial biogenesis and proteome remodeling promotes one carbon metabolism for T cell activation

    PubMed Central

    Ron-Harel, Noga; Santos, Daniel; Ghergurovich, Jonathan M.; Sage, Peter T.; Reddy, Anita; Lovitch, Scott B.; Dephoure, Noah; Satterstrom, F. Kyle; Sheffer, Michal; Spinelli, Jessica B.; Gygi, Steven; Rabinowitz, Joshua D.; Sharpe, Arlene H.; Haigis, Marcia C.

    2017-01-01

    Summary Naïve T cell stimulation activates anabolic metabolism to fuel the transition from quiescence to growth and proliferation. Here we show that naïve CD4+ T cell activation induces a unique program of mitochondrial biogenesis and remodeling. Using mass spectrometry, we quantified protein dynamics during T cell activation. We identified substantial remodeling of the mitochondrial proteome over the first 24 hr of T cell activation to generate mitochondria with a distinct metabolic signature, with one carbon metabolism as the most induced pathway. Salvage pathways and mitochondrial one carbon metabolism, fed by serine, contribute to purine and thymidine synthesis to enable T cell proliferation and survival. Genetic inhibition of the mitochondrial serine catabolic enzyme SHMT2 impaired T cell survival in culture, and antigen-specific T cell abundance in vivo. Thus, during T cell activation, mitochondrial proteome remodeling generates specialized mitochondria with enhanced one carbon metabolism that is critical for T cell activation and survival. PMID:27411012

  6. Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes

    SciTech Connect

    Huang, Chenglin; Chen, Dongrui; Xie, Qihai; Yang, Ying; Shen, Weili

    2013-08-16

    Highlights: •Nebivolol may act as a partial agonist of β3-adrenergic receptor (AR). •Nebivolol stimulates mitochondrial DNA replication and protein expression. •Nebivolol promotes mitochondrial synthesis via activation of eNOS by β3-AR. -- Abstract: Nebivolol is a third-generation β-adrenergic receptor (β-AR) blocker with additional beneficial effects, including the improvement of lipid and glucose metabolism in obese individuals. However, the underlying mechanism of nebivolol’s role in regulating the lipid profile remains largely unknown. In this study, we investigated the role of nebivolol in mitochondrial biogenesis in 3T3-L1 adipocytes. Exposure of 3T3-L1 cells to nebivolol for 24 h increased mitochondrial DNA copy number, mitochondrial protein levels and the expression of transcription factors involved in mitochondrial biogenesis, including PPAR-γ coactivator-1α (PGC-1α), Sirtuin 3 (Sirt3), mitochondrial transcription factor A (Tfam) and nuclear related factor 1 (Nrf1). These changes were accompanied by an increase in oxygen consumption and in the expression of genes involved in fatty acid oxidation and antioxidant enzymes in 3T3-L1 adipocytes, including nebivolol-induced endothelial nitric oxide synthase (eNOS), as well as an increase in the formation of cyclic guanosine monophosphate (cGMP). Pretreatment with NG-nitro-L-arginine methyl ester (l-NAME) attenuated nebivolol-induced mitochondrial biogenesis, as did the soluble guanylate cyclase inhibitor, ODQ. Treatment with nebivolol and β3-AR blocker SR59230A markedly attenuated PGC-1α, Sirt3 and manganese superoxide dismutase (MnSOD) protein levels in comparison to treatment with nebivolol alone. These data indicate that the mitochondrial synthesis and metabolism in adipocytes that is promoted by nebivolol is primarily mediated through the eNOS/cGMP-dependent pathway and is initiated by the activation of β3-AR receptors.

  7. The impact of age, biogenesis, and genomic clustering on Drosophila microRNA evolution

    PubMed Central

    Mohammed, Jaaved; Flynt, Alex S.; Siepel, Adam; Lai, Eric C.

    2013-01-01

    The molecular evolutionary signatures of miRNAs inform our understanding of their emergence, biogenesis, and function. The known signatures of miRNA evolution have derived mostly from the analysis of deeply conserved, canonical loci. In this study, we examine the impact of age, biogenesis pathway, and genomic arrangement on the evolutionary properties of Drosophila miRNAs. Crucial to the accuracy of our results was our curation of high-quality miRNA alignments, which included nearly 150 corrections to ortholog calls and nucleotide sequences of the global 12-way Drosophilid alignments currently available. Using these data, we studied primary sequence conservation, normalized free-energy values, and types of structure-preserving substitutions. We expand upon common miRNA evolutionary patterns that reflect fundamental features of miRNAs that are under functional selection. We observe that melanogaster-subgroup-specific miRNAs, although recently emerged and rapidly evolving, nonetheless exhibit evolutionary signatures that are similar to well-conserved miRNAs and distinct from other structured noncoding RNAs and bulk conserved non-miRNA hairpins. This provides evidence that even young miRNAs may be selected for regulatory activities. More strikingly, we observe that mirtrons and clustered miRNAs both exhibit distinct evolutionary properties relative to solo, well-conserved miRNAs, even after controlling for sequence depth. These studies highlight the previously unappreciated impact of biogenesis strategy and genomic location on the evolutionary dynamics of miRNAs, and affirm that miRNAs do not evolve as a unitary class. PMID:23882112

  8. Mitochondrial disease genes COA6, COX6B and SCO2 have overlapping roles in COX2 biogenesis

    PubMed Central

    Ghosh, Alok; Pratt, Anthony T.; Soma, Shivatheja; Theriault, Sarah G.; Griffin, Aaron T.; Trivedi, Prachi P.; Gohil, Vishal M.

    2016-01-01

    Biogenesis of cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial respiratory chain, is a complex process facilitated by several assembly factors. Pathogenic mutations were recently reported in one such assembly factor, COA6, and our previous work linked Coa6 function to mitochondrial copper metabolism and expression of Cox2, a copper-containing subunit of CcO. However, the precise role of Coa6 in Cox2 biogenesis remained unknown. Here we show that yeast Coa6 is an orthologue of human COA6, and like Cox2, is regulated by copper availability, further implicating it in copper delivery to Cox2. In order to place Coa6 in the Cox2 copper delivery pathway, we performed a comprehensive genetic epistasis analysis in the yeast Saccharomyces cerevisiae and found that simultaneous deletion of Coa6 and Sco2, a mitochondrial copper metallochaperone, or Coa6 and Cox12/COX6B, a structural subunit of CcO, completely abrogates Cox2 biogenesis. Unlike Coa6 deficient cells, copper supplementation fails to rescue Cox2 levels of these double mutants. Overexpression of Cox12 or Sco proteins partially rescues the coa6Δ phenotype, suggesting their overlapping but non-redundant roles in copper delivery to Cox2. These genetic data are strongly corroborated by biochemical studies demonstrating physical interactions between Coa6, Cox2, Cox12 and Sco proteins. Furthermore, we show that patient mutations in Coa6 disrupt Coa6–Cox2 interaction, providing the biochemical basis for disease pathogenesis. Taken together, these results place COA6 in the copper delivery pathway to CcO and, surprisingly, link it to a previously unidentified function of CcO subunit Cox12 in Cox2 biogenesis. PMID:26669719

  9. p53 and ribosome biogenesis stress: the essentials.

    PubMed

    Golomb, Lior; Volarevic, Sinisa; Oren, Moshe

    2014-08-19

    Cell proliferation and cell growth are two tightly linked processes, as the proliferation program cannot be executed without proper accumulation of cell mass, otherwise endangering the fate of the two daughter cells. It is therefore not surprising that ribosome biogenesis, a key element in cell growth, is regulated by many cell cycle regulators. This regulation is exerted transcriptionally and post-transcriptionally, in conjunction with numerous intrinsic and extrinsic signals. Those signals eventually converge at the nucleolus, the cellular compartment that is not only responsible for executing the ribosome biogenesis program, but also serves as a regulatory hub, responsible for integrating and transmitting multiple stress signals to the omnipotent cell fate gatekeeper, p53. In this review we discuss when, how and why p53 is activated upon ribosomal biogenesis stress, and how perturbation of this critical regulatory interplay may impact human disease.

  10. 13-Deoxytedanolide, a marine sponge-derived antitumor macrolide, binds to the 60S large ribosomal subunit.

    PubMed

    Nishimura, Shinichi; Matsunaga, Shigeki; Yoshida, Minoru; Hirota, Hiroshi; Yokoyama, Shigeyuki; Fusetani, Nobuhiro

    2005-01-17

    13-Deoxytedanolide is a potent antitumor macrolide isolated from the marine sponge Mycale adhaerens. In spite of its remarkable activity, the mode of action of 13-deoxytedanolide has not been elucidated. [11-3H]-(11S)-13-Deoxydihydrotedanolide derived from the macrolide was used for identifying the target molecule from the yeast cell lysate. Fractionation of the binding protein revealed that the labeled 13-deoxytedanolide derivative strongly bound to the 80S ribosome as well as to the 60S large subunit, but not to the 40S small subunit. In agreement with this observation, 13-deoxytedanolide efficiently inhibited the polypeptide elongation. Interestingly, competition studies demonstrated that 13-deoxytedanolide shared the binding site on the 60S large subunit with pederin and its marine-derived analogues. These results indicate that 13-deoxytedanolide is a potent protein synthesis inhibitor and is the first macrolide to inhibit the eukaryotic ribosome.

  11. Random mutagenesis of yeast 25S rRNA identify bases critical for 60S subunit structural integrity and function

    PubMed Central

    Nemoto, Naoki; Udagawa, Tsuyoshi; Chowdhury, Wasimul; Kitabatake, Makoto; Shin, Byung-shik; Hiraishi, Hiroyuki; Wang, Suzhi; Singh, Chingakham Ranjit; Brown, Susan J.; Ohno, Mutsuhito; Asano, Katsura

    2013-01-01

    In yeast Saccharomyces cerevisiae, 25S rRNA makes up the major mass and shape of the 60S ribosomal subunit. During translation initiation, the 60S subunit joins the 40S initiation complex, producing the 80S initiation complex. During elongation, the 60S subunit binds the CCA-ends of aminoacyl- and peptidyl-tRNAs at the A-loop and P-loop, respectively, transferring the peptide onto the α-amino group of the aminoacyl-tRNA. To study the role of 25S rRNA in translation in vivo, we randomly mutated 25S rRNA and isolated and characterized seven point mutations that affected yeast cell growth and polysome profiles. Four of these mutations, G651A, A1435U, A1446G and A1587G, change a base involved in base triples crucial for structural integrity. Three other mutations change bases near the ribosomal surface: C2879U and U2408C alter the A-loop and P-loop, respectively, and G1735A maps near a Eukarya-specific bridge to the 40S subunit. By polysome profiling in mmslΔ mutants defective in nonfunctional 25S rRNA decay, we show that some of these mutations are defective in both the initiation and elongation phases of translation. Of the mutants characterized, C2879U displays the strongest defect in translation initiation. The ribosome transit-time assay directly shows that this mutation is also defective in peptide elongation/termination. Thus, our genetic analysis not only identifies bases critical for structural integrity of the 60S subunit, but also suggests a role for bases near the peptidyl transferase center in translation initiation. PMID:26824023

  12. LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis.

    PubMed

    Weidberg, Hilla; Shpilka, Tomer; Shvets, Elena; Abada, Adi; Shimron, Frida; Elazar, Zvulun

    2011-04-19

    Autophagy is a unique membrane trafficking pathway describing the formation and targeting of double membrane autophagosomes to the vacuole/lysosome. The biogenesis of autophagosomes and their delivery to the vacuole/lysosome depend on multiple membrane fusion events. Using a cell-free system, we have investigated the ability of LC3 and GATE-16, two mammalian Atg8 orthologs, to mediate membrane fusion. We found that both proteins promote tethering and membrane fusion, mediated by the proteins' N-terminal α helices. We further show that short, 10 amino acid long synthetic peptides derived from the N terminus of LC3 or GATE-16 are sufficient to promote membrane fusion. Our data indicate that the fusion activity of LC3 is mediated by positively charged amino acids, whereas the activity of GATE-16 is mediated by hydrophobic interactions. Finally, we demonstrate that LC3 and GATE-16 N termini in general and specific residues needed for the fusion activity are essential for the proteins role in autophagosome biogenesis.

  13. Biogenesis, Function, and Applications of Virus-Derived Small RNAs in Plants

    PubMed Central

    Zhang, Chao; Wu, Zujian; Li, Yi; Wu, Jianguo

    2015-01-01

    RNA silencing, an evolutionarily conserved and sequence-specific gene-inactivation system, has a pivotal role in antiviral defense in most eukaryotic organisms. In plants, a class of exogenous small RNAs (sRNAs) originating from the infecting virus called virus-derived small interfering RNAs (vsiRNAs) are predominantly responsible for RNA silencing-mediated antiviral immunity. Nowadays, the process of vsiRNA formation and the role of vsiRNAs in plant viral defense have been revealed through deep sequencing of sRNAs and diverse genetic analysis. The biogenesis of vsiRNAs is analogous to that of endogenous sRNAs, which require diverse essential components including dicer-like (DCL), argonaute (AGO), and RNA-dependent RNA polymerase (RDR) proteins. vsiRNAs trigger antiviral defense through post-transcriptional gene silencing (PTGS) or transcriptional gene silencing (TGS) of viral RNA, and they hijack the host RNA silencing system to target complementary host transcripts. Additionally, several applications that take advantage of the current knowledge of vsiRNAs research are being used, such as breeding antiviral plants through genetic engineering technology, reconstructing of viral genomes, and surveying viral ecology and populations. Here, we will provide an overview of vsiRNA pathways, with a primary focus on the advances in vsiRNA biogenesis and function, and discuss their potential applications as well as the future challenges in vsiRNAs research. PMID:26617580

  14. Complete topology inversion can be part of normal membrane protein biogenesis.

    PubMed

    Woodall, Nicholas B; Hadley, Sarah; Yin, Ying; Bowie, James U

    2017-02-07

    The topology of helical membrane proteins is generally defined during insertion of the transmembrane helices, yet it is now clear that it is possible for topology to change under unusual circumstances. It remains unclear, however, if topology reorientation is part of normal biogenesis. For dual topology dimer proteins such as the multidrug transporter EmrE, there may be evolutionary pressure to allow topology flipping so that the populations of both orientations can be equalized. We previously demonstrated that when EmrE is forced to insert in a distorted topology, topology flipping of the first transmembrane helix can occur during translation. Here, we show that topological malleability also extends to the C-terminal helix and that even complete topology inversion of the entire EmrE protein can occur after the full protein is translated and inserted. Thus, topology rearrangements are possible during normal biogenesis. Wholesale topology flipping is remarkable given the physical constraints of the membrane and expands the range of possible membrane protein folding pathways, both productive and detrimental.

  15. Mitochondria Biogenesis and Bioenergetics Gene Profiles in Isogenic Prostate Cells with Different Malignant Phenotypes

    PubMed Central

    Burch, Tanya C.; Rhim, Johng S.

    2016-01-01

    Background. The most significant hallmarks of cancer are directly or indirectly linked to deregulated mitochondria. In this study, we sought to profile mitochondria associated genes in isogenic prostate cell lines with different tumorigenic phenotypes from the same patient. Results. Two isogenic human prostate cell lines RC77N/E (nonmalignant cells) and RC77T/E (malignant cells) were profiled for expression of mitochondrial biogenesis and energy metabolism genes by qRT-PCR using the Human Mitochondria and the Mitochondrial Energy Metabolism RT2 PCR arrays. Forty-seven genes were differentially regulated between the two cell lines. The interaction and regulatory networks of these genes were generated by Ingenuity Pathway Analysis. UCP2 was the most significantly upregulated gene in primary adenocarcinoma cells in the current study. The overexpression of UCP2 upon malignant transformation was further validated using human prostatectomy clinical specimens. Conclusions. This study demonstrates the overexpression of multiple genes that are involved in mitochondria biogenesis, bioenergetics, and modulation of apoptosis. These genes may play a role in malignant transformation and disease progression. The upregulation of some of these genes in clinical samples indicates that some of the differentially transcribed genes could be the potential targets for therapeutic interventions. PMID:27478826

  16. Proteomic Analysis of Protein-Protein Interactions within the CSD Fe-S Cluster Biogenesis System

    PubMed Central

    Bolstad, Heather M.; Botelho, Danielle J.; Wood, Matthew J.

    2010-01-01

    Fe-S cluster biogenesis is of interest to many fields, including bioenergetics and gene regulation. The CSD system is one of three Fe-S cluster biogenesis systems in E. coli and is comprised of the cysteine desulfurase CsdA, the sulfur acceptor protein CsdE, and the E1-like protein CsdL. The biological role, biochemical mechanism, and protein targets of the system remain uncharacterized. Here we present that the active site CsdE C61 has a lowered pKa value of 6.5, which is nearly identical to that of C51 in the homologous SufE protein and which is likely critical for its function. We observed that CsdE forms disulfide bonds with multiple proteins and identified the proteins that copurify with CsdE. The identification of Fe-S proteins and both putative and established Fe-S cluster assembly (ErpA, glutaredoxin-3, glutaredoxin-4) and sulfur trafficking (CsdL, YchN) proteins supports the two-pathway model, in which the CSD system is hypothesized to synthesize both Fe-S clusters and other sulfur-containing cofactors. We suggest that the identified Fe-S cluster assembly proteins may be the scaffold and/or shuttle proteins for the CSD system. By comparison with previous analysis of SufE, we demonstrate that there is some overlap in the CsdE and SufE interactomes. PMID:20734996

  17. VPS36-Dependent Multivesicular Bodies Are Critical for Plasmamembrane Protein Turnover and Vacuolar Biogenesis1[OPEN

    PubMed Central

    Wang, Huei-Jing; Guo, Cian-Ling; Jane, Wann-Neng; Wang, Hao; Jiang, Liwen

    2017-01-01

    Most eukaryotic cells target ubiquitinated plasma membrane (PM) proteins for vacuolar degradation in response to environmental and developmental cues. This process involves endosomal sorting complexes required for transport (ESCRT). However, little is known about the cellular mechanisms of ESCRTs in plants. Here, we studied the function of one ESCRT-II component, VPS36, which shows ubiquitin-binding activity and may form a putative ESCRT-II with VPS22 and VPS25 in Arabidopsis (Arabidopsis thaliana). Recessive mutation of the ubiquitously expressed VPS36 causes multiple defects, including delayed embryogenesis, defective root elongation, and limited expansion of cotyledons, and these effects can be complemented by its genomic DNA. Abnormal intracellular compartments containing several membrane transporters, including members of the PIN-FORMEDs, AUXIN RESISTANT 1, and PIP1 families, were found in vps36-1 plants. Employing a genetic approach to cross vps36-1/+ with transgenic plants harboring various fluorescent protein-tagged organelle markers, as well as fluorescent probe and ultrastructural approaches, revealed PM proteins in microsomal fractions from vps36-1 seedlings and demonstrated that VPS36 is critical for forming multivesicular bodies and vacuolar biogenesis for protein degradation. Our study shows that functional VPS36 is essential for a proper endosomal sorting pathway and for vacuolar biogenesis in Arabidopsis. PMID:27879389

  18. Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development.

    PubMed

    Kobayashi, Koichi

    2016-07-01

    The lipid bilayer of the thylakoid membrane in plant chloroplasts and cyanobacterial cells is predominantly composed of four unique lipid classes; monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG). MGDG and DGDG are uncharged galactolipids that constitute the bulk of thylakoid membrane lipids and provide a lipid bilayer matrix for photosynthetic complexes as the main constituents. The glycolipid SQDG and phospholipid PG are anionic lipids with a negative charge on their head groups. SQDG and PG substitute for each other to maintain the amount of total anionic lipids in the thylakoid membrane, with PG having indispensable functions in photosynthesis. In addition to biochemical studies, extensive analyses of mutants deficient in thylakoid lipids have revealed important roles of these lipids in photosynthesis and thylakoid membrane biogenesis. Moreover, recent studies of Arabidopsis thaliana suggest that thylakoid lipid biosynthesis triggers the expression of photosynthesis-associated genes in both the nucleus and plastids and activates the formation of photosynthetic machineries and chloroplast development. Meanwhile, galactolipid biosynthesis is regulated in response to chloroplast functionality and lipid metabolism at transcriptional and post-translational levels. This review summarizes the roles of thylakoid lipids with their biosynthetic pathways in plants and discusses the coordinated regulation of thylakoid lipid biosynthesis with the development of photosynthetic machinery during chloroplast biogenesis.

  19. AP-1A controls secretory granule biogenesis and trafficking of membrane secretory granule proteins.

    PubMed

    Bonnemaison, Mathilde; Bäck, Nils; Lin, Yimo; Bonifacino, Juan S; Mains, Richard; Eipper, Betty

    2014-10-01

    The adaptor protein 1A complex (AP-1A) transports cargo between the trans-Golgi network (TGN) and endosomes. In professional secretory cells, AP-1A also retrieves material from immature secretory granules (SGs). The role of AP-1A in SG biogenesis was explored using AtT-20 corticotrope tumor cells expressing reduced levels of the AP-1A μ1A subunit. A twofold reduction in μ1A resulted in a decrease in TGN cisternae and immature SGs and the appearance of regulated secretory pathway components in non-condensing SGs. Although basal secretion of endogenous SG proteins was unaffected, secretagogue-stimulated release was halved. The reduced μ1A levels interfered with the normal trafficking of carboxypeptidase D (CPD) and peptidylglycine α-amidating monooxygenase-1 (PAM-1), integral membrane enzymes that enter immature SGs. The non-condensing SGs contained POMC products and PAM-1, but not CPD. Based on metabolic labeling and secretion experiments, the cleavage of newly synthesized PAM-1 into PHM was unaltered, but PHM basal secretion was increased in sh-μ1A PAM-1 cells. Despite lacking a canonical AP-1A binding motif, yeast two-hybrid studies demonstrated an interaction between the PAM-1 cytosolic domain and AP-1A. Coimmunoprecipitation experiments with PAM-1 mutants revealed an influence of the luminal domains of PAM-1 on this interaction. Thus, AP-1A is crucial for normal SG biogenesis, function and composition.

  20. PLK4 trans-Autoactivation Controls Centriole Biogenesis in Space.

    PubMed

    Lopes, Carla A M; Jana, Swadhin Chandra; Cunha-Ferreira, Inês; Zitouni, Sihem; Bento, Inês; Duarte, Paulo; Gilberto, Samuel; Freixo, Francisco; Guerrero, Adán; Francia, Maria; Lince-Faria, Mariana; Carneiro, Jorge; Bettencourt-Dias, Mónica

    2015-10-26

    Centrioles are essential for cilia and centrosome assembly. In centriole-containing cells, centrioles always form juxtaposed to pre-existing ones, motivating a century-old debate on centriole biogenesis control. Here, we show that trans-autoactivation of Polo-like kinase 4 (PLK4), the trigger of centriole biogenesis, is a critical event in the spatial control of that process. We demonstrate that centrioles promote PLK4 activation through its recruitment and local accumulation. Though centriole removal reduces the proportion of active PLK4, this is rescued by concentrating PLK4 to the peroxisome lumen. Moreover, while mild overexpression of PLK4 only triggers centriole amplification at the existing centriole, higher PLK4 levels trigger both centriolar and cytoplasmatic (de novo) biogenesis. Hence, centrioles promote their assembly locally and disfavor de novo synthesis. Similar mechanisms enforcing the local concentration and/or activity of other centriole components are likely to contribute to the spatial control of centriole biogenesis under physiological conditions.

  1. Peroxisome Biogenesis Disorders: Biological, Clinical and Pathophysiological Perspectives

    ERIC Educational Resources Information Center

    Braverman, Nancy E.; D'Agostino, Maria Daniela; MacLean, Gillian E.

    2013-01-01

    The peroxisome biogenesis disorders (PBD) are a heterogeneous group of autosomal recessive disorders in which peroxisome assembly is impaired, leading to multiple peroxisome enzyme deficiencies, complex developmental sequelae and progressive disabilities. Mammalian peroxisome assembly involves the protein products of 16 "PEX" genes;…

  2. The Role of the Endoplasmic Reticulum in Peroxisome Biogenesis

    PubMed Central

    Dimitrov, Lazar; Lam, Sheung Kwan; Schekman, Randy

    2013-01-01

    Peroxisomes are essential cellular organelles involved in lipid metabolism. Patients affected by severe peroxisome biogenesis disorders rarely survive their first year. Genetic screens in several model organisms have identified more than 30 PEX genes that are required for the formation of functional peroxisomes. Despite significant work on the PEX genes, the biogenic origin of peroxisomes remains controversial. For at least two decades, the prevailing model postulated that peroxisomes propagate by growth and fission of preexisting peroxisomes. In this review, we focus on the recent evidence supporting a new, semiautonomous model of peroxisomal biogenesis. According to this model, peroxisomal membrane proteins (PMPs) traffic from the endoplasmic reticulum (ER) to the peroxisome by a vesicular budding, targeting, and fusion process while peroxisomal matrix proteins are imported into the organelle by an autonomous, posttranslational mechanism. We highlight the contradictory conclusions reached to answer the question of how PMPs are inserted into the ER. We then review what we know and what still remains to be elucidated about the mechanism of PMP exit from the ER and the contribution of preperoxisomal vesicles to mature peroxisomes. Finally, we discuss discrepancies in our understanding of de novo peroxisome biogenesis in wild-type cells. We anticipate that resolving these key issues will lead to a more complete picture of peroxisome biogenesis. PMID:23637287

  3. The β2-adrenoceptor agonist formoterol stimulates mitochondrial biogenesis.

    PubMed

    Wills, Lauren P; Trager, Richard E; Beeson, Gyda C; Lindsey, Christopher C; Peterson, Yuri K; Beeson, Craig C; Schnellmann, Rick G

    2012-07-01

    Mitochondrial dysfunction is a common mediator of disease and organ injury. Although recent studies show that inducing mitochondrial biogenesis (MB) stimulates cell repair and regeneration, only a limited number of chemicals are known to induce MB. To examine the impact of the β-adrenoceptor (β-AR) signaling pathway on MB, primary renal proximal tubule cells (RPTC) and adult feline cardiomyocytes were exposed for 24 h to multiple β-AR agonists: isoproterenol (nonselective β-AR agonist), (±)-(R*,R*)-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy] acetic acid sodium hydrate (BRL 37344) (selective β(3)-AR agonist), and formoterol (selective β(2)-AR agonist). The Seahorse Biosciences (North Billerica, MA) extracellular flux analyzer was used to quantify carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP)-uncoupled oxygen consumption rate (OCR), a marker of maximal electron transport chain activity. Isoproterenol and BRL 37244 did not alter mitochondrial respiration at any of the concentrations examined. Formoterol exposure resulted in increases in both FCCP-uncoupled OCR and mitochondrial DNA (mtDNA) copy number. The effect of formoterol on OCR in RPTC was inhibited by the β-AR antagonist propranolol and the β(2)-AR inverse agonist 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol hydrochloride (ICI-118,551). Mice exposed to formoterol for 24 or 72 h exhibited increases in kidney and heart mtDNA copy number, peroxisome proliferator-activated receptor γ coactivator 1α, and multiple genes involved in the mitochondrial electron transport chain (F0 subunit 6 of transmembrane F-type ATP synthase, NADH dehydrogenase subunit 1, NADH dehydrogenase subunit 6, and NADH dehydrogenase [ubiquinone] 1β subcomplex subunit 8). Cheminformatic modeling, virtual chemical library screening, and experimental validation identified nisoxetine from the Sigma Library of Pharmacologically Active Compounds and two compounds from the ChemBridge DIVERSet

  4. Oncogene dependent control of miRNA biogenesis and metastatic progression in a model of undifferentiated pleomorphic sarcoma

    PubMed Central

    Mito, Jeffrey K.; Min, Hooney D.; Ma, Yan; Carter, Jessica E.; Brigman, Brian E.; Dodd, Leslie; Dankort, David; McMahon, Martin; Kirsch, David G.

    2013-01-01

    Undifferentiated pleomorphic sarcoma (UPS) is one of the most common soft tissue malignancies. Patients with large, high grade sarcomas often develop fatal lung metastases. Understanding the mechanisms underlying sarcoma metastasis are needed to improve treatment of these patients. Micro-RNAs (miRNAs) are a class of small RNAs that post-transcriptionally regulate gene expression. Global alterations in miRNAs are frequently observed in a number of disease states including cancer. The signaling pathways that regulate miRNA biogenesis are beginning to emerge. To test the relevance of specific oncogenic mutations on miRNA biogenesis in sarcoma, we used primary soft tissue sarcomas expressing either BrafV600E or KrasG12D. We find that BrafV600E mutant tumors, which have increased MAPK signaling, have higher levels of mature miRNAs and enhanced miRNA processing. To investigate the relevance of oncogene dependent alterations in miRNA biogenesis, we introduce conditional mutations in Dicer and show that Dicer haploinsufficiency promotes the development of distant metastases in an oncogene dependent manner. These results demonstrate that a specific oncogenic mutation can cooperate with mutation in Dicer to promote tumor progression in vivo. PMID:22951975

  5. An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila

    PubMed Central

    Olivieri, Daniel; Sykora, Martina M; Sachidanandam, Ravi; Mechtler, Karl; Brennecke, Julius

    2010-01-01

    In Drosophila, PIWI proteins and bound PIWI-interacting RNAs (piRNAs) form the core of a small RNA-mediated defense system against selfish genetic elements. Within germline cells, piRNAs are processed from piRNA clusters and transposons to be loaded into Piwi/Aubergine/AGO3 and a subset of piRNAs undergoes target-dependent amplification. In contrast, gonadal somatic support cells express only Piwi, lack signs of piRNA amplification and exhibit primary piRNA biogenesis from piRNA clusters. Neither piRNA processing/loading nor Piwi-mediated target silencing is understood at the genetic, cellular or molecular level. We developed an in vivo RNAi assay for the somatic piRNA pathway and identified the RNA helicase Armitage, the Tudor domain containing RNA helicase Yb and the putative nuclease Zucchini as essential factors for primary piRNA biogenesis. Lack of any of these proteins leads to transposon de-silencing, to a collapse in piRNA levels and to a failure in Piwi-nuclear accumulation. We show that Armitage and Yb interact physically and co-localize in cytoplasmic Yb bodies, which flank P bodies. Loss of Zucchini leads to an accumulation of Piwi and Armitage in Yb bodies, indicating that Yb bodies are sites of primary piRNA biogenesis. PMID:20818334

  6. AKT3 controls mitochondrial biogenesis and autophagy via regulation of the major nuclear export protein CRM-1.

    PubMed

    Corum, Daniel G; Tsichlis, Philip N; Muise-Helmericks, Robin C

    2014-01-01

    Our previous work has shown that Akt3 is required for mitochondrial biogenesis in primary human endothelial cells (ECs) and in Akt3-null mice; Akt3 affects subcellular localization of peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α), the master regulator of mitochondrial biogenesis. The purpose of this study is to determine the mechanism by which Akt3 controls the subcellular distribution of PGC-1α and to explore the effect on mitochondrial biogenesis and turnover during angiogenesis. Here we use standard biochemical analyses and Akt3-knockdown strategies to show that Akt3 controls the stabilization of chromosome maintenance region-1 (CRM-1), the major nuclear export receptor. Site-directed mutagenesis and association analyses show that PGC-1α nuclear export is CRM-1 dependent. Akt3 knockdown and CRM-1 overexpression cause 3-fold reductions in PGC-1α target gene expression, compared to control levels. Akt3 inhibition causes autophagy, as measured by autophagosome formation, in a CRM-1-dependent, Akt1/mTOR-independent pathway. In vivo, Akt3-null and heterozygous mice show dose-dependent decreases in angiogenesis compared to wild-type littermates (~5- and 2.5-fold decreases, respectively), as assessed by Matrigel plug assays. This correlates with an ~1.5-fold decrease in mitochondrial Cox IV expression. Our studies suggest that Akt3 is a regulator of mitochondrial dynamics in the vasculature via regulation of CRM-1-dependent nuclear export.

  7. An AP-3-dependent mechanism drives synaptic-like microvesicle biogenesis in pancreatic islet beta-cells.

    PubMed

    Suckow, Arthur T; Craige, Branch; Faundez, Victor; Cain, William J; Chessler, Steven D

    2010-07-01

    Pancreatic islet beta-cells contain synaptic-like microvesicles (SLMVs). The origin, trafficking, and role of these SLMVs are poorly understood. In neurons, synaptic vesicle (SV) biogenesis is mediated by two different cytosolic adaptor protein complexes, a ubiquitous AP-2 complex and the neuron-specific AP-3B complex. Mice lacking AP-3B subunits exhibit impaired GABAergic (inhibitory) neurotransmission and reduced neuronal vesicular GABA transporter (VGAT) content. Since beta-cell maturation and exocytotic function seem to parallel that of the inhibitory synapse, we predicted that AP-3B-associated vesicles would be present in beta-cells. Here, we test the hypothesis that AP-3B is expressed in islets and mediates beta-cell SLMV biogenesis. A secondary aim was to test whether the sedimentation properties of INS-1 beta-cell microvesicles are identical to those of bona fide SLMVs isolated from PC12 cells. Our results show that the two neuron-specific AP-3 subunits beta3B and mu3B are expressed in beta-cells, the first time these proteins have been found to be expressed outside the nervous system. We found that beta-cell SLMVs share the same sedimentation properties as PC12 SLMVs and contain SV proteins that sort specifically to AP-3B-associated vesicles in the brain. Brefeldin A, a drug that interferes with AP-3-mediated SV biogenesis, inhibits the delivery of AP-3 cargoes to beta-cell SLMVs. Consistent with a role for AP-3 in the biogenesis of GABAergic SLMV in beta-cells, INS-1 cell VGAT content decreases upon inhibition of AP-3 delta-subunit expression. Our findings suggest that beta-cells and neurons share molecules and mechanisms important for mediating the neuron-specific membrane trafficking pathways that underlie synaptic vesicle formation.

  8. The H-NS protein is involved in the biogenesis of flagella in Escherichia coli.

    PubMed Central

    Bertin, P; Terao, E; Lee, E H; Lejeune, P; Colson, C; Danchin, A; Collatz, E

    1994-01-01

    The function of the flagellum-chemotaxis regulon requires the expression of many genes and is positively regulated by the cyclic AMP-catabolite activator protein (cAMP-CAP) complex. In this paper, we show that motile behavior was affected in Escherichia coli hns mutants. The loss of motility resulted from a complete lack of flagella. A decrease in the level of transcription of the flhD and fliA genes, which are both required for the synthesis of flagella, was observed in the presence of an hns mutation. Furthermore, the Fla- phenotype was not reversed to the wild type in the presence of a cfs mutation which renders the flagellum synthesis independent of the cAMP-CAP complex. These results suggest that the H-NS protein acts as a positive regulator of genes involved in the biogenesis of flagella by a mechanism independent of the cAMP-CAP pathway. Images PMID:8071234

  9. The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacterium

    PubMed Central

    Santos, Joana A.; Alonso-García, Noelia; Macedo-Ribeiro, Sandra; Pereira, Pedro José Barbosa

    2014-01-01

    Iron-sulfur clusters function as cofactors of a wide range of proteins, with diverse molecular roles in both prokaryotic and eukaryotic cells. Dedicated machineries assemble the clusters and deliver them to the final acceptor molecules in a tightly regulated process. In the prototypical Gram-negative bacterium Escherichia coli, the two existing iron-sulfur cluster assembly systems, iron-sulfur cluster (ISC) and sulfur assimilation (SUF) pathways, are closely interconnected. The ISC pathway regulator, IscR, is a transcription factor of the helix-turn-helix type that can coordinate a [2Fe-2S] cluster. Redox conditions and iron or sulfur availability modulate the ligation status of the labile IscR cluster, which in turn determines a switch in DNA sequence specificity of the regulator: cluster-containing IscR can bind to a family of gene promoters (type-1) whereas the clusterless form recognizes only a second group of sequences (type-2). However, iron-sulfur cluster biogenesis in Gram-positive bacteria is not so well characterized, and most organisms of this group display only one of the iron-sulfur cluster assembly systems. A notable exception is the unique Gram-positive dissimilatory metal reducing bacterium Thermincola potens, where genes from both systems could be identified, albeit with a diverging organization from that of Gram-negative bacteria. We demonstrated that one of these genes encodes a functional IscR homolog and is likely involved in the regulation of iron-sulfur cluster biogenesis in T. potens. Structural and biochemical characterization of T. potens and E. coli IscR revealed a strikingly similar architecture and unveiled an unforeseen conservation of the unique mechanism of sequence discrimination characteristic of this distinctive group of transcription regulators. PMID:24847070

  10. Cell-specific transcriptional profiling of ciliated sensory neurons reveals regulators of behavior and extracellular vesicle biogenesis

    PubMed Central

    Wang, Juan; Kaletsky, Rachel; Silva, Malan; Williams, April; Haas, Leonard; Androwski, Rebecca; Landis, Jessica; Patrick, Cory; Rashid, Alina; Santiago-Martinez, Dianaliz; Gravato-Nobre, Maria; Hodgkin, Jonathan; Hall, David H.; Murphy, Coleen T.; Barr, Maureen M.

    2015-01-01

    Summary Cilia and extracellular vesicles (EVs) are signaling organelles[1]. Cilia act as cellular sensory antennae, with defects resulting in human ciliopathies. Cilia both release and bind to EVs[1]. EVs are submicron-sized particles released by cells and function in both short and long range intercellular communication. In C. elegans and mammals, the Autosomal Dominant Polycystic Kidney Disease (ADPKD) gene products polycystin-1 and polycystin-2 localize to both cilia and EVs, act in the same genetic pathway, and function in a sensory capacity, suggesting ancient conservation[2]. A fundamental understanding of EV biology and the relationship between the polycystins, cilia, and EVs is lacking. To define properties of a ciliated EV-releasing cell, we performed RNAseq on 27 GFP-labeled EV releasing neurons (EVNs) isolated from adult C. elegans. We identified 335 significantly overrepresented genes, of which 61 were validated by GFP reporters. The EVN transcriptional profile uncovered new pathways controlling EV biogenesis and polycystin signaling and also identified EV cargo, which included an antimicrobial peptide and ASIC channel. Tumor necrosis associated factor (TRAF) homologues trf-1 and trf-2 and the p38 mitogen-activated protein kinase (MAPK) pmk-1 acted in polycystin signaling pathways controlling male mating behaviors. pmk-1 was also required for EV biogenesis, independent of the innate immunity MAPK signaling cascade. This first high-resolution transcriptome profile of a subtype of ciliated sensory neurons isolated from adult animals reveals the functional components of an EVN. PMID:26687621

  11. Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains.

    PubMed

    Shen, Peter S; Park, Joseph; Qin, Yidan; Li, Xueming; Parsawar, Krishna; Larson, Matthew H; Cox, James; Cheng, Yifan; Lambowitz, Alan M; Weissman, Jonathan S; Brandman, Onn; Frost, Adam

    2015-01-02

    In Eukarya, stalled translation induces 40S dissociation and recruitment of the ribosome quality control complex (RQC) to the 60S subunit, which mediates nascent chain degradation. Here we report cryo-electron microscopy structures revealing that the RQC components Rqc2p (YPL009C/Tae2) and Ltn1p (YMR247C/Rkr1) bind to the 60S subunit at sites exposed after 40S dissociation, placing the Ltn1p RING (Really Interesting New Gene) domain near the exit channel and Rqc2p over the P-site transfer RNA (tRNA). We further demonstrate that Rqc2p recruits alanine- and threonine-charged tRNA to the A site and directs the elongation of nascent chains independently of mRNA or 40S subunits. Our work uncovers an unexpected mechanism of protein synthesis, in which a protein--not an mRNA--determines tRNA recruitment and the tagging of nascent chains with carboxy-terminal Ala and Thr extensions ("CAT tails").

  12. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains

    PubMed Central

    Shen, Peter S.; Park, Joseph; Qin, Yidan; Li, Xueming; Parsawar, Krishna; Larson, Matthew H.; Cox, James; Cheng, Yifan; Lambowitz, Alan M.; Weissman, Jonathan S.; Brandman, Onn; Frost, Adam

    2015-01-01

    In Eukarya, stalled translation induces 40S dissociation and recruitment of the Ribosome Quality control Complex (RQC) to the 60S subunit, which mediates nascent chain degradation. Here, we report cryoEM structures revealing that the RQC components Rqc2p (YPL009C/Tae2) and Ltn1p (YMR247C/Rkr1) bind to the 60S at sites exposed after 40S dissociation, placing the Ltn1p RING domain near the exit channel and Rqc2p over the P-site tRNA. We further demonstrate that Rqc2p recruits alanine and threonine charged tRNA to the A-site and directs elongation of nascent chains independently of mRNA or 40S subunits. Our work uncovers an unexpected mechanism of protein synthesis in which a protein—not an mRNA—determines tRNA recruitment and the tagging of nascent chains with Carboxy-terminal Ala and Thr extensions (“CAT tails”). PMID:25554787

  13. Upper Tropospheric Ozone Between Latitudes 60S and 60N Derived from Nimbus 7 TOMS/THIR Cloud Slicing

    NASA Technical Reports Server (NTRS)

    Ziemke, Jerald R.; Chandra, Sushil; Bhartia, P. K.

    2002-01-01

    This study evaluates the spatial distributions and seasonal cycles in upper tropospheric ozone (pressure range 200-500 hPa) from low to high latitudes (60S to 60N) derived from the satellite retrieval method called "Cloud Slicing." Cloud Slicing is a unique technique for determining ozone profile information in the troposphere by combining co-located measurements of cloud-top, pressure and above-cloud column ozone. For upper tropospheric ozone, co-located measurements of Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) above-cloud column ozone, and Nimbus 7 Temperature Humidity Infrared Radiometer (THIR) cloud-top pressure during 1979-1984 were incorporated. In the tropics, upper tropospheric ozone shows year-round enhancement in the Atlantic region and evidence of a possible semiannual variability. Upper tropospheric ozone outside the tropics shows greatest abundance in winter and spring seasons in both hemispheres with largest seasonal and largest amounts in the NH. These characteristics are similar to lower stratospheric ozone. Comparisons of upper tropospheric column ozone with both stratospheric ozone and a proxy of lower stratospheric air mass (i.e., tropopause pressure) from National Centers for Environmental Prediction (NCEP) suggest that stratosphere-troposphere exchange (STE) may be a significant source for the seasonal variability of upper tropospheric ozone almost everywhere between 60S and 60N except in low latitudes around 10S to 25N where other sources (e.g., tropospheric transport, biomass burning, aerosol effects, lightning, etc.) may have a greater role.

  14. Over-Expression of 60s Ribosomal L23a Is Associated with Cellular Proliferation in SAG Resistant Clinical Isolates of Leishmania donovani

    PubMed Central

    Das, Sanchita; Shah, Priyanka; Baharia, Rajendra K.; Tandon, Rati; Khare, Prashant; Sundar, Shyam; Sahasrabuddhe, Amogh A.; Siddiqi, M. I.; Dube, Anuradha

    2013-01-01

    Background Sodium antimony gluconate (SAG) unresponsiveness of Leishmania donovani (Ld) had effectively compromised the chemotherapeutic potential of SAG. 60s ribosomal L23a (60sRL23a), identified as one of the over-expressed protein in different resistant strains of L.donovani as observed with differential proteomics studies indicates towards its possible involvement in SAG resistance in L.donovani. In the present study 60sRL23a has been characterized for its probable association with SAG resistance mechanism. Methodology and principal findings The expression profile of 60s ribosomal L23a (60sRL23a) was checked in different SAG resistant as well as sensitive strains of L.donovani clinical isolates by real-time PCR and western blotting and was found to be up-regulated in resistant strains. Ld60sRL23a was cloned, expressed in E.coli system and purified for raising antibody in swiss mice and was observed to have cytosolic localization in L.donovani. 60sRL23a was further over-expressed in sensitive strain of L.donovani to check its sensitivity profile against SAG (Sb V and III) and was found to be altered towards the resistant mode. Conclusion/Significance This study reports for the first time that the over expression of 60sRL23a in SAG sensitive parasite decreases the sensitivity of the parasite towards SAG, miltefosine and paramomycin. Growth curve of the tranfectants further indicated the proliferative potential of 60sRL23a assisting the parasite survival and reaffirming the extra ribosomal role of 60sRL23a. The study thus indicates towards the role of the protein in lowering and redistributing the drug pressure by increased proliferation of parasites and warrants further longitudinal study to understand the underlying mechanism. PMID:24340105

  15. Pex19p, a Farnesylated Protein Essential for Peroxisome Biogenesis

    PubMed Central

    Götte, Klaudia; Girzalsky, Wolfgang; Linkert, Michael; Baumgart, Evelyn; Kammerer, Stefan; Kunau, Wolf-Hubert; Erdmann, Ralf

    1998-01-01

    We report the identification and molecular characterization of Pex19p, an oleic acid-inducible, farnesylated protein of 39.7 kDa that is essential for peroxisome biogenesis in Saccharomyces cerevisiae. Cells lacking Pex19p are characterized by the absence of morphologically detectable peroxisomes and mislocalization of peroxisomal matrix proteins to the cytosol. The human HK33 gene product was identified as the putative human ortholog of Pex19p. Evidence is provided that farnesylation of Pex19p takes place at the cysteine of the C-terminal CKQQ amino acid sequence. Farnesylation of Pex19p was shown to be essential for the proper function of the protein in peroxisome biogenesis. Pex19p was shown to interact with Pex3p in vivo, and this interaction required farnesylation of Pex19p. PMID:9418908

  16. The SSU Processome in Ribosome Biogenesis – Progress and Prospects

    PubMed Central

    Phipps, Kathleen R.; Charette, J. Michael; Baserga, Susan J.

    2010-01-01

    The small subunit (SSU) processome is a 2.2 MDa ribonucleoprotein complex involved in the processing, assembly and maturation of the SSU of eukaryotic ribosomes. The identities of many of the factors involved in SSU biogenesis have been elucidated over the past 40 years. However, as our understanding increases, so do the number of questions about the nature of this complicated process. Cataloguing the components is the first step towards understanding the molecular workings of a system. This review will focus on how identifying components of ribosome biogenesis has led to the knowledge of how these factors, protein and RNA alike, associate with one another into sub-complexes, with a concentration on the small ribosomal subunit. We will also explore how this knowledge of sub-complex assembly has informed our understanding of the workings of the ribosome synthesis system as a whole. PMID:21318072

  17. Regulation of ribosome biogenesis in maize embryonic axes during germination.

    PubMed

    Villa-Hernández, J M; Dinkova, T D; Aguilar-Caballero, R; Rivera-Cabrera, F; Sánchez de Jiménez, E; Pérez-Flores, L J

    2013-10-01

    Ribosome biogenesis is a pre-requisite for cell growth and proliferation; it is however, a highly regulated process that consumes a great quantity of energy. It requires the coordinated production of rRNA, ribosomal proteins and non-ribosomal factors which participate in the processing and mobilization of the new ribosomes. Ribosome biogenesis has been studied in yeast and animals; however, there is little information about this process in plants. The objective of the present work was to study ribosome biogenesis in maize seeds during germination, a stage characterized for its fast growth, and the effect of insulin in this process. Insulin has been reported to accelerate germination and to induce seedling growth. It was observed that among the first events reactivated just after 3 h of imbibition are the rDNA transcription and the pre-rRNA processing and that insulin stimulates both of them (40-230%). The transcript of nucleolin, a protein which regulates rDNA transcription and pre-rRNA processing, is among the messages stored in quiescent dry seeds and it is mobilized into the polysomal fraction during the first hours of imbibition (6 h). In contrast, de novo ribosomal protein synthesis was low during the first hours of imbibition (3 and 6 h) increasing by 60 times in later stages (24 h). Insulin increased this synthesis (75%) at 24 h of imbibition; however, not all ribosomal proteins were similarly regulated. In this regard, an increase in RPS6 and RPL7 protein levels was observed, whereas RPL3 protein levels did not change even though its transcription was induced. Results show that ribosome biogenesis in the first stages of imbibition is carried out with newly synthesized rRNA and ribosomal proteins translated from stored mRNA.

  18. The miRNA biogenesis in marine bivalves

    PubMed Central

    Rosani, Umberto; Pallavicini, Alberto

    2016-01-01

    Small non-coding RNAs include powerful regulators of gene expression, transposon mobility and virus activity. Among the various categories, mature microRNAs (miRNAs) guide the translational repression and decay of several targeted mRNAs. The biogenesis of miRNAs depends on few gene products, essentially conserved from basal to higher metazoans, whose protein domains allow specific interactions with dsRNA. Here, we report the identification of key genes responsible of the miRNA biogenesis in 32 bivalves, with particular attention to the aquaculture species Mytilus galloprovincialis and Crassostrea gigas. In detail, we have identified and phylogenetically compared eight evolutionary conserved proteins: DROSHA, DGCR8, EXP5, RAN, DICER TARBP2, AGO and PIWI. In mussels, we recognized several other proteins participating in the miRNA biogenesis or in the subsequent RNA silencing. According to digital expression analysis, these genes display low and not inducible expression levels in adult mussels and oysters whereas they are considerably expressed during development. As miRNAs play an important role also in the antiviral responses, knowledge on their production and regulative effects can shed light on essential molecular processes and provide new hints for disease prevention in bivalves. PMID:26989613

  19. Microprocessor activity controls differential miRNA biogenesis In Vivo.

    PubMed

    Conrad, Thomas; Marsico, Annalisa; Gehre, Maja; Orom, Ulf Andersson

    2014-10-23

    In miRNA biogenesis, pri-miRNA transcripts are converted into pre-miRNA hairpins. The in vivo properties of this process remain enigmatic. Here, we determine in vivo transcriptome-wide pri-miRNA processing using next-generation sequencing of chromatin-associated pri-miRNAs. We identify a distinctive Microprocessor signature in the transcriptome profile from which efficiency of the endogenous processing event can be accurately quantified. This analysis reveals differential susceptibility to Microprocessor cleavage as a key regulatory step in miRNA biogenesis. Processing is highly variable among pri-miRNAs and a better predictor of miRNA abundance than primary transcription itself. Processing is also largely stable across three cell lines, suggesting a major contribution of sequence determinants. On the basis of differential processing efficiencies, we define functionality for short sequence features adjacent to the pre-miRNA hairpin. In conclusion, we identify Microprocessor as the main hub for diversified miRNA output and suggest a role for uncoupling miRNA biogenesis from host gene expression.

  20. The Dedicated Chaperone Acl4 Escorts Ribosomal Protein Rpl4 to Its Nuclear Pre-60S Assembly Site

    PubMed Central

    Pillet, Benjamin; García-Gómez, Juan J.; Pausch, Patrick; Falquet, Laurent; Bange, Gert; de la Cruz, Jesús; Kressler, Dieter

    2015-01-01

    Ribosomes are the highly complex macromolecular assemblies dedicated to the synthesis of all cellular proteins from mRNA templates. The main principles underlying the making of ribosomes are conserved across eukaryotic organisms and this process has been studied in most detail in the yeast Saccharomyces cerevisiae. Yeast ribosomes are composed of four ribosomal RNAs (rRNAs) and 79 ribosomal proteins (r-proteins). Most r-proteins need to be transported from the cytoplasm to the nucleus where they get incorporated into the evolving pre-ribosomal particles. Due to the high abundance and difficult physicochemical properties of r-proteins, their correct folding and fail-safe targeting to the assembly site depends largely on general, as well as highly specialized, chaperone and transport systems. Many r-proteins contain universally conserved or eukaryote-specific internal loops and/or terminal extensions, which were shown to mediate their nuclear targeting and association with dedicated chaperones in a growing number of cases. The 60S r-protein Rpl4 is particularly interesting since it harbours a conserved long internal loop and a prominent C-terminal eukaryote-specific extension. Here we show that both the long internal loop and the C-terminal eukaryote-specific extension are strictly required for the functionality of Rpl4. While Rpl4 contains at least five distinct nuclear localization signals (NLS), the C-terminal part of the long internal loop associates with a specific binding partner, termed Acl4. Absence of Acl4 confers a severe slow-growth phenotype and a deficiency in the production of 60S subunits. Genetic and biochemical evidence indicates that Acl4 can be considered as a dedicated chaperone of Rpl4. Notably, Acl4 localizes to both the cytoplasm and nucleus and it has the capacity to capture nascent Rpl4 in a co-translational manner. Taken together, our findings indicate that the dedicated chaperone Acl4 accompanies Rpl4 from the cytoplasm to its pre-60S

  1. The Dedicated Chaperone Acl4 Escorts Ribosomal Protein Rpl4 to Its Nuclear Pre-60S Assembly Site.

    PubMed

    Pillet, Benjamin; García-Gómez, Juan J; Pausch, Patrick; Falquet, Laurent; Bange, Gert; de la Cruz, Jesús; Kressler, Dieter

    2015-10-01

    Ribosomes are the highly complex macromolecular assemblies dedicated to the synthesis of all cellular proteins from mRNA templates. The main principles underlying the making of ribosomes are conserved across eukaryotic organisms and this process has been studied in most detail in the yeast Saccharomyces cerevisiae. Yeast ribosomes are composed of four ribosomal RNAs (rRNAs) and 79 ribosomal proteins (r-proteins). Most r-proteins need to be transported from the cytoplasm to the nucleus where they get incorporated into the evolving pre-ribosomal particles. Due to the high abundance and difficult physicochemical properties of r-proteins, their correct folding and fail-safe targeting to the assembly site depends largely on general, as well as highly specialized, chaperone and transport systems. Many r-proteins contain universally conserved or eukaryote-specific internal loops and/or terminal extensions, which were shown to mediate their nuclear targeting and association with dedicated chaperones in a growing number of cases. The 60S r-protein Rpl4 is particularly interesting since it harbours a conserved long internal loop and a prominent C-terminal eukaryote-specific extension. Here we show that both the long internal loop and the C-terminal eukaryote-specific extension are strictly required for the functionality of Rpl4. While Rpl4 contains at least five distinct nuclear localization signals (NLS), the C-terminal part of the long internal loop associates with a specific binding partner, termed Acl4. Absence of Acl4 confers a severe slow-growth phenotype and a deficiency in the production of 60S subunits. Genetic and biochemical evidence indicates that Acl4 can be considered as a dedicated chaperone of Rpl4. Notably, Acl4 localizes to both the cytoplasm and nucleus and it has the capacity to capture nascent Rpl4 in a co-translational manner. Taken together, our findings indicate that the dedicated chaperone Acl4 accompanies Rpl4 from the cytoplasm to its pre-60S

  2. Cell wall biogenesis of Arabidopsis thaliana elongating cells: transcriptomics complements proteomics

    PubMed Central

    Jamet, Elisabeth; Roujol, David; San-Clemente, Hélène; Irshad, Muhammad; Soubigou-Taconnat, Ludivine; Renou, Jean-Pierre; Pont-Lezica, Rafael

    2009-01-01

    Background Plant growth is a complex process involving cell division and elongation. Arabidopsis thaliana hypocotyls undergo a 100-fold length increase mainly by cell elongation. Cell enlargement implicates significant changes in the composition and structure of the cell wall. In order to understand cell wall biogenesis during cell elongation, mRNA profiling was made on half- (active elongation) and fully-grown (after growth arrest) etiolated hypocotyls. Results Transcriptomic analysis was focused on two sets of genes. The first set of 856 genes named cell wall genes (CWGs) included genes known to be involved in cell wall biogenesis. A significant proportion of them has detectable levels of transcripts (55.5%), suggesting that these processes are important throughout hypocotyl elongation and after growth arrest. Genes encoding proteins involved in substrate generation or in synthesis of polysaccharides, and extracellular proteins were found to have high transcript levels. A second set of 2927 genes labeled secretory pathway genes (SPGs) was studied to search for new genes encoding secreted proteins possibly involved in wall expansion. Based on transcript level, 433 genes were selected. Genes not known to be involved in cell elongation were found to have high levels of transcripts. Encoded proteins were proteases, protease inhibitors, proteins with interacting domains, and proteins involved in lipid metabolism. In addition, 125 of them encoded proteins with yet unknown function. Finally, comparison with results of a cell wall proteomic study on the same material revealed that 48 out of the 137 identified proteins were products of the genes having high or moderate level of transcripts. About 15% of the genes encoding proteins identified by proteomics showed levels of transcripts below background. Conclusion Members of known multigenic families involved in cell wall biogenesis, and new genes that might participate in cell elongation were identified. Significant

  3. A More Flexible Lipoprotein Sorting Pathway

    PubMed Central

    Chahales, Peter

    2015-01-01

    Lipoprotein biogenesis in Gram-negative bacteria occurs by a conserved pathway, each step of which is considered essential. In contrast to this model, LoVullo and colleagues demonstrate that the N-acyl transferase Lnt is not required in Francisella tularensis or Neisseria gonorrhoeae. This suggests the existence of a more flexible lipoprotein pathway, likely due to a modified Lol transporter complex, and raises the possibility that pathogens may regulate lipoprotein processing to modulate interactions with the host. PMID:25755190

  4. Regulation of Mitochondrial Respiratory Chain Biogenesis by Estrogens/Estrogen Receptors and Physiological, Pathological and Pharmacological Implications

    PubMed Central

    Chen, Jin-Qiang; Cammarata, Patrick R.; Baines, Christopher P.; Yager, James D.

    2009-01-01

    There has been increasing evidence pointing to the mitochondrial respiratory chain (MRC) as a novel and important target for the actions of 17β-estradiol(E2) and estrogen receptors (ER) in a number of cell types and tissues that have high demands for mitochondrial energy metabolism. This novel E2-mediated mitochondrial pathway involves the cooperation of both nuclear and mitochondrial ERα and ERβ and their co-activators on the coordinate regulation of both nuclear DNA- and mitochondrial DNA-encoded genes for MRC proteins. In this paper, we have: 1) comprehensively reviewed studies that reveal a novel role of estrogens and ERs in the regulation of MRC biogenesis; 2) discussed their physiological, pathological and pharmacological implications in the control of cell proliferation and apoptosis in relation to estrogen-mediated carcinogenesis, anticancer drug resistance in human breast cancer cells, neuro-protection for Alzheimer’s disease and Parkinson’s disease in brain, cardiovascular protection in human heart and their beneficial effects in lens physiology related to cataract in the eye; and 3) pointed out new research directions to address the key questions in this important and newly emerging area. We also suggest a novel conceptual approach that will contribute to innovative regimines for the prevention or treatment of a wide variety of medical complications based on E2/ER-mediated MRC biogenesis pathway. PMID:19559056

  5. Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders.

    PubMed

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J; Sims, Katherine B; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-04-17

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role.

  6. The DEAD-box Protein Rok1 Orchestrates 40S and 60S Ribosome Assembly by Promoting the Release of Rrp5 from Pre-40S Ribosomes to Allow for 60S Maturation.

    PubMed

    Khoshnevis, Sohail; Askenasy, Isabel; Johnson, Matthew C; Dattolo, Maria D; Young-Erdos, Crystal L; Stroupe, M Elizabeth; Karbstein, Katrin

    2016-06-01

    DEAD-box proteins are ubiquitous regulators of RNA biology. While commonly dubbed "helicases," their activities also include duplex annealing, adenosine triphosphate (ATP)-dependent RNA binding, and RNA-protein complex remodeling. Rok1, an essential DEAD-box protein, and its cofactor Rrp5 are required for ribosome assembly. Here, we use in vivo and in vitro biochemical analyses to demonstrate that ATP-bound Rok1, but not adenosine diphosphate (ADP)-bound Rok1, stabilizes Rrp5 binding to 40S ribosomes. Interconversion between these two forms by ATP hydrolysis is required for release of Rrp5 from pre-40S ribosomes in vivo, thereby allowing Rrp5 to carry out its role in 60S subunit assembly. Furthermore, our data also strongly suggest that the previously described accumulation of snR30 upon Rok1 inactivation arises because Rrp5 release is blocked and implicate a previously undescribed interaction between Rrp5 and the DEAD-box protein Has1 in mediating snR30 accumulation when Rrp5 release from pre-40S subunits is blocked.

  7. The DEAD-box Protein Rok1 Orchestrates 40S and 60S Ribosome Assembly by Promoting the Release of Rrp5 from Pre-40S Ribosomes to Allow for 60S Maturation

    PubMed Central

    Khoshnevis, Sohail; Askenasy, Isabel; Dattolo, Maria D.; Young-Erdos, Crystal L.; Stroupe, M. Elizabeth; Karbstein, Katrin

    2016-01-01

    DEAD-box proteins are ubiquitous regulators of RNA biology. While commonly dubbed “helicases,” their activities also include duplex annealing, adenosine triphosphate (ATP)-dependent RNA binding, and RNA-protein complex remodeling. Rok1, an essential DEAD-box protein, and its cofactor Rrp5 are required for ribosome assembly. Here, we use in vivo and in vitro biochemical analyses to demonstrate that ATP-bound Rok1, but not adenosine diphosphate (ADP)-bound Rok1, stabilizes Rrp5 binding to 40S ribosomes. Interconversion between these two forms by ATP hydrolysis is required for release of Rrp5 from pre-40S ribosomes in vivo, thereby allowing Rrp5 to carry out its role in 60S subunit assembly. Furthermore, our data also strongly suggest that the previously described accumulation of snR30 upon Rok1 inactivation arises because Rrp5 release is blocked and implicate a previously undescribed interaction between Rrp5 and the DEAD-box protein Has1 in mediating snR30 accumulation when Rrp5 release from pre-40S subunits is blocked. PMID:27280440

  8. Ribosome biogenesis in replicating cells: Integration of experiment and theory.

    PubMed

    Earnest, Tyler M; Cole, John A; Peterson, Joseph R; Hallock, Michael J; Kuhlman, Thomas E; Luthey-Schulten, Zaida

    2016-10-01

    Ribosomes-the primary macromolecular machines responsible for translating the genetic code into proteins-are complexes of precisely folded RNA and proteins. The ways in which their production and assembly are managed by the living cell is of deep biological importance. Here we extend a recent spatially resolved whole-cell model of ribosome biogenesis in a fixed volume [Earnest et al., Biophys J 2015, 109, 1117-1135] to include the effects of growth, DNA replication, and cell division. All biological processes are described in terms of reaction-diffusion master equations and solved stochastically using the Lattice Microbes simulation software. In order to determine the replication parameters, we construct and analyze a series of Escherichia coli strains with fluorescently labeled genes distributed evenly throughout their chromosomes. By measuring these cells' lengths and number of gene copies at the single-cell level, we could fit a statistical model of the initiation and duration of chromosome replication. We found that for our slow-growing (120 min doubling time) E. coli cells, replication was initiated 42 min into the cell cycle and completed after an additional 42 min. While simulations of the biogenesis model produce the correct ribosome and mRNA counts over the cell cycle, the kinetic parameters for transcription and degradation are lower than anticipated from a recent analytical time dependent model of in vivo mRNA production. Describing expression in terms of a simple chemical master equation, we show that the discrepancies are due to the lack of nonribosomal genes in the extended biogenesis model which effects the competition of mRNA for ribosome binding, and suggest corrections to parameters to be used in the whole-cell model when modeling expression of the entire transcriptome. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 735-751, 2016.

  9. α-granule biogenesis: from disease to discovery.

    PubMed

    Chen, Chang Hua; Lo, Richard W; Urban, Denisa; Pluthero, Fred G; Kahr, Walter H A

    2017-03-01

    Platelets are critical to hemostasis and thrombosis. Upon detecting injury, platelets show a range of responses including the release of protein cargo from α-granules. This cargo is synthesized by platelet precursor megakaryocytes or endocytosed by megakaryocytes and/or platelets. Insights into α-granule biogenesis have come from studies of hereditary conditions where these granules are immature, deficient or absent. Studies of Arthrogryposis, Renal dysfunction, and Cholestasis (ARC) syndrome identified the first proteins essential to α-granule biogenesis: VPS33B and VPS16B. VPS33B and VPS16B form a complex, and in the absence of either, platelets lack α-granules and the granule-specific membrane protein P-selectin. Gray Platelet Syndrome (GPS) platelets also lack conventionally recognizable α-granules, although P-selectin containing structures are present. GPS arises from mutations affecting NBEAL2. The GPS phenotype is more benign than ARC syndrome, but it can cause life-threatening bleeding, progressive thrombocytopenia, and myelofibrosis. We review the essential roles of VPS33B, VPS16B, and NBEAL2 in α-granule development. We also examine the existing data on their mechanisms of action, where many details remain poorly understood. VPS33B and VPS16B are ubiquitously expressed and ARC syndrome is a multisystem disorder that causes lethality early in life. Thus, VPS33B and VPS16B are clearly involved in other processes besides α-granule biogenesis. Studies of their involvement in vesicular trafficking and protein interactions are reviewed to gain insights into their roles in α-granule formation. NBEAL2 mutations primarily affect megakaryocytes and platelets, and while little is known about NBEAL2 function some insights can be gained from studies of related proteins, such as LYST.

  10. Clusterin facilitates stress-induced lipidation of LC3 and autophagosome biogenesis to enhance cancer cell survival

    PubMed Central

    Zhang, Fan; Kumano, Masafumi; Beraldi, Eliana; Fazli, Ladan; Du, Caigan; Moore, Susan; Sorensen, Poul; Zoubeidi, Amina; Gleave, Martin E.

    2014-01-01

    We define stress-induced adaptive survival pathways linking autophagy with the molecular chaperone clusterin (CLU) that function to promote anticancer treatment resistance. During treatment stress, CLU co-localizes with LC3 via an LIR-binding sequence within autophagosome membranes, functioning to facilitate LC3–Atg3 heterocomplex stability and LC3 lipidation, and thereby enhance autophagosome biogenesis and autophagy activation. Stress-induced autophagy is attenuated with CLU silencing in CLU−/− mice and human prostate cancer cells. CLU-enhanced cell survival occurs via autophagy-dependent pathways, and is reduced following autophagy inhibition. Combining CLU inhibition with anticancer treatments attenuates autophagy activation, increases apoptosis and reduces prostate cancer growth. This study defines a novel adaptor protein function for CLU under stress conditions, and highlights how co-targeting CLU and autophagy can amplify proteotoxic stress to delay cancer progression. PMID:25503391

  11. MicroRNA-directed siRNA biogenesis in Caenorhabditis elegans.

    PubMed

    Corrêa, Régis L; Steiner, Florian A; Berezikov, Eugene; Ketting, René F

    2010-04-08

    RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi-related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer.

  12. Skeletal muscle plasticity induced by seasonal acclimatization involves IGF1 signaling: implications in ribosomal biogenesis and protein synthesis.

    PubMed

    Fuentes, Eduardo N; Zuloaga, Rodrigo; Valdes, Juan Antonio; Molina, Alfredo; Alvarez, Marco

    2014-10-01

    One of the most fundamental biological processes in living organisms that are affected by environmental fluctuations is growth. In fish, skeletal muscle accounts for the largest proportion of body mass, and the growth of this tissue is mainly controlled by the insulin-like growth factor (IGF) system. By using the carp (Cyprinus carpio), a fish that inhabits extreme conditions during winter and summer, we assessed the skeletal muscle plasticity induced by seasonal acclimatization and the relation of IGF signaling with protein synthesis and ribosomal biogenesis. The expression of igf1 in muscle decreased during winter in comparison with summer, whereas the expression for both paralogues of igf2 did not change significantly between seasons. The expression of igf1 receptor a (igf1ra), but not of igf1rb, was down-regulated in muscle during the winter as compared to the summer. A decrease in protein contents and protein phosphorylation for IGF signaling molecules in muscle was observed in winter-acclimatized carp. This was related with a decreased expression in muscle for markers of myogenesis (myoblast determination factor (myod), myogenic factor 5 (myf5), and myogenin (myog)); protein synthesis (myosin heavy chain (mhc) and myosin light chain (mlc3 and mlc1b)); and ribosomal biogenesis (pre-rRNA and ribosomal proteins). IGF signaling, and key markers of ribosomal biogenesis, protein synthesis, and myogenesis were affected by seasonal acclimatization, with differential regulation in gene expression and signaling pathway activation observed in muscle between both seasons. This suggests that these molecules are responsible for the muscle plasticity induced by seasonal acclimatization in carp.

  13. Re-evaluation of the roles of DROSHA, Exportin 5, and DICER in microRNA biogenesis

    PubMed Central

    Kim, Young-Kook; Kim, Boseon; Kim, V. Narry

    2016-01-01

    Biogenesis of canonical microRNAs (miRNAs) involves multiple steps: nuclear processing of primary miRNA (pri-miRNA) by DROSHA, nuclear export of precursor miRNA (pre-miRNA) by Exportin 5 (XPO5), and cytoplasmic processing of pre-miRNA by DICER. To gain a deeper understanding of the contribution of each of these maturation steps, we deleted DROSHA, XPO5, and DICER in the same human cell line, and analyzed their effects on miRNA biogenesis. Canonical miRNA production was completely abolished in DROSHA-deleted cells, whereas we detected a few DROSHA-independent miRNAs including three previously unidentified noncanonical miRNAs (miR-7706, miR-3615, and miR-1254). In contrast to DROSHA knockout, many canonical miRNAs were still detected without DICER albeit at markedly reduced levels. In the absence of DICER, pre-miRNAs are loaded directly onto AGO and trimmed at the 3′ end, yielding miRNAs from the 5′ strand (5p miRNAs). Interestingly, in XPO5 knockout cells, most miRNAs are affected only modestly, suggesting that XPO5 is necessary but not critical for miRNA maturation. Our study demonstrates an essential role of DROSHA and an important contribution of DICER in the canonical miRNA pathway, and reveals that the function of XPO5 can be complemented by alternative mechanisms. Thus, this study allows us to understand differential contributions of key biogenesis factors, and provides with valuable resources for miRNA research. PMID:26976605

  14. Therapeutic dosages of aspirin counteract the IL-6 induced pro-tumorigenic effects by slowing down the ribosome biogenesis rate

    PubMed Central

    Brighenti, Elisa; Giannone, Ferdinando Antonino; Fornari, Francesca; Onofrillo, Carmine; Govoni, Marzia; Montanaro, Lorenzo; Treré, Davide; Derenzini, Massimo

    2016-01-01

    Chronic inflammation is a risk factor for the onset of cancer and the regular use of aspirin reduces the risk of cancer development. Here we showed that therapeutic dosages of aspirin counteract the pro-tumorigenic effects of the inflammatory cytokine interleukin(IL)-6 in cancer and non-cancer cell lines, and in mouse liver in vivo. We found that therapeutic dosages of aspirin prevented IL-6 from inducing the down-regulation of p53 expression and the acquisition of the epithelial mesenchymal transition (EMT) phenotypic changes in the cell lines. This was the result of a reduction in c-Myc mRNA transcription which was responsible for a down-regulation of the ribosomal protein S6 expression which, in turn, slowed down the rRNA maturation process, thus reducing the ribosome biogenesis rate. The perturbation of ribosome biogenesis hindered the Mdm2-mediated proteasomal degradation of p53, throughout the ribosomal protein-Mdm2-p53 pathway. P53 stabilization hindered the IL-6 induction of the EMT changes. The same effects were observed in livers from mice stimulated with IL-6 and treated with aspirin. It is worth noting that aspirin down-regulated ribosome biogenesis, stabilized p53 and up-regulated E-cadherin expression in unstimulated control cells also. In conclusion, these data showed that therapeutic dosages of aspirin increase the p53-mediated tumor-suppressor activity of the cells thus being in this way able to reduce the risk of cancer onset, either or not linked to chronic inflammatory processes. PMID:27557515

  15. Suppression of sorbitol dependence in a strain bearing a mutation in the SRB1/PSA1/VIG9 gene encoding GDP-mannose pyrophosphorylase by PDE2 overexpression suggests a role for the Ras/cAMP signal-transduction pathway in the control of yeast cell-wall biogenesis.

    PubMed

    Tomlin, G C; Hamilton, G E; Gardner, D C; Walmsley, R M; Stateva, L I; Oliver, S G

    2000-09-01

    Complementation studies and allele replacement in Saccharomyces cerevisiae revealed that PSA1/VIG9, an essential gene that encodes GDP-mannose pyrophosphorylase, is the wild-type SRB1 gene. Cloning and sequencing of the srb1-1 allele showed that it determines a single amino acid change from glycine to aspartic acid at residue 276 (srb1(D276)). Genetic evidence is presented showing that at least one further mutation is required for the sorbitol dependence of srb1(D276). A previously reported complementing gene, which this study has now identified as PDE2, is a multi-copy suppressor of sorbitol dependence and is not, as was previously suggested, the SRB1 gene. srb and pde2 mutants share a number of phenotypes, including lysis upon hypotonic shock and enhanced transformability. These data are consistent with the idea that the Ras/cAMP pathway might modulate cell-wall construction.

  16. Biogenesis and Function of T Cell-Derived Exosomes.

    PubMed

    Ventimiglia, Leandro N; Alonso, Miguel A

    2016-01-01

    Exosomes are a particular type of extracellular vesicle, characterized by their endosomal origin as intraluminal vesicles present in large endosomes with a multivesicular structure. After these endosomes fuse with the plasma membrane, exosomes are secreted into the extracellular space. The ability of exosomes to carry and selectively deliver bioactive molecules (e.g., lipids, proteins, and nucleic acids) confers on them the capacity to modulate the activity of receptor cells, even if these cells are located in distant tissues or organs. Since exosomal cargo depends on cell type, a detailed understanding of the mechanisms that regulate the biochemical composition of exosomes is fundamental to a comprehensive view of exosome function. Here, we review the latest advances concerning exosome function and biogenesis in T cells, with particular focus on the mechanism of protein sorting at multivesicular endosomes. Exosomes secreted by specific T-cell subsets can modulate the activity of immune cells, including other T-cell subsets. Ceramide, tetraspanins and MAL have been revealed to be important in exosome biogenesis by T cells. These molecules, therefore, constitute potential molecular targets for artificially modulating exosome production and, hence, the immune response for therapeutic purposes.

  17. Biogenesis and Function of T Cell-Derived Exosomes

    PubMed Central

    Ventimiglia, Leandro N.; Alonso, Miguel A.

    2016-01-01

    Exosomes are a particular type of extracellular vesicle, characterized by their endosomal origin as intraluminal vesicles present in large endosomes with a multivesicular structure. After these endosomes fuse with the plasma membrane, exosomes are secreted into the extracellular space. The ability of exosomes to carry and selectively deliver bioactive molecules (e.g., lipids, proteins, and nucleic acids) confers on them the capacity to modulate the activity of receptor cells, even if these cells are located in distant tissues or organs. Since exosomal cargo depends on cell type, a detailed understanding of the mechanisms that regulate the biochemical composition of exosomes is fundamental to a comprehensive view of exosome function. Here, we review the latest advances concerning exosome function and biogenesis in T cells, with particular focus on the mechanism of protein sorting at multivesicular endosomes. Exosomes secreted by specific T-cell subsets can modulate the activity of immune cells, including other T-cell subsets. Ceramide, tetraspanins and MAL have been revealed to be important in exosome biogenesis by T cells. These molecules, therefore, constitute potential molecular targets for artificially modulating exosome production and, hence, the immune response for therapeutic purposes. PMID:27583248

  18. Biogenesis of Yeast Telomerase Depends on the Importin Mtr10

    PubMed Central

    Ferrezuelo, Francisco; Steiner, Barbara; Aldea, Martí; Futcher, Bruce

    2002-01-01

    Telomerase is a ribonucleoprotein particle (RNP) involved in chromosome end replication, but its biogenesis is poorly understood. The RNA component of yeast telomerase (Tlc1) is synthesized as a polyadenylated precursor and then processed to a mature poly(A)− form. We report here that the karyopherin Mtr10p is required for the normal accumulation of mature Tlc1 and its proper localization to the nucleus. Neither TLC1 transcription nor the stability of poly(A)− Tlc1 is significantly affected in mtr10Δ cells. Tlc1 was mostly nuclear in a wild-type background, and this localization was not affected by mutations in other telomerase components. Strikingly, in the absence of Mtr10p, Tlc1 was found dispersed throughout the entire cell. Our results are compatible with two alternative models. First, Mtr10p may import a cytoplasmic complex containing Tlc1 and perhaps other components of telomerase, and shuttling of Tlc1 from the nucleus to the cytoplasm and back may be necessary for the biogenesis of telomerase (the “shuttling” model). Second, Mtr10p may be necessary for the nuclear import of some enzyme needed for the nuclear processing and maturation of Tlc1, and in the absence of this maturation, poly(A)+ Tlc1 is aberrantly exported to the cytoplasm (the “processing enzyme” model). PMID:12167699

  19. Discovery of a small molecule that inhibits bacterial ribosome biogenesis

    PubMed Central

    Stokes, Jonathan M; Davis, Joseph H; Mangat, Chand S; Williamson, James R; Brown, Eric D

    2014-01-01

    While small molecule inhibitors of the bacterial ribosome have been instrumental in understanding protein translation, no such probes exist to study ribosome biogenesis. We screened a diverse chemical collection that included previously approved drugs for compounds that induced cold sensitive growth inhibition in the model bacterium Escherichia coli. Among the most cold sensitive was lamotrigine, an anticonvulsant drug. Lamotrigine treatment resulted in the rapid accumulation of immature 30S and 50S ribosomal subunits at 15°C. Importantly, this was not the result of translation inhibition, as lamotrigine was incapable of perturbing protein synthesis in vivo or in vitro. Spontaneous suppressor mutations blocking lamotrigine activity mapped solely to the poorly characterized domain II of translation initiation factor IF2 and prevented the binding of lamotrigine to IF2 in vitro. This work establishes lamotrigine as a widely available chemical probe of bacterial ribosome biogenesis and suggests a role for E. coli IF2 in ribosome assembly. DOI: http://dx.doi.org/10.7554/eLife.03574.001 PMID:25233066

  20. Probing peroxisome dynamics and biogenesis by fluorescence imaging.

    PubMed

    Jauregui, Miluska; Kim, Peter K

    2014-03-03

    Peroxisomes are the most recently discovered classical organelles, and only lately have their diverse functions been truly recognized. Peroxisomes are highly dynamic structures, changing both morphologically and in number in response to both extracellular and intracellular signals. This metabolic organelle came to prominence due to the many genetic disorders caused by defects in its biogenesis or enzymatic functions. There is now growing evidence that suggests peroxisomes are involved in lipid biosynthesis, innate immunity, redox homeostasis, and metabolite scavenging, among other functions. Therefore, it is important to have available suitable methods and techniques to visualize and quantify peroxisomes in response to various cellular signals. This unit includes a number of protocols that will enable researchers to image, qualify, and quantify peroxisome numbers and morphology-with both steady-state and time-lapse imaging using mammalian cells. The use of photoactivatable fluorescent proteins to detect and measure peroxisome biogenesis is also described. Altogether, the protocols described here will facilitate understanding of the dynamic changes that peroxisomes undergo in response to various cellular signals.

  1. Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes.

    PubMed

    Tanaka, Yoshinori; Suzuki, Genjiro; Matsuwaki, Takashi; Hosokawa, Masato; Serrano, Geidy; Beach, Thomas G; Yamanouchi, Keitaro; Hasegawa, Masato; Nishihara, Masugi

    2017-01-10

    Progranulin (PGRN) haploinsufficiency resulting from loss-of-function mutations in the PGRN gene causes frontotemporal lobar degeneration accompanied by TDP-43 accumulation, and patients with homozygous mutations in the PGRN gene present with neuronal ceroid lipofuscinosis. Although it remains unknown why PGRN deficiency causes neurodegenerative diseases, there is increasing evidence that PGRN is implicated in lysosomal functions. Here, we show PGRN is a secretory lysosomal protein that regulates lysosomal function and biogenesis by controlling the acidification of lysosomes. PGRN gene expression and protein levels increased concomitantly with the increase of lysosomal biogenesis induced by lysosome alkalizers or serum starvation. Down-regulation or insufficiency of PGRN led to the increased lysosomal gene expression and protein levels, while PGRN overexpression led to the decreased lysosomal gene expression and protein levels. In particular, the level of mature cathepsin D (CTSDmat) dramatically changed depending upon PGRN levels. The acidification of lysosomes was facilitated in cells transfected with PGRN. Then, this caused degradation of CTSDmat by cathepsin B. Secreted PGRN is incorporated into cells via sortilin or cation-independent mannose 6-phosphate receptor, and facilitated the acidification of lysosomes and degradation of CTSDmat Moreover, the change of PGRN levels led to a cell-type-specific increase of insoluble TDP-43. In the brain tissue of FTLD-TDP patients with PGRN deficiency, CTSD and phosphorylated TDP-43 accumulated in neurons. Our study provides new insights into the physiological function of PGRN and the role of PGRN insufficiency in the pathogenesis of neurodegenerative diseases.

  2. Mitochondrial biogenesis in the pulmonary vasculature during inhalation lung injury and fibrosis

    EPA Science Inventory

    Cell survival and injury repair is facilitated by mitochondrial biogenesis; however, the role of this process in lung repair is unknown. We evaluated mitochondrial biogenesis in the mouse lung in two injuries that cause acute inflammation and in two that cause chronic inflammatio...

  3. Structure and function of the yeast listerin (Ltn1) conserved N-terminal domain in binding to stalled 60S ribosomal subunits.

    PubMed

    Doamekpor, Selom K; Lee, Joong-Won; Hepowit, Nathaniel L; Wu, Cheng; Charenton, Clement; Leonard, Marilyn; Bengtson, Mario H; Rajashankar, Kanagalaghatta R; Sachs, Matthew S; Lima, Christopher D; Joazeiro, Claudio A P

    2016-07-19

    The Ltn1 E3 ligase (listerin in mammals) has emerged as a paradigm for understanding ribosome-associated ubiquitylation. Ltn1 binds to 60S ribosomal subunits to ubiquitylate nascent polypeptides that become stalled during synthesis; among Ltn1's substrates are aberrant products of mRNA lacking stop codons [nonstop translation products (NSPs)]. Here, we report the reconstitution of NSP ubiquitylation in Neurospora crassa cell extracts. Upon translation in vitro, ribosome-stalled NSPs were ubiquitylated in an Ltn1-dependent manner, while still ribosome-associated. Furthermore, we provide biochemical evidence that the conserved N-terminal domain (NTD) plays a significant role in the binding of Ltn1 to 60S ribosomal subunits and that NTD mutations causing defective 60S binding also lead to defective NSP ubiquitylation, without affecting Ltn1's intrinsic E3 ligase activity. Finally, we report the crystal structure of the Ltn1 NTD at 2.4-Å resolution. The structure, combined with additional mutational studies, provides insight to NTD's role in binding stalled 60S subunits. Our findings show that Neurospora extracts can be used as a tool to dissect mechanisms underlying ribosome-associated protein quality control and are consistent with a model in which Ltn1 uses 60S subunits as adapters, at least in part via its NTD, to target stalled NSPs for ubiquitylation.

  4. Structure and function of the yeast listerin (Ltn1) conserved N-terminal domain in binding to stalled 60S ribosomal subunits

    PubMed Central

    Doamekpor, Selom K.; Lee, Joong-Won; Hepowit, Nathaniel L.; Wu, Cheng; Charenton, Clement; Leonard, Marilyn; Bengtson, Mario H.; Rajashankar, Kanagalaghatta R.; Sachs, Matthew S.; Lima, Christopher D.; Joazeiro, Claudio A. P.

    2016-01-01

    The Ltn1 E3 ligase (listerin in mammals) has emerged as a paradigm for understanding ribosome-associated ubiquitylation. Ltn1 binds to 60S ribosomal subunits to ubiquitylate nascent polypeptides that become stalled during synthesis; among Ltn1’s substrates are aberrant products of mRNA lacking stop codons [nonstop translation products (NSPs)]. Here, we report the reconstitution of NSP ubiquitylation in Neurospora crassa cell extracts. Upon translation in vitro, ribosome-stalled NSPs were ubiquitylated in an Ltn1-dependent manner, while still ribosome-associated. Furthermore, we provide biochemical evidence that the conserved N-terminal domain (NTD) plays a significant role in the binding of Ltn1 to 60S ribosomal subunits and that NTD mutations causing defective 60S binding also lead to defective NSP ubiquitylation, without affecting Ltn1’s intrinsic E3 ligase activity. Finally, we report the crystal structure of the Ltn1 NTD at 2.4-Å resolution. The structure, combined with additional mutational studies, provides insight to NTD’s role in binding stalled 60S subunits. Our findings show that Neurospora extracts can be used as a tool to dissect mechanisms underlying ribosome-associated protein quality control and are consistent with a model in which Ltn1 uses 60S subunits as adapters, at least in part via its NTD, to target stalled NSPs for ubiquitylation. PMID:27385828

  5. Removal of copper (II) from aqueous solutions by flotation using polyaluminum chloride silicate (PAX-XL60 S) as coagulant and carbonate ion as activator.

    PubMed

    Ghazy, S E; Mahmoud, I A; Ragab, A H

    2006-01-01

    Flotation is a separation technology for removing toxic heavy metal ions from aqueous solutions. Here a simple and rapid flotation procedure is presented for the removal of copper(II) from aqueous solutions. It is based on the use of polyaluminum chloride silicate (PAX-XL60 S) as coagulant and flocculent, carbonate ion as activator and oleic acid (HOL) as surfactant. Both ion and precipitate flotation are included depending on the solution pH. Ion and precipitate flotation in the aqueous HOL-PAX-XL60 S-Cu2+-CO3(2-) system gave powerful preferential removal of Cu2+ (F -100%) over the HOL-PAX-XL60 S-Cu2+ system containing no CO3(2+) ion (F approximately 86%). The role of CO3(2-) ion is also evident from decreasing the dose of PAX-XL60 S from 700 mg l(-1) to 200 mg l(-1). The other parameters, influencing the flotation process, namely: metal ion, surfactant and PAX-XL60 S concentrations, ionic strength, temperature and foreign ions were examined. Moreover, the procedure was successfully applied to recover Cu2+ ions from different volumes up to 11 and from natural water samples.

  6. Identification of the binding site of Rlp7 on assembling 60S ribosomal subunits in Saccharomyces cerevisiae

    PubMed Central

    Dembowski, Jill A.; Ramesh, Madhumitha; McManus, C. Joel; Woolford, John L.

    2013-01-01

    Eukaryotic ribosome assembly requires over 200 assembly factors that facilitate rRNA folding, ribosomal protein binding, and pre-rRNA processing. One such factor is Rlp7, an essential RNA binding protein required for consecutive pre-rRNA processing steps for assembly of yeast 60S ribosomal subunits: exonucleolytic processing of 27SA3 pre-rRNA to generate the 5′ end of 5.8S rRNA and endonucleolytic cleavage of the 27SB pre-rRNA to initiate removal of internal transcribed spacer 2 (ITS2). To better understand the functions of Rlp7 in 27S pre-rRNA processing steps, we identified where it crosslinks to pre-rRNA. We found that Rlp7 binds at the junction of ITS2 and the ITS2-proximal stem, between the 3′ end of 5.8S rRNA and the 5′ end of 25S rRNA. Consistent with Rlp7 binding to this neighborhood during assembly, two-hybrid and affinity copurification assays showed that Rlp7 interacts with other assembly factors that bind to or near ITS2 and the proximal stem. We used in vivo RNA structure probing to demonstrate that the proximal stem forms prior to Rlp7 binding and that Rlp7 binding induces RNA conformational changes in ITS2 that may chaperone rRNA folding and regulate 27S pre-rRNA processing. Our findings contradict the hypothesis that Rlp7 functions as a placeholder for ribosomal protein L7, from which Rlp7 is thought to have evolved in yeast. The binding site of Rlp7 is within eukaryotic-specific RNA elements, which are not found in bacteria. Thus, we propose that Rlp7 coevolved with these RNA elements to facilitate eukaryotic-specific functions in ribosome assembly and pre-rRNA processing. PMID:24129494

  7. Mia40 and MINOS act in parallel with Ccs1 in the biogenesis of mitochondrial Sod1.

    PubMed

    Varabyova, Aksana; Topf, Ulrike; Kwiatkowska, Paulina; Wrobel, Lidia; Kaus-Drobek, Magdalena; Chacinska, Agnieszka

    2013-10-01

    Superoxide dismutase 1 (Sod1) is a major superoxide-scavenging enzyme in the eukaryotic cell, and is localized in the cytosol and intermembrane space of mitochondria. Sod1 requires its specific chaperone Ccs1 and disulfide bond formation in order to be retained in the intermembrane space. Our study identified a pool of Sod1 that is present in the reduced state in mitochondria that lack Ccs1. We created yeast mutants with mutations in highly conserved amino acid residues corresponding to human mutations that cause amyotrophic lateral sclerosis, and found that some of the mutant proteins were present in the reduced state. These mutant variants of Sod1 were efficiently localized in mitochondria. Localization of the reduced, Ccs1-independent forms of Sod1 relied on Mia40, an essential component of the mitochondrial intermembrane space import and assembly pathway that is responsible for the biogenesis of intermembrane space proteins. Furthermore, the mitochondrial inner membrane organizing system (MINOS), which is responsible for mitochondrial membrane architecture, differentially modulated the presence of reduced Sod1 in mitochondria. Thus, we identified novel mitochondrial players that are possibly involved in pathological conditions caused by changes in the biogenesis of Sod1.

  8. Methylene blue improves sensorimotor phenotype and decreases anxiety in parallel with activating brain mitochondria biogenesis in mid-age mice.

    PubMed

    Gureev, Artem P; Syromyatnikov, Mikhail Yu; Gorbacheva, Tatyana M; Starkov, Anatoly A; Popov, Vasily N

    2016-12-01

    Age-related brain dysfunctions are associated with mitochondria malfunctions and increased risk of developing neurodegenerative diseases (ND). Recently, a mitochondria-targeting drug methylene blue has been drawing considerable interest as a potential treatment for ND. We found that aged mice manifested a decrease in physical endurance, spontaneous locomotor activity, and exploration concomitant with an increase in anxiety-related behavior, as compared to adult mice. Treating mice for 60 days with MB slowed down these changes. There were no significant changes in the animals' body weight, oxygen consumption rates, or respiratory quotient index, in adult or aged MB-treated mice. However, MB treatment significantly increased the generation of reactive oxygen species in brain mitochondria. The expression of several genes relevant to mitochondria biogenesis, bioenergetics, and antioxidant defense (NRF1, MTCOX1, TFAM, and SOD2) was greatly suppressed in aged mice; it was restored by MB treatment. It seems plausible that the effects of MB could be mediated by its ability to increase H2O2 production in brain mitochondria, thereby activating Nrf2/ARE signaling pathway and mitochondria biogenesis. Our data and earlier findings support the idea that MB can be an attractive prototype drug for developing safe and efficient gerontoprotective compounds.

  9. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis.

    PubMed

    LeBleu, Valerie S; O'Connell, Joyce T; Gonzalez Herrera, Karina N; Wikman, Harriet; Pantel, Klaus; Haigis, Marcia C; de Carvalho, Fernanda Machado; Damascena, Aline; Domingos Chinen, Ludmilla Thome; Rocha, Rafael M; Asara, John M; Kalluri, Raghu

    2014-10-01

    Cancer cells can divert metabolites into anabolic pathways to support their rapid proliferation and to accumulate the cellular building blocks required for tumour growth. However, the specific bioenergetic profile of invasive and metastatic cancer cells is unknown. Here we report that migratory/invasive cancer cells specifically favour mitochondrial respiration and increased ATP production. Invasive cancer cells use the transcription coactivator peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PPARGC1A, also known as PGC-1α) to enhance oxidative phosphorylation, mitochondrial biogenesis and the oxygen consumption rate. Clinical analysis of human invasive breast cancers revealed a strong correlation between PGC-1α expression in invasive cancer cells and the formation of distant metastases. Silencing of PGC-1α in cancer cells suspended their invasive potential and attenuated metastasis without affecting proliferation, primary tumour growth or the epithelial-to-mesenchymal program. Inherent genetics of cancer cells can determine the transcriptome framework associated with invasion and metastasis, and mitochondrial biogenesis and respiration induced by PGC-1α are also essential for functional motility of cancer cells and metastasis.

  10. Supplementing the maternal diet of rats with butyrate enhances mitochondrial biogenesis in the skeletal muscles of weaned offspring.

    PubMed

    Huang, Yanping; Gao, Shixing; Jun, Guo; Zhao, Ruqian; Yang, Xiaojing

    2017-01-01

    The present study aimed to investigate the effects of maternal dietary butyrate supplementation on energy metabolism and mitochondrial biogenesis in offspring skeletal muscle and the possible mediating mechanisms. Virgin female rats were randomly assigned to either control or butyrate diets (1 % butyrate sodium) throughout gestation and lactation. At the end of lactation (21 d), the offspring were killed by exsanguination from the abdominal aorta under anaesthesia. The results showed that maternal butyrate supplementation throughout gestation and lactation did not affect offspring body weight. However, the protein expressions of G-protein-coupled receptors (GPR) 43 and 41 were significantly enhanced in offspring skeletal muscle of the maternal butyrate-supplemented group. The ATP content, most of mitochondrial DNA-encoded gene expressions, the cytochrome c oxidase subunit 1 and 4 protein contents and the mitochondrial DNA copy number were significantly higher in the butyrate group than in the control group. Meanwhile, the protein expressions of type 1 myosin heavy chain, mitochondrial transcription factor A, PPAR-coactivator-1α (PGC-1α) and uncoupling protein 3 were significantly increased in the gastrocnemius muscle of the treatment group compared with the control group. These results indicate for the first time that maternal butyrate supplementation during the gestation and lactation periods influenced energy metabolism and mitochondrial biogenesis through the GPR and PGC-1α pathways in offspring skeletal muscle at weaning.

  11. Scrutiny of Mycobacterium tuberculosis 19 kDa antigen proteoforms provides new insights in the lipoglycoprotein biogenesis paradigm

    PubMed Central

    Parra, Julien; Marcoux, Julien; Poncin, Isabelle; Canaan, Stéphane; Herrmann, Jean Louis; Nigou, Jérôme; Burlet-Schiltz, Odile; Rivière, Michel

    2017-01-01

    Post-translational modifications (PTMs) are essential processes conditioning the biophysical properties and biological activities of the vast majority of mature proteins. However, occurrence of several distinct PTMs on a same protein dramatically increases its molecular diversity. The comprehensive understanding of the functionalities resulting from any particular PTM association requires a highly challenging full structural description of the PTM combinations. Here, we report the in-depth exploration of the natural structural diversity of the M. tuberculosis (Mtb) virulence associated 19 kDa lipoglycoprotein antigen (LpqH) using intact protein high-resolution mass spectrometry (HR-MS) coupled to liquid chromatography. Combined top-down and bottom-up HR-MS analyses of the purified Mtb LpqH protein allow, for the first time, to uncover a complex repertoire of about 130 molecular species resulting from the intrinsically heterogeneous combination of lipidation and glycosylation together with some truncations. Direct view on the co-occurring PTMs stoichiometry reveals the presence of functionally distinct LpqH lipidation states and indicates that glycosylation is independent from lipidation. This work allowed the identification of a novel unsuspected phosphorylated form of the unprocessed preprolipoglycoprotein totally absent from the current lipoglycoprotein biogenesis pathway and providing new insights into the biogenesis and functional determinants of the mycobacterial lipoglycoprotein interacting with the host immune PRRs. PMID:28272507

  12. Epigallocatechin-3-gallate prevents oxidative phosphorylation deficit and promotes mitochondrial biogenesis in human cells from subjects with Down's syndrome.

    PubMed

    Valenti, Daniela; De Rasmo, Domenico; Signorile, Anna; Rossi, Leonardo; de Bari, Lidia; Scala, Iris; Granese, Barbara; Papa, Sergio; Vacca, Rosa Anna

    2013-04-01

    A critical role for mitochondrial dysfunction has been proposed in the pathogenesis of Down's syndrome (DS), a human multifactorial disorder caused by trisomy of chromosome 21, associated with mental retardation and early neurodegeneration. Previous studies from our group demonstrated in DS cells a decreased capacity of the mitochondrial ATP production system and overproduction of reactive oxygen species (ROS) in mitochondria. In this study we have tested the potential of epigallocatechin-3-gallate (EGCG) - a natural polyphenol component of green tea - to counteract the mitochondrial energy deficit found in DS cells. We found that EGCG, incubated with cultured lymphoblasts and fibroblasts from DS subjects, rescued mitochondrial complex I and ATP synthase catalytic activities, restored oxidative phosphorylation efficiency and counteracted oxidative stress. These effects were associated with EGCG-induced promotion of PKA activity, related to increased cellular levels of cAMP and PKA-dependent phosphorylation of the NDUFS4 subunit of complex I. In addition, EGCG strongly promoted mitochondrial biogenesis in DS cells, as associated with increase in Sirt1-dependent PGC-1α deacetylation, NRF-1 and T-FAM protein levels and mitochondrial DNA content. In conclusion, this study shows that EGCG is a promoting effector of oxidative phosphorylation and mitochondrial biogenesis in DS cells, acting through modulation of the cAMP/PKA- and sirtuin-dependent pathways. EGCG treatment promises thus to be a therapeutic approach to counteract mitochondrial energy deficit and oxidative stress in DS.

  13. MicroRNA-149 inhibits PARP-2 and promotes mitochondrial biogenesis via SIRT-1/PGC-1α network in skeletal muscle.

    PubMed

    Mohamed, Junaith S; Hajira, Ameena; Pardo, Patricia S; Boriek, Aladin M

    2014-05-01

    High-fat diet (HFD) plays a central role in the initiation of mitochondrial dysfunction that significantly contributes to skeletal muscle metabolic disorders in obesity. However, the mechanism by which HFD weakens skeletal muscle metabolism by altering mitochondrial function and biogenesis is unknown. Given the emerging roles of microRNAs (miRNAs) in the regulation of skeletal muscle metabolism, we sought to determine whether activation of a specific miRNA pathway would rescue the HFD-induced mitochondrial dysfunction via the sirtuin-1 (SIRT-1)/ peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) pathway, a pathway that governs genes necessary for mitochondrial function. We here report that miR-149 strongly controls SIRT-1 expression and activity. Interestingly, miR-149 inhibits poly(ADP-ribose) polymerase-2 (PARP-2) and so increased cellular NAD(+) levels and SIRT-1 activity that subsequently increases mitochondrial function and biogenesis via PGC-1α activation. In addition, skeletal muscles from HFD-fed obese mice exhibit low levels of miR-149 and high levels of PARP-2, and they show reduced mitochondrial function and biogenesis due to a decreased activation of the SIRT-1/PGC-1α pathway, suggesting that mitochondrial dysfunction in the skeletal muscle of obese mice may be because of, at least in part, miR-149 dysregulation. Overall, miR-149 may be therapeutically useful for treating HFD-induced skeletal muscle metabolic disorders in such pathophysiological conditions as obesity and type 2 diabetes.

  14. Dynamics of clathrin-mediated endocytosis and its requirement for organelle biogenesis in Dictyostelium.

    PubMed

    Macro, Laura; Jaiswal, Jyoti K; Simon, Sanford M

    2012-12-01

    The protein clathrin mediates one of the major pathways of endocytosis from the extracellular milieu and plasma membrane. In single-cell eukaryotes, such as Saccharomyces cerevisiae, the gene encoding clathrin is not an essential gene, raising the question of whether clathrin conveys specific advantages for multicellularity. Furthermore, in contrast to mammalian cells, endocytosis in S. cerevisiae is not dependent on either clathrin or adaptor protein 2 (AP2), an endocytic adaptor molecule. In this study, we investigated the requirement for components of clathrin-mediated endocytosis (CME) in another unicellular organism, the amoeba Dictyostelium. We identified a heterotetrameric AP2 complex in Dictyostelium that is similar to that which is found in higher eukaryotes. By simultaneously imaging fluorescently tagged clathrin and AP2, we found that, similar to higher eukaryotes, these proteins colocalized to membrane puncta that move into the cell together. In addition, the contractile vacuole marker protein, dajumin-green fluorescent protein (GFP), is trafficked via the cell membrane and internalized by CME in a clathrin-dependent, AP2-independent mechanism. This pathway is distinct from other endocytic mechanisms in Dictyostelium. Our finding that CME is required for the internalization of contractile vacuole proteins from the cell membrane explains the contractile vacuole biogenesis defect in Dictyostelium cells lacking clathrin. Our results also suggest that the machinery for CME and its role in organelle maintenance appeared early during eukaryotic evolution. We hypothesize that dependence of endocytosis on specific components of the CME pathway evolved later, as demonstrated by internalization independent of AP2 function.

  15. The logistics of myelin biogenesis in the central nervous system.

    PubMed

    Snaidero, Nicolas; Simons, Mikael

    2017-02-07

    Rapid nerve conduction depends on myelin, but not all axons in the central nervous system (CNS) are myelinated to the same extent. Here, we review our current understanding of the biology of myelin biogenesis in the CNS. We focus on how the different steps of myelination are interconnected and how distinct patterns of myelin are generated. Possibly, a "basal" mode of myelination is laying the groundwork in areas devoted to basic homeostasis early in development, whereas a "targeted" mode generates myelin in regions controlling more complex tasks throughout adulthood. Such mechanisms may explain why myelination progresses in some areas according to a typical chronological and topographic sequence, while in other regions it is regulated by environmental stimuli contributing to interindividual variability of myelin structure. GLIA 2017.

  16. Senataxin suppresses the antiviral transcriptional response and controls viral biogenesis.

    PubMed

    Miller, Matthew S; Rialdi, Alexander; Ho, Jessica Sook Yuin; Tilove, Micah; Martinez-Gil, Luis; Moshkina, Natasha P; Peralta, Zuleyma; Noel, Justine; Melegari, Camilla; Maestre, Ana M; Mitsopoulos, Panagiotis; Madrenas, Joaquín; Heinz, Sven; Benner, Chris; Young, John A T; Feagins, Alicia R; Basler, Christopher F; Fernandez-Sesma, Ana; Becherel, Olivier J; Lavin, Martin F; van Bakel, Harm; Marazzi, Ivan

    2015-05-01

    The human helicase senataxin (SETX) has been linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS4) and ataxia with oculomotor apraxia (AOA2). Here we identified a role for SETX in controlling the antiviral response. Cells that had undergone depletion of SETX and SETX-deficient cells derived from patients with AOA2 had higher expression of antiviral mediators in response to infection than did wild-type cells. Mechanistically, we propose a model whereby SETX attenuates the activity of RNA polymerase II (RNAPII) at genes stimulated after a virus is sensed and thus controls the magnitude of the host response to pathogens and the biogenesis of various RNA viruses (e.g., influenza A virus and West Nile virus). Our data indicate a potentially causal link among inborn errors in SETX, susceptibility to infection and the development of neurologic disorders.

  17. The emerging roles of ribosome biogenesis in craniofacial development

    PubMed Central

    Ross, Adam P.; Zarbalis, Konstantinos S.

    2014-01-01

    Neural crest cells (NCCs) are a transient, migratory cell population, which originates during neurulation at the neural folds and contributes to the majority of tissues, including the mesenchymal structures of the craniofacial skeleton. The deregulation of the complex developmental processes that guide migration, proliferation, and differentiation of NCCs may result in a wide range of pathological conditions grouped together as neurocristopathies. Recently, due to their multipotent properties neural crest stem cells have received considerable attention as a possible source for stem cell based regenerative therapies. This exciting prospect underlines the need to further explore the developmental programs that guide NCC differentiation. This review explores the particular importance of ribosome biogenesis defects in this context since a specific interface between ribosomopathies and neurocristopathies exists as evidenced by disorders such as Treacher-Collins-Franceschetti syndrome (TCS) and Diamond-Blackfan anemia (DBA). PMID:24550838

  18. β2-Adrenoceptor agonists in the regulation of mitochondrial biogenesis.

    PubMed

    Peterson, Yuri K; Cameron, Robert B; Wills, Lauren P; Trager, Richard E; Lindsey, Chris C; Beeson, Craig C; Schnellmann, Rick G

    2013-10-01

    The stimulation of mitochondrial biogenesis (MB) via cell surface G-protein coupled receptors is a promising strategy for cell repair and regeneration. Here we report the specificity and chemical rationale of a panel of β2-adrenoceptor agonists with regards to MB. Using primary cultures of renal cells, a diverse panel of β2-adrenoceptor agonists elicited three distinct phenotypes: full MB, partial MB, and non-MB. Full MB compounds had efficacy in the low nanomolar range and represent two chemical scaffolds containing three distinct chemical clusters. Interestingly, the MB phenotype did not correlate with reported receptor affinity or chemical similarity. Chemical clusters were then subjected to pharmacophore modeling creating two models with unique and distinct features, consisting of five conserved amongst full MB compounds were identified. The two discrete pharmacophore models were coalesced into a consensus pharmacophore with four unique features elucidating the spatial and chemical characteristics required to stimulate MB.

  19. The Virus-Host Interplay: Biogenesis of +RNA Replication Complexes

    PubMed Central

    Reid, Colleen R.; Airo, Adriana M.; Hobman, Tom C.

    2015-01-01

    Positive-strand RNA (+RNA) viruses are an important group of human and animal pathogens that have significant global health and economic impacts. Notable members include West Nile virus, Dengue virus, Chikungunya, Severe acute respiratory syndrome (SARS) Coronavirus and enteroviruses of the Picornaviridae family.Unfortunately, prophylactic and therapeutic treatments against these pathogens are limited. +RNA viruses have limited coding capacity and thus rely extensively on host factors for successful infection and propagation. A common feature among these viruses is their ability to dramatically modify cellular membranes to serve as platforms for genome replication and assembly of new virions. These viral replication complexes (VRCs) serve two main functions: To increase replication efficiency by concentrating critical factors and to protect the viral genome from host anti-viral systems. This review summarizes current knowledge of critical host factors recruited to or demonstrated to be involved in the biogenesis and stabilization of +RNA virus VRCs. PMID:26287230

  20. Exosome Biogenesis, Regulation, and Function in Viral Infection.

    PubMed

    Alenquer, Marta; Amorim, Maria João

    2015-09-17

    Exosomes are extracellular vesicles released upon fusion of multivesicular bodies(MVBs) with the cellular plasma membrane. They originate as intraluminal vesicles (ILVs) during the process of MVB formation. Exosomes were shown to contain selectively sorted functional proteins, lipids, and RNAs, mediating cell-to-cell communications and hence playing a role in the physiology of the healthy and diseased organism. Challenges in the field include the identification of mechanisms sustaining packaging of membrane-bound and soluble material to these vesicles and the understanding of the underlying processes directing MVBs for degradation or fusion with the plasma membrane. The investigation into the formation and roles of exosomes in viral infection is in its early years. Although still controversial, exosomes can, in principle, incorporate any functional factor, provided they have an appropriate sorting signal, and thus are prone to viral exploitation.This review initially focuses on the composition and biogenesis of exosomes. It then explores the regulatory mechanisms underlying their biogenesis. Exosomes are part of the endocytic system,which is tightly regulated and able to respond to several stimuli that lead to alterations in the composition of its sub-compartments. We discuss the current knowledge of how these changes affect exosomal release. We then summarize how different viruses exploit specific proteins of endocytic sub-compartments and speculate that it could interfere with exosome function, although no direct link between viral usage of the endocytic system and exosome release has yet been reported. Many recent reports have ascribed functions to exosomes released from cells infected with a variety of animal viruses, including viral spread, host immunity, and manipulation of the microenvironment, which are discussed. Given the ever-growing roles and importance of exosomes in viral infections, understanding what regulates their composition and levels, and

  1. Exosome Biogenesis, Regulation, and Function in Viral Infection

    PubMed Central

    Alenquer, Marta; Amorim, Maria João

    2015-01-01

    Exosomes are extracellular vesicles released upon fusion of multivesicular bodies (MVBs) with the cellular plasma membrane. They originate as intraluminal vesicles (ILVs) during the process of MVB formation. Exosomes were shown to contain selectively sorted functional proteins, lipids, and RNAs, mediating cell-to-cell communications and hence playing a role in the physiology of the healthy and diseased organism. Challenges in the field include the identification of mechanisms sustaining packaging of membrane-bound and soluble material to these vesicles and the understanding of the underlying processes directing MVBs for degradation or fusion with the plasma membrane. The investigation into the formation and roles of exosomes in viral infection is in its early years. Although still controversial, exosomes can, in principle, incorporate any functional factor, provided they have an appropriate sorting signal, and thus are prone to viral exploitation. This review initially focuses on the composition and biogenesis of exosomes. It then explores the regulatory mechanisms underlying their biogenesis. Exosomes are part of the endocytic system, which is tightly regulated and able to respond to several stimuli that lead to alterations in the composition of its sub-compartments. We discuss the current knowledge of how these changes affect exosomal release. We then summarize how different viruses exploit specific proteins of endocytic sub-compartments and speculate that it could interfere with exosome function, although no direct link between viral usage of the endocytic system and exosome release has yet been reported. Many recent reports have ascribed functions to exosomes released from cells infected with a variety of animal viruses, including viral spread, host immunity, and manipulation of the microenvironment, which are discussed. Given the ever-growing roles and importance of exosomes in viral infections, understanding what regulates their composition and levels, and

  2. Metastasis suppressor KISS1 seems to reverse the Warburg effect by enhancing mitochondrial biogenesis.

    PubMed

    Liu, Wen; Beck, Benjamin H; Vaidya, Kedar S; Nash, Kevin T; Feeley, Kyle P; Ballinger, Scott W; Pounds, Keke M; Denning, Warren L; Diers, Anne R; Landar, Aimee; Dhar, Animesh; Iwakuma, Tomoo; Welch, Danny R

    2014-02-01

    Cancer cells tend to utilize aerobic glycolysis even under normoxic conditions, commonly called the "Warburg effect." Aerobic glycolysis often directly correlates with malignancy, but its purpose, if any, in metastasis remains unclear. When wild-type KISS1 metastasis suppressor is expressed, aerobic glycolysis decreases and oxidative phosphorylation predominates. However, when KISS1 is missing the secretion signal peptide (ΔSS), invasion and metastasis are no longer suppressed and cells continue to metabolize using aerobic glycolysis. KISS1-expressing cells have 30% to 50% more mitochondrial mass than ΔSS-expressing cells, which are accompanied by correspondingly increased mitochondrial gene expression and higher expression of PGC1α, a master coactivator that regulates mitochondrial mass and metabolism. PGC1α-mediated downstream pathways (i.e., fatty acid synthesis and β-oxidation) are differentially regulated by KISS1, apparently reliant upon direct KISS1 interaction with NRF1, a major transcription factor involved in mitochondrial biogenesis. Since the downstream effects could be reversed using short hairpin RNA to KISS1 or PGC1α, these data appear to directly connect changes in mitochondria mass, cellular glucose metabolism, and metastasis.

  3. KETCH1 imports HYL1 to nucleus for miRNA biogenesis in Arabidopsis.

    PubMed

    Zhang, Zhonghui; Guo, Xinwei; Ge, Chunxiao; Ma, Zeyang; Jiang, Mengqiu; Li, Tianhong; Koiwa, Hisashi; Yang, Seong Wook; Zhang, Xiuren

    2017-03-27

    MicroRNA (miRNA) is processed from primary transcripts with hairpin structures (pri-miRNAs) by microprocessors in the nucleus. How cytoplasmic-borne microprocessor components are transported into the nucleus to fulfill their functions remains poorly understood. Here, we report KETCH1 (karyopherin enabling the transport of the cytoplasmic HYL1) as a partner of hyponastic leaves 1 (HYL1) protein, a core component of microprocessor in Arabidopsis and functional counterpart of DGCR8/Pasha in animals. Null mutation of ketch1 is embryonic-lethal, whereas knockdown mutation of ketch1 caused morphological defects, reminiscent of mutants in the miRNA pathway. ketch1 knockdown mutation also substantially reduced miRNA accumulation, but did not alter nuclear-cytoplasmic shuttling of miRNAs. Rather, the mutation significantly reduced nuclear portion of HYL1 protein and correspondingly compromised the pri-miRNA processing in the nucleus. We propose that KETCH1 transports HYL1 from the cytoplasm to the nucleus to constitute functional microprocessor in Arabidopsis This study provides insight into the largely unknown nuclear-cytoplasmic trafficking process of miRNA biogenesis components through eukaryotes.

  4. Metastasis suppressor KISS1 appears to reverse the Warburg effect by enhancing mitochondrial biogenesis

    PubMed Central

    Liu, Wen; Beck, Benjamin H.; Vaidya, Kedar S.; Nash, Kevin T.; Feeley, Kyle P.; Ballinger, Scott W.; Pounds, Keke M.; Denning, Warren L.; Diers, Anne R.; Landar, Aimee; Dhar, Animesh; Iwakuma, Tomoo; Welch, Danny R.

    2014-01-01

    Cancer cells tend to utilize aerobic glycolysis even under normoxic conditions, commonly called the “Warburg Effect.” Aerobic glycolysis often directly correlates with malignancy, but its purpose, if any, in metastasis remains unclear. When wild-type KISS1 metastasis suppressor is expressed, aerobic glycolysis decreases and oxidative phosphorylation predominates. However, when KISS1 is missing the secretion signal peptide (ΔSS), invasion and metastasis are no longer suppressed and cells continue to metabolize using aerobic glycolysis. KISS1-expressing cells have 30–50% more mitochondrial mass than ΔSS-expressing cells, which is accompanied by correspondingly increased mitochondrial gene expression and higher expression of PGC1α, a master co-activator that regulates mitochondrial mass and metabolism. PGC1α-mediated downstream pathways (i.e. fatty acid synthesis and β-oxidation) are differentially regulated by KISS1, apparently reliant upon direct KISS1 interaction with NRF1, a major transcription factor involved in mitochondrial biogenesis. Since the downstream effects could be reversed using shRNA to KISS1 or PGC1α, these data appear to directly connect changes in mitochondria mass, cellular glucose metabolism and metastasis. PMID:24351292

  5. ABCA1-dependent sterol release: sterol molecule specificity and potential membrane domain for HDL biogenesis

    PubMed Central

    Yamauchi, Yoshio; Yokoyama, Shinji; Chang, Ta-Yuan

    2016-01-01

    Mammalian cells synthesize various sterol molecules, including the C30 sterol, lanosterol, as cholesterol precursors in the endoplasmic reticulum. The build-up of precursor sterols, including lanosterol, displays cellular toxicity. Precursor sterols are found in plasma HDL. How these structurally different sterols are released from cells is poorly understood. Here, we show that newly synthesized precursor sterols arriving at the plasma membrane (PM) are removed by extracellular apoA-I in a manner dependent on ABCA1, a key macromolecule for HDL biogenesis. Analysis of sterol molecules by GC-MS and tracing the fate of radiolabeled acetate-derived sterols in normal and mutant Niemann-Pick type C cells reveal that ABCA1 prefers newly synthesized sterols, especially lanosterol, as the substrates before they are internalized from the PM. We also show that ABCA1 resides in a cholesterol-rich membrane domain resistant to the mild detergent, Brij 98. Blocking ACAT activity increases the cholesterol contents of this domain. Newly synthesized C29/C30 sterols are transiently enriched within this domain, but rapidly disappear from this domain with a half-life of less than 1 h. Our work shows that substantial amounts of precursor sterols are transported to a certain PM domain and are removed by the ABCA1-dependent pathway. PMID:26497474

  6. Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase.

    PubMed

    Farha, Maya A; Czarny, Tomasz L; Myers, Cullen L; Worrall, Liam J; French, Shawn; Conrady, Deborah G; Wang, Yang; Oldfield, Eric; Strynadka, Natalie C J; Brown, Eric D

    2015-09-01

    Drug combinations are valuable tools for studying biological systems. Although much attention has been given to synergistic interactions in revealing connections between cellular processes, antagonistic interactions can also have tremendous value in elucidating genetic networks and mechanisms of drug action. Here, we exploit the power of antagonism in a high-throughput screen for molecules that suppress the activity of targocil, an inhibitor of the wall teichoic acid (WTA) flippase in Staphylococcus aureus. Well-characterized antagonism within the WTA biosynthetic pathway indicated that early steps would be sensitive to this screen; however, broader interactions with cell wall biogenesis components suggested that it might capture additional targets. A chemical screening effort using this approach identified clomiphene, a widely used fertility drug, as one such compound. Mechanistic characterization revealed the target was the undecaprenyl diphosphate synthase, an enzyme that catalyzes the synthesis of a polyisoprenoid essential for both peptidoglycan and WTA synthesis. The work sheds light on mechanisms contributing to the observed suppressive interactions of clomiphene and in turn reveals aspects of the biology that underlie cell wall synthesis in S. aureus. Further, this effort highlights the utility of antagonistic interactions both in high-throughput screening and in compound mode of action studies. Importantly, clomiphene represents a lead for antibacterial drug discovery.

  7. Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase

    PubMed Central

    Farha, Maya A.; Czarny, Tomasz L.; Myers, Cullen L.; Worrall, Liam J.; French, Shawn; Conrady, Deborah G.; Wang, Yang; Oldfield, Eric; Strynadka, Natalie C. J.; Brown, Eric D.

    2015-01-01

    Drug combinations are valuable tools for studying biological systems. Although much attention has been given to synergistic interactions in revealing connections between cellular processes, antagonistic interactions can also have tremendous value in elucidating genetic networks and mechanisms of drug action. Here, we exploit the power of antagonism in a high-throughput screen for molecules that suppress the activity of targocil, an inhibitor of the wall teichoic acid (WTA) flippase in Staphylococcus aureus. Well-characterized antagonism within the WTA biosynthetic pathway indicated that early steps would be sensitive to this screen; however, broader interactions with cell wall biogenesis components suggested that it might capture additional targets. A chemical screening effort using this approach identified clomiphene, a widely used fertility drug, as one such compound. Mechanistic characterization revealed the target was the undecaprenyl diphosphate synthase, an enzyme that catalyzes the synthesis of a polyisoprenoid essential for both peptidoglycan and WTA synthesis. The work sheds light on mechanisms contributing to the observed suppressive interactions of clomiphene and in turn reveals aspects of the biology that underlie cell wall synthesis in S. aureus. Further, this effort highlights the utility of antagonistic interactions both in high-throughput screening and in compound mode of action studies. Importantly, clomiphene represents a lead for antibacterial drug discovery. PMID:26283394

  8. The Deubiquitinating Enzyme UBPY Is Required for Lysosomal Biogenesis and Productive Autophagy in Drosophila.

    PubMed

    Jacomin, Anne-Claire; Bescond, Amandine; Soleilhac, Emmanuelle; Gallet, Benoît; Schoehn, Guy; Fauvarque, Marie-Odile; Taillebourg, Emmanuel

    2015-01-01

    Autophagy is a catabolic process that delivers cytoplasmic components to the lysosomes. Protein modification by ubiquitination is involved in this pathway: it regulates the stability of autophagy regulators such as BECLIN-1 and it also functions as a tag targeting specific substrates to autophagosomes. In order to identify deubiquitinating enzymes (DUBs) involved in autophagy, we have performed a genetic screen in the Drosophila larval fat body. This screen identified Uch-L3, Usp45, Usp12 and Ubpy. In this paper, we show that Ubpy loss of function results in the accumulation of autophagosomes due to a blockade of the autophagy flux. Furthermore, analysis by electron and confocal microscopy of Ubpy-depleted fat body cells revealed altered lysosomal morphology, indicating that Ubpy inactivation affects lysosomal maintenance and/or biogenesis. Lastly, we have shown that shRNA mediated inactivation of UBPY in HeLa cells affects autophagy in a different way: in UBPY-depleted HeLa cells autophagy is deregulated.

  9. Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection.

    PubMed

    Vural, Ali; Al-Khodor, Souhaila; Cheung, Gordon Y C; Shi, Chong-Shan; Srinivasan, Lalitha; McQuiston, Travis J; Hwang, Il-Young; Yeh, Anthony J; Blumer, Joe B; Briken, Volker; Williamson, Peter R; Otto, Michael; Fraser, Iain D C; Kehrl, John H

    2016-01-15

    Many intracellular pathogens cause disease by subverting macrophage innate immune defense mechanisms. Intracellular pathogens actively avoid delivery to or directly target lysosomes, the major intracellular degradative organelle. In this article, we demonstrate that activator of G-protein signaling 3 (AGS3), an LPS-inducible protein in macrophages, affects both lysosomal biogenesis and activity. AGS3 binds the Gi family of G proteins via its G-protein regulatory (GoLoco) motif, stabilizing the Gα subunit in its GDP-bound conformation. Elevated AGS3 levels in macrophages limited the activity of the mammalian target of rapamycin pathway, a sensor of cellular nutritional status. This triggered the nuclear translocation of transcription factor EB, a known activator of lysosomal gene transcription. In contrast, AGS3-deficient macrophages had increased mammalian target of rapamycin activity, reduced transcription factor EB activity, and a lower lysosomal mass. High levels of AGS3 in macrophages enhanced their resistance to infection by Burkholderia cenocepacia J2315, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus, whereas AGS3-deficient macrophages were more susceptible. We conclude that LPS priming increases AGS3 levels, which enhances lysosomal function and increases the capacity of macrophages to eliminate intracellular pathogens.

  10. MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury.

    PubMed

    Mannam, Praveen; Shinn, Amanda S; Srivastava, Anup; Neamu, Radu F; Walker, Wendy E; Bohanon, Michael; Merkel, Jane; Kang, Min-Jong; Dela Cruz, Charles S; Ahasic, Amy M; Pisani, Margaret A; Trentalange, Mark; West, A Phillip; Shadel, Gerald S; Elias, Jack A; Lee, Patty J

    2014-04-01

    Sepsis is a systemic inflammatory response to infection and a major cause of death worldwide. Because specific therapies to treat sepsis are limited, and underlying pathogenesis is unclear, current medical care remains purely supportive. Therefore targeted therapies to treat sepsis need to be developed. Although an important mediator of sepsis is thought to be mitochondrial dysfunction, the underlying molecular mechanism is unclear. Modulation of mitochondrial processes may be an effective therapeutic strategy in sepsis. Here, we investigated the role of the kinase MKK3 in regulation of mitochondrial function in sepsis. Using clinically relevant animal models, we examined mitochondrial function in primary mouse lung endothelial cells exposed to LPS. MKK3 deficiency reduces lethality of sepsis in mice and by lowering levels of lung and mitochondrial injury as well as reactive oxygen species. Furthermore, MKK3 deficiency appeared to simultaneously increase mitochondrial biogenesis and mitophagy through the actions of Sirt1, Pink1, and Parkin. This led to a more robust mitochondrial network, which we propose provides protection against sepsis. We also detected higher MKK3 activation in isolated peripheral blood mononuclear cells from septic patients compared with nonseptic controls. Our findings demonstrate a critical role for mitochondria in the pathogenesis of sepsis that involves a previously unrecognized function of MKK3 in mitochondrial quality control. This mitochondrial pathway may help reveal new diagnostic markers and therapeutic targets against sepsis.

  11. Phenol oxidative coupling in the biogenesis of the macrocyclic spermine alkaloids aphelandrine and orantine in Aphelandra sp.

    PubMed

    Nezbedová, L; Hesse, M; Drandarov, K; Bigler, L; Werner, C

    2001-07-01

    A crucial step in the biosynthesis of the spermine alkaloid aphelandrine and its diastereoisomer orantine is an intramolecular cyclization of the intermediate (S)-dihydroxyverbacine. In order to elucidate this step of the biosynthetic pathway, microsomes from the roots of Aphelandra squarrosa Nees were incubated with unlabeled and (D8)-labeled (S)-dihydroxyverbacine. It was shown that the microsomal fraction catalyzes the intramolecular coupling of (S)-dihydroxyverbacine to aphelandrine. This was proven by microsomal transformation of (D8)-labeled (S)-dihydroxyverbacine to (D8)-labeled aphelandrine. The reaction absolutely requires NAPDH and O2. The underlying reaction mechanism is probably an oxidative phenol coupling catalyzed by an aphelandrine synthase. This enzyme is proposed to be a cytochrome P-450 oxidase. The intramolecular cyclization of (S)-dihydroxyverbacine represents an important point in the biogenesis of the aphelandrine-type alkaloids.

  12. Promise of Neurorestoration and Mitochondrial Biogenesis in Parkinson's Disease with Multi Target Drugs: An Alternative to Stem Cell Therapy

    PubMed Central

    Oh, Young J.

    2013-01-01

    There is an unmet need in progressive neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. The present therapeutics for these diseases at best is symptomatic and is not able to delay disease or possess disease modifying activity. Thus an approach to drug design should be made to slow or halt progressive course of a neurological disorder by interfering with a disease-specific pathogenetic process. This would entail the ability of the drug to protect neurons by blocking the common pathway for neuronal injury and cell death and the ability to promote regeneration of neurons and restoration of neuronal function. We have now developed a number of multi target drugs which possess neuroprotective, and neurorestorative activity as well as being able to active PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α), SIRT1 (NAD-dependent deacetylase protein) and NTF (mitochondrial transcription factor) that are intimately associated with mitochondrial biogenesis. PMID:24167412

  13. New tricks for an old dog: ribosome biogenesis contributes to stem cell homeostasis.

    PubMed

    Brombin, Alessandro; Joly, Jean-Stéphane; Jamen, Françoise

    2015-10-01

    Although considered a 'house-keeping' function, ribosome biogenesis is regulated differently between cells and can be modulated in a cell-type-specific manner. These differences are required to generate specialized ribosomes that contribute to the translational control of gene expression by selecting mRNA subsets to be translated. Thus, differences in ribosome biogenesis between stem and differentiated cells indirectly contribute to determine cell identity. The concept of the existence of stem cell-specific mechanisms of ribosome biogenesis has progressed from an attractive theory to a useful working model with important implications for basic and medical research.

  14. A Time to Reap, a Time to Sow: Mitophagy and Biogenesis in Cardiac Pathophysiology

    PubMed Central

    Andres, Allen M.; Stotland, Aleksandr; Queliconi, Bruno B.; Gottlieb, Roberta A.

    2014-01-01

    Balancing mitophagy and mitochondrial biogenesis is essential for maintaining a healthy population of mitochondria and cellular homeostasis. Coordinated interplay between these two forces that govern mitochondrial turnover plays an important role as an adaptive response against various cellular stresses that can compromise cell survival. Failure to maintain the critical balance between mitophagy and mitochondrial biogenesis or homeostatic turnover of mitochondria results in a population of dysfunctional mitochondria that contribute to various disease processes. In this review we outline the mechanics and relationships between mitophagy and mitochondrial biogenesis, and discuss the implications of a disrupted balance between these two forces, with an emphasis on cardiac physiology. PMID:25444712

  15. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis

    PubMed Central

    Van Vranken, Jonathan G; Jeong, Mi-Young; Wei, Peng; Chen, Yu-Chan; Gygi, Steven P; Winge, Dennis R; Rutter, Jared

    2016-01-01

    Mitochondrial fatty acid synthesis (FASII) and iron sulfur cluster (FeS) biogenesis are both vital biosynthetic processes within mitochondria. In this study, we demonstrate that the mitochondrial acyl carrier protein (ACP), which has a well-known role in FASII, plays an unexpected and evolutionarily conserved role in FeS biogenesis. ACP is a stable and essential subunit of the eukaryotic FeS biogenesis complex. In the absence of ACP, the complex is destabilized resulting in a profound depletion of FeS throughout the cell. This role of ACP depends upon its covalently bound 4’-phosphopantetheine (4-PP)-conjugated acyl chain to support maximal cysteine desulfurase activity. Thus, it is likely that ACP is not simply an obligate subunit but also exploits the 4-PP-conjugated acyl chain to coordinate mitochondrial fatty acid and FeS biogenesis. DOI: http://dx.doi.org/10.7554/eLife.17828.001 PMID:27540631

  16. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans.

    PubMed

    Palikaras, Konstantinos; Lionaki, Eirini; Tavernarakis, Nektarios

    2015-05-28

    Impaired mitochondrial maintenance in disparate cell types is a shared hallmark of many human pathologies and ageing. How mitochondrial biogenesis coordinates with the removal of damaged or superfluous mitochondria to maintain cellular homeostasis is not well understood. Here we show that mitophagy, a selective type of autophagy targeting mitochondria for degradation, interfaces with mitochondrial biogenesis to regulate mitochondrial content and longevity in Caenorhabditis elegans. We find that DCT-1 is a key mediator of mitophagy and longevity assurance under conditions of stress in C. elegans. Impairment of mitophagy compromises stress resistance and triggers mitochondrial retrograde signalling through the SKN-1 transcription factor that regulates both mitochondrial biogenesis genes and mitophagy by enhancing DCT-1 expression. Our findings reveal a homeostatic feedback loop that integrates metabolic signals to coordinate the biogenesis and turnover of mitochondria. Uncoupling of these two processes during ageing contributes to overproliferation of damaged mitochondria and decline of cellular function.

  17. Impaired Muscle Mitochondrial Biogenesis and Myogenesis in Spinal Muscular Atrophy

    PubMed Central

    Ripolone, Michela; Ronchi, Dario; Violano, Raffaella; Vallejo, Dionis; Fagiolari, Gigliola; Barca, Emanuele; Lucchini, Valeria; Colombo, Irene; Villa, Luisa; Berardinelli, Angela; Balottin, Umberto; Morandi, Lucia; Mora, Marina; Bordoni, Andreina; Fortunato, Francesco; Corti, Stefania; Parisi, Daniela; Toscano, Antonio; Sciacco, Monica; DiMauro, Salvatore; Comi, Giacomo P.; Moggio, Maurizio

    2016-01-01

    , implying depression of the entire mitochondrial biogenesis. Results of Western blot analysis confirmed the reduced levels of the respiratory chain subunits that included mitochondrially encoded COX1 (47.5%; P = .004), COX2 (32.4%; P < .001), COX4 (26.6%; P < .001), and succinate dehydrogenase complex subunit A (65.8%; P = .03) as well as the structural outer membrane mitochondrial porin (33.1%; P < .001). Conversely, the levels of expression of 3 myogenic regulatory factors—muscle-specificmyogenic factor 5, myoblast determination 1, and myogenin—were higher in muscles from patients with SMA compared with muscles from age-matched controls (P < .05). CONCLUSIONS AND RELEVANCE Our results strongly support the conclusion that an altered regulation of myogenesis and a downregulated mitochondrial biogenesis contribute to pathologic change in the muscle of patients with SMA. Therapeutic strategies should aim at counteracting these changes. PMID:25844556

  18. Quercetin induces mitochondrial biogenesis in experimental traumatic brain injury via the PGC-1α signaling pathway

    PubMed Central

    Li, Xiang; Wang, Handong; Gao, Yongyue; Li, Liwen; Tang, Chao; Wen, Guodao; Yang, Youqing; Zhuang, Zong; Zhou, Mengliang; Mao, Lei; Fan, Youwu

    2016-01-01

    Quercetin, a dietary flavonoid used as a food supplement, has been found to have protective effect against mitochondria damage after traumatic brain injury (TBI) in mice. However, the mechanisms underlying these effects are still not well understood. The aim of the present study was to investigate the effect of quercetin on the potential mechanism mediating these effects in the weight-drop model of TBI in male mice that were treated with quercetin or vehicle via intraperitoneal injection administration 30 min after TBI. Brain samples were collected 24 h later for analysis. Quercetin treatment upregulated the expression of PGC-1α and restored the level of cytochrome c, malondialdehyde (MDA) and superoxide dismutase (SOD). These results demonstrate that quercetin improves mitochondrial function in mice by improving the level of PGC-1α following TBI. PMID:27648146

  19. Quercetin induces mitochondrial biogenesis in experimental traumatic brain injury via the PGC-1α signaling pathway.

    PubMed

    Li, Xiang; Wang, Handong; Gao, Yongyue; Li, Liwen; Tang, Chao; Wen, Guodao; Yang, Youqing; Zhuang, Zong; Zhou, Mengliang; Mao, Lei; Fan, Youwu

    2016-01-01

    Quercetin, a dietary flavonoid used as a food supplement, has been found to have protective effect against mitochondria damage after traumatic brain injury (TBI) in mice. However, the mechanisms underlying these effects are still not well understood. The aim of the present study was to investigate the effect of quercetin on the potential mechanism mediating these effects in the weight-drop model of TBI in male mice that were treated with quercetin or vehicle via intraperitoneal injection administration 30 min after TBI. Brain samples were collected 24 h later for analysis. Quercetin treatment upregulated the expression of PGC-1α and restored the level of cytochrome c, malondialdehyde (MDA) and superoxide dismutase (SOD). These results demonstrate that quercetin improves mitochondrial function in mice by improving the level of PGC-1α following TBI.

  20. Autophagy-mediated longevity is modulated by lipoprotein biogenesis.

    PubMed

    Seah, Nicole E; de Magalhaes Filho, C Daniel; Petrashen, Anna P; Henderson, Hope R; Laguer, Jade; Gonzalez, Julissa; Dillin, Andrew; Hansen, Malene; Lapierre, Louis R

    2016-01-01

    Autophagy-dependent longevity models in C. elegans display altered lipid storage profiles, but the contribution of lipid distribution to life-span extension is not fully understood. Here we report that lipoprotein production, autophagy and lysosomal lipolysis are linked to modulate life span in a conserved fashion. We find that overexpression of the yolk lipoprotein VIT/vitellogenin reduces the life span of long-lived animals by impairing the induction of autophagy-related and lysosomal genes necessary for longevity. Accordingly, reducing vitellogenesis increases life span via induction of autophagy and lysosomal lipolysis. Life-span extension due to reduced vitellogenesis or enhanced lysosomal lipolysis requires nuclear hormone receptors (NHRs) NHR-49 and NHR-80, highlighting novel roles for these NHRs in lysosomal lipid signaling. In dietary-restricted worms and mice, expression of VIT and hepatic APOB (apolipoprotein B), respectively, are significantly reduced, suggesting a conserved longevity mechanism. Altogether, our study demonstrates that lipoprotein biogenesis is an important mechanism that modulates aging by impairing autophagy and lysosomal lipolysis.

  1. Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum.

    PubMed

    Jayaprakasha, G K; Rao, L Jagan Mohan

    2011-07-01

    The genus Cinnamomum comprises of several hundreds of species, which are distributed in Asia and Australia. Cinnamomum zeylanicum, the source of cinnamon bark and leaf oils, is an indigenous tree of Sri Lanka, although most oil now comes from cultivated areas. C. zeylanicum is an important spice and aromatic crop having wide applications in flavoring, perfumery, beverages, and medicines. Volatile oils from different parts of cinnamon such as leaves, bark, fruits, root bark, flowers, and buds have been isolated by hydro distillation/steam distillation and supercritical fluid extraction. The chemical compositions of the volatile oils have been identified by GC and GC-MS. More than 80 compounds were identified from different parts of cinnamon. The leaf oil has a major component called eugenol. Cinnamaldehyde and camphor have been reported to be the major components of volatile oils from stem bark and root bark, respectively. Trans-cinnamyl acetate was found to be the major compound in fruits, flowers, and fruit stalks. These volatile oils were found to exhibit antioxidant, antimicrobial, and antidiabetic activities. C. zeylanicum bark and fruits were found to contain proanthocyandins with doubly linked bis-flavan-3-ol units in the molecule. The present review provides a coherent presentation of scattered literature on the chemistry, biogenesis, and biological activities of cinnamon.

  2. Hoxa10 null animals exhibit reduced platelet biogenesis

    PubMed Central

    Konieczna, Iwona M.; DeLuca, Teresa A.; Eklund, Elizabeth A.; Miller, William M.

    2016-01-01

    Summary The transcription factor HOXA10 is an important regulator of myelopoiesis. Engineered over-expression of Hoxa10 in mice results in a myeloproliferative disorder that progresses to acute myeloid leukaemia (AML) over time, and in humans over-expression is associated with poor outcomes in AML. Here, we report that loss of Hoxa10 expression in mice results in reduced platelet count and platelet production, but does not affect clotting efficiency. About 40% fewer platelets were found in Hoxa10 null animals in comparison to wild type littermates. We found a nearly 50% reduction in the percentage of reticulated platelets in Hoxa10 null mice, suggesting deficient platelet production. Furthermore, Hoxa10 null animals recovered less efficiently from induced thrombocytopenia, supporting our hypothesis of defective platelet production. This also correlated with reduced colony formation potential of stem and progenitor cells seeded in megakaryocyte-enhancing conditions in vitro. Together, our results indicate that HOXA10 is important for megakaryopoiesis and platelet biogenesis. PMID:26847476

  3. Activated Type 2 Innate Lymphoid Cells regulate Beige Fat Biogenesis

    PubMed Central

    Lee, Min-Woo; Odegaard, Justin I.; Mukundan, Lata; Qiu, Yifu; Molofsky, Ari B.; Nussbaum, Jesse C.; Yun, Karen; Locksley, Richard M.; Chawla, Ajay

    2014-01-01

    SUMMARY Type 2 innate lymphoid cells (ILC2s), an innate source of the type 2 cytokines interleukin (IL)-5 and -13, participate in the maintenance of tissue homeostasis. Although type 2 immunity is critically important for mediating metabolic adaptations to environmental cold, the functions of ILC2s in beige or brown fat development are poorly defined. We report here that activation of ILC2s by IL-33 is sufficient to promote the growth of functional beige fat in thermoneutral mice. Mechanistically, ILC2 activation results in the proliferation of bipotential adipocyte precursors (APs) and their subsequent commitment to the beige fat lineage. Loss- and gain-of-function studies reveal that ILC2-and eosinophil-derived type 2 cytokines stimulate signaling via the IL-4Rα in PDGFRα+ APs to promote beige fat biogenesis. Together, our results highlight a critical role for ILC2s and type 2 cytokines in the regulation of adipocyte precursor numbers and fate, and as a consequence, adipose tissue homeostasis. PMID:25543153

  4. Extracellular Streptomyces lividans vesicles: composition, biogenesis and antimicrobial activity.

    PubMed

    Schrempf, Hildgund; Merling, Philipp

    2015-07-01

    We selected Streptomyces lividans to elucidate firstly the biogenesis and antimicrobial activities of extracellular vesicles that a filamentous and highly differentiated Gram-positive bacterium produces. Vesicle types range in diameter from 110 to 230 nm and 20 to 60 nm, respectively; they assemble to clusters, and contain lipids and phospholipids allowing their in situ imaging by specific fluorescent dyes. The presence of the identified secondary metabolite undecylprodigiosin provokes red fluorescence of a portion of the heterogeneous vesicle populations facilitating in vivo monitoring. Protuberances containing vesicles generate at tips, and alongside of substrate hyphae, and enumerate during late vegetative growth to droplet-like exudates. Owing to in situ imaging in the presence and absence of a green fluorescent vancomycin derivative, we conclude that protuberances comprising vesicles arise at sites with enhanced levels of peptidoglycan subunits [pentapeptide of lipid II (C55)-linked disaccharides], and reduced levels of polymerized and cross-linked peptidoglycan within hyphae. These sites correlate with enhanced levels of anionic phospholipids and lipids. Vesicles provoke pronounced damages of Aspergillus proliferans, Verticillium dahliae and induced clumping and distortion of Escherichia coli. These harmful effects are likely attributable to the action of the identified vesicular compounds including different enzyme types, components of signal transduction cascades and undecylprodigiosin. Based on our pioneering findings, we highlight novel clues with environmental implications and application potential.

  5. Autophagy-mediated longevity is modulated by lipoprotein biogenesis

    PubMed Central

    Seah, Nicole E.; de Magalhaes Filho, C. Daniel; Petrashen, Anna P.; Henderson, Hope R.; Laguer, Jade; Gonzalez, Julissa; Dillin, Andrew; Hansen, Malene; Lapierre, Louis R.

    2016-01-01

    ABSTRACT Autophagy-dependent longevity models in C. elegans display altered lipid storage profiles, but the contribution of lipid distribution to life-span extension is not fully understood. Here we report that lipoprotein production, autophagy and lysosomal lipolysis are linked to modulate life span in a conserved fashion. We find that overexpression of the yolk lipoprotein VIT/vitellogenin reduces the life span of long-lived animals by impairing the induction of autophagy-related and lysosomal genes necessary for longevity. Accordingly, reducing vitellogenesis increases life span via induction of autophagy and lysosomal lipolysis. Life-span extension due to reduced vitellogenesis or enhanced lysosomal lipolysis requires nuclear hormone receptors (NHRs) NHR-49 and NHR-80, highlighting novel roles for these NHRs in lysosomal lipid signaling. In dietary-restricted worms and mice, expression of VIT and hepatic APOB (apolipoprotein B), respectively, are significantly reduced, suggesting a conserved longevity mechanism. Altogether, our study demonstrates that lipoprotein biogenesis is an important mechanism that modulates aging by impairing autophagy and lysosomal lipolysis. PMID:26671266

  6. Small noncoding RNAs: biogenesis, function, and emerging significance in toxicology.

    PubMed

    Choudhuri, Supratim

    2010-01-01

    In recent years, the discovery of small ncRNAs (noncoding RNAs) has unveiled a slew of powerful riboregulators of gene expression. So far, many different types of small ncRNAs have been described. Of these, miRNAs (microRNAs), siRNAs (small interfering RNAs), and piRNAs (Piwi-interacting RNAs) have been studied in more detail. A significant fraction of genes in most organisms and tissues is targets of these small ncRNAs. Because these tiny RNAs are turning out to be important regulators of gene and genome expression, their aberrant expression profiles are expected to be associated with cellular dysfunction and disease. In fact, an ever-increasing number of studies have implicated miRNAs and siRNAs in human health and disease ranging from metabolic disorders to diseases of various organ systems as well as various forms of cancer. Nevertheless, despite the flurry of research on these small ncRNAs, many aspects of their biology still remain to be understood. The following discussion focuses on some aspects of the biogenesis and function of small ncRNAs with major emphasis on miRNAs since these are the most widespread endogenous small ncRNAs that have been called "micromanagers" of gene expression. Their emerging significance in toxicology is also discussed.

  7. A conserved phosphatase cascade that regulates nuclear membrane biogenesis.

    PubMed

    Kim, Youngjun; Gentry, Matthew S; Harris, Thurl E; Wiley, Sandra E; Lawrence, John C; Dixon, Jack E

    2007-04-17

    A newly emerging family of phosphatases that are members of the haloacid dehalogenase superfamily contains the catalytic motif DXDX(T/V). A member of this DXDX(T/V) phosphatase family known as Dullard was recently shown to be a potential regulator of neural tube development in Xenopus [Satow R, Chan TC, Asashima M (2002) Biochem Biophys Res Commun 295:85-91]. Herein, we demonstrate that human Dullard and the yeast protein Nem1p perform similar functions in mammalian cells and yeast cells, respectively. In addition to similarity in primary sequence, Dullard and Nem1p possess similar domains and show similar substrate preferences, and both localize to the nuclear envelope. Additionally, we show that human Dullard can rescue the aberrant nuclear envelope morphology of nem1Delta yeast cells, functionally replacing Nem1p. Finally, Nem1p, has been shown to deposphorylate the yeast phosphatidic acid phosphatase Smp2p [Santos-Rosa H, Leung J, Grimsey N, Peak-Chew S, Siniossoglou S (2005) EMBO J 24:1931-1941], and we show that Dullard dephosphorylates the mammalian phospatidic acid phosphatase, lipin. Therefore, we propose that Dullard participates in a unique phosphatase cascade regulating nuclear membrane biogenesis, and that this cascade is conserved from yeast to mammals.

  8. Lipid partitioning at the nuclear envelope controls membrane biogenesis

    PubMed Central

    Barbosa, Antonio Daniel; Sembongi, Hiroshi; Su, Wen-Min; Abreu, Susana; Reggiori, Fulvio; Carman, George M.; Siniossoglou, Symeon

    2015-01-01

    Partitioning of lipid precursors between membranes and storage is crucial for cell growth, and its disruption underlies pathologies such as cancer, obesity, and type 2 diabetes. However, the mechanisms and signals that regulate this process are largely unknown. In yeast, lipid precursors are mainly used for phospholipid synthesis in nutrient-rich conditions in order to sustain rapid proliferation but are redirected to triacylglycerol (TAG) stored in lipid droplets during starvation. Here we investigate how cells reprogram lipid metabolism in the endoplasmic reticulum. We show that the conserved phosphatidate (PA) phosphatase Pah1, which generates diacylglycerol from PA, targets a nuclear membrane subdomain that is in contact with growing lipid droplets and mediates TAG synthesis. We find that cytosol acidification activates the master regulator of Pah1, the Nem1-Spo7 complex, thus linking Pah1 activity to cellular metabolic status. In the absence of TAG storage capacity, Pah1 still binds the nuclear membrane, but lipid precursors are redirected toward phospholipids, resulting in nuclear deformation and a proliferation of endoplasmic reticulum membrane. We propose that, in response to growth signals, activation of Pah1 at the nuclear envelope acts as a switch to control the balance between membrane biogenesis and lipid storage. PMID:26269581

  9. Ribosome Biogenesis and the Translation Process in Escherichia coli

    PubMed Central

    Kaczanowska, Magdalena; Rydén-Aulin, Monica

    2007-01-01

    Summary: Translation, the decoding of mRNA into protein, is the third and final element of the central dogma. The ribosome, a nucleoprotein particle, is responsible and essential for this process. The bacterial ribosome consists of three rRNA molecules and approximately 55 proteins, components that are put together in an intricate and tightly regulated way. When finally matured, the quality of the particle, as well as the amount of active ribosomes, must be checked. The focus of this review is ribosome biogenesis in Escherichia coli and its cross-talk with the ongoing protein synthesis. We discuss how the ribosomal components are produced and how their synthesis is regulated according to growth rate and the nutritional contents of the medium. We also present the many accessory factors important for the correct assembly process, the list of which has grown substantially during the last few years, even though the precise mechanisms and roles of most of the proteins are not understood. PMID:17804668

  10. Regulation of Mitoflash Biogenesis and Signaling by Mitochondrial Dynamics

    PubMed Central

    Li, Wenwen; Sun, Tao; Liu, Beibei; Wu, Di; Qi, Wenfeng; Wang, Xianhua; Ma, Qi; Cheng, Heping

    2016-01-01

    Mitochondria are highly dynamic organelles undergoing constant network reorganization and exhibiting stochastic signaling events in the form of mitochondrial flashes (mitoflashes). Here we investigate whether and how mitochondrial network dynamics regulate mitoflash biogenesis and signaling. We found that mitoflash frequency was largely invariant when network fragmentized or redistributed in the absence of mitofusin (Mfn) 1, Mfn2, or Kif5b. However, Opa1 deficiency decreased spontaneous mitoflash frequency due to superimposing changes in respiratory function, whereas mitoflash response to non-metabolic stimulation was unchanged despite network fragmentation. In Drp1- or Mff-deficient cells whose mitochondria hyperfused into a single whole-cell reticulum, the frequency of mitoflashes of regular amplitude and duration was again unaltered, although brief and low-amplitude “miniflashes” emerged because of improved detection ability. As the network reorganized, however, the signal mass of mitoflash signaling was dynamically regulated in accordance with the degree of network connectivity. These findings demonstrate a novel functional role of mitochondrial network dynamics and uncover a magnitude- rather than frequency-modulatory mechanism in the regulation of mitoflash signaling. In addition, our data support a stochastic trigger model for the ignition of mitoflashes. PMID:27623243

  11. Biogenesis, assembly and turnover of photosystem II units.

    PubMed Central

    Baena-González, Elena; Aro, Eva-Mari

    2002-01-01

    Assembly of photosystem II, a multiprotein complex embedded in the thylakoid membrane, requires stoichiometric production of over 20 protein subunits. Since part of the protein subunits are encoded in the chloroplast genome and part in the nucleus, a signalling network operates between the two genetic compartments in order to prevent wasteful production of proteins. Coordinated synthesis of proteins also takes place among the chloroplast-encoded subunits, thus establishing a hierarchy in the protein components that allows a stepwise building of the complex. In addition to this dependence on assembly partners, other factors such as the developmental stage of the plastid and various photosynthesis-related parameters exert a strict control on the accumulation, membrane targeting and assembly of the PSII subunits. Here, we briefly review recent results on this field obtained with three major approaches: biogenesis of photosystem II during the development of chloroplasts from etioplasts, use of photosystem II-specific mutants and photosystem II turnover during its repair cycle. PMID:12437884

  12. Spb4p, an essential putative RNA helicase, is required for a late step in the assembly of 60S ribosomal subunits in Saccharomyces cerevisiae.

    PubMed Central

    de la Cruz, J; Kressler, D; Rojo, M; Tollervey, D; Linder, P

    1998-01-01

    Spb4p is a putative ATP-dependent RNA helicase that is required for synthesis of 60S ribosomal subunits. Polysome analyses of strains genetically depleted of Spb4p or carrying the cold-sensitive spb4-1 mutation revealed an underaccumulation of 60S ribosomal subunits. Analysis of pre-rRNA processing by pulse-chase labeling, northern hybridization, and primer extension indicated that these strains exhibited a reduced synthesis of the 25S/5.8S rRNAs, due to inhibition of processing of the 27SB pre-rRNAs. At later times of depletion of Spb4p or following transfer of the spb4-1 strain to more restrictive temperatures, the early pre-rRNA processing steps at sites A0, Al, and A2 were also inhibited. Sucrose gradient fractionation showed that the accumulated 27SB pre-rRNAs are associated with a high-molecular-weight complex, most likely the 66S pre-ribosomal particle. An HA epitope-tagged Spb4p is localized to the nucleolus and the adjacent nucleoplasmic area. On sucrose gradients, HA-Spb4p was found almost exclusively in rapidly sedimenting complexes and showed a peak in the fractions containing the 66S pre-ribosomes. We propose that Spb4p is involved directly in a late and essential step during assembly of 60S ribosomal subunits, presumably by acting as an rRNA helicase. PMID:9769101

  13. Outer membrane biogenesis in Escherichia coli, Neisseria meningitidis, and Helicobacter pylori: paradigm deviations in H. pylori

    PubMed Central

    Liechti, George; Goldberg, Joanna B.

    2012-01-01

    The bacterial pathogen Helicobacter pylori is capable of colonizing the gastric mucosa of the human stomach using a variety of factors associated with or secreted from its outer membrane (OM). Lipopolysaccharide (LPS) and numerous OM proteins have been shown to be involved in adhesion and immune stimulation/evasion. Many of these factors are essential for colonization and/or pathogenesis in a variety of animal models. Despite this wide array of potential targets present on the bacterial surface, the ability of H. pylori to vary its OM profile limits the effectiveness of vaccines or therapeutics that target any single one of these components. However, it has become evident that the proteins comprising the complexes that transport the majority of these molecules to the OM are highly conserved and often essential. The field of membrane biogenesis has progressed remarkably in the last few years, and the possibility now exists for targeting the mechanisms by which β-barrel proteins, lipoproteins, and LPS are transported to the OM, resulting in loss of bacterial fitness and significant altering of membrane permeability. In this review, the OM transport machinery for LPS, lipoproteins, and outer membrane proteins (OMPs) are discussed. While the principal investigations of these transport mechanisms have been conducted in Escherichia coli and Neisseria meningitidis, here these systems will be presented in the genetic context of ε proteobacteria. Bioinformatic analysis reveals that minimalist genomes, such as that of Helicobacter pylori, offer insight into the smallest number of components required for these essential pathways to function. Interestingly, in the majority of ε proteobacteria, while the inner and OM associated apparatus of LPS, lipoprotein, and OMP transport pathways appear to all be intact, most of the components associated with the periplasmic compartment are either missing or are almost unrecognizable when compared to their E. coli counterparts. Eventual

  14. COPII-Dependent ER Export: A Critical Component of Insulin Biogenesis and β-Cell ER Homeostasis.

    PubMed

    Fang, Jingye; Liu, Ming; Zhang, Xuebao; Sakamoto, Takeshi; Taatjes, Douglas J; Jena, Bhanu P; Sun, Fei; Woods, James; Bryson, Tim; Kowluru, Anjaneyulu; Zhang, Kezhong; Chen, Xuequn

    2015-08-01

    Pancreatic β-cells possess a highly active protein synthetic and export machinery in the endoplasmic reticulum (ER) to accommodate the massive production of proinsulin. ER homeostasis is vital for β-cell functions and is maintained by the delicate balance between protein synthesis, folding, export, and degradation. Disruption of ER homeostasis by diabetes-causing factors leads to β-cell death. Among the 4 components to maintain ER homeostasis in β-cells, the role of ER export in insulin biogenesis is the least understood. To address this knowledge gap, the present study investigated the molecular mechanism of proinsulin ER export in MIN6 cells and primary islets. Two inhibitory mutants of the secretion-associated RAS-related protein (Sar)1 small GTPase, known to specifically block coat protein complex II (COPII)-dependent ER export, were overexpressed in β-cells using recombinant adenoviruses. Results from this approach, as well as small interfering RNA-mediated Sar1 knockdown, demonstrated that defective Sar1 function blocked proinsulin ER export and abolished its conversion to mature insulin in MIN6 cells, isolated mouse, and human islets. It is further revealed, using an in vitro vesicle formation assay, that proinsulin was packaged into COPII vesicles in a GTP- and Sar1-dependent manner. Blockage of COPII-dependent ER exit by Sar1 mutants strongly induced ER morphology change, ER stress response, and β-cell apoptosis. These responses were mediated by the PKR (double-stranded RNA-dependent kinase)-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (p-eIF2α) and inositol-requiring protein 1 (IRE1)/x-box binding protein 1 (Xbp1) pathways but not via activating transcription factor 6 (ATF6). Collectively, results from the study demonstrate that COPII-dependent ER export plays a vital role in insulin biogenesis, ER homeostasis, and β-cell survival.

  15. Perinatal protein malnutrition alters expression of miRNA biogenesis genes Xpo5 and Ago2 in mice brain.

    PubMed

    Berardino, Bruno G; Fesser, Estefanía A; Cánepa, Eduardo T

    2017-03-11

    Due to its widespread incidence, maternal malnutrition remains one of the major non-genetic factors affecting the development of newborn's brain. While all nutrients have certain influence on brain maturation, proteins appear to be the most critical for the development of neurological functions. An increasing number of studies point out that the effects of early-life nutritional inadequacy has long lasting effects on the brain and lead to permanent deficits in learning and behavior. Epigenetic mechanisms provide a potential link between the nutrition status during critical periods and changes in gene expression that may lead to disease phenotypes. Among those epigenetic mechanisms microRNAs (miRNAs) emerge as promising molecules for the link between nutrition and gene expression due to their relevance in many central nervous system functions. The objective of the current study was to evaluate the impact of perinatal protein malnutrition on the development of male and female mice offspring and to analyze the expression of the genes involved in the miRNA biogenesis pathway in different mouse brain structures. We demonstrated that early nutritional stress such as exposition to a protein-deficient diet during gestation and lactation reduced the hippocampal weight, delayed offspring's development and deregulated the expression of Xpo5 and Ago2 genes in hippocampus and hypothalamus of weanling mice. Moreover, an overall increase in mature miRNAs was consistent with the induction of Xpo5 mRNA. Altered miRNA biogenesis could modify the availability and functionality of miRNA becoming a causal factor of the adverse effects of protein malnutrition.

  16. Δ1-Pyrroline-5-Carboxylate/Glutamate Biogenesis Is Required for Fungal Virulence and Sporulation

    PubMed Central

    Yao, Ziting; Zou, Chengwu; Zhou, Hui; Wang, Jinzi; Lu, Lidan; Li, Yang; Chen, Baoshan

    2013-01-01

    Proline dehydrogenase (Prodh) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5Cdh) are two key enzymes in the cellular biogenesis of glutamate. Recombinant Prodh and P5Cdh proteins of the chestnut blight fungus Cryphonectria parasitica were investigated and showed activity in in vitro assays. Additionally, the C. parasitica Prodh and P5Cdh genes were able to complement the Saccharomyces cerevisiae put1 and put2 null mutants, respectively, to allow these proline auxotrophic yeast mutants to grow on media with proline as the sole source of nitrogen. Deletion of the Prodh gene in C. parasitica resulted in hypovirulence and a lower level of sporulation, whereas deletion of P5Cdh resulted in hypovirulence though no effect on sporulation; both Δprodh and Δp5cdh mutants were unable to grow on minimal medium with proline as the sole nitrogen source. In a wild-type strain, the intracellular level of proline and the activity of Prodh and P5Cdh increased after supplementation of exogenous proline, though the intracellular Δ1-pyrroline-5-carboxylate (P5C) content remained unchanged. Prodh and P5Cdh were both transcriptionally down-regulated in cells infected with hypovirus. The disruption of other genes with products involved in the conversion of arginine to ornithine, ornithine and glutamate to P5C, and P5C to proline in the cytosol did not appear to affect virulence; however, asexual sporulation was reduced in the Δpro1 and Δpro2 mutants. Taken together, our results showed that Prodh, P5Cdh and related mitochondrial functions are essential for virulence and that proline/glutamate pathway components may represent down-stream targets of hypovirus regulation in C. parasitica. PMID:24039956

  17. Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis

    SciTech Connect

    Palmeira, Carlos M. Rolo, Anabela P.; Berthiaume, Jessica; Bjork, James A.; Wallace, Kendall B.

    2007-12-01

    Increased generation of reactive oxygen species (ROS) is implicated in 'glucose toxicity' in diabetes. However, little is known about the action of glucose on the expression of transcription factors in hepatocytes, especially those involved in mitochondrial DNA (mtDNA) replication and transcription. Since mitochondrial functional capacity is dynamically regulated, we hypothesized that stressful conditions of hyperglycemia induce adaptations in the transcriptional control of cellular energy metabolism, including inhibition of mitochondrial biogenesis and oxidative metabolism. Cell viability, mitochondrial respiration, ROS generation and oxidized proteins were determined in HepG2 cells cultured in the presence of either 5.5 mM (control) or 30 mM glucose (high glucose) for 48 h, 96 h and 7 days. Additionally, mtDNA abundance, plasminogen activator inhibitor-1 (PAI-1), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF-1) transcripts were evaluated by real time PCR. High glucose induced a progressive increase in ROS generation and accumulation of oxidized proteins, with no changes in cell viability. Increased expression of PAI-1 was observed as early as 96 h of exposure to high glucose. After 7 days in hyperglycemia, HepG2 cells exhibited inhibited uncoupled respiration and decreased MitoTracker Red fluorescence associated with a 25% decrease in mtDNA and 16% decrease in TFAM transcripts. These results indicate that glucose may regulate mtDNA copy number by modulating the transcriptional activity of TFAM in response to hyperglycemia-induced ROS production. The decrease of mtDNA content and inhibition of mitochondrial function may be pathogenic hallmarks in the altered metabolic status associated with diabetes.

  18. Outer membrane vesicles of Tannerella forsythia: biogenesis, composition, and virulence.

    PubMed

    Friedrich, V; Gruber, C; Nimeth, I; Pabinger, S; Sekot, G; Posch, G; Altmann, F; Messner, P; Andrukhov, O; Schäffer, C

    2015-12-01

    Tannerella forsythia is the only 'red-complex' bacterium covered by an S-layer, which has been shown to affect virulence. Here, outer membrane vesicles (OMVs) enriched with putative glycoproteins are described as a new addition to the virulence repertoire of T. forsythia. Investigations of this bacterium are hampered by its fastidious growth requirements and the recently discovered mismatch of the available genome sequence (92A2 = ATCC BAA-2717) and the widely used T. forsythia strain (ATCC 43037). T. forsythia was grown anaerobically in serum-free medium and biogenesis of OMVs was analyzed by electron and atomic force microscopy. This revealed OMVs with a mean diameter of ~100 nm budding off from the outer membrane while retaining the S-layer. An LC-ESI-TOF/TOF proteomic analysis of OMVs from three independent biological replicates identified 175 proteins. Of these, 14 exhibited a C-terminal outer membrane translocation signal that directs them to the cell/vesicle surface, 61 and 53 were localized to the outer membrane and periplasm, respectively, 22 were predicted to be extracellular, and 39 to originate from the cytoplasm. Eighty proteins contained the Bacteroidales O-glycosylation motif, 18 of which were confirmed as glycoproteins. Release of pro-inflammatory mediators from the human monocytic cell line U937 and periodontal ligament fibroblasts upon stimulation with OMVs followed a concentration-dependent increase that was more pronounced in the presence of soluble CD14 in conditioned media. The inflammatory response was significantly higher than that caused by whole T. forsythia cells. Our study represents the first characterization of T. forsythia OMVs, their proteomic composition and immunogenic potential.

  19. Organelle biogenesis and intracellular lipid transport in eukaryotes.

    PubMed Central

    Voelker, D R

    1991-01-01

    The inter- and intramembrane transport of phospholipids, sphingolipids, and sterols involves the most fundamental processes of membrane biogenesis. Identification of the mechanisms involved in these lipid transport reactions has lagged significantly behind that for intermembrane protein traffic until recently. Application of methods that include fluorescently labeled and spin-labeled lipid analogs, new cellular fractionation techniques, topographically specific chemical modification techniques, the identification of organelle-specific metabolism, permeabilized cell methodology, and yeast molecular genetics has contributed to revealing a diverse biochemical array of transport processes for lipids. Compelling evidence now exists for ATP-dependent, ATP-independent, vesicle-dependent, and vesicle-independent transport processes that are lipid and membrane specific. ATP-dependent transport processes include the transbilayer movement of phosphatidylserine and phosphatidylethanolamine at the plasma membrane and the transport of phosphatidylserine from its site of synthesis to the mitochondria. ATP-independent processes include the transbilayer movement of virtually all lipids at the endoplasmic reticulum, the movement of phosphatidylserine between the inner and outer mitochondrial membranes, and the transfer of nascent phosphatidylcholine and phosphatidylethanolamine to the plasma membrane. The ATP-independent movement of lipids between organelles is believed to be due to the action of lipid transfer proteins, but this still remains to be proved. Vesicle-based transport mechanisms (which are also inherently ATP dependent) include the transport of nascent cholesterol, sphingomyelin, and glycosphingolipids from the Golgi apparatus to the plasma membrane and the recycling of sphingolipids and selected pools of phosphatidylcholine from the plasma membrane to the cell interior. The vesicles involved in cholesterol transport to the plasma membrane are different from those

  20. Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis.

    PubMed

    Menzies, Keir J; Singh, Kaustabh; Saleem, Ayesha; Hood, David A

    2013-03-08

    The purpose of this study was to evaluate the role of sirtuin 1 (SirT1) in exercise- and resveratrol (RSV)-induced skeletal muscle mitochondrial biogenesis. Using muscle-specific SirT1-deficient (KO) mice and a cell culture model of differentiated myotubes, we compared the treatment of resveratrol, an activator of SirT1, with that of exercise in inducing mitochondrial biogenesis. These experiments demonstrated that SirT1 plays a modest role in maintaining basal mitochondrial content and a larger role in preserving mitochondrial function. Furthermore, voluntary exercise and RSV treatment induced mitochondrial biogenesis in a SirT1-independent manner. However, when RSV and exercise were combined, a SirT1-dependent synergistic effect was evident, leading to enhanced translocation of PGC-1α and SirT1 to the nucleus and stimulation of mitochondrial biogenesis. Thus, the magnitude of the effect of RSV on muscle mitochondrial biogenesis is reliant on SirT1, as well as the cellular environment, such as that produced by repeated bouts of exercise.

  1. Echinochrome A Increases Mitochondrial Mass and Function by Modulating Mitochondrial Biogenesis Regulatory Genes

    PubMed Central

    Jeong, Seung Hun; Kim, Hyoung Kyu; Song, In-Sung; Noh, Su Jin; Marquez, Jubert; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Mishchenko, Natalia P.; Fedoreyev, Sergey A.; Stonik, Valentin A.; Han, Jin

    2014-01-01

    Echinochrome A (Ech A) is a natural pigment from sea urchins that has been reported to have antioxidant properties and a cardio protective effect against ischemia reperfusion injury. In this study, we ascertained whether Ech A enhances the mitochondrial biogenesis and oxidative phosphorylation in rat cardio myoblast H9c2 cells. To study the effects of Ech A on mitochondrial biogenesis, we measured mitochondrial mass, level of oxidative phosphorylation, and mitochondrial biogenesis regulatory gene expression. Ech A treatment did not induce cytotoxicity. However, Ech A treatment enhanced oxygen consumption rate and mitochondrial ATP level. Likewise, Ech A treatment increased mitochondrial contents in H9c2 cells. Furthermore, Ech A treatment up-regulated biogenesis of regulatory transcription genes, including proliferator-activated receptor gamma co-activator (PGC)-1α, estrogen-related receptor (ERR)-α, peroxisome proliferator-activator receptor (PPAR)-γ, and nuclear respiratory factor (NRF)-1 and such mitochondrial transcription regulatory genes as mitochondrial transcriptional factor A (TFAM), mitochondrial transcription factor B2 (TFB2M), mitochondrial DNA direct polymerase (POLMRT), single strand binding protein (SSBP) and Tu translation elongation factor (TUFM). In conclusion, these data suggest that Ech A is a potentiated marine drug which enhances mitochondrial biogenesis. PMID:25196935

  2. Vacuole Membrane Protein 1 Is an Endoplasmic Reticulum Protein Required for Organelle Biogenesis, Protein Secretion, and Development

    PubMed Central

    Calvo-Garrido, Javier; Carilla-Latorre, Sergio; Lázaro-Diéguez, Francisco; Egea, Gustavo

    2008-01-01

    Vacuole membrane protein 1 (Vmp1) is membrane protein of unknown molecular function that has been associated with pancreatitis and cancer. The social amoeba Dictyostelium discoideum has a vmp1-related gene that we identified previously in a functional genomic study. Loss-of-function of this gene leads to a severe phenotype that compromises Dictyostelium growth and development. The expression of mammalian Vmp1 in a vmp1− Dictyostelium mutant complemented the phenotype, suggesting a functional conservation of the protein among evolutionarily distant species and highlights Dictyostelium as a valid experimental system to address the function of this gene. Dictyostelium Vmp1 is an endoplasmic reticulum protein necessary for the integrity of this organelle. Cells deficient in Vmp1 display pleiotropic defects in the secretory pathway and organelle biogenesis. The contractile vacuole, which is necessary to survive under hypoosmotic conditions, is not functional in the mutant. The structure of the Golgi apparatus, the function of the endocytic pathway and conventional protein secretion are also affected in these cells. Transmission electron microscopy of vmp1− cells showed the accumulation of autophagic features that suggests a role of Vmp1 in macroautophagy. In addition to these defects observed at the vegetative stage, the onset of multicellular development and early developmental gene expression are also compromised. PMID:18550798

  3. Transcriptome Profiling Identifies Ribosome Biogenesis as a Target of Alcohol Teratogenicity and Vulnerability during Early Embryogenesis

    PubMed Central

    Berres, Mark E.; Garic, Ana; Flentke, George R.; Smith, Susan M.

    2017-01-01

    Fetal alcohol spectrum disorder (FASD) is a leading cause of neurodevelopmental disability. Individuals with FASD may exhibit a characteristic facial appearance that has diagnostic utility. The mechanism by which alcohol disrupts craniofacial development is incompletely understood, as are the genetic factors that can modify individual alcohol vulnerability. Using an established avian model, we characterized the cranial transcriptome in response to alcohol to inform the mechanism underlying these cells’ vulnerability. Gallus gallus embryos having 3–6 somites were exposed to 52 mM alcohol and the cranial transcriptomes were sequenced thereafter. A total of 3422 genes had significantly differential expression. The KEGG pathways with the greatest enrichment of differentially expressed gene clusters were Ribosome (P = 1.2 x 10−17, 67 genes), Oxidative Phosphorylation (P = 4.8 x 10−12, 60 genes), RNA Polymerase (P = 2.2 x 10−3, 15 genes) and Spliceosome (P = 2.6 x 10−2, 39 genes). The preponderance of transcripts in these pathways were repressed in response to alcohol. These same gene clusters also had the greatest altered representation in our previous comparison of neural crest populations having differential vulnerability to alcohol-induced apoptosis. Comparison of differentially expressed genes in alcohol-exposed (3422) and untreated, alcohol-vulnerable (1201) transcriptomes identified 525 overlapping genes of which 257 have the same direction of transcriptional change. These included 36 ribosomal, 25 oxidative phosphorylation and 7 spliceosome genes. Using a functional approach in zebrafish, partial knockdown of ribosomal proteins zrpl11, zrpl5a, and zrps3a individually heightened vulnerability to alcohol-induced craniofacial deficits and increased apoptosis. In humans, haploinsufficiency of several of the identified ribosomal proteins are causative in craniofacial dysmorphologies such as Treacher Collins Syndrome and Diamond-Blackfan Anemia. This work

  4. Interferon-stimulated gene ISG12b1 inhibits adipogenic differentiation and mitochondrial biogenesis in 3T3-L1 cells.

    PubMed

    Li, Bing; Shin, Jonghyun; Lee, Kichoon

    2009-03-01

    Microarray analysis was performed to find a new group of genes or pathways that might be important in adipocyte development and metabolism. Among them, a mouse interferon-stimulated gene 12b1 (ISG12b1) is expressed at a 400-fold higher level in adipocytes compared with stromal-vascular cells. It is predominantly expressed in adipose tissue among other tissues we tested. Developmentally, ISG12b1 mRNA expression was initially inhibited followed by a dramatic induction during both in vivo and in vitro adipogenic differentiation. Adenovirus-mediated overexpression of ISG12b1 inhibited adipogenic differentiation in 3T3-L1 cells as shown by decreased lipid staining with Oil-Red-O and reduction in adipogenic marker proteins including peroxisome proliferator-activated receptor-gamma (PPARgamma), and CCAAT/enhancer-binding protein-alpha (C/EBPalpha). Our bioinformatics analysis for the predicted localization of ISG12b1 protein suggested the mitochondrial localization, which was confirmed by the colocalization of hemagglutinin-tagged ISG12b1 protein with mitochondrial marker MitoTracker. In addition, ISG12b1 protein was exclusively detected in protein extract from the fractionated mitochondria by Western blot analysis. Furthermore, overexpression of ISG12b1 in adipocytes reduced mitochondrial DNA content and gene expression of mitochondrial transcription factor A (mtTFA), nuclear respiratory factor 1 (NRF1), and cytochrome oxidase II, suggesting an inhibitory role of ISG12b1 in mitochondrial biogenesis and function. Activation of mitochondrial biogenesis and function by treatment with PPARgamma and PPARalpha agonists in 3T3-L1 cells and cold exposure in mice induced mitochondrial transcription factors and reduced ISG12 expression. These data demonstrated that mitochondrial-localized ISG12b1 protein inhibits adipocyte differentiation and mitochondrial biogenesis and function, implying the important role of mitochondrial function in adipocyte development and associated

  5. Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing

    PubMed Central

    Le Thomas, Adrien; Stuwe, Evelyn; Li, Sisi; Marinov, Georgi; Rozhkov, Nikolay; Chen, Yung-Chia Ariel; Luo, Yicheng; Sachidanandam, Ravi; Toth, Katalin Fejes; Patel, Dinshaw; Aravin, Alexei A.

    2014-01-01

    Small noncoding RNAs that associate with Piwi proteins, called piRNAs, serve as guides for repression of diverse transposable elements in germ cells of metazoa. In Drosophila, the genomic regions that give rise to piRNAs, the so-called piRNA clusters, are transcribed to generate long precursor molecules that are processed into mature piRNAs. How genomic regions that give rise to piRNA precursor transcripts are differentiated from the rest of the genome and how these transcripts are specifically channeled into the piRNA biogenesis pathway are not known. We found that transgenerationally inherited piRNAs provide the critical trigger for piRNA production from homologous genomic regions in the next generation by two different mechanisms. First, inherited piRNAs enhance processing of homologous transcripts into mature piRNAs by initiating the ping-pong cycle in the cytoplasm. Second, inherited piRNAs induce installment of the histone 3 Lys9 trimethylation (H3K9me3) mark on genomic piRNA cluster sequences. The heterochromatin protein 1 (HP1) homolog Rhino binds to the H3K9me3 mark through its chromodomain and is enriched over piRNA clusters. Rhino recruits the piRNA biogenesis factor Cutoff to piRNA clusters and is required for efficient transcription of piRNA precursors. We propose that transgenerationally inherited piRNAs act as an epigenetic memory for identification of substrates for piRNA biogenesis on two levels: by inducing a permissive chromatin environment for piRNA precursor synthesis and by enhancing processing of these precursors. PMID:25085419

  6. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet.

    PubMed

    Aiken, Catherine E; Tarry-Adkins, Jane L; Penfold, Naomi C; Dearden, Laura; Ozanne, Susan E

    2016-04-01

    Maternal diet during pregnancy influences the later life reproductive potential of female offspring. We investigate the molecular mechanisms underlying the depletion of ovarian follicular reserve in young adult females following exposure to obesogenic diet in early life. Furthermore, we explore the interaction between adverse maternal diet and postweaning diet in generating reduced ovarian reserve. Female mice were exposed to either maternal obesogenic (high fat/high sugar) or maternal control dietin uteroand during lactation, then weaned onto either obesogenic or control diet. At 12 wk of age, the offspring ovarian reserve was depleted following exposure to maternal obesogenic diet (P< 0.05), but not postweaning obesogenic diet. Maternal obesogenic diet was associated with increased mitochondrial DNA biogenesis (copy numberP< 0.05; transcription factor A, mitochondrial expressionP< 0.05), increased mitochondrial antioxidant defenses [manganese superoxide dismutase (MnSOD)P< 0.05; copper/zinc superoxide dismutaseP< 0.05; glutathione peroxidase 4P< 0.01] and increased lipoxygenase expression (arachidonate 12-lipoxygenaseP< 0.05; arachidonate 15-lipoxygenaseP< 0.05) in the ovary. There was also significantly increased expression of the transcriptional regulator NF-κB (P< 0.05). There was no effect of postweaning diet on any measured ovarian parameters. Maternal diet thus plays a central role in determining follicular reserve in adult female offspring. Our observations suggest that lipid peroxidation and mitochondrial biogenesis are the key intracellular pathways involved in programming of ovarian reserve.-Aiken, C. E., Tarry-Adkins, J. L., Penfold, N. C., Dearden, L., Ozanne, S. E. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet.

  7. The ATM Kinase Induces MicroRNA Biogenesis in the DNA Damage Response

    PubMed Central

    Zhang, Xinna; Wan, Guohui; Berger, Franklin G.; He, Xiaoming; Lu, Xiongbin

    2011-01-01

    SUMMARY The DNA damage response involves a complex network of processes that detect and repair DNA damage. Here we show that miRNA biogenesis is globally induced upon DNA damage in an ATM-dependent manner. About one fourth of miRNAs are significantly up-regulated after DNA damage, while loss of ATM abolishes their induction. KSRP (KH-type splicing regulatory protein) is a key player that translates DNA damage signaling to miRNA biogenesis. The ATM kinase directly binds to and phosphorylates KSRP, leading to enhanced interaction between KSRP and pri-miRNAs and increased KSRP activity in miRNA processing. Mutations of the ATM phosphorylation sites of KSRP impaired its activity in regulating miRNAs. These findings reveal a mechanism by which DNA damage signaling is linked to miRNA biogenesis. PMID:21329876

  8. Auxin-Mediated Ribosomal Biogenesis Regulates Vacuolar Trafficking in Arabidopsis[W

    PubMed Central

    Rosado, Abel; Sohn, Eun Ju; Drakakaki, Georgia; Pan, Songqin; Swidergal, Alexandra; Xiong, Yuqing; Kang, Byung-Ho; Bressan, Ray A.; Raikhel, Natasha V.

    2010-01-01

    In plants, the mechanisms that regulate the transit of vacuolar soluble proteins containing C-terminal and N-terminal vacuolar sorting determinants (VSDs) to the vacuole are largely unknown. In a screen for Arabidopsis thaliana mutants affected in the trafficking of C-terminal VSD containing proteins, we isolated the ribosomal biogenesis mutant rpl4a characterized by its partial secretion of vacuolar targeted proteins and a plethora of developmental phenotypes derived from its aberrant auxin responses. In this study, we show that ribosomal biogenesis can be directly regulated by auxins and that the exogenous application of auxins to wild-type plants results in vacuolar trafficking defects similar to those observed in rpl4a mutants. We propose that the influence of auxin on ribosomal biogenesis acts as a regulatory mechanism for auxin-mediated developmental processes, and we demonstrate the involvement of this regulatory mechanism in the sorting of vacuolar targeted proteins in Arabidopsis. PMID:20061553

  9. Artemisinin mimics calorie restriction to trigger mitochondrial biogenesis and compromise telomere shortening in mice.

    PubMed

    Wang, Da-Ting; He, Jiang; Wu, Ming; Li, Si-Ming; Gao, Qian; Zeng, Qing-Ping

    2015-01-01

    Calorie restriction is known to extend lifespan among organisms by a debating mechanism underlying nitric oxide-driven mitochondrial biogenesis. We report here that nitric oxide generators including artemisinin, sodium nitroprusside, and L-arginine mimics calorie restriction and resembles hydrogen peroxide to initiate the nitric oxide signaling cascades and elicit the global antioxidative responses in mice. The large quantities of antioxidant enzymes are correlated with the low levels of reactive oxygen species, which allow the down-regulation of tumor suppressors and accessory DNA repair partners, eventually leading to the compromise of telomere shortening. Accompanying with the up-regulation of signal transducers and respiratory chain signatures, mitochondrial biogenesis occurs with the elevation of adenosine triphosphate levels upon exposure of mouse skeletal muscles to the mimetics of calorie restriction. In conclusion, calorie restriction-triggered nitric oxide provides antioxidative protection and alleviates telomere attrition via mitochondrial biogenesis, thereby maintaining chromosomal stability and integrity, which are the hallmarks of longevity.

  10. MH-60S Fleet Combat Support Helicopter (MH-60S)

    DTIC Science & Technology

    2013-12-01

    Management Information Retrieval Dev Est - Development Estimate DoD - Department of Defense DSN - Defense Switched Network Econ - Economic Eng...Current estimate for AMCM IOC has changed from Oct 2014 to Sep 2015. This will align AMCM IOC with the LCS Mine Countermeasures Mission Package IOT &E...20A - Sonar Mine Detection Set IOT &E - Initial Operational Test and Evaluation LCS - Littoral Combat Ship MS - Milestone NAV SAE FRP - Navy Service

  11. N-acetylcysteine inhibits the up-regulation of mitochondrial biogenesis genes in livers from rats fed ethanol chronically

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Chronic ethanol (EtOH) administration to experimental animals induces hepatic oxidative stress and up-regulates mitochondrial biogenesis. The mechanisms by which chronic EtOH up-regulates mitochondrial biogenesis have not been fully explored. In this work, we hypothesized that oxidative ...

  12. The influence of sex, body mass and body mass index on plantar soft-tissue stiffness in healthy people in their 60s.

    PubMed

    Teoh, Jee Chin; Lee, Dong Yeon; Lee, Taeyong

    2016-09-06

    Foot abnormality has become a public health concern. Early detection of pathological soft tissue is therefore an important preventive measure, especially in older people who generally have a higher risk of foot pathology. However, the interpretation of plantar tissue stiffness data - whether to normalize the data or to separate the data on the basis of sex- remains questionable. The objective of this study was to assess the influence of sex and physical attributes such as body mass (BM) and body mass index (BMI) on plantar soft-tissue stiffness, and to evaluate whether it is necessary to isolate the differences in sex, BM and BMI in the data analysis. One hundred healthy subjects in their 60s were recruited for the experiment. Localized force response was obtained underneath the second metatarsal head (MTH) pad at three different dorsiflexion angles of 0°, 20°, 40° and the hallux and heel at 0°. No significant relationship was found between the independent variables and plantar stiffness. From the experimental results, it can be deduced that BM and BMI are weakly associated with plantar tissue stiffness, and that there is no significant difference in stiffness between male and female participants. No difference was found between left and right foot measurements. This suggests that normalizing of plantar tissue stiffness by BM and BMI is not necessary in healthy people in their 60s. The data can be pooled and treated equally regardless of sex.

  13. DAB2IP-Coordinated miRNA Biogenesis

    DTIC Science & Technology

    2015-09-01

    been implicated to play a tumor suppressor role in nasal-type natural killer /T-cell lymphoma 11, hepatocellular carcinoma and colorectal cancer...Dysregulated microRNAs affect pathways and targets of biologic relevance in nasal-type natural killer /T-cell lymphoma. Blood 118, 4919-4929, doi:10.1182

  14. Sizing up the 60s

    ERIC Educational Resources Information Center

    Parini, Jay

    2008-01-01

    For the author, the 1960s was a tumultuous era which he associates with a feeling of freedom from old pieties and a sense of fresh possibilities. It was a time of self-indulgence coupled with flamboyance that annoyed many of those in authority, including parents, professors, and politicians. In this article, the author discusses how a new book by…

  15. SMN is essential for the biogenesis of U7 snRNP and 3′-end formation of histone mRNAs

    PubMed Central

    Tisdale, Sarah; Lotti, Francesco; Saieva, Luciano; Van Meerbeke, James P.; Crawford, Thomas O.; Sumner, Charlotte J.; Mentis, George Z.; Pellizzoni, Livio

    2013-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by a deficiency in the survival motor neuron (SMN) protein. SMN mediates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) and possibly other RNPs. Here we investigated SMN requirement for the biogenesis and function of U7—an snRNP specialized in the 3′-end formation of replication-dependent histone mRNAs that normally are not polyadenylated. We show that SMN deficiency impairs U7 snRNP assembly and decreases U7 levels in mammalian cells. The SMN-dependent U7 reduction affects endonucleolytic cleavage of histone mRNAs leading to abnormal accumulation of 3′-extended and polyadenylated transcripts, followed by downstream changes in histone gene expression. Importantly, SMN deficiency induces defects of histone mRNA 3′-end formation in both SMA mice and human patients. These findings demonstrate that SMN is essential for U7 biogenesis and histone mRNA processing in vivo, and identify a novel RNA pathway disrupted in SMA. PMID:24332368

  16. RNA Binding Proteins in the miRNA Pathway.

    PubMed

    Connerty, Patrick; Ahadi, Alireza; Hutvagner, Gyorgy

    2015-12-26

    microRNAs (miRNAs) are short ~22 nucleotides (nt) ribonucleic acids which post-transcriptionally regulate gene expression. miRNAs are key regulators of all cellular processes, and the correct expression of miRNAs in an organism is crucial for proper development and cellular function. As a result, the miRNA biogenesis pathway is highly regulated. In this review, we outline the basic steps of miRNA biogenesis and miRNA mediated gene regulation focusing on the role of RNA binding proteins (RBPs). We also describe multiple mechanisms that regulate the canonical miRNA pathway, which depends on a wide range of RBPs. Moreover, we hypothesise that the interaction between miRNA regulation and RBPs is potentially more widespread based on the analysis of available high-throughput datasets.

  17. Biogenesis of cytochrome b6 in photosynthetic membranes

    PubMed Central

    Saint-Marcoux, Denis; Wollman, Francis-André

    2009-01-01

    In chloroplasts, binding of a c′-heme to cytochrome b6 on the stromal side of the thylakoid membranes requires a specific mechanism distinct from the one at work for c-heme binding to cytochromes f and c6 on the lumenal side of membranes. Here, we show that the major protein components of this pathway, the CCBs, are bona fide transmembrane proteins. We demonstrate their association in a series of hetero-oligomeric complexes, some of which interact transiently with cytochrome b6 in the process of heme delivery to the apoprotein. In addition, we provide preliminary evidence for functional assembly of cytochrome b6f complexes even in the absence of c′-heme binding to cytochrome b6. Finally, we present a sequential model for apo- to holo-cytochrome b6 maturation integrated within the assembly pathway of b6f complexes in the thylakoid membranes. PMID:19564403

  18. Biogenesis of cytochrome b6 in photosynthetic membranes.

    PubMed

    Saint-Marcoux, Denis; Wollman, Francis-André; de Vitry, Catherine

    2009-06-29

    In chloroplasts, binding of a c'-heme to cytochrome b(6) on the stromal side of the thylakoid membranes requires a specific mechanism distinct from the one at work for c-heme binding to cytochromes f and c(6) on the lumenal side of membranes. Here, we show that the major protein components of this pathway, the CCBs, are bona fide transmembrane proteins. We demonstrate their association in a series of hetero-oligomeric complexes, some of which interact transiently with cytochrome b(6) in the process of heme delivery to the apoprotein. In addition, we provide preliminary evidence for functional assembly of cytochrome b(6)f complexes even in the absence of c'-heme binding to cytochrome b(6). Finally, we present a sequential model for apo- to holo-cytochrome b(6) maturation integrated within the assembly pathway of b(6)f complexes in the thylakoid membranes.

  19. Mitophagy and mitochondrial biogenesis in atrial tissue of patients undergoing heart surgery with cardiopulmonary bypass

    PubMed Central

    Andres, Allen M.; Tucker, Kyle C.; Thomas, Amandine; Taylor, David J.R.; Jahania, Salik M.; Dabir, Reza; Pourpirali, Somayeh; Brown, Jamelle A.; Westbrook, David G.; Ballinger, Scott W.; Mentzer, Robert M.

    2017-01-01

    Mitophagy occurs during ischemia/reperfusion (I/R) and limits oxidative stress and injury. Mitochondrial turnover was assessed in patients undergoing cardiac surgery involving cardiopulmonary bypass (CPB). Paired biopsies of right atrial appendage before initiation and after weaning from CPB were processed for protein analysis, mitochondrial DNA/nuclear DNA ratio (mtDNA:nucDNA ratio), mtDNA damage, mRNA, and polysome profiling. Mitophagy in the post-CPB samples was evidenced by decreased levels of mitophagy adapters NDP52 and optineurin in whole tissue lysate, decreased Opa1 long form, and translocation of Parkin to the mitochondrial fraction. PCR analysis of mtDNA comparing amplification of short vs. long segments of mtDNA revealed increased damage following cardiac surgery. Surprisingly, a marked increase in several mitochondria-specific protein markers and mtDNA:nucDNA ratio was observed, consistent with increased mitochondrial biogenesis. mRNA analysis suggested that mitochondrial biogenesis was traniscription independent and likely driven by increased translation of existing mRNAs. These findings demonstrate in humans that both mitophagy and mitochondrial biogenesis occur during cardiac surgery involving CPB. We suggest that mitophagy is balanced by mitochondrial biogenesis during I/R stress experienced during surgery. Mitigating mtDNA damage and elucidating mechanisms regulating mitochondrial turnover will lead to interventions to improve outcome after I/R in the setting of heart disease. PMID:28239650

  20. CDK1 Prevents Unscheduled PLK4-STIL Complex Assembly in Centriole Biogenesis.

    PubMed

    Zitouni, Sihem; Francia, Maria E; Leal, Filipe; Montenegro Gouveia, Susana; Nabais, Catarina; Duarte, Paulo; Gilberto, Samuel; Brito, Daniela; Moyer, Tyler; Kandels-Lewis, Steffi; Ohta, Midori; Kitagawa, Daiju; Holland, Andrew J; Karsenti, Eric; Lorca, Thierry; Lince-Faria, Mariana; Bettencourt-Dias, Mónica

    2016-05-09

    Centrioles are essential for the assembly of both centrosomes and cilia. Centriole biogenesis occurs once and only once per cell cycle and is temporally coordinated with cell-cycle progression, ensuring the formation of the right number of centrioles at the right time. The formation of new daughter centrioles is guided by a pre-existing, mother centriole. The proximity between mother and daughter centrioles was proposed to restrict new centriole formation until they separate beyond a critical distance. Paradoxically, mother and daughter centrioles overcome this distance in early mitosis, at a time when triggers for centriole biogenesis Polo-like kinase 4 (PLK4) and its substrate STIL are abundant. Here we show that in mitosis, the mitotic kinase CDK1-CyclinB binds STIL and prevents formation of the PLK4-STIL complex and STIL phosphorylation by PLK4, thus inhibiting untimely onset of centriole biogenesis. After CDK1-CyclinB inactivation upon mitotic exit, PLK4 can bind and phosphorylate STIL in G1, allowing pro-centriole assembly in the subsequent S phase. Our work shows that complementary mechanisms, such as mother-daughter centriole proximity and CDK1-CyclinB interaction with centriolar components, ensure that centriole biogenesis occurs once and only once per cell cycle, raising parallels to the cell-cycle regulation of DNA replication and centromere formation.

  1. Ribosomal Protein Methyltransferases in the Yeast Saccharomyces cerevisiae: Roles in Ribosome Biogenesis and Translation

    PubMed Central

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-01-01

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed −1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation. PMID:26801560

  2. [Bacterial Outer Membrane Nanovesicles: Structure, Biogenesis, Functions, and Application in Biotechnology and Medicine (Review)].

    PubMed

    Lusta, K A

    2015-01-01

    The review summarizes the comprehensive biochemical and physicochemical characteristics of extracellular membrane nanovesicles (EMN) derived from different kinds of bacteria. The EMN structure, composition, biogenesis, secretion mechanisms, formation conditions, functions, involvement in pathogenesis, and application in biotechnology and medicine are discussed.

  3. Acinetobacter baumannii outer membrane protein A modulates the biogenesis of outer membrane vesicles.

    PubMed

    Moon, Dong Chan; Choi, Chul Hee; Lee, Jung Hwa; Choi, Chi-Won; Kim, Hye-Yeon; Park, Jeong Soon; Kim, Seung Il; Lee, Je Chul

    2012-02-01

    Acinetobacter baumannii secretes outer membrane vesicles (OMVs) during both in vitro and in vivo growth, but the biogenesis mechanism by which A. baumannii produces OMVs remains undefined. Outer membrane protein A of A. baumannii (AbOmpA) is a major protein in the outer membrane and the C-terminus of AbOmpA interacts with diaminopimelate of peptidoglycan. This study investigated the role of AbOmpA in the biogenesis of A. baumannii OMVs. Quantitative and qualitative approaches were used to analyze OMV biogenesis in A. baumannii ATCC 19606T and an isogenic ΔAbOmpA mutant. OMV production was significantly increased in the ΔAbOmpA mutant compared to wild-type bacteria as demonstrated by quantitation of proteins and lipopolysaccharides (LPS) packaged in OMVs. LPS profiles prepared from OMVs from wild-type bacteria and the ΔAbOmpA mutant had identical patterns, but proteomic analysis showed different protein constituents in OMVs from wild-type bacteria compared to the ΔAbOmpA mutant. In conclusion, AbOmpA influences OMV biogenesis by controlling OMV production and protein composition.

  4. Reactive oxygen species mediates homocysteine-induced mitochondrial biogenesis in human endothelial cells: Modulation by antioxidants

    SciTech Connect

    Perez-de-Arce, Karen; Foncea, Rocio . E-mail: rfoncea@med.puc.cl; Leighton, Federico

    2005-12-16

    It has been proposed that homocysteine (Hcy)-induces endothelial dysfunction and atherosclerosis by generation of reactive oxygen species (ROS). A previous report has shown that Hcy promotes mitochondrial damage. Considering that oxidative stress can affect mitochondrial biogenesis, we hypothesized that Hcy-induced ROS in endothelial cells may lead to increased mitochondrial biogenesis. We found that Hcy-induced ROS (1.85-fold), leading to a NF-{kappa}B activation and increase the formation of 3-nitrotyrosine. Furthermore, expression of the mitochondrial biogenesis factors, nuclear respiratory factor-1 and mitochondrial transcription factor A, was significantly elevated in Hcy-treated cells. These changes were accompanied by increase in mitochondrial mass and higher mRNA and protein expression of the subunit III of cytochrome c oxidase. These effects were significantly prevented by pretreatment with the antioxidants, catechin and trolox. Taken together, our results suggest that ROS is an important mediator of mitochondrial biogenesis induced by Hcy, and that modulation of oxidative stress by antioxidants may protect against the adverse vascular effects of Hcy.

  5. Mitochondrial iron-sulfur cluster biogenesis from molecular understanding to clinical disease.

    PubMed

    Alfadhel, Majid; Nashabat, Marwan; Abu Ali, Qais; Hundallah, Khalid

    2017-01-01

    Iron_sulfur clusters (ISCs) are known to play a major role in various protein functions. Located in the mitochondria, cytosol, endoplasmic reticulum and nucleus, they contribute to various core cellular functions. Until recently, only a few human diseases related to mitochondrial ISC biogenesis defects have been described. Such diseases include Friedreich ataxia, combined oxidative phosphorylation deficiency 19, infantile complex II/III deficiency defect, hereditary myopathy with lactic acidosis and mitochondrial muscle myopathy, lipoic acid biosynthesis defects, multiple mitochondrial dysfunctions syndromes and non ketotic hyperglycinemia due to glutaredoxin 5 gene defect. Disorders of mitochondrial import, export and translation, including sideroblastic anemia with ataxia, EVEN-PLUS syndrome and mitochondrial complex I deficiency due to nucleotide-binding protein-like protein gene defect, have also been implicated in ISC biogenesis defects. With advances in next generation sequencing technologies, more disorders related to ISC biogenesis defects are expected to be elucidated. In this article, we aim to shed the light on mitochondrial ISC biogenesis, related proteins and their function, pathophysiology, clinical phenotypes of related disorders, diagnostic approach, and future implications.

  6. E3 ubiquitin ligase SP1 regulates peroxisome biogenesis in Arabidopsis

    DOE PAGES

    Pan, Ronghui; Satkovich, John; Hu, Jianping

    2016-10-31

    Peroxisomes are ubiquitous eukaryotic organelles that play pivotal roles in a suite of metabolic processes and often act coordinately with other organelles, such as chloroplasts and mitochondria. Peroxisomes import proteins to the peroxisome matrix by peroxins (PEX proteins), but how the function of the PEX proteins is regulated is poorly understood. In this study, we identified the Arabidopsis RING (really interesting new gene) type E3 ubiquitin ligase SP1 [suppressor of plastid protein import locus 1 (ppi1) 1] as a peroxisome membrane protein with a regulatory role in peroxisome protein import. SP1 interacts physically with the two components of the peroxisomemore » protein docking complex PEX13–PEX14 and the (RING)-finger peroxin PEX2. Loss of SP1 function suppresses defects of the pex14-2 and pex13-1 mutants, and SP1 is involved in the degradation of PEX13 and possibly PEX14 and all three RING peroxins. An in vivo ubiquitination assay showed that SP1 has the ability to promote PEX13 ubiquitination. Our study has revealed that, in addition to its previously reported function in chloroplast biogenesis, SP1 plays a role in peroxisome biogenesis. The same E3 ubiquitin ligase promotes the destabilization of components of two distinct protein-import machineries, indicating that degradation of organelle biogenesis factors by the ubiquitin–proteasome system may constitute an important regulatory mechanism in coordinating the biogenesis of metabolically linked organelles in eukaryotes.« less

  7. A Drosophila model for the Zellweger spectrum of peroxisome biogenesis disorders

    PubMed Central

    Mast, Fred D.; Li, Jing; Virk, Maninder K.; Hughes, Sarah C.; Simmonds, Andrew J.; Rachubinski, Richard A.

    2011-01-01

    SUMMARY Human peroxisome biogenesis disorders are lethal genetic diseases in which abnormal peroxisome assembly compromises overall peroxisome and cellular function. Peroxisomes are ubiquitous membrane-bound organelles involved in several important biochemical processes, notably lipid metabolism and the use of reactive oxygen species for detoxification. Using cultured cells, we systematically characterized the peroxisome assembly phenotypes associated with dsRNA-mediated knockdown of 14 predicted Drosophila homologs of PEX genes (encoding peroxins; required for peroxisome assembly and linked to peroxisome biogenesis disorders), and confirmed that at least 13 of them are required for normal peroxisome assembly. We also demonstrate the relevance of Drosophila as a genetic model for the early developmental defects associated with the human peroxisome biogenesis disorders. Mutation of the PEX1 gene is the most common cause of peroxisome biogenesis disorders and is one of the causes of the most severe form of the disease, Zellweger syndrome. Inherited mutations in Drosophila Pex1 correlate with reproducible defects during early development. Notably, Pex1 mutant larvae exhibit abnormalities that are analogous to those exhibited by Zellweger syndrome patients, including developmental delay, poor feeding, severe structural abnormalities in the peripheral and central nervous systems, and early death. Finally, microarray analysis defined several clusters of genes whose expression varied significantly between wild-type and mutant larvae, implicating peroxisomal function in neuronal development, innate immunity, lipid and protein metabolism, gamete formation, and meiosis. PMID:21669930

  8. Biogenesis and regulation of the let-7 miRNAs and their functional implications.

    PubMed

    Lee, Hosuk; Han, Sungwook; Kwon, Chang Seob; Lee, Daeyoup

    2016-02-01

    The let-7 miRNA was one of the first miRNAs discovered in the nematode, Caenorhabditis elegans, and its biological functions show a high level of evolutionary conservation from the nematode to the human. Unlike in C. elegans, higher animals have multiple isoforms of let-7 miRNAs; these isoforms share a consensus sequence called the 'seed sequence' and these isoforms are categorized into let-7 miRNA family. The expression of let-7 family is required for developmental timing and tumor suppressor function, but must be suppressed for the self-renewal of stem cells. Therefore, let-7 miRNA biogenesis must be carefully controlled. To generate a let-7 miRNA, a primary transcript is produced by RNA polymerase II and then subsequently processed by Drosha/DGCR8, TUTase, and Dicer. Because dysregulation of let-7 processing is deleterious, biogenesis of let-7 is tightly regulated by cellular factors, such as the RNA binding proteins, LIN28A/B and DIS3L2. In this review, we discuss the biological functions and biogenesis of let-7 miRNAs, focusing on the molecular mechanisms of regulation of let-7 biogenesis in vertebrates, such as the mouse and the human.

  9. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    PubMed

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation.

  10. Identification and Characterization of a Gene Cluster Mediating Enteroaggregative Escherichia Coli Aggregative Adherence Fimbria I Biogenesis

    DTIC Science & Technology

    1994-08-01

    adherent E. coli ( DAEC ). respectively. The LA ties to other known fimbrial biogenesis systems of pathogenic pattern is typified by the formation of...agg gene cluster is configured similarly to 60 to 80% of DAEC strains share relatedness with F1845 the determinants of members of the Dr adhesin

  11. Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy.

    PubMed

    Vincent, Andrea M; Edwards, James L; McLean, Lisa L; Hong, Yu; Cerri, Federica; Lopez, Ignazio; Quattrini, Angelo; Feldman, Eva L

    2010-10-01

    Mitochondrial-mediated oxidative stress in response to high glucose is proposed as a primary cause of dorsal root ganglia (DRG) neuron injury in the pathogenesis of diabetic neuropathy. In the present study, we report a greater number of mitochondria in both myelinated and unmyelinated dorsal root axons in a well-established model of murine diabetic neuropathy. No similar changes were seen in younger diabetic animals without neuropathy or in the ventral motor roots of any diabetic animals. These findings led us to examine mitochondrial biogenesis and fission in response to hyperglycemia in the neurites of cultured DRG neurons. We demonstrate overall mitochondrial biogenesis via increases in mitochondrial transcription factors and increases in mitochondrial DNA in both DRG neurons and axons. However, this process occurs over a longer time period than a rapidly observed increase in the number of mitochondria in DRG neurites that appears to result, at least in part, from mitochondrial fission. We conclude that during acute hyperglycemia, mitochondrial fission is a prominent response, and excessive mitochondrial fission may result in dysregulation of energy production, activation of caspase 3, and subsequent DRG neuron injury. During more prolonged hyperglycemia, there is evidence of compensatory mitochondrial biogenesis in axons. Our data suggest that an imbalance between mitochondrial biogenesis and fission may play a role in the pathogenesis of diabetic neuropathy.

  12. Effects of resveratrol and SIRT1 on PGC-1α activity and mitochondrial biogenesis: a reevaluation.

    PubMed

    Higashida, Kazuhiko; Kim, Sang Hyun; Jung, Su Ryun; Asaka, Meiko; Holloszy, John O; Han, Dong-Ho

    2013-07-01

    It has been reported that feeding mice resveratrol activates AMPK and SIRT1 in skeletal muscle leading to deacetylation and activation of PGC-1α, increased mitochondrial biogenesis, and improved running endurance. This study was done to further evaluate the effects of resveratrol, SIRT1, and PGC-1α deacetylation on mitochondrial biogenesis in muscle. Feeding rats or mice a diet containing 4 g resveratrol/kg diet had no effect on mitochondrial protein levels in muscle. High concentrations of resveratrol lowered ATP concentration and activated AMPK in C₂C₁₂ myotubes, resulting in an increase in mitochondrial proteins. Knockdown of SIRT1, or suppression of SIRT1 activity with a dominant-negative (DN) SIRT1 construct, increased PGC-1α acetylation, PGC-1α coactivator activity, and mitochondrial proteins in C₂C₁₂ cells. Expression of a DN SIRT1 in rat triceps muscle also induced an increase in mitochondrial proteins. Overexpression of SIRT1 decreased PGC-1α acetylation, PGC-1α coactivator activity, and mitochondrial proteins in C₂C₁₂ myotubes. Overexpression of SIRT1 also resulted in a decrease in mitochondrial proteins in rat triceps muscle. We conclude that, contrary to some previous reports, the mechanism by which SIRT1 regulates mitochondrial biogenesis is by inhibiting PGC-1α coactivator activity, resulting in a decrease in mitochondria. We also conclude that feeding rodents resveratrol has no effect on mitochondrial biogenesis in muscle.

  13. The effects of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function after glutamate excitotoxicity.

    PubMed

    Wang, Xiaowan; Li, Hailong; Ding, Shinghua

    2014-11-07

    NAD+ is an essential co-enzyme for cellular energy metabolism and is also involved as a substrate for many cellular enzymatic reactions. It has been shown that NAD+ has a beneficial effect on neuronal survival and brain injury in in vitro and in vivo ischemic models. However, the effect of NAD+ on mitochondrial biogenesis and function in ischemia has not been well investigated. In the present study, we used an in vitro glutamate excitotoxicity model of primary cultured cortical neurons to study the effect of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function. Our results show that supplementation of NAD+ could effectively reduce apoptotic neuronal death, and apoptotic inducing factor translocation after neurons were challenged with excitotoxic glutamate stimulation. Using different approaches including confocal imaging, mitochondrial DNA measurement and Western blot analysis of PGC-1 and NRF-1, we also found that NAD+ could significantly attenuate glutamate-induced mitochondrial fragmentation and the impairment of mitochondrial biogenesis. Furthermore, NAD+ treatment effectively inhibited mitochondrial membrane potential depolarization and NADH redistribution after excitotoxic glutamate stimulation. Taken together, our results demonstrated that NAD+ is capable of inhibiting apoptotic neuronal death after glutamate excitotoxicity via preserving mitochondrial biogenesis and integrity. Our findings provide insights into potential neuroprotective strategies in ischemic stroke.

  14. PICK1 Deficiency Impairs Secretory Vesicle Biogenesis and Leads to Growth Retardation and Decreased Glucose Tolerance

    PubMed Central

    Jansen, Anna M.; Jin, Chunyu; Rickhag, Mattias; Lund, Viktor K.; Jensen, Morten; Bhatia, Vikram; Sørensen, Gunnar; Madsen, Andreas N.; Xue, Zhichao; Møller, Siri K.; Woldbye, David; Qvortrup, Klaus; Huganir, Richard; Stamou, Dimitrios; Kjærulff, Ole; Gether, Ulrik

    2013-01-01

    Secretory vesicles in endocrine cells store hormones such as growth hormone (GH) and insulin before their release into the bloodstream. The molecular mechanisms governing budding of immature secretory vesicles from the trans-Golgi network (TGN) and their subsequent maturation remain unclear. Here, we identify the lipid binding BAR (Bin/amphiphysin/Rvs) domain protein PICK1 (protein interacting with C kinase 1) as a key component early in the biogenesis of secretory vesicles in GH-producing cells. Both PICK1-deficient Drosophila and mice displayed somatic growth retardation. Growth retardation was rescued in flies by reintroducing PICK1 in neurosecretory cells producing somatotropic peptides. PICK1-deficient mice were characterized by decreased body weight and length, increased fat accumulation, impaired GH secretion, and decreased storage of GH in the pituitary. Decreased GH storage was supported by electron microscopy showing prominent reduction in secretory vesicle number. Evidence was also obtained for impaired insulin secretion associated with decreased glucose tolerance. PICK1 localized in cells to immature secretory vesicles, and the PICK1 BAR domain was shown by live imaging to associate with vesicles budding from the TGN and to possess membrane-sculpting properties in vitro. In mouse pituitary, PICK1 co-localized with the BAR domain protein ICA69, and PICK1 deficiency abolished ICA69 protein expression. In the Drosophila brain, PICK1 and ICA69 co-immunoprecipitated and showed mutually dependent expression. Finally, both in a Drosophila model of type 2 diabetes and in high-fat-diet-induced obese mice, we observed up-regulation of PICK1 mRNA expression. Our findings suggest that PICK1, together with ICA69, is critical during budding of immature secretory vesicles from the TGN and thus for vesicular storage of GH and possibly other hormones. The data link two BAR domain proteins to membrane remodeling processes in the secretory pathway of peptidergic endocrine

  15. Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis.

    PubMed

    Dresios, John; Aschrafi, Armaz; Owens, Geoffrey C; Vanderklish, Peter W; Edelman, Gerald M; Mauro, Vincent P

    2005-02-08

    The expression of Rbm3, a glycine-rich RNA-binding protein, is enhanced under conditions of mild hypothermia, and Rbm3 has been postulated to facilitate protein synthesis at colder temperatures. To investigate this possibility, Rbm3 was overexpressed as a c-Myc fusion protein in mouse neuroblastoma N2a cells. Cells expressing this fusion protein showed a 3-fold increase in protein synthesis at both 37 degrees C and 32 degrees C compared with control cells. Although polysome profiles of cells expressing the fusion protein and control cells were similar, several differences were noted, suggesting that Rbm3 might enhance the association of 40S and 60S ribosomal subunits at 32 degrees C. Studies to assess a direct interaction of Rbm3 with ribosomes showed that a fraction of Rbm3 was associated with 60S ribosomal subunits in an RNA-independent manner. It appeared unlikely that this association could explain the global enhancement of protein synthesis, however, because cells expressing the Rbm3 fusion protein showed no substantial increase in the size of their monosome and polysome peaks, suggesting that similar numbers of mRNAs were being translated at approximately the same rates. In contrast, a complex that sedimented between the top of the gradient and 40S subunits was less abundant in cells expressing recombinant Rbm3. Further analysis showed that the RNA component of this fraction was microRNA. We discuss the possibility that Rbm3 expression alters global protein synthesis by affecting microRNA levels and suggest that both Rbm3 and microRNAs are part of a homeostatic mechanism that regulates global levels of protein synthesis under normal and cold-stress conditions.

  16. Augmentation of aerobic respiration and mitochondrial biogenesis in skeletal muscle by hypoxia preconditioning with cobalt chloride.

    PubMed

    Saxena, Saurabh; Shukla, Dhananjay; Bansal, Anju

    2012-11-01

    High altitude/hypoxia training is known to improve physical performance in athletes. Hypoxia induces hypoxia inducible factor-1 (HIF-1) and its downstream genes that facilitate hypoxia adaptation in muscle to increase physical performance. Cobalt chloride (CoCl₂), a hypoxia mimetic, stabilizes HIF-1, which otherwise is degraded in normoxic conditions. We studied the effects of hypoxia preconditioning by CoCl₂ supplementation on physical performance, glucose metabolism, and mitochondrial biogenesis using rodent model. The results showed significant increase in physical performance in cobalt supplemented rats without (two times) or with training (3.3 times) as compared to control animals. CoCl₂ supplementation in rats augmented the biological activities of enzymes of TCA cycle, glycolysis and cytochrome c oxidase (COX); and increased the expression of glucose transporter-1 (Glut-1) in muscle showing increased glucose metabolism by aerobic respiration. There was also an increase in mitochondrial biogenesis in skeletal muscle observed by increased mRNA expressions of mitochondrial biogenesis markers which was further confirmed by electron microscopy. Moreover, nitric oxide production increased in skeletal muscle in cobalt supplemented rats, which seems to be the major reason for peroxisome proliferator activated receptor-gamma coactivator-1α (PGC-1α) induction and mitochondrial biogenesis. Thus, in conclusion, we state that hypoxia preconditioning by CoCl₂ supplementation in rats increases mitochondrial biogenesis, glucose uptake and metabolism by aerobic respiration in skeletal muscle, which leads to increased physical performance. The significance of this study lies in understanding the molecular mechanism of hypoxia adaptation and improvement of work performance in normal as well as extreme conditions like hypoxia via hypoxia preconditioning.

  17. THE UNFOLDED PROTEIN RESPONSE IN RELATION TO MITOCHONDRIAL BIOGENESIS IN SKELETAL MUSCLE CELLS.

    PubMed

    Mesbah Moosavi, Zahra S; Hood, David A

    2017-03-08

    Mitochondria are comprised of both nuclear- and mitochondrially-encoded proteins requiring precise stoichiometry for their integration into functional complexes. The augmented protein synthesis associated with mitochondrial biogenesis results in the accumulation of unfolded proteins, thus triggering cellular stress. As such, the unfolded protein responses emanating from the endoplasmic reticulum (UPR(ER)) or the mitochondrion (UPR(MT)) are triggered to ensure correct protein handling. Whether this response is necessary for mitochondrial adaptations is unknown. Two models of mitochondrial biogenesis were used: muscle differentiation and chronic contractile activity (CCA) in murine muscle cells. After 4 days of differentiation, our findings depict selective activation of the UPR(MT) in which chaperones decreased, however Sirt3 and UPR(ER) markers were elevated. To delineate the role of ER stress in mitochondrial adaptations, the ER stress inhibitor TUDCA was administered. Surprisingly, mitochondrial markers COX-I, COX-IV, and PGC-1α protein levels were augmented up to 1.5-fold above that of vehicle-treated cells. Similar results were obtained in myotubes undergoing CCA in which biogenesis was enhanced by ~2-3-fold, along with elevated UPR(MT) markers Sirt3 and CPN10. To verify whether the findings were attributable to the terminal UPRER branch directed by the transcription factor CHOP, cells were transfected with CHOP siRNA. Basally, COX-I levels increased (~20%) and COX-IV decreased (~30%), suggesting that CHOP influences mitochondrial composition. This effect was fully restored by CCA. Therefore, our results suggest that mitochondrial biogenesis is independent of the terminal UPR(ER) Under basal conditions CHOP is required for the maintenance of mitochondrial composition, but not for differentiation- or CCA-induced mitochondrial biogenesis.

  18. Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA

    PubMed Central

    Connolly, Keith; Rife, Jason P.; Culver, Gloria

    2009-01-01

    Summary While the general blueprint of ribosome biogenesis is evolutionarily conserved, most details have diverged considerably. A striking exception to this divergence is the universally conserved KsgA/Dim1p enzyme family, which modifies two adjacent adenosines in the terminal helix of small subunit ribosomal RNA (rRNA). While localization of KsgA on 30S subunits (SSUs) and genetic interaction data have suggested that KsgA acts as a ribosome biogenesis factor, mechanistic details and a rationale for its extreme conservation are still lacking. To begin to address these questions we have characterized the function of E. coli KsgA in vivo using both a ksgA deletion strain and a methyltransferase deficient form of this protein. Our data reveals cold sensitivity and altered ribosomal profiles are associated with a ΔksgA genotype in E. coli. Our work also indicates that loss of KsgA alters 16S rRNA processing. These findings allow KsgAs role in SSU biogenesis to be integrated into the network of other identified factors. Moreover, a methyltransferase-inactive form of KsgA, which we show to be deleterious to cell growth, profoundly impairs ribosome biogenesis prompting discussion of KsgA as a possible anti-microbial drug target. These unexpected data suggest that methylation is a second layer of function for KsgA and that its critical role is as a supervisor of biogenesis of SSUs in vivo. These new findings and this proposed regulatory role offer a mechanistic explanation for the extreme conservation of the KsgA/Dim1p enzyme family. PMID:18990185

  19. Defects in Mitochondrial Fatty Acid Synthesis Result in Failure of Multiple Aspects of Mitochondrial Biogenesis in Saccharomyces cerevisiae

    PubMed Central

    Kursu, V. A. Samuli; Pietikäinen, Laura P.; Fontanesi, Flavia; Aaltonen, Mari J.; Suomi, Fumi; Nair, Remya Raghavan; Schonauer, Melissa S.; Dieckmann, Carol L.; Barrientos, Antoni; Hiltunen, J. Kalervo; Kastaniotis, Alexander J.

    2014-01-01

    Summary Mitochondrial fatty acid synthesis (mtFAS) shares acetyl-CoA with the Krebs cycle as a common substrate and is required for the production of octanoic acid (C8) precursors of lipoic acid (LA) in mitochondria. MtFAS is a conserved pathway essential for respiration. In a genetic screen in Saccharomyces cerevisiae designed to further elucidate the physiological role of mtFAS, we isolated mutants with defects in mitochondrial post-translational gene expression processes, indicating a novel link to mitochondrial gene expression and respiratory chain biogenesis. In our ensuing analysis, we show that mtFAS, but not lipoylation per se, is required for respiratory competence. We demonstrate that mtFAS is required for mRNA splicing, mitochondrial translation and respiratory complex assembly, and provide evidence that not LA per se, but fatty acids longer than C8 play a role in these processes. We also show that mtFAS- and LA-deficient strains suffer from a mild heme deficiency that may contribute to the respiratory complex assembly defect. Based on our data and previously published information, we propose a model implicating mtFAS as a sensor for mitochondrial acetyl-CoA availability and a coordinator of nuclear and mitochondrial gene expression by adapting the mitochondrial compartment to changes in the metabolic status of the cell. PMID:24102902

  20. Age associated low mitochondrial biogenesis may be explained by lack of response of PGC-1α to exercise training.

    PubMed

    Derbré, Frederic; Gomez-Cabrera, Mari Carmen; Nascimento, Ana Lucia; Sanchis-Gomar, Fabian; Martinez-Bello, Vladimir Essau; Tresguerres, Jesus A F; Fuentes, Teresa; Gratas-Delamarche, Arlette; Monsalve, Maria; Viña, Jose

    2012-06-01

    Low mitochondriogenesis is critical to explain loss of muscle function in aging and in the development of frailty. The aim of this work was to explain the mechanism by which mitochondriogenesis is decreased in aging and to determine to which extent it may be prevented by exercise training. We used aged rats and compared them with peroxisome proliferator-activated receptor-γ coactivator-1α deleted mice (PGC-1α KO). PGC-1α KO mice showed a significant decrease in the mitochondriogenic pathway in muscle. In aged rats, we found a loss of exercise-induced expression of PGC-1α, nuclear respiratory factor-1 (NRF-1), and of cytochrome C. Thus muscle mitochondriogenesis, which is activated by exercise training in young animals, is not in aged or PGC-1α KO ones. Other stimuli to increase PGC-1α synthesis apart from exercise training, namely cold induction or thyroid hormone treatment, were effective in young rats but not in aged ones. To sum up, the low mitochondrial biogenesis associated with aging may be due to the lack of response of PGC-1α to different stimuli. Aged rats behave as PGC-1α KO mice. Results reported here highlight the role of PGC-1α in the loss of mitochondriogenesis associated with aging and point to this important transcriptional coactivator as a target for pharmacological interventions to prevent age-associated sarcopenia.

  1. Acyl-CoA N-acyltransferase influences fertility by regulating lipid metabolism and jasmonic acid biogenesis in cotton

    PubMed Central

    Fu, Wenfeng; Shen, Ying; Hao, Juan; Wu, Jianyong; Ke, Liping; Wu, Caiyun; Huang, Kai; Luo, Binglun; Xu, Mingfeng; Cheng, Xiaofei; Zhou, Xueping; Sun, Jie; Xing, Chaozhu; Sun, Yuqiang

    2015-01-01

    Cotton (Gossypium spp.) is an important economic crop and there is obvious heterosis in cotton, fertility has played an important role in this heterosis. However, the genes that exhibit critical roles in anther development and fertility are not well understood. Here, we report an acyl-CoA N-acyltransferase (EC2.3; GhACNAT) that plays a key role in anther development and fertility. Suppression of GhACNAT by virus-induced gene silencing in transgenic cotton (G. hirsutum L. cv. C312) resulted in indehiscent anthers that were full of pollen, diminished filaments and stamens, and plant sterility. We found GhACNAT was involved in lipid metabolism and jasmonic acid (JA) biosynthesis. The genes differentially expressed in GhACNAT-silenced plants and C312 were mainly involved in catalytic activity and transcription regulator activity in lipid metabolism. In GhACNAT-silenced plants, the expression levels of genes involved in lipid metabolism and jasmonic acid biosynthesis were significantly changed, the amount of JA in leaves and reproductive organs was significantly decreased compared with the amounts in C312. Treatments with exogenous methyl jasmonate rescued anther dehiscence and pollen release in GhACNAT-silenced plants and caused self-fertility. The GhACNAT gene may play an important role in controlling cotton fertility by regulating the pathways of lipid synthesis and JA biogenesis. PMID:26134787

  2. Up-regulation of ribosome biogenesis by MIR196A2 genetic variation promotes endometriosis development and progression

    PubMed Central

    Yang, Ching-Wen; Chang, Hui-Wen; Lu, Cheng-Chan; Chen, Chih-Mei; Chan, Carmen; Chung, Ching; Tseng, Chun-Cheng; Hwang, Tritium; Sheu, Jim Jinn-Chyuan; Tsai, Fuu-Jen

    2016-01-01

    Aberrant miRNA expression has been reported in endometriosis and miRNA gene polymorphisms have been linked to cancer. Because certain ovarian cancers arise from endometriosis, we genotyped seven cancer-related miRNA single nucleotide polymorphisms (MiRSNPs) to investigate their possible roles in endometriosis. Genetic variants in MIR196A2 (rs11614913) and MIR100 (rs1834306) were found to be associated with endometriosis development and related clinical phenotypes, such as infertility and pain. Downstream analysis of the MIR196A2 risk allele revealed upregulation of rRNA editing and protein synthesis genes, suggesting hyper-activation of ribosome biogenesis as a driving force for endometriosis progression. Clinical studies confirmed higher levels of small nucleolar RNAs and ribosomal proteins in atypical endometriosis lesions, and this was more pronounced in the associated ovarian clear cell carcinomas. Treating ovarian clear cells with CX5461, an RNA polymerase I inhibitor, suppressed cell growth and mobility followed by cell cycle arrest at G2/M stage and apoptosis. Our study thus uncovered a novel tumorigenesis pathway triggered by the cancer-related MIR196A2 risk allele during endometriosis development and progression. We suggest that anti-RNA polymerase I therapy may be efficacious for treating endometriosis and associated malignancies. PMID:27741504

  3. Vreteno, a gonad-specific protein, is essential for germline development and primary piRNA biogenesis in Drosophila

    PubMed Central

    Zamparini, Andrea L.; Davis, Marie Y.; Malone, Colin D.; Vieira, Eric; Zavadil, Jiri; Sachidanandam, Ravi; Hannon, Gregory J.; Lehmann, Ruth

    2011-01-01

    In Drosophila, Piwi proteins associate with Piwi-interacting RNAs (piRNAs) and protect the germline genome by silencing mobile genetic elements. This defense system acts in germline and gonadal somatic tissue to preserve germline development. Genetic control for these silencing pathways varies greatly between tissues of the gonad. Here, we identified Vreteno (Vret), a novel gonad-specific protein essential for germline development. Vret is required for piRNA-based transposon regulation in both germline and somatic gonadal tissues. We show that Vret, which contains Tudor domains, associates physically with Piwi and Aubergine (Aub), stabilizing these proteins via a gonad-specific mechanism that is absent in other fly tissues. In the absence of vret, Piwi-bound piRNAs are lost without changes in piRNA precursor transcript production, supporting a role for Vret in primary piRNA biogenesis. In the germline, piRNAs can engage in an Aub- and Argonaute 3 (AGO3)-dependent amplification in the absence of Vret, suggesting that Vret function can distinguish between primary piRNAs loaded into Piwi-Aub complexes and piRNAs engaged in the amplification cycle. We propose that Vret plays an essential role in transposon regulation at an early stage of primary piRNA processing. PMID:21831924

  4. Dynamin and clathrin are required for the biogenesis of a distinct class of secretory vesicles in yeast.

    PubMed

    Gurunathan, Sangiliyandi; David, Doris; Gerst, Jeffrey E

    2002-02-15

    Yeast produce two classes of secretory vesicles (SVs) that differ in both density and cargo protein content. In late-acting secretory mutants (e.g. snc1(ala43) and sec6-4), both low- (LDSV) and high-density (HDSV) classes of vesicles accumulate at restrictive temperatures. Here, we have found that disruptions in the genes encoding a dynamin-related protein (VPS1) or clathrin heavy chain (CHC1) abolish HDSV production, yielding LDSVs that contain all secreted cargos. Interestingly, disruption of the PEP12 gene, which encodes the t-SNARE that mediates all Golgi to pre-vacuolar compartment (PVC) transport, also abolishes HDSV production. In contrast, deletions in genes that selectively confer vacuolar hydrolase sorting to the PVC or protein transport to the vacuole (i.e. VPS34 and VAM3, respectively) have no effect. Thus, one branch of the secretory pathway in yeast involves an intermediate sorting compartment and has a specific requirement for clathrin and a dynamin-related protein in SV biogenesis.

  5. Novel structural co-expression analysis linking the NPM1-associated ribosomal biogenesis network to chronic myelogenous leukemia

    PubMed Central

    Chan, Lawrence WC; Lin, Xihong; Yung, Godwin; Lui, Thomas; Chiu, Ya Ming; Wang, Fengfeng; Tsui, Nancy BY; Cho, William CS; Yip, SP; Siu, Parco M.; Wong, SC Cesar; Yung, Benjamin YM

    2015-01-01

    Co-expression analysis reveals useful dysregulation patterns of gene cooperativeness for understanding cancer biology and identifying new targets for treatment. We developed a structural strategy to identify co-expressed gene networks that are important for chronic myelogenous leukemia (CML). This strategy compared the distributions of expressional correlations between CML and normal states, and it identified a data-driven threshold to classify strongly co-expressed networks that had the best coherence with CML. Using this strategy, we found a transcriptome-wide reduction of co-expression connectivity in CML, reflecting potentially loosened molecular regulation. Conversely, when we focused on nucleophosmin 1 (NPM1) associated networks, NPM1 established more co-expression linkages with BCR-ABL pathways and ribosomal protein networks in CML than normal. This finding implicates a new role of NPM1 in conveying tumorigenic signals from the BCR-ABL oncoprotein to ribosome biogenesis, affecting cellular growth. Transcription factors may be regulators of the differential co-expression patterns between CML and normal. PMID:26205693

  6. Functional role of bdm during flagella biogenesis in Escherichia coli.

    PubMed

    Kim, Ji-Sun; Kim, Yu Jin; Seo, Sojin; Seong, Maeng-Je; Lee, Kangseok

    2015-03-01

    The biofilm-dependent modulation gene (bdm) has recently been shown to play a role in osmotic-induced formation of biofilm in Escherichia coli. In this study, we demonstrated that deletion of bdm results in down-regulation of flagella biosynthesis genes and, consequently, a defect in E. coli motility. In addition, we employed atomic force microscopy to confirm the absence of flagella-like structures on the surface of bdm-null cells. These findings indicate that bdm plays a key role in regulatory pathway for the formation of flagella.

  7. Defining functional interactions during biogenesis of epithelial junctions

    PubMed Central

    Erasmus, J. C.; Bruche, S.; Pizarro, L.; Maimari, N.; Pogglioli, T.; Tomlinson, C.; Lees, J.; Zalivina, I.; Wheeler, A.; Alberts, A.; Russo, A.; Braga, V. M. M.

    2016-01-01

    In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. PMID:27922008

  8. Evaluation of the effects of Streptococcus mutans chaperones and protein secretion machinery components on cell surface protein biogenesis, competence, and mutacin production.

    PubMed

    Crowley, P J; Brady, L J

    2016-02-01

    The respective contributions of components of the protein translocation/maturation machinery to cell surface biogenesis in Streptococcus mutans are not fully understood. Here we used a genetic approach to characterize the effects of deletion of genes encoding the ribosome-associated chaperone RopA (Trigger Factor), the surface-localized foldase PrsA, and the membrane-localized chaperone insertases YidC1 and YidC2, both singly and in combination, on bacterial growth, chain length, self-aggregation, cell surface hydrophobicity, autolysis, and antigenicity of surface proteins P1 (AgI/II, PAc), WapA, GbpC, and GtfD. The single and double deletion mutants, as well as additional mutant strains lacking components of the signal recognition particle pathway, were also evaluated for their effects on mutacin production and genetic competence.

  9. Evaluation of the effects of Streptococcus mutans chaperones and protein secretion machinery components on cell surface protein biogenesis, competence, and mutacin production

    PubMed Central

    Crowley, Paula J.; Brady, L. Jeannine

    2015-01-01

    Summary The respective contributions of components of the protein translocation/maturation machinery on cell surface biogenesis in Streptococcus mutans are not fully understood. Here we used a genetic approach to characterize the effects of deletion of genes encoding the ribosome-associated chaperone RopA (Trigger Factor), the surface-localized foldase PrsA, and the membrane-localized chaperone insertases YidC1 and YidC2, both singly and in combination, on bacterial growth, chain length, self-aggregation, cell surface hydrophobicity, autolysis, and antigenicity of surface proteins P1 (AgI/II, PAc), WapA, GbpC and GtfD. The single and double deletion mutants, as well as additional mutant strains lacking components of the signal recognition particle (SRP) pathway, were also evaluated for effects on mutacin production and genetic competence. PMID:26386361

  10. The SUFBC2 D complex is required for the biogenesis of all major classes of plastid Fe-S proteins.

    PubMed

    Hu, Xueyun; Kato, Yukako; Sumida, Akihiro; Tanaka, Ayumi; Tanaka, Ryouichi

    2017-04-01

    Iron-sulfur (Fe-S) proteins play crucial roles in plastids, participating in photosynthesis and other metabolic pathways. Fe-S clusters are thought to be assembled on a scaffold complex composed of SUFB, SUFC and SUFD proteins. However, several additional proteins provide putative scaffold functions in plastids, and, therefore, the contribution of SUFB, C and D proteins to overall Fe-S assembly still remains unclear. In order to gain insights regarding Fe-S cluster biosynthesis in plastids, we analyzed the complex composed of SUFB, C and D in Arabidopsis by blue native-polyacrylamide gel electrophoresis. Using this approach, a major complex of 170 kDa containing all subunits was detected, indicating that these proteins constitute a SUFBC2 D complex similar to their well characterized bacterial counterparts. The functional effects of SUFB, SUFC or SUFD depletion were analyzed using an inducible RNAi silencing system to specifically target the aforementioned components; resulting in a decrease of various plastidic Fe-S proteins including the PsaA/B and PsaC subunits of photosystem I, ferredoxin and glutamine oxoglutarate aminotransferase. In contrast, the knockout of potential Fe-S scaffold proteins, NFU2 and HCF101, resulted in a specific decrease in the PsaA/B and PsaC levels. These results indicate that the functions of SUFB, SUFC and SUFD for Fe-S cluster biosynthesis cannot be replaced by other scaffold proteins and that SUFBC2 D, NFU2 and HCF101 are involved in the same pathway for the biogenesis of PSI. Taken together, our results provide in vivo evidence supporting the hypothesis that SUFBC2 D is the major, and possibly sole scaffold in plastids.

  11. The role of calcium and calcium/calmodulin-dependent kinases in skeletal muscle plasticity and mitochondrial biogenesis.

    PubMed

    Chin, Eva R

    2004-05-01

    Intracellular Ca(2+) plays an important role in skeletal muscle excitation-contraction coupling and also in excitation-transcription coupling. Activity-dependent alterations in muscle gene expression as a result of increased load (i.e. resistance or endurance training) or decreased activity (i.e. immobilization or injury) are tightly linked to the level of muscle excitation. Differential expression of genes in slow- and fast-twitch fibres is also dependent on fibre activation. Both these biological phenomena are, therefore, tightly linked to the amplitude and duration of the Ca(2+) transient, a signal decoded downstream by Ca(2+)-dependent transcriptional pathways. Evidence is mounting that the calcineurin-nuclear factor of activated T-cells pathway and the Ca(2+)/calmodulin-dependent kinases (CaMK) II and IV play important roles in regulating oxidative enzyme expression, mitochondrial biogenesis and expression of fibre-type specific myofibrillar proteins. CaMKII is known to decode frequency-dependent information and is activated during hypertrophic growth and endurance adaptations. Thus, it was hypothesized that CaMKII, and possibly CaMKIV, are down regulated during muscle atrophy and levels of expression of CaMKII alpha, -II beta, -II gamma and -IV were assessed in skeletal muscles from young, aged and denervated rats. The results indicate that CaMKII gamma, but not CaMKIIalpha or -beta, is up regulated in aged and denervated soleus muscle and that CaMKIV is absent in skeletal but not cardiac muscle. Whether CaMKII gamma up-regulation is part of the pathology of wasting or a result of some adaptational response to atrophy is not known. Future studies will be important in determining whether insights from the adaptational response of muscle to increased loads will provide pharmacological approaches for increasing muscle strength or endurance to counter muscle wasting.

  12. Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis

    PubMed Central

    Paczkowski, Jon E.; Richardson, Brian C.; Fromme, J. Christopher

    2015-01-01

    Cargo adaptors sort transmembrane protein cargos into nascent vesicles by binding directly to their cytosolic domains. Recent studies have revealed previously unappreciated roles for cargo adaptors and regulatory mechanisms governing their function. The AP-1 and AP-2 clathrin adaptors switch between open and closed conformations that ensure they function at the right place at the right time. The exomer cargo adaptor plays a direct role in remodeling the membrane for vesicle fission. Several different cargo adaptors functioning in distinct trafficking pathways at the Golgi are similarly regulated through bivalent binding to the Arf1 GTPase, potentially enabling regulation by a threshold concentration of Arf1. Taken together, these studies highlight that cargo adaptors do more than just adapt cargos. PMID:25795254

  13. Redox processes controlling the biogenesis of c-type cytochromes.

    PubMed

    Bonnard, Géraldine; Corvest, Vincent; Meyer, Etienne H; Hamel, Patrice P

    2010-11-01

    In mitochondria, two mono heme c-type cytochromes are essential electron shuttles of the respiratory chain. They are characterized by the covalent attachment of their heme C to a CXXCH motif in the apoproteins. This post-translational modification occurs in the intermembrane space compartment. Dedicated assembly pathways have evolved to achieve this chemical reaction that requires a strict reducing environment. In mitochondria, two unrelated machineries operate, the rather simple System III in yeast and animals and System I in plants and some protozoans. System I is also found in bacteria and shares some common features with System II that operates in bacteria and plastids. This review aims at presenting how different systems control the chemical requirements for the heme ligation in the compartments where cytochrome c maturation takes place. A special emphasis will be given on the redox processes that are required for the heme attachment reaction onto apocytochromes c.

  14. Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis.

    PubMed

    Paczkowski, Jon E; Richardson, Brian C; Fromme, J Christopher

    2015-07-01

    Cargo adaptors sort transmembrane protein cargos into nascent vesicles by binding directly to their cytosolic domains. Recent studies have revealed previously unappreciated roles for cargo adaptors and regulatory mechanisms governing their function. The adaptor protein (AP)-1 and AP-2 clathrin adaptors switch between open and closed conformations that ensure they function at the right place at the right time. The exomer cargo adaptor has a direct role in remodeling the membrane for vesicle fission. Several different cargo adaptors functioning in distinct trafficking pathways at the Golgi are similarly regulated through bivalent binding to the ADP-ribosylation factor 1 (Arf1) GTPase, potentially enabling regulation by a threshold concentration of Arf1. Taken together, these studies highlight that cargo adaptors do more than just adapt cargos.

  15. Augmentation of aerobic respiration and mitochondrial biogenesis in skeletal muscle by hypoxia preconditioning with cobalt chloride

    SciTech Connect

    Saxena, Saurabh; Shukla, Dhananjay; Bansal, Anju

    2012-11-01

    High altitude/hypoxia training is known to improve physical performance in athletes. Hypoxia induces hypoxia inducible factor-1 (HIF-1) and its downstream genes that facilitate hypoxia adaptation in muscle to increase physical performance. Cobalt chloride (CoCl{sub 2}), a hypoxia mimetic, stabilizes HIF-1, which otherwise is degraded in normoxic conditions. We studied the effects of hypoxia preconditioning by CoCl{sub 2} supplementation on physical performance, glucose metabolism, and mitochondrial biogenesis using rodent model. The results showed significant increase in physical performance in cobalt supplemented rats without (two times) or with training (3.3 times) as compared to control animals. CoCl{sub 2} supplementation in rats augmented the biological activities of enzymes of TCA cycle, glycolysis and cytochrome c oxidase (COX); and increased the expression of glucose transporter-1 (Glut-1) in muscle showing increased glucose metabolism by aerobic respiration. There was also an increase in mitochondrial biogenesis in skeletal muscle observed by increased mRNA expressions of mitochondrial biogenesis markers which was further confirmed by electron microscopy. Moreover, nitric oxide production increased in skeletal muscle in cobalt supplemented rats, which seems to be the major reason for peroxisome proliferator activated receptor-gamma coactivator-1α (PGC-1α) induction and mitochondrial biogenesis. Thus, in conclusion, we state that hypoxia preconditioning by CoCl{sub 2} supplementation in rats increases mitochondrial biogenesis, glucose uptake and metabolism by aerobic respiration in skeletal muscle, which leads to increased physical performance. The significance of this study lies in understanding the molecular mechanism of hypoxia adaptation and improvement of work performance in normal as well as extreme conditions like hypoxia via hypoxia preconditioning. -- Highlights: ► We supplemented rats with CoCl{sub 2} for 15 days along with training. ► Co

  16. Thrombopoietin-induced Dami cells as a model for alpha-granule biogenesis.

    PubMed

    Briquet-Laugier, Véronique; El Golli, Nargès; Nurden, Paquita; Lavenu-Bombled, Cécile; Dubart-Kupperschmitt, Anne; Nurden, Alan; Rosa, Jean-Philippe

    2004-09-01

    Megakaryocytic alpha-granules contain secretory proteins relevant to megakaryocyte and platelet functions. Understanding alpha-granule biogenesis is hampered because human primary megakaryocytes are difficult to manipulate. Existing promegakaryocytic cell lines do not spontaneously exhibit mature alpha-granules. Dami cells, transfected with the megakaryocytic platelet factor 4, fused to GFP (PF4-GFP), were induced in the presence of thrombopoietin (TPO), a megakaryocyte cytokine and PMA. Using confocal microscopy, PF4-GFP colocalized with von Willebrand Factor (vWF) in newly formed storage granules. Immunoelectron microscopy demonstrated alpha-granule-like features, including a dense core or parallel tubules and colocalization of PF4-GFP and vWF. Hence, TPO-treated Dami cells are a suitable model to study alpha-granules and their biogenesis.

  17. Amyloid beta-protein and lipid rafts: focused on biogenesis and catabolism.

    PubMed

    Araki, Wataru; Tamaoka, Akira

    2015-01-01

    Cerebral accumulation of amyloid β-protein (Aβ) is thought to play a key role in the molecular pathology of Alzheimer's disease (AD). Three secretases (β-, γ-, and α-secretase) are proteases that control the production of Aβ from amyloid precursor protein. Increasing evidence suggests that cholesterol-rich membrane microdomains termed 'lipid rafts' are involved in the biogenesis and accumulation of Aβ as well as Aβ-mediated neurotoxicity. γ-Secretase is enriched in lipid rafts, which are considered an important site for Aβ generation. Additionally, Aβ-degrading peptidases located in lipid rafts, such as neprilysin, appear to play a role in Aβ catabolism. This mini-review focuses on the roles of lipid rafts in the biogenesis and catabolism of Aβ, covering recent research on the relationship between lipid rafts and the three secretases or Aβ-degrading peptidases. Furthermore, the significance of lipid rafts in Aβ aggregation and neurotoxicity is briefly summarized.

  18. Lipophilic antioxidants prevent lipopolysaccharide-induced mitochondrial dysfunction through mitochondrial biogenesis improvement.

    PubMed

    Bullón, Pedro; Román-Malo, Lourdes; Marín-Aguilar, Fabiola; Alvarez-Suarez, José Miguel; Giampieri, Francesca; Battino, Maurizio; Cordero, Mario D

    2015-01-01

    Oxidative stress is implicated in several infectious diseases. In this regard, lipopolysaccharide (LPS), an endotoxic component, induces mitochondrial dysfunction and oxidative stress in several pathological events such as periodontal disease or sepsis. In our experiments, LPS-treated fibroblasts provoked increased oxidative stress, mitochondrial dysfunction, reduced oxygen consumption and mitochondrial biogenesis. After comparing coenzyme Q10 (CoQ10) and N-acetylcysteine (NAC), we observed a more significant protection of CoQ10 than of NAC, which was comparable with other lipophilic and hydrophilic antioxidants such as vitamin E or BHA respectively. CoQ10 improved mitochondrial biogenesis by activating PGC-1α and TFAM. This lipophilic antioxidant protection was observed in mice after LPS injection. These results show that mitochondria-targeted lipophilic antioxidants could be a possible specific therapeutic strategy in pharmacology in the treatment of infectious diseases and their complications.

  19. Targeting and biogenesis of transporters and channels in chloroplast envelope membranes: Unsolved questions.

    PubMed

    Oh, Young Jun; Hwang, Inhwan

    2015-07-01

    Chloroplasts produce carbohydrates, hormones, vitamins, amino acids, pigments, nucleotides, ATP, and secondary metabolites. Channels and transporters are required for the movement of molecules across the two chloroplast envelope membranes. These transporters and channel proteins are grouped into two different types, including β-barrel proteins and transmembrane-domain (TMD) containing proteins. Most β-barrel proteins are localized at the outer chloroplast membrane, and TMD-containing proteins are localized at the inner chloroplast membrane. Many of these transporters and channels are encoded by nuclear genes; therefore, they have to be imported into chloroplasts after translation on cytosolic ribosomes. These proteins should have specific targeting signals for their final destination in the chloroplast membrane and for assembly into specific complexes. In this review, we summarize recent progress in the identification, functional characterization, and biogenesis of transporters and channels at the chloroplast envelope membranes, and discuss outstanding questions regarding transporter and channel protein biogenesis.

  20. Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection

    PubMed Central

    Malireddi, R.K. Subbarao; Karki, Rajendra; Lupfer, Christopher; Gurung, Prajwal; Lamkanfi, Mohamed

    2016-01-01

    Lysosomal cathepsins regulate an exquisite range of biological functions, and their deregulation is associated with inflammatory, metabolic, and degenerative diseases in humans. In this study, we identified a key cell-intrinsic role for cathepsin B as a negative feedback regulator of lysosomal biogenesis and autophagy. Mice and macrophages lacking cathepsin B activity had increased resistance to the cytosolic bacterial pathogen Francisella novicida. Genetic deletion or pharmacological inhibition of cathepsin B down-regulated mechanistic target of rapamycin activity and prevented cleavage of the lysosomal calcium channel TRPML1. These events drove transcription of lysosomal and autophagy genes via transcription factor EB, which increased lysosomal biogenesis and activation of autophagy initiation kinase ULK1 for clearance of the bacteria. Our results identified a fundamental biological function of cathepsin B in providing a checkpoint for homeostatic maintenance of lysosome populations and basic recycling functions in the cell. PMID:27551156

  1. Data for a comparative proteomic analysis of chloroplast biogenesis (clb) mutants.

    PubMed

    de Luna-Valdez, L A; Martínez-Batallar, A G; Hernández-Ortiz, M; Encarnación-Guevara, S; Ramos-Vega, M; López-Bucio, J S; León, P; Guevara-García, A A

    2014-12-01

    This data article contains data related to the research article titled Proteomic analysis of chloroplast biogenesis (clb) mutants uncovers novel proteins potentially involved in the development of Arabidopsis thaliana chloroplasts (de Luna-Valdez et al., 2014) [1]. This research article describes the 2-D PAGE-based proteomic analysis of wild-type and four mutant lines (cla1-1, clb2, clb5 and clb19) affected in the development of Arabidopsis thaliana chloroplasts. The report concludes with the discovery of three proteins potentially involved in chloroplast biogenesis. The information presented here represent the tables and figures that detail the processing of the raw data obtained from the image analysis of the 2-D PAGE gels.

  2. Data for a comparative proteomic analysis of chloroplast biogenesis (clb) mutants

    PubMed Central

    de Luna-Valdez, L.A.; Martínez-Batallar, A.G.; Hernández-Ortiz, M.; Encarnación-Guevara, S.; Ramos-Vega, M.; López-Bucio, J.S.; León, P.; Guevara-García, A.A.

    2014-01-01

    This data article contains data related to the research article titled Proteomic analysis of chloroplast biogenesis (clb) mutants uncovers novel proteins potentially involved in the development ofArabidopsis thalianachloroplasts (de Luna-Valdez et al., 2014) [1]. This research article describes the 2-D PAGE-based proteomic analysis of wild-type and four mutant lines (cla1-1, clb2, clb5 and clb19) affected in the development of Arabidopsis thaliana chloroplasts. The report concludes with the discovery of three proteins potentially involved in chloroplast biogenesis. The information presented here represent the tables and figures that detail the processing of the raw data obtained from the image analysis of the 2-D PAGE gels. PMID:26217679

  3. Identifying components required for OMP biogenesis as novel targets for antiinfective drugs.

    PubMed

    Weirich, Johanna; Bräutigam, Cornelia; Mühlenkamp, Melanie; Franz-Wachtel, Mirita; Macek, Boris; Meuskens, Ina; Skurnik, Mikael; Leskinen, Katarzyna; Bohn, Erwin; Autenrieth, Ingo; Schütz, Monika

    2017-01-24

    The emergence of multiresistant Gram-negative bacteria requires new therapies for combating bacterial infections. Targeting the biogenesis of virulence factors could be an alternative strategy instead of killing bacteria with antibiotics. The outer membrane (OM) of Gram-negative bacteria acts as a physical barrier. At the same time it facilitates the exchange of molecules and harbors a multitude of proteins associated with virulence. In order to insert proteins into the OM, an essential oligomeric membrane-associated protein complex, the ß-barrel assembly machinery (BAM) is required. Being essential for the biogenesis of outer membrane proteins (OMPs) the BAM and also periplasmic chaperones may serve as attractive targets to develop novel antiinfective agents. Herein, we aimed to elucidate which proteins belonging to the OMP biogenesis machinery have the most important function in granting bacterial fitness, OM barrier function, facilitating biogenesis of dedicated virulence factors and determination of overall virulence. To this end we used the enteropathogen Yersinia enterocolitica as a model system. We individually knocked out all non-essential components of the BAM (BamB, C and E) as well as the periplasmic chaperones DegP, SurA and Skp. In summary, we found that the most profound phenotypes were produced by the loss of BamB or SurA with both knockouts resulting in significant attenuation or even avirulence of Ye in a mouse infection model. Thus, we assume that both BamB and SurA are promising targets for the development of new antiinfective drugs in the future.

  4. Yeast Mitochondria as a Model System to Study the Biogenesis of Bacterial β-Barrel Proteins.

    PubMed

    Ulrich, Thomas; Oberhettinger, Philipp; Autenrieth, Ingo B; Rapaport, Doron

    2015-01-01

    Beta-barrel proteins are found in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. The evolutionary conservation in the biogenesis of these proteins allows mitochondria to assemble bacterial β-barrel proteins in their functional form. In this chapter, we describe exemplarily how the capacity of yeast mitochondria to process the trimeric autotransporter YadA can be used to study the role of bacterial periplasmic chaperones in this process.

  5. Global identification of genes affecting iron-sulfur cluster biogenesis and iron homeostasis.

    PubMed

    Hidese, Ryota; Mihara, Hisaaki; Kurihara, Tatsuo; Esaki, Nobuyoshi

    2014-03-01

    Iron-sulfur (Fe-S) clusters are ubiquitous cofactors that are crucial for many physiological processes in all organisms. In Escherichia coli, assembly of Fe-S clusters depends on the activity of the iron-sulfur cluster (ISC) assembly and sulfur mobilization (SUF) apparatus. However, the underlying molecular mechanisms and the mechanisms that control Fe-S cluster biogenesis and iron homeostasis are still poorly defined. In this study, we performed a global screen to identify the factors affecting Fe-S cluster biogenesis and iron homeostasis using the Keio collection, which is a library of 3,815 single-gene E. coli knockout mutants. The approach was based on radiolabeling of the cells with [2-(14)C]dihydrouracil, which entirely depends on the activity of an Fe-S enzyme, dihydropyrimidine dehydrogenase. We identified 49 genes affecting Fe-S cluster biogenesis and/or iron homeostasis, including 23 genes important only under microaerobic/anaerobic conditions. This study defines key proteins associated with Fe-S cluster biogenesis and iron homeostasis, which will aid further understanding of the cellular mechanisms that coordinate the processes. In addition, we applied the [2-(14)C]dihydrouracil-labeling method to analyze the role of amino acid residues of an Fe-S cluster assembly scaffold (IscU) as a model of the Fe-S cluster assembly apparatus. The analysis showed that Cys37, Cys63, His105, and Cys106 are essential for the function of IscU in vivo, demonstrating the potential of the method to investigate in vivo function of proteins involved in Fe-S cluster assembly.

  6. SIRT1 is required for mitochondrial biogenesis reprogramming in hypoxic human pulmonary arteriolar smooth muscle cells.

    PubMed

    Li, Pengyun; Liu, Yan; Burns, Nana; Zhao, Ke-Seng; Song, Rui

    2017-03-22

    Although recent studies have reported that mitochondria are putative oxygen sensors underlying hypoxic pulmonary vasoconstriction, little is known concerning the sirtuin 1 (SIRT1)-mediated mitochondrial biogenesis regulatory program in pulmonary arteriolar smooth muscle cells (PASMCs) during hypoxia/reoxygenation (H/R). We investigated the epigenetic regulatory mechanism of mitochondrial biogenesis and function in human PASMCs during H/R. Human PASMCs were exposed to hypoxia of 24-48 h and reoxygenation of 24-48 h. The expression of SIRT1 was reduced in a time-dependent manner. Mitochondrial transcription factor A (TFAM) expression was increased during hypoxia and decreased during reoxygenation, while the release of TFAM was increased in a time-dependent manner. Lentiviral overexpression of SIRT1 preserved SIRT3 deacetylase activity in human PASMCs exposed to H/R. Knockdown of PGC-1α suppressed the effect of SIRT1 on SIRT3 activity. Knockdown of SIRT3 abrogated SIRT1-mediated deacetylation of cyclophilin D (CyPD). Notably, knockdown of SIRT3 or PGC-1α suppressed the incremental effect of SIRT1 on mitochondrial TFAM, mitochondrial DNA (mtDNA) content and cellular ATP levels. Importantly, polydatin restored SIRT1 levels in human PASMCs exposed to H/R. Knockdown of SIRT1 suppressed the effect of polydatin on mitochondrial TFAM, mtDNA content and cellular ATP levels. In conclusion, SIRT1 expression is decreased in human PASMCs during H/R. TFAM expression in mitochondria is reduced and the release of TFAM is increased by H/R. PGC-1α/SIRT3/CyPD mediates the protective effect of SIRT1 on expression and release of TFAM and mitochondrial biogenesis and function. Polydatin improves mitochondrial biogenesis and function by enhancing SIRT1 expression in hypoxic human PASMCs.

  7. The effect of ethidium bromide and chloramphenicol on mitochondrial biogenesis in primary human fibroblasts

    SciTech Connect

    Kao, Li-Pin; Ovchinnikov, Dmitry; Wolvetang, Ernst

    2012-05-15

    The expression of mitochondrial components is controlled by an intricate interplay between nuclear transcription factors and retrograde signaling from mitochondria. The role of mitochondrial DNA (mtDNA) and mtDNA-encoded proteins in mitochondrial biogenesis is, however, poorly understood and thus far has mainly been studied in transformed cell lines. We treated primary human fibroblasts with ethidium bromide (EtBr) or chloramphenicol for six weeks to inhibit mtDNA replication or mitochondrial protein synthesis, respectively, and investigated how the cells recovered from these insults two weeks after removal of the drugs. Although cellular growth and mitochondrial gene expression were severely impaired after both inhibitor treatments we observed marked differences in mitochondrial structure, membrane potential, glycolysis, gene expression, and redox status between fibroblasts treated with EtBr and chloramphenicol. Following removal of the drugs we further detected clear differences in expression of both mtDNA-encoded genes and nuclear transcription factors that control mitochondrial biogenesis, suggesting that the cells possess different compensatory mechanisms to recover from drug-induced mitochondrial dysfunction. Our data reveal new aspects of the interplay between mitochondrial retrograde signaling and the expression of nuclear regulators of mitochondrial biogenesis, a process with direct relevance to mitochondrial diseases and chloramphenicol toxicity in humans. -- Highlights: ► Cells respond to certain environmental toxins by increasing mitochondrial biogenesis. ► We investigated the effect of Chloramphenicol and EtBr in primary human fibroblasts. ► Inhibiting mitochondrial protein synthesis or DNA replication elicit different effects. ► We provide novel insights into the cellular responses toxins and antibiotics.

  8. Altered skeletal muscle mitochondrial biogenesis but improved endurance capacity in trained OPA1-deficient mice

    PubMed Central

    Caffin, F; Prola, A; Piquereau, J; Novotova, M; David, DJ; Garnier, A; Fortin, D; Alavi, MV; Veksler, V; Ventura-Clapier, R; Joubert, F

    2013-01-01

    The role of OPA1, a GTPase dynamin protein mainly involved in the fusion of inner mitochondrial membranes, has been studied in many cell types, but only a few studies have been conducted on adult differentiated tissues such as cardiac or skeletal muscle cells. Yet OPA1 is highly expressed in these cells, and could play different roles, especially in response to an environmental stress like exercise. Endurance exercise increases energy demand in skeletal muscle and repeated activity induces mitochondrial biogenesis and activation of fusion–fission cycles for the synthesis of new mitochondria. But currently no study has clearly shown a link between mitochondrial dynamics and biogenesis. Using a mouse model of haploinsufficiency for the Opa1 gene (Opa1+/−), we therefore studied the impact of OPA1 deficiency on the adaptation ability of fast skeletal muscles to endurance exercise training. Our results show that, surprisingly, Opa1+/− mice were able to perform the same physical activity as control mice. However, the adaptation strategies of both strains after training differed: while in control mice mitochondrial biogenesis was increased as expected, in Opa1+/− mice this process was blunted. Instead, training in Opa1+/− mice led to an increase in endurance capacity, and a specific adaptive response involving a metabolic remodelling towards enhanced fatty acid utilization. In conclusion, OPA1 appears necessary for the normal adaptive response and mitochondrial biogenesis of skeletal muscle to training. This work opens new perspectives on the role of mitochondrial dynamics in skeletal muscle cells and during adaptation to stress. PMID:24042504

  9. The Interaction of Mitochondrial Biogenesis and Fission/Fusion Mediated by PGC-1α Regulates Rotenone-Induced Dopaminergic Neurotoxicity.

    PubMed

    Peng, Kaige; Yang, Likui; Wang, Jian; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Cai, Ying; Cui, Zhihong; Ao, Lin; Liu, Jinyi; Zou, Zhongmin; Sai, Yan; Cao, Jia

    2016-06-07

    Parkinson's disease is a common neurodegenerative disease in the elderly, and mitochondrial defects underlie the pathogenesis of PD. Impairment of mitochondrial homeostasis results in reactive oxygen species formation, which in turn can potentiate the accumulation of dysfunctional mitochondria, forming a vicious cycle in the neuron. Mitochondrial fission/fusion and biogenesis play important roles in maintaining mitochondrial homeostasis. It has been reported that PGC-1α is a powerful transcription factor that is widely involved in the regulation of mitochondrial biogenesis, oxidative stress, and other processes. Therefore, we explored mitochondrial biogenesis, mitochondrial fission/fusion, and especially PGC-1α as the key point in the signaling mechanism of their interaction in rotenone-induced dopamine neurotoxicity. The results showed that mitochondrial number and mass were reduced significantly, accompanied by alterations in proteins known to regulate mitochondrial fission/fusion (MFN2, OPA1, Drp1, and Fis1) and mitochondrial biogenesis (PGC-1α and mtTFA). Further experiments proved that inhibition of mitochondrial fission or promotion of mitochondrial fusion has protective effects in rotenone-induced neurotoxicity and also promotes mitochondrial biogenesis. By establishing cell models of PGC-1α overexpression and reduced expression, we found that PGC-1α can regulate MFN2 and Drp1 protein expression and phosphorylation to influence mitochondrial fission/fusion. In summary, it can be concluded that PGC-1α-mediated cross talk between mitochondrial biogenesis and fission/fusion contributes to rotenone-induced dopaminergic neurodegeneration.

  10. Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance.

    PubMed

    Salem, Ahmed F; Whitaker-Menezes, Diana; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P

    2012-11-15

    Here, we set out to test the novel hypothesis that increased mitochondrial biogenesis in epithelial cancer cells would "fuel" enhanced tumor growth. For this purpose, we generated MDA-MB-231 cells (a triple-negative human breast cancer cell line) overexpressing PGC-1α and MitoNEET, which are established molecules that drive mitochondrial biogenesis and increased mitochondrial oxidative phosphorylation (OXPHOS). Interestingly, both PGC-1α and MitoNEET increased the abundance of OXPHOS protein complexes, conferred autophagy resistance under conditions of starvation and increased tumor growth by up to ~3-fold. However, this increase in tumor growth was independent of neo-angiogenesis, as assessed by immunostaining and quantitation of vessel density using CD31 antibodies. Quantitatively similar increases in tumor growth were also observed by overexpression of PGC-1β and POLRMT in MDA-MB-231 cells, which are also responsible for mediating increased mitochondrial biogenesis. Thus, we propose that increased mitochondrial "power" in epithelial cancer cells oncogenically promotes tumor growth by conferring autophagy resistance. As such, PGC-1α, PGC-1β, mitoNEET and POLRMT should all be considered as tumor promoters or "metabolic oncogenes." Our results are consistent with numerous previous clinical studies showing that metformin (a weak mitochondrial "poison") prevents the onset of nearly all types of human cancers in diabetic patients. Therefore, metformin (a complex I inhibitor) and other mitochondrial inhibitors should be developed as novel anticancer therapies, targeting mitochondrial metabolism in cancer cells.

  11. All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes[S

    PubMed Central

    Tourniaire, Franck; Musinovic, Hana; Gouranton, Erwan; Astier, Julien; Marcotorchino, Julie; Arreguin, Andrea; Bernot, Denis; Palou, Andreu; Bonet, M. Luisa; Ribot, Joan; Landrier, Jean-François

    2015-01-01

    A positive effect of all-trans retinoic acid (ATRA) on white adipose tissue (WAT) oxidative and thermogenic capacity has been described and linked to an in vivo fat-lowering effect of ATRA in mice. However, little is known about the effects of ATRA on mitochondria in white fat. Our objective has been to characterize the effect of ATRA on mitochondria biogenesis and oxidative phosphorylation (OXPHOS) capacity in mature white adipocytes. Transcriptome analysis, oxygraphy, analysis of mitochondrial DNA (mtDNA), and flow cytometry-based analysis of mitochondria density were performed in mature 3T3-L1 adipocytes after 24 h incubation with ATRA (2 µM) or vehicle. Selected genes linked to mitochondria biogenesis and function and mitochondria immunostaining were analyzed in WAT tissues of ATRA-treated as compared with vehicle-treated mice. ATRA upregulated the expression of a large set of genes linked to mtDNA replication and transcription, mitochondrial biogenesis, and OXPHOS in adipocytes, as indicated by transcriptome analysis. Oxygen consumption rate, mtDNA content, and staining of mitochondria were increased in the ATRA-treated adipocytes. Similar results were obtained in WAT depots of ATRA-treated mice. We conclude that ATRA impacts mitochondria in adipocytes, leading to increased OXPHOS capacity and mitochondrial content in these cells. PMID:25914170

  12. Plasticity of archaeal C/D box sRNA biogenesis.

    PubMed

    Tripp, Vanessa; Martin, Roman; Orell, Alvaro; Alkhnbashi, Omer S; Backofen, Rolf; Randau, Lennart

    2017-01-01

    Archaeal and eukaryotic organisms contain sets of C/D box s(no)RNAs with guide sequences that determine ribose 2'-O-methylation sites of target RNAs. The composition of these C/D box sRNA sets is highly variable between organisms and results in varying RNA modification patterns which are important for ribosomal RNA folding and stability. Little is known about the genomic organization of C/D box sRNA genes in archaea. Here, we aimed to obtain first insights into the biogenesis of these archaeal C/D box sRNAs and analyzed the genetic context of more than 300 archaeal sRNA genes. We found that the majority of these genes do not possess independent promoters but are rather located at positions that allow for co-transcription with neighboring genes and their start or stop codons were frequently incorporated into the conserved boxC and D motifs. The biogenesis of plasmid-encoded C/D box sRNA variants was analyzed in vivo in Sulfolobus acidocaldarius. It was found that C/D box sRNA maturation occurs independent of their genetic context and relies solely on the presence of intact RNA kink-turn structures. The observed plasticity of C/D box sRNA biogenesis is suggested to enable their accelerated evolution and, consequently, allow for adjustments of the RNA modification landscape.

  13. A new live-cell reporter strategy to simultaneously monitor mitochondrial biogenesis and morphology.

    PubMed

    Hodneland Nilsson, Linn Iren; Nitschke Pettersen, Ina Katrine; Nikolaisen, Julie; Micklem, David; Avsnes Dale, Hege; Vatne Røsland, Gro; Lorens, James; Tronstad, Karl Johan

    2015-11-24

    Changes in mitochondrial amount and shape are intimately linked to maintenance of cell homeostasis via adaptation of vital functions. Here, we developed a new live-cell reporter strategy to simultaneously monitor mitochondrial biogenesis and morphology. This was achieved by making a genetic reporter construct where a master regulator of mitochondrial biogenesis, nuclear respiratory factor 1 (NRF-1), controls expression of mitochondria targeted green fluorescent protein (mitoGFP). HeLa cells with the reporter construct demonstrated inducible expression of mitoGFP upon activation of AMP-dependent protein kinase (AMPK) with AICAR. We established stable reporter cells where the mitoGFP reporter activity corresponded with mitochondrial biogenesis both in magnitude and kinetics, as confirmed by biochemical markers and confocal microscopy. Quantitative 3D image analysis confirmed accordant increase in mitochondrial biomass, in addition to filament/network promoting and protecting effects on mitochondrial morphology, after treatment with AICAR. The level of mitoGFP reversed upon removal of AICAR, in parallel with decrease in mtDNA. In summary, we here present a new GFP-based genetic reporter strategy to study mitochondrial regulation and dynamics in living cells. This combinatorial reporter concept can readily be transferred to other cell models and contexts to address specific physiological mechanisms.

  14. Sulforaphane induces differential modulation of mitochondrial biogenesis and dynamics in normal cells and tumor cells.

    PubMed

    Negrette-Guzmán, Mario; Huerta-Yepez, Sara; Vega, Mario I; León-Contreras, Juan Carlos; Hernández-Pando, Rogelio; Medina-Campos, Omar Noel; Rodríguez, Esteban; Tapia, Edilia; Pedraza-Chaverri, José

    2017-02-01

    Antioxidant-based chemotherapy has been intensely debated. Herein, we show that sulforaphane (SFN) induced mitochondrial biogenesis followed by mitochondrial fusion in a kidney cell line commonly used in nephroprotective models. At the same concentration and exposure time, SFN induced cell death in prostate cancer cells accompanied by mitochondrial biogenesis and fragmentation. Stabilization of the nuclear factor E2-related factor-2 (Nrf2) could be associated with these effects in the tumor cell line. An increase in the peroxisome proliferator-activated receptor-γ co-activator-1α (PGC1α) level and a decrease in the hypoxia-inducible factor-1α (HIF1α) level would suggest a possible metabolic shift. The knockdown in the nuclear respiratory factor-1 (NRF1) attenuated the SFN-induced effect on prostate cancer cells demonstrating that mitochondrial biogenesis plays an important role in cell death for this kind of tumor cells. This evidence supports SFN as a potential antineoplastic agent that could inhibit tumor development and could protect normal tissues by modulating common processes.

  15. All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes.

    PubMed

    Tourniaire, Franck; Musinovic, Hana; Gouranton, Erwan; Astier, Julien; Marcotorchino, Julie; Arreguin, Andrea; Bernot, Denis; Palou, Andreu; Bonet, M Luisa; Ribot, Joan; Landrier, Jean-François

    2015-06-01

    A positive effect of all-trans retinoic acid (ATRA) on white adipose tissue (WAT) oxidative and thermogenic capacity has been described and linked to an in vivo fat-lowering effect of ATRA in mice. However, little is known about the effects of ATRA on mitochondria in white fat. Our objective has been to characterize the effect of ATRA on mitochondria biogenesis and oxidative phosphorylation (OXPHOS) capacity in mature white adipocytes. Transcriptome analysis, oxygraphy, analysis of mitochondrial DNA (mtDNA), and flow cytometry-based analysis of mitochondria density were performed in mature 3T3-L1 adipocytes after 24 h incubation with ATRA (2 µM) or vehicle. Selected genes linked to mitochondria biogenesis and function and mitochondria immunostaining were analyzed in WAT tissues of ATRA-treated as compared with vehicle-treated mice. ATRA upregulated the expression of a large set of genes linked to mtDNA replication and transcription, mitochondrial biogenesis, and OXPHOS in adipocytes, as indicated by transcriptome analysis. Oxygen consumption rate, mtDNA content, and staining of mitochondria were increased in the ATRA-treated adipocytes. Similar results were obtained in WAT depots of ATRA-treated mice. We conclude that ATRA impacts mitochondria in adipocytes, leading to increased OXPHOS capacity and mitochondrial content in these cells.

  16. Protein biogenesis machinery is a driver of replicative aging in yeast

    PubMed Central

    Janssens, Georges E; Meinema, Anne C; González, Javier; Wolters, Justina C; Schmidt, Alexander; Guryev, Victor; Bischoff, Rainer; Wit, Ernst C; Veenhoff, Liesbeth M; Heinemann, Matthias

    2015-01-01

    An integrated account of the molecular changes occurring during the process of cellular aging is crucial towards understanding the underlying mechanisms. Here, using novel culturing and computational methods as well as latest analytical techniques, we mapped the proteome and transcriptome during the replicative lifespan of budding yeast. With age, we found primarily proteins involved in protein biogenesis to increase relative to their transcript levels. Exploiting the dynamic nature of our data, we reconstructed high-level directional networks, where we found the same protein biogenesis-related genes to have the strongest ability to predict the behavior of other genes in the system. We identified metabolic shifts and the loss of stoichiometry in protein complexes as being consequences of aging. We propose a model whereby the uncoupling of protein levels of biogenesis-related genes from their transcript levels is causal for the changes occurring in aging yeast. Our model explains why targeting protein synthesis, or repairing the downstream consequences, can serve as interventions in aging. DOI: http://dx.doi.org/10.7554/eLife.08527.001 PMID:26422514

  17. Leucine Modulates Mitochondrial Biogenesis and SIRT1-AMPK Signaling in C2C12 Myotubes

    PubMed Central

    Liang, Chunzi; Curry, Benjamin J.; Brown, Patricia L.; Zemel, Michael B.

    2014-01-01

    Previous studies from this laboratory demonstrate that dietary leucine protects against high fat diet-induced mitochondrial impairments and stimulates mitochondrial biogenesis and energy partitioning from adipocytes to muscle cells through SIRT1-mediated mechanisms. Moreover, β-hydroxy-β-methyl butyrate (HMB), a metabolite of leucine, has been reported to activate AMPK synergistically with resveratrol in C2C12 myotubes. Therefore, we hypothesize that leucine-induced activation of SIRT1 and AMPK is the central event that links the upregulated mitochondrial biogenesis and fatty acid oxidation in skeletal muscle. Thus, C2C12 myotubes were treated with leucine (0.5 mM), alanine (0.5 mM), valine (0.5 mM), EX527 (SIRT1 inhibitor, 25 μM), and Compound C (AMPK inhibitor, 25 μM) alone or in combination to determine the roles of AMPK and SIRT1 in leucine-modulation of energy metabolism. Leucine significantly increased mitochondrial content, mitochondrial biogenesis-related genes expression, fatty acid oxidation, SIRT1 activity and gene expression, and AMPK phosphorylation in C2C12 myotubes compared to the controls, while EX527 and Compound C markedly attenuated these effects. Furthermore, leucine treatment for 24 hours resulted in time-dependent increases in cellular NAD+, SIRT1 activity, and p-AMPK level, with SIRT1 activation preceding that of AMPK, indicating that leucine activation of SIRT1, rather than AMPK, is the primary event. PMID:25400942

  18. AKR2A-mediated import of chloroplast outer membrane proteins is essential for chloroplast biogenesis.

    PubMed

    Bae, Wonsil; Lee, Yong Jik; Kim, Dae Heon; Lee, Junho; Kim, Soojin; Sohn, Eun Ju; Hwang, Inhwan

    2008-02-01

    In plant cells, chloroplasts have essential roles in many biochemical reactions and physiological responses. Chloroplasts require numerous protein components, but only a fraction of these proteins are encoded by the chloroplast genome. Instead, most are encoded by the nuclear genome and imported into chloroplasts from the cytoplasm post-translationally. Membrane proteins located in the chloroplast outer envelope membrane (OEM) have a critical function in the import of proteins into the chloroplast. However, the biogenesis of chloroplast OEM proteins remains poorly understood. Here, we report that an Arabidopsis ankyrin repeat protein, AKR2A, plays an essential role in the biogenesis of the chloroplast OEM proteins. AKR2A binds to chloroplast OEM protein targeting signals, as well as to chloroplasts. It also displays chaperone activity towards chloroplast OEM proteins, and facilitates the targeting of OEP7 to chloroplasts in vitro. AKR2A RNAi in plants with an akr2b knockout background showed greatly reduced levels of chloroplast proteins, including OEM proteins, and chloroplast biogenesis was also defective. Thus, AKR2A functions as a cytosolic mediator for sorting and targeting of nascent chloroplast OEM proteins to the chloroplast.

  19. Nuclear pore proteins are involved in the biogenesis of functional tRNA.

    PubMed Central

    Simos, G; Tekotte, H; Grosjean, H; Segref, A; Sharma, K; Tollervey, D; Hurt, E C

    1996-01-01

    Los1p and Pus1p, which are involved in tRNA biogenesis, were found in a genetic screen for components interacting with the nuclear pore protein Nsp1p. LOS1, PUS1 and NSP1 interact functionally, since the combination of mutations in the three genes causes synthetic lethality. Pus1p is an intranuclear protein which exhibits a nucleotide-specific and intron-dependent tRNA pseudouridine synthase activity. Los1p was shown previously to be required for efficient pre-tRNA splicing; we report here that Los1p localizes to the nuclear pores and is linked functionally to several components of the tRNA biogenesis machinery including Pus1p and Tfc4p. When the formation of functional tRNA was analyzed by an in vivo assay, the los1(-) pus1(-) double mutant, as well as several thermosensitive nucleoporin mutants including nsp1, nup116, nup133 and nup85, exhibited loss of suppressor tRNA activity even at permissive temperatures. These data suggest that nuclear pore proteins are required for the biogenesis of functional tRNA. Images PMID:8641292

  20. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex.

    PubMed

    Kawai, Shinji; Amano, Atsuo

    2012-04-16

    MicroRNAs (miRNAs) are noncoding RNAs that function as key posttranscriptional regulators of gene expression. miRNA maturation is controlled by the DROSHA microprocessor complex. However, the detailed mechanism of miRNA biogenesis remains unclear. We show that the tumor suppressor breast cancer 1 (BRCA1) accelerates the processing of miRNA primary transcripts. BRCA1 increased the expressions of both precursor and mature forms of let-7a-1, miR-16-1, miR-145, and miR-34a. In addition, this tumor suppressor was shown to be directly associated with DROSHA and DDX5 of the DROSHA microprocessor complex, and it interacted with Smad3, p53, and DHX9 RNA helicase. We also found that BRCA1 recognizes the RNA secondary structure and directly binds with primary transcripts of miRNAs via a DNA-binding domain. Together, these results suggest that BRCA1 regulates miRNA biogenesis via the DROSHA microprocessor complex and Smad3/p53/DHX9. Our findings also indicate novel functions of BRCA1 in miRNA biogenesis, which may be linked to its tumor suppressor mechanism and maintenance of genomic stability.

  1. Chloroplast Biogenesis: Control of Plastid Development, Protein Import, Division and Inheritance

    PubMed Central

    Sakamoto, Wataru; Miyagishima, Shin-ya; Jarvis, Paul

    2008-01-01

    The chloroplast is a multi-copy cellular organelle that not only performs photosynthesis but also synthesizes amino acids, lipids and phytohormones. The plastid also responds to environmental stimuli such as gravitropism. Biogenesis of chloroplasts is initiated from proplastids in shoot meristems, and involves a series of important events. In the last decade, considerable progress has been made towards understanding various aspects of chloroplast biogenesis at the molecular level, via studies in model systems such as Arabidopsis. This review focuses on two important aspects of chloroplast biogenesis, synthesis/assembly and division/transmission. Chloroplasts originated through endosymbiosis from an ancestor of extant cyanobacteria, and thus contain their own genomes. DNA in chloroplasts is organized into complexes with proteins, and these are called nucleoids. The synthesis of chloroplast proteins is regulated at various steps. However, a majority of proteins are synthesized in the cytosol, and their proper import into chloroplast compartments is a prerequisite for chloroplast development. Fundamental aspects of plastid gene expression/regulation and chloroplast protein transport are described, together with recent proteome analyses of the organelle. Chloroplasts are not de novo synthesized, but instead are propagated from pre-existing plastids. In addition, plastids are transmitted from generation to generation with a unique mode of inheritance. Our current knowledge on the division machinery and the inheritance of plastids is described. PMID:22303235

  2. Tracing Cell Wall Biogenesis in Intact Cells and Plants 1

    PubMed Central

    Gibeaut, David M.; Carpita, Nicholas C.

    1991-01-01

    Cells of proso millet (Panicum miliaceum L. cv Abarr) in liquid culture and leaves of maize seedlings (Zea mays L. cv LH51 × LH1131) readily incorporated d-[U-14C]glucose and l-[U-14C]arabinose into soluble and cell wall polymers. Radioactivity from arabinose accumulated selectively in polymers containing arabinose or xylose because a salvage pathway and C-4 epimerase yield both nucleotide-pentoses. On the other hand, radioactivity from glucose was found in all sugars and polymers. Pulse-chase experiments with proso millet cells in liquid culture demonstrated turnover of buffer soluble polymers within minutes and accumulation of radioactive polymers in the cell wall. In leaves of maize seedlings, radioactive polymers accumulated quickly and peaked 30 hours after the pulse then decreased slowly for the remaining time course. During further growth of the seedlings, radioactive polymers became more tenaciously bound in the cell wall. Sugars were constantly recycled from turnover of polysaccharides of the cell wall. Arabinose, hydrolyzed from glucuronoarabinoxylans, and glucose, hydrolyzed from mixed-linkage (1→3, 1→4)β-d-glucans, constituted most of the sugar participating in turnover. Arabinogalactans were a large portion of the buffer soluble (cytoplasmic) polymers of both proso millet cells and maize seedlings, and these polymers also exhibited turnover. Our results indicate that the primary cell wall is not simply a sink for various polysaccharide components, but rather a dynamic compartment exhibiting long-term reorganization by turnover and alteration of specific polymers during development. PMID:16668434

  3. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis.

    PubMed Central

    van der Rest, M E; Kamminga, A H; Nakano, A; Anraku, Y; Poolman, B; Konings, W N

    1995-01-01

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an extensive flux of lipids from these organelles to the plasma membrane is required. Although the pathway of protein traffic to the plasma membrane is similar to that of most of the lipids, the bulk flow of lipids is separate from vesicle-mediated protein transport. Recent advances in the analysis of membrane budding and membrane fusion indicate that the mechanisms of protein transport from the endoplasmic reticulum to the Golgi and from the Golgi to plasma membrane are similar. The majority of plasma membrane proteins transport solutes across the membrane. A number of ATP-dependent export systems have been detected that couple the hydrolysis of ATP to transport of molecules out of the cell. The hydrolysis of ATP by the plasma membrane H(+)-ATPase generates a proton motive force which is used to drive secondary transport processes. In S. cerevisiae, many substrates are transported by more than one system. Transport of monosaccharide is catalyzed by uniport systems, while transport of disaccharides, amino acids, and nucleosides is mediated by proton symport systems. Transport activity can be regulated at the level of transcription, e.g., induction and (catabolite) repression, but transport proteins can also be affected posttranslationally by a process termed catabolite inactivation. Catabolite inactivation is triggered by the addition of fermentable sugars, intracellular acidification, stress conditions, and/or nitrogen starvation. Phosphorylation and/or ubiquitination of the transport proteins has been proposed as an initial step in the controlled inactivation and degradation of the target enzyme. The use of artificial membranes, like secretory vesicles and plasma membranes

  4. Impaired Telomere Maintenance and Decreased Canonical WNT Signaling but Normal Ribosome Biogenesis in Induced Pluripotent Stem Cells from X-Linked Dyskeratosis Congenita Patients

    PubMed Central

    Gu, Bai-Wei; Apicella, Marisa; Mills, Jason; Fan, Jian-Meng; Reeves, Dara A.; French, Deborah; Podsakoff, Gregory M.; Bessler, Monica; Mason, Philip J.

    2015-01-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome characterized by the presence of short telomeres at presentation. Mutations in ten different genes, whose products are involved in the telomere maintenance pathway, have been shown to cause DC. The X-linked form is the most common form of the disease and is caused by mutations in the gene DKC1, encoding the protein dyskerin. Dyskerin is required for the assembly and stability of telomerase and is also involved in ribosomal RNA (rRNA) processing where it converts specific uridines to pseudouridine. DC is thought to result from failure to maintain tissues, like blood, that are renewed by stem cell activity, but research into pathogenic mechanisms has been hampered by the difficulty of obtaining stem cells from patients. We reasoned that induced pluripotent stem (iPS) cells from X-linked DC patients may provide information about the mechanisms involved. Here we describe the production of iPS cells from DC patients with DKC1 mutations Q31E, A353V and ΔL37. In addition we constructed “corrected” lines with a copy of the wild type dyskerin cDNA expressed from the AAVS1 safe harbor locus. We show that in iPS cells with DKC1 mutations telomere maintenance is compromised with short telomere lengths and decreased telomerase activity. The degree to which telomere lengths are affected by expression of telomerase during reprograming, or with ectopic expression of wild type dyskerin, is variable. The recurrent mutation A353V shows the most severe effect on telomere maintenance. A353V cells but not Q31E or ΔL37 cells, are refractory to correction by expression of wild type DKC1 cDNA. Because dyskerin is involved in both telomere maintenance and ribosome biogenesis it has been postulated that defective ribosome biogenesis and translation may contribute to the disease phenotype. Evidence from mouse and zebra fish models has supported the involvement of ribosome biogenesis but primary cells from human

  5. Comprehensive proteomic analysis of developing protein bodies in maize (Zea mays) endosperm provides novel insights into its biogenesis

    PubMed Central

    Wang, Guifeng; Wang, Gang; Wang, Jiajia; Du, Yulong; Yao, Dongsheng; Shuai, Bilian; Han, Liang; Tang, Yuanping; Song, Rentao

    2016-01-01

    Prolamins, the major cereal seed storage proteins, are sequestered and accumulated in the lumen of the endoplasmic reticulum (ER), and are directly assembled into protein bodies (PBs). The content and composition of prolamins are the key determinants for protein quality and texture-related traits of the grain. Concomitantly, the PB-inducing fusion system provides an efficient target to produce therapeutic and industrial products in plants. However, the proteome of the native PB and the detailed mechanisms underlying its formation still need to be determined. We developed a method to isolate highly purified and intact PBs from developing maize endosperm and conducted proteomic analysis of intact PBs of zein, a class of prolamine protein found in maize. We thus identified 1756 proteins, which fall into five major categories: metabolic pathways, response to stimulus, transport, development, and growth, as well as regulation. By comparing the proteomes of crude and enriched extractions of PBs, we found substantial evidence for the following conclusions: (i) ribosomes, ER membranes, and the cytoskeleton are tightly associated with zein PBs, which form the peripheral border; (ii) zein RNAs are probably transported and localized to the PB–ER subdomain; and (iii) ER chaperones are essential for zein folding, quality control, and assembly into PBs. We futher confirmed that OPAQUE1 (O1) cannot directly interact with FLOURY1 (FL1) in yeast, suggesting that the interaction between myosins XI and DUF593-containing proteins is isoform-specific. This study provides a proteomic roadmap for dissecting zein PB biogenesis and reveals an unexpected diversity and complexity of proteins in PBs. PMID:27789589

  6. piRNA biogenesis during adult spermatogenesis in mice is independent of the ping-pong mechanism

    PubMed Central

    Beyret, Ergin; Liu, Na; Lin, Haifan

    2012-01-01

    piRNAs, a class of small non-coding RNAs associated with PIWI proteins, have broad functions in germline development, transposon silencing, and epigenetic regulation. In diverse organisms, a subset of piRNAs derived from repeat sequences are produced via the interplay between two PIWI proteins. This mechanism, termed “ping-pong” cycle, operates among the PIWI proteins of the primordial mouse testis; however, its involvement in postnatal testes remains elusive. Here we show that adult testicular piRNAs are produced independent of the ping-pong mechanism. We identified and characterized large populations of piRNAs in the adult and postnatal developing testes associated with MILI and MIWI, the only PIWI proteins detectable in these testes. No interaction between MILI and MIWI or sequence feature for the ping-pong mechanism among their piRNAs was detected in the adult testis. The majority of MILI- and MIWI-associated piRNAs originate from the same DNA strands within the same loci. Both populations of piRNAs are biased for 5′ Uracil but not for Adenine on the 10th nucleotide position, and display no complementarity. Furthermore, in Miwi mutants, MILI-associated piRNAs are not downregulated, but instead upregulated. These results indicate that the adult testicular piRNAs are predominantly, if not exclusively, produced by a primary processing mechanism instead of the ping-pong mechanism. In this primary pathway, biogenesis of MILI- and MIWI-associated piRNAs may compete for the same precursors; the types of piRNAs produced tend to be non-selectively dictated by the available precursors in the cell; and precursors with introns tend to be spliced before processed into piRNAs. PMID:22907665

  7. The Yb Body, a Major Site for Piwi-associated RNA Biogenesis and a Gateway for Piwi Expression and Transport to the Nucleus in Somatic Cells*

    PubMed Central

    Qi, Hongying; Watanabe, Toshiaki; Ku, Hsueh-Yen; Liu, Na; Zhong, Mei; Lin, Haifan

    2011-01-01

    Despite exciting progress in understanding the Piwi-interacting RNA (piRNA) pathway in the germ line, less is known about this pathway in somatic cells. We showed previously that Piwi, a key component of the piRNA pathway in Drosophila, is regulated in somatic cells by Yb, a novel protein containing an RNA helicase-like motif and a Tudor-like domain. Yb is specifically expressed in gonadal somatic cells and regulates piwi in somatic niche cells to control germ line and somatic stem cell self-renewal. However, the molecular basis of the regulation remains elusive. Here, we report that Yb recruits Armitage (Armi), a putative RNA helicase involved in the piRNA pathway, to the Yb body, a cytoplasmic sphere to which Yb is exclusively localized. Moreover, co-immunoprecipitation experiments show that Yb forms a complex with Armi. In Yb mutants, Armi is dispersed throughout the cytoplasm, and Piwi fails to enter the nucleus and is rarely detectable in the cytoplasm. Furthermore, somatic piRNAs are drastically diminished, and soma-expressing transposons are desilenced. These observations indicate a crucial role of Yb and the Yb body in piRNA biogenesis, possibly by regulating the activity of Armi that controls the entry of Piwi into the nucleus for its function. Finally, we discovered putative endo-siRNAs in the flamenco locus and the Yb dependence of their expression. These observations further implicate a role for Yb in transposon silencing via both the piRNA and endo-siRNA pathways. PMID:21106531

  8. eIF1A augments Ago2-mediated Dicer-independent miRNA biogenesis and RNA interference

    NASA Astrophysics Data System (ADS)

    Yi, Tingfang; Arthanari, Haribabu; Akabayov, Barak; Song, Huaidong; Papadopoulos, Evangelos; Qi, Hank H.; Jedrychowski, Mark; Güttler, Thomas; Guo, Cuicui; Luna, Rafael E.; Gygi, Steven P.; Huang, Stephen A.; Wagner, Gerhard

    2015-05-01

    MicroRNA (miRNA) biogenesis and miRNA-guided RNA interference (RNAi) are essential for gene expression in eukaryotes. Here we report that translation initiation factor eIF1A directly interacts with Ago2 and promotes Ago2 activities in RNAi and miR-451 biogenesis. Biochemical and NMR analyses demonstrate that eIF1A binds to the MID domain of Ago2 and this interaction does not impair translation initiation. Alanine mutation of the Ago2-facing Lys56 in eIF1A impairs RNAi activities in human cells and zebrafish. The eIF1A-Ago2 assembly facilitates Dicer-independent biogenesis of miR-451, which mediates erythrocyte maturation. Human eIF1A (heIF1A), but not heIF1A(K56A), rescues the erythrocyte maturation delay in eif1axb knockdown zebrafish. Consistently, miR-451 partly compensates erythrocyte maturation defects in zebrafish with eif1axb knockdown and eIF1A(K56A) expression, supporting a role of eIF1A in miRNA-451 biogenesis in this model. Our results suggest that eIF1A is a novel component of the Ago2-centred RNA-induced silencing complexes (RISCs) and augments Ago2-dependent RNAi and miRNA biogenesis.

  9. The Period protein homolog LIN-42 negatively regulates microRNA biogenesis in C. elegans.

    PubMed

    Van Wynsberghe, Priscilla M; Finnegan, Emily F; Stark, Thomas; Angelus, Evan P; Homan, Kathryn E; Yeo, Gene W; Pasquinelli, Amy E

    2014-06-15

    MicroRNAs (miRNAs) are small RNAs that post-transcriptionally regulate gene expression in many multicellular organisms. They are encoded in the genome and transcribed into primary (pri-) miRNAs before two processing steps that ultimately produce the mature miRNA. In order to generate the appropriate amount of a particular miRNA in the correct location at the correct time, proper regulation of miRNA biogenesis is essential. Here we identify the Period protein homolog LIN-42 as a new regulator of miRNA biogenesis in Caenorhabditis elegans. We mapped a spontaneous suppressor of the normally lethal let-7(n2853) allele to the lin-42 gene. Mutations in this allele (ap201) or a second lin-42 allele (n1089) caused increased mature let-7 miRNA levels at most time points when mature let-7 miRNA is normally expressed. Levels of pri-let-7 and a let-7 transcriptional reporter were also increased in lin-42(n1089) worms. These results indicate that LIN-42 normally represses pri-let-7 transcription and thus the accumulation of let-7 miRNA. This inhibition is not specific to let-7, as pri- and mature levels of lin-4 and miR-35 were also increased in lin-42 mutants. Furthermore, small RNA-seq analysis showed widespread increases in the levels of mature miRNAs in lin-42 mutants. Thus, we propose that the period protein homolog LIN-42 is a global regulator of miRNA biogenesis.

  10. Regulation of actin polymerization by tropomodulin-3 controls megakaryocyte actin organization and platelet biogenesis.

    PubMed

    Sui, Zhenhua; Nowak, Roberta B; Sanada, Chad; Halene, Stephanie; Krause, Diane S; Fowler, Velia M

    2015-07-23

    The actin cytoskeleton is important for platelet biogenesis. Tropomodulin-3 (Tmod3), the only Tmod isoform detected in platelets and megakaryocytes (MKs), caps actin filament (F-actin) pointed ends and binds tropomyosins (TMs), regulating actin polymerization and stability. To determine the function of Tmod3 in platelet biogenesis, we studied Tmod3(-/-) embryos, which are embryonic lethal by E18.5. Tmod3(-/-) embryos often show hemorrhaging at E14.5 with fewer and larger platelets, indicating impaired platelet biogenesis. MK numbers are moderately increased in Tmod3(-/-) fetal livers, with only a slight increase in the 8N population, suggesting that MK differentiation is not significantly affected. However, Tmod3(-/-) MKs fail to develop a normal demarcation membrane system (DMS), and cytoplasmic organelle distribution is abnormal. Moreover, cultured Tmod3(-/-) MKs exhibit impaired proplatelet formation with a wide range of proplatelet bud sizes, including abnormally large proplatelet buds containing incorrect numbers of von Willebrand factor-positive granules. Tmod3(-/-) MKs exhibit F-actin disturbances, and Tmod3(-/-) MKs spreading on collagen fail to polymerize F-actin into actomyosin contractile bundles. Tmod3 associates with TM4 and the F-actin cytoskeleton in wild-type MKs, and confocal microscopy reveals that Tmod3, TM4, and F-actin partially colocalize near the membrane of proplatelet buds. In contrast, the abnormally large proplatelets from Tmod3(-/-) MKs show increased F-actin and redistribution of F-actin and TM4 from the cortex to the cytoplasm, but normal microtubule coil organization. We conclude that F-actin capping by Tmod3 regulates F-actin organization in mouse fetal liver-derived MKs, thereby controlling MK cytoplasmic morphogenesis, including DMS formation and organelle distribution, as well as proplatelet formation and sizing.

  11. Intron Lariat RNA Inhibits MicroRNA Biogenesis by Sequestering the Dicing Complex in Arabidopsis

    PubMed Central

    Cheng, Jinping; Su, Chuanbin; Zhong, Songxiao; Liu, Qi; Fang, Yuda; Yu, Yao; Lv, Hong; Zheng, Yun

    2016-01-01

    Lariat RNAs formed as by-products of splicing are quickly degraded by the RNA debranching enzyme 1 (DBR1), leading to their turnover. Null dbr1 mutants in both animals and plants are embryo lethal, but the mechanism underlying the lethality remains unclear. Here we characterized a weak mutant allele of DBR1 in Arabidopsis, dbr1-2, and showed that a global increase in lariat RNAs was unexpectedly accompanied by a genome-wide reduction in miRNA accumulation. The dbr1-2 mutation had no effects on expression of miRNA biogenesis genes or primary miRNAs (pri-miRNAs), but the association of pri-miRNAs with the DCL1/HYL1 dicing complex was impaired. Lariat RNAs were associated with the DCL1/HYL1 dicing complex in vivo and competitively inhibited the binding of HYL1 with pri-miRNA. Consistent with the impacts of lariat RNAs on miRNA biogenesis, over-expression of lariat RNAs reduced miRNA accumulation. Lariat RNAs localized in nuclear bodies, and partially co-localize with HYL1, and both DCL1 and HYL1 were mis-localized in dbr1-2. Together with our findings that nearly four hundred lariat RNAs exist in wild type plants and that these lariat RNAs also associate with the DCL1/HYL1 dicing complex in vivo, we thus propose that lariat RNAs, as decoys, inhibit miRNA processing, suggesting a hitherto unknown layer of regulation in miRNA biogenesis. PMID:27870853

  12. Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis.

    PubMed

    Kang, Jung-Woo; Hong, Jeong-Min; Lee, Sun-Mee

    2016-05-01

    Liver fibrosis leads to liver cirrhosis and failure, and no effective treatment is currently available. Growing evidence supports a link between mitochondrial dysfunction and liver fibrogenesis and mitochondrial quality control-based therapy has emerged as a new therapeutic target. We investigated the protective mechanisms of melatonin against mitochondrial dysfunction-involved liver fibrosis, focusing on mitophagy and mitochondrial biogenesis. Rats were treated with carbon tetrachloride (CCl4) dissolved in olive oil (0.5 mL/kg, twice a week, i.p.) for 8 wk. Melatonin was administered orally at 2.5, 5, and 10 mg/kg once a day. Chronic CCl4 exposure induced collagen deposition, hepatocellular damage, and oxidative stress, and melatonin attenuated these increases. Increases in mRNA and protein expression levels of transforming growth factor β1 and α-smooth muscle actin in response to CCl4 were attenuated by melatonin. Melatonin attenuated hallmarks of mitochondrial dysfunction, such as mitochondrial swelling and glutamate dehydrogenase release. Chronic CCl4 exposure impaired mitophagy and mitochondrial biogenesis, and melatonin attenuated this impairment, as indicated by increases in mitochondrial DNA and in protein levels of PTEN-induced putative kinase 1 (PINK1); Parkin; peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α); nuclear respiratory factor 1 (NRF1); and transcription factor A, mitochondrial (TFAM). CCl4-mediated decreases in mitochondrial fission- and fusion-related proteins, such as dynamin-related protein 1 (DRP1) and mitofusin 2, were also attenuated by melatonin. Moreover, melatonin induced AMP-activated protein kinase (AMPK) phosphorylation. These results suggest that melatonin protects against liver fibrosis via upregulation of mitophagy and mitochondrial biogenesis, and may be useful as an anti-fibrotic treatment.

  13. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis.

    PubMed

    Ipsaro, Jonathan J; Haase, Astrid D; Knott, Simon R; Joshua-Tor, Leemor; Hannon, Gregory J

    2012-11-08

    PIWI-family proteins and their associated small RNAs (piRNAs) act in an evolutionarily conserved innate immune mechanism to provide essential protection for germ-cell genomes against the activity of mobile genetic elements. piRNA populations comprise a molecular definition of transposons, which permits them to distinguish transposons from host genes and selectively silence them. piRNAs can be generated in two distinct ways, forming either primary or secondary piRNAs. Primary piRNAs come from discrete genomic loci, termed piRNA clusters, and seem to be derived from long, single-stranded precursors. The biogenesis of primary piRNAs involves at least two nucleolytic steps. An unknown enzyme cleaves piRNA cluster transcripts to generate monophosphorylated piRNA 5' ends. piRNA 3' ends are probably formed by exonucleolytic trimming, after a piRNA precursor is loaded into its PIWI partner. Secondary piRNAs arise during the adaptive 'ping-pong' cycle, with their 5' termini being formed by the activity of PIWIs themselves. A number of proteins have been implicated genetically in primary piRNA biogenesis. One of these, Drosophila melanogaster Zucchini, is a member of the phospholipase-D family of phosphodiesterases, which includes both phospholipases and nucleases. Here we produced a dimeric, soluble fragment of the mouse Zucchini homologue (mZuc; also known as PLD6) and show that it possesses single-strand-specific nuclease activity. A crystal structure of mZuc at 1.75 Å resolution indicates greater architectural similarity to phospholipase-D family nucleases than to phospholipases. Together, our data suggest that the Zucchini proteins act in primary piRNA biogenesis as nucleases, perhaps generating the 5' ends of primary piRNAs.

  14. Cardiac mitochondrial biogenesis in endotoxemia is not accompanied by mitochondrial function recovery.

    PubMed

    Vanasco, Virginia; Saez, Trinidad; Magnani, Natalia D; Pereyra, Leonardo; Marchini, Timoteo; Corach, Alejandra; Vaccaro, María Inés; Corach, Daniel; Evelson, Pablo; Alvarez, Silvia

    2014-12-01

    Mitochondrial biogenesis emerges as a compensatory mechanism involved in the recovery process in endotoxemia and sepsis. The aim of this work was to analyze the time course of the cardiac mitochondrial biogenesis process occurring during endotoxemia, with emphasis on the quantitative analysis of mitochondrial function. Female Sprague-Dawley rats (45 days old) were ip injected with LPS (10 mg/kg). Measurements were performed at 0-24 h after LPS administration. PGC-1α and mtTFA expression for biogenesis and p62 and LC3 expression for autophagy were analyzed by Western blot; mitochondrial DNA levels by qPCR, and mitochondrial morphology by transmission electron microscopy. Mitochondrial function was evaluated as oxygen consumption and respiratory chain complex activity. PGC-1α and mtTFA expression significantly increased in every time point analyzed, and mitochondrial mass was increased by 20% (P<0.05) at 24 h. p62 expression was significantly decreased in a time-dependent manner. LC3-II expression was significantly increased at all time points analyzed. Ultrastructurally, mitochondria displayed several abnormalities (internal vesicles, cristae disruption, and swelling) at 6 and 18 h. Structures compatible with fusion/fission processes were observed at 24 h. A significant decrease in state 3 respiration was observed in every time point analyzed (LPS 6h: 20%, P<0.05). Mitochondrial complex I activity was found decreased by 30% in LPS-treated animals at 6 and 24h. Complex II and complex IV showed decreased activity only at 24 h. The present results show that partial restoration of cardiac mitochondrial architecture is not accompanied by improvement of mitochondrial function in acute endotoxemia. The key implication of our study is that cardiac failure due to bioenergetic dysfunction will be overcome by therapeutic interventions aimed to restore cardiac mitochondrial function.

  15. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells

    PubMed Central

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M.; Eguchi, Satoru; Brown, Michael D.

    2015-01-01

    The concept of enhancing structural integrity of mitochondria has emerged as a novel therapeutic option for cardiovascular disease. Flow-induced increase in laminar shear stress is a potent physiological stimulant associated with exercise, which exerts atheroprotective effects in the vasculature. However, the effect of laminar shear stress on mitochondrial remodeling within the vascular endothelium and its related functional consequences remain largely unknown. Using in vitro and in vivo complementary studies, here, we report that aerobic exercise alleviates the release of endothelial microparticles in prehypertensive individuals and that these salutary effects are, in part, mediated by shear stress-induced mitochondrial biogenesis. Circulating levels of total (CD31+/CD42a−) and activated (CD62E+) microparticles released by endothelial cells were significantly decreased (∼40% for both) after a 6-mo supervised aerobic exercise training program in individuals with prehypertension. In cultured human endothelial cells, laminar shear stress reduced the release of endothelial microparticles, which was accompanied by an increase in mitochondrial biogenesis through a sirtuin 1 (SIRT1)-dependent mechanism. Resveratrol, a SIRT1 activator, treatment showed similar effects. SIRT1 knockdown using small-interfering RNA completely abolished the protective effect of shear stress. Disruption of mitochondrial integrity by either antimycin A or peroxisome proliferator-activated receptor-γ coactivator-1α small-interfering RNA significantly increased the number of total, and activated, released endothelial microparticles, and shear stress restored these back to basal levels. Collectively, these data demonstrate a critical role of endothelial mitochondrial integrity in preserving endothelial homeostasis. Moreover, prolonged laminar shear stress, which is systemically elevated during aerobic exercise in the vessel wall, mitigates endothelial dysfunction by promoting mitochondrial

  16. Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis

    PubMed Central

    Hurwitz, Stephanie N.; Conlon, Meghan M.; Rider, Mark A.; Brownstein, Naomi C.; Meckes, David G.

    2016-01-01

    Background Extracellular vesicles (EVs) are important mediators of cell-to-cell communication in healthy and pathological environments. Because EVs are present in a variety of biological fluids and contain molecular signatures of their cell or tissue of origin, they have great diagnostic and prognostic value. The ability of EVs to deliver biologically active proteins, RNAs and lipids to cells has generated interest in developing novel therapeutics. Despite their potential medical use, many of the mechanisms underlying EV biogenesis and secretion remain unknown. Methods Here, we characterized vesicle secretion across the NCI-60 panel of human cancer cells by nanoparticle tracking analysis. Using CellMiner, the quantity of EVs secreted by each cell line was compared to reference transcriptomics data to identify gene products associated with vesicle secretion. Results Gene products positively associated with the quantity of exosomal-sized vesicles included vesicular trafficking classes of proteins with Rab GTPase function and sphingolipid metabolism. Positive correlates of larger microvesicle-sized vesicle secretion included gene products involved in cytoskeletal dynamics and exocytosis, as well as Rab GTPase activation. One of the identified targets, CD63, was further evaluated for its role in vesicle secretion. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 knockout of the CD63 gene in HEK293 cells resulted in a decrease in small vesicle secretion, suggesting the importance of CD63 in exosome biogenesis. Conclusion These observations reveal new insights into genes involved in exosome and microvesicle formation, and may provide a means to distinguish EV sub-populations. This study offers a foundation for further exploration of targets involved in EV biogenesis and secretion. PMID:27421995

  17. Sudachitin, a polymethoxylated flavone, improves glucose and lipid metabolism by increasing mitochondrial biogenesis in skeletal muscle

    PubMed Central

    2014-01-01

    Background Obesity is a major risk factor for insulin resistance, type 2 diabetes, and stroke. Flavonoids are effective antioxidants that protect against these chronic diseases. In this study, we evaluated the effects of sudachitin, a polymethoxylated flavonoid found in the skin of the Citrus sudachi fruit, on glucose, lipid, and energy metabolism in mice with high-fat diet-induced obesity and db/db diabetic mice. In our current study, we show that sudachitin improves metabolism and stimulates mitochondrial biogenesis, thereby increasing energy expenditure and reducing weight gain. Methods C57BL/6 J mice fed a high-fat diet (40% fat) and db/db mice fed a normal diet were treated orally with 5 mg/kg sudachitin or vehicle for 12 weeks. Following treatment, oxygen expenditure was assessed using indirect calorimetry, while glucose tolerance, insulin sensitivity, and indices of dyslipidemia were assessed by serum biochemistry. Quantitative polymerase chain reaction was used to determine the effect of sudachitin on the transcription of key metabolism-regulating genes in the skeletal muscle, liver, and white and brown adipose tissues. Primary myocytes were also prepared to examine the signaling mechanisms targeted by sudachitin in vitro. Results Sudachitin improved dyslipidemia, as evidenced by reduction in triglyceride and free fatty acid levels, and improved glucose tolerance and insulin resistance. It also enhanced energy expenditure and fatty acid β-oxidation by increasing mitochondrial biogenesis and function. The in vitro assay results suggest that sudachitin increased Sirt1 and PGC-1α expression in the skeletal muscle. Conclusions Sudachitin may improve dyslipidemia and metabolic syndrome by improving energy metabolism. Furthermore, it also induces mitochondrial biogenesis to protect against metabolic disorders. PMID:25114710

  18. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis.

    PubMed

    Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2015-01-06

    Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may

  19. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary optic neuropathy.

    PubMed

    Giordano, Carla; Iommarini, Luisa; Giordano, Luca; Maresca, Alessandra; Pisano, Annalinda; Valentino, Maria Lucia; Caporali, Leonardo; Liguori, Rocco; Deceglie, Stefania; Roberti, Marina; Fanelli, Francesca; Fracasso, Flavio; Ross-Cisneros, Fred N; D'Adamo, Pio; Hudson, Gavin; Pyle, Angela; Yu-Wai-Man, Patrick; Chinnery, Patrick F; Zeviani, Massimo; Salomao, Solange R; Berezovsky, Adriana; Belfort, Rubens; Ventura, Dora Fix; Moraes, Milton; Moraes Filho, Milton; Barboni, Piero; Sadun, Federico; De Negri, Annamaria; Sadun, Alfredo A; Tancredi, Andrea; Mancini, Massimiliano; d'Amati, Giulia; Loguercio Polosa, Paola; Cantatore, Palmiro; Carelli, Valerio

    2014-02-01

    Leber's hereditary optic neuropathy is a maternally inherited blinding disease caused as a result of homoplasmic point mutations in complex I subunit genes of mitochondrial DNA. It is characterized by incomplete penetrance, as only some mutation carriers become affected. Thus, the mitochondrial DNA mutation is necessary but not sufficient to cause optic neuropathy. Environmental triggers and genetic modifying factors have been considered to explain its variable penetrance. We measured the mitochondrial DNA copy number and mitochondrial mass indicators in blood cells from affected and carrier individuals, screening three large pedigrees and 39 independently collected smaller families with Leber's hereditary optic neuropathy, as well as muscle biopsies and cells isolated by laser capturing from post-mortem specimens of retina and optic nerves, the latter being the disease targets. We show that unaffected mutation carriers have a significantly higher mitochondrial DNA copy number and mitochondrial mass compared with their affected relatives and control individuals. Comparative studies of fibroblasts from affected, carriers and controls, under different paradigms of metabolic demand, show that carriers display the highest capacity for activating mitochondrial biogenesis. Therefore we postulate that the increased mitochondrial biogenesis in carriers may overcome some of the pathogenic effect of mitochondrial DNA mutations. Screening of a few selected genetic variants in candidate genes involved in mitochondrial biogenesis failed to reveal any significant association. Our study provides a valuable mechanism to explain variability of penetrance in Leber's hereditary optic neuropathy and clues for high throughput genetic screening to identify the nuclear modifying gene(s), opening an avenue to develop predictive genetic tests on disease risk and therapeutic strategies.

  20. Turn up the power –pharmacological activation of mitochondrial biogenesis in mouse models

    PubMed Central

    Komen, J C; Thorburn, D R

    2014-01-01

    The oxidative phosphorylation (OXPHOS) system in mitochondria is responsible for the generation of the majority of cellular energy in the form of ATP. Patients with genetic OXPHOS disorders form the largest group of inborn errors of metabolism. Unfortunately, there is still a lack of efficient therapies for these disorders other than management of symptoms. Developing therapies has been complicated because, although the total group of OXPHOS patients is relatively large, there is enormous clinical and genetic heterogeneity within this patient population. Thus there has been a lot of interest in generating relevant mouse models for the different kinds of OXPHOS disorders. The most common treatment strategies tested in these mouse models have aimed to up-regulate mitochondrial biogenesis, in order to increase the residual OXPHOS activity present in affected animals and thereby to ameliorate the energy deficiency. Drugs such as bezafibrate, resveratrol and AICAR target the master regulator of mitochondrial biogenesis PGC-1α either directly or indirectly to manipulate mitochondrial metabolism. This review will summarize the outcome of preclinical treatment trials with these drugs in mouse models of OXPHOS disorders and discuss similar treatments in a number of mouse models of common diseases in which pathology is closely linked to mitochondrial dysfunction. In the majority of these studies the pharmacological activation of the PGC-1α axis shows true potential as therapy; however, other effects besides mitochondrial biogenesis may be contributing to this as well. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24102298

  1. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions

    PubMed Central

    Schwechheimer, Carmen; Kuehn, Meta J.

    2017-01-01

    Outer-membrane vesicles (OMVs) are spherical buds of the outer membrane filled with periplasmic content and are commonly produced by Gram-negative bacteria. The production of OMVs allows bacteria to interact with their environment, and OMVs have been found to mediate diverse functions, including promoting pathogenesis, enabling bacterial survival during stress conditions and regulating microbial interactions within bacterial communities. Additionally, because of this functional versatility, researchers have begun to explore OMVs as a platform for bioengineering applications. In this Review, we discuss recent advances in the study of OMVs, focusing on new insights into the mechanisms of biogenesis and the functions of these vesicles. PMID:26373371

  2. The exocytic Rabs Ypt3 and Ypt2 regulate the early step of biogenesis of the spore plasma membrane in fission yeast

    PubMed Central

    Imada, Kazuki; Nakamura, Taro

    2016-01-01

    During fission yeast sporulation, a membrane compartment called the forespore membrane (FSM) is newly formed on the spindle pole body (SPB). The FSM expands by membrane vesicle fusion, encapsulates the daughter nucleus resulting from meiosis, and eventually matures into the plasma membrane of the spore. Although many of the genes involved in FSM formation have been identified, its molecular mechanism is not fully understood. Here a genetic screen for sporulation-deficient mutations identified Ypt3, a Rab-family small GTPase known to function in the exocytic pathway. The ypt3-ki8 mutant showed defects in both the initiation of FSM biogenesis and FSM expansion. We also show that a mutation in Ypt2, another Rab protein that may function in the same pathway as Ypt3, compromises the initiation of FSM formation. As meiosis proceeds, both GFP-Ypt3 and GFP-Ypt2 are observed at the SPB and then relocalize to the FSM. Their localizations at the SPB precede FSM formation and depend on the meiotic SPB component Spo13, a putative GDP/GTP exchange factor for Ypt2. Given that Spo13 is essential for initiating FSM formation, these results suggest that two exocytic Rabs, Ypt3 and Ypt2, regulate the initiation of FSM formation on the SPB in concert with Spo13. PMID:27630265

  3. Biogenesis of lysosome-related organelles complex-1 subunit 1 (BLOS1) interacts with sorting nexin 2 and the endosomal sorting complex required for transport-I (ESCRT-I) component TSG101 to mediate the sorting of epidermal growth factor receptor into endosomal compartments.

    PubMed

    Zhang, Aili; He, Xin; Zhang, Ling; Yang, Lin; Woodman, Philip; Li, Wei

    2014-10-17

    Biogenesis of lysosome-related organelles complex-1 (BLOC-1) is a component of the molecular machinery required for the biogenesis of specialized organelles and lysosomal targeting of cargoes via the endosomal to lysosomal trafficking pathway. BLOS1, one subunit of BLOC-1, is implicated in lysosomal trafficking of membrane proteins. We found that the degradation and trafficking of epidermal growth factor receptor (EGFR) were delayed in BLOS1 knockdown cells, which were rescued through BLOS1 overexpression. A key feature to the delayed EGFR degradation is the accumulation of endolysosomes in BLOS1 knockdown cells or BLOS1 knock-out mouse embryonic fibroblasts. BLOS1 interacted with SNX2 (a retromer subunit) and TSG101 (an endosomal sorting complex required for transport subunit-I) to mediate EGFR lysosomal trafficking. These results suggest that coordination of the endolysosomal trafficking proteins is important for proper targeting of EGFR to lysosomes.

  4. Berberine protects against high fat diet-induced dysfunction in muscle mitochondria by inducing SIRT1-dependent mitochondrial biogenesis

    PubMed Central

    Gomes, Ana P.; Duarte, Filipe V.; Nunes, Patricia; Hubbard, Basil P.; Teodoro, João S.; Varela, Ana T.; Jones, John G.; Sinclair, David A.; Palmeira, Carlos M.; Rolo, Anabela P.

    2012-01-01

    Berberine (BBR) has recently been shown to improve insulin sensitivity in rodent models of insulin resistance. Although this effect was explained partly through an observed activation of AMP-activated protein kinase (AMPK), the upstream and downstream mediators of this phenotype were not explored. Here, we show that BBR supplementation reverts mitochondrial dysfunction induced by High Fat Diet (HFD) and hyperglycemia in skeletal muscle, in part due to an increase in mitochondrial biogenesis. Furthermore, we observe that the prevention of mitochondrial dysfunction by BBR, the increase in mitochondrial biogenesis, as well as BBR-induced AMPK activation, are blocked in cells in which SIRT1 has been knocked-down. Taken together, these data reveal an important role for SIRT1 and mitochondrial biogenesis in the preventive effects of BBR on diet-induced insulin resistance. PMID:22027215

  5. Two functionally distinct domains generated by in vivo cleavage of Nup145p: a novel biogenesis pathway for nucleoporins.

    PubMed Central

    Teixeira, M T; Siniossoglou, S; Podtelejnikov, S; Bénichou, J C; Mann, M; Dujon, B; Hurt, E; Fabre, E

    1997-01-01

    Nup145p is an essential yeast nucleoporin involved in nuclear export of polyadenylated RNAs. We demonstrate here that Nup145p is cleaved in vivo to yield two functionally distinct domains: a carboxy-terminal domain (C-Nup145p) which is located at the nuclear pore complex (NPC) and assembles into the Nup84p complex, and a GLFG-containing amino-terminal domain (N-Nup145p) which is not part of this complex. Whereas the essential C-Nup145p accomplishes the functions required for efficient mRNA export and normal NPC distribution, N-Nup145p, which is homologous to the GLFG-containing nucleoporins Nup100p and Nup116p, is not necessary for cell growth. However, the N-Nup145p becomes essential in a nup188 mutant background. Strikingly, generation of a free N-domain is a prerequisite for complementation of this peculiar synthetic lethal mutant. These data suggest that N- and C-domains of Nup145p perform independent functions, and that the in vivo cleavage observed is of functional importance. PMID:9305650

  6. The aminoglycoside resistance methyltransferases from the ArmA/Rmt family operate late in the 30S ribosomal biogenesis pathway.

    PubMed

    Zarubica, Tamara; Baker, Matthew R; Wright, H Tonie; Rife, Jason P

    2011-02-01

    Bacterial resistance to 4,6-type aminoglycoside antibiotics, which target the ribosome, has been traced to the ArmA/RmtA family of rRNA methyltransferases. These plasmid-encoded enzymes transfer a methyl group from S-adenosyl-L-methionine to N7 of the buried G1405 in the aminoglycoside binding site of 16S rRNA of the 30S ribosomal subunit. ArmA methylates mature 30S subunits but not 16S rRNA, 50S, or 70S ribosomal subunits or isolated Helix 44 of the 30S subunit. To more fully characterize this family of enzymes, we have investigated the substrate requirements of ArmA and to a lesser extent its ortholog RmtA. We determined the Mg+² dependence of ArmA activity toward the 30S ribosomal subunits and found that the enzyme recognizes both low Mg+² (translationally inactive) and high Mg+² (translationally active) forms of this substrate. We tested the effects of LiCl pretreatment of the 30S subunits, initiation factor 3 (IF3), and gentamicin/kasugamycin resistance methyltransferase (KsgA) on ArmA activity and determined whether in vivo derived pre-30S ribosomal subunits are ArmA methylation substrates. ArmA failed to methylate the 30S subunits generated from LiCl washes above 0.75 M, despite the apparent retention of ribosomal proteins and a fully mature 16S rRNA. From our experiments, we conclude that ArmA is most active toward the 30S ribosomal subunits that are at or very near full maturity, but that it can also recognize more than one form of the 30S subunit.

  7. A novel role for GSK3β as a modulator of Drosha microprocessor activity and MicroRNA biogenesis.

    PubMed

    Fletcher, Claire E; Godfrey, Jack D; Shibakawa, Akifumi; Bushell, Martin; Bevan, Charlotte L

    2016-10-23

    Regulation of microRNA (miR) biogenesis is complex and stringently controlled. Here, we identify the kinase GSK3β as an important modulator of miR biogenesis at Microprocessor level. Repression of GSK3β activity reduces Drosha activity toward pri-miRs, leading to accumulation of unprocessed pri-miRs and reduction of pre-miRs and mature miRs without altering levels or cellular localisation of miR biogenesis proteins. Conversely, GSK3β activation increases Drosha activity and mature miR accumulation. GSK3β achieves this through promoting Drosha:cofactor and Drosha:pri-miR interactions: it binds to DGCR8 and p72 in the Microprocessor, an effect dependent upon presence of RNA. Indeed, GSK3β itself can immunoprecipitate pri-miRs, suggesting possible RNA-binding capacity. Kinase assays identify the mechanism for GSK3β-enhanced Drosha activity, which requires GSK3β nuclear localisation, as phosphorylation of Drosha at S(300) and/or S(302); confirmed by enhanced Drosha activity and association with cofactors, and increased abundance of mature miRs in the presence of phospho-mimic Drosha. Functional implications of GSK3β-enhanced miR biogenesis are illustrated by increased levels of GSK3β-upregulated miR targets following GSK3β inhibition. These data, the first to link GSK3β with the miR cascade in humans, highlight a novel pro-biogenesis role for GSK3β in increasing miR biogenesis as a component of the Microprocessor complex with wide-ranging functional consequences.

  8. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis

    SciTech Connect

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting; Zheng, Ruimao; Zhu, Shigong

    2014-07-18

    Highlights: • 14,15-EET inhibits OGD-induced apoptosis in cortical neurons. • Mitochondrial biogenesis of cortical neurons is promoted by 14,15-EET. • 14,15-EET preserves mitochondrial function of cortical neurons under OGD. • CREB mediates effect of 14,15-EET on mitochondrial biogenesis and function. - Abstract: 14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen–glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1.

  9. The presequence pathway is involved in protein sorting to the mitochondrial outer membrane

    PubMed Central

    Wenz, Lena-Sophie; Opaliński, Łukasz; Schuler, Max-Hinderk; Ellenrieder, Lars; Ieva, Raffaele; Böttinger, Lena; Qiu, Jian; van der Laan, Martin; Wiedemann, Nils; Guiard, Bernard; Pfanner, Nikolaus; Becker, Thomas

    2014-01-01

    The mitochondrial outer membrane contains integral α-helical and β-barrel proteins that are imported from the cytosol. The machineries importing β-barrel proteins have been identified, however, different views exist on the import of α-helical proteins. It has been reported that the biogenesis of Om45, the most abundant signal-anchored protein, does not depend on proteinaceous components, but involves direct insertion into the outer membrane. We show that import of Om45 occurs via the translocase of the outer membrane and the presequence translocase of the inner membrane. Assembly of Om45 in the outer membrane involves the MIM machinery. Om45 thus follows a new mitochondrial biogenesis pathway that uses elements of the presequence import pathway to direct a protein to the outer membrane. PMID:24781695

  10. Eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis

    PubMed Central

    Hiramitsu, Masanori; Shimada, Yasuhito; Kuroyanagi, Junya; Inoue, Takashi; Katagiri, Takao; Zang, Liqing; Nishimura, Yuhei; Nishimura, Norihiro; Tanaka, Toshio

    2014-01-01

    Lemon (Citrus limon) contains various bioactive flavonoids, and prevents obesity and obesity-associated metabolic diseases. We focused on eriocitrin (eriodictyol 7-rutinoside), a powerful antioxidative flavonoid in lemon with lipid-lowering effects in a rat model of high-fat diet. To investigate the mechanism of action of eriocitrin, we conducted feeding experiments on zebrafish with diet-induced obesity. Oral administration of eriocitrin (32 mg/kg/day for 28 days) improved dyslipidaemia and decreased lipid droplets in the liver. DNA microarray analysis revealed that eriocitrin increased mRNA of mitochondrial biogenesis genes, such as mitochondria transcription factor, nuclear respiratory factor 1, cytochrome c oxidase subunit 4, and ATP synthase. In HepG2 cells, eriocitrin also induced the corresponding orthologues, and reduced lipid accumulation under conditions of lipid loading. Eriocitrin increased mitochondrial size and mtDNA content, which resulted in ATP production in HepG2 cells and zebrafish. In summary, dietary eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis. PMID:24424211

  11. The role of AMPK in controlling metabolism and mitochondrial biogenesis during exercise.

    PubMed

    Marcinko, Katarina; Steinberg, Gregory R

    2014-12-01

    Insulin resistance is associated with defects in skeletal muscle fatty acid (FA) metabolism that contribute to the development of type 2 diabetes. Endurance exercise increases FA and glucose metabolism, muscle mitochondrial content and insulin sensitivity. In skeletal muscle, basal rates of FA oxidation are dependent on AMP-activated protein kinase (AMPK) phosphorylation of acetyl-CoA carboxylase 2, the rate-limiting enzyme controlling the production of the metabolic intermediate malonyl-CoA. Likewise, AMPK is essential for maintaining muscle mitochondrial content in untrained mice; effects that may be mediated through regulation of the peroxisome proliferator-activated receptor γ co-activator-1α. However, the importance of AMPK in regulating glucose and FA uptake, FA oxidation and mitochondrial biogenesis during and following endurance exercise training is not fully understood. A better understanding of the mechanisms by which endurance exercise regulates substrate utilization and mitochondrial biogenesis may lead to improved therapeutic and preventative strategies for the treatment of insulin resistance and type 2 diabetes.

  12. A novel mutation in the PEX12 gene causing a peroxisomal biogenesis disorder.

    PubMed

    Konkoľová, Jana; Petrovič, Robert; Chandoga, Ján; Halasová, Edita; Jungová, Petra; Böhmer, Daniel

    2015-09-01

    The peroxisomal biogenesis disorders are autosomal recessive diseases morphologically characterised by lacking peroxisomes, biochemically by generalised deficiency of peroxisomal constituent and clinically manifested by serious health problems. Genes involved in the peroxisomal biogenesis are defined as the PEX genes encoding proteins called the peroxins. These peroxins are required for function in assembly of the peroxisomal membrane or in import of the enzymes into the peroxisomes. In this study we present a full overview of the clinical presentation, biochemical and molecular data of patient with Zellweger syndrome from Slovakia. We investigated biochemical metabolites using gas chromatography/mass spectrometry. The presence of causal ins/del mutations we identified by a Sanger sequencing and RFLP. We reported that the patient was a compound heterozygote for mutations in the gene PEX12: a 2-bp insertion (c.767_768dupAT) and a 2-bp deletion (c.887_888delTC). The first one mentioned is a novel mutation, which has not been reported before. Both mutations create a frameshift of the open reading frame which result a premature STOP codon and generate a complete loss of the C-terminal RING finger domain that is crucial for the correct import of proteins into peroxisomes. We found causal mutations responsible for a severe phenotype, and moreover we noted a novel mutation c.767_768dupAT that has not been reported before. The presence of mutations was studied in all family members, and the resulting data were successfully utilized for prenatal diagnosis.

  13. Reevaluation of the role of Pex1 and dynamin-related proteins in peroxisome membrane biogenesis

    PubMed Central

    Motley, Alison M.; Galvin, Paul C.; Ekal, Lakhan; Nuttall, James M.

    2015-01-01

    A recent model for peroxisome biogenesis postulates that peroxisomes form de novo continuously in wild-type cells by heterotypic fusion of endoplasmic reticulum–derived vesicles containing distinct sets of peroxisomal membrane proteins. This model proposes a role in vesicle fusion for the Pex1/Pex6 complex, which has an established role in matrix protein import. The growth and division model proposes that peroxisomes derive from existing peroxisomes. We tested these models by reexamining the role of Pex1/Pex6 and dynamin-related proteins in peroxisome biogenesis. We found that induced depletion of Pex1 blocks the import of matrix proteins but does not affect membrane protein delivery to peroxisomes; markers for the previously reported distinct vesicles colocalize in pex1 and pex6 cells; peroxisomes undergo continued growth if fission is blocked. Our data are compatible with the established primary role of the Pex1/Pex6 complex in matrix protein import and show that peroxisomes in Saccharomyces cerevisiae multiply mainly by growth and division. PMID:26644516

  14. Identification and Expression Analysis of Ribosome Biogenesis Factor Co-orthologs in Solanum lycopersicum

    PubMed Central

    Simm, Stefan; Fragkostefanakis, Sotirios; Paul, Puneet; Keller, Mario; Einloft, Jens; Scharf, Klaus-Dieter; Schleiff, Enrico

    2015-01-01

    Ribosome biogenesis involves a large inventory of proteinaceous and RNA cofactors. More than 250 ribosome biogenesis factors (RBFs) have been described in yeast. These factors are involved in multiple aspects like rRNA processing, folding, and modification as well as in ribosomal protein (RP) assembly. Considering the importance of RBFs for particular developmental processes, we examined the complexity of RBF and RP (co-)orthologs by bioinformatic assignment in 14 different plant species and expression profiling in the model crop Solanum lycopersicum. Assigning (co-)orthologs to each RBF revealed that at least 25% of all predicted RBFs are encoded by more than one gene. At first we realized that the occurrence of multiple RBF co-orthologs is not globally correlated to the existence of multiple RP co-orthologs. The transcript abundance of genes coding for predicted RBFs and RPs in leaves and anthers of S. lycopersicum was determined by next generation sequencing (NGS). In combination with existing expression profiles, we can conclude that co-orthologs of RBFs by large account for a preferential function in different tissue or at distinct developmental stages. This notion is supported by the differential expression of selected RBFs during male gametophyte development. In addition, co-regulated clusters of RBF and RP coding genes have been observed. The relevance of these results is discussed. PMID:25698879

  15. Gene replacement reveals that p115/SNARE interactions are essential for Golgi biogenesis

    PubMed Central

    Puthenveedu, Manojkumar A.; Linstedt, Adam D.

    2004-01-01

    Functional characterization of protein interactions in mammalian systems has been hindered by the inability to perform complementation analyses in vivo. Here, we use functional replacement of the vesicle docking protein p115 to separate its essential from its nonessential interactions. p115 is required for biogenesis of the Golgi apparatus, but it is unclear whether its mechanism of action requires its golgin and/or SNARE interactions. Short interfering RNA-mediated knockdown of p115 induced extensive Golgi fragmentation and impaired secretory traffic. Reassembly of a structurally and functionally normal Golgi occurred on expression of a p115 homologue not recognized by the short interfering RNA. Strikingly, versions of p115 lacking its phosphorylation site and the golgin-binding domains also restored the Golgi apparatus in cells lacking endogenous p115. In contrast, the p115 SNARE-interacting domain was required for Golgi biogenesis. This suggests that p115 acts directly, rather than via a tether, to catalyze trans-SNARE complex formation preceding membrane fusion. PMID:14736916

  16. TGFβ/Activin signalling is required for ribosome biogenesis and cell growth in Drosophila salivary glands.

    PubMed

    Martins, Torcato; Eusebio, Nadia; Correia, Andreia; Marinho, Joana; Casares, Fernando; Pereira, Paulo S

    2017-01-01

    Signalling by TGFβ superfamily factors plays an important role in tissue growth and cell proliferation. In Drosophila, the activity of the TGFβ/Activin signalling branch has been linked to the regulation of cell growth and proliferation, but the cellular and molecular basis for these functions are not fully understood. In this study, we show that both the RII receptor Punt (Put) and the R-Smad Smad2 are strongly required for cell and tissue growth. Knocking down the expression of Put or Smad2 in salivary glands causes alterations in nucleolar structure and functions. Cells with decreased TGFβ/Activin signalling accumulate intermediate pre-rRNA transcripts containing internal transcribed spacer 1 regions accompanied by the nucleolar retention of ribosomal proteins. Thus, our results show that TGFβ/Activin signalling is required for ribosomal biogenesis, a key aspect of cellular growth control. Importantly, overexpression of Put enhanced cell growth induced by Drosophila Myc, a well-characterized inducer of nucleolar hypertrophy and ribosome biogenesis.

  17. Role of vimA in cell surface biogenesis in Porphyromonas gingivalis

    PubMed Central

    Osbourne, Devon O.; Aruni, Wilson; Roy, Francis; Perry, Christopher; Sandberg, Lawrence; Muthiah, Arun; Fletcher, Hansel M.

    2010-01-01

    The Porphyromonas gingivalis vimA gene has been previously shown to play a significant role in the biogenesis of gingipains. Further, in P. gingivalis FLL92, a vimA-defective mutant, there was increased auto-aggregation, suggesting alteration in membrane surface proteins. In order to determine the role of the VimA protein in cell surface biogenesis, the surface morphology of P. gingivalis FLL92 was further characterized. Transmission electron microscopy demonstrated abundant fimbrial appendages and a less well defined and irregular capsule in FLL92 compared with the wild-type. In addition, atomic force microscopy showed that the wild-type had a smoother surface compared with FLL92. Western blot analysis using anti-FimA antibodies showed a 41 kDa immunoreactive protein band in P. gingivalis FLL92 which was missing in the wild-type P. gingivalis W83 strain. There was increased sensitivity to globomycin and vancomycin in FLL92 compared with the wild-type. Outer membrane fractions from FLL92 had a modified lectin-binding profile. Furthermore, in contrast with the wild-type strain, nine proteins were missing from the outer membrane fraction of FLL92, while 20 proteins present in that fraction from FLL92 were missing in the wild-type strain. Taken together, these results suggest that the VimA protein affects capsular synthesis and fimbrial phenotypic expression, and plays a role in the glycosylation and anchorage of several surface proteins. PMID:20378652

  18. Target-dependent biogenesis of cognate microRNAs in human cells

    PubMed Central

    Bose, Mainak; Bhattacharyya, Suvendra N.

    2016-01-01

    Extensive research has established how miRNAs regulate target mRNAs by translation repression and/or endonucleolytic degradation in metazoans. However, information related to the effect of target mRNA on biogenesis and stability of corresponding miRNAs in animals is limited. Here we report regulated biogenesis of cognate miRNAs by their target mRNAs. Enhanced pre-miRNA processing by AGO-associated DICER1 contributes to this increased miRNP formation. The processed miRNAs are loaded onto AGO2 to form functionally competent miRISCs both in vivo and also in a cell-free in vitro system. Thus, we identify an additional layer of posttranscriptional regulation that helps the cell to maintain requisite levels of mature forms of respective miRNAs by modulating their processing in a target-dependent manner, a process happening for miR-122 during stress reversal in human hepatic cells. PMID:27448149

  19. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts.

    PubMed

    Sin, Jon; Andres, Allen M; Taylor, David J R; Weston, Thomas; Hiraumi, Yoshimi; Stotland, Aleksandr; Kim, Brandon J; Huang, Chengqun; Doran, Kelly S; Gottlieb, Roberta A

    2016-01-01

    Myogenesis is a crucial process governing skeletal muscle development and homeostasis. Differentiation of primitive myoblasts into mature myotubes requires a metabolic switch to support the increased energetic demand of contractile muscle. Skeletal myoblasts specifically shift from a highly glycolytic state to relying predominantly on oxidative phosphorylation (OXPHOS) upon differentiation. We have found that this phenomenon requires dramatic remodeling of the mitochondrial network involving both mitochondrial clearance and biogenesis. During early myogenic differentiation, autophagy is robustly upregulated and this coincides with DNM1L/DRP1 (dynamin 1-like)-mediated fragmentation and subsequent removal of mitochondria via SQSTM1 (sequestosome 1)-mediated mitophagy. Mitochondria are then repopulated via PPARGC1A/PGC-1α (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha)-mediated biogenesis. Mitochondrial fusion protein OPA1 (optic atrophy 1 [autosomal dominant]) is then briskly upregulated, resulting in the reformation of mitochondrial networks. The final product is a myotube replete with new mitochondria. Respirometry reveals that the constituents of these newly established mitochondrial networks are better primed for OXPHOS and are more tightly coupled than those in myoblasts. Additionally, we have found that suppressing autophagy with various inhibitors during differentiation interferes with myogenic differentiation. Together these data highlight the integral role of autophagy and mitophagy in myogenic differentiation.

  20. Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules.

    PubMed

    Pulipparacharuvil, Suprabha; Akbar, Mohammed Ali; Ray, Sanchali; Sevrioukov, Evgueny A; Haberman, Adam S; Rohrer, Jack; Krämer, Helmut

    2005-08-15

    Mutations that disrupt trafficking to lysosomes and lysosome-related organelles cause multiple diseases, including Hermansky-Pudlak syndrome. The Drosophila eye is a model system for analyzing such mutations. The eye-color genes carnation and deep orange encode two subunits of the Vps-C protein complex required for endosomal trafficking and pigment-granule biogenesis. Here we demonstrate that dVps16A (CG8454) encodes another Vps-C subunit. Biochemical experiments revealed a specific interaction between the dVps16A C-terminus and the Sec1/Munc18 homolog Carnation but not its closest homolog, dVps33B. Instead, dVps33B interacted with a related protein, dVps16B (CG18112). Deep orange bound both Vps16 homologs. Like a deep orange null mutation, eye-specific RNAi-induced knockdown of dVps16A inhibited lysosomal delivery of internalized ligands and interfered with biogenesis of pigment granules. Ubiquitous knockdown of dVps16A was lethal. Together, these findings demonstrate that Drosophila Vps16A is essential for lysosomal trafficking. Furthermore, metazoans have two types of Vps-C complexes with non-redundant functions.

  1. Mitochondrial nutrients stimulate performance and mitochondrial biogenesis in exhaustively exercised rats.

    PubMed

    Sun, M; Qian, F; Shen, W; Tian, C; Hao, J; Sun, L; Liu, J

    2012-12-01

    The aim of this study was to investigate the effects of a combination of nutrients on physical performance, oxidative stress and mitochondrial biogenesis in rats subjected to exhaustive exercise. Rats were divided into sedentary control (SC), exhaustive exercise (EC) and exhaustive exercise with nutrient supplementation (EN). The nutrients include (mg/kg/day): R-α-lipoic acid 50, acetyl-L-carnitine 100, biotin 0.1, nicotinamide 15, riboflavin 6, pyridoxine 6, creatine 50, CoQ10 5, resveratrol 5 and taurine 100. Examination of running distances over the 4-week period revealed that EN rats ran significantly longer throughout the entire duration of the exhaustive exercise period compared with the EC rats. Nutrient supplementation significantly inhibited the increase in activities of alanine transaminase, lactate dehydrogenase and creatine kinase, reversed increases in malondialdehyde, inhibited decreases in glutathione S-transferase and total antioxidant capacity in plasma, and suppressed the elevation of reactive oxygen species and apoptosis in splenic lymphocytes. Nutrient supplementation increased the protein expression of mitochondrial complexes I, II and III, mtDNA number and transcription factors involved in mitochondrial biogenesis and fusion in skeletal muscle. These findings suggest that mitochondrial nutrient supplementation can reduce exhaustive exercise-induced oxidative damage and mitochondrial dysfunction, thus leading to enhancement of physical performance and of fatigue recovery.

  2. Diacylglycerol kinase α regulates tubular recycling endosome biogenesis and major histocompatibility complex class I recycling.

    PubMed

    Xie, Shuwei; Naslavsky, Naava; Caplan, Steve

    2014-11-14

    Major histocompatibility complex class I (MHC I) presents intracellular-derived peptides to cytotoxic T lymphocytes and its subcellular itinerary is important in regulating the immune response. While a number of diacylglycerol kinase isoforms have been implicated in clathrin-dependent internalization, MHC I lacks the typical motifs known to mediate clathrin-dependent endocytosis. Here we show that depletion of diacylglycerol kinase α (DGKα), a kinase devoid of a clathrin-dependent adaptor protein complex 2 binding site, caused a delay in MHC I recycling to the plasma membrane without affecting the rate of MHC I internalization. We demonstrate that DGKα knock-down causes accumulation of intracellular and surface MHC I, resulting from decreased degradation. Furthermore, we provide evidence that DGKα is required for the generation of phosphatidic acid required for tubular recycling endosome (TRE) biogenesis. Moreover, we show that DGKα forms a complex with the TRE hub protein, MICAL-L1. Given that MICAL-L1 and the F-BAR-containing membrane-tubulating protein Syndapin2 associate selectively with phosphatidic acid, we propose a positive feedback loop in which DGKα generates phosphatidic acid to drive its own recruitment to TRE via its interaction with MICAL-L1. Our data support a novel role for the involvement of DGKα in TRE biogenesis and MHC I recycling.

  3. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers.

    PubMed

    Lakshminarayan, Ramya; Wunder, Christian; Becken, Ulrike; Howes, Mark T; Benzing, Carola; Arumugam, Senthil; Sales, Susanne; Ariotti, Nicholas; Chambon, Valérie; Lamaze, Christophe; Loew, Damarys; Shevchenko, Andrej; Gaus, Katharina; Parton, Robert G; Johannes, Ludger

    2014-06-01

    Several cell surface molecules including signalling receptors are internalized by clathrin-independent endocytosis. How this process is initiated, how cargo proteins are sorted and membranes are bent remains unknown. Here, we found that a carbohydrate-binding protein, galectin-3 (Gal3), triggered the glycosphingolipid (GSL)-dependent biogenesis of a morphologically distinct class of endocytic structures, termed clathrin-independent carriers (CLICs). Super-resolution and reconstitution studies showed that Gal3 required GSLs for clustering and membrane bending. Gal3 interacted with a defined set of cargo proteins. Cellular uptake of the CLIC cargo CD44 was dependent on Gal3, GSLs and branched N-glycosylation. Endocytosis of β1-integrin was also reliant on Gal3. Analysis of different galectins revealed a distinct profile of cargoes and uptake structures, suggesting the existence of different CLIC populations. We conclude that Gal3 functionally integrates carbohydrate specificity on cargo proteins with the capacity of GSLs to drive clathrin-independent plasma membrane bending as a first step of CLIC biogenesis.

  4. A Biogenesis Step Upstream of Microprocessor Controls miR-17∼92 Expression.

    PubMed

    Du, Peng; Wang, Longfei; Sliz, Piotr; Gregory, Richard I

    2015-08-13

    The precise control of miR-17∼92 microRNA (miRNA) is essential for normal development, and overexpression of certain miRNAs from this cluster is oncogenic. Here, we find that the relative expression of the six miRNAs processed from the primary (pri-miR-17∼92) transcript is dynamically regulated during embryonic stem cell (ESC) differentiation. Pri-miR-17∼92 is processed to a biogenesis intermediate, termed "progenitor-miRNA" (pro-miRNA). Pro-miRNA is an efficient substrate for Microprocessor and is required to selectively license production of pre-miR-17, pre-miR-18a, pre-miR-19a, pre-miR-20a, and pre-miR-19b from this cluster. Two complementary cis-regulatory repression domains within pri-miR-17∼92 are required for the blockade of miRNA processing through the formation of an autoinhibitory RNA conformation. The endonuclease CPSF3 (CPSF73) and the spliceosome-associated ISY1 are responsible for pro-miRNA biogenesis and expression of all miRNAs within the cluster except miR-92. Thus, developmentally regulated pro-miRNA processing is a key step controlling miRNA expression and explains the posttranscriptional control of miR-17∼92 expression in development.

  5. Mutant p53 inhibits miRNA biogenesis by interfering with the microprocessor complex.

    PubMed

    Garibaldi, F; Falcone, E; Trisciuoglio, D; Colombo, T; Lisek, K; Walerych, D; Del Sal, G; Paci, P; Bossi, G; Piaggio, G; Gurtner, A

    2016-07-21

    Downregulation of microRNAs (miRNAs) is commonly observed in cancers and promotes tumorigenesis suggesting that miRNAs may function as tumor suppressors. However, the mechanism through which miRNAs are regulated in cancer, and the connection between oncogenes and miRNA biogenesis remain poorly understood. The TP53 tumor-suppressor gene is mutated in half of human cancers resulting in an oncogene with gain-of-function activities. Here we demonstrate that mutant p53 (mutp53) oncoproteins modulate the biogenesis of a subset of miRNAs in cancer cells inhibiting their post-transcriptional maturation. Interestingly, among these miRNAs several are also downregulated in human tumors. By confocal, co-immunoprecipitation and RNA-chromatin immunoprecipitation experiments, we show that endogenous mutp53 binds and sequesters RNA helicases p72/82 from the microprocessor complex, interfering with Drosha-pri-miRNAs association. In agreement with this, the overexpression of p72 leads to an increase of mature miRNAs levels. Moreover, functional experiments demonstrate the oncosuppressive role of mutp53-dependent miRNAs (miR-517a, -519a, -218, -105). Our study highlights a previously undescribed mechanism by which mutp53 interferes with Drosha-p72/82 association leading, at least in part, to miRNA deregulation observed in cancer.

  6. SIRT1 facilitates hepatocellular carcinoma metastasis by promoting PGC-1α-mediated mitochondrial biogenesis.

    PubMed

    Li, Yuming; Xu, Shangcheng; Li, Jing; Zheng, Lu; Feng, Min; Wang, Xiaoya; Han, Keqiang; Pi, Huifeng; Li, Min; Huang, Xiaobing; You, Nan; Tian, Yewang; Zuo, Guohua; Li, Hongyan; Zhao, Hongzhi; Deng, Ping; Yu, Zhengping; Zhou, Zhou; Liang, Ping

    2016-05-17

    SIRT1 is a multifaceted NAD+-dependent protein deacetylase known to act as a tumor promoter or suppressor in different cancers. Here, we describe a novel mechanism of SIRT1-induced hepatocellular carcinoma (HCC) metastasis. SIRT1 overexpression was frequently detected in human HCC specimens and was associated with microvascular invasion (P = 0.0039), advanced tumor node metastasis (TNM) stages (P = 0.0016), HCC recurrence (P = 0.021) and poor outcomes (P = 0.039). Lentivirus-mediated knockdown of SIRT1 in MHCC97H cells reduced invasion and metastasis in vitro and in vivo. SIRT1 depletion attenuated mitochondrial biogenesis and adenosine triphosphate (ATP) production but did not affect epithelial-mesenchymal transition. Elevated SIRT1 expression strongly correlated with the upregulation of PGC-1α in HCC specimens, and ectopic expression of SIRT1 increased PGC-1α levels. In cell assays and an orthotopic transplantation model, PGC-1α overexpression reversed the inhibitory effects of SIRT1 depletion on invasion and metastasis by enhancing mitochondrial biogenesis. These findings reveal the involvement of SIRT1 in HCC metastasis and provide a rationale for exploring therapeutic targets against the SIRT1/PGC-1α axis.

  7. Sirt1 regulates acrosome biogenesis by modulating autophagic flux during spermiogenesis in mice.

    PubMed

    Liu, Chao; Song, Zhenhua; Wang, Lina; Yu, Haiyan; Liu, Weixiao; Shang, Yongliang; Xu, Zhiliang; Zhao, Haichao; Gao, Fengyi; Wen, Jiamin; Zhao, Linan; Gui, Yaoting; Jiao, Jianwei; Gao, Fei; Li, Wei

    2017-02-01

    Sirt1 is a member of the sirtuin family of proteins and has important roles in numerous biological processes. Sirt1(-/-) mice display an increased frequency of abnormal spermatozoa, but the mechanism of Sirt1 in spermiogenesis remains largely unknown. Here, we report that Sirt1 might be directly involved in spermiogenesis in germ cells but not in steroidogenic cells. Germ cell-specific Sirt1 knockout mice were almost completely infertile; the early mitotic and meiotic progression of germ cells in spermatogenesis were not obviously affected after Sirt1 depletion, but subsequent spermiogenesis was disrupted by a defect in acrosome biogenesis, which resulted in a phenotype similar to that observed in human globozoospermia. In addition, LC3 and Atg7 deacetylation was disrupted in spermatids after knocking out Sirt1, which affected the redistribution of LC3 from the nucleus to the cytoplasm and the activation of autophagy. Furthermore, Sirt1 depletion resulted in the failure of LC3 to be recruited to Golgi apparatus-derived vesicles and in the failure of GOPC and PICK1 to be recruited to nucleus-associated acrosomal vesicles. Taken together, these findings reveal that Sirt1 has a novel physiological function in acrosome biogenesis.

  8. TGFβ/Activin signalling is required for ribosome biogenesis and cell growth in Drosophila salivary glands

    PubMed Central

    Eusebio, Nadia; Correia, Andreia; Marinho, Joana; Casares, Fernando

    2017-01-01

    Signalling by TGFβ superfamily factors plays an important role in tissue growth and cell proliferation. In Drosophila, the activity of the TGFβ/Activin signalling branch has been linked to the regulation of cell growth and proliferation, but the cellular and molecular basis for these functions are not fully understood. In this study, we show that both the RII receptor Punt (Put) and the R-Smad Smad2 are strongly required for cell and tissue growth. Knocking down the expression of Put or Smad2 in salivary glands causes alterations in nucleolar structure and functions. Cells with decreased TGFβ/Activin signalling accumulate intermediate pre-rRNA transcripts containing internal transcribed spacer 1 regions accompanied by the nucleolar retention of ribosomal proteins. Thus, our results show that TGFβ/Activin signalling is required for ribosomal biogenesis, a key aspect of cellular growth control. Importantly, overexpression of Put enhanced cell growth induced by Drosophila Myc, a well-characterized inducer of nucleolar hypertrophy and ribosome biogenesis. PMID:28123053

  9. Small GTPase Rab40c Associates with Lipid Droplets and Modulates the Biogenesis of Lipid Droplets

    PubMed Central

    Tan, Ran; Wang, Weijie; Wang, Shicong; Wang, Zhen; Sun, Lixiang; He, Wei; Fan, Rong; Zhou, Yunhe; Xu, Xiaohui; Hong, Wanjin; Wang, Tuanlao

    2013-01-01

    The subcellular location and cell biological function of small GTPase Rab40c in mammalian cells have not been investigated in detail. In this study, we demonstrated that the exogenously expressed GFP-Rab40c associates with lipid droplets marked by neutral lipid specific dye Oil red or Nile red, but not with the Golgi or endosomal markers. Further examination demonstrated that Rab40c is also associated with ERGIC-53 containing structures, especially under the serum starvation condition. Rab40c is increasingly recruited to the surface of lipid droplets during lipid droplets formation and maturation in HepG2 cells. Rab40c knockdown moderately decreases the size of lipid droplets, suggesting that Rab40c is involved in the biogenesis of lipid droplets. Stimulation for adipocyte differentiation increases the expression of Rab40c in 3T3-L1 cells. Rab40c interacts with TIP47, and is appositionally associated with TIP47-labeled lipid droplets. In addition, over-expression of Rab40c causes the clustering of lipid droplets independent of its GTPase activity, but completely dependent of the intact SOCS box domain of Rab40c. In addition, Rab40c displayed self-interaction as well as interaction with TIP47 and the SOCS box is essential for its ability to induce clustering of lipid droplets. Our results suggest that Rab40c is a novel Rab protein associated with lipid droplets, and is likely involved in modulating the biogenesis of lipid droplets. PMID:23638186

  10. Structure of BamA, an essential factor in outer membrane protein biogenesis.

    PubMed

    Albrecht, Reinhard; Schütz, Monika; Oberhettinger, Philipp; Faulstich, Michaela; Bermejo, Ivan; Rudel, Thomas; Diederichs, Kay; Zeth, Kornelius

    2014-06-01

    Outer membrane protein (OMP) biogenesis is an essential process for maintaining the bacterial cell envelope and involves the β-barrel assembly machinery (BAM) for OMP recognition, folding and assembly. In Escherichia coli this function is orchestrated by five proteins: the integral outer membrane protein BamA of the Omp85 superfamily and four associated lipoproteins. To unravel the mechanism underlying OMP folding and insertion, the structure of the E. coli BamA β-barrel and P5 domain was determined at 3 Å resolution. These data add information beyond that provided in the recently published crystal structures of BamA from Haemophilus ducreyi and Neisseria gonorrhoeae and are a valuable basis for the interpretation of pertinent functional studies. In an `open' conformation, E. coli BamA displays a significant degree of flexibility between P5 and the barrel domain, which is indicative of a multi-state function in substrate transfer. E. coli BamA is characterized by a discontinuous β-barrel with impaired β1-β16 strand interactions denoted by only two connecting hydrogen bonds and a disordered C-terminus. The 16-stranded barrel surrounds a large cavity which implies a function in OMP substrate binding and partial folding. These findings strongly support a mechanism of OMP biogenesis in which substrates are partially folded inside the barrel cavity and are subsequently released laterally into the lipid bilayer.

  11. The ExPortal: an organelle dedicated to the biogenesis of secreted proteins in Streptococcus pyogenes.

    PubMed

    Rosch, Jason W; Caparon, Michael G

    2005-11-01

    The Gram-positive pathogen Streptococcus pyogenes secretes proteins through the ExPortal, a unique single microdomain of the cellular membrane specialized to contain the Sec translocons. It has been proposed that the ExPortal functions as an organelle to promote the biogenesis of secreted proteins by coordinating interactions between nascent unfolded secretory proteins and membrane-associated chaperones. In this study we provide evidence to support this model. It was found that HtrA (DegP), a surface anchored accessory factor required for maturation of the secreted SpeB cysteine protease, was localized exclusively to the ExPortal. Furthermore, the ATP synthase beta subunit was not localized to the ExPortal, suggesting that retention is likely restricted to a specific subset of exported proteins. Mutations that disrupted the anchoring, but not the protease activity, of HtrA, also altered the maturation kinetics of SpeB demonstrating that localization to the ExPortal was important for HtrA function. These data indicate that the ExPortal provides a mechanism by which Gram-positive bacteria can coordinate protein secretion and subsequent biogenesis in the absence of a specialized protein-folding compartment.

  12. Mining the surface proteome of tomato (Solanum lycopersicum) fruit for proteins associated with cuticle biogenesis.

    PubMed

    Yeats, Trevor H; Howe, Kevin J; Matas, Antonio J; Buda, Gregory J; Thannhauser, Theodore W; Rose, Jocelyn K C

    2010-08-01

    The aerial organs of plants are covered by the cuticle, a polyester matrix of cutin and organic solvent-soluble waxes that is contiguous with the polysaccharide cell wall of the epidermis. The cuticle is an important surface barrier between a plant and its environment, providing protection against desiccation, disease, and pests. However, many aspects of the mechanisms of cuticle biosynthesis, assembly, and restructuring are entirely unknown. To identify candidate proteins with a role in cuticle biogenesis, a surface protein extract was obtained from tomato (Solanum lycopersicum) fruits by dipping in an organic solvent and the constituent proteins were identified by several complementary fractionation strategies and two mass spectrometry techniques. Of the approximately 200 proteins that were identified, a subset is potentially involved in the transport, deposition, or modification of the cuticle, such as those with predicted lipid-associated protein domains. These include several lipid-transfer proteins, GDSL-motif lipase/hydrolase family proteins, and an MD-2-related lipid recognition domain-containing protein. The epidermal-specific transcript accumulation of several of these candidates was confirmed by laser-capture microdissection and quantitative reverse transcription-PCR (qRT-PCR), together with their expression during various stages of fruit development. This indicated a complex pattern of cuticle deposition, and models for cuticle biogenesis and restructuring are discussed.

  13. Mutants of Chlamydomonas: tools to study thylakoid membrane structure, function and biogenesis.

    PubMed

    de Vitry, C; Vallon, O

    1999-06-01

    The unicellular green alga Chlamydomonas reinhardtii is a model system for the study of photosynthesis and chloroplast biogenesis. C. reinhardtii has a photosynthesis apparatus similar to that of higher plants and it grows at rapid rate (generation time about 8 h). It is a facultative phototroph, which allows the isolation of mutants unable to perform photosynthesis and its sexual cycle allows a variety of genetic studies. Transformation of the nucleus and chloroplast genomes is easily performed. Gene transformation occurs mainly by homologous recombination in the chloroplast and heterologous recombination in the nucleus. Mutants are precious tools for studies of thylakoid membrane structure, photosynthetic function and assembly. Photosynthesis mutants affected in the biogenesis of a subunit of a protein complex usually lack the entire complex; this pleiotropic effect has been used in the identification of the other subunits, in the attribution of spectroscopic signals and also as a 'genetic cleaning' process which facilitates both protein complex purification, absorption spectroscopy studies or freeze-fracture analysis. The cytochrome b6f complex is not required for the growth of C. reinhardtii, unlike the case of photosynthetic prokaryotes in which the cytochrome complex is also part of the respiratory chain, and can be uniquely studied in Chlamydomonas by genetic approaches. We describe in greater detail the use of Chlamydomonas mutants in the study of this complex.

  14. Eukaryotic Initiation Factor 6, an evolutionarily conserved regulator of ribosome biogenesis and protein translation

    SciTech Connect

    Guo, Jianjun; Jin, Zhaoqing; Yang, Xiaohan; Li, Jian-Feng; Chen, Jay

    2011-01-01

    We recently identified Receptor for Activated C Kinase 1 (RACK1) as one of the molecular links between abscisic acid (ABA) signaling and its regulation on protein translation. Moreover, we identified Eukaryotic Initiation Factor 6 (eIF6) as an interacting partner of RACK1. Because the interaction between RACK1 and eIF6 in mammalian cells is known to regulate the ribosome assembly step of protein translation initiation, it was hypothesized that the same process of protein translation in Arabidopsis is also regulated by RACK1 and eIF6. In this article, we analyzed the amino acid sequences of eIF6 in different species from different lineages and discovered some intriguing differences in protein phosphorylation sites that may contribute to its action in ribosome assembly and biogenesis. In addition, we discovered that, distinct from non-plant organisms in which eIF6 is encoded by a single gene, all sequenced plant genomes contain two or more copies of eIF6 genes. While one copy of plant eIF6 is expressed ubiquitously and might possess the conserved function in ribosome biogenesis and protein translation, the other copy seems to be only expressed in specific organs and therefore may have gained some new functions. We proposed some important studies that may help us better understand the function of eIF6 in plants.

  15. Potential role of lipin-1 in exercise-induced mitochondrial biogenesis.

    PubMed

    Higashida, Kazuhiko; Higuchi, Mitsuru; Terada, Shin

    2008-09-26

    Endurance exercise induces mitochondrial biogenesis in skeletal muscle. It has been shown that lipin-1 acts as a transcriptional coactivator in liver, and stimulates gene expression of mitochondrial enzymes. We hypothesized that lipin-1 might be involved in exercise-induced mitochondrial biogenesis in skeletal muscle. The present investigation first demonstrated that lipin-1 mRNA in rat triceps muscle was increased by approximately 2-fold after an acute bout of endurance swimming exercise. Second, ectopic expression of lipin-1 in L6 myotube increased carnitine palmitoyltransferase-1 and delta-aminolevulinate synthase gene expression. Finally, lipin-1 mRNA expression in rat triceps muscle was significantly elevated at 6h after subcutaneous injections of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) or clenbuterol, which are 5'-AMP-activated protein kinase (AMPK) and beta2-adrenergic receptor (beta2-AR) activators, respectively. These results may suggest that enhanced expression of lipin-1 is involved in exercise-induced mitochondrial enzyme adaptations, possibly through AMPK- and beta2-AR-related mechanisms.

  16. Temperature and carbon assimilation regulate the chlorosome biogenesis in green sulfur bacteria.

    PubMed

    Tang, Joseph Kuo-Hsiang; Saikin, Semion K; Pingali, Sai Venkatesh; Enriquez, Miriam M; Huh, Joonsuk; Frank, Harry A; Urban, Volker S; Aspuru-Guzik, Alán

    2013-09-17

    Green photosynthetic bacteria adjust the structure and functionality of the chlorosome-the light-absorbing antenna complex-in response to environmental stress factors. The chlorosome is a natural self-assembled aggregate of bacteriochlorophyll (BChl) molecules. In this study, we report the regulation of the biogenesis of the Chlorobaculum tepidum chlorosome by carbon assimilation in conjunction with temperature changes. Our studies indicate that the carbon source and thermal stress culture of C. tepidum grows slower and incorporates fewer BChl c in the chlorosome. Compared with the chlorosome from other cultural conditions we investigated, the chlorosome from the carbon source and thermal stress culture displays (a) smaller cross-sectional radius and overall size, (b) simplified BChl c homologs with smaller side chains, (c) blue-shifted Qy absorption maxima, and (d) a sigmoid-shaped circular dichroism spectra. Using a theoretical model, we analyze how the observed spectral modifications can be associated with structural changes of BChl aggregates inside the chlorosome. Our report suggests a mechanism of metabolic regulation for chlorosome biogenesis.

  17. Analysis of the Role of Vaccinia Virus H7 in Virion Membrane Biogenesis with an H7-Deletion Mutant

    PubMed Central

    Meng, Xiangzhi; Wu, Xiang; Yan, Bo; Deng, Junpeng

    2013-01-01

    Essential vaccinia virus genes are often studied with conditional-lethal inducible mutants. Here, we constructed a deletion mutant lacking the essential H7R gene (the ΔH7 mutant) with an H7-expressing cell line. Compared to an inducible H7 mutant, the ΔH7 mutant showed a defect at an earlier step of virion membrane biogenesis, before the development of short crescent-shaped precursors of the viral envelope. Our studies refine the role of H7 in virion membrane biogenesis and highlight the values of analyzing deletion mutants. PMID:23678177

  18. Functional Dynamics Revealed by the Structure of the SufBCD Complex, a Novel ATP-binding Cassette (ABC) Protein That Serves as a Scaffold for Iron-Sulfur Cluster Biogenesis*

    PubMed Central

    Hirabayashi, Kei; Yuda, Eiki; Tanaka, Naoyuki; Katayama, Sumie; Iwasaki, Kenji; Matsumoto, Takashi; Kurisu, Genji; Outten, F. Wayne; Fukuyama, Keiichi; Takahashi, Yasuhiro; Wada, Kei

    2015-01-01

    ATP-binding cassette (ABC)-type ATPases are chemomechanical engines involved in diverse biological pathways. Recent genomic information reveals that ABC ATPase domains/subunits act not only in ABC transporters and structural maintenance of chromosome proteins, but also in iron-sulfur (Fe-S) cluster biogenesis. A novel type of ABC protein, the SufBCD complex, functions in the biosynthesis of nascent Fe-S clusters in almost all Eubacteria and Archaea, as well as eukaryotic chloroplasts. In this study, we determined the first crystal structure of the Escherichia coli SufBCD complex, which exhibits the common architecture of ABC proteins: two ABC ATPase components (SufC) with function-specific components (SufB-SufD protomers). Biochemical and physiological analyses based on this structure provided critical insights into Fe-S cluster assembly and revealed a dynamic conformational change driven by ABC ATPase activity. We propose a molecular mechanism for the biogenesis of the Fe-S cluster in the SufBCD complex. PMID:26472926

  19. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms.

    PubMed

    Little, Jonathan P; Safdar, Adeel; Wilkin, Geoffrey P; Tarnopolsky, Mark A; Gibala, Martin J

    2010-03-15

    High-intensity interval training (HIT) induces skeletal muscle metabolic and performance adaptations that resemble traditional endurance training despite a low total exercise volume. Most HIT studies have employed 'all out', variable-load exercise interventions (e.g. repeated Wingate tests) that may not be safe, practical and/or well tolerated by certain individuals. Our purpose was to determine the performance, metabolic and molecular adaptations to a more practical model of low-volume HIT. Seven men (21 + or - 0.4 years, V(O2peak) = 46 + or - 2 ml kg(-1) min(-1)) performed six training sessions over 2 weeks. Each session consisted of 8-12 x 60 s intervals at approximately 100% of peak power output elicited during a ramp V(O2) peak test (355 + or - 10 W) separated by 75 s of recovery. Training increased exercise capacity, as assessed by significant improvements on both 50 kJ and 750 kJ cycling time trials (P < 0.05 for both). Skeletal muscle (vastus lateralis) biopsy samples obtained before and after training revealed increased maximal activity of citrate synthase (CS) and cytochrome c oxidase (COX) as well as total protein content of CS, COX subunits II and IV, and the mitochondrial transcription factor A (Tfam) (P < 0.05 for all). Nuclear abundance of peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) was approximately 25% higher after training (P < 0.05), but total PGC-1alpha protein content remained unchanged. Total SIRT1 content, a proposed activator of PGC-1alpha and mitochondrial biogenesis, was increased by approximately 56% following training (P < 0.05). Training also increased resting muscle glycogen and total GLUT4 protein content (both P < 0.05). This study demonstrates that a practical model of low volume HIT is a potent stimulus for increasing skeletal muscle mitochondrial capacity and improving exercise performance. The results also suggest that increases in SIRT1, nuclear PGC-1alpha, and Tfam may be involved in

  20. Molecular mimicry and original biochemical strategies for the biogenesis of a Legionella pneumophila replicative niche in phagocytic cells.

    PubMed

    Allombert, Julie; Fuche, Fabien; Michard, Céline; Doublet, Patricia

    2013-12-01

    Legionella pneumophila is a paradigm of highly adapted intravacuolar pathogens that acquired the rare ability to replicate within a phagocytic cell. Here, we review recent progress about the role of Type 4 secretion system effectors involved in the biogenesis of the replicative niche, the Legionella containing vacuole.

  1. Gene expression of key regulators of mitochondrial biogenesis is sex dependent in mice with growth hormone receptor deletion in liver

    PubMed Central

    Zawada, Ilona; Masternak, Michal M.; List, Edward O.; Stout, Michael B.; Berryman, Darlene E.; Lewinski, Andrzej; Kopchick, John J.; Bartke, Andrzej; Karbownik-Lewinska, Malgorzata; Gesing, Adam

    2015-01-01

    Mitochondrial biogenesis is an essential process for cell viability. Mice with disruption of the growth hormone receptor (GHR) gene (Ghr gene) in the liver (LiGHRKO), in contrast to long-lived mice with global deletion of the Ghr gene (GHRKO), are characterized by lack of improved insulin sensitivity and severe hepatic steatosis. Tissue-specific disruption of the GHR in liver results in a mouse model with dramatically altered GH/IGF1 axis. We have previously shown increased levels of key regulators of mitochondrial biogenesis in insulin-sensitive GHRKO mice. The aim of the present study is to assess, using real-time PCR, the gene expression of key regulators of mitochondrial biogenesis (Pgc1α, Ampk, Sirt1, Nrf2 and Mfn2) and a marker of mitochondrial activity (CoxIV) in brains, kidneys and livers of male and female LiGHRKO and wild-type (WT) mice. There were significant differences between males and females. In the brain, expression of Pgc1α, Ampk, Sirt1, Nrf2 and Mfn2 was lower in pooled females compared to pooled males. In the kidneys, expression of Ampk and Sirt1 was also lower in female mice. In the liver, no differences between males and females were observed. Sexual dimorphism may play an important role in regulating the biogenesis of mitochondria. PMID:25855408

  2. Gene expression of key regulators of mitochondrial biogenesis is sex dependent in mice with growth hormone receptor deletion in liver.

    PubMed

    Zawada, Ilona; Masternak, Michal M; List, Edward O; Stout, Michael B; Berryman, Darlene E; Lewinski, Andrzej; Kopchick, John J; Bartke, Andrzej; Karbownik-Lewinska, Malgorzata; Gesing, Adam

    2015-03-01

    Mitochondrial biogenesis is an essential process for cell viability. Mice with disruption of the growth hormone receptor (GHR) gene (Ghr gene) in the liver (LiGHRKO), in contrast to long-lived mice with global deletion of the Ghr gene (GHRKO), are characterized by lack of improved insulin sensitivity and severe hepatic steatosis. Tissue-specific disruption of the GHR in liver results in a mouse model with dramatically altered GH/IGF1 axis. We have previously shown increased levels of key regulators of mitochondrial biogenesis in insulin-sensitive GHRKO mice. The aim of the present study is to assess, using real-time PCR, the gene expression of key regulators of mitochondrial biogenesis (Pgc1α, Ampk, Sirt1, Nrf2 and Mfn2) and a marker of mitochondrial activity (CoxIV) in brains, kidneys and livers of male and female LiGHRKO and wild-type (WT) mice. There were significant differences between males and females. In the brain, expression of Pgc1α, Ampk, Sirt1, Nrf2 and Mfn2 was lower in pooled females compared to pooled males. In the kidneys, expression of Ampk and Sirt1 was also lower in female mice. In the liver, no differences between males and females were observed. Sexual dimorphism may play an important role in regulating the biogenesis of mitochondria.

  3. Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in Arabidopsis.

    PubMed

    Zhong, Si-Hui; Liu, Jun-Zhong; Jin, Hua; Lin, Lin; Li, Qun; Chen, Ying; Yuan, Yue-Xing; Wang, Zhi-Yong; Huang, Hai; Qi, Yi-Jun; Chen, Xiao-Ya; Vaucheret, Hervé; Chory, Joanne; Li, Jianming; He, Zu-Hua

    2013-05-28

    Owing to their sessile nature, plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly and reversibly to daily and seasonal temperature changes. However, our knowledge of how plants sense and respond to warming ambient temperatures is rather limited. Here we show that an increase in growth temperature from 22 °C to 30 °C effectively inhibited transgene-induced posttranscriptional gene silencing (PTGS) in Arabidopsis. Interestingly, warmth-induced PTGS release exhibited transgenerational epigenetic inheritance. We discovered that the warmth-induced PTGS release occurred during a critical step that leads to the formation of double-stranded RNA (dsRNA) for producing small interfering RNAs (siRNAs). Deep sequencing of small RNAs and RNA blot analysis indicated that the 22-30 °C increase resulted in a significant reduction in the abundance of many trans-acting siRNAs that require dsRNA for biogenesis. We discovered that the temperature increase reduced the protein abundance of SUPPRESSOR OF GENE SILENCING 3, as a consequence, attenuating the formation of stable dsRNAs required for siRNA biogenesis. Importantly, SUPPRESSOR OF GENE SILENCING 3 overexpression released the warmth-triggered inhibition of siRNA biogenesis and reduced the transgenerational epigenetic memory. Thus, our study reveals a previously undescribed association between warming temperatures, an epigenetic system, and siRNA biogenesis.

  4. Role of Hsp90 in Biogenesis of the β-Cell ATP-sensitive Potassium Channel Complex

    PubMed Central

    Yan, Fei-Fei; Pratt, Emily B.; Chen, Pei-Chun; Wang, Fang; Skach, William R.; David, Larry L.

    2010-01-01

    The pancreatic β-cell ATP-sensitive potassium (KATP) channel is a multimeric protein complex composed of four inwardly rectifying potassium channel (Kir6.2) and four sulfonylurea receptor 1 (SUR1) subunits. KATP channels play a key role in glucose-stimulated insulin secretion by linking glucose metabolism to membrane excitability. Many SUR1 and Kir6.2 mutations reduce channel function by disrupting channel biogenesis and processing, resulting in insulin secretion disease. To better understand the mechanisms governing KATP channel biogenesis, a proteomics approach was used to identify chaperone proteins associated with KATP channels. We report that chaperone proteins heat-shock protein (Hsp)90, heat-shock cognate protein (Hsc)70, and Hsp40 are associated with β-cell KATP channels. Pharmacologic inhibition of Hsp90 function by geldanamycin reduces, whereas overexpression of Hsp90 increases surface expression of wild-type KATP channels. Coimmunoprecipitation data indicate that channel association with the Hsp90 complex is mediated through SUR1. Accordingly, manipulation of Hsp90 protein expression or function has significant effects on the biogenesis efficiency of SUR1, but not Kir6.2, expressed alone. Interestingly, overexpression of Hsp90 selectively improved surface expression of mutant channels harboring a subset of disease-causing SUR1 processing mutations. Our study demonstrates that Hsp90 regulates biogenesis efficiency of heteromeric KATP channels via SUR1, thereby affecting functional expression of the channel in β-cell membrane. PMID:20427569

  5. Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer's disease-like pathology.

    PubMed

    Zhang, Wei; Gu, Guo-Jun; Shen, Xing; Zhang, Qi; Wang, Gang-Min; Wang, Pei-Jun

    2015-03-01

    Mitochondrial dysfunction, especially a defect in mitochondrial biogenesis, is an early and prominent feature of Alzheimer's disease (AD). Previous studies demonstrated that the number of mitochondria is significantly reduced in susceptible hippocampal neurons from AD patients. Neural stem cell (NSC) transplantation in AD-like mice can compensate for the neuronal loss resulting from amyloid-beta protein deposition. The effects of NSC transplantation on mitochondrial biogenesis and cognitive function in AD-like mice, however, are poorly understood. In this study, we injected NSCs or vehicle into 12-month-old amyloid precursor protein (APP)/PS1 transgenic mice, a mouse model of AD-like pathology. The effects of NSC transplantation on cognitive function, the amount of mitochondrial DNA, the expression of mitochondrial biogenesis factors and mitochondria-related proteins, and mitochondrial morphology were investigated. Our results show that in NSC-injected APP/PS1 (Tg-NSC) mice, the cognitive function, number of mitochondria, and expression of mitochondria-related proteins, specifically the mitochondrial fission factors (dynamin-related protein 1 [Drp1] and fission 1 [Fis1]) and the mitochondrial fusion factor optic atrophy 1 (OPA1), were significantly increased compared with those in age-matched vehicle-injected APP/PS1 (Tg-Veh) mice, whereas the expression of mitochondrial fusion factors mitofusion 1 (Mfn1) and Mfn2 was significantly decreased. These data indicate that NSC transplantation may enhance mitochondria biogenesis and further rescue cognitive deficits in AD-like mice.

  6. Developmental regulation of mitochondrial biogenesis and function in the mouse mammary gland during a prolonged lactation cycle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The regulation of mitochondrial biogenesis and function in the lactating mammary cell is poorly understood. The goal of this study was to use proteomics to relate temporal changes in mammary cell mitochondrial function during lactation to changes in the proteins that make up this organelle. The hypo...

  7. The Ribosome Biogenesis Factor Nol11 Is Required for Optimal rDNA Transcription and Craniofacial Development in Xenopus

    PubMed Central

    Griffin, John N.; Sondalle, Samuel B.; del Viso, Florencia; Baserga, Susan J.; Khokha, Mustafa K.

    2015-01-01

    The production of ribosomes is ubiquitous and fundamental to life. As such, it is surprising that defects in ribosome biogenesis underlie a growing number of symptomatically distinct inherited disorders, collectively called ribosomopathies. We previously determined that the nucleolar protein, NOL11, is essential for optimal pre-rRNA transcription and processing in human tissue culture cells. However, the role of NOL11 in the development of a multicellular organism remains unknown. Here, we reveal a critical function for NOL11 in vertebrate ribosome biogenesis and craniofacial development. Nol11 is strongly expressed in the developing cranial neural crest (CNC) of both amphibians and mammals, and knockdown of Xenopus nol11 results in impaired pre-rRNA transcription and processing, increased apoptosis, and abnormal development of the craniofacial cartilages. Inhibition of p53 rescues this skeletal phenotype, but not the underlying ribosome biogenesis defect, demonstrating an evolutionarily conserved control mechanism through which ribosome-impaired craniofacial cells are removed. Excessive activation of this mechanism impairs craniofacial development. Together, our findings reveal a novel requirement for Nol11 in craniofacial development, present the first frog model of a ribosomopathy, and provide further insight into the clinically important relationship between specific ribosome biogenesis proteins and craniofacial cell survival. PMID:25756904

  8. Common miR-590 Variant rs6971711 Present Only in African Americans Reduces miR-590 Biogenesis.

    PubMed

    Lin, Xiaoping; Steinberg, Steven; Kandasamy, Suresh K; Afzal, Junaid; Mbiyangandu, Blaid; Liao, Susan E; Guan, Yufan; Corona-Villalobos, Celia P; Matkovich, Scot J; Epstein, Neal; Tripodi, Dotti; Huo, Zhaoxia; Cutting, Garry; Abraham, Theodore P; Fukunaga, Ryuya; Abraham, M Roselle

    2016-01-01

    MicroRNAs (miRNAs) are recognized as important regulators of cardiac development, hypertrophy and fibrosis. Recent studies have demonstrated that genetic variations which cause alterations in miRNA:target interactions can lead to disease. We hypothesized that genetic variations in miRNAs that regulate cardiac hypertrophy/fibrosis might be involved in generation of the cardiac phenotype in patients diagnosed with hypertrophic cardiomyopathy (HCM). To investigate this question, we Sanger sequenced 18 miRNA genes previously implicated in myocyte hypertrophy/fibrosis and apoptosis, using genomic DNA isolated from the leukocytes of 199 HCM patients. We identified a single nucleotide polymorphism (rs6971711, C57T SNP) at the 17th position of mature miR-590-3p (= 57th position of pre-miR-590) that is common in individuals of African ancestry. SNP frequency was higher in African American HCM patients (n = 55) than ethnically-matched controls (n = 100), but the difference was not statistically significant (8.2% vs. 6.5%; p = 0.5). Using a cell culture system, we discovered that presence of this SNP resulted in markedly lower levels of mature miR-590-5p (39 ± 16%, p<0.003) and miR-590-3p (20 ± 2%, p<0.003), when compared with wild-type (WT) miR-590, without affecting levels of pri-miR-590 and pre-miR-590. Consistent with this finding, the SNP resulted in reduced target suppression when compared to WT miR-590 (71% suppression by WT vs 60% suppression by SNP, p<0.03). Since miR-590 can regulate TGF-β, Activin A and Akt signaling, SNP-induced reduction in miR-590 biogenesis could influence cardiac phenotype by de-repression of these signaling pathways. Since the SNP is only present in African Americans, population studies in this patient population would be valuable to investigate effects of this SNP on myocyte function and cardiac physiology.

  9. Common miR-590 Variant rs6971711 Present Only in African Americans Reduces miR-590 Biogenesis

    PubMed Central

    Steinberg, Steven; Kandasamy, Suresh K.; Afzal, Junaid; Mbiyangandu, Blaid; Liao, Susan E.; Guan, Yufan; Corona-Villalobos, Celia P.; Matkovich, Scot J.; Epstein, Neal; Tripodi, Dotti; Huo, Zhaoxia; Cutting, Garry; Abraham, Theodore P.; Abraham, M. Roselle

    2016-01-01

    MicroRNAs (miRNAs) are recognized as important regulators of cardiac development, hypertrophy and fibrosis. Recent studies have demonstrated that genetic variations which cause alterations in miRNA:target interactions can lead to disease. We hypothesized that genetic variations in miRNAs that regulate cardiac hypertrophy/fibrosis might be involved in generation of the cardiac phenotype in patients diagnosed with hypertrophic cardiomyopathy (HCM). To investigate this question, we Sanger sequenced 18 miRNA genes previously implicated in myocyte hypertrophy/fibrosis and apoptosis, using genomic DNA isolated from the leukocytes of 199 HCM patients. We identified a single nucleotide polymorphism (rs6971711, C57T SNP) at the 17th position of mature miR-590-3p (= 57th position of pre-miR-590) that is common in individuals of African ancestry. SNP frequency was higher in African American HCM patients (n = 55) than ethnically-matched controls (n = 100), but the difference was not statistically significant (8.2% vs. 6.5%; p = 0.5). Using a cell culture system, we discovered that presence of this SNP resulted in markedly lower levels of mature miR-590-5p (39 ± 16%, p<0.003) and miR-590-3p (20 ± 2%, p<0.003), when compared with wild-type (WT) miR-590, without affecting levels of pri-miR-590 and pre-miR-590. Consistent with this finding, the SNP resulted in reduced target suppression when compared to WT miR-590 (71% suppression by WT vs 60% suppression by SNP, p<0.03). Since miR-590 can regulate TGF-β, Activin A and Akt signaling, SNP-induced reduction in miR-590 biogenesis could influence cardiac phenotype by de-repression of these signaling pathways. Since the SNP is only present in African Americans, population studies in this patient population would be valuable to investigate effects of this SNP on myocyte function and cardiac physiology. PMID:27196440

  10. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously

    PubMed Central

    Cho, Hongbaek; Wivagg, Carl N.; Kapoor, Mrinal; Barry, Zachary; Rohs, Patricia D.A.; Suh, Hyunsuk; Marto, Jarrod A.; Garner, Ethan C.; Bernhardt, Thomas G.

    2016-01-01

    Multi-protein complexes organized by cytoskeletal proteins are essential for cell wall biogenesis in most bacteria. Current models of the wall assembly mechanism assume class A penicillin-binding proteins (aPBPs), the targets of penicillin-like drugs, function as the primary cell wall polymerases within these machineries. Here, we use an in vivo cell wall polymerase assay in Escherichia coli combined with measurements of the localization dynamics of synthesis proteins to investigate this hypothesis. We find that aPBP activity is not necessary for glycan polymerization by the cell elongation machinery as is commonly believed. Instead, our results indicate that cell wall synthesis is mediated by two distinct polymerase systems, SEDS-family proteins working within the cytoskeletal machines and aPBP enzymes functioning outside of these complexes. These findings thus necessitate a fundamental change in our conception of the cell wall assembly process in bacteria. PMID:27643381

  11. Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3.

    PubMed

    Brenmoehl, Julia; Hoeflich, Andreas

    2013-11-01

    In this review, we discuss the dual control of mitochondrial biogenesis and energy metabolism by silent information regulator-1 and -3 (SIRT1 and SIRT3). SIRT1 activates the peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α)-mediated transcription of nuclear and mitochondrial genes encoding for proteins promoting mitochondria proliferation, oxidative phosphorylation and energy production, whereas SIRT3 directly acts as an activator of proteins important for oxidative phosphorylation, tricarboxylic acid (TCA) cycle and fatty-acid oxidation and indirectly of PGC-1α and AMP-activated protein kinase (AMPK). The complex network involves different cellular compartments, transcriptional activation, post-translational modification and a plethora of secondary effectors. Overall, the mode of interaction between both sirtuin family members may be considered as a prominent case of molecular job-sharing.

  12. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals

    PubMed Central

    Shea, Jeremy M.; Boskovic, Ana; Derr, Alan G.; Bing, Xin Y.; Belleannee, Clemence; Kucukural, Alper; Serra, Ryan W.; Sun, Fengyun; Song, Lina; Carone, Benjamin R.; Ricci, Emiliano P.; Li, Xin Z.; Fauquier, Lucas; Moore, Melissa J.; Sullivan, Robert; Mello, Craig C.; Garber, Manuel; Rando, Oliver J.

    2016-01-01

    Several recent studies link parental environments to phenotypes in subsequent generations. Here, we investigate the mechanism by which paternal diet affects offspring metabolism. Protein restriction in mice affects small RNA levels in mature sperm, with decreased let-7 levels and increased levels of 5’ fragments of glycine tRNAs. tRNA fragments are scarce in testicular sperm, but are gained as sperm mature in the epididymis. Epididymosomes – vesicles that fuse with sperm during epididymal transit – carry RNA payloads matching those of mature sperm, and deliver RNAs to immature sperm in vitro. Functionally, tRNA-Gly-GCC fragments repress genes associated with the endogenous retroelement MERVL, both in ES cells and embryos. Our results shed light on small RNA biogenesis, and its dietary regulation, during post-testicular sperm maturation, and link tRNA fragments to regulation of endogenous retroelements active in the preimplantation embryo. PMID:26721685

  13. Shot and Patronin polarise microtubules to direct membrane traffic and biogenesis of microvilli in epithelia

    PubMed Central

    Khanal, Ichha; Elbediwy, Ahmed; Diaz de la Loza, Maria del Carmen; Fletcher, Georgina C.

    2016-01-01

    ABSTRACT In epithelial tissues, polarisation of microtubules and actin microvilli occurs along the apical-basal axis of each cell, yet how these cytoskeletal polarisation events are coordinated remains unclear. Here, we examine the hierarchy of events during cytoskeletal polarisation in Drosophila melanogaster epithelia. Core apical-basal polarity determinants polarise the spectrin cytoskeleton to recruit the microtubule-binding proteins Patronin (CAMSAP1, CAMSAP2 and CAMPSAP3 in humans) and Shortstop [Shot; MACF1 and BPAG1 (also known as DST) in humans] to the apical membrane domain. Patronin and Shot then act to polarise microtubules along the apical-basal axis to enable apical transport of Rab11 endosomes by the Nuf–Dynein microtubule motor complex. Finally, Rab11 endosomes are transferred to the MyoV (also known as Didum in Drosophila) actin motor to deliver the key microvillar determinant Cadherin 99C to the apical membrane to organise the biogenesis of actin microvilli. PMID:27231092

  14. C-type cytochromes: diverse structures and biogenesis systems pose evolutionary problems.

    PubMed Central

    Allen, James W A; Daltrop, Oliver; Stevens, Julie M; Ferguson, Stuart J

    2003-01-01

    C-type cytochromes are a structurally diverse group of haemoproteins, which are related by the occurrence of haem covalently attached to a polypeptide via two thioether bonds formed by the vinyl groups of haem and cysteine side chains in a CXXCH peptide motif. Remarkably, three different post-translational systems for forming these cytochromes have been identified. The evolution of both the proteins themselves and the biogenesis systems poses many questions to which answers are currently being sought. In this article we review the progress that has been made in understanding the need for covalent attachment of haem to proteins in cytochromes c and the complex systems involved in their formation. PMID:12594933

  15. Natural Products Synthesis: Enabling Tools to Penetrate Nature’s Secrets of Biogenesis and Biomechanism†

    PubMed Central

    Williams, Robert M.

    2011-01-01

    Selected examples from our laboratory of how synthetic technology platforms developed for the total synthesis of several disparate families of natural products was harnessed to penetrate biomechanistic and/or biosynthetic queries is discussed. Unexpected discoveries of biomechanistic reactivity and/or penetrating the biogenesis of naturally occurring substances were made possible through access to substances available only through chemical synthesis. Hypothesis-driven total synthesis programs are emerging as very useful conceptual templates for penetrating and exploiting the inherent reactivity of biologically active natural substances. In many instances, new enabling synthetic technologies were required to be developed. The examples demonstrate the often un-tapped richness of complex molecule synthesis to provide powerful tools to understand, manipulate and exploit Nature’s vast and creative palette of secondary metabolites. PMID:21438619

  16. Lysosome biogenesis mediated by vps-18 affects apoptotic cell degradation in Caenorhabditis elegans.

    PubMed

    Xiao, Hui; Chen, Didi; Fang, Zhou; Xu, Jing; Sun, Xiaojuan; Song, Song; Liu, Jiajia; Yang, Chonglin

    2009-01-01

    Appropriate clearance of apoptotic cells (cell corpses) is an important step of programmed cell death. Although genetic and biochemical studies have identified several genes that regulate the engulfment of cell corpses, how these are degraded after being internalized in engulfing cell remains elusive. Here, we show that VPS-18, the Caenorhabditis elegans homologue of yeast Vps18p, is critical to cell corpse degradation. VPS-18 is expressed and functions in engulfing cells. Deletion of vps-18 leads to significant accumulation of cell corpses that are not degraded properly. Furthermore, vps-18 mutation causes strong defects in the biogenesis of endosomes and lysosomes, thus affecting endosomal/lysosomal protein degradation. Importantly, we demonstrate that phagosomes containing internalized cell corpses are unable to fuse with lysosomes in vps-18 mutants. Our findings thus provide direct evidence for the important role of endosomal/lysosomal degradation in proper clearance of apoptotic cells during programmed cell death.

  17. Cloning and characterization of Aspergillus nidulans vpsA gene which is involved in vacuolar biogenesis.

    PubMed

    Tarutani, Y; Ohsumi, K; Arioka, M; Nakajima, H; Kitamoto, K

    2001-05-02

    In Saccharomyces cerevisiae, vacuoles play very important roles in pH and osmotic regulation, protein degradation and storage of amino acids, small ions as well as polyphosphates. In filamentous fungi, however, little is known about vacuolar functions at a molecular level. In this paper, we report the isolation of the vpsA gene from the filamentous fungus Aspergillus nidulans as a homologue of the VPS1 gene of S. cerevisiae which encodes a dynamin-related protein. The vpsA gene encodes a polypeptide consisting of 696 amino acids that is nearly 60% homologous to the S. cerevisiae Vps1. Similar to Vps1, VpsA contains a highly conserved tripartite GTPase domain but lacks the pleckstrin homology domain and proline-rich region. The vpsA disruptant shows poor growth and contains highly fragmented vacuoles. These results suggest that A. nidulans VpsA functions in the vacuolar biogenesis.

  18. The helicase senataxin suppresses the antiviral transcriptional response and controls viral biogenesis

    PubMed Central

    Miller, Matthew S.; Rialdi, Alexander; Ho, Jessica Sook Yuin; Tilove, Micah; Martinez-Gil, Luis; Moshkina, Natasha P.; Peralta, Zuleyma; Noel, Justine; Melegari, Camilla; Maestre, Ana; Mitsopoulos, Panagiotis; Madrenas, Joaquín; Heinz, Sven; Benner, Chris; Young, John A. T.; Feagins, Alicia R.; Basler, Christopher; Fernandez-Sesma, Ana; Becherel, Olivier J.; Lavin, Martin F.; van Bakel, Harm; Marazzi, Ivan

    2015-01-01

    The human helicase senataxin (SETX) is implicated in the neurodegenerative diseases amyotrophic lateral sclerosis (ALS4) and ataxia with oculomotor apraxia (AOA2). Here, we reveal a role for SETX in controlling the antiviral response. Cells depleted for SETX and AOA2 patient-derived SETX-deficient cells exhibit increased expression of antiviral mediators in response to infection. Mechanistically, we propose a model whereby SETX attenuates RNA polymerase II (RNAPII) activity at genes stimulated upon viral sensing, thus controlling the magnitude of the host response to pathogens and the biogenesis of numerous RNA viruses (e. g. Influenza A virus and West Nile virus). Our data indicate a potentially causal link between SETX inborn errors, susceptibility to infection and development of neurologic disorders. PMID:25822250

  19. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury

    PubMed Central

    Maejima, Ikuko; Takahashi, Atsushi; Omori, Hiroko; Kimura, Tomonori; Takabatake, Yoshitsugu; Saitoh, Tatsuya; Yamamoto, Akitsugu; Hamasaki, Maho; Noda, Takeshi; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2013-01-01

    Diverse causes, including pathogenic invasion or the uptake of mineral crystals such as silica and monosodium urate (MSU), threaten cells with lysosomal rupture, which can lead to oxidative stress, inflammation, and apoptosis or necrosis. Here, we demonstrate that lysosomes are selectively sequestered by autophagy, when damaged by MSU, silica, or the lysosomotropic reagent L-Leucyl-L-leucine methyl ester (LLOMe). Autophagic machinery is recruited only on damaged lysosomes, which are then engulfed by autophagosomes. In an autophagy-dependent manner, low pH and degradation capacity of damaged lysosomes are recovered. Under conditions of lysosomal damage, loss of autophagy causes inhibition of lysosomal biogenesis in vitro and deterioration of acute kidney injury in vivo. Thus, we propose that sequestration of damaged lysosomes by autophagy is indispensable for cellular and tissue homeostasis. PMID:23921551

  20. A Role for Membrane Lipid Polyunsaturation in Chloroplast Biogenesis at Low Temperature 1

    PubMed Central

    Hugly, Suzanne; Somerville, Chris

    1992-01-01

    Two different mutants of Arabidopsis thaliana deficient in chloroplast membrane lipid polyunsaturation were indistinguishable in appearance from the wild-type when grown at 22°C. By contrast, leaf tissues of the mutants that developed during growth at 5°C were chlorotic, whereas the wild type was not. This is the first direct evidence that chloroplast lipid polyunsaturation contributes to low-temperature fitness. Chloroplasts from mutant lines grown at 5°C were much smaller than those of the wild-type, and the thylakoid membrane content was reduced by up to 70%. However, there was no discernible effect of low temperature on chloroplasts that developed prior to exposure to low temperatures. These and related observations suggest that the high degree of chloroplast membrane lipid polyunsaturation is required for some aspect of chloroplast biogenesis. ImagesFigure 3Figure 4 PMID:16668849

  1. Interplay between trigger factor and other protein biogenesis factors on the ribosome

    NASA Astrophysics Data System (ADS)

    Bornemann, Thomas; Holtkamp, Wolf; Wintermeyer, Wolfgang

    2014-06-01

    Nascent proteins emerging from translating ribosomes in bacteria are screened by a number of ribosome-associated protein biogenesis factors, among them the chaperone trigger factor (TF), the signal recognition particle (SRP) that targets ribosomes synthesizing membrane proteins to the membrane and the modifying enzymes, peptide deformylase (PDF) and methionine aminopeptidase (MAP). Here, we examine the interplay between these factors both kinetically and at equilibrium. TF rapidly scans the ribosomes until it is stabilized on ribosomes presenting TF-specific nascent chains. SRP binding to those complexes is strongly impaired. Thus, TF in effect prevents SRP binding to the majority of ribosomes, except those presenting SRP-specific signal sequences, explaining how the small amount of SRP in the cell can be effective in membrane targeting. PDF and MAP do not interfere with TF or SRP binding to translating ribosomes, indicating that nascent-chain processing can take place before or in parallel with TF or SRP binding.

  2. Equatorin is not essential for acrosome biogenesis but is required for the acrosome reaction

    SciTech Connect

    Hao, Jianxiu; Chen, Min; Ji, Shaoyang; Wang, Xiaona; Wang, Yanbo; Huang, Xingxu; Yang, Lin; Wang, Yaqing; Cui, Xiuhong; Lv, Limin; Liu, Yixun; Gao, Fei

    2014-02-21

    Highlights: • Eqtn knockout mice were used for these experiments. • In vivo and in vitro fertilization analyses were performed. • Eqtn-deficient sperm were evaluated by transmission electron microscopy (TEM) and an A23187-induced acrosome reaction (AR) assay. • Co-immunoprecipitation (Co-IP) was performed to assess the interaction between Eqtn and the SNARE complex. - Abstract: The acrosome is a specialized organelle that covers the anterior part of the sperm nucleus and plays an essential role in mammalian fertilization. However, the regulatory mechanisms controlling acrosome biogenesis and acrosome exocytosis during fertilization are largely unknown. Equatorin (Eqtn) is a membrane protein that is specifically localized to the acrosomal membrane. In the present study, the physiological functions of Eqtn were investigated using a gene knockout mouse model. We found that Eqtn{sup −/−} males were subfertile. Only approximately 50% of plugged females were pregnant after mating with Eqtn{sup −/−} males, whereas more than 90% of plugged females were pregnant after mating with control males. Sperm and acrosomes from Eqtn{sup −/−} mice presented normal motility and morphology. However, the fertilization and induced acrosome exocytosis rates of Eqtn-deficient sperm were dramatically reduced. Further studies revealed that the Eqtn protein might interact with Syntaxin1a and SNAP25, but loss of Eqtn did not affect the protein levels of these genes. Therefore, our study demonstrates that Eqtn is not essential for acrosome biogenesis but is required for the acrosome reaction. Eqtn is involved in the fusion of the outer acrosomal membrane and the sperm plasma membrane during the acrosome reaction, most likely via an interaction with the SNARE complex.

  3. Ongoing U snRNP Biogenesis Is Required for the Integrity of Cajal Bodies

    PubMed Central

    Lemm, Ira; Girard, Cyrille; Kuhn, Andreas N.; Watkins, Nicholas J.; Schneider, Marc; Bordonné, Rémy

    2006-01-01

    Cajal bodies (CBs) have been implicated in the nuclear phase of the biogenesis of spliceosomal U small nuclear ribonucleoproteins (U snRNPs). Here, we have investigated the distribution of the CB marker protein coilin, U snRNPs, and proteins present in C/D box small nucleolar (sno)RNPs in cells depleted of hTGS1, SMN, or PHAX. Knockdown of any of these three proteins by RNAi interferes with U snRNP maturation before the reentry of U snRNA Sm cores into the nucleus. Strikingly, CBs are lost in the absence of hTGS1, SMN, or PHAX and coilin is dispersed in the nucleoplasm into numerous small foci. This indicates that the integrity of canonical CBs is dependent on ongoing U snRNP biogenesis. Spliceosomal U snRNPs show no detectable concentration in nuclear foci and do not colocalize with coilin in cells lacking hTGS1, SMN, or PHAX. In contrast, C/D box snoRNP components concentrate into nuclear foci that partially colocalize with coilin after inhibition of U snRNP maturation. We demonstrate by siRNA-mediated depletion that coilin is required for the condensation of U snRNPs, but not C/D box snoRNP components, into nucleoplasmic foci, and also for merging these factors into canonical CBs. Altogether, our data suggest that CBs have a modular structure with distinct domains for spliceosomal U snRNPs and snoRNPs. PMID:16687569

  4. Kinetoplastid Specific RNA-Protein Interactions in Trypanosoma cruzi Ribosome Biogenesis.

    PubMed

    Umaer, Khan; Williams, Noreen

    2015-01-01

    RNA binding proteins (RBP) play essential roles in the highly conserved and coordinated process of ribosome biogenesis. Our laboratory has previously characterized two essential and abundant RBPs, P34 and P37, in Trypanosoma brucei which are required for several critical steps in ribosome biogenesis. The genes for these proteins have only been identified in kinetoplastid organisms but not in the host genome. We have identified a homolog of the TbP34 and TbP37 in a T. cruzi strain (termed TcP37/NRBD). Although the N-terminal APK-rich domain and RNA recognition motifs are conserved, the C-terminal region which contains putative nuclear and nucleolar localization signals in TbP34 and TbP37 is almost entirely missing from TcP37/NRBD. We have shown that TcP37/NRBD is expressed in T. cruzi epimastigotes at the level of mature mRNA and protein. Despite the loss of the C-terminal domain, TcP37/NRBD is present in the nucleus, including the nucleolus, and the cytoplasm. TcP37/NRBD interacts directly with Tc 5S rRNA, but does not associate with polyadenylated RNA. TcP37/NRBD also associates in vivo and in vitro with large ribosomal protein TcL5 and, unlike the case of T. brucei, this association is strongly enhanced by the presence of 5S rRNA, suggesting that the loss of the C-terminal domain of TcP37/NRBD may alter the interactions within the complex. These results indicate that the unique preribosomal complex comprised of L5, 5S rRNA, and the trypanosome-specific TcP37/NRBD or TbP34 and TbP37 is functionally conserved in trypanosomes despite the differences in the C-termini of the trypanosome-specific protein components.

  5. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles.

    PubMed

    Colombo, Marina; Moita, Catarina; van Niel, Guillaume; Kowal, Joanna; Vigneron, James; Benaroch, Philippe; Manel, Nicolas; Moita, Luis F; Théry, Clotilde; Raposo, Graça

    2013-12-15

    Exosomes are extracellular vesicles (EVs) secreted upon fusion of endosomal multivesicular bodies (MVBs) with the plasma membrane. The mechanisms involved in their biogenesis have not yet been fully identified although they could be used to modulate exosome formation and therefore are a promising tool in understanding exosome functions. We have performed an RNA interference screen targeting 23 components of the endosomal sorting complex required for transport (ESCRT) machinery and associated proteins in MHC class II (MHC II)-expressing HeLa-CIITA cells. Silencing of HRS, STAM1 or TSG101 reduced the secretion of EV-associated CD63 and MHC II but each gene altered differently the size and/or protein composition of secreted EVs, as quantified by immuno-electron microscopy. By contrast, depletion of VPS4B augmented this secretion while not altering the features of EVs. For several other ESCRT subunits, it was not possible to draw any conclusions about their involvement in exosome biogenesis from the screen. Interestingly, silencing of ALIX increased MHC II exosomal secretion, as a result of an overall increase in intracellular MHC II protein and mRNA levels. In human dendritic cells (DCs), ALIX depletion also increased MHC II in the cells, but not in the released CD63-positive EVs. Such differences could be attributed to a greater heterogeneity in size, and higher MHC II and lower CD63 levels in vesicles recovered from DCs as compared with HeLa-CIITA. The results reveal a role for selected ESCRT components and accessory proteins in exosome secretion and composition by HeLa-CIITA. They also highlight biogenetic differences in vesicles secreted by a tumour cell line and primary DCs.

  6. Protective and biogenesis effects of sodium hydrosulfide on brain mitochondria after cardiac arrest and resuscitation.

    PubMed

    Pan, Hao; Xie, Xuemeng; Chen, Di; Zhang, Jincheng; Zhou, Yaguang; Yang, Guangtian

    2014-10-15

    Mitochondrial dysfunction plays a critical role in brain injury after cardiac arrest and cardiopulmonary resuscitation (CPR). Recent studies demonstrated that hydrogen sulfide (H2S) donor compounds preserve mitochondrial morphology and function during ischemia-reperfusion injury. In this study, we sought to explore the effects of sodium hydrosulfide (NaHS) on brain mitochondria 24h after cardiac arrest and resuscitation. Male Sprague-Dawley rats were subjected to 6min cardiac arrest and then resuscitated successfully. Rats received NaHS (0.5mg/kg) or vehicle (0.9% NaCl, 1.67ml/kg) 1min before the start of CPR intravenously, followed by a continuous infusion of NaHS (1.5mg/kg/h) or vehicle (5ml/kg/h) for 3h. Neurological deficit was evaluated 24h after resuscitation and then cortex was collected for assessments. As a result, we found that rats treated with NaHS revealed an improved neurological outcome and cortex mitochondrial morphology 24h after resuscitation. We also observed that NaHS therapy reduced intracellular reactive oxygen species generation and calcium overload, inhibited mitochondrial permeability transition pores, preserved mitochondrial membrane potential, elevated ATP level and ameliorated the cytochrome c abnormal distribution. Further studies indicated that NaHS administration increased mitochondrial biogenesis in cortex at the same time. Our findings suggested that administration of NaHS 1min prior CPR and followed by a continuous infusion ameliorated neurological dysfunction 24h after resuscitation, possibly through mitochondria preservation as well as by promoting mitochondrial biogenesis.

  7. Pexophagy is responsible for 65% of cases of peroxisome biogenesis disorders.

    PubMed

    Nazarko, Taras Y

    2017-02-28

    Peroxisome biogenesis disorders (PBDs) is a group of diseases caused by mutations in one of the peroxins, proteins responsible for biogenesis of the peroxisomes. In recent years, it became clear that many peroxins (e.g., PEX3 and PEX14) play additional roles in peroxisome homeostasis (such as promoting autophagic degradation of peroxisomes or pexophagy), which are often opposite to their originally established functions in peroxisome formation and maintenance. Even more interesting, the peroxins that make up the peroxisomal AAA ATPase complex (AAA-complex) in yeast (Pex1, Pex6 and Pex15) or mammals (PEX1, PEX6, PEX26) are responsible for the downregulation of pexophagy. Moreover, this might be even their primary role in human: to prevent pexophagy by removing from the peroxisomal membrane the ubiquitinated peroxisomal matrix protein import receptor, Ub-PEX5, which is also a signal for the Ub-binding pexophagy receptor, NBR1. Remarkably, the peroxisomes rescued from pexophagy by autophagic inhibitors in PEX1(G843D) (the most common PBD mutation) cells are able to import matrix proteins and improve their biochemical function suggesting that the AAA-complex per se is not essential for the protein import function in human. This paradigm-shifting discovery published in the current issue of Autophagy has raised hope for up to 65% of all PBD patients with various deficiencies in the AAA-complex. Recognizing PEX1, PEX6 and PEX26 as pexophagy suppressors will allow treating these patients with a new range of tools designed to target mammalian pexophagy.

  8. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells

    PubMed Central

    Ploper, Diego; Taelman, Vincent F.; Robert, Lidia; Perez, Brian S.; Titz, Björn; Chen, Hsiao-Wang; Graeber, Thomas G.; von Euw, Erika; Ribas, Antoni; De Robertis, Edward M.

    2015-01-01

    Canonical Wnt signaling plays an important role in development and disease, regulating transcription of target genes and stabilizing many proteins phosphorylated by glycogen synthase kinase 3 (GSK3). We observed that the MiT family of transcription factors, which includes the melanoma oncogene MITF (micropthalmia-associated transcription factor) and the lysosomal master regulator TFEB, had the highest phylogenetic conservation of three consecutive putative GSK3 phosphorylation sites in animal proteomes. This finding prompted us to examine the relationship between MITF, endolysosomal biogenesis, and Wnt signaling. Here we report that MITF expression levels correlated with the expression of a large subset of lysosomal genes in melanoma cell lines. MITF expression in the tetracycline-inducible C32 melanoma model caused a marked increase in vesicular structures, and increased expression of late endosomal proteins, such as Rab7, LAMP1, and CD63. These late endosomes were not functional lysosomes as they were less active in proteolysis, yet were able to concentrate Axin1, phospho-LRP6, phospho-β-catenin, and GSK3 in the presence of Wnt ligands. This relocalization significantly enhanced Wnt signaling by increasing the number of multivesicular bodies into which the Wnt signalosome/destruction complex becomes localized upon Wnt signaling. We also show that the MITF protein was stabilized by Wnt signaling, through the novel C-terminal GSK3 phosphorylations identified here. MITF stabilization caused an increase in multivesicular body biosynthesis, which in turn increased Wnt signaling, generating a positive-feedback loop that may function during the proliferative stages of melanoma. The results underscore the importance of misregulated endolysosomal biogenesis in Wnt signaling and cancer. PMID:25605940

  9. Role of Alix in miRNA packaging during extracellular vesicle biogenesis

    PubMed Central

    IAVELLO, ALESSANDRA; FRECH, VALESKA S.L.; GAI, CHIARA; DEREGIBUS, MARIA CHIARA; QUESENBERRY, PETER J.; CAMUSSI, GIOVANNI

    2016-01-01

    Evidence indicates that Alix, an accessory protein of the endosomal sorting complex required for transport (ESCRT), is involved in the biogenesis of extracellular vesicles (EVs). EVs contain selected patterns of microRNAs (miRNAs or miRs); however, little is known about the mechanisms of miRNA enrichment in EVs. The aim of the present study was to evaluate whether Alix is involved in the packaging of miRNAs within EVs released by human liver stem-like cells (HLSCs). EVs released from HLSCs were enriched with miRNAs and expressed Alix and several RNA-binding proteins, including Argonaute 2 (Ago2), a member of the Argonaute family known to be involved in the transport and the processing of miRNAs. Co-immunoprecipitation experiments revealed an association between Alix and Ago2. The results from RT-qPCR indicated that in the Alix/Ago2 immunoprecipitates, miRNAs were detectable. EVs were instrumental in transferring selected miRNAs from HLSCs to human endothelial cells absent in the latter cells. Alix knockdown did not influence the number of EVs released by HLSCs, but it significantly decreased miRNA expression levels in the EVs and consequently their transfer to the endothelium. Our findings indicate that Alix binds to Ago2 and miRNAs, suggesting that it plays a key role in miRNA enrichment during EV biogenesis. These results may represent a novel function of Alix, demonstrating its involvement in the EV-mediated transfer of miRNAs. PMID:26935291

  10. Membrane biogenesis during B cell differentiation: most endoplasmic reticulum proteins are expressed coordinately

    PubMed Central

    1990-01-01

    The induction of high-rate protein secretion entails increased biogenesis of secretory apparatus organelles. We examined the biogenesis of the secretory apparatus in the B cell line CH12 because it can be induced in vitro to secrete immunoglobulin (Ig). Upon stimulation with lipopolysaccharide (LPS), CH12 cells increased secretion of IgM 12-fold. This induced secretion was accompanied by preferential expansion of the ER and the Golgi complex. Three parameters of the rough ER changed: its area and volume increased 3.3- and 3.7-fold, respectively, and the density of membrane-bound ribosomes increased 3.5-fold. Similarly, the area of the Golgi stack increased 3.3-fold, and its volume increased 4.1-fold. These changes provide sufficient biosynthetic capacity to account for the increased secretory activity of CH12. Despite the large increase in IgM synthesis, and because of the expansion of the ER, the concentration of IgM within the ER changed less than twofold during the differentiation process. During the amplification of the rough ER, the expression of resident proteins changed according to one of two patterns. The majority (75%) of rough microsomal (RM) proteins increased in proportion to the increase in rough ER size. Included in this group were both lumenal proteins such as Ig binding protein (BiP), and membrane proteins such as ribophorins I and II. In addition, the expression of a minority (approximately 9%) of RM polypeptides increased preferentially, such that their abundance within the RM of secreting CH12 cells was increased. Thus, the expansion of ER during CH12 differentiation involves preferential increases in the abundance of a few resident proteins, superimposed upon proportional increases in most ER proteins. PMID:2335560

  11. Bacterial outer membrane vesicle biogenesis: a new mechanism and its implications

    PubMed Central

    Roier, Sandro; Zingl, Franz G.; Cakar, Fatih; Schild, Stefan

    2016-01-01

    Outer membrane vesicle (OMV) release by Gram-negative bacteria has been observed and studied for decades. First considered as a by-product of cell lysis, it soon became evident that OMVs are actively secreted from the outer membrane (OM) of Gram-negative bacteria. Accordingly, these small particles (~ 10-300 nm in diameter) consist mainly of OM components like phospholipids (PLs), OM proteins, and lipopolysaccharides or lipooligosaccharides. However, OMVs may also comprise periplasmic, inner membrane, or cytoplasmic components. Since the shedding of substantial amounts of OM material represents a significant energy cost to the bacterial cell, OMV production must have some vital biological functions for Gram-negative bacteria. Indeed, intense research on that topic revealed that OMVs play important roles in bacterial physiology and pathogenesis, ranging from secretion and delivery of biomolecules (for example, toxins, DNA, or quorum sensing molecules) over stress response and biofilm formation to immunomodulation and adherence to host cells. Only recently researchers have begun to elucidate the mechanistic aspects of OMV formation, but a general mechanism for the biogenesis of these vesicles is still lacking. Here we review the findings and implications of our recent study published in Nature Communications (Roier S, et al. (2016) Nat. Commun. 7:10515), where we propose a novel and highly conserved bacterial OMV biogenesis mechanism based on PL accumulation in the outer leaflet of the OM. This mechanism might not only have important pathophysiological roles in vivo, but also represents the first general mechanism of OMV formation applicable to all Gram-negative bacteria.

  12. gigantea Suppresses immutans Variegation by Interactions with Cytokinin and Gibberellin Signaling Pathways1[W][OPEN

    PubMed Central

    Putarjunan, Aarthi; Rodermel, Steve

    2014-01-01

    The immutans (im) variegation mutant of Arabidopsis (Arabidopsis thaliana) is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in the control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GI, a central component of the circadian clock that plays a poorly understood role in diverse plant developmental processes. imgi2 mutants are late flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a development-specific derepression of cytokinin signaling that involves cross talk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, starch excess1 (sex1), perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GI and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis. PMID:25349324

  13. Small Molecule Inhibition of miR-544 Biogenesis Disrupts Adaptive Responses to Hypoxia by Modulating ATM-mTOR Signaling

    PubMed Central

    Haga, Christopher L.; Velagapudi, Sai Pradeep; Strivelli, Jacqueline R.; Yang, Wang-Yong

    2016-01-01

    Hypoxia induces a complex circuit of gene expression that drives tumor progression and increases drug resistance. Defining these changes allows for an understanding of how hypoxia alters tumor biology and informs design of lead therapeutics. We probed the role of microRNA-544 (miR-544), which silences mammalian target of rapamycin (mTOR), in a hypoxic breast cancer model by using a small molecule (1) that selectively impedes the microRNA's biogenesis. Application of 1 to hypoxic tumor cells selectively inhibited production of the mature microRNA, sensitized cells to 5-fluorouracil, and derepressed mRNAs affected by miR-544 in cellulo and in vivo, including boosting mTOR expression. Thus, small molecule inhibition of miR-544 reverses a tumor cell's physiological response to hypoxia. Importantly, 1 sensitized tumor cells to hypoxia-associated apoptosis at a 25-fold lower concentration than a 2′-O-methyl RNA antagomir and was as selective. Further, the apoptotic effect of 1 was suppressed by treatment of cell with rapamycin, a well-known inhibitor of the mTOR signaling pathway, illustrating the selectivity of the compound. Thus, RNA-directed chemical probes, which could also serve as lead therapeutics, enable interrogation of complex cellular networks in cells and animals. PMID:26181590

  14. Evolutionary history of double-stranded RNA binding proteins in plants: identification of new cofactors involved in easiRNA biogenesis.

    PubMed

    Clavel, Marion; Pélissier, Thierry; Montavon, Thomas; Tschopp, Marie-Aude; Pouch-Pélissier, Marie-Noëlle; Descombin, Julie; Jean, Viviane; Dunoyer, Patrice; Bousquet-Antonelli, Cécile; Deragon, Jean-Marc

    2016-05-01

    In this work, we retrace the evolutionary history of plant double-stranded RNA binding proteins (DRBs), a group of non-catalytic factors containing one or more double-stranded RNA binding motif (dsRBM) that play important roles in small RNA biogenesis and functions. Using a phylogenetic approach, we show that multiple dsRBM DRBs are systematically composed of two different types of dsRBMs evolving under different constraints and likely fulfilling complementary functions. In vascular plants, four distinct clades of multiple dsRBM DRBs are always present with the exception of Brassicaceae species, that do not possess member of the newly identified clade we named DRB6. We also identified a second new and highly conserved DRB family (we named DRB7) whose members possess a single dsRBM that shows concerted evolution with the most C-terminal dsRBM domain of the Dicer-like 4 (DCL4) proteins. Using a BiFC approach, we observed that Arabidopsis thaliana DRB7.2 (AtDRB7.2) can directly interact with AtDRB4 but not with AtDCL4 and we provide evidence that both AtDRB7.2 and AtDRB4 participate in the epigenetically activated siRNAs pathway.

  15. Cytochrome c biogenesis is involved in the transposon Tn5-mediated bleomycin resistance and the associated fitness effect in Escherichia coli.

    PubMed

    Adam, E; Volkert, M R; Blot, M

    1998-04-01

    The transposon Tn5 ble gene and the Escherichia coli alkylation-inducible aidC locus are co-operatively involved in the resistance to the anti-cancer drug and DNA-cleaving agent bleomycin and enhance fitness of bacteria in the absence of the drug. In this report, we demonstrate that the aidC locus is identical to nrfG, the last gene of the nrf operon involved in the periplasmic formate-dependent nitrite reduction. In the presence of Ble, NrfG expression is specifically induced and restores both bleomycin resistance and its associated beneficial growth effect in an aidC- strain. In vitro DNA protection assays reveal that purified Ble prevents bleomycin-mediated DNA breakage, as do bleomycin-binding proteins. Similarities between haems of the cytochrome c biogenesis nrf pathway and iron bleomycin suggest a DNA repair-independent molecular mechanism for both bleomycin resistance and increased viability. The Ble protein binds bleomycin and prevents DNA breakage. It also induces the nrf locus that may assimilate bleomycin into haem for extracellular transport or inactivate bleomycin. Inactivation of potent DNA oxidants confers a better fitness to the bacterium carrying the transposon, suggesting a symbiotic relationship between host and transposon.

  16. Mutations of ribosomal protein S5 suppress a defect in late-30S ribosomal subunit biogenesis caused by lack of the RbfA biogenesis factor

    PubMed Central

    Nord, Stefan; Bhatt, Monika J.; Tükenmez, Hasan; Farabaugh, Philip J.; Wikström, P. Mikael

    2015-01-01

    The in vivo assembly of ribosomal subunits requires assistance by maturation proteins that are not part of mature ribosomes. One such protein, RbfA, associates with the 30S ribosomal subunits. Loss of RbfA causes cold sensitivity and defects of the 30S subunit biogenesis and its overexpression partially suppresses the dominant cold sensitivity caused by a C23U mutation in the central pseudoknot of 16S rRNA, a structure essential for ribosome function. We have isolated suppressor mutations that restore partially the growth of an RbfA-lacking strain. Most of the strongest suppressor mutations alter one out of three distinct positions in the carboxy-terminal domain of ribosomal protein S5 (S5) in direct contact with helix 1 and helix 2 of the central pseudoknot. Their effect is to increase the translational capacity of the RbfA-lacking strain as evidenced by an increase in polysomes in the suppressed strains. Overexpression of RimP, a protein factor that along with RbfA regulates formation of the ribosome's central pseudoknot, was lethal to the RbfA-lacking strain but not to a wild-type strain and this lethality was suppressed by the alterations in S5. The S5 mutants alter translational fidelity but these changes do not explain consistently their effect on the RbfA-lacking strain. Our genetic results support a role for the region of S5 modified in the suppressors in the formation of the central pseudoknot in 16S rRNA. PMID:26089326

  17. Vaccinia virus virion membrane biogenesis protein A11 associates with viral membranes in a manner that requires the expression of another membrane biogenesis protein, A6.

    PubMed

    Wu, Xiang; Meng, Xiangzhi; Yan, Bo; Rose, Lloyd; Deng, Junpeng; Xiang, Yan

    2012-10-01

    A group of vaccinia virus (VACV) proteins, including A11, L2, and A6, are required for biogenesis of the primary envelope of VACV, specifically, for the acquisition of viral membrane precursors. However, the interconnection among these proteins is unknown and, with the exception of L2, the connection of these proteins with membranes is also unknown. In this study, prompted by the findings that A6 coprecipitated A11 and that the cellular distribution of A11 was dramatically altered by repression of A6 expression, we studied the localization of A11 in cells by using immunofluorescence and cell fractionation analysis. A11 was found to associate with membranes and colocalize with virion membrane proteins in viral replication factories during normal VACV replication. A11 partitioned almost equally between the detergent and aqueous phases upon Triton X-114 phase separation, demonstrating an intrinsic affinity with lipids. However, in the absence of infection or VACV late protein synthesis, A11 did not associate with cellular membranes. Furthermore, when A6 expression was repressed, A11 did not colocalize with any viral membrane proteins or associate with membranes. In contrast, when virion envelope formation was blocked at a later step by repression of A14 expression or by rifampin treatment, A11 colocalized with virion membrane proteins in the factories. Altogether, our data showed that A11 associates with viral membranes during VACV replication, and this association requires A6 expression. This study provides a physical connection between A11 and viral membranes and suggests that A6 regulates A11 membrane association.

  18. Peroxisome Biogenesis Occurs in an Unsynchronized Manner in Close Association with the Endoplasmic Reticulum in Temperature-sensitive Yarrowia lipolytica Pex3p Mutants

    PubMed Central

    Bascom, Roger A.; Chan, Honey; Rachubinski, Richard A.

    2003-01-01

    Pex3p is a peroxisomal integral membrane protein required early in peroxisome biogenesis, and Pex3p-deficient cells lack identifiable peroxisomes. Two temperature-sensitive pex3 mutant strains of the yeast Yarrowia lipolytica were made to investigate the role of Pex3p in the early stages of peroxisome biogenesis. In glucose medium at 16°C, these mutants underwent de novo peroxisome biogenesis and exhibited early matrix protein sequestration into peroxisome-like structures found at the endoplasmic reticulum-rich periphery of cells or sometimes associated with nuclei. The de novo peroxisome biogenesis seemed unsynchronized, with peroxisomes occurring at different stages of development both within cells and between cells. Cells with peripheral nascent peroxisomes and cells with structures morphologically distinct from peroxisomes, such as semi/circular tubular structures that immunostained with antibodies to peroxisomal matrix proteins and to the endoplasmic reticulum-resident protein Kar2p, and that surrounded lipid droplets, were observed during up-regulation of peroxisome biogenesis in cells incubated in oleic acid medium at 16°C. These structures were not detected in wild-type or Pex3p-deficient cells. Their role in peroxisome biogenesis remains unclear. Targeting of peroxisomal matrix proteins to these structures suggests that Pex3p directly or indirectly sequesters components of the peroxisome biogenesis machinery. Such a role is consistent with Pex3p overexpression producing cells with fewer, larger, and clustered peroxisomes. PMID:12631715

  19. Helicase-like transcription factor (Hltf) regulates G2/M transition, Wt1/Gata4/Hif-1a cardiac transcription networks, and collagen biogenesis.

    PubMed

    Helmer, Rebecca A; Martínez-Zaguilán, Raul; Dertien, Janet S; Fulford, Candra; Foreman, Oded; Peiris, Vasum; Chilton, Beverly S

    2013-01-01

    HLTF/Hltf regulates transcription, remodels chromatin, and coordinates DNA damage repair. Hltf is expressed in mouse brain and heart during embryonic and postnatal development. Silencing Hltf is semilethal. Seventy-four percent of congenic C57BL/6J Hltf knockout mice died, 75% within 12-24 hours of birth. Previous studies in neonatal (6-8 hour postpartum) brain revealed silencing Hltf disrupted cell cycle progression, and attenuated DNA damage repair. An RNA-Seq snapshot of neonatal heart transcriptome showed 1,536 of 20,000 total transcripts were altered (p < 0.05) - 10 up- and 1,526 downregulated. Pathway enrichment analysis with MetaCore™ showed Hltf's regulation of the G2/M transition (p=9.726E(-15)) of the cell cycle in heart is nearly identical to its role in brain. In addition, Brca1 and 12 members of the Brca1 associated genome surveillance complex are also downregulated. Activation of caspase 3 coincides with transcriptional repression of Bcl-2. Hltf loss caused downregulation of Wt1/Gata4/Hif-1a signaling cascades as well as Myh7b/miR499 transcription. Hltf-specific binding to promoters and/or regulatory regions of these genes was authenticated by ChIP-PCR. Hif-1a targets for prolyl (P4ha1, P4ha2) and lysyl (Plod2) collagen hydroxylation, PPIase enzymes (Ppid, Ppif, Ppil3) for collagen trimerization, and lysyl oxidase (Loxl2) for collagen-elastin crosslinking were downregulated. However, transcription of genes for collagens, fibronectin, Mmps and their inhibitors (Timps) was unaffected. The collective downregulation of genes whose protein products control collagen biogenesis caused disorganization of the interstitial and perivascular myocardial collagen fibrillar network as viewed with picrosirius red-staining, and authenticated with spectral imaging. Wavy collagen bundles in control hearts contrasted with collagen fibers that were thin, short and disorganized in Hltf null hearts. Collagen bundles in Hltf null hearts were tangled and fragmented. Thus

  20. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes.

    PubMed

    Guo, Belinda B; Bellingham, Shayne A; Hill, Andrew F

    2015-02-06

    Prion diseases are a group of transmissible, fatal neurodegenerative disorders associated with the misfolding of the host-encoded prion protein, PrP(C), into a disease-associated form, PrP(Sc). The transmissible prion agent is principally formed of PrP(Sc) itself and is associated with extracellular vesicles known as exosomes. Exosomes are released from cells both in vitro and in vivo, and have been proposed as a mechanism by which prions spread intercellularly. The biogenesis of exosomes occurs within the endosomal system, through formation of intraluminal vesicles (ILVs), which are subsequently released from cells as exosomes. ILV formation is known to be regulated by the endosomal sorting complexes required for transport (ESCRT) machinery, although an alternative neutral sphingomyelinase (nSMase) pathway has been suggested to also regulate this process. Here, we investigate a role for the nSMase pathway in exosome biogenesis and packaging of PrP into these vesicles. Inhibition of the nSMase pathway using GW4869 revealed a role for the nSMase pathway in both exosome formation and PrP packaging. In agreement, targeted knockdown of nSMase1 and nSMase2 in mouse neurons using lentivirus-mediated RNAi also decreases exosome release, demonstrating the nSMase pathway regulates the biogenesis and release of exosomes. We also demonstrate that PrP(C) packaging is dependent on nSMase2, whereas the packaging of disease-associated PrP(Sc) into exosomes occurs independently of nSMase2. These findings provide further insight into prion transmission and identify a pathway which directly assists exosome-mediated transmission of prions.

  1. Cooling-induced SUMOylation of EXOSC10 down-regulates ribosome biogenesis.

    PubMed

    Knight, John R P; Bastide, Amandine; Peretti, Diego; Roobol, Anne; Roobol, Jo; Mallucci, Giovanna R; Smales, C Mark; Willis, Anne E

    2016-04-01

    The RNA exosome is essential for 3' processing of functional RNA species and degradation of aberrant RNAs in eukaryotic cells. Recent reports have defined the substrates of the exosome catalytic domains and solved the multimeric structure of the exosome complex. However, regulation of exosome activity remains poorly characterized, especially in response to physiological stress. Following the observation that cooling of mammalian cells results in a reduction in 40S:60S ribosomal subunit ratio, we uncover regulation of the nuclear exosome as a result of reduced temperature. Using human cells and an in vivo model system allowing whole-body cooling, we observe reduced EXOSC10 (hRrp6, Pm/Scl-100) expression in the cold. In parallel, both models of cooling increase global SUMOylation, leading to the identification of specific conjugation of SUMO1 to EXOSC10, a process that is increased by cooling. Furthermore, we define the major SUMOylation sites in EXOSC10 by mutagenesis and show that overexpression of SUMO1 alone is sufficient to suppress EXOSC10 abundance. Reducing EXOSC10 expression by RNAi in human cells correlates with the 3' preribosomal RNA processing defects seen in the cold as well as reducing the 40S:60S ratio, a previously uncharacterized consequence of EXOSC10 suppression. Together, this work illustrates that EXOSC10 can be modified by SUMOylation and identifies a physiological stress where this regulation is prevalent both in vitro and in vivo.

  2. Cooling-induced SUMOylation of EXOSC10 down-regulates ribosome biogenesis

    PubMed Central

    Bastide, Amandine; Peretti, Diego; Roobol, Anne; Roobol, Jo; Mallucci, Giovanna R.; Smales, C. Mark; Willis, Anne E.

    2016-01-01

    The RNA exosome is essential for 3′ processing of functional RNA species and degradation of aberrant RNAs in eukaryotic cells. Recent reports have defined the substrates of the exosome catalytic domains and solved the multimeric structure of the exosome complex. However, regulation of exosome activity remains poorly characterized, especially in response to physiological stress. Following the observation that cooling of mammalian cells results in a reduction in 40S:60S ribosomal subunit ratio, we uncover regulation of the nuclear exosome as a result of reduced temperature. Using human cells and an in vivo model system allowing whole-body cooling, we observe reduced EXOSC10 (hRrp6, Pm/Scl-100) expression in the cold. In parallel, both models of cooling increase global SUMOylation, leading to the identification of specific conjugation of SUMO1 to EXOSC10, a process that is increased by cooling. Furthermore, we define the major SUMOylation sites in EXOSC10 by mutagenesis and show that overexpression of SUMO1 alone is sufficient to suppress E