Science.gov

Sample records for 62-pound steel bolts

  1. Proof Testing Of Stainless-Steel Bolts

    NASA Technical Reports Server (NTRS)

    Hsieh, Cheng H.; Hendrickson, James A.; Bamford, Robert M.

    1992-01-01

    Report describes study of development of method for nondestructive proof testing of bolts made of A286 stainless steel. Based on concept that the higher load bolt survives, the smaller the largest flaw and, therefore, the longer its fatigue life after test. Calculations and experiments increase confidence in nondestructive proof tests.

  2. Friction-type bolted connections with A588 weathering steel

    NASA Astrophysics Data System (ADS)

    Yura, J. A.; Frank, K. H.; Cayes, L.

    1981-12-01

    One hundred twenty-six slip tests were conducted on friction type bolted connections fabricated from A588 weathering steel. The tests were conducted mainly on specimens with mill scale or blasted surfaces which were exposed to the atmosphere for periods up to one year. The test results indicate that A588 mill scale surface has a 33 percent lower slip resistance than those reported for other steels. Suggested revisions to the bridge specifications based on this behavior are presented.

  3. Bolting applications

    SciTech Connect

    Czajkowski, C J

    1984-05-01

    An investigation of bolting practices specific to the nuclear industry was performed. The report covered a large spectrum of topics e.g. bolts embedded in concrete, specifications, inspection of bolting, both at receipt and inservice. Plots of preload versus yield strength for different bolting materials in different environments are presented as well as information relative to the stress corrosion cracking resistance of the more recent reactor internals bolting materials A286 and Inconel X-750. Part of the report contains input by Standard Pressed Steel Inc. (a bolting consultant) relative to bolting standards, cottering methods and potential areas for bolting improvement.

  4. Standard specification for alloy/steel bolting materials for low-temperature service. ASTM standard

    SciTech Connect

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.22 on Steel Forgings and Wrought Fittings for Piping Applications and Bolting Materials for Piping and Special Purpose Applications. Current edition approved Sep. 10, 1997 and published September 1998.

  5. Standard specification for alloy-steel bolting materials for special applications. ASTM standard

    SciTech Connect

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.22 on Steel Forgings and Wrought Fittings for Piping Applications and Bolting Materials for Piping and Special Purpose Applications. Current edition approved Mar. 10, 1998 and published September 1998.

  6. Shear fracture of jointed steel plates of bolted joints under impact load

    NASA Astrophysics Data System (ADS)

    Daimaruya, M.; Fujiki, H.; Ambarita, H.; Kobayashi, H.; Shin, H.-S.

    2013-07-01

    The present study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of bolted joints used in a car body, which contributes to crash simulations by CAE. We focus our attention on the shear fracture of the jointed steel plates of lap-bolted joints in the suspension of a car under impact load. Members of lap-bolted joints are modelled as a pair of steel plates connected by a bolt. One of the plates is a specimen subjected to plastic deformation and fracture and the other is a jig subjected to elastic deformation only. Three kinds of steel plate specimens are examined, i.e., a common steel plate with a tensile strength of 270 MPa and high tensile strength steel plates of 440 and 590 MPa used for cars. The impact shear test was performed using the split Hopkinson bar technique for tension impact, together with the static test using a universal testing machine INSTRON 5586. The behaviour of the shear stress and deformation up to rupture taking place in the joint was discussed. The obtained results suggest that a stress-based fracture criterion may be developed for the impact fracture of jointed steel plates of a lap-bolted joint.

  7. Impact extractive fracture of jointed steel plates of a bolted joint

    NASA Astrophysics Data System (ADS)

    Daimaruya, M.; Fujiki, H.; Ambarita, H.

    2012-08-01

    This study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of a bolted joint used in a car body. For the accurate prediction of crash characteristics of car bodies by computer-aided engineering (CAE), it is also necessary to examine the behavior and fracture of jointed steel plates subjected to impact loads. Although the actual impact fracture of jointed steel plates of a bolted joint used in cars is complicated, for simplifying the problem it might be classified into the shear fracture and the extractive fracture of jointed steel plates. Attention is given to the extractive fracture of jointed steel plates in this study. The extractive behavior and fracture of three kinds of steel plates used for cars are examined in experiments and numerical simulations. The impact extraction test of steel plates jointed by a bolt is performed using the one-bar method, together with the static test. In order to understand the mechanism of extractive fracture process of jointed steel plates, numerical simulations by a FEM code LS-DYNA are also carried out. The obtained results suggest that a stress-based fracture criterion may be developed for the impact extractive fracture of jointed steel plates of a bolted joint used in a car body.

  8. Analysis of Yielding Steel Arch Support with Rock Bolts in Mine Roadways Stability Aspect

    NASA Astrophysics Data System (ADS)

    Majcherczyk, Tadeusz; Niedbalski, Zbigniew; Małkowski, Piotr; Bednarek, łukasz

    2014-10-01

    The result of the search for new technological solutions in the field of support for roadways in coal mines has in recent years been the widespread use of steel arch with rockbolt support systems. The efficiency of these systems is affected among other things by the option of installing rock bolts after the actual driving the mine roadway, the increased load capacity that these systems can support, and their resistance to dynamic weight. Large variation in the way that these steel arch support can be connected using different types of rock bolts necessitates mining research revealing the effectiveness of such solutions. Although the steel arch with rockbolt support system is used in the majority of European coal mines, it is still not possible to apply templates of schemes due to the diversity of geological and mining conditions. Therefore, throughout a period of several years, the authors of this article conducted research in situ under conditions of different schemes related to connecting arched support frames with rock bolts, with only selected results being presented in the article. The measurements of convergence, load supported by the system frame, load supported by the rock bolts, and the stratification of roof rocks were analyzed, carried out in two roadways with yielding steel arch support in which strand bolts were applied. The article also proposes the index for working maintenance nuw, used in preliminarily assessing the stability of a given working with a limited number of data concerning geomechanical conditions. Additionally considered are empirical methods used in Poland for designing steel arch with rock bolt support systems. The results of mine research indicate that strengthening yielding steel support with strand bolts through steel beams maintains the stability of a roadway, even when exposed to the exploitation stress. Aside from the impact of exploitation, deformations of the support system are negligible, despite the fact that the tensile

  9. Standard specification for anchor bolts, steel, 36, 55, and 105-ksi yield strength. ASTM standard

    SciTech Connect

    1998-07-01

    This specification is under the jurisdiction of ASTM Committee F-16 on Fasteners and is the direct responsibility of Subcommittee F16.02 on Steel Bolts, Nuts, Rivets, and Washers. Current edition approved Dec. 10, 1997 and published July 1998. Originally published as F 1554-94. Last previous edition was F 1554-94.

  10. Behavior of Fiber Glass Bolts, Rock Bolts and Cable Bolts in Shear

    NASA Astrophysics Data System (ADS)

    Li, Xuwei; Aziz, Naj; Mirzaghorbanali, Ali; Nemcik, Jan

    2016-07-01

    This paper experimentally compares the shear behavior of fiber glass (FG) bolt, rock bolt (steel rebar bolt) and cable bolt for the bolt contribution to bolted concrete surface shear strength, and bolt failure mode. Two double shear apparatuses of different size were used for the study. The tensile strength, the shear strength and the deformation modulus of bolt control the shear behavior of a sheared bolted joint. Since the strength and deformation modulus of FG bolt, rock bolt and cable bolt obtained from uniaxial tensile tests are different, their shear behavior in reinforcing joints is accordingly different. Test results showed that the shear stiffness of FG bolted joints decreased gradually from the beginning to end, while the shear stiffness of joints reinforced by rock bolt and cable bolt decreased bi-linearly, which is clearly consistent with their tensile deformation modulus. The bolted joint shear stiffness was highly influenced by bolt pretension in the high stiffness stage for both rock bolt and cable bolt, but not in the low stiffness stage. The rock bolt contribution to joint shear strength standardised by the bolt tensile strength was the largest, followed by cable bolts, then FG bolts. Both the rock bolts and cable bolts tended to fail in tension, while FG bolts in shear due to their low shear strength and constant deformation modulus.

  11. Modified Steels for Cold-Forming U-Bolts Used In Leaf Springs Systems

    NASA Astrophysics Data System (ADS)

    Ventura, J. M.; Castro, D. B. V.; Ruckert, C. O. F. T.; Maluf, O.; Bose Filho, W. W. B.; Spinelli, D.

    2009-10-01

    In this work, a low alloy steel and a fabrication process were developed to produce U-Bolts for commercial vehicles. Thus, initially five types of no-heat treated steel were developed with different additions of chrome, nickel, and silicon to produce strain hardening effect during cold-forming processing of the U-Bolts, assuring the required mechanical properties. The new materials exhibited a fine perlite and ferrite microstructure due to aluminum and vanadium additions, well known as grain size refiners. The mechanical properties were evaluated in a servo-hydraulic test machine system—MTS 810 according to ASTM A370-03; E739 and E08m-00 standards. The microstructure and fractography analyses of the cold-formed steels were performed by using optical and scanning electronic microscope techniques. To evaluate the performance of the steels and the production process, fatigue tests were carried out under load control (tensile-tensile), R = 0.1 and f = 30 Hz. The Weibull statistic methodology was used for the analysis of the fatigue results. At the end of this work the 0.21% chrome content steel, Alloy 2, presented the best fatigue performance.

  12. Universal Assembly for Captive Bolts

    NASA Technical Reports Server (NTRS)

    Marke, M. L.; Hagopian, B.

    1982-01-01

    New method allows for virtually any bolt to be easily converted to "captive" bolt. Method eliminates need for separate design for each application. Cup-shaped washer that is flattened secures tap to bolt. Wire attached to tab holds bolt assembly captive. Flattening washer can also be done during installation of bolt. Wash, tab and spacer are all made of corrosion-resistant steel.

  13. Static and Fatigue Strength Evaluations for Bolted Composite/Steel Joints for Heavy Vehicle Chassis Components

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Herling, Darrell R.

    2004-09-14

    In May 2003, ORNL and PNNL began collaboration on a four year research effort focused on developing joining techniques to overcome the technical issues associated with joining lightweight materials in heavy vehicles. The initial focus of research is the development and validation of joint designs for a composite structural member attached to a metal member that satisfy the structural requirements both economically and reliably. Huck-bolting is a common joining method currently used in heavy truck chassis structures. The initial round of testing was conducted to establish a performance benchmark by evaluating the static and fatigue behavior of an existing steel/steel chassis joint at the single huck-bolt level. Both tension and shear loading conditions were considered, and the resulting static and fatigue strengths will be used to guide the joint design for a replacement composite/steel joint. A commercially available, pultruded composite material was chosen to study the generic issues related to composite/steel joints. Extren is produced by STRONGWELL, and it is a combination of fiberglass reinforcement and thermosetting polyester or vinyl ester resin systems. Extren sheets of 3.2 mm thick were joined to 1.4 mm SAE1008 steel sheets with a standard grade 5 bolt with 6.35 mm diameter. Both tension and shear loading modes were considered for the single hybrid joint under static and fatigue loading conditions. Since fiberglass reinforced thermoset polymer composites are a non-homogenous material, their strengths and behavior are dependent upon the design of the composite and reinforcement. The Extren sheet stock was cut along the longitudinal direction to achieve maximum net-section strength. The effects of various manufacturing factors and operational conditions on the static and fatigue strength of the hybrid joint were modeled and experimentally verified. It was found that loading mode and washer size have significant influence on the static and fatigue strength of

  14. Determination of displacement distributions in bolted steel tension elements using digital image techniques

    NASA Astrophysics Data System (ADS)

    Sozen, S.; Guler, M.

    2011-12-01

    Digital imaging methods have found a great interest in various engineering fields to study stress-deformation characteristics of materials. Recent enhancements in visual instrumentation with the availability of cost-effective hardware and software products make the digital imaging techniques a viable tool to replace direct strain or displacement measurement methods in engineering applications. In this study, deformation characteristics of bolted steel connections are investigated by calculating in-plane displacement distributions using digital image correlation method (DIC). Validation of the method is presented by comparing the strains measured in standard tension specimens using electrical resistance strain gages and the DIC method. Finite element analysis of the connection specimen is also performed to compare the in-plane displacement distributions calculated from both methods. Results from the validation process indicate that the strains obtained from the DIC method compare well with the results of strain gages. The findings also indicate that the displacement distributions calculated from the finite element method may differ from those of the DIC method in terms of distribution pattern, and the location and magnitude of the extreme values of displacements. It is suggested that the proposed method can be used to determine the in-plane displacement distributions for the bolted connections, hence to evaluate their deformation characteristics under loading.

  15. Hydrogen induced cracking tests of high strength steels and nickel-iron base alloys using the bolt-loaded specimen

    SciTech Connect

    Vigilante, G.N.; Underwood, J.H.; Crayon, D.; Tauscher, S.; Sage, T.; Troiano, E.

    1997-12-31

    Hydrogen induced cracking tests were conducted on high strength steels and nickel-iron base alloys using the constant displacement bolt-loaded compact specimen. The bolt-loaded specimen was subjected to both acid and electrochemical cell environments in order to produce hydrogen. The materials tested were A723, Maraging 200, PH 13-8 Mo, Alloy 718, Alloy 706, and A286, and ranged in yield strength from 760--1400 MPa. The effects of chemical composition, refinement, heat treatment, and strength on hydrogen induced crack growth rates and thresholds were examined. In general, all high strength steels tested exhibited similar crack growth rates and thresholds were examined. In general, all high strength steels tested exhibited similar crack growth rates and threshold levels. In comparison, the nickel-iron base alloys tested exhibited up to three orders of magnitude lower crack growth rates than the high strength steels tested. It is widely known that high strength steels and nickel base alloys exhibit different crack growth rates, in part, because of their different crystal cell structure. In the high strength steels tested, refinement and heat treatment had some effect on hydrogen induced cracking, though strength was the predominant factor influencing susceptibility to cracking. When the yield strength of one of the high strength steels tested was increased moderately, from 1130 MPa to 1275 MPa, the incubation times decreased by over two orders of magnitude, the crack growth rates increased by an order of magnitude, and the threshold stress intensity was slightly lower.

  16. Behavior of a steel-liner-and-bolts system under very high thermal and mechanical loading: The CONVEX Liner Add-On to DIAMOND FORTUNE

    NASA Astrophysics Data System (ADS)

    Heuze, F. E.; Swift, R. P.; Hill, L. R.; Barrett, W. H.

    1993-01-01

    This work involved the response of a liner-bolt system installed on the wall of the DIAMOND FORTUNE cavity, a 22-m diameter nearly semi-spherical chamber in tuff, at the Nevada Test Site. DIAMOND FORTUNE is a low-yield nuclear test of the Defense Nuclear Agency which was performed in April, 1992. A 1.4-m square, 2.5-cm thick steel plate was anchored by 9-m long bolts: four 2.5-cm diameter bolts at the comers and a 5-cm diameter bolt at the center. The bolt ends daylighted in a tunnel surrounding the cavity, and were tensioned from there. The system was aped with 20 data channels for strain, acceleration, contact pressure, and temperature. We relate the thermal analyses and the 3-dimensional dynamic analyses performed for this project, and we present the test results which indicated the excellent response of this system to the high dynamic loads and temperatures.

  17. System Measures Loads In Bolts

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.

    1994-01-01

    Improved technique for ultrasonic nondestructive measurement of loads in bolts involves use of pulsed phase-locked loop interferometer. Provides for correction of errors and for automatic readout of loads in bolts. Actual bolt load measured, using transducers rebonded after bolts tightened. Calibration block and thermometer added. Technique applicable to critical fasteners in aerospace applications, nuclear reactors, petroleum and other chemical processing plants, steel bridges, and other structures.

  18. Atmospheric corrosion of hot-dip galvanized bolts for fastening weathering steel guiderail

    SciTech Connect

    Townsend, H.E.; Gorman, C.D. ) Fischer, R.J. )

    1999-03-01

    The life of galvanized fastener coatings is only slightly reduced by coupling to weathering steel, provided the initial coating is thick enough to endure an initial period of galvanic attack prior to the development of a protective rust layer on the weathering steel. Typical thicknesses of hot-dip galvanized coatings (3 to 5 mil [76 to 127 [micro]m]) are adequate. Discoloration on the surface of weathering steel exposed to drainage from galvanized fasteners is superficial, and decreases with time of exposure.

  19. Stress corrosion of low alloy steels used in external bolting on pressurised water reactors

    SciTech Connect

    Skeldon, P.; Hurst, P.; Smart, N.R.

    1992-12-31

    The stress corrosion cracking (SCC) susceptibility of AISI 4140 and AISI 4340 steels has been evaluated in five environments, three simulating a leaking aqueous boric acid environment and two simulating ambient external conditions ie moist air and salt spray. Both steels were found to be highly susceptible to SCC in all environments at hardnesses of 400 VPN and above. The susceptibility was greatly reduced at hardnesses below 330 VPN but in one environment, viz refluxing PWR primary water, SCC was observed at hardnesses as low as 260VPN. Threshold stress intensities for SCC were frequently lower than those in the literature.

  20. Bolting Technology

    NASA Technical Reports Server (NTRS)

    1986-01-01

    With NERAC assistance, Raymond Engineering has developed a line of sophisticated tools for producing and controlling high torques that affect bolted joints in various applications. Information from NERAC was also useful in designing and presenting a series of Raymond Bolting Seminars. The new tools have increased sales and created jobs.

  1. Busting Bolts

    ERIC Educational Resources Information Center

    Scott, Alan

    2013-01-01

    A simple apparatus is described which serves as a materials testing laboratory. Bolts are placed in it and subjected to tensile and torsional stress while being tightened. The tensile and torsional stress and strain can be measured, which enables the determination of several mechanical properties of the bolt material, including Young's…

  2. The design and testing of subscale smart aircraft wing bolts

    NASA Astrophysics Data System (ADS)

    Vugampore, J. M. V.; Bemont, C.

    2012-07-01

    Presently costly periodic inspection is vital in guaranteeing the structural integrity of aircraft. This investigation assesses the potential for significantly reducing aircraft maintenance costs without modification of aircraft structures by implementing smart wing bolts, manufactured from TRIP steel, which can be monitored for damage in situ. TRIP steels undergo a transformation from paramagnetic austenite to ferromagnetic martensite during deformation. Subscale smart aircraft wing bolts were manufactured from hot rolled TRIP steel. These wing bolts were used to demonstrate that washers incorporating embedded inductance coils can be utilized to measure the martensitic transformation occurring in the TRIP steel during bolt deformation. Early in situ warning of a critical bolt stress level was thereby facilitated, potentially reducing the costly requirement for periodic wing bolt removal and inspection. The hot rolled TRIP steels that were utilized in these subscale bolts do not however exhibit the mechanical properties required of wing bolt material. Thus warm rolled TRIP steel alloys were also investigated. The mechanical properties of the best warm rolled TRIP steel alloy tested almost matched those of AISI 4340. The warm rolled alloys were also shown to exhibit transformation before yield, allowing for earlier warning when overload occurs. Further work will be required relating to fatigue crack detection, environmental temperature fluctuation and more thorough material characterization. However, present results show that in situ early detection of wing bolt overload is feasible via the use of high alloy warm rolled TRIP steel wing bolts in combination with inductive sensor embedded washers.

  3. Shear joint capability versus bolt clearance

    NASA Technical Reports Server (NTRS)

    Lee, H. M.

    1992-01-01

    The results of a conservative analysis approach into the determination of shear joint strength capability for typical space-flight hardware as a function of the bolt-hole clearance specified in the design are presented. These joints are comprised of high-strength steel fasteners and abutments constructed of aluminum alloys familiar to the aerospace industry. A general analytical expression was first arrived at which relates bolt-hole clearance to the bolt shear load required to place all joint fasteners into a shear transferring position. Extension of this work allowed the analytical development of joint load capability as a function of the number of fasteners, shear strength of the bolt, bolt-hole clearance, and the desired factor of safety. Analysis results clearly indicate that a typical space-flight hardware joint can withstand significant loading when less than ideal bolt hole clearances are used in the design.

  4. X-ray Photoelectron Spectroscopic Analyses of Corrosion Products Formed on Rock Bolt Carbon Steel in Chloride Media with Bicarbonate and Silicate Ions

    SciTech Connect

    Deodeshmukh, Vinay; Venugopal, A; Chandra, Dhanesh; Yilmaz, Ahmet; Daemen, Jack; Jones, D A.; Lea, Alan S.; Engelhard, Mark H.

    2004-11-01

    The passivation behavior of Yucca Mountain Repository rock bolt carbon steel in deaerated 3.5% NaCl solution containing SiO{sub 3}{sup 2} and HCO{sub 3} ions was investigated by potentiodynamic polarization, electrochemical impedance spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopic methods. Polarization results indicate that combinations of silicate and bicarbonate anions decrease the passive current density and raise the pitting potential. XPS results indicate the enrichment of silica at passive potentials and the formation of mixed FeCO{sub 3} and silica film at lower potentials. This change in film composition was responsible for the changes in corrosion rate at lower and higher potentials. XPS results also support the thermodynamic data with regard to the occurrence of second oxidation peak observed in the polarization curves to be due to the oxidation of FeCO{sub 3} to Fe{sub 2}O{sub 3}.

  5. Bolt-loosening identification of bolt connections by vision image-based technique

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuan-Cuong; Huynh, Thanh-Canh; Ryu, Joo-Young; Park, Jae-Hyung; Kim, Jeong-Tae

    2016-04-01

    In this study, an algorithm using image processing techniques is proposed to identify bolt-loosening in bolted connections of steel structures. Its basic concept is to identify rotation angles of nuts from a pictured image, and is mainly consisted of the following 3 steps: (1) taking a picture for a bolt joint, (2) segmenting the images for each nut by image processing techniques, and (3) identifying rotation angle of each nut and detecting bolt-loosening. By using the concept, an algorithm is designed for continuous monitoring and inspection of the bolt connections. As a key imageprocessing technique, Hough transform is used to identify rotation angles of nuts, and then bolt-loosening is detected by comparing the angles before and after bolt-loosening. Then the applicability of the proposed algorithm is evaluated by experimental tests for two lab-scaled models. A bolted joint model which consists of a splice plate and 8 sets of bolts and nuts with 2×4 array is used to simulate inspection of bridge connections, and a model which is consisted of a ring flange and 32 sets of bolt and nut is used to simulate continuous monitoring of bolted connections in wind turbine towers.

  6. Bolt failure detection

    DOEpatents

    Sutton, Jr., Harry G.

    1984-01-01

    Bolts of a liquid metal fast breeder reactor, each bolt provided with an internal chamber filled with a specific, unique radioactive tag gas. Detection of the tag gas is indicative of a crack in an identifiable bolt.

  7. Performance of D-bolts Under Static Loading

    NASA Astrophysics Data System (ADS)

    Li, Charlie C.

    2012-03-01

    D-bolt is a type of energy-absorbing rock bolt. It is made of a smooth steel bar with anchors spaced along the bolt length. A typical section between adjacent anchors is approximately 1-m long, but it can be adjusted to adapt to the rock conditions. The bolt is fully encapsulated with either cement or resin grout in a borehole. The anchors are firmly fixed into the grout, while the smooth bolt sections can freely deform to absorb deformation energy. Full-scale static pull tests were carried out at different testing facilities in two laboratories. The tests show that a smooth bolt section between anchors may elongate by 110-167 mm depending on the section length. Field trials of the D-bolt were conducted in deep metal mines. The measurements showed that the D-bolts were equally loaded within every anchor-between section, avoiding load peaks and premature bolt failure due to stress concentrations caused by fracture/joint opening. The field trials of rebar and D-bolts in a largely deformed mine tunnel showed that the D-bolts behaved satisfactorily, with only a few failed bolts, while a number of the rebar bolts failed at the thread.

  8. Thrust bolting: roof bolt support apparatus

    DOEpatents

    Tadolini, Stephen C.; Dolinar, Dennis R.

    1992-01-01

    A method of installing a tensioned roof bolt in a borehole of a rock formation without the aid of a mechanical anchoring device or threaded tensioning threads by applying thrust to the bolt (19) as the bonding material (7') is curing to compress the strata (3) surrounding the borehole (1), and then relieving the thrust when the bonding material (7') has cured.

  9. Creep deformation and fracture of a Cr/Mo/V bolting steel containing selected trace-element additions

    NASA Astrophysics Data System (ADS)

    Larouk, Z.; Pilkington, R.

    1999-08-01

    The article reports the creep behavior, at 565 °C, of 1Cr1Mo0.75V (Ti, B) (Durehete D1055) steel, in each of two grain sizes and doped with individual trace elements such as P, As, and Sn, in comparison to a reference cast of the base material containing 0.08 wt pct Ti. The addition of the trace elements P, As, or Sn (each <0.045 wt pct) appears to produce no significant effect on creep strength or creep crack-growth resistance at 565 °C. The fine-grained material shows low creep strength but notch strengthening, while the coarse-grained material shows higher creep strength and exhibits notch weakening for test times up to 2750 hours. From creep crack-growth tests, it appears that the C* parameter is not appropriate for correlating the creep crack-growth rate under the present test conditions. The parameters K I or σ net are found to correlate better, but, from the present data, it is not possible to judge which of these parameters is more appropriate for general use. It is suggested that the presence of Ti in CrMoV steels has an inhibiting effect on trace-element embrittlement.

  10. Piezoelectric Bolt Breakers and Bolt Fatigue Testers

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Barengoltz, Jack; Heckman, Vanessa

    2008-01-01

    A proposed family of devices for inducing fatigue in bolts in order to break the bolts would incorporate piezoelectric actuators into resonant fixtures as in ultrasonic/ sonic drills/corers and similar devices described in numerous prior NASA Tech Briefs articles. These devices were originally intended primarily for use as safer, more-reliable, more-versatile alternatives to explosive bolts heretofore used to fasten spacecraft structures that must subsequently be separated from each other quickly on command during flight. On Earth, these devices could be used for accelerated fatigue testing of bolts. Fatigue theory suggests that a bolt subjected to both a constant-amplitude dynamic (that is, oscillatory) stress and a static tensile stress below the ultimate strength of the bolt material will fail faster than will a bolt subjected to only the dynamic stress. This suggestion would be applied in a device of the proposed type. The device would be designed so that the device and the bolt to be fatigue-tested or broken would be integral parts of an assembly (see figure). The static tension in the tightened bolt would apply not only the clamping force to hold the joined structures (if any) together but also the compression necessary for proper operation of the piezoelectric actuators as parts of a resonant structural assembly. The constant-amplitude dynamic stress would be applied to the bolt by driving the piezoelectric actuators with a sinusoidal voltage at the resonance frequency of longitudinal vibration of the assembly. The amplitude of the excitation would be made large enough so that the vibration would induce fatigue in the bolt within an acceptably short time. In the spacecraft applications or in similar terrestrial structural-separation applications, devices of the proposed type would offer several advantages over explosive bolts: Unlike explosive bolts, the proposed devices would be reusable, could be tested before final use, and would not be subject to

  11. Good bolting practices

    SciTech Connect

    Van Duyne, D.A.; Brunner, R.G.; Buffington, G.O.; Malovrh, C.A.; Sheridan, M.E. )

    1990-12-01

    This a Reference Manual designed to help solve or prevent bolted joint problems with small bolts and threaded fasteners. It is designed for rapid access for use in the field or office. The manual tells you how to identify and deal with typical problems such as gasket leaks, vibration loosening, fatigue, stress corrosion cracking, and similar concerns. The manual is NOT intended to be a substitute or alternate for existing bolting specifications, Codes, or standards. It can, however, be used as a guideline to consult with engineering when insufficient direction or instructions are given. This Volume 2: Small Bolts and Threaded Fasteners follows the general format which was used for the Large Bolt Manual. This provides a stand-alone document for small bolts and threaded fasteners while presenting some overlapping information for large or small bolts and studs which share a common use such as for gasketed joints. 26 refs.

  12. Bolt-Tension Sensor

    NASA Technical Reports Server (NTRS)

    Goldie, James H.; Bushko, Dariusz A.; Gerver, Michael J.

    1995-01-01

    In technique for measuring tensile force of bolt, specially fabricated magnetostrictive washer used as force transducer. Compact, portable inductive electronic sensor placed against washer to measure tension force. New system provides accurate, economical, and convenient way to measure bolt tension in field. Measurements on test assembly shows that tension can be measured to accuracy of about plus or minus 1 percent of load capacity of typical bolt.

  13. Bolt Stress Monitor

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In photo, an engineer is using a new Ultrasonic Bolt Stress Monitor developed by NASA's Langley Research Center to determine whether a bolt is properly tightened. A highly accurate device, the monitor is an important tool in construction of such structures as pressure vessels, bridges and power plants, wherein precise measurement of the stress on a tightened bolt is critical. Overtightened or undertightened bolts can fail and cause serious industrial accidents or costly equipment break-downs. There are a number of methods for measuring bolt stress. Most widely used and least costly is the torque wrench, which is inherently inaccurate; it does not take into account the friction between nut and bolt, which has an influence on stress. At the other end of the spectrum, there are accurate stress-measuring systems, but they are expensive and not portable. The battery-powered Langley monitor fills a need; it is inexpensive, lightweight, portable and extremely accurate because it is not subject to friction error. Sound waves are transmitted to the bolt and a return signal is received. As the bolt is tightened, it undergoes changes in resonance due to stress, in the manner that a violin string changes tone when it is tightened. The monitor measures the changes in resonance and provides a reading of real stress on the bolt. The device, patented by NASA, has aroused wide interest and a number of firms have applied for licenses to produce it for the commercial market.

  14. Ultrasonic Bolt Gage

    NASA Technical Reports Server (NTRS)

    Gleman, Stuart M. (Inventor); Rowe, Geoffrey K. (Inventor)

    1999-01-01

    An ultrasonic bolt gage is described which uses a crosscorrelation algorithm to determine a tension applied to a fastener, such as a bolt. The cross-correlation analysis is preferably performed using a processor operating on a series of captured ultrasonic echo waveforms. The ultrasonic bolt gage is further described as using the captured ultrasonic echo waveforms to perform additional modes of analysis, such as feature recognition. Multiple tension data outputs, therefore, can be obtained from a single data acquisition for increased measurement reliability. In addition, one embodiment of the gage has been described as multi-channel, having a multiplexer for performing a tension analysis on one of a plurality of bolts.

  15. Small-Bolt Torque-Tension Tester

    NASA Technical Reports Server (NTRS)

    Posey, Alan J.

    2009-01-01

    The device described here measures the torque-tension relationship for fasteners as small as #0. The small-bolt tester consists of a plate of high-strength steel into which three miniature load cells are recessed. The depth of the recess is sized so that the three load cells can be shimmed, the optimum height depending upon the test hardware. The three miniature load cells are arranged in an equilateral triangular configuration with the test bolt aligned with the centroid of the three. This is a kinematic arrangement.

  16. Bolted connection modeling and validation through laser-aided testing

    NASA Astrophysics Data System (ADS)

    Dai, Kaoshan; Gong, Changqing; Smith, Benjiamin

    2013-04-01

    Bolted connections are widely employed in facility structures, such as light masts, transmission poles, and wind turbine towers. The complex connection behavior plays a significant role in the overall dynamic characteristics of a structure. A finite element (FE) modeling study of a bolt-connected square tubular steel beam is presented in this paper. Modal testing was performed in a controlled laboratory condition to validate the FE model, developed for the bolted beam. Two laser Doppler vibrometers were used simultaneously to measure structural vibration. A simplified joint model was proposed to further save computation time for structures with bolted connections. This study is an on-going effort to marshal knowledge associated with detecting damage on facility structures with bolted connections.

  17. Roof bolting equipment & technology

    SciTech Connect

    Fiscor, S.

    2009-04-15

    Technology provides an evaluator path to improvement for roof bolting machines. Bucyrus offers three different roof bolts models for various mining conditions. The LRB-15 AR is a single-arm boiler recommended for ranges of 32 inches and above; the dual-arm RB2-52A for ranges of 42 inches and above; and the dual-arm RB2-88A for ranges of 54 inches and above. Design features are discussed in the article. Developments in roof bolting technology by Joy Mining Machinery are reported. 4 photos.

  18. Analysis of rock bolt material failures at the WIPP site

    SciTech Connect

    Lucas, J.P.

    1984-09-01

    The report describes an investigation conducted on rock bolt material (AISI 1040 plain carbon steel), as called for in ASTM F-432. Failure analysis was performed on rock bolts that failed in-service, and mechanical tests were conducted on rock bolt materials in a simulated WIPP environment. The mechanical tests results indicate that fracture was environmentally assisted. Strong evidence indicated that hydrogen embrittlement influenced the fracture mechanisms. In the most agressive test environment, the ductility loss during sustained-load tensile testing was large. Such ductility loss was attributed to embrittlement caused by the absorption of hydrogen. 10 references, 17 figures, 8 tables.

  19. Eddy-Current Detection of Weak Bolt Heads

    NASA Technical Reports Server (NTRS)

    Messina, C. P.

    1987-01-01

    Electronic test identifies flawed units passing hardness tests. Eddy-current test detects weakness in head-to-shank junctions of 1/4-28 cup-washer lock bolts. Developed for alloy A286 steel bolts in Space Shuttle main engine fuel turbo-pump. Test examines full volume of head, including head-to-shank transition and nondestructively screens out potentially defective units. Test adapts to any other alloys.

  20. Measuring mine roof bolt strains

    DOEpatents

    Steblay, Bernard J.

    1986-01-01

    A mine roof bolt and a method of measuring the strain in mine roof bolts of this type are disclosed. According to the method, a flat portion on the head of the mine roof bolt is first machined. Next, a hole is drilled radially through the bolt at a predetermined distance from the bolt head. After installation of the mine roof bolt and loading, the strain of the mine roof bolt is measured by generating an ultrasonic pulse at the flat portion. The time of travel of the ultrasonic pulse reflected from the hole is measured. This time of travel is a function of the distance from the flat portion to the hole and increases as the bolt is loaded. Consequently, the time measurement is correlated to the strain in the bolt. Compensation for various factors affecting the travel time are also provided.

  1. Bolt and nut evaluator

    NASA Technical Reports Server (NTRS)

    Kerley, James J. (Inventor); Burkhardt, Raymond (Inventor); White, Steven (Inventor)

    1994-01-01

    A device for testing fasteners such as nuts and bolts is described which consists of a fixed base plate having a number of threaded and unthreaded holes of varying size for receiving the fasteners to be tested, a torque marking paper taped on top the fixed base plate for marking torque-angle indicia, a torque wrench for applying torque to the fasteners being tested, and an indicator for showing the torque applied to the fastener. These elements provide a low cost, nondestructive device for verifying the strength of bolts and nuts.

  2. Bolt Analysis Program

    NASA Technical Reports Server (NTRS)

    Travis, Brandon E.

    2004-01-01

    In designing and testing bolted joints there are multiple parameters to be considered and calculations that must be performed to predict the joint behavior. Each different set of parameters may call for a different set of equations. Determining every parameter in each bolted joint is impractical and in many cases impossible. On the other hand, it is much easier to reduce these calculations to a universal set that can be used for all bolted joints. This is the purpose of the Bolt Analysis Program. My project under the Mechanical and Rotating Systems branch of the Engineering Development and Analysis Division was to take the Bolt Analysis Program Version 2.0 and update the program to a modem and user-friendly format. Version 2.0 of the Bolt Analysis Program is a useful program, but lacks the dynamic capabilities that are needed for current applications. Version 2.0 of the Bolt Analysis Program was written in 1993 using the Pascal programming language in a DOS format. This program allows you to input data in a step-by-step format, calculates the data, and then on a final screen displays the input and the output fiom the calculations. Version 2.0 is still applicable for all bolted joint anaiysis, but has updates that are desired. First, the program runs in DOS format. With the applications available today, my mentor decided it would be best to update the program into Excel using Visual Basic for Applications (VBA). This would allow the program to have multiple Graphical User Interfaces (GUI s) while retaining all functions of the previous program. Version 2.0 only allows you to input data in a step-by-step process. If you make a mistake and need to go back, you must run through the entire program before you can return to fix your error. This becomes tedious when needing to change one parameter or test multiple sets of data. In Version 3.0, the program allows you to enter and change data at any time while displaying real-time output data. If you realize an error, it is

  3. Reinsertable Captive Bolt

    NASA Technical Reports Server (NTRS)

    Smallcombe, Richard D.

    1994-01-01

    Captive bolt installed, removed, and reinstalled easily, even with heavily gloved hands depriving technicians of feeling of engagement of threads. Has two threads with different diameters but same pitch. Engages either housing or mating part. Useful in construction in environments where visibility, tactility, and/or maneuverability poor.

  4. Factors Influencing the Quality of Encapsulation in Rock Bolting

    NASA Astrophysics Data System (ADS)

    Aziz, Naj; Craig, Peter; Mirzaghorbanali, Ali; Nemcik, Jan

    2016-08-01

    Bolt installation quality is influenced by various factors, some are well known and others are less recognised. A programme of field and laboratory studies was undertaken to examine various factors of relevance to the load transfer mechanism between the bolt, resin and rock to ensure test methods truly represent field performance. Short encapsulation tests were undertaken as part of the Australian Coal Association Research Program (ACARP) funded project (C21011) with the ultimate aim of developing standard test methods for assessing bolt encapsulation with chemical resin anchor installations. The field study consisted of a series of Short Encapsulation Pull Tests (SEPT) carried out in three mines with different geological conditions to determine the most representative and practical method of SEPT. Additional field work included installation of bolts into threaded steel tubes for subsequent removal and laboratory evaluation. A series of pull tests was carried out by installing bolts in overhead rig mounted sandstone block, cast in concrete with controlled encapsulation length. Factors of importance considered included; borehole diameter, resin annulus thickness, installation time (including bolt spin to the back and "spin at back"), the effect of gloving and hole over drill. It was found that the borehole diameter had a detrimental effect on the encapsulation bonding strength. Bolt installation time of approximately 10 s constituted an acceptable time for effective bolt installation and within the resin manufacturers recommended time of 14 s. Maintaining constant length of encapsulation was paramount for obtaining consistency and repeatability of the test results. Finally, a numerical simulation study was carried out to assess the capabilities of FLAC 2D software in simulating the pull testing of rock bolts.

  5. Eddy-current sensor measures bolt loading

    NASA Technical Reports Server (NTRS)

    Burr, M. E.

    1980-01-01

    Thin wire welded to bottom of hole down center of bolt permits measurement of tension in bolt. Bolt lengthens under strain, but wire is not loaded, so gap between wire and eddy-current gap transducer mounted on bolt head indicates bolt loading. Eddy-current transducer could measure gap within 0.05 mm. Method does not require separate "standard" for each bolt type, and is not sensitive to dirt or oil in bolt hole, unlike ultrasonic probes.

  6. Mold bolt and means for achieving close tolerances between bolts and bolt holes

    NASA Technical Reports Server (NTRS)

    Johnston, David L. (Inventor); Bryant, Phillip G. (Inventor)

    1993-01-01

    In the space shuttle, a cargo bay storage rack was required which was to be manufactured from a metal-plastic composite and bolted to a cargo structure. Following completion, utilization of the rack was disallowed due to tolerances, that is, the size differences between the outside bolt diameter and the inside hole diameter. In addition to the space shuttle problem there are other close tolerance requirements for bolts. Such environments often benefit from close tolerance bolting. Frequently such fabrication is not cost effective. Consequently there is a need for means of achieving close tolerances between bolts and bolt holes. Such means are provided. After compressing the elements together a strong rigid plastic, ceramic, or ceramic plastic fluid is forced into a channel extending through the bolt.

  7. Analysis of Inflatable Rock Bolts

    NASA Astrophysics Data System (ADS)

    Li, Charlie C.

    2016-01-01

    An inflatable bolt is integrated in the rock mass through the friction and mechanical interlock at the bolt-rock interface. The pullout resistance of the inflatable bolt is determined by the contact stress at the interface. The contact stress is composed of two parts, termed the primary and secondary contact stresses. The former refers to the stress established during bolt installation and the latter is mobilized when the bolt tends to slip in the borehole owing to the roughness of the borehole surface. The existing analysis of the inflatable rock bolt does not appropriately describe the interaction between the bolt and the rock since the influence of the folded tongue of the bolt on the stiffness of the bolt and the elastic rebound of the bolt tube in the end of bolt installation are ignored. The interaction of the inflatable bolt with the rock is thoroughly analysed by taking into account the elastic displacements of the rock mass and the bolt tube during and after bolt installation in this article. The study aims to reveal the influence of the bolt tongue on the contact stress and the different anchoring mechanisms of the bolt in hard and soft rocks. A new solution to the primary contact stress is derived, which is more realistic than the existing one in describing the interaction between the bolt and the rock. The mechanism of the secondary contact stress is also discussed from the point of view of the mechanical behaviour of the asperities on the borehole surface. The analytical solutions are in agreement with both the laboratory and field pullout test results. The analysis reveals that the primary contact stress decreases with the Young's modulus of the rock mass and increases with the borehole diameter and installation pump pressure. The primary contact stress can be easily established in soft and weak rock but is low or zero in hard and strong rock. In soft and weak rock, the primary contact stress is crucially important for the anchorage of the bolt, while

  8. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts...

  9. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts...

  10. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts...

  11. Instrumented Bolt Measures Load In Two Ways

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Melvick, G. R.; Klundt, T. J.; Everton, R. L.; Eggett, M.

    1995-01-01

    Bolt instrumented to allow both ultrasonic and strain-gauge measurements of tensile load in bolt during installation and use of bolt in structure. Bolt head design allows interface for ultrasonic transducer installed, while shallow chamfered circumferential groove on bolt shank contains four strain gauges at equal angular intervals wired as a full-bridge transducer.

  12. Optimized bolted joint

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.; Bunin, B. L.; Watts, D. J. (Inventor)

    1986-01-01

    A method is disclosed for joining segments of the skin of an aircraft. The ends of the skin are positioned in close proximity or abutt each other. The skin is of constant thickness throughout the joint and is sandwiched between splice plates, which taper in thickness from the last to the first bolt rows in order to reduce the stiffness of the splice plate and thereby reduce the load transfer at the location where bypass loads are the highest.

  13. Damage Progression in Bolted Composites

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Chamis, Christos C.; Gotsis, Pascal K.

    1998-01-01

    Structural durability, damage tolerance, and progressive fracture characteristics of bolted graphite/epoxy composite laminates are evaluated via computational simulation. Constituent material properties and stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for bolted composites. Single and double bolted composite specimens with various widths and bolt spacings are evaluated. The effect of bolt spacing is investigated with regard to the structural durability of a bolted joint. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Results show the damage progression sequence and structural fracture resistance during different degradation stages. A procedure is outlined for the use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of experimental results with insight for design decisions.

  14. Damage Progression in Bolted Composites

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Chamis, Christos; Gotsis, Pascal K.

    1998-01-01

    Structural durability,damage tolerance,and progressive fracture characteristics of bolted graphite/epoxy composite laminates are evaluated via computational simulation. Constituent material properties and stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for bolted composites. Single and double bolted composite specimens with various widths and bolt spacings are evaluated. The effect of bolt spacing is investigated with regard to the structural durability of a bolted joint. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Results show the damage progression sequence and structural fracture resistance during different degradation stages. A procedure is outlined for the use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of experimental results with insight for design decisions.

  15. Development of forward and aft separation bolts for the NASA Space Shuttle solid rocket booster separation system

    NASA Technical Reports Server (NTRS)

    Nein, H.; Williams, V.

    1979-01-01

    A program is underway to design, develop, fabricate, and qualify large high-load forward and aft separation bolts for the Space Shuttle; the bolts will serve as attachment between two solid rocket boosters and the external tank. This paper reviews bolt development, with emphasis on the scaling of components, the use of high strength maraging steel for the internal components, and the use of lead as a hydraulic fluid.

  16. A bubbling bolt

    NASA Astrophysics Data System (ADS)

    Bossard, Guillaume; Katmadas, Stefanos

    2014-07-01

    We present a new solvable system, solving the equations of five-dimensional ungauged = 1 supergravity coupled to vector multiplets, that allows for non-extremal solutions and reduces to a known system when restricted to the floating brane Ansatz. A two-centre globally hyperbolic smooth geometry is obtained as a solution to this system, describing a bubble linking a Gibbons-Hawking centre to a charged bolt. However this solution turns out to violate the BPS bound, and we show that its generalisation to an arbitrary number of Gibbons-Hawking centres never admits a spin structure.

  17. Inexpensive Bolt-Load Gage

    NASA Technical Reports Server (NTRS)

    Long, M. J.

    1983-01-01

    "Built-in" gage determines whether large bolt or stud has been torqued to desired load and provides for continuous inspection to ensure proper load is being maintained. Gage detects longitudinal stress/strain bolt; requires no electronic or sonic test equipment.

  18. Direct laboratory tensile testing of select yielding rock bolt systems

    SciTech Connect

    VandeKraats, J.D.; Watson, S.O.

    1996-08-01

    Yielding rock bolt support systems have been developed to accommodate ground movement in shifting ground such as in coal operations; in creeping ground such as salt, trona, and potash; and in swelling ground associated with some clays. These systems, designed to remain intact despite ground movement, should enhance mine safety and help contain costs in areas where rebolting of rigid non-yielding systems is typically required. Four such systems were tested in straight tensile pulls in the laboratory. They include the Slip Nut System from Dywidag Systems International USA, Inc., Ischebeck`s bolt mounted Titan Load Indicator, Rocky Mountain Bolt Company`s Yielding Cable Bolt, and a rock bolt installed variation of the yielding steel post developed by RE/SPEC Inc. The first two systems are currently marketed products and the latter two are prototype systems. Each system responds to load and displacement by yielding in an unique manner. All are designed to yield at predetermined loads. A description of each system and its yield function is provided. Each system was tested over its prescribed yield range in a test machine. At least five tests were performed on each system. Each system yielded and continued to provide support according to its design. Each shows promise for ground control use in shifting or creeping rock. This work helps to illustrate the comparative differences in performance between these specialized systems and the applications where they may be most useful.

  19. Post-Service Examination of PWR Baffle Bolts, Part I. Examination and Test Plan

    SciTech Connect

    Leonard, Keith J.; Sokolov, Mikhail A.; Gussev, Maxim N.

    2015-04-30

    In support of extended service and current operations of the US nuclear reactor plants, the Oak Ridge National Laboratory (ORNL), through the Department of Energy (DOE), Light Water Reactor Sustainability (LWRS) Program, is coordinating with Ginna Nuclear Power Plant, The Westinghouse Electric Company, LLC, and ATI Consulting, the selective procurement of baffle bolts that were withdrawn from service in 2011 and currently stored on site at Ginna. The goal of this program is to perform detailed microstructural and mechanical property characterization of baffle former bolts following in-service exposures. This report outlines the selection criteria of the bolts and the techniques to be used in this study. The bolts available are the original alloy 347 steel fasteners used in holding the baffle plates to the baffle former structures within the lower portion of the pressurized water reactor vessel. Of the eleven possible bolts made available for this work, none were identified to have specific damage. The bolts, however, did show varying levels of breakaway torque required in their removal. The bolts available for this study varied in peak fluence (highest dose within the head of the bolt) between 9.9 and 27.8x1021 n/cm2 (E>1MeV). As no evidence for crack initiation was determined for the available bolts from preliminary visual examination, two bolts with the higher fluence values were selected for further post-irradiation examination. The two bolts showed different breakaway torque levels necessary in their removal. The information from these bolts will be integral to the LWRS program initiatives in evaluating end of life microstructure and properties. Furthermore, valuable data will be obtained that can be incorporated into model predictions of long-term irradiation behavior and compared to results obtained in high flux experimental reactor conditions. The two bolts selected for the ORNL study will be shipped to Westinghouse with bolts of

  20. Space Shuttle orbiter separation bolts

    NASA Technical Reports Server (NTRS)

    Ritchie, R. S.

    1979-01-01

    Evolution of the space shuttle from previous spacecraft systems dictated growth and innovative design of previously standard ordnance devices. Initially, one bolt design was programmed for both 747 and external tank application. However, during development and subsequent analyses, two distinct designs evolved. The unique requirements of both bolts include: high combined loading, redundant initiation, flush separation plane, self-righting and shank attenuation. Of particular interest are the test methods, problem areas, and use of subscale models which demonstrated feasibility at an early phase in the program. The techniques incorporated in the shuttle orbiter bolts are applicable to other mechanisms.

  1. Ultrasonic extensometer measures bolt preload

    NASA Technical Reports Server (NTRS)

    Daniels, C. M., Jr.

    1978-01-01

    Extensometer using ultrasonic pulse reflections to measure elongations in tightened belts and studs is much more accurate than conventional torque wrenches in application of specified preload to bolts and other threaded fasteners.

  2. Effects of bolt-hole contact on bearing-bypass damage-onset strength

    NASA Technical Reports Server (NTRS)

    Crews, John H., Jr.; Naik, Rajiv A.

    1991-01-01

    A combined experimental and analytical study was conducted to investigate the effects of bolt-hole contact on the bearing bypass strength of a graphite-epoxy laminate. Tests were conducted on specimens consisting of 16-ply quasi-isotropic T300/5208 laminates with a centrally located hole. Bearing loads were applied through a clearance-fit steel bolt. Damage onset strength and damage mode were determined for each test case. A finite element procedure was used to calculate the bolt-hole stresses and bolt contact for each test case. A finite element procedure was used to calculate the bolt-hole stresses and bolt contact for each measured damage-onset strength. For the tension bearing-bypass cases tested, the bolt contact half-angle was approximately 60 degrees at damage onset. For compression, the contact angle was 20 degrees as the bypass load increased. A corresponding decrease in the bearing damage onset strength was attributed to the decrease in contact angle which made the bearing loads more severe. Hole boundary stresses were also computed by superimposing stresses for separate bearing and bypass loading. Stresses at the specimen net section were accurately approximated by the superposition procedure. However, the peak bearing stresses had large errors because the bolt contact angles were not represented correctly. For compression, peak bearing stress errors of nearly 50 percent were calculated.

  3. Monitoring bolt torque levels through signal processing of full-field ultrasonic data

    NASA Astrophysics Data System (ADS)

    Haynes, Colin; Yeager, Michael; Todd, Michael; Lee, Jung-Ryul

    2014-03-01

    Using full-field ultrasonic guided wave data can provide a wealth of information on the state of a structure through a detailed characterization of its wave propagation properties. However, the need for appropriate feature selection and quantified metrics for making rigorous assessments of the structural state is in no way lessened by the density of information. In this study, a simple steel bolted connection with two bolts is monitored for bolt loosening. The full-field data were acquired using a scanning-laser-generated ultrasound system with a single surface-mounted sensor. Such laser systems have many advantages that make them attractive for nondestructive evaluation, including their high-speed, high spatial resolution, and the ability to scan large areas of in-service structures. In order to characterize the relationship between bolt torque and the resulting wavefield in this specimen, the bolt torque in each of the bolts is independently varied from fully tightened to fully loosened in several steps. First, qualitative observations about the changes in the wavefield are presented. Next, an approach to quantifying the wave transmission through the bolted joint is discussed. Finally, a method of monitoring the bolt torque using the ultrasonic data is demonstrated.

  4. Shear-Joint Capability Versus Bolt Clearance

    NASA Technical Reports Server (NTRS)

    Lee, H. M.

    1994-01-01

    NASA Technical Memorandum presents theoretical study of relationships between load-bearing capabilities of shear joints that comprise plates clamped together by multiple bolts and clearances between bolts and boltholes in those joints.

  5. Real time bolt preload monitoring using piezoceramic transducers and time reversal technique—a numerical study with experimental verification

    NASA Astrophysics Data System (ADS)

    Parvasi, Seyed Mohammad; Ho, Siu Chun Michael; Kong, Qingzhao; Mousavi, Reza; Song, Gangbing

    2016-08-01

    Bolted joints are ubiquitous structural elements, and form critical connections in mechanical and civil structures. As such, loosened bolted joints may lead to catastrophic failures of these structures, thus inspiring a growing interest in monitoring of bolted joints. A novel energy based wave method is proposed in this study to monitor the axial load of bolted joint connections. In this method, the time reversal technique was used to focus the energy of a piezoelectric (PZT)-generated ultrasound wave from one side of the interface to be measured as a signal peak by another PZT transducer on the other side of the interface. A tightness index (TI) was defined and used to correlate the peak amplitude to the bolt axial load. The TI bypasses the need for more complex signal processing required in other energy-based methods. A coupled, electro-mechanical analysis with elasto-plastic finite element method was used to simulate and analyze the PZT based ultrasonic wave propagation through the interface of two steel plates connected by a single nut and bolt connection. Numerical results, backed by experimental results from testing on a bolted connection between two steel plates, revealed that the peak amplitude of the focused signal increases as the bolt preload (torque level) increases due to the enlarging true contact area of the steel plates. The amplitude of the focused peak saturates and the TI reaches unity as the bolt axial load reaches a threshold value. These conditions are associated with the maximum possible true contact area between the surfaces of the bolted connection.

  6. Numerical simulation of attenuation and group velocity of guided ultrasonic wave in grouted rock bolts

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Zou, D. H.

    2006-08-01

    In this paper, the guided ultrasonic wave propagating in grouted rock bolts was simulated with finite element method. An 800 mm partially grouted cylindrical rock bolt model was created. Dynamic input signals with frequency from 25 to 100 kHz were used to excite ultrasonic wave. The simulated waveform, group velocity and amplitude ratio matched well with the experimental results. This model made it possible to study the behaviour of the guided waves in the grouted bolt along its central axis. Analysis of the simulated results showed that the group velocity in grouted rock bolts is constant along the grouted length, and the boundary effect on the group velocity is negligible. This paper also presents methods to determine the attenuation coefficient from simulation and to determine the boundary effect on attenuation at the bolt ends. The analysis showed that the attenuation of the guided wave propagating inside the grouted bolts is similar to the theoretical solution in steel bar with infinite length. After correction for the boundary effects the grout length of a grouted rock bolt can be determined using the measured attenuation, with sufficient accuracy.

  7. Simplified procedures for designing composite bolted joints

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1988-01-01

    Simplified procedures are described to design and analyze single and multi-bolt composite joints. Numerical examples illustrate the use of these methods. Factors affecting composite bolted joints are summarized. References are cited where more detailed discussion is presented on specific aspects of composite bolted joints. Design variables associated with these joints are summarized in the appendix.

  8. 49 CFR 236.329 - Bolt lock.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Bolt lock. 236.329 Section 236.329 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF... § 236.329 Bolt lock. Bolt lock shall be so maintained that signal governing movements over switch...

  9. 49 CFR 236.329 - Bolt lock.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Bolt lock. 236.329 Section 236.329 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF... § 236.329 Bolt lock. Bolt lock shall be so maintained that signal governing movements over switch...

  10. A Component-Based Study of the Effect of Diameter on Bond and Anchorage Characteristics of Blind-Bolted Connections

    PubMed Central

    Amin, Muhammad Nasir; Zaheer, Salman; Alazba, Abdulrahman Ali; Saleem, Muhammad Umair; Niazi, Muhammad Umar Khan; Khurram, Nauman; Amin, Muhammad Tahir

    2016-01-01

    Structural hollow sections are gaining worldwide importance due to their structural and architectural advantages over open steel sections. The only obstacle to their use is their connection with other structural members. To overcome the obstacle of tightening the bolt from one side has given birth to the concept of blind bolts. Blind bolts, being the practical solution to the connection hindrance for the use of hollow and concrete filled hollow sections play a vital role. Flowdrill, the Huck High Strength Blind Bolt and the Lindapter Hollobolt are the well-known commercially available blind bolts. Although the development of blind bolts has largely resolved this issue, the use of structural hollow sections remains limited to shear resistance. Therefore, a new modified version of the blind bolt, known as the “Extended Hollo-Bolt” (EHB) due to its enhanced capacity for bonding with concrete, can overcome the issue of low moment resistance capacity associated with blind-bolted connections. The load transfer mechanism of this recently developed blind bolt remains unclear, however. This study uses a parametric approach to characterising the EHB, using diameter as the variable parameter. Stiffness and load-carrying capacity were evaluated at two different bolt sizes. To investigate the load transfer mechanism, a component-based study of the bond and anchorage characteristics was performed by breaking down the EHB into its components. The results of the study provide insight into the load transfer mechanism of the blind bolt in question. The proposed component-based model was validated by a spring model, through which the stiffness of the EHB was compared to that of its components combined. The combined stiffness of the components was found to be roughly equivalent to that of the EHB as a whole, validating the use of this component-based approach. PMID:26901866

  11. A bolt from the blue.

    PubMed

    Claydon, S M

    1993-10-01

    The crossbow was one of the most efficient military weapons of the Middle Ages but the development of portable firearms meant that it was eventually relegated to the museum shelf. The medieval crossbow was accurate and deadly but took some time to load because of the windlass used to wind the string, thus increasing the velocity and range of the bolt, or quarrel. By contrast, the English longbows of Crecy and Agincourt were far less accurate but could fire six arrows in the time taken to shoot one bolt and the continual raining-down of missiles proved more successful in battle than accuracy of aim. This paper describes the homicide of a young business woman outside her London flat in 1987. Today crossbow fatalities are extremely rare on both sides of the Atlantic but Dr Siva described a case of suicide in 1979 and Professor Gresham presented a case of crossbow homicide to the BAFM in June 1976. PMID:8264370

  12. Common Bolted Joint Analysis Tool

    NASA Technical Reports Server (NTRS)

    Imtiaz, Kauser

    2011-01-01

    Common Bolted Joint Analysis Tool (comBAT) is an Excel/VB-based bolted joint analysis/optimization program that lays out a systematic foundation for an inexperienced or seasoned analyst to determine fastener size, material, and assembly torque for a given design. Analysts are able to perform numerous what-if scenarios within minutes to arrive at an optimal solution. The program evaluates input design parameters, performs joint assembly checks, and steps through numerous calculations to arrive at several key margins of safety for each member in a joint. It also checks for joint gapping, provides fatigue calculations, and generates joint diagrams for a visual reference. Optimum fastener size and material, as well as correct torque, can then be provided. Analysis methodology, equations, and guidelines are provided throughout the solution sequence so that this program does not become a "black box:" for the analyst. There are built-in databases that reduce the legwork required by the analyst. Each step is clearly identified and results are provided in number format, as well as color-coded spelled-out words to draw user attention. The three key features of the software are robust technical content, innovative and user friendly I/O, and a large database. The program addresses every aspect of bolted joint analysis and proves to be an instructional tool at the same time. It saves analysis time, has intelligent messaging features, and catches operator errors in real time.

  13. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Roof bolting. 75.204 Section 75.204 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.204 Roof bolting. (a) For roof bolts and accessories addressed in ASTM F432-95,...

  14. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Roof bolting. 75.204 Section 75.204 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.204 Roof bolting. (a) For roof bolts and accessories addressed in ASTM F432-95,...

  15. Bolt clampup relaxation in a graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Crews, J. H., Jr.

    1982-01-01

    A simple bolted joint was analyzed to calculate bolt clampup relaxation for a graphite/epoxy (T300/5208) laminate. A viscoelastic finite element analysis of a double-lap joint with a steel bolt was conducted. Clampup forces were calculated for various steady-state temperature-moisture conditions using a 20-year exposure duration. The finite element analysis predicted that clampup forces relax even for the room-temperature-dry condition. The relaxations were 8, 13, 20, and 30 percent for exposure durations of 1 day, 1 month, 1 year, and 20 years, respectively. As expected, higher temperatures and moisture levels each increased the relaxation rate. The combined viscoelastic effects of steady-state temperature and moisture appeared to be additive. From the finite-element analysis, a simple equation was developed for clampup force relaxation. This generalized equation was used to calculate clampup forces for the same temperature-moisture conditions as used in the finite-element analysis. The two sets of calculated results agreed well.

  16. Integrity of Bolted Angle Connections Subjected to Simulated Column Removal

    PubMed Central

    Weigand, Jonathan M.; Berman, Jeffrey W.

    2016-01-01

    Large-scale tests of steel gravity framing systems (SGFSs) have shown that the connections are critical to the system integrity, when a column suffers damage that compromises its ability to carry gravity loads. When supporting columns were removed, the SGFSs redistributed gravity loads through the development of an alternate load path in a sustained tensile configuration resulting from large vertical deflections. The ability of the system to sustain such an alternate load path depends on the capacity of the gravity connections to remain intact after undergoing large rotation and axial extension demands, for which they were not designed. This study experimentally evaluates the performance of steel bolted angle connections subjected to loading consistent with an interior column removal. The characteristic connection behaviors are described and the performance of multiple connection configurations are compared in terms of their peak resistances and deformation capacities. PMID:27110059

  17. Non-Destructive Evaluation of Rock Bolts Associated With Optical Strain Sensors at the Homestake Gold Mine

    NASA Astrophysics Data System (ADS)

    Kogle, M. M.; Fratta, D.; Wang, H. F.; Geox^Tm

    2010-12-01

    Fiber-Bragg Grating (FBG) optical strain sensors have been installed in the former Homestake Gold Mine (Lead, SD) as part of an early science project at the Deep Underground Science and Engineering Laboratory (DUSEL). FBG sensors are anchored within an alcove at the 4100’ level of the mine using rock bolts and coupled to the rock mass with resin epoxy and cement grout. The quality of the coupling between the rock bolt and the rock mass is essential to assure that true rock mass strains are being recorded. To evaluate the integrity of the installed rock bolt system, guided ultrasonic waves can be used as a non-destructive monitoring system. The propagation of reflected ultrasonic waves capture information about the degree of coupling between the steel rock bolt and resin epoxy/cement grout and between the resin epoxy/cement grout and the surrounding rock mass, and hence the integrity of the installed rock bolt system. In this study, we use the phase velocity obtained from ultrasonic wave propagation to estimate the rock modulus. In our initial testing we generated a broadband elastic wave along the length of a rock bolt anchored in a concrete cylinder while monitoring multiple reflections with a single accelerometer affixed at the exposed end of the rock bolt. The captured waveforms include several reflections that were then analyzed to obtain frequency response, coherence, phase velocity, and damping between multiple reflections. As the wavelength increases, the response captures first elastic properties of the steel and then the combined elastic properties of the rock bolt/rock mass system. Challenges associated with implementing this non-destructive testing technique in rock masses include the generation of wide bandwidth signals having enough strength to produce multiple reflections with high enough signal-to-noise ratios to capture properties of multi-scale systems.

  18. Effect of Fully Grouted Passive Bolts on Joint Shear Strength Parameters in a Blocky Mass

    NASA Astrophysics Data System (ADS)

    Srivastava, Lok Priya; Singh, Mahendra

    2015-05-01

    The present paper discusses an experimental study on shear strength response of unreinforced and reinforced block masses to find out the effect of fully grouted passive bolts on the shear strength parameters of joints in a mass. Direct shear tests were conducted on specimens of large-sized blocky masses, each with a dimension of 750 × 750 × 900 mm. Each blocky mass was assembled by piling elemental blocks of size 150 × 150 × 150 mm. For the reinforced condition, the mass was reinforced with three, five, and nine bolts perpendicular to the shear plane. The tests were conducted at different normal stress levels ranging from 0 to 2 MPa, which are common in rock slopes. Results from the tests show that passive bolts enhance the joint shear strength parameters. The strength enhancement is mainly due to improved interlocking and therefore, enhanced cohesion. The value of enhanced cohesion depends on the bolt area, the ratio of bolt spacing to block size and the strength of the intact material for a given set of steel and grout. A correlation has been established to find out enhanced cohesion for the given joints in the mass.

  19. Corrosion monitoring of rock bolt by using a low coherent fiber-optic interferometry

    NASA Astrophysics Data System (ADS)

    Wei, Heming; Zhao, Xuefeng; Li, Dongsheng; Zhang, Pinglei; Sun, Changsen

    2015-04-01

    Corrosion of rock bolts is a major cause for deterioration of the anchor-reinforced concrete slopes structures. In order to evaluate this corrosion-based deterioration in an early stage, a nondestructive technique was required. However, until now, there are no commercialized solutions that are straightforwardly available. Here, a low-coherent fiber-optic sensing technique was developed. This method can carry out the monitoring of the corrosion-caused expansion at the accuracy of sub-microstrains by circled the sensing optical fiber in two ways. One was wound the fiber on the surface of steel rock bolt directly, and thereby generated a nonuniformity in the interface of cement with rock bolt. The other was circled the fiber on a cement mortar cushion without destroying the interface any way. The sensing fiber was configured as one arm of the fiber-optic Michelson interferometer. The acceleration corrosion experiments demonstrated that a uniform interface between cement and rock bolt determined the progress of corrosion development. An early stage evaluation of the corrosion development in rock bolts was monitored.

  20. 21 CFR 137.280 - Bolted yellow corn meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Bolted yellow corn meal. 137.280 Section 137.280... Flours and Related Products § 137.280 Bolted yellow corn meal. Bolted yellow corn meal conforms to the definition and standard of identity prescribed by § 137.255 for bolted white corn meal except that...

  1. 21 CFR 137.280 - Bolted yellow corn meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Bolted yellow corn meal. 137.280 Section 137.280... Flours and Related Products § 137.280 Bolted yellow corn meal. Bolted yellow corn meal conforms to the definition and standard of identity prescribed by § 137.255 for bolted white corn meal except that...

  2. 21 CFR 137.280 - Bolted yellow corn meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Bolted yellow corn meal. 137.280 Section 137.280... Flours and Related Products § 137.280 Bolted yellow corn meal. Bolted yellow corn meal conforms to the definition and standard of identity prescribed by § 137.255 for bolted white corn meal except that...

  3. 21 CFR 137.280 - Bolted yellow corn meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Bolted yellow corn meal. 137.280 Section 137.280... Flours and Related Products § 137.280 Bolted yellow corn meal. Bolted yellow corn meal conforms to the definition and standard of identity prescribed by § 137.255 for bolted white corn meal except that...

  4. 21 CFR 137.280 - Bolted yellow corn meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Bolted yellow corn meal. 137.280 Section 137.280... Flours and Related Products § 137.280 Bolted yellow corn meal. Bolted yellow corn meal conforms to the definition and standard of identity prescribed by § 137.255 for bolted white corn meal except that...

  5. Torquing preload in a lubricated bolt

    NASA Technical Reports Server (NTRS)

    Seegmiller, H. L.

    1978-01-01

    The tension preload obtained by torquing a 7/8 in. diam UNC high strength bolt was determined for lubricated and dry conditions. Consistent preload with a variation of + or - 3% was obtained when the bolt head area was lubricated prior to each torque application. Preload tensions nearly 70% greater than the value predicted with the commonly used formula occurred with the lubricated bolt. A reduction to 39% of the initial preload was observed during 50 torque applications without relubrication. Little evidence of wear was noted after 203 cycles of tightening.

  6. The Nuts and Bolts of Chemistry.

    ERIC Educational Resources Information Center

    Volkmann, Mark J.

    1996-01-01

    Presents a teaching strategy to successfully teach the periodic table using nuts and bolts as elemental analogs. Describes activities that enable the student to develop a deeper understanding of the periodic table and how it is organized. (JRH)

  7. Richard H. Bolt: Scientist, educator and friend

    NASA Astrophysics Data System (ADS)

    Beranek, Leo L.

    2003-04-01

    The author will discuss his close relation to Dick Bolt, starting with their first meeting in 1938. This will include Bolt's doctoral years at the University of California, his National Research Fellowship in Physics at MIT, his contributions to the World War II effort, his tenured appointment, guidance of students and formation of the Acoustical Laboratory at MIT, and his co-founding of and subsequent participation in Bolt Beranek and Newman. Dick's principal contributions to the field of acoustics, to education and to the Acoustical Society of America will be presented up until 1957, after which his talents were largely taken over by national missions, which are mentioned. Richard H. Bolt was an inspiring educator, researcher and organizer. He truly was a national treasure.

  8. Bolt Cutter Blade's Imprint in Toolmarks Examination.

    PubMed

    Volkov, Nikolai; Finkelstein, Nir; Novoselsky, Yehuda; Tsach, Tsadok

    2015-11-01

    Bolt cutters are known as cutting tools which are used for cutting hard objects and materials, such as padlocks and bars. Bolt cutter blades leave their imprint on the cut objects. When receiving a cut object from a crime scene, forensic toolmarks examiners can determine whether the suspected cutting tool was used in a specific crime or not based on class characteristic marks and individual marks that the bolt cutter blades leave on the cut object. The paper presents preliminary results of a study on ten bolt cutters and suggests a quick preliminary examination-the comparison between the blade thickness and the width of the imprint left by the tool on the cut object. Based on the comparison result, if there is not a match, the examiner can eliminate the feasibility of the use of the suspected cutting tool in a specific crime. This examination simplifies and accelerates the comparison procedure. PMID:26257324

  9. Direct shear loading leads to failure of generator bolts, rotor

    SciTech Connect

    Flanagan, P.J.; Knittel, D. )

    1993-02-01

    Direct shear loading can result in the failure of bolts clamping the rotor flange to the shaft flange of a hydroelectric generator. Such was the case at the California Department of Water Resources 440-MW Gianelli Pumping-Generating Plant. The incident occurred July 5, 1991, when operators were bringing Unit 1 into service for generation. Tremendous forces on one of the unit's two rotors sheared ten 3 1/2-inch-diameter spider flange assembly bolts (ASTM A193-B16 steel) on the rotor, deforming bolt holes in both the spider flange and the shaft flange. The flanges, which allow the generator to transmit power through friction, rubbed and galled before the unit came to rest. The sudden shock load also slightly twisted the spider of the rotor, which during normal operation turns at 120 revolutions per minute at head of 190 to 245 feet. During normal operation, operators open a butterfly valve, allowing water to rush from a penstock to turn an impeller, which is connected to the generator rotor. Each of the plant's eight units is equipped with two rotors mounted on the same shaft. As the butterfly valve is gradually opened, speed of the unit increases. When the generator rotor is spinning at 90 percent of synchronous speed, the main unit breaker closes, energizing the stator windings with 13,800 volts. This rapidly accelerates the generator to approximately 98 percent of synchronous speed. The field breaker then closes, energizing the rotor poles with DC current. The rotor current reaches full strength in 2 to 5 seconds. During this time, the poles on the rotor are attempting to fall into step with the stator's rotating magnetic field.

  10. Application of a simple and cost-effective method for detection of bolt self-loosening in single lap joints

    NASA Astrophysics Data System (ADS)

    Esmaeel, Ramadan A.; Taheri, Farid

    2013-09-01

    One of the major advantages of bolted joints (BJs) over welded, riveted and adhesively bonded joints is the disassembling option. This option facilitates the manufacturing and transportation of large-scale structures that are commonly formed as assemblage of various large structural components. However, this option is not always problem free, in that, during the life cycle of such structures, the bolts used to fasten the joints may become loosened. Although several techniques have been developed to mitigate bolt self-loosening (BSL), nonetheless, development of a methodology for detecting BSL has consumed considerable attention in recent years. As a result, several researchers have been seeking simple and reliable methods for detecting bolt-loosening in BJs, without compromising their stability. In this study, piezoelectric sensors are used to collect the vibration signals of a laboratory-scale single lap joint, joining two steel plates with three bolts. The acquired signals are then processed using the empirical mode decomposition method and the energies of the respective signals are calculated. A recently developed effective method is then employed to establish the so-called energy damage index, evaluated based on the energy stored in certain modes of the collected signal, in both the damaged and healthy states of the system. This method is found to be quite effective in detecting bolt loosening and the progression of self-loosening.

  11. Stress analysis of closure bolts for shipping casks

    SciTech Connect

    Mok, G.C.; Fischer, L.E. ); Hsu, S.T. )

    1993-01-01

    This report specifies the requirements and criteria for stress analysis of closure bolts for shipping casks containing nuclear spent fuels or high level radioactive materials. The specification is based on existing information conceming the structural behavior, analysis, and design of bolted joints. The approach taken was to extend the ASME Boiler and Pressure Vessel Code requirements and criteria for bolting analysis of nuclear piping and pressure vessels to include the appropriate design and load characteristics of the shipping cask. The characteristics considered are large, flat, closure lids with metal-to-metal contact within the bolted joint; significant temperature and impact loads; and possible prying and bending effects. Specific formulas and procedures developed apply to the bolt stress analysis of a circular, flat, bolted closure. The report also includes critical load cases and desirable design practices for the bolted closure, an in-depth review of the structural behavior of bolted joints, and a comprehensive bibliography of current information on bolted joints.

  12. CW ultrasonic bolt tensioning monitor

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1977-01-01

    A CW ultrasonic device is described for measuring frequency shifts of the peak of a mechanical resonance in a body. One application of the device is measuring the strain in a bolt, and other applications such as measuring the thickness of a body, measuring the depth of a flaw in a body, measuring the elongation of a body, and measuring changes in velocity of sound in a body. The body is connected, by means of a CW transducer, to electrical circuit means including a narrow band RF amplifier to form a closed loop feedback marginal oscillator that frequency locks the device to the peak of a mechanical resonance in the body. When the frequency of this peak changes, because of a physical change in the body, the frequency of the oscillator changes. The device includes an automatic frequency resonant peak tracker that produces a voltage that is related to a change in frequency of the oscillator. This voltage is applied to the RF amplifier to change the center of its frequency band to include the frequency of the peak and is a measure of the frequency shift.

  13. Bolt preload selection for pulsed-loaded vessel closures

    SciTech Connect

    Duffey, T.A.; Lewis, B.B.; Bowers, S.M.

    1995-02-01

    Bounding, closed-form solutions are developed for selecting the bolt preload for a square, flat plate closure subjected to a pressure pulse load. The solutions consider the limiting case in which preload is primarily dependent on closure bending response as well as the limiting case in which preload depends on elastic bolt response. The selection of bolt preload is illustrated. Also presented in the paper is a detailed finite element analysis of dynamically loaded, bolted circular closure. The responses of the structure, closure, and bolts are included, and results are obtained for various preloads. The analysis illustrates a method of bolt preload modeling for use in general finite element computer programs.

  14. Development of elastomeric isolators to reduce roof bolting machine drilling noise

    PubMed Central

    Michael, Robert; Yantek, David; Johnson, David; Ferro, Ernie; Swope, Chad

    2015-01-01

    Among underground coal miners, hearing loss remains one of the most common occupational illnesses. In response to this problem, the National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) conducts research to reduce the noise emission of underground coal-mining equipment, an example of which is a roof bolting machine. Field studies show that, on average, drilling noise is the most significant contributor to a roof bolting machine operator’s noise exposure. NIOSH OMSHR has determined that the drill steel and chuck are the dominant sources of drilling noise. NIOSH OMSHR, Corry Rubber Corporation, and Kennametal, Inc. have developed a bit isolator that breaks the steel-to-steel link between the drill bit and drill steel and a chuck isolator that breaks the mechanical connection between the drill steel and the chuck, thus reducing the noise radiated by the drill steel and chuck, and the noise exposure of the roof bolter operator. This paper documents the evolution of the bit isolator and chuck isolator including various alternative designs which may enhance performance. Laboratory testing confirms that production bit and chuck isolators reduce the A-weighted sound level generated during drilling by 3.7 to 6.6 dB. Finally, this paper summarizes results of a finite element analysis used to explore the key parameters of the drill bit isolator and chuck isolator to understand the impact these parameters have on noise. PMID:26568650

  15. More Nuts and Bolts of Michaelis-Menten Enzyme Kinetics

    ERIC Educational Resources Information Center

    Lechner, Joseph H.

    2011-01-01

    Several additions to a classroom activity are proposed in which an "enzyme" (the student) converts "substrates" (nut-bolt assemblies) into "products" (separated nuts and bolts) by unscrewing them. (Contains 1 table.)

  16. 8. GENERAL VIEW OF SHINGLE CUTTING SAWS THAT HANDLE BOLTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. GENERAL VIEW OF SHINGLE CUTTING SAWS THAT HANDLE BOLTS AFTER DEBARKING; AFTER DEBARKING THE BOLTS ARE SENT TO THE SHINGLE WEAVER FOR SAWING - Lester Shingle Mill, 1602 North Eighteenth Street, Sweet Home, Linn County, OR

  17. Load determination for long cable bolt support using computer aided bolt load estimation (CABLE) program

    SciTech Connect

    Bawden, W.F.; Moosavi, M.; Hyett, A.J.

    1996-12-01

    In this paper a numerical formulation is presented for determination of the axial load along a cable bolt for a prescribed distribution of rock mass displacement. Results using the program CABLE indicate that during excavation, the load distribution that develops along an untensioned fully grouted cable bolt depends on three main factors: (i) the properties of the cable itself, (ii) the shear force that develops due to bond at the cable-grout interface (i.e. bond stiffness), and (iii) the distribution of rock mass displacement along the cable bolt length. in general, the effect of low modulus rock and mining induced stress decreases in reducing bond strength as determined from short embedment length tests, is reflected in the development of axial loads significantly less than the ultimate tensile capacity even for long cable bolts. However, the load distribution is also dependent on the deformation distribution in the reinforced rock mass. Higher cable bolt loads will be developed for a rock mass that behaves as a discontinuum, with deformation concentrated on a few fractures, than for one which behaves as a continuum, either due to a total lack of fractures or a very high fracture density. This result suggests that the stiffness of a fully grouted cable bolt is not simply a characteristic of the bolt and grout used, but also of the deformation behavior of the ground. In other words, the same combination of bolt and grout will be stiffer if the rock behaves as a discontinuum than if it behaves as a continuum. This paper also explains the laboratory test program used to determine the constitutive behavior of the Garford bulb and Nutcase cables bolts. Details of the test setup as well as the obtained results are summarized and discussed.

  18. Investigations into the mechanical behavior of composite bolted joints

    NASA Technical Reports Server (NTRS)

    Perry, J. C.; Hyer, M. W.

    1979-01-01

    Testing procedures and data reduction and interpretation techniques were established for a program to study the mechanical behavior of bolted joints at room temperature, -157 C (-250 F), and 315 C (600 F). The load transfer characteristics, from one bolt to another, in double-bolt joints were investigated by examining data generated in previous investigations. From the results, it appears the increase in load-carrying capacity by adding a second bolt in tandem can be predicted.

  19. Investigations into the mechanical behavior of composite bolted joints

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Perry, J. C.; Hyer, M. W.

    1979-01-01

    Testing procedures, data reduction, and data interpretation methods used to study the mechanical behavior of graphite-polyimide bolted joints at room temperature, -157 C (-250 F), and 315 C (600 F) are described. The load transfer characteristics, from one bolt to another, in double-bolt joints were determined by examining data generated in previous investigations. From the results, it appears the increase in load-carrying capacity by adding a second bolt in tandem can be predicted.

  20. X-38 Bolt Retractor Subsystem Separation Demonstration

    NASA Astrophysics Data System (ADS)

    Rugless, Fedoria; Johnston, A. S.; Ahmed, R.; Garrison, J. C.; Gaines, J. L.; Waggoner, J. D.

    2002-09-01

    The Flight Robotics Laboratory FRL successfully demonstrated the X-38 bolt retractor subsystem (BRS). The BRS design was proven safe by testing in the Pyrotechnic Shock Facility (PSI) before being demonstrated in the FRL. This Technical Memorandum describes the BRS, FRL, PSF, and interface hardware. Bolt retraction time, spacecraft simulator acceleration, and a force analysis are also presented. The purpose of the demonstration was to show the FRL capability for spacecraft separation testing using pyrotechnics. Although a formal test was not performed due to schedule and budget constraints, the data will show that the BRS is a successful design concept and the FRL is suitable for future separation tests.

  1. X-38 Bolt Retractor Subsystem Separation Demonstration

    NASA Technical Reports Server (NTRS)

    Rugless, Fedoria (Editor); Johnston, A. S.; Ahmed, R.; Garrison, J. C.; Gaines, J. L.; Waggoner, J. D.

    2002-01-01

    The Flight Robotics Laboratory FRL successfully demonstrated the X-38 bolt retractor subsystem (BRS). The BRS design was proven safe by testing in the Pyrotechnic Shock Facility (PSI) before being demonstrated in the FRL. This Technical Memorandum describes the BRS, FRL, PSF, and interface hardware. Bolt retraction time, spacecraft simulator acceleration, and a force analysis are also presented. The purpose of the demonstration was to show the FRL capability for spacecraft separation testing using pyrotechnics. Although a formal test was not performed due to schedule and budget constraints, the data will show that the BRS is a successful design concept and the FRL is suitable for future separation tests.

  2. Experimental study of bolted connections using light gauge channel sections and packing plates at the joints

    NASA Astrophysics Data System (ADS)

    Kulkarni, Ravindra B.; Vaghe, Vishal M.

    2014-12-01

    Cold-formed structural members are being used more widely in routine structural design as the world steel industry moves from the production of hot-rolled section and plate to coil and strip, often with galvanized and/or painted coatings. Steel in this form is more easily delivered from the steel mill to the manufacturing plant where it is usually cold-rolled into open and closed section members. In the present experimental study, the use of packing plate at the joints in cold-formed channel sections may increase the load carrying capacity and also reduce the buckling of unconnected cold form channel steel plate at joints. The present study focuses on examining the experimental investigation to use mild steel as a packing plate with cold-formed channel sections by bolted connection at the joints and the connection subjected to axial tension. Series of tests are carried out with increase in the thickness of packing plate and results are observed and analyzed. Total Twelve experimental tests have been carried out on cold-formed channel tension members fastened with single as well as three numbers of bolts at the connection and from the observations the strength of the joint is increased by increasing the various thicknesses of packing plates and also the buckling of unconnected leg of channel specimen is reduced. It is analyzed by plotting the entire load versus elongation path, so that the behavior of the connection is examined.

  3. Experimental study of bolted connections using light gauge channel sections and packing plates at the joints

    NASA Astrophysics Data System (ADS)

    Kulkarni, Ravindra B.; Vaghe, Vishal M.

    2014-09-01

    Cold-formed structural members are being used more widely in routine structural design as the world steel industry moves from the production of hot-rolled section and plate to coil and strip, often with galvanized and/or painted coatings. Steel in this form is more easily delivered from the steel mill to the manufacturing plant where it is usually cold-rolled into open and closed section members. In the present experimental study, the use of packing plate at the joints in cold-formed channel sections may increase the load carrying capacity and also reduce the buckling of unconnected cold form channel steel plate at joints. The present study focuses on examining the experimental investigation to use mild steel as a packing plate with cold-formed channel sections by bolted connection at the joints and the connection subjected to axial tension. Series of tests are carried out with increase in the thickness of packing plate and results are observed and analyzed. Total Twelve experimental tests have been carried out on cold-formed channel tension members fastened with single as well as three numbers of bolts at the connection and from the observations the strength of the joint is increased by increasing the various thicknesses of packing plates and also the buckling of unconnected leg of channel specimen is reduced. It is analyzed by plotting the entire load versus elongation path, so that the behavior of the connection is examined.

  4. 21 CFR 137.255 - Bolted white corn meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Bolted white corn meal. 137.255 Section 137.255... Flours and Related Products § 137.255 Bolted white corn meal. (a) Bolted white corn meal is the food prepared by so grinding and sifting cleaned white corn that: (1) Its crude fiber content is less than...

  5. 21 CFR 137.255 - Bolted white corn meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Bolted white corn meal. 137.255 Section 137.255... Flours and Related Products § 137.255 Bolted white corn meal. (a) Bolted white corn meal is the food prepared by so grinding and sifting cleaned white corn that: (1) Its crude fiber content is less than...

  6. 21 CFR 137.255 - Bolted white corn meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Bolted white corn meal. 137.255 Section 137.255... Flours and Related Products § 137.255 Bolted white corn meal. (a) Bolted white corn meal is the food prepared by so grinding and sifting cleaned white corn that: (1) Its crude fiber content is less than...

  7. 21 CFR 137.255 - Bolted white corn meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Bolted white corn meal. 137.255 Section 137.255... Flours and Related Products § 137.255 Bolted white corn meal. (a) Bolted white corn meal is the food prepared by so grinding and sifting cleaned white corn that: (1) Its crude fiber content is less than...

  8. 46 CFR 56.90-5 - Bolting procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPURTENANCES Assembly § 56.90-5 Bolting procedure. (a) All flanged joints shall be fitted up so that the gasket contact faces bear uniformly on the gasket and then shall be made up with relatively uniform bolt stress. Bolt loading and gasket compression need only be verified by touch and visual observation. (b)...

  9. 46 CFR 56.90-5 - Bolting procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... APPURTENANCES Assembly § 56.90-5 Bolting procedure. (a) All flanged joints shall be fitted up so that the gasket contact faces bear uniformly on the gasket and then shall be made up with relatively uniform bolt stress. Bolt loading and gasket compression need only be verified by touch and visual observation. (b)...

  10. 19 CFR 10.58 - Bolting cloths; marking.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... § 10.58 Bolting cloths; marking. (a) As a prerequisite to the free entry of bolting cloth for milling... expressly for milling purposes” in block letters 7.62 centimeters in height. Bolting cloths composed of silk imported expressly for milling purposes shall be considered only such cloths as are suitable for and...

  11. 19 CFR 10.58 - Bolting cloths; marking.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... § 10.58 Bolting cloths; marking. (a) As a prerequisite to the free entry of bolting cloth for milling... expressly for milling purposes” in block letters 7.62 centimeters in height. Bolting cloths composed of silk imported expressly for milling purposes shall be considered only such cloths as are suitable for and...

  12. 19 CFR 10.58 - Bolting cloths; marking.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... § 10.58 Bolting cloths; marking. (a) As a prerequisite to the free entry of bolting cloth for milling... expressly for milling purposes” in block letters 7.62 centimeters in height. Bolting cloths composed of silk imported expressly for milling purposes shall be considered only such cloths as are suitable for and...

  13. 19 CFR 10.58 - Bolting cloths; marking.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 10.58 Bolting cloths; marking. (a) As a prerequisite to the free entry of bolting cloth for milling... expressly for milling purposes” in block letters 7.62 centimeters in height. Bolting cloths composed of silk imported expressly for milling purposes shall be considered only such cloths as are suitable for and...

  14. 19 CFR 10.58 - Bolting cloths; marking.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... § 10.58 Bolting cloths; marking. (a) As a prerequisite to the free entry of bolting cloth for milling... expressly for milling purposes” in block letters 7.62 centimeters in height. Bolting cloths composed of silk imported expressly for milling purposes shall be considered only such cloths as are suitable for and...

  15. 46 CFR 56.25-20 - Bolting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... washers must comply with applicable standards and specifications listed in 46 CFR 56.60-1. Unless otherwise specified, bolting must be in accordance with ASME B16.5 (incorporated by reference; see 46 CFR 56... heavy hexagon heads in accordance with ASME B18.2.1 (incorporated by reference, see 46 CFR 56.01-2)...

  16. 46 CFR 56.25-20 - Bolting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... washers must comply with applicable standards and specifications listed in 46 CFR 56.60-1. Unless otherwise specified, bolting must be in accordance with ASME B16.5 (incorporated by reference; see 46 CFR 56... heavy hexagon heads in accordance with ASME B18.2.1 (incorporated by reference, see 46 CFR 56.01-2)...

  17. 46 CFR 56.25-20 - Bolting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... washers must comply with applicable standards and specifications listed in 46 CFR 56.60-1. Unless otherwise specified, bolting must be in accordance with ASME B16.5 (incorporated by reference; see 46 CFR 56... heavy hexagon heads in accordance with ASME B18.2.1 (incorporated by reference, see 46 CFR 56.01-2)...

  18. Inedible Nuts and Non-Lightning Bolts

    ERIC Educational Resources Information Center

    Rynone, William

    2010-01-01

    In this article, the author provides detailed information on a wide variety of commonly used screws, bolts, and other fasteners. The information has been gathered in his engineering career and outside interests (maintenance on his car and airplane, and woodworking). The topic should be of interest to students and educators in many technical…

  19. 46 CFR 56.25-20 - Bolting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... washers must comply with applicable standards and specifications listed in 46 CFR 56.60-1. Unless otherwise specified, bolting must be in accordance with ASME B16.5 (incorporated by reference; see 46 CFR 56... heavy hexagon heads in accordance with ASME B18.2.1 (incorporated by reference, see 46 CFR 56.01-2)...

  20. 46 CFR 56.25-20 - Bolting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... washers must comply with applicable standards and specifications listed in 46 CFR 56.60-1. Unless otherwise specified, bolting must be in accordance with ASME B16.5 (incorporated by reference; see 46 CFR 56... heavy hexagon heads in accordance with ASME B18.2.1 (incorporated by reference, see 46 CFR 56.01-2)...

  1. Identification of Bolted Joints Through Laser Vibrometry

    NASA Astrophysics Data System (ADS)

    MA, X.; BERGMAN, L.; VAKAKIS, A.

    2001-09-01

    We present a new technique for identifying the dynamics of bolted joints. The technique relies on the comparison of the overall dynamics of the bolted structure to that of a similar but unbolted one. The difference in the dynamics of the two systems can be attributed solely to the joint; modelling this difference in the dynamics enables us to construct a non-parametric model for the joint dynamics. Non-contacting, laser vibrometry is utilized to experimentally measure the structural responses with increased accuracy and to perform scans of the structural modes at fixed frequency. A numerical algorithm is then developed to post-process the experimental data and identify the joint force. Theoretical calculations are first used to validate the technique, which is then utilized to identify a practical joint. Experimental force-displacement plots at the joint reveal clear hysteresis loops which, in turn, can be used to estimate the damping dissipation at the joint. Moreover, experimental frequency responses and scans of the mode shapes of the bolted structure reveal non-proportional damping and non-linear effects due to microimpacts of the connected beams at the bolted joint.

  2. Identification of bolted joints through laser vibrometry

    NASA Astrophysics Data System (ADS)

    Ma, Xianghong; Bergman, Lawrence; Vakakis, Alex F.

    2000-05-01

    We present a new technique for identifying the dynamics of bolted joints. The technique relies on the comparison of the overall dynamics of the bolted structure to that of a similar but unbolted one. The difference in the dynamics of the two systems can be attributed solely to the joint; modeling this different in the dynamics enables us to construct a nonparametric model for the joint dynamics. Noncontacting, laser vibrometry is utilized to experimentally measure the structural responses with increased accuracy and to perform scans of the structural modes at fixed frequency. A numerical algorithm is then developed to post-process the experimental data and identify the joint force. Theoretical calculations are first used to validate the technique, which is then utilized to identify a practical joint. Experimental force-displacement plots at the joint reveal clear hysteresis loops which, in turn, can be used to estimate the damping dissipation at the joint. Moreover, experimental frequency responses and scans of the mode shapes of the bolted structure reveal nonproportional damping and nonlinear effects due to micro-impacts of the connected beams at the bolted joint.

  3. Testing of nuclear grade lubricants and their effects on A540 B24 and A193 B7 bolting materials

    SciTech Connect

    Czajkowski, C.J.

    1985-01-01

    An investigation was performed on eleven commonly used lubricants by the nuclear power industry. The investigation included EDS analysis of the lubricants, notched-tensile constant extension rate testing of bolting materials with the lubricants, frictional testing of the lubricants and weight loss testing of a bonded solid film lubricant. The report generally concludes that there is a significant amount of variance in the mechanical properties of common bolting materials; that MoS/sub 2/ can hydrolyze to form H/sub 2/S at 100/sup 0/C and cause stress corrosion cracking (SCC) of bolting materials, and that the use of copper-containing lubricants can be potentially detrimental to high strength steels in an aqueous environment. Additionally, the testing of various lubricants disclosed that some lubricants contain potentially detrimental elements (e.g. S, Sb) which can promote SCC of the common bolting materials. One of the most significant findings of this report is the observation that both A193 B7 and A540 B24 bolting materials are susceptible to transgranular stress corrosion cracking in demineralized H/sub 2/O at 280/sup 0/C in notched tensile tests.

  4. Experimental study on tunnel lining joints temporarily strengthened by SMA bolts

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Ou, Yunlong

    2014-12-01

    Shield tunnels have been widely used in city metros all over the world. During the long-term period of the metro operation, the joints of shield tunnel’s neighboring segments may degrade due to some environmental factors, leading to the increasing of the joint opening and some resulting adverse consequences. In this paper, a temporary strengthening method by using shape memory alloy (SMA) bolts is proposed and experimentally studied for the joints of neighboring segments, and a revised electric heating method which suits with the strengthening method is presented and experimentally validated for the SMA bolts. The purpose of the proposed temporary strengthening method is to create favorable conditions for the following permanent strengthening. Test results show that: (a) for the joints of shield tunnel’s neighboring segments, the strengthening method can effectively reduce the joint opening, joint deflection, concrete strain in joint’s compression zone, and strain of joint’s steel bolts; (b) the revised electric heating method can be used to heat the SMA rod to a temperature higher than the SMA’s austenite finish temperature quickly, and the average heating rate related to Type 2 inner resistance element is larger than that related to Type 1 inner resistance element; and (c) the reduction percentages of the joint opening increment, joint deflection, concrete strain in joint’s compression zone, and strain of joint’s steel bolts for Specimen I are all larger than those for Specimen II, implying that the less the joint opening is, the more significant the strengthening effect is.

  5. Failure analyses of composite bolted joints

    NASA Technical Reports Server (NTRS)

    Wilson, D. W.; Gillespie, J. W.; York, J. L.; Pipes, R. B.

    1980-01-01

    The complex failure behavior exhibited by bolted joints of graphite epoxy (Hercules AS/3501) was investigated for the net tension, bearing and shearout failure modes using combined analytical and experimental techniques. Plane stress, linear elastic, finite element methods were employed to determine the two dimensional state of stress resulting from a loaded hole in a finite width, semiinfinite strip. The stresses predicted by the finite element method were verified by experiment to lend credence to the analysis. The influence of joint geometric parameters on the state of stress and resultant strength of the joint was also studied. The resulting functional relationships found to exist between bolted joint strength and the geometric parameters, were applied in the formulation of semiempirical strength models for the basic failure modes. A point stress failure criterion was successfully applied as the failure criterion for the net tension and shearout failure modes.

  6. Review on Cold-Formed Steel Connections

    PubMed Central

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  7. External Tank (ET) Bipod Fitting Bolted Attachment Locking Insert Performance

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.; Wilson, Tim R.; Elliott, Kenny B.; Raju, Ivatury S.; McManamen, John

    2008-01-01

    Following STS-107, the External Tank (ET) Project implemented corrective actions and configuration changes at the ET bipod fitting. Among the corrective actions, the existing bolt lock wire which provided resistance to potential bolt rotation was removed. The lock wire removal was because of concerns with creating voids during foam application and potential for lock wire to become debris. The bolts had been previously lubricated to facilitate assembly but, because of elimination of the lock wire, the ET Project wanted to enable the locking feature of the insert. Thus, the lubrication was removed from bolt threads and instead applied to the washer under the bolt head. Lubrication is necessary to maximize joint pre-load while remaining within the bolt torque specification. The locking feature is implemented by thread crimping in at four places in the insert. As the bolt is torqued into the insert the bolt threads its way past the crimped parts of the insert. This provides the locking of the bolt, as torque is required to loosen the joint after clamping.

  8. Rock bolt certification tests in salt, Eddy County, New Mexico

    SciTech Connect

    Stewart, R.M.

    1981-11-01

    One hundred rock bolts were installed and tested in the Kerr-McGee potash mine near Carlsbad, New Mexico. The bolts were installed in salt, then instrumented and loaded to failure. The failure modes for tensile tests were expansion shell slippage in salt or polyester resin slippage in salt. The failure modes for shear tests were a combination of bending and shearing or breaking of the bolts near the shear plate-salt interface. Safety factors are not included in the bolt loads in the report. Grade 75 (75,000 psi yield strength) rock bolts with 5/8- and 3/4-in. diameters were stressed into the yield region during tensile and shear tests with 1-3/8-in.-diam by 3-in. expansion shells. The theoretical yield load was 17,000 lb for 5/8-in. bolts and 25,000 lb for 3/4-in. bolts. One-inch-diameter bolts could not be adequately anchored with a single expansion shell to provide yielding. The average anchorage for all bolts moved 1.38 in. before reaching a maximum load of 27,000 lb. Grade 60 (60,000 psi yield strength) deformed reinforcing bar bolts, 1-in. diameter were stressed into the computed yield region approximately 47,000 lb during tensile tests. Yielding was accomplished with polyester resin anchorage when 2 or more resin cartridges (1-1/4 in. by 12 in.) were used. In shear tests, Grade 60 threaded rebar bolts, 1-in. diam, anchored with polyester resin, bent and broke at an average shear force of 34,200 lb with a displacement of 0.52 in.

  9. Evaluations of a noise control for roof bolting machines

    PubMed Central

    Azman, A.S.; Yantek, D.S.; Alcorn, L.A.

    2015-01-01

    In collaboration with Kennametal Inc. and Corry Rubber Corporation, the U.S. National Institute for Occupational Safety and Health (NIOSH) developed a drill bit isolator to address noise overexposures associated with roof bolting machines in underground coal mines. NIOSH laboratory studies confirmed that the drill bit isolator reduces noise during drilling. Field studies were needed to confirm that a noise reduction could be obtained under working conditions and that the device was sufficiently durable. This paper reports results of field tests of the device conducted at five underground coal mines. Noise reduction was assessed by comparing the operator’s noise exposure during drilling with and without the drill bit isolator. Durability was assessed by recording the number of holes and total feet drilled with each bit isolator until either the test period ended or the device failed. The results from these tests showed that the device is an effective noise control in a mine environment. The field-tested drill bit isolators provided a noise reduction of 3–5 dB(A). Of nine devices tested for durability, five exceeded 610 m (2,000 ft) drilled and two exceeded 762 m (2,500 ft) drilled before failure. Durability issues found in the field tests led to final production optimizations that have resulted in a commercially available product for drilling with 35-mm- (1.3-in.-) diameter roof bits and hexagonal drill steels. PMID:26251555

  10. Bolted Double-Lap Composite Joints Under Mechanical and Thermal Loading

    NASA Technical Reports Server (NTRS)

    Kradinov, V.; Barut, A.; Madenci, E.; Walker, Sandra P. (Technical Monitor)

    2000-01-01

    This study concerns the determination of the contact stresses and contact region around bolt holes and the bolt load distribution in single- and double-lap joints of composite laminates with arbitrarily located bolts under general mechanical loading conditions and uniform temperature change. The unknown contact stress distribution and contact region between the bolt and laminates and the interaction among the bolts require the bolt load distribution, as well as the contact stresses, to be as part of the solution. The present method is based on the complex potential theory and the variational formulation in order to account for bolt stiffness, bolt-hole clearance, and finite geometry of the composite laminates.

  11. Crushable Washers For Bolting Composite Panels

    NASA Technical Reports Server (NTRS)

    Daech, Alfred F.

    1993-01-01

    Crushable washers proposed for use in protecting composite-material (matrix/fiber) panels against overloads applied by nut-and-bolt fasteners. Intended for use at drilled holes, where strengths of composite panels reduced by exposure of ends of fibers. Washer consists of metal skin filled with microcapsules of epoxy resin and hardener. Alternatively, filled with fibers collapsing under given load. Crushing action simultaneously fractures microcapsules (if used), releasing components of epoxy. These components mix and fill bolthole and fiber-reinforcement interstices. Epoxy then hardens, locking fasteners in place.

  12. 9 CFR 313.15 - Mechanical; captive bolt.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; operator. (i) Acceptable captive bolt stunning instruments may be either skull penetrating or... instruments on detonation deliver bolts of varying diameters and lengths through the skull and into the brain... require skull penetration to produce immediate unconsciousness. Charges suitable for smaller kinds...

  13. 46 CFR 56.90-5 - Bolting procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Bolting procedure. 56.90-5 Section 56.90-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... contact faces bear uniformly on the gasket and then shall be made up with relatively uniform bolt...

  14. 46 CFR 56.90-5 - Bolting procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Bolting procedure. 56.90-5 Section 56.90-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... contact faces bear uniformly on the gasket and then shall be made up with relatively uniform bolt...

  15. 46 CFR 56.90-5 - Bolting procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Bolting procedure. 56.90-5 Section 56.90-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... contact faces bear uniformly on the gasket and then shall be made up with relatively uniform bolt...

  16. Bolted Flanged Connection for Critical Plant/Piping Systems

    SciTech Connect

    Efremov, Anatoly

    2006-07-01

    A novel type of Bolted Flanged Connection with bolts and gasket manufactured on a basis of advanced Shape Memory Alloys is examined. Presented approach combined with inverse flexion flange design of plant/piping joint reveals a significant increase of internal pressure under conditions of a variety of operating temperatures relating to critical plant/piping systems. (author)

  17. Experimental Investigations of an Inclined Lap-Type Bolted Joint

    SciTech Connect

    GREGORY, DANNY LYNN; RESOR, BRIAN R.; COLEMAN, RONALD G.; SMALLWOOD, DAVID ORA

    2003-04-01

    The dynamic response of critical aerospace components is often strongly dependent upon the dynamic behavior of bolted connections that attach the component to the surrounding structure. These bolted connections often provide the only structural load paths to the component. The bolted joint investigated in this report is an inclined lap-type joint with the interface inclined with respect to the line of action of the force acting on the joint. The accurate analytical modeling of these bolted connections is critical to the prediction of the response of the component to normal and high-level shock environmental loadings. In particular, it is necessary to understand and correctly model the energy dissipation (damping) of the bolted joint that is a nonlinear function of the forces acting on the joint. Experiments were designed and performed to isolate the dynamics of a single bolted connection of the component. Steady state sinusoidal and transient experiments were used to derive energy dissipation curves as a function of input force. Multiple assemblies of the bolted connection were also observed to evaluate the variability of the energy dissipation of the connection. These experiments provide insight into the complex behavior of this bolted joint to assist in the postulation and development of reduced order joint models to capture the important physics of the joint including stiffness and damping. The experiments are described and results presented that provide a basis for candidate joint model calibration and comparison.

  18. Simulating the Structural Response of a Preloaded Bolted Joint

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2008-01-01

    The present paper describes the structural analyses performed on a preloaded bolted-joint configuration. The joint modeled was comprised of two L-shaped structures connected together using a single bolt. Each L-shaped structure involved a vertical flat segment (or shell wall) welded to a horizontal segment (or flange). Parametric studies were performed using elasto-plastic, large-deformation nonlinear finite element analyses to determine the influence of several factors on the bolted-joint response. The factors considered included bolt preload, washer-surface-bearing size, edge boundary conditions, joint segment length, and loading history. Joint response is reported in terms of displacements, gap opening, and surface strains. Most of the factors studied were determined to have minimal effect on the bolted-joint response; however, the washer-bearing-surface size affected the response significantly.

  19. 33. Three bolts on railing outside control house on north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Three bolts on railing outside control house on north tower, one bolt on first handrail post of the north span (bridge is in the open position). As the bridge opens or closes the single bolt on the handrail post moves past the three stationary bolts. This system is used by the bridge operator to judge speed and position of the north span as it opens or closes. Based on these bolts movement of the north span is speeded up or slowed down and the brakes applied during the opening and closing process. View facing east. - Henry Ford Bridge, Spanning Cerritos Channel, Los Angeles-Long Beach Harbor, Los Angeles, Los Angeles County, CA

  20. The effects of bolted joints on dynamic response of structures

    NASA Astrophysics Data System (ADS)

    Zaman, I.; Khalid, A.; Manshoor, B.; Araby, S.; Ghazali, M. I.

    2013-12-01

    Joint is an universal fastening technology for structural members; in particular bolted joints are extensively used in mechanical structures due to their simple maintenance and low cost. However, the components of bolted joints are imperative because failure could be catastrophic and endanger lives. Hence, in this study, the effects of bolted joints on vibrating structures are investigated by determining the structural dynamic properties, such as mode shapes, damping ratios and natural frequencies, and these are compared with the monolithic structures (welding). Two approaches of experimental rigs are developed: a beam and a frame where both are subjected to dynamic loading. The analysis reveals the importance of bolted joints in increasing the damping properties and minimizing the vibration magnitude of structures, this indicates the significant influence of bolted joints on the dynamic behaviour of assembled structures. The outcome of this study provides a good model for predicting the experimental variable response in different types of structural joints.

  1. The supersymmetric NUTs and bolts of holography

    NASA Astrophysics Data System (ADS)

    Martelli, Dario; Passias, Achilleas; Sparks, James

    2013-11-01

    We show that a given conformal boundary can have a rich and intricate space of supersymmetric supergravity solutions filling it, focusing on the case where this conformal boundary is a biaxially squashed Lens space. Generically we find that the biaxially squashed Lens space S3/Zp admits Taub-NUT-AdS fillings, with topology R4/Zp, as well as smooth Taub-Bolt-AdS fillings with non-trivial topology. We show that the Taub-NUT-AdS solutions always lift to solutions of M-theory, and correspondingly that the gravitational free energy then agrees with the large N limit of the dual field theory free energy, obtained from the localized partition function of a class of N=2 Chern-Simons-matter theories. However, the solutions of Taub-Bolt-AdS type only lift to M-theory for appropriate classes of internal manifold, meaning that these solutions exist only for corresponding classes of three-dimensional N=2 field theories. This result should be contrasted with the corresponding situation for asymptotically locally Euclidean metrics, where Killing vector fields on the boundary do not necessarily extend inside. The canonical examples are the Gibbons-Hawking multi-centre solutions [29].

  2. Standard specification for forged carbon and alloy steel flanges for low-temperature service. ASTM standard

    SciTech Connect

    1998-10-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.22 on Steel Forgings and Wrought Fittings for Piping Applications and Bolting Materials for Piping and Special Purpose Applications. Current edition approved Mar. 10, 1998 and published October 1998.

  3. Epigenomics and bolting tolerance in sugar beet genotypes.

    PubMed

    Hébrard, Claire; Peterson, Daniel G; Willems, Glenda; Delaunay, Alain; Jesson, Béline; Lefèbvre, Marc; Barnes, Steve; Maury, Stéphane

    2016-01-01

    In sugar beet (Beta vulgaris altissima), bolting tolerance is an essential agronomic trait reflecting the bolting response of genotypes after vernalization. Genes involved in induction of sugar beet bolting have now been identified, and evidence suggests that epigenetic factors are involved in their control. Indeed, the time course and amplitude of DNA methylation variations in the shoot apical meristem have been shown to be critical in inducing sugar beet bolting, and a few functional targets of DNA methylation during vernalization have been identified. However, molecular mechanisms controlling bolting tolerance levels among genotypes are still poorly understood. Here, gene expression and DNA methylation profiles were compared in shoot apical meristems of three bolting-resistant and three bolting-sensitive genotypes after vernalization. Using Cot fractionation followed by 454 sequencing of the isolated low-copy DNA, 6231 contigs were obtained that were used along with public sugar beet DNA sequences to design custom Agilent microarrays for expression (56k) and methylation (244k) analyses. A total of 169 differentially expressed genes and 111 differentially methylated regions were identified between resistant and sensitive vernalized genotypes. Fourteen sequences were both differentially expressed and differentially methylated, with a negative correlation between their methylation and expression levels. Genes involved in cold perception, phytohormone signalling, and flowering induction were over-represented and collectively represent an integrative gene network from environmental perception to bolting induction. Altogether, the data suggest that the genotype-dependent control of DNA methylation and expression of an integrative gene network participate in bolting tolerance in sugar beet, opening up perspectives for crop improvement. PMID:26463996

  4. Epigenomics and bolting tolerance in sugar beet genotypes

    PubMed Central

    Hébrard, Claire; Peterson, Daniel G.; Willems, Glenda; Delaunay, Alain; Jesson, Béline; Lefèbvre, Marc; Barnes, Steve; Maury, Stéphane

    2016-01-01

    In sugar beet (Beta vulgaris altissima), bolting tolerance is an essential agronomic trait reflecting the bolting response of genotypes after vernalization. Genes involved in induction of sugar beet bolting have now been identified, and evidence suggests that epigenetic factors are involved in their control. Indeed, the time course and amplitude of DNA methylation variations in the shoot apical meristem have been shown to be critical in inducing sugar beet bolting, and a few functional targets of DNA methylation during vernalization have been identified. However, molecular mechanisms controlling bolting tolerance levels among genotypes are still poorly understood. Here, gene expression and DNA methylation profiles were compared in shoot apical meristems of three bolting-resistant and three bolting-sensitive genotypes after vernalization. Using Cot fractionation followed by 454 sequencing of the isolated low-copy DNA, 6231 contigs were obtained that were used along with public sugar beet DNA sequences to design custom Agilent microarrays for expression (56k) and methylation (244k) analyses. A total of 169 differentially expressed genes and 111 differentially methylated regions were identified between resistant and sensitive vernalized genotypes. Fourteen sequences were both differentially expressed and differentially methylated, with a negative correlation between their methylation and expression levels. Genes involved in cold perception, phytohormone signalling, and flowering induction were over-represented and collectively represent an integrative gene network from environmental perception to bolting induction. Altogether, the data suggest that the genotype-dependent control of DNA methylation and expression of an integrative gene network participate in bolting tolerance in sugar beet, opening up perspectives for crop improvement. PMID:26463996

  5. A bolt out of the blue.

    PubMed

    Dwyer, Joseph R

    2005-05-01

    Lightning is a particularly unsettling product of bad weather. It causes more deaths and injuries in the U.S. than either hurricanes or tornadoes do, and it strikes without warning, sometimes with nothing but blue sky overhead. In central Florida, where I live, thunderstorms are a daily occurrence during the summer, and so, ironically, people in the Sunshine State often spend their afternoons indoors to avoid the risk of death from the sky. Worldwide, lightning flashes about four million times a day, and bolts have even been observed on other planets. Yet despite its familiarity, we still do not know what causes lightning. It is a misconception that Benjamin Franklin solved the puzzle when he conducted his famous kite experiment in 1752. PMID:15882023

  6. Easing The Calculation Of Bolt-Circle Coordinates

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.

    1995-01-01

    Bolt Circle Calculation (BOLT-CALC) computer program used to reduce significant time consumed in manually computing trigonometry of rectangular Cartesian coordinates of holes in bolt circle as shown on blueprint or drawing. Eliminates risk of computational errors, particularly in cases involving many holes or in cases in which coordinates expressed to many significant digits. Program assists in many practical situations arising in machine shops. Written in BASIC. Also successfully compiled and implemented by use of Microsoft's QuickBasic v4.0.

  7. Explosive Bolt Dual-Initiated from One Side

    NASA Technical Reports Server (NTRS)

    Snow, Eric

    2011-01-01

    An explosive bolt has been developed that has a one-sided dual initiation train all the way down to the pyro charge for high reliability, while still allowing the other side of the bolt to remain in place after actuation to act as a thermal seal in an extremely high-temperature environment. This lightweight separation device separates at a single fracture plane, and has as much redundancy/reliability as possible. The initiation train comes into the explosive bolt from one side.

  8. Preloading of bolted connections in nuclear reactor component supports

    SciTech Connect

    Yahr, G T

    1984-10-01

    A number of failures of threaded fasteners in nuclear reactor component supports have been reported. Many of those failures were attributed to stress corrosion cracking. This report discusses how stress corrosion cracking can be avoided in bolting by controlling the maximum bolt preloads so that the sustained stresses in the bolts are below the level required to cause stress corrosion cracking. This is a basic departure from ordinary bolted joint design where the only limits on preload are on the minimum preload. Emphasis is placed on the importance of detailed analysis to determine the acceptable range of preload and the selection of a method for measuring the preload that is sufficiently accurate to ensure that the preload is actually within the acceptable range. Procedures for determining acceptable preload range are given, and the accuracy of various methods of measuring preload is discussed.

  9. Mechanics of Re-Torquing in Bolted Flange Connections

    NASA Technical Reports Server (NTRS)

    Gordon, Ali P.; Drilling Brian; Weichman, Kyle; Kammerer, Catherine; Baldwin, Frank

    2010-01-01

    It has been widely accepted that the phenomenon of time-dependent loosening of flange connections is a strong consequence of the viscous nature of the compression seal material. Characterizing the coupled interaction between gasket creep and elastic bolt stiffness has been useful in predicting conditions that facilitate leakage. Prior advances on this sub-class of bolted joints has lead to the development of (1) constitutive models for elastomerics, (2) initial tightening strategies, (3) etc. The effect of re-torque, which is a major consideration for typical bolted flange seals used on the Space Shuttle fleet, has not been fully characterized, however. The current study presents a systematic approach to characterizing bolted joint behavior as the consequence of sequentially applied torques. Based on exprimenta1 and numerical results, the optimal re-torquing parameters have been identified that allow for the negligible load loss after pre-load application

  10. What Makes Usain Bolt Unique as a Sprinter?

    NASA Astrophysics Data System (ADS)

    Shinabargar, A. J.; Hellrich, Matt; Baker, Blane

    2010-09-01

    For both casual and avid fans alike, Olympic and other sporting events can provide a wealth of data for simple physics analyses. One of the most impressive performances in recent Olympic history is that of Usain Bolt in the track-and-field sprinting events during the 2008 Summer Games. Over a seven-day span, Bolt set world records in the 100-m and 200-m individual sprints and in the 4 × 100-m sprint relay. In addition, Bolt left us all wondering what record time he might have run had he not eased into the finish line in the 100-m dash. Naturally, one question many fans and observers immediately ask is: What makes Usain Bolt unique as a sprinter?

  11. 2. DETAIL VIEW SHOWING BOLTED KNEE BRACES ON AFRAME OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. DETAIL VIEW SHOWING BOLTED KNEE BRACES ON A-FRAME OF WALKING BEAM ENGINE. Photocopy of photograph. Susan Kardas, photographer, November 1984 - Shooters Island, Ships Graveyard, Vessel No. 53, Newark Bay, Staten Island (subdivision), Richmond County, NY

  12. 7. VIEW OF WORKER DEBARKING CEDAR BOLT; LARRY L. LESTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF WORKER DEBARKING CEDAR BOLT; LARRY L. LESTER (RIGHT); WORKERS WHO EXECUTE THIS DEBARKING ARE CALLED KNEEBOLTERS; WILLIAM C. MARKERT (MIDDLE) IS A SHINGLE WEAVER WHO SAWS SHINGLES FROM THE FACE OF THE CEDAR BOLT AFTER DEBARKING, THEN CLIPS EACH SHINGLE IN THE LAST STEP BEFORE SENDING IT TO THE CHECKER AND BUNDLER - Lester Shingle Mill, 1602 North Eighteenth Street, Sweet Home, Linn County, OR

  13. What Makes Usain Bolt Unique as a Sprinter?

    ERIC Educational Resources Information Center

    Shinabargar, A. J.; Hellrich, Matt; Baker, Blane

    2010-01-01

    For both casual and avid fans alike, Olympic and other sporting events can provide a wealth of data for simple physics analyses. One of the most impressive performances in recent Olympic history is that of Usain Bolt in the track-and-field sprinting events during the 2008 Summer Games. Over a seven-day span, Bolt set world records in the 100-m and…

  14. Effect of bolting on roadway support in extremely weak rock.

    PubMed

    Li, Qinghai; Shi, Weiping; Qin, Zhongcheng

    2016-01-01

    In mine roadway support operations, floor bolting not only played a role in floor heave control, but also in reinforcing roof and its two sides. Correspondingly, bolting of roof and two sides also played a part in floor heave control. To quantify the effect of such bolting, based on roadway support in extremely weak rock, three physical models were produced and tested in laboratory. Through comparison of their displacements in three physical simulation experiments, the reinforcing effect of bolting in extremely weak rock roadways was quantified. Reinforcing coefficients was defined as displacement ratio between original support and new support regime. Results indicated that the reinforcing coefficients, for bolting of roof and its two sides, on floor, two sides, and roof reached 2.18, 3.56, and 1.81 respectively. The reinforcing coefficients for floor bolting on floor, two sides, and roof reached 3.06, 2.34, and 1.39 respectively. So in this extremely weak rock, the surrounding rock should be considered as an integral structure in any support operation: this allows for better local strength improvement, and provided future design guidance. PMID:27588248

  15. Standard specification for hot isostatically-pressed alloy steel flanges, fittings, valves, and parts for high temperature service. ASTM standard

    SciTech Connect

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.22 on Steel Forgings and Wrought Fittings for Piping Applications and Bolting Materials for Piping and Special Purpose Applications. Current edition approved Mar. 10, 1998 and published September 1998.

  16. A novel method for detecting second harmonic ultrasonic components generated from fastened bolts

    NASA Astrophysics Data System (ADS)

    Fukuda, Makoto; Imano, Kazuhiko

    2012-09-01

    This study examines the use of ultrasonic second harmonic components in the quality control of bolt-fastened structures. An improved method for detecting the second harmonic components, from a bolt fastened with a nut, using the transmission method is constructed. A hexagon head iron bolt (12-mm diameter and 25-mm long) was used in the experiments. The bolt was fastened using a digital torque wrench. The second harmonic component increased by approximately 20 dB before and after the bolt was fastened. The sources of second harmonic components were contact acoustic nonlinearity in the screw thread interfaces of the bolt-nut and were the plastic deformation in the bolt with fastening bolt. This result was improved by approximately 10 dB compared with previous our method. Consequently, usefulness of the novel method for detecting second harmonic ultrasonic components generated from fastened bolt was confirmed.

  17. Bolting alloy fills high-temperature gap

    SciTech Connect

    Buzolits, S.R.; Kline, L.A.

    1995-02-01

    A high-strength, high-temperature fastener alloy has been developed by SPS Technologies to meet the requirements of today`s advanced turbine engines. Designated Aerex 350, it is based on the multiphase materials cobalt, nickel, and molybdenum to take advantage of their low notch sensitivity, high strength, and excellent resistance to creep and corrosion. In choosing the chemical composition of Aerex 350 Alloy (25Co, 17Cr, 3Mo, 2Ti, 1Al, 1Nb, 4Ta, 2W, balance Ni), researchers sought to produce physical properties equivalent to those of conventional nickel-base superalloys such as Waspaloy. As a result, thermal expansion coefficient, thermal conductivity, electrical resistivity, specific heat, enthalpy, modulus, Poisson`s ratio, and density are all in the ranges common to that class. Perhaps the most important of these is its coefficient of thermal expansion, which ranges from 13.5 {mu}m/m{degree}C at 425 C to 14.8 {mu}m/m{degree}C at 700 C. A bolt with a higher coefficient of expansion than the joint material would be detrimental because clamp load can be reduced significantly as the assembly heats up. Therefore, the expansion characteristics of Aerex 350 Alloy ensure joint integrity up to the highest operating temperatures.

  18. Guideline for bolted joint design and analysis : version 1.0.

    SciTech Connect

    Brown, Kevin H.; Morrow, Charles W.; Durbin, Samuel; Baca, Allen

    2008-01-01

    This document provides general guidance for the design and analysis of bolted joint connections. An overview of the current methods used to analyze bolted joint connections is given. Several methods for the design and analysis of bolted joint connections are presented. Guidance is provided for general bolted joint design, computation of preload uncertainty and preload loss, and the calculation of the bolted joint factor of safety. Axial loads, shear loads, thermal loads, and thread tear out are used in factor of safety calculations. Additionally, limited guidance is provided for fatigue considerations. An overview of an associated Mathcad{copyright} Worksheet containing all bolted joint design formulae presented is also provided.

  19. Optimizing Piezoelectric Stack Preload Bolts in Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.; Wong, K. S.

    The selection of the preload bolt is often an afterthought in the design of Langevin type "sandwich" transducers, but quite often it is the root cause of failure for power ultrasonic applications. The main role of the preload bolt is to provide a "prestress" in the piezo stack to prevent interface "gapping" or tension in glued joints which can result in delamination. But as an integral part of a highly tuned dynamic system, the resulting parasitic resonances in these preload bolts, such as bending or longitudinal modes, are often difficult to predict and control. This research investigates many aspects of preload bolt design for achieving optimal transducer performance, including basic size and strength determination based on drive amplitude, as well as ensuring adequate thread engagement to the mating horn. Other aspects such as rule-of-thumb configuration and length guidelines to reduce parasitic resonances are also investigated. Optimizing the uniformity of stress in the piezoceramics is also considered, which is affected by end mass length, counterbores and proximity to threading. The selection of the bolt material based on stiffness is also investigated as related to electromechanical coupling. The investigation focuses solely on Langevin type transducers used for semiconductor wire bonding, and which are comprised of the common Navy Types I and III (PZT4 and PZT8) piezoelectric materials. Several metrics are investigated such as impedance, displacement gain, and electromechanical coupling factor. The experimental and theoretical research methods include Bode plots, scanning laser vibrometry and finite element analysis.

  20. Ultrasonic Method for Deployment Mechanism Bolt Element Preload Verification

    NASA Technical Reports Server (NTRS)

    Johnson, Eric C.; Kim, Yong M.; Morris, Fred A.; Mitchell, Joel; Pan, Robert B.

    2014-01-01

    Deployment mechanisms play a pivotal role in mission success. These mechanisms often incorporate bolt elements for which a preload within a specified range is essential for proper operation. A common practice is to torque these bolt elements to a specified value during installation. The resulting preload, however, can vary significantly with applied torque for a number of reasons. The goal of this effort was to investigate ultrasonic methods as an alternative for bolt preload verification in such deployment mechanisms. A family of non-explosive release mechanisms widely used by satellite manufacturers was chosen for the work. A willing contractor permitted measurements on a sampling of bolt elements for these release mechanisms that were installed by a technician following a standard practice. A variation of approximately 50% (+/- 25%) in the resultant preloads was observed. An alternative ultrasonic method to set the preloads was then developed and calibration data was accumulated. The method was demonstrated on bolt elements installed in a fixture instrumented with a calibrated load cell and designed to mimic production practice. The ultrasonic method yielded results within +/- 3% of the load cell reading. The contractor has since adopted the alternative method for its future production. Introduction

  1. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-04-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. More field tests have been performed. A trendline analysis method has been developed. This method would improve the accuracy in detecting the locations of fractures and in determining the rock strength.

  2. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-01-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. Additional field tests have been performed. It is found that the drilling power can be used as a supplementary method for detecting voids/fractures and rock interfaces.

  3. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-10-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. Additional field tests have been performed in this quarter. The development of the data interpretation methodology and other related tasks are still continuing.

  4. Identification of bolted lap joints parameters in assembled structures

    NASA Astrophysics Data System (ADS)

    Ahmadian, Hamid; Jalali, Hassan

    2007-02-01

    Bolted lap joints have significant influence on the dynamical behaviour of the assembled structures due to creation of strong local flexibility and damping. In modelling the dynamical behaviour of assembled structures the joint interface model must be represented accurately. A nonlinear model for bolted lap joints and interfaces is proposed capable of representing the dominant physics involved in the joint such as micro/macro-slip. The joint interface is modelled using a combination of linear and nonlinear springs and a damper to simulate the damping effects of the joint. An estimate of the response of the structure with a nonlinear model for the bolted joint under external excitations is obtained using the method of multiple scales. The parameters of the model, i.e. the spring constants and the damper coefficient, are functions of normal and tangential stresses at the joint interface and are identified by minimizing the difference between the model predictions and the experimentally measured data.

  5. Stress Evolution in Roadway Rock Bolts During Mining in a Fully Mechanized Longwall Face, and an Evaluation of Rock Bolt Support Design

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhang, Guimin; Hou, Rongbin; Wu, Yu; Zhou, Hongqi

    2015-01-01

    Rock bolts are widely used in coal mines throughout China. Approximately 8,000 km of roadways are excavated in coal mines every year in China, 80 % of which are supported by rock bolts. At present, the design of rock bolt support schemes is mainly based on analogies and experience from previous projects. In the present study, in order to evaluate the design of rock bolt support in roadways, several cross sections of a roadway were monitored for rock bolt stress during the roadway excavation and mining. The study results show that the stress in the rock bolts varied in the areas 20 m behind the excavating face and 30 m ahead of the mining face. For the rock bolts observed in this study, the max axial force was within the design limit of the bolts, thus the support design was shown to be acceptable. Then, numerical simulation was performed using FLAC3D to investigate the stress evolution in the rock bolts during the mining of the fully mechanized longwall face. The simulation results show an overall agreement with the in situ measurements. Finally, parametric study pertaining to length, anchorage length, and rock bolt spacing was carried out with the numerical model, and several suggestions for the support design were proposed.

  6. High-speed plasma imaging: A lightning bolt

    SciTech Connect

    Wurden, G.A.; Whiteson, D.O.

    1996-02-01

    Using a gated intensified digital Kodak Ektapro camera system, the authors captured a lightning bolt at 1,000 frames per second, with 100-{micro}s exposure time on each consecutive frame. As a thunder storm approaches while darkness descended (7:50 pm) on July 21, 1994, they photographed lightning bolts with an f22 105-mm lens and 100% gain on the intensified camera. This 15-frame sequence shows a cloud to ground stroke at a distance of about 1.5 km, which has a series of stepped leaders propagating downwards, following by the upward-propagating main return stroke.

  7. Standard specification for common requirements for steel fasteners or fastener materials, or both, intended for use at any temperature from cryogenic to the creep range. ASTM standard

    SciTech Connect

    1998-10-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.22 on Steel Forgings and Wrought Fittings for Piping Applications and Bolting Materials for Piping and Special Purpose Applications. Current edition approved Jul. 10, 1998 and published October 1998.

  8. Characterization of an Unusual Cytoplasmic Chimera Detected in Bolting Garlic (Allium sativum L.) Clones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of a visible flower stalk or bolting has been used as a major trait to categorize garlic clones. Analysis of mitochondrial genome variation with PCR revealed differences between bolting and non-bolting clones of garlic. Screening 333 garlic accessions from diverse geographic origins rev...

  9. Ultrasonic measurement and monitoring of loads in bolts used in structural joints

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper is an overview of work by the author in measuring and monitoring loads in bolts using an ultrasonic extensometer. A number of cases of bolted joints are covered. These include, a clamped joint with clearance fit between the bolt and hole, a clamped joint with bolt in an interference fit with the hole, a flanged joint which allows the flange and bolt to bend; and a shear joint in a clevis and tang configuration. These applications were initially developed for measuring and monitoring preload in National Aeronautics and Space Administration (NASA) Space Shuttle Orbiter critical joints but are also applicable for monitoring loads in other critical bolted joints of structures such as transportation bridges and other aerospace structures. The papers cited here explain how to set-up a model to estimate the ultrasonic load factor and accuracy for the ultrasonic preload application in a clamped joint with clearance fit. The ultrasonic preload application for clamped joint with bolt in an interference fit can also be used to measure diametrical interference between the bolt shank and hole, as well as interference pressure on the bolt shank. Results of simulation and experimental data are given to demonstrate use of ultrasonic measurements in a shear joint. A bolt in a flanged joint experiences both tensile and bending loads. This application involves measurement of bending and tensile preload in a bolt. The ultrasonic beam bends due to bending load on the bolt. Results of a numerical technique to compute the trace of ultrasonic ray are presented.

  10. NASA's Radio Frequency Bolt Monitor: A Lifetime of Spinoffs

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This story begins in the 1970s, when Dr. Joseph Heyman, a young scientist at NASA s Langley Research Center, was asked to support the investigation of a wind tunnel accident at a sister center. Although the work was outside of his physics background, it sparked a research focus that guided his lengthy NASA career and would earn him a slew of accolades, including NASA s highest award medals for Exceptional Leadership, Exceptional Achievement, and Exceptional Service; the coveted Silver Snoopy Astronaut Award for Space Shuttle Return to Flight; and the Arthur Fleming Award for being one of the Top Ten Federal Scientists in Government Service. He won 30 additional NASA awards, including the Agency s Invention of the Year and the Agency s highest award for technology transfer, and was the only person to ever win 4 R&D 100 Awards. Back in 1973, though, Heyman was a young civil servant with a background in physics who was asked to sit on an accident review panel. The panel met at Ames Research Center, in Moffet Field, California, and after considerable investigation, concluded that a high-pressure pebble heater used for heating gas had failed, due to improperly tightened bolts in a 1,000-pound gate valve control section. The accident showered the facility with incendiary ceramic spheres and nearly a ton of metal, but, luckily, caused no injuries. Heyman returned to Langley and began work on a solution. He developed an ultrasonic device that would measure bolt elongation, as opposed to torque, the factor typically measured in testing bolt preload or tension. Torque measurement can lead to load errors, with miscalculations as high as 80 percent that can be passed over during installation. Bolt stretch, however, is nearly always accurate to 1 percent or better. Within 1 month, he had an acoustic resonance solution that accurately determined bolt elongation. He assumed his work on this project had ended, but it was actually the start of nearly 15 years of work perfecting

  11. Standard specification for carbon and alloy steel nuts. ASTM standard

    SciTech Connect

    1998-07-01

    This specification is under the jurisdiction of ASTM Committee F-16 on Fasteners and is the responsibility of Subcommittee F16.02 on Steel Bolts, Nuts, Rivets, and Washers. Current edition approved Dec. 10, 1997. Published July 1998. Originally published as A 563-66. Last previous edition A 563-96.

  12. Apparatus For Eddy-Current Inspection Of Bolts

    NASA Technical Reports Server (NTRS)

    Amos, Jay M.

    1994-01-01

    Eddy-current apparatus for inspection of bolts, studs, and other threaded fasteners detects flaws in threads, shanks, and head fillets. With help of apparatus, technician quickly inspects fasteners of various dimensions. Accommodates fasteners with diameters from 0.190 in. to 1 in. and with lengths up to 5 in. Basic design modified to accommodate fasteners of other sizes.

  13. 21 CFR 137.255 - Bolted white corn meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... percent but its fat content is not less than 2.25 percent; and (2) When tested by the method prescribed in... recombined with all or part of the material from which it was separated, but in any such case the fat content of the finished bolted white corn meal does not exceed by more than 0.3 percent the fat content...

  14. 9 CFR 313.15 - Mechanical; captive bolt.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... instruments on detonation deliver bolts of varying diameters and lengths through the skull and into the brain. Unconsciousness is produced immediately by physical brain destruction and a combination of changes in intracranial... a flattened circular head against the external surface of the animal's head over the brain....

  15. 9 CFR 313.15 - Mechanical; captive bolt.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... instruments on detonation deliver bolts of varying diameters and lengths through the skull and into the brain. Unconsciousness is produced immediately by physical brain destruction and a combination of changes in intracranial... a flattened circular head against the external surface of the animal's head over the brain....

  16. 9 CFR 313.15 - Mechanical; captive bolt.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... instruments on detonation deliver bolts of varying diameters and lengths through the skull and into the brain. Unconsciousness is produced immediately by physical brain destruction and a combination of changes in intracranial... a flattened circular head against the external surface of the animal's head over the brain....

  17. A Simulation of Optimal Foraging: The Nuts and Bolts Approach.

    ERIC Educational Resources Information Center

    Thomson, James D.

    1980-01-01

    Presents a mechanical model for an ecology laboratory that introduces the concept of optimal foraging theory. Describes the physical model which includes a board studded with protruding machine bolts that simulate prey, and blindfolded students who simulate either generalist or specialist predator types. Discusses the theoretical model and data…

  18. Instrument accurately measures stress loads in threaded bolts

    NASA Technical Reports Server (NTRS)

    Rollins, F. R., Jr.

    1971-01-01

    Interferometric instrument response is linearly related to axial tensile stresses, and, under idealized conditions, measurement errors are within approximately plus or minus 1 percent. Ultimate accuracy of instrument depends on a number of variables, such as bolt material, dimensions, and geometry and uniformity of stresses and temperature.

  19. 107. View showing open caisson Pier 4 with anchor bolts ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    107. View showing open caisson Pier 4 with anchor bolts placed ready for last pour of concrete. Also pile driver driving falsework piles for south anchor arm. Located at end of the old ferry landing slip at Crockett side of straits. - Carquinez Bridge, Spanning Carquinez Strait at Interstate 80, Vallejo, Solano County, CA

  20. 16. STRUCTURAL DETAILS: CHANNEL, BIT & CLEAT, ANCHOR BOLTS & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. STRUCTURAL DETAILS: CHANNEL, BIT & CLEAT, ANCHOR BOLTS & PLATES FOR PIERS 4, 5, AND 6, DWG. NO. 97, 1-1/2" = 1', MADE BY A.F., JUNE 13, 1908 - Baltimore Inner Harbor, Pier 5, South of Pratt Street between Market Place & Concord Street, Baltimore, Independent City, MD

  1. Majorana Demonstrator Bolted Joint Mechanical and Thermal Analysis

    SciTech Connect

    Aguayo Navarrete, Estanislao; Reid, Douglas J.; Fast, James E.

    2012-06-01

    The MAJORANA DEMONSTRATOR is designed to probe for neutrinoless double-beta decay, an extremely rare process with a half-life in the order of 1026 years. The experiment uses an ultra-low background, high-purity germanium detector array. The germanium crystals are both the source and the detector in this experiment. Operating these crystals as ionizing radiation detectors requires having them under cryogenic conditions (below 90 K). A liquid nitrogen thermosyphon is used to extract the heat from the detectors. The detector channels are arranged in strings and thermally coupled to the thermosyphon through a cold plate. The cold plate is joined to the thermosyphon by a bolted joint. This circular plate is housed inside the cryostat can. This document provides a detailed study of the bolted joint that connects the cold plate and the thermosyphon. An analysis of the mechanical and thermal properties of this bolted joint is presented. The force applied to the joint is derived from the torque applied to each one of the six bolts that form the joint. The thermal conductivity of the joint is measured as a function of applied force. The required heat conductivity for a successful experiment is the combination of the thermal conductivity of the detector string and this joint. The thermal behavior of the joint is experimentally implemented and analyzed in this study.

  2. Evaluation of Roof Bolting Requirements Based on In-Mine Roof Bolter Drilling

    SciTech Connect

    Syd S. Peng

    2005-10-01

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on this information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. For the prediction of roof geology and stability condition in real time, a micro processor was used and a program developed to monitor and record the drilling parameters of roof bolter. These parameters include feed pressure, feed flow (penetration rate), rotation pressure, rotation rate, vacuum pressure, oil temperature of hydraulic circuit, and signals for controlling machine. From the results of a series of laboratory and underground tests so far, feed pressure is found to be a good indicator for identifying the voids/fractures and estimating the roof rock strength. The method for determining quantitatively the location and the size of void/fracture and estimating the roof rock strength from the drilling parameters of roof bolter was developed. Also, a set of computational rules has been developed for in-mine roof using measured roof drilling parameters and implemented in MRGIS (Mine Roof Geology Information System), a software package developed to allow mine engineers to make use of the large amount of roof drilling parameters for predicting roof geology properties automatically. For the development of roof bolting criteria, finite element models were developed for tensioned and fully grouted bolting

  3. Response of PWR Baffle-Former Bolt Loading to Swelling, Irradiation Creep and Bolt Replacement as Revealed Using Finite Element Modeling

    SciTech Connect

    Simonen, Edward P.; Garner, Francis A.; Klymyshyn, Nicholas A.; Toloczko, Mychailo B.

    2005-10-01

    Baffle-former bolts in pressurized water reactors (PWRs) tend to degrade with aging, partially due to radiation-induced hardening and also due to the often complex stress history of the bolt in response to time-dependent and spatial gradients in temperature and neutron flux-spectra that can alter the stress distribution of the bolts. The time-integrated stresses must play some role in bolt cracking, however, and therefore it is of interest to study the time dependence of bolt stresses even for idealized cases. These stresses have been quantified in the present analysis using newly developed material constitutive equations for swelling and creep at light-water reactor (LWR)-relevant temperatures and dose rates. ABAQUS finite element calculations demonstrate that irradiation creep in the absence of void swelling tends to relax bolt tension before 10 dpa. Subsequent differential swelling leads to an increase in bolt tension, but only to stresses below the yield strength and usually below the initial bolt loading. Various assumed bolt replacement scenarios are considered with respect to their consequences on future failure possibilities.

  4. Development of Rock Bolt Elements in Two-Dimensional Discontinuous Deformation Analysis

    NASA Astrophysics Data System (ADS)

    Nie, W.; Zhao, Z. Y.; Ning, Y. J.; Sun, J. P.

    2014-11-01

    Computer modeling can be used to explore and gain new insights into the impacts of rock bolt intersecting joints in rock masses, and to estimate the effectiveness of the rock reinforcement system. In order to achieve this goal, we couple a rock bolt element into the two-dimensional discontinuous deformation analysis (DDA2D) program. The coupling algorithm is based on the analytically-derived interface behavior between a rock bolt and the rock material for grouted rock bolts. The shear force generated by slippage along the interface is assumed to have a linear relationship with respect to the relative slipping distance between the rock bolt and the rock. The linear elastic criterion is applied to determine the material behavior of rock bolts before the axial stress reaches the yield value. The pullout tests are simulated to verify the coupling algorithm and the effects of the proposed rock bolt elements. Parametrical studies are also carried out to analyze the effectiveness of the rock bolts under various end conditions, joint locations and bond stiffness. In addition, the performance of the rock bolt during the interface debonding is analyzed using two types of constitutive laws, i.e., the friction law and the reduction law. The simulation results show that the proposed rock bolt models can predict the shear forces and axial loading along the rock bolts.

  5. Resin grouted cable bolts as primary roof support in an underground coal mine

    SciTech Connect

    Bunnell, M.; Gillespie, D.

    1995-12-31

    A number of underground coal mines in the U.S. have been utilizing resin grouted cable bolts as a means of supplemental roof support in a variety of applications. These applications typically involve supplemental longwall tailgate and bleeder support to eliminate the use of wood cribbing or other forms of tailgate support. Due to occasional problems with lateral shearing of primary roof bolts, a test was conducted in a western U.S. underground coal mine to determine if cable bolts (in the 7 to 10 ft. length range) could be effectively installed in lieu of standard fully grouted resin bolts to help eliminate the need for replacement of sheared roof bolts and improve roof safety in areas where horizontal shifting of strata is likely. Primary bolting with resin grouted cable bolts appears to be a viable roof control option, particularly in areas where lateral shifting is expected in the immediate roof strata or where additional strength or yield capacity is required.

  6. The sealing performance of liquid sealant in flexible flanged bolted joints

    SciTech Connect

    Yoneno, Masahiro; Kawamura, Hiroshi; Sawa, Toshiyuki

    1996-12-01

    Recently, bolted joints with flexible flanges have been used from a lightweight viewpoint. However, it is difficult to improve the sealing performance of the joints due to the reduction of the interface pressure. In this paper, a liquid sealant is applied to a flexible flanged bolted joint in order to improve the sealing performance. In the experiments, a leakage is observed when flanged bolted joints sealed by gasket and liquid sealants with flange thickness of 1 and 6 mm are subjected to internal pressure. In addition, the effects of the adjacent bolt distance, the flange thickness and the bolt preload on the sealing performance are examined. Moreover, the interface stress distribution of flexible bolted flanged joints is analyzed using two-dimensional theory of elasticity and finite-element method to compare the experimental and numerical results. It is found that the sealing performance of bolted joints with liquid sealant is improved in comparison to that with the conventional gaskets.

  7. A Novel RFID-Based Sensing Method for Low-Cost Bolt Loosening Monitoring.

    PubMed

    Wu, Jian; Cui, Xingmei; Xu, Yunpeng

    2016-01-01

    In coal mines, bolt loosening in the cage guide is affected by the harsh environmental factors and cage hoist vibration, leading to significant threats to work safety. It is crucial, to this effect, to successfully detect the status of multipoint bolts of guide structures. This paper proposes a system to monitor bolt status in harsh environments established based on the RFID technique. A proof-of-concept model was demonstrated consisting of a bolt gearing system, passive UHF RFID tags, a reader, and monitoring software. A tinfoil metal film is fixed on the retaining plate and an RFID tag bonded to a large gear, with the bolt to be detected fixed in the center of a smaller gear. The radio-frequency signal cannot be received by the reader if the tag is completely obscured by the tinfoil, and if the bolt is loose, the tag's antenna is exposed when the gear revolves. A radio-frequency signal that carries corresponding bolt's information is transmitted by the RFID tag to the RFID reader due to coil coupling, identifying loose bolt location and reporting them in the software. Confirmatory test results revealed that the system indeed successfully detects bolt loosening and comparative test results (based on a reed switch multipoint bolt loosening monitor system) provided valuable information regarding the strengths and weaknesses of the proposed system. PMID:26828498

  8. Improving the selection of bolted joint parameters by using results from finite-element analysis

    SciTech Connect

    Ziada, H.H.

    1992-10-01

    Finite-element techniques were used to determine the combination of parameters that would produce the optimum design for the bolted joint. A finite-element model was constructed from a combination of two-dimensional isoparametric axisymmetric solid elements and gap elements. The gap elements represented the physical contact between the plate and bolt head and the plate and nut. The model was used to determine the stress patterns, displacements, and contact areas (separation diameters) across the bolted joint. Computed results for the contact area showed the following: the contact area is determined by joint design, not bolt Toad magnitude; joint thickness, plate thickness ratio, and bolt-head dimensions have a pronounced effect on the contact area; and the maximum contact area occurs with plates of equal thickness. The change in separation diameters (D) can be presented in a simple straight-line expression D/d = 1 + 1.1 (L/d), where L = joint thickness and d = bolt diameter. The stress results indicated that neither load nor stress distribution under the bolt head or nut is constant or uniform. Bolt-head dimensions, joint thickness, and plate thickness ratio markedly affect the developed stresses, with the maximum stress value occurring at the bolt-plate interface. Beyond the bolt head, maximum stress develops at the interface plane of the bolted plates, with that stress decreasing as the plate thickness ratio increases reaching its lowest value at the equal-thickness ratio. These results indicate that design stiffness formulas used heretofore are not adequate. Results provided by this analysis should prove more effective in achieving optimum bolt design for bolted joints.

  9. Demonstration of a Pyrotechnic Bolt-Retractor System

    NASA Technical Reports Server (NTRS)

    Johnston, Nick; Ahmed, Rafiq; Garrison, Craig; Gaines, Joseph; Waggoner, Jason

    2004-01-01

    A paper describes a demonstration of the X-38 bolt-retractor system (BRS) on a spacecraft-simulating apparatus, called the Large Mobility Base, in NASA's Flight Robotics Laboratory (FRL). The BRS design was proven safe by testing in NASA's Pyrotechnic Shock Facility (PSF) before being demonstrated in the FRL. The paper describes the BRS, FRL, PSF, and interface hardware. Information on the bolt-retraction time and spacecraft-simulator acceleration, and an analysis of forces, are presented. The purpose of the demonstration was to show the capability of the FRL for testing of the use of pyrotechnics to separate stages of a spacecraft. Although a formal test was not performed because of schedule and budget constraints, the data in the report show that the BRS is a successful design concept and the FRL is suitable for future separation tests.

  10. Ballistics Analysis of Orion Crew Module Separation Bolt Cover

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Konno, Kevin E.; Carney, Kelly S.; Pereira, J. Michael

    2013-01-01

    NASA is currently developing a new crew module to replace capabilities of the retired Space Shuttles and to provide a crewed vehicle for exploring beyond low earth orbit. The crew module is a capsule-type design, which is designed to separate from the launch vehicle during launch ascent once the launch vehicle fuel is expended. The separation is achieved using pyrotechnic separation bolts, wherein a section of the bolt is propelled clear of the joint at high velocity by an explosive charge. The resulting projectile must be contained within the fairing structure by a containment plate. This paper describes an analytical effort completed to augment testing of various containment plate materials and thicknesses. The results help guide the design and have potential benefit for future similar applications.

  11. Load distributions in photoeleastic bolted-joint models

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Liu, D.

    1982-01-01

    An attempt is made to study the stresses in multiple-bolt connectors, focusing on the stress distribution in a two-pin connector, the two pins being in line and in parallel with the direction of the applied load. The photoelastic modeling approach with two-dimensional transmission photoelasticity is used. The joint models and model fringe patterns are discussed, with special attention given to the existence of a photoelastic isotropic point and to the separation of stresses.

  12. NUTS and BOLTS: Applications of Fluorescence Detected Sedimentation

    PubMed Central

    Kroe, Rachel R.; Laue, Thomas M.

    2008-01-01

    Analytical ultracentrifugation is a widely used method for characterizing the solution behavior of macromolecules. However, the two commonly used detectors (absorbance and interference) impose some fundamental restrictions on the concentrations and complexity of the solutions that can be analyzed. The recent addition of a fluorescence detector for the XL-I analytical ultracentrifuge (AU-FDS) enables two different types of sedimentation experiments. First, the AU-FDS can detect picomolar concentrations of labeled solutes allowing the characterization of very dilute solutions of macromolecules, applications we call Normal Use Tracer Sedimentation (NUTS). The great sensitivity of NUTS analysis allows the characterization of small quantities of materials and high affinity interactions. Second, AU-FDS allows characterization of trace quantities of labeled molecules in solutions containing high concentrations and complex mixtures of unlabeled molecules, applications we call Biological On Line Tracer Sedimentation (BOLTS). The discrimination of BOLTS enables the size distribution of a labeled macromolecule to be determined in biological milieu such as cell lysates and serum. Examples are presented that embody features of both NUTS and BOLTS applications, along with our observations on these applications. PMID:19103145

  13. Standard Methods for Bolt-Bearing Testing of Textile Composites

    NASA Technical Reports Server (NTRS)

    Portanova, M. A.; Masters, J. E.

    1995-01-01

    The response of three 2-D braided materials to bolt bearing loading was evaluated using data generated by Boeing Defense and Space Group in Philadelphia, PA. Three test methods, stabilized single shear, unstabilized single shear, and double shear, were compared. In general, these textile composites were found to be sensitive to bolt bearing test methods. The stabilized single shear method yielded higher strengths than the unstabilized single shear method in all cases. The double shear test method always produced the highest strengths but these results may be somewhat misleading. It is therefore recommended that standard material comparisons be made using the stabilized single shear test method. The effects of two geometric parameters, W/D and e/D, were also studied. An evaluation of the effect of the specimen width (W) to hole diameter (D) ratio concluded that bolt bearing responses were consistent with open hole tension results. A W/D ratio of 6 or greater should be maintained. The proximity of the hole to the specimen edge significantly affected strength. In all cases, strength was improved by increasing the ratio of the distance from the hole center to the specimen edge (e) to the hole diameter (D) above 2. An e/D ratio of 3 or greater is recommended.

  14. Active loose bolt detection in a complex satellite structure

    NASA Astrophysics Data System (ADS)

    Reynolds, Whitney D.; Doyle, Derek; Arritt, Brandon

    2010-03-01

    This work focuses on the detection, localization, and quantification of damage in the form of loose bolts on an isogrid satellite structure. In the process of rapid satellite development and deployment, it is necessary to quickly complete several levels of validation tests. Structural Health Monitoring methods are being investigated as a means for reducing the number of validation tests required. This method for detecting loose bolts enables quick confirmation of proper assembly, and verification that structural fasteners are still intact after validation testing. Within this testing framework, feature selection is presented as well as a localization methodology. Quantification of fastener torque is also developed. Locating damage in an isogrid structure is complicated by the directionally dependent dispersion characteristics caused by a propagating wave passing through ribs and holes. For this reason, an actuation frequency with the best first wave arrival clarity is selected. A methodology is presented in which a time map is constructed for each actuator-sensor pair which establishes times of flight for each location on the sample. Differences in time between healthy and damaged sensor signals are then extracted and used to create a map of possible damage locations. These resulting solution maps are merged yielding a final damage position. Fastener torque is correlated to a damage parameter, and the loose bolt position is calculated within 3 cm.

  15. Stress relaxation of high strength A-286 bolts in simulated storage at room temperature

    NASA Technical Reports Server (NTRS)

    Sampson, R. C.

    1972-01-01

    It was concluded that thermally activated relaxation of the type customarily encountered at high temperatures was not expected to occur at the low temperatures where long time NERVA storage conditions will prevail. Instances where relaxation occurred by a different mechanism at such moderate temperatures were also reported. Twelve simulated bolted flange test specimens were prepared. Parameters that were varied among the twelve specimens were the flange material, the bolt shank diameter, and the bolt loading in terms of percent of yield strength.

  16. Improved wire stiffness with modified connection bolts in Ilizarov external frames: a biomechanical study.

    PubMed

    Gessmann, Jan; Jettkant, Birger; Königshausen, Matthias; Schildhauer, Thomas Armin; Seybold, Dominik

    2012-01-01

    Frame stability in Ilizarov external fixators is mainly dependent on the tension of the transosseous wires, which are clamped to the ring by connection bolts. It was the purpose of this biomechanical study to investigate the holding capacity of a modified bolt design featuring a ruffled wire-bolt interface (TrueLok™) and its influence on wire stiffness in comparison with that of classic bolts featuring a smooth, unruffled wire-bolt interface. Six different ring and bolt configurations were tested using a simplified model consisting of a single ring and wire. The holding capacity at two different tightening torques (10 and 14 Nm) of classic cannulated bolts (CB) and slotted bolts (SB) was determined on Ilizarov and Taylor Spatial Frame (TSF™) rings, whereas the modified TrueLok™ CBs and SBs were used with the TrueLok™ rings. The wire stiffness was calculated via a regression analysis of the load-displacement graphs. The modified TrueLok™ bolts demonstrated significantly better slippage resistance than the classic bolts in all configurations and wire stiffness was significantly higher in the TrueLok™ frame set-ups. After maximum loading, all of the wires showed plastic deformation, including constant wire deflection and dent marks at the clamped wire ends. In conclusion, the decrease in wire stiffness can be explained mainly as a result of wire slippage, but plastic deformation and material yielding also contribute. The relatively simple modification made by roughening the wire-bolt interface results in improved holding capacity and wire stiffness. A frame that contains these modified TrueLok™ bolts should provide improved mechanical stiffness. PMID:23394181

  17. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2001-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. In this quarter, retrofitting work to build a dedicated roof bolter for this research has been started. A number of numerical methods have been developed to improve the quality of and to analyze the collected drilling parameters. Finite element modeling of roof bolting mechanism is continuing.

  18. Numerical Studies on Time-Varying Stiffness of Disk-Drum Type Rotor with Bolt Loosening

    NASA Astrophysics Data System (ADS)

    Qin, Zhaoye; Chu, Fulei

    2015-07-01

    Disk-drum type rotors are widely used in industry for their high stiffness and low weight properties. In disk-drum type rotors, the adjacent disks and drums are commonly connected by bolted joints. Those rotating joint interfaces are subjected to numerous combinations of loads during normal operation, where loosening of the connecting bolts might occur. The bolt loosening will change the local stiffness of the rotor, which in turn affect the rotor dynamics and even result in structural failures. In this paper, the local stiffness of a disk- drum rotor with bolt loosening is investigated numerically. A three-dimensional (3D) finite element (FE) model for the bolted disk-drum joint is established in ANSYS, where the bolt loosening is simulated by reducing the preloads of certain bolts, and removing those bolts as the limiting case. Simulations are performed on the FE model to evaluate the joint behaviour under static loads. Periodic variations of the joint deflections with respect to the rotation angle of the shaft are obtained, which implies the appearance of the time-varying local stiffness in the rotor system. The studies in this paper help accurate prediction of the rotor dynamics and early detection of bolt loosening.

  19. A Novel RFID-Based Sensing Method for Low-Cost Bolt Loosening Monitoring

    PubMed Central

    Wu, Jian; Cui, Xingmei; Xu, Yunpeng

    2016-01-01

    In coal mines, bolt loosening in the cage guide is affected by the harsh environmental factors and cage hoist vibration, leading to significant threats to work safety. It is crucial, to this effect, to successfully detect the status of multipoint bolts of guide structures. This paper proposes a system to monitor bolt status in harsh environments established based on the RFID technique. A proof-of-concept model was demonstrated consisting of a bolt gearing system, passive UHF RFID tags, a reader, and monitoring software. A tinfoil metal film is fixed on the retaining plate and an RFID tag bonded to a large gear, with the bolt to be detected fixed in the center of a smaller gear. The radio-frequency signal cannot be received by the reader if the tag is completely obscured by the tinfoil, and if the bolt is loose, the tag’s antenna is exposed when the gear revolves. A radio-frequency signal that carries corresponding bolt’s information is transmitted by the RFID tag to the RFID reader due to coil coupling, identifying loose bolt location and reporting them in the software. Confirmatory test results revealed that the system indeed successfully detects bolt loosening and comparative test results (based on a reed switch multipoint bolt loosening monitor system) provided valuable information regarding the strengths and weaknesses of the proposed system. PMID:26828498

  20. Optimum design of bolted composite lap joints under mechanical and thermal loading

    NASA Astrophysics Data System (ADS)

    Kradinov, Vladimir Yurievich

    A new approach is developed for the analysis and design of mechanically fastened composite lap joints under mechanical and thermal loading. Based on the combined complex potential and variational formulation, the solution method satisfies the equilibrium equations exactly while the boundary conditions are satisfied by minimizing the total potential. This approach is capable of modeling finite laminate planform dimensions, uniform and variable laminate thickness, laminate lay-up, interaction among bolts, bolt torque, bolt flexibility, bolt size, bolt-hole clearance and interference, insert dimensions and insert material properties. Comparing to the finite element analysis, the robustness of the method does not decrease when modeling the interaction of many bolts; also, the method is more suitable for parametric study and design optimization. The Genetic Algorithm (GA), a powerful optimization technique for multiple extrema functions in multiple dimensions search spaces, is applied in conjunction with the complex potential and variational formulation to achieve optimum designs of bolted composite lap joints. The objective of the optimization is to acquire such a design that ensures the highest strength of the joint. The fitness function for the GA optimization is based on the average stress failure criterion predicting net-section, shear-out, and bearing failure modes in bolted lap joints. The criterion accounts for the stress distribution in the thickness direction at the bolt location by applying an approach utilizing a beam on an elastic foundation formulation.

  1. Isolation and identification of an anti-bolting compound, hexadecatrienoic acid monoglyceride, responsible for inhibition of bolting and maintenance of the leaf rosette in radish plants.

    PubMed

    Yoshida, Yuko; Takada, Noboru; Koda, Yasunori

    2010-08-01

    Generally, the bolting (stem elongation from rosette plants) of winter annuals is believed to be induced by an increase in the levels of gibberellin that occurs after a certain period of chilling (vernalization), and a deficiency of gibberellin allows the plant to maintain a rosette style. Lack of direct evidence proving the above assumption in radish plants (Raphanus sativus L.) encouraged us to assume the presence of an anti-bolting compound actively maintaining the rosette habit through inhibition of bolting. Anti-bolting activity was detected in an extract of rosette shoots of radish plants by an assay using seedlings cultured in vitro. The causal compound that strongly inhibited bolting was isolated and identified as alpha-(7Z,10Z,13Z)-hexadecatrienoic acid monoglyceride (16:3 monoglyceride). This compound did not inhibit leaf production at the apical meristem, indicating that it merely inhibits growth at the internode. The compound disappeared completely after vernalization, and bolting occurred thereafter. The results suggest that the release from inhibition by 16:3 monoglyceride induces the initiation of bolting. The possible mechanism by which the compound exerts the activity is discussed. PMID:20601431

  2. Development of New Stainless Steel

    SciTech Connect

    Robert F. Buck

    2005-08-30

    A new family of innovative martensitic stainless steels, 521-A, 521-B, and 521-C has been developed by Advanced Steel Technology, LLC (Trafford, PA) as high strength fastener (bolt) materials for use at moderate temperatures in turbine engines, including steam turbines, gas turbines, and aircraft engines. The primary objective of the development program was to create a martensitic stainless steel with high strength at moderate temperatures, and which could replace the expensive nickel-based superalloy IN 718 in some fasteners applications. A secondary objective was to replace conventional 12Cr steels such as AISI 422 used as blades, buckets and shafts that operate at intermediate temperatures in turbine engines with stronger steel. The composition of the new alloys was specifically designed to produce excellent mechanical properties while integrating heat treatment steps into production to reduce energy consumption during manufacturing. As a result, production costs and energy consumption during production of rolled bar products is significantly lower than conventional materials. Successful commercialization of the new alloys would permit the installed cost of certain turbine engines to be reduced without sacrificing high availability or operational flexibility, thereby enhancing the global competitiveness of U.S. turbine engine manufacturers. Moreover, the domestic specialty steel industry would also benefit through increased productivity and reduced operating costs, while increasing their share of the international market for turbine engine fasteners, blades, buckets and shafts.

  3. Antiloosening ability of 5/8 inch stainless steel BSW threaded fasteners

    NASA Astrophysics Data System (ADS)

    Panja, Bikash; Das, Santanu

    2016-07-01

    Threaded fasteners are popular for temporary joining of different components due to the fact that they retain high clamping force and torque for long. However, they may loosen under vibrating conditions causing failure of the system. In this experimental work, antiloosening ability of various 5/8 inch BSW fastening elements, such as conventional nut and nylock nut with flat washer, spring washer, inside and outside serrated washers is tested with stainless steel (SS) bolts. A hybrid double nut using a simple nut and one nylock nut at the outside and a typical adhesive bonded nut with 5/8 inch BSW bolt are introduced to obtain resistance to loosening. Some hybrid double nut and adhesive bonded nut are recommended for stainless steel 5/8 inch BSW bolts under vibration.

  4. Heating and cooling gas-gun targets: nuts and bolts

    SciTech Connect

    Gustavsen, Richard L; Bartram, Brian D; Gehr, Russell J; Bucholtz, Scott M

    2009-01-01

    The nuts and bolts of a system used to heat and cool gas-gun targets is described. We have now used the system for more than 35 experiments, all of which have used electromagnetic gauging. Features of the system include a cover which is removed (remotely) just prior to projectile impact and the widespread use of metal/polymer insulations. Both the cover and insulation were required to obtain uniform temperatures in samples with low thermal conductivity. The use of inexpensive video cameras to make remote observations of the cover removal was found to be very useful. A brief catalog of useful glue, adhesive tape, insulation, and seal materials is given.

  5. Fatigue Properties of Automobile High-Strength Bolts

    NASA Astrophysics Data System (ADS)

    Zhou, Congling; Nishida, Shin-Ichi; Hattori, Nobusuke

    This study is focused on the fatigue properties of automobile high-strength bolts, including the effect of mean stress level, pre-processing schedule and the residual stresses. And the mean stress levels are 0.3, 0.5 and 0.7 times to the tensile strength (σB) of the material respectively. The main results obtained are as follows: 1) the fatigue strength increases under the mean stress loading, but the differences between the loading levels are not so evident; 2) most of the cases in this study are broken from the bottom of the screw thread, and the crack initiated from the impurities.

  6. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The selected site and the field testing plan enabled us to test all three aspects of roof geological features. The development of the data interpretation methodologies and the geology mapping computer program have also been preceding well.

  7. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-04-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. More laboratory tests have been performed in this quarter. The analysis performed on the testing data showed: (1) abnormal rotational accelerations can be used as the indicator of the rock interfaces, and (2) the sharp drops of drilling thrust and torque agree well with the locations of fractures.

  8. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. Field tests have been performed in two underground coal mines in this quarter. It also found from the tests that the non-drilling thrust and torque should be deducted from the acquired drilling data. The non-drilling torque is actually higher than that is used to overcome the shear strength is proportional to the rotation rate.

  9. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2001-10-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. The retrofitting works for a dedicated roof bolter for this research has been completed. The laboratory tests performed using this machine on simulated roof blocks have been conducted. The analysis performed on the testing data showed promising signs to detect the rock interface, fractures, as well as the rock types. The other tasks were progressing as planned.

  10. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-01-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. A new mechanical approach to estimate rock strengths using the acquired drilling parameters has been proposed. This approach takes a number of important factors, that have never been studied in the previous researches, into the considerations. Good results have been shown using the new approach on the testing data.

  11. The Nuts and Bolts of Michaelis-Menten Enzyme Kinetics: Suggestions and Clarifications

    ERIC Educational Resources Information Center

    Silverstein, Todd

    2011-01-01

    Matthew Junker's recent article describes a useful and effective enzyme kinetics application and analogy in which students simulate enzyme activity by unscrewing nut-bolt "substrate molecules", thus, converting them into separate nuts and bolts "products". A number of suggestions and corrections are presented that improve the clarity and accuracy…

  12. Effects of curing time and frequency on ultrasonic wave velocity in grouted rock bolts

    NASA Astrophysics Data System (ADS)

    Madenga, V.; Zou, D. H.; Zhang, C.

    2006-05-01

    Grouted rock bolts are widely used to reinforce excavated ground in mining and civil engineering structures. To date, opportunities for testing the quality of the grout in grouted rock bolts have been limited to the pull-out tests and the over-coring methods. Both these methods are destructive, time-consuming and costly. These deficiencies have fueled research into the use of ultrasonic methods for testing the quality of the grout in rock bolts. However, only partial success has been achieved in these efforts chiefly due to inadequate knowledge of the ultrasonic wave characteristics such as wave velocity in grouted rock bolts. This paper presents results of an experimental study into the effects of curing time and testing frequency on the velocity of ultrasonic waves propagating along rock bolts grouted in concrete. A substantial wave velocity decrease, as much as 47.7% at certain frequencies, was recorded in rock bolts grouted in fully cured concrete in comparison to non-grouted bolts. The results demonstrate the importance of optimizing the selection of test frequencies as well as suggesting the possibility of a new approach based on wave velocity decrease for testing the grout quality of rock bolts.

  13. EVALUATION OF TROQUE VS CLOSURE BOLT PRELOAD FOR A TYPICAL CONTAINMENT VESSEL UNDER SERVICE CONDITIONS

    SciTech Connect

    Smith, A.

    2010-02-16

    Radioactive material package containment vessels typically employ bolted closures of various configurations. Closure bolts must retain the lid of a package and must maintain required seal loads, while subjected to internal pressure, impact loads and vibration. The need for insuring that the specified preload is achieved in closure bolts for radioactive materials packagings has been a continual subject of concern for both designers and regulatory reviewers. The extensive literature on threaded fasteners provides sound guidance on design and torque specification for closure bolts. The literature also shows the uncertainty associated with use of torque to establish preload is typically between 10 and 35%. These studies have been performed under controlled, laboratory conditions. The ability to insure required preload in normal service is, consequently, an important question. The study described here investigated the relationship between indicated torque and resulting bolt load for a typical radioactive materials package closure using methods available under normal service conditions.

  14. Study of the effect of bolt diameter and washer on damping in layered and jointed structures

    NASA Astrophysics Data System (ADS)

    Nanda, B. K.

    2006-03-01

    In the present work, the mechanism of damping in layered and jointed structures with connecting bolts and washers have been extensively studied. A lot of experiments have been conducted on a number of specimens with connecting bolts of various diameters to study its effect on the damping capacity of the layered and jointed structures and to establish the authenticity of the theory developed. Intensity of interface pressure, diameter of the connecting bolts, washers, number of layers, kinematic coefficient of friction at the interfaces and frequency and amplitude of excitation are found to play a major role on the damping capacity of such structures. It is established that the damping capacity of structures jointed with connecting bolts can be improved substantially by increasing the number of layers connected with bolts of smaller diameters along with use of washers.

  15. Design and analysis of lid closure bolts for packages used to transport radioactive materials

    SciTech Connect

    Raske, D.T.; Stojimirovic, A.

    1995-07-01

    The design criterion recommended by the U.S. Department of Energy for Category I radioactive packaging is found in Section III, Division 1, of the ASME Boiler and Pressure Vessel Code. This criterion provides material specifications and allowable stress limits for bolts used to secure lids of containment vessels. This paper describes the design requirements for Category I containment vessel lid closure bolts, and provides an example of a bolting stress analysis. The lid-closure bolting stress analysis compares calculations based on handbook formulas with an analysis performed with a finite-element computer code. The results show that the simple handbook calculations can be sufficiently accurate to evaluate the bolt stresses that occur in rotationally rigid lid flanges designed for metal-to-metal contact.

  16. Twofold hidden conformal symmetry of Kerr Bolt black holes

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Kamali, V.

    2012-02-01

    Previously we have shown that a four-dimensional Kerr—Bolt black hole in non-extremal and also in extremal cases could be described by a holographic two-dimensional (2D) conformal field theory (CFT) [Ghezelbash A M, Kamali V and Setare M R 2010 Phys. Rev. D 82 124051; Setare M R and Kamali V 2010 JHEP 10 074]. Motivated by recent work [Chen C M, Huang Y M, Sun J R, Wu M F and Zou S J 2010 Phys. Rev. D 82 066004], we show that there is another holographic description for these black holes. The first description is called the J-picture, whose construction is based on the black hole angular momentum. The new description is called the Q-picture, whose constructions originate from the nut charge of the black hole. Similar to the previous cases [Ghezelbash A M, Kamali V and Setare M R 2010 Phys. Rev. D 82 124051; Setare M R and Kamali V 2010 JHEP 10 074], we show that this new picture for a low frequency limit of the wave equation of a massless charged scalar field in the background of a Kerr—Bolt black hole can be written as the Casimir of SL(2, R) symmetry. Our result shows that the entropy of the black hole is reproduced by the Cardy formula. In addition, the absorption cross section is consistent with the finite temperature absorption cross section for a two-dimensional CFT.

  17. FRP bolted flanged connections -- Modern design and fabrication methods

    SciTech Connect

    Blach, A.E.; Sun, L.

    1995-11-01

    Bolted flanged connections for fiber reinforced plastic (FRP) pipes and pressure vessels are of great importance for any user of FRP material in fluid containment applications. At present, no dimensional standards or design rules exist for FRP flanges. Most often, flanges are fabricated to dimensional standards for metallic flanges without questioning their applicability to FRP materials. This paper discusses simplified and exact design methods for composite flanges, based on isotropic material design and on laminate theory design. Both, exact and simplified methods are included. Results of various design methods are then compared with experimental results from strain gage measurements on test pressure vessels. Methods of flange fabrication such as hand lay-up, injection molding, filament winding, and others, are discussed for their relative merits in pressure vessel and piping applications. Both, integral and bonded flanges are covered as applicable to the various methods of fabrication, also the economic implications of these methods. Also treated are the problems of gasket selection, bolting and overbolting, gasket stresses, and leakage of flanged connections.

  18. Field evaluation of cable bolts for coal mine roof support

    SciTech Connect

    McDonnell, J.P.; Tadolini, S.C.; DiGrado, P.E.

    1995-09-01

    Cable supports offer several advantages over traditional secondary support methods by enhancing stress redistribution to pillars and gob areas, minimizing or eliminating timbers and cribs that reduce ventilation, eradicating material-handling injuries related to placement of crib supports, and providing a cost-effective alternative to secondary support. The US Bureau of Mines, in researching alternatives to traditional roof support methods, designed and installed high-strength cable supports to improve the stability of longwall gate road and bleeder entries in a Western US coal mine. With the cooperation of industry, methods were developed to install cable supports in a tailgate and bleeder entry test area using traditional resin cartridges. Resin-grouted cable bolts were also installed and evaluated in additional longwall gate road and bleeder entry systems at the study mine. The cable-bolted areas successfully maintained roof support throughout the tailgate and bleeder entries. Cable supports replaced wood cribbing as secondary support in the bleeder entry system and minimized the use of cribbing in the longwall tailgate entries. This report describes the theory, application, and advantages of cable supports and presents mine measurements made to assess the cable performance during the retreat process of longwall mining.

  19. Device for measuring hole elongation in a bolted joint

    NASA Technical Reports Server (NTRS)

    Wichorek, Gregory R. (Inventor)

    1987-01-01

    A device to determine the operable failure mode of mechanically fastened lightweight composite joints by measuring the hole elongation of a bolted joint is disclosed. The double-lap joint test apparatus comprises a stud, a test specimen having a hole, two load transfer plates, and linear displacement measuring instruments. The test specimen is sandwiched between the two load transfer plates and clamped together with the stud. Spacer washers are placed between the test specimen and each load transfer plate to provide a known, controllable area for the determination of clamping forces around the hole of the specimen attributable to bolt torque. The spacer washers also provide a gap for the mounting of reference angles on each side of the test specimen. Under tensile loading, elongation of the hole of the test specimen causes the stud to move away from the reference angles. This displacement is measured by the voltage output of two linear displacement measuring instruments that are attached to the stud and remain in contact with the reference angles throughout the tensile loading. The present invention obviates previous problems in obtaining specimen deformation measurements by monitoring the reference angles to the test specimen and the linear displacement measuring instruments to the stud.

  20. Performance of bolted closure joint elastomers under cask aging conditions

    SciTech Connect

    Verst, C.; Sindelar, R.; Skidmore, E.; Daugherty, W.

    2015-07-23

    The bolted closure joint of a bare spent fuel cask is susceptible to age-related degradation and potential loss of confinement function under long-term storage conditions. Elastomeric seals, a component of the joint typically used to facilitate leak testing of the primary seal that includes the metallic seal and bolting, is susceptible to degradation over time by several mechanisms, principally via thermo-oxidation, stress-relaxation, and radiolytic degradation under time and temperature condition. Irradiation and thermal exposure testing and evaluation of an ethylene-propylene diene monomer (EPDM) elastomeric seal material similar to that used in the CASTOR® V/21 cask for a matrix of temperature and radiation exposure conditions relevant to the cask extended storage conditions, and development of semiempirical predictive models for loss of sealing force is in progress. A special insert was developed to allow Compressive Stress Relaxation (CSR) measurements before and after the irradiation and/or thermal exposure without unloading the elastomer. A condition of the loss of sealing force for the onset of leakage was suggested. The experimentation and modeling being performed could enable acquisition of extensive coupled aging data as well as an estimation of the timeframe when loss of sealing function under aging (temperature/radiation) conditions may occur.

  1. Generic element formulation for modelling bolted lap joints

    NASA Astrophysics Data System (ADS)

    Ahmadian, Hamid; Jalali, Hassan

    2007-07-01

    Joints have significant effects on the dynamic response of the assembled structures due to existence of two non-linear mechanisms in their interface, namely slipping and slapping. These mechanisms affect the structural response by adding considerable damping into the structure and lowering the natural frequencies due to the stiffness softening. Neglecting these effects in modelling of joints produces errors in predictions of the structure responses. In this paper, a non-linear generic element formulation is developed for modelling bolted lap joints. The generic element is formed by satisfying all conditions that are known for a joint interface and hence providing a non-linear parametric formulation for the families of allowable joint models. Dynamic response of the developed model for the assembled structure including the generic joint interface element is obtained using the incremental harmonic balance (IHB) method. The generic parameters of the joint are identified by minimising the difference between the model response obtained from IHB method and the observed behaviour of the structure. The procedure is demonstrated by modelling an actual structure containing a single lap bolted joint in the middle. The frequency responses of the structure around the first two resonance frequencies are measured by exciting the structure using a sinusoidal force at each individual frequency. The measured responses are compared with the predictions of the model containing a parametric generic joint element. The parameters of the joint interface model are successfully identified by minimising the difference between the measured responses and the model predictions.

  2. Health monitoring of bolted joints using the time reversal method and piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Tao, Wang; Shaopeng, Liu; Junhua, Shao; Yourong, Li

    2016-02-01

    In this paper, the time reversal method based on piezoelectric active sensing is investigated for health monitoring of bolted joints. Experiments are conducted on bolted joints to study the relationship between the time reversal focused signal peak amplitudes and the bolt preload. Two piezoelectric patches are bonded on two different sides of a bolted joint. Any one of the piezoelectric patches can be used as an actuator to generate an ultrasonic wave, and the other one can be used as a sensor to detect the propagated wave. With the time reversal method, the received response signal is reversed in the time domain and then is re-emitted as an excitation signal to acquire the time reversal focused signals. The experimental results show that the time reversal focused signal peak amplitudes increase with the increasing bolt preload until reaching saturation, and when the bolt preload increases to a certain value, the focused signal peak amplitudes will remain unchanged. Experiments show that the surface roughness of the bolted joint impacts the saturation value. A higher surface roughness value corresponds to a higher saturation value. In addition, the proposed method has a high signal to noise ratio benefiting from the time reversal method time and space focusing ability.

  3. Determination of impact parameters and efficiency of 6.8/15 caliber captive bolt guns.

    PubMed

    Dörfler, Katharina; Troeger, Klaus; Lücker, Ernst; Schönekeß, Holger; Frank, Matthias

    2014-07-01

    While the morphological appearance of injuries due to powder-actuated captive bolt stunners has been extensively investigated, medicolegal literature contains, except for one work by Nadjem and Pollak (Arch Kriminol 203:91-102), no further investigations into the physical impact characteristics of these sharp-edged circular punching tools. However, basic physical parameters, such as bolt velocity, momentum, kinetic energy, and energy density, play a crucial role in the medicolegal and traumatological assessment of captive bolt stunners and the related injuries. And also, regulatory bodies demand a reliable and repeatable measurement test set-up for the determination of captive bolt stunners' impact characteristics. Therefore, it is the aim of this work to design and describe a test set-up based on one single photoelectric light barrier and to determine the impact parameters for a series of newly developed cal. 6.8/15 stunning devices. We found that bolt velocity ranges from v = 42 to 54 m/s, while momentum ranges from p = 11 to 14 Ns, and kinetic energy reaches values from E = 224 to 369 J. The efficiency of the captive bolt stunner, defined as the ratio of the kinetic energy of the stunner's bolt to the potential energy of industrial blank cartridges, also described in this work for the first time, was found to vary between 36 and 46 %. PMID:24398979

  4. Quantitative health monitoring of bolted joints using piezoceramic actuator-sensor

    NASA Astrophysics Data System (ADS)

    Ritdumrongkul, Sopon; Abe, Masato; Fujino, Yozo; Miyashita, Takeshi

    2003-08-01

    A non-destructive evaluation technique using piezoceramic (PZT) as an actuator-sensor has an ability to efficiently detect structural damage. In this technique, a PZT actuator-sensor patch is bonded on a structure. Through the measurement of its electrical impedance, which is related to mechanical impedance of the structure being bonded, the change in structure properties due to damage can be detected. This paper presents the use of PZT in structural health monitoring to quantitatively detect damage of bolted joints. The structure used in this study consists of two aluminum beams connected by a bolted joint. The damage is simulated by loosening of the bolts. To quantitatively monitor the damage, a numerical model of the structure is formulated. Spectral element method (SEM) based on wave propagation approach is used to model the structure. A bonded-PZT beam and a bolted joint element are developed by using SEM. The equations of motion are derived by using Hamilton's principle subsequently, the spectral element matrices are formulated. Experimental results show the ability of this method to detect the damage. By using the proposed model, the loosening of bolts can be quantitatively identified as the change in stiffness and damping at the bolted joint. Therefore, this method has high potential to quantitatively monitor damage of bolted joints.

  5. Experimental determination of satellite bolted joints thermal resistance

    NASA Technical Reports Server (NTRS)

    Mantelli, Marcia Barbosa Henriques; Basto, Jose Edson

    1990-01-01

    The thermal resistance was experimentally determined of the bolted joints of the first Brazilian satellite (SCD 01). These joints, used to connect the satellite structural panels, are reproduced in an experimental apparatus, keeping, as much as possible, the actual dimensions and materials. A controlled amount of heat is forced to pass through the joint and the difference of temperature between the panels is measured. The tests are conducted in a vacuum chamber with liquid nitrogen cooled walls, that simulates the space environment. Experimental procedures are used to avoid much heat losses, which are carefully calculated. Important observations about the behavior of the joint thermal resistance with the variation of the mean temperature are made.

  6. Dynamic characterization of bolted joints using FRF decoupling and optimization

    NASA Astrophysics Data System (ADS)

    Tol, Şerife; O¨zgu¨ven, H. Nevzat

    2015-03-01

    Mechanical connections play a significant role in predicting dynamic characteristics of assembled structures. Therefore, equivalent dynamic models for joints are needed. Due to the complexity of joints, it is difficult to describe joint dynamics with analytical models. Reliable models are generally obtained using experimental measurements. In this paper an experimental identification method based on FRF decoupling and optimization algorithm is proposed for modeling joints. In the method the FRFs of two substructures connected with a joint are measured, while the FRFs of the substructures are obtained numerically or experimentally. Then the joint properties are calculated in terms of translational, rotational and cross-coupling stiffness and damping values by using FRF decoupling. In order to eliminate the numerical errors associated with matrix inversion an optimization algorithm is used to update the joint values obtained from FRF decoupling. The validity of the proposed method is demonstrated with experimental studies with bolted joints.

  7. Development of an FPGA-based multipoint laser pyroshock measurement system for explosive bolts

    NASA Astrophysics Data System (ADS)

    Abbas, Syed Haider; Jang, Jae-Kyeong; Lee, Jung-Ryul; Kim, Zaeill

    2016-07-01

    Pyroshock can cause failure to the objective of an aerospace structure by damaging its sensitive electronic equipment, which is responsible for performing decisive operations. A pyroshock is the high intensity shock wave that is generated when a pyrotechnic device is explosively triggered to separate, release, or activate structural subsystems of an aerospace architecture. Pyroshock measurement plays an important role in experimental simulations to understand the characteristics of pyroshock on the host structure. This paper presents a technology to measure a pyroshock wave at multiple points using laser Doppler vibrometers (LDVs). These LDVs detect the pyroshock wave generated due to an explosive-based pyrotechnical event. Field programmable gate array (FPGA) based data acquisition is used in the study to acquire pyroshock signals simultaneously from multiple channels. This paper describes the complete system design for multipoint pyroshock measurement. The firmware architecture for the implementation of multichannel data acquisition on an FPGA-based development board is also discussed. An experiment using explosive bolts was configured to test the reliability of the system. Pyroshock was generated using explosive excitation on a 22-mm-thick steel plate. Three LDVs were deployed to capture the pyroshock wave at different points. The pyroshocks captured were displayed as acceleration plots. The results showed that our system effectively captured the pyroshock wave with a peak-to-peak magnitude of 303 741 g. The contribution of this paper is a specialized architecture of firmware design programmed in FPGA for data acquisition of large amount of multichannel pyroshock data. The advantages of the developed system are the near-field, multipoint, non-contact, and remote measurement of a pyroshock wave, which is dangerous and expensive to produce in aerospace pyrotechnic tests.

  8. Development of an FPGA-based multipoint laser pyroshock measurement system for explosive bolts.

    PubMed

    Abbas, Syed Haider; Jang, Jae-Kyeong; Lee, Jung-Ryul; Kim, Zaeill

    2016-07-01

    Pyroshock can cause failure to the objective of an aerospace structure by damaging its sensitive electronic equipment, which is responsible for performing decisive operations. A pyroshock is the high intensity shock wave that is generated when a pyrotechnic device is explosively triggered to separate, release, or activate structural subsystems of an aerospace architecture. Pyroshock measurement plays an important role in experimental simulations to understand the characteristics of pyroshock on the host structure. This paper presents a technology to measure a pyroshock wave at multiple points using laser Doppler vibrometers (LDVs). These LDVs detect the pyroshock wave generated due to an explosive-based pyrotechnical event. Field programmable gate array (FPGA) based data acquisition is used in the study to acquire pyroshock signals simultaneously from multiple channels. This paper describes the complete system design for multipoint pyroshock measurement. The firmware architecture for the implementation of multichannel data acquisition on an FPGA-based development board is also discussed. An experiment using explosive bolts was configured to test the reliability of the system. Pyroshock was generated using explosive excitation on a 22-mm-thick steel plate. Three LDVs were deployed to capture the pyroshock wave at different points. The pyroshocks captured were displayed as acceleration plots. The results showed that our system effectively captured the pyroshock wave with a peak-to-peak magnitude of 303 741 g. The contribution of this paper is a specialized architecture of firmware design programmed in FPGA for data acquisition of large amount of multichannel pyroshock data. The advantages of the developed system are the near-field, multipoint, non-contact, and remote measurement of a pyroshock wave, which is dangerous and expensive to produce in aerospace pyrotechnic tests. PMID:27475551

  9. A physical match of a metallic chip found on a bolt cutters' blade.

    PubMed

    Finkelstein, Nir; Volkov, Nikolai; Novoselsky, Yehuda; Tsach, Tsadok

    2015-05-01

    Bolt cutters are known as devices which are used for cutting hard objects and rigid materials such as padlocks and bars. They are commonly used in instances of forced entries. In this case study, a bolt cutter was found in the car of two suspects in a grocery burglary. This study indicates how the presence of a small metallic chip found on a suspected bolt cutter can prove that the tool was used in the crime scene. During the initial examination, a metallic chip from the cut shackle padlock was found stuck to one of the bolt cutters' blades. By comparing the metallic chip's microscopic edge and the breaking (fracture) line of the padlock's shackle, a full physical match was noticed. We wish to report here how residue, even the smallest, can be used to link burglary tools to a crime scene with a high level of certainty. PMID:25716459

  10. The characteristic of blind flanged bolted joints with full-face gaskets

    SciTech Connect

    Sawa, Toshiyuki

    1996-12-01

    In this paper, the characteristics of blind flanged bolted joints with full-face gaskets such as the contact stress distributions and the variation of axial bolt force are analyzed using axisymmetrical theory of elasticity. The effect of Young`s modulus of gaskets, the gasket thickness and the bolt pitch circle diameter on the contact stress distribution are clarified by the numerical calculations. In the experiments, the contact stress distributions were measured by sensitive films when the gasket is asbestos. Variations of axial bolt force are measured using strain gages. The internal pressure is observed when the internal fluid starts to leak. The numerical results are in fairly good agreement with the experimental results. Discussions are made on the sealing performance of gaskets used in these experiments.

  11. A Reduced Order Model of Force Displacement Curves for the Failure of Mechanical Bolts in Tension.

    SciTech Connect

    Moore, Keegan J.; Brake, Matthew Robert

    2015-12-01

    Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry causes issues when generating a mesh of the model. This report will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.

  12. Calculation of stress relaxation properties for type 422 stainless steel

    SciTech Connect

    Ellis, F.V.; Tordonato, S.

    2000-02-01

    Analytical life prediction methods are being developed for high-temperature turbine and valve studs/bolts. In order to validate the approach, the calculated results are compared to the results of uniaxial stress relaxation testing, bolt model testing, and service experience. Long time creep, creep-rupture, and stress relaxation tests were performed by the National Research Institute for Metals of Japan (NRIM) for 12 Cr-1 Mo-1 W-1/4V, Type 422 stainless steel bolting material, at 500, 550, and 600 C. Based on these results and limited tests for a service-exposed bolt, the creep behavior can be described using a two-parameter material model: {var_epsilon}/{var_epsilon}{sub r} = 1-(1-(t/t{sub r}){sup m+1}){sup {delta}} where {var_epsilon}{sub r} is the rupture strain, t{sub r} is the rupture time, and m and {delta} are material constants. For comparison with the measured uniaxial stress relaxation properties, the stress relaxation was calculated using the two-parameter creep equation and a strain-hardening flow rule. The rupture time data was correlated using time-temperature parameter methods. A power law was used for the rupture strain versus rupture time relationship at each temperature. The calculated stress versus time curves were in good agreement with the measured at all temperatures and for initial strain levels of 0.10, 0.15, 0.20, and 0.25%.

  13. Performance evaluation of bolt-cutter system on first Taurus launch

    NASA Astrophysics Data System (ADS)

    Baban, F.; Williams, R.; Amimoto, S.; Hansen, W.; Bixler, T.

    1994-10-01

    In rapid response to the request of the Space Test and Experimentation Directorate in Space Launch Operations, a launch-critical experimental investigation was conducted to evaluate the performance of a particular bolt-cutter system for separating stages on the first Taurus launch. The tests were to examine the variation of tension preloading on the bolt system and to demonstrate the tolerable margin on this parameter for such launches with the new types of bolts since the preloading was known to vary as much as 12% from a preset value before launch. We planned and carried out the experiment, designed and assembled the fixture to properly simulate flight application, and developed diagnostics. Four bolt cutters were purchased from the manufacturer for these tests, and one was provided by the contractor. In addition to the obvious requirement to demonstrate the successful severing of bolts under varying preloads, ignition-wire current and timing of chisel impact on the bolt were monitored. An optical diagnostic was designed to determine the flyout velocity and kinetic energy of the broken pieces. These latter measurements will be useful in anchoring performance codes simulating and assessing the structural dynamics of the bolt-cutter function for future missions. The tests were conducted successfully and the bolts were severed successfully in all five tests. The preloads were successively lowered from 2,500 lb to 2,250, 2,000, 1,500, and 1,000 lb These tests contributed in a timely manner to the STEP launch decision and to launch mission assurance. They demonstrated important margin to the nominally set 3,200 lb. preload. The entire complicated experimental program from inception to completion was accomplished in less than three weeks.

  14. Experimental analysis of thread movement in bolted connections due to vibrations

    NASA Technical Reports Server (NTRS)

    Ramsey, G. ED; Jenkins, Robert C.

    1995-01-01

    This is the final report of research project NAS8-39131 #33 sponsored by NASA's George C. Marshall Space Flight Center (MSFC) and carried out by the Civil Engineering Department of Auburn University (Auburn, Alabama) and personnel of MSFC. The objective of this study was to identify the main design parameters contributing to the loosening of bolts due to vibration and to identify their relative importance and degree of contribution to bolt loosening. Vibration testing was conducted on a shaketable with a controlled-random input in the dynamic testing laboratory of the Structural Test Division of MSFC. Test specimens which contained one test bolt were vibrated for a fixed amount of time and a percentage of pre-load loss was measured. Each specimen tested implemented some combination of eleven design parameters as dictated by the design of experiment methodology employed. The eleven design parameters were: bolt size (diameter), lubrication on bolt, hole tolerance, initial pre-load, nut locking device, grip length, thread pitch, lubrication between mating materials, class of fit, joint configuration, and mass of configuration. These parameters were chosen for this experiment because they are believed to be the design parameters having the greatest impact on bolt loosening. Two values of each design parameter were used and each combination of parameters tested was subjected to two different directions of vibration and two different g-levels of vibration. One replication was made for each test to gain some indication of experimental error and repeatability and to give some degree of statistical credibility to the data, resulting in a total of 96 tests being performed. The results of the investigation indicated that nut locking devices, joint configuration, fastener size, and mass of configuration were significant in bolt loosening due to vibration. The results of this test can be utilized to further research the complex problem of bolt loosening due to vibration.

  15. Experimental analysis of thread movement in bolted connections due to vibrations

    NASA Technical Reports Server (NTRS)

    Ramey, G. ED; Jenkins, Robert C.

    1994-01-01

    The objective of this study was to identify the main design parameters contributing to loosening of bolts due to vibration and to identify their relative importance and degree of contribution to bolt loosening. Vibration testing was conducted on a shaketable with a controlled-random input in the dynamic testing laboratory of the Structural Test Division of MSFC. Test specimens which contained one test bolt were vibrated for a fixed amount of time and percentage of pre-load loss was measured. Each specimen tested implemented some combination of eleven design parameters as dictated by the design of experiment methodology employed. The eleven design parameters were: bolt size (diameter), lubrication on bolt, hole tolerance, initial pre-load, nut locking device, grip length, thread pitch, lubrication between mating materials, class of fit, joint configuration and mass of configuration. These parameters were chosen for this experiment because they are believed to be the design parameters having the greatest impact on bolt loosening. Two values of each design parameter were used and each combination of parameters tested was subjected to two different directions of vibration and two different g-levels of vibration. One replication was made for each test to gain some indication of experimental error and repeatability and to give some degree of statistical credibility to the data, resulting in a total of 96 tests being performed. The results of the investigation indicated that nut locking devices, joint configuration, fastener size, and mass of configuration were significant in bolt loosening due to vibration. The results of this test can be utilized to further research the complex problem of bolt loosening due to vibration.

  16. Evaluation of mounting bolt loads for Space Shuttle Get Away Special (GAS) adapter beam

    NASA Technical Reports Server (NTRS)

    Talapatra, D. C.

    1983-01-01

    During the prototype vibration tests of the GAS adapter beam, significant impacting of the beam at its support points was observed. The cause of the impacting was traced to gaps under the mounting bolt heads. Because of the nonlinear nature of the response, it was difficult to evaluate the effects which Shuttle launch dynamics might have on the mounting bolt loads. A series of tests were conducted on an electrodynamic exciter in which the transient acceleration time histories, which had been measured during the Space Transportation System-1 (STS-1; Space Shuttle mission 1) launch, were simulated. The actual flight data had to be filtered and compensated so that it could be reproduced on the shaker without exceeding displacement and velocity limitations. Mounting bolt loads were measured directly by strain gages applied to the bolts. Various gap thicknesses and bolt torques were investigated. Although increased gap thickness resulted in greater accelerations due to impacting, the bolt loads were not significantly affected. This is attributed to the fact that impacting excited mostly higher frequency modes which do not have significant modal mass.

  17. Nonlinear Bending Stiffness of Plates Clamped by Bolted Joints under Bending Moment

    NASA Astrophysics Data System (ADS)

    Naruse, Tomohiro; Shibutani, Yoji

    Equivalent stiffness of plates clamped by bolted joints for designing should be evaluated according to not only the strength of bolted joints but also the deformation and vibration characteristics of the structures. When the applied external axial load or the bending moment is sufficiently small, the contact surfaces of the bolted joint are stuck together, and thus both the bolt and the clamped plates deform linearly. Although the sophisticated VDI 2230 code gives the appropriate stiffness of clamped plates for the infinitesimal deformation, the stiffness may vary nonlinearly with increasing the loading because of changing the contact state. Therefore, the present paper focuses on the nonlinear behaviour of the bending stiffness of clamped plates by using Finite Element (FE) analyses, taking the contact condition on bearing surfaces and between the plates into account. The FE models of the plates with thicknesses of 3.2, 4.5, 6.0 and 9.0 mm tightened with M8, 10, 12 and 16 bolts were constructed. The relation between bending moment and bending compliance of clamped plates is found to be categorized into three regions, namely, (i) constant compliance with fully stuck contact surfaces, (ii) transition showing the nonlinear compliance, and (iii) constant compliance with one-side contact surfaces. The mechanical models for these three regions are proposed and compared with FEM solutions. The prediction on the bounds of three regions is in a fairly good agreement except the case with smaller bolts and thicker plates.

  18. A new approach for field instrumentation in grouted rock bolt monitoring using guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Zou, D. H.; Cui, Y.

    2011-11-01

    A rock bolt installed in the field for ground support has only one short exposed end on the rock surface. This condition has posed challenges in field instrumentation. In this paper, a new approach for field monitoring of grouted rock bolts using guided ultrasonic waves is proposed with the receiving transducer on the grout surface near the exposed end of the bolt. The effects of the receiver location are studied with numerical modeling. A location correction factor is introduced to correlate the amplitude ratio along the bolt and that on the grout surface. Experiments are conducted to verify the modeling results. This research indicates that it is practically possible to receive meaningful signals with the receiver on the grout surface and that with the recorded data the attenuation and wave velocity of guided waves in grouted rock bolts can be determined with reasonable accuracy. The proper receiver location is found to be 27 to 32 mm from the bolt center for the test condition.

  19. Experimental studies on the effects of bolt parameters on the bearing characteristics of reinforced rock.

    PubMed

    Cheng, Liang; Zhang, Yidong; Ji, Ming; Zhang, Kai; Zhang, Minglei

    2016-01-01

    Roadways supported by bolts contain support structures that are built into the rock surrounding the roadway, referred to as reinforced rocks in this paper. Using physical model simulation, the paper investigates the bearing characteristics of the reinforced rock under different bolt parameters with incrementally increased load. The experimental results show that the stress at the measurement point inside the structure varies with the kinetic pressure. The stress increases slowly as the load is initially applied, displays accelerated growth in the middle of the loading application, and decreases or remains constant in the later stage of the loading application. The change in displacement of the surrounding rock exhibits the following characteristics: a slow increase when the load is first applied, accelerated growth in the middle stage, and violent growth in the later stage. There is a good correlation between the change in the measured stress and the change in the surrounding rock displacement. Increasing the density of the bolt support and the length and diameter of the bolt improves the load-bearing performance of the reinforced rock, including its strength, internal peak stress, and residual stress. Bolting improves the internal structure of the surrounding rocks, and the deterioration of the surrounding rock decreases with the distance between the bolt supports. PMID:27386315

  20. Quantitative health monitoring of bolted joints using a piezoceramic actuator sensor

    NASA Astrophysics Data System (ADS)

    Ritdumrongkul, Sopon; Abe, Masato; Fujino, Yozo; Miyashita, Takeshi

    2004-02-01

    The non-destructive evaluation technique using a piezoceramic (PZT) as an actuator-sensor has a potential to efficiently detect structural damage. In this technique, a PZT actuator-sensor patch is bonded on a structure. Through the measurement of its electrical impedance, which is related to the mechanical impedance of the structure being bonded, the change in structural properties due to damage can be detected. This paper presents the use of a PZT actuator-sensor in conjunction with numerical model-based methodology in structural health monitoring to quantitatively detect damage of bolted joints. The structure used in this study consists of two aluminium beams connected by a bolted joint. The damage was simulated by loosening the bolts. To quantitatively monitor the damage, a numerical model of the structure was formulated. A spectral element method (SEM), based on a wave propagation approach, was used to model the structure. A bonded-PZT beam and a bolted joint element were developed by using the SEM. The equations of motion were derived by using Hamilton's principle and then the spectral element matrices were formulated. Experimental results show the effectiveness of this method to detect the damage. By using the proposed model, the loosening of bolts can be quantitatively identified as the change in stiffness and damping at the bolted joint, indicating a high potential of this method in order to quantitatively monitor structural damage.

  1. Influence of fretting on flexural fatigue of 304 stainless steel and mild steel

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Rohn, D. A.

    1978-01-01

    Fretting fatigue experiments conducted on 304 stainless steel using a flexural fatigue test arrangement with bolted on fretting pads demonstrated that fatigue life is reduced by at least a factor of 10 in the 265 to 334 MPa (38,500 - to 48,500 psi) nominal flexural fatigue stress range. In addition, experiments in which the fretting pads were removed after selected numbers of cycles, followed by continued flexural fatigue without fretting show that continued fretting beyond 50,000 cycles does not significantly further reduce fatigue life of 304 stainless steel at 317 MPa (46,000 psi). Microscopic examination of the fretted contact areas revealed fracture initiation sites as well as numerous cracks that did not propagate to failure. Flexural fretting fatigue experiments performed on mild steel showed an insensitivity of fatigue life to the incidence of fretting under flexural stress conditions of from 162 to 217 MPa (23,500 to 31,500 psi).

  2. Assessing the effects of insufficient rebar and missing grout in grouted rock bolts using guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Zou, D. H.

    2012-04-01

    One of the challenges in field monitoring of grouted rock bolts, which normally have a short exposed end, is to detect the defects of the bolt or grout. In this paper, grouted rock bolts are studied using guided ultrasonic waves. Numerical modeling for grouted rock bolts is performed to assess the effects of insufficient rebar and missing grout. The numerical results are verified with laboratory tests on rock bolt samples. With introduction of correction factors at the reflection end, the results indicate that it is practically possible to identify insufficient rebar and grout defects with guided ultrasonic signals received at the exposed end. It also indicates that with the attenuation and wave velocity of guided waves, defective rock bolts with insufficient rebar length or missing grout in the ground can be detected with reasonable accuracy.

  3. Nuts and Bolts of the Ion Band State Theory

    NASA Astrophysics Data System (ADS)

    Chubb, Scott R.

    2005-12-01

    The nuts and bolts of our ion band state theory of low energy nuclear reactions (LENR's) in palladium-deuteride (PdD) and palladium-hydride (PdH) are the electrons that hold together or tear apart the bonds (or lack of bonds) between deuterons (d's) or protons (p's) and the host material. In PdDx and PdHx, this bonding is strongly correlated with loading. In ambient loading conditions (x ≲ 0.6), bonding inhibits ion band state occupation. As x → 1, slight increases and decreases in loading can induce "vibrations" (which have conventionally been thought to occur from phonons) that can induce potential losses or increases of p/d. Naive assumptions about phonons fail to include these losses and increases. These effects can occur because neither H or D has core electrons and because in either PdD or PdH, the electrons near the Fermi energy have negligible overlap with the nucleus of either D or H. In the past, implicitly, we have used these facts to justify our ion band state theory. Here, we present a more formal justification, based on the relationship between H(D) ion band states (IBS's) and H(D) phonons that includes a microscopic picture that explains why occupation of IBS's can occur in PdD and PdH and how this can lead to nuclear reactions.

  4. Torque Limit for Bolted Joint For Composites. Part B; Experimentation

    NASA Technical Reports Server (NTRS)

    Kostreva, Kristian M.

    2003-01-01

    Today, aerospace quality composite parts are generally made from either a unidirectional tape or a fabric prepreg form depending on the application. The matrix material, typically epoxy because of it dimensional stability, is pre-impregnated onto the fibers to ensure uniform distribution. Both of these composite forms are finding themselves used in applications where a joint is required. Two widely used joint methods are the classic mechanically fastened joint, and the contemporary bonded joint; however, the mechanically fastened joint is most commonly used by design engineers. A major portion of the research up-to-date about bolted composite joints has dealt with the inplane static load capacity. This work has helped to spawn standards dealing with filled-hole static joint strength. Other research has clearly shown that the clamp-up load in the mechanical fastener significantly affects the joint strength in a beneficial manner by reducing the bearing strength dependence of the composite laminate. One author reported a maximum increase in joint strength of 28%. This finding has helped to improve the reliability and efficiency of the joint in a composite structure.

  5. Transcriptomic Analysis Identifies Differentially Expressed Genes (DEGs) Associated with Bolting and Flowering in Radish (Raphanus sativus L.)

    PubMed Central

    Nie, Shanshan; Li, Chao; Wang, Yan; Xu, Liang; Muleke, Everlyne M.; Tang, Mingjia; Sun, Xiaochuan; Liu, Liwang

    2016-01-01

    The transition of vegetative growth to bolting and flowering is an important process in the life cycle of plants, which is determined by numerous genes forming an intricate network of bolting and flowering. However, no comprehensive identification and profiling of bolting and flowering-related genes have been carried out in radish. In this study, RNA-Seq technology was applied to analyze the differential gene expressions during the transition from vegetative stage to reproductive stage in radish. A total of 5922 differentially expressed genes (DEGs) including 779 up-regulated and 5143 down-regulated genes were isolated. Functional enrichment analysis suggested that some DEGs were involved in hormone signaling pathways and the transcriptional regulation of bolting and flowering. KEGG-based analysis identified 37 DEGs being involved in phytohormone signaling pathways. Moreover, 95 DEGs related to bolting and flowering were identified and integrated into various flowering pathways. Several critical genes including FT, CO, SOC1, FLC, and LFY were characterized and profiled by RT-qPCR analysis. Correlation analysis indicated that 24 miRNA-DEG pairs were involved in radish bolting and flowering. Finally, a miRNA-DEG-based schematic model of bolting and flowering regulatory network was proposed in radish. These outcomes provided significant insights into genetic control of radish bolting and flowering, and would facilitate unraveling molecular regulatory mechanism underlying bolting and flowering in root vegetable crops. PMID:27252709

  6. Transcriptomic Analysis Identifies Differentially Expressed Genes (DEGs) Associated with Bolting and Flowering in Radish (Raphanus sativus L.).

    PubMed

    Nie, Shanshan; Li, Chao; Wang, Yan; Xu, Liang; Muleke, Everlyne M; Tang, Mingjia; Sun, Xiaochuan; Liu, Liwang

    2016-01-01

    The transition of vegetative growth to bolting and flowering is an important process in the life cycle of plants, which is determined by numerous genes forming an intricate network of bolting and flowering. However, no comprehensive identification and profiling of bolting and flowering-related genes have been carried out in radish. In this study, RNA-Seq technology was applied to analyze the differential gene expressions during the transition from vegetative stage to reproductive stage in radish. A total of 5922 differentially expressed genes (DEGs) including 779 up-regulated and 5143 down-regulated genes were isolated. Functional enrichment analysis suggested that some DEGs were involved in hormone signaling pathways and the transcriptional regulation of bolting and flowering. KEGG-based analysis identified 37 DEGs being involved in phytohormone signaling pathways. Moreover, 95 DEGs related to bolting and flowering were identified and integrated into various flowering pathways. Several critical genes including FT, CO, SOC1, FLC, and LFY were characterized and profiled by RT-qPCR analysis. Correlation analysis indicated that 24 miRNA-DEG pairs were involved in radish bolting and flowering. Finally, a miRNA-DEG-based schematic model of bolting and flowering regulatory network was proposed in radish. These outcomes provided significant insights into genetic control of radish bolting and flowering, and would facilitate unraveling molecular regulatory mechanism underlying bolting and flowering in root vegetable crops. PMID:27252709

  7. Effects of bolt torque and contact resistance on the performance of the polymer electrolyte membrane electrolyzers

    NASA Astrophysics Data System (ADS)

    Selamet, Omer F.; Ergoktas, M. Said

    2015-05-01

    The effect of bolt torque and contact resistance on the performance of Proton Exchange Membrane (PEM) Electrolyzers are investigated by a 50 cm2 cell. The cell is designed and manufactured in house. The performance and contact resistance of the cell with three different gasket materials for demanding bolt torques are measured. The pressure distribution inside the cell is obtained by using pressure sensitive films. The pressure acting on the membrane electrode assembly (MEA) is calculated by analyzing and quantifying intensities of pressure film images. 3D plots of pressure distribution for predefined bolt torque values are obtained to understand the pressure distribution over the active area. The performance of the cell is enhanced when bolt torque is increased. However, beyond a value, relatively weak cell components such as diffusion layers are damaged and performance loss is observed due to the mass transfer limitations. The best efficiency is reached at 15 Nm bolt torque for Polytetrafluoroethylene (PTFE) and Ethylene Propylene Diene Monomer (EPDM) gaskets. For silicon gasket best efficiency is reached at 15 Nm at lower current densities and at 10 Nm at higher current densities. Increasing clamping pressure is found to be developing more contact points between the interfaces and results in decrease in contact resistance inside the cell.

  8. PIXE Analysis of Metal Hull Bolts From HMB DeBraak

    SciTech Connect

    Correll, Francis D.; Cole, Lord K.; Slater, Charles J.; Vanhoy, Jeffrey R.; Fithian, Charles H.

    2009-03-10

    HMB DeBraak was a 16-gun British brig-sloop that sank in a squall on May 25, 1798 off Cape Henlopen, Delaware. Silt covered the wooden hull shortly after it sank, preserving it until DeBraak was raised in 1986. The items recovered from the ship include metal bolts that held the hull together. We used PIXE to measure the compositions of 45 of the bolts and found that they are nearly pure copper (98.3% on average), with most also containing small amounts of iron (0.87%), nickel (0.039%), arsenic (0.43%), silver (0.089%), lead (0.18%), and bismuth (0.12%). A few contain a little indium, tin, or antimony, but none contain zinc above the quantization level. The compositions are similar to those reported for 18th-century English copper, but different from several copper alloys also used to make hull bolts. We conclude that, when DeBraak was last fitted out in 1795-1797, the Royal Navy was still using bolts similar to William Forbes's mechanically hardened pure copper bolts. Forbes's process represents the successful innovation and application of new technology in Royal Navy ships during the wars of the late 18th century.

  9. Grout quality and its impact on guided ultrasonic waves in grouted rock bolts

    NASA Astrophysics Data System (ADS)

    Zou, D. H. Steve; Cheng, Jiulong; Yue, Renjie; Sun, Xiaoyun

    2010-10-01

    Rock bolts are widely used in mining and geotechnical engineering as ground anchorage. The supporting capacity of grouted rock bolts depends greatly on the grout quality in rocks. Measurement of the grout quality in the field is an outstanding issue. In an effort to develop a non-destructive method for estimating the grout quality of grouted rock bolts, the characteristics of guided ultrasonic waves are investigated in this paper. Particular attention is paid to the effects of grout quality on group wave velocity and attenuation. Issues associated to grout quality and bolt failure are also discussed. To simulate the in-situ condition, several specimens were prepared using 20 mm diameter rebar. Each specimen was grouted in a 200 mm diameter concrete cylinder, which was designed with different compressive strength. A large number of tests were conducted on these specimens using ultrasonic waves with frequencies from 10 to 100 kHz. The effects of air content and compressive strength of the grout on attenuation and group velocity of ultrasonic waves in the grouted rock bolts were studied. The results showed large influence from the grout strength and air content and demonstrated the potential for using ultrasonic waves to test grout quality.

  10. Submillimeter bolt location in car bodywork for production line quality inspection

    NASA Astrophysics Data System (ADS)

    Altamirano-Robles, Leopoldo; Arias-Estrada, Miguel; Alviso-Quibrera, Samuel; Lopez-Lopez, Aurelio

    2000-03-01

    In the automotive industry, a vehicle begins with the construction of the vehicle floor. Later on, several robots weld a series of bolts to this floor which are used to fix other parts. Due to several problems, like welding tools wearing, robot miscalibration or momentary low power supply, among others, some bolts are incorrectly positioned or are not present at all, bringing problems and delays in the next work cells. Therefore, it is of importance to verify the quality of welded parts before the following assembly steps. A computer vision system is proposed in order to locate autonomously the presence and quality of the bolts. The system should carry on the inspection in real time at the car assembly line under the following conditions: without touching the bodywork, with a precision in the submillimeter range and in few seconds. In this paper we present a basic computer vision system for bolt location in the submillimeter range. We analyze three arrangements of the system components (camera and illumination sources) that produce different results in the localization. Results are presented and compared for the three approaches obtained under laboratory conditions. The algorithms were tested in the assembling line. Variations up to one millimeter in the welded position of the bolts were observed.

  11. Proteomic and gene expression analyses during bolting-related leaf color change in Brassica rapa.

    PubMed

    Zhang, Y W; Guo, M H; Tang, X B; Jin, D; Fang, Z Y

    2016-01-01

    Bolting and flowering are key processes during the growth and development of Chinese cabbage (Brassica rapa L. ssp pekinensis). Understanding the molecular mechanisms underlying bolting and flowering is of significance for improving production of the vegetable. A leaf-color change from bright green to gray-green has been observed following differentiation of the flowering stem and before bolting in the vegetable, and is considered to be a signal for bolting. Proteomics in meristem tissues of an inbred line (C30) were analyzed by two-dimensional electrophoresis during the transition period. We found that some proteins were specifically expressed while others were differentially expressed. Among these, 17 proteins were specifically expressed before the color change, 18 were specifically expressed after the color change, 21 were downregulated during the color change, and 29 were upregulated. Mass spectrometric analysis (MALDI-TOF-TOF/MS) was used to analyze 17 protein spots, and four proteins (subunit E1 of vacuolar-type H+ transporter ATPase, the large subunit of Rubicon, S-adenosylmethionine synthetase, and tubulin α-2) were identified. qPCR analysis was conducted to quantify the expression of genes encoding these proteins during the transitional period. The expression of BrVHA-E1, BrSAMS, BrrbcL, and BrTUA6 was significantly different before and after the leaf-color change, suggesting that these genes might be involved in regulating flower differentiation and bolting. PMID:27525926

  12. Load apparatus and method for bolt-loaded compact tension test specimen

    DOEpatents

    Buescher, B.J. Jr.; Lloyd, W.R.; Ward, M.B.; Epstein, J.S.

    1997-02-04

    A bolt-loaded compact tension test specimen load apparatus includes: (a) a body having first and second opposing longitudinal ends, the first end comprising an externally threaded portion sized to be threadedly received within the test specimen threaded opening; (b) a longitudinal loading rod having first and second opposing longitudinal ends, the loading rod being slidably received in a longitudinal direction within the body internally through the externally threaded portion and slidably extending longitudinally outward of the body first longitudinal end; (c) a force sensitive transducer slidably received within the body and positioned to engage relative to the loading rod second longitudinal end; and (d) a loading bolt threadedly received relative to the body, the loading bolt having a bearing end surface and being positioned to bear against the transducer to forcibly sandwich the transducer between the loading bolt and loading rod. Also disclosed is a method of in situ determining applied force during crack propagation in a bolt-loaded compact tension test specimen. 6 figs.

  13. Load apparatus and method for bolt-loaded compact tension test specimen

    DOEpatents

    Buescher, Jr., Brent J.; Lloyd, W. Randolph; Ward, Michael B.; Epstein, Jonathan S.

    1997-01-01

    A bolt-loaded compact tension test specimen load apparatus includes: a) a body having first and second opposing longitudinal ends, the first end comprising an externally threaded portion sized to be threadedly received within the test specimen threaded opening; b) a longitudinal loading rod having first and second opposing longitudinal ends, the loading rod being slidably received in a longitudinal direction within the body internally through the externally threaded portion and slidably extending longitudinally outward of the body first longitudinal end; c) a force sensitive transducer slidably received within the body and positioned to engage relative to the loading rod second longitudinal end; and d) a loading bolt threadedly received relative to the body, the loading bolt having a bearing end surface and being positioned to bear against the transducer to forcibly sandwich the transducer between the loading bolt and loading rod. Also disclosed is a method of in situ determining applied force during crack propagation in a bolt-loaded compact tension test specimen.

  14. International Space Station Powered Bolt Nut Anomaly and Failure Analysis Summary

    NASA Technical Reports Server (NTRS)

    Sievers, Daniel E.; Warden, Harry K.

    2010-01-01

    A key mechanism used in the on-orbit assembly of the International Space Station (ISS) pressurized elements is the Common Berthing Mechanism. The mechanism that effects the structural connection of the Common Berthing Mechanism halves is the Powered Bolt Assembly. There are sixteen Powered Bolt Assemblies per Common Berthing Mechanism. The Common Berthing Mechanism has a bolt which engages a self aligning Powered Bolt Nut (PBN) on the mating interface (Figure 1). The Powered Bolt Assemblies are preloaded to approximately 84.5 kN (19000 lb) prior to pressurization of the CBM. The PBNs mentioned below, manufactured in 2009, will be used on ISS future missions. An on orbit functional failure of this hardware would be unacceptable and in some instances catastrophic due to the failure of modules to mate and seal the atmosphere, risking loss of crew and ISS functions. The manufacturing processes that create the PBNs need to be strictly controlled. Functional (torque vs. tension) acceptance test failures will be the result of processes not being strictly followed. Without the proper knowledge of thread tolerances, fabrication techniques, and dry film lubricant application processes, PBNs will be, and have been manufactured improperly. The knowledge gained from acceptance test failures and the resolution of those failures, thread fabrication techniques and thread dry film lubrication processes can be applied to many aerospace mechanisms to enhance their performance. Test data and manufactured PBN thread geometry will be discussed for both failed and successfully accepted PBNs.

  15. International Space Station Powered Bolt Nut Anomaly and Failure Analysis Summary

    NASA Technical Reports Server (NTRS)

    Sievers, Daniel E.; Warden, Harry K.

    2010-01-01

    A key mechanism used in the on-orbit assembly of the International Space Station (ISS) pressurized elements is the Common Berthing Mechanism (CBM). The mechanism that effects the structural connection of the CBM halves is the Powered Bolt Assembly. There are sixteen Powered Bolt Assemblies per CBM. The CBM has a bolt which engages a self aligning Powered Bolt Nut (PBN) on the mating interface; see Figure 1. The Powered Bolt Assemblies are preloaded to approximately 19 kilo pounds (KIPs) prior to pressurization of the CBM. The PBNs mentioned below, manufactured in 2009, will be used on ISS future missions. An on orbit functional failure of this hardware would be unacceptable and in some instances catastrophic due to the failure of modules to mate and seal the atmosphere, risking loss of crew and ISS functions. The manufacturing processes which create the PBNs need to be strictly controlled. Functional (torque vs. tension) acceptance test failures will be the result of processes not being strictly followed. Without the proper knowledge of thread tolerances, fabrication techniques, and dry film lubricant application processes, PBNs will be, and have been manufactured improperly. The knowledge gained from acceptance test failures and the resolution of those failures, thread fabrication techniques and thread dry film lubrication processes can be applied to many aerospace mechanisms to enhance their performance. Test data and manufactured PBN thread geometry will be discussed for both failed and successfully accepted PBNs.

  16. Nonrotating, self-centering anchor assembly for anchoring a bolt in a borehole

    DOEpatents

    Bevan, John E.; King, Grant W.

    1998-01-01

    An expandable anchor assembly is provided for anchoring the threaded end portion of an elongated roof bolt in a borehole. The anchoring assembly includes a hollow outer sleeve in the form of a plurality of symmetrically arranged, longitudinal segmented wall portions with exterior gripping teeth and an inner expander sleeve in the form of a corresponding plurality of longitudinal wall portions symmetrically arranged about a central axis to define an inner threaded cylindrical section. The inner sleeve is captured within and moveable axially relative to the outer sleeve. As the threaded end portion of the elongated bolt is inserted into the inner threaded cylindrical section of the inner sleeve from the trailing end to the leading end thereof, the inner sleeve expands over and clamps around the threaded end portion of the elongated bolt. Thereafter, partial withdrawal of the elongated bolt from the borehole causes the inner sleeve to axially move relative to the outer sleeve from the leading end toward the trailing end of the outer sleeve in a wedging action to cause the outer sleeve to radially expand and force engagement of the gripping teeth against the sidewall of the borehole to thereby secure the expandable anchor assembly and therewith the threaded end portion of the elongated bolt within the borehole.

  17. Nonrotating, self-centering anchor assembly for anchoring a bolt in a borehole

    DOEpatents

    Bevan, J.E.; King, G.W.

    1998-12-08

    An expandable anchor assembly is provided for anchoring the threaded end portion of an elongated roof bolt in a borehole. The anchoring assembly includes a hollow outer sleeve in the form of a plurality of symmetrically arranged, longitudinal segmented wall portions with exterior gripping teeth and an inner expander sleeve in the form of a corresponding plurality of longitudinal wall portions symmetrically arranged about a central axis to define an inner threaded cylindrical section. The inner sleeve is captured within and moveable axially relative to the outer sleeve. As the threaded end portion of the elongated bolt is inserted into the inner threaded cylindrical section of the inner sleeve from the trailing end to the leading end thereof, the inner sleeve expands over and clamps around the threaded end portion of the elongated bolt. Thereafter, partial withdrawal of the elongated bolt from the borehole causes the inner sleeve to axially move relative to the outer sleeve from the leading end toward the trailing end of the outer sleeve in a wedging action to cause the outer sleeve to radially expand and force engagement of the gripping teeth against the sidewall of the borehole to thereby secure the expandable anchor assembly and therewith the threaded end portion of the elongated bolt within the borehole. 8 figs.

  18. Structural analysis of a bolted joint concept for the Space Shuttle's solid rocket motor casing

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C.; Stalnaker, Winifred A.

    1987-01-01

    The Space Shuttle Challenger accident is thought to have been caused by the failure of one of the tang-clevis joints which join together the casing segments of the Solid Rocket Motors (SRM). Excessive displacement between the tang and clevis, possibly unseating the O-ring seals, may have initiated the resulting accident. An effort was undertaken at NASA's Langley Research Center to design an alternative concept for mating the casing segments. A bolted flanged joint concept was designed and analyzed to determine if the concept would effectively maintain a seal while minimizing joint weight and controlling stress levels. It is shown that under the loading condition analyzed the seal area of the joint remains seated. The only potential stress problem is a stress concentration in the flange at the edge of the bolt hole, which is highly localized. While heavier than the existing joint, this concept does have some advantages which make the bolted joint an attractive alternative.

  19. Simulation and design of ECT differential bobbin probes for the inspection of cracks in bolts

    NASA Astrophysics Data System (ADS)

    Ra, S. W.; Im, K. H.; Lee, S. G.; Kim, H. J.; Song, S. J.; Kim, S. K.; Cho, Y. T.; Woo, Y. D.; Jung, J. A.

    2015-12-01

    All Various defects could be generated in bolts for a use of oil filters for the manufacturing process and then may affect to the safety and quality in bolts. Also, fine defects may be imbedded in oil filter system during multiple forging manufacturing processes. So it is very important that such defects be investigated and screened during the multiple manufacturing processes. Therefore, in order effectively to evaluate the fine defects, the design parameters for bobbin-types were selected under a finite element method (FEM) simulations and Eddy current testing (ECT). Especially the FEM simulations were performed to make characterization in the crack detection of the bolts and the parameters such as number of turns of the coil, the coil size and applied frequency were calculated based on the simulation results.

  20. Structural analysis of a bolted joint concept for the space shuttle's solid rocket motor casing

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C.; Stalnaker, Winifred A.

    1987-01-01

    The Space Shuttle Challenger accident is thought to have been caused by the failure of one of the tang-clevis joints joining together the casing segments of the Solid Rocket Motors (SRM). Excessive displacement between the tang and clevis, possibly unseating the O-ring seals, may have initiated the resulting accident. An effort was made at NASA Langley Research Center to design an alternative concept for mating the casing segments. A bolted flange joint concept was designed and analyzed to determine if the concept would effectively maintain a seal while minimizing joint weight and controlling stress levels. It is shown that under the loading conditions analyzed the seal area of the joint remains seated. The only potential stress problem is a stress concentration in the flange at the edge of the bolt hole, which is highly localized. While heavier than the existing joint, this concept does have some advantages making the bolted joint an attractive alternative.

  1. Investigation of corrosion and stress corrosion cracking in bolting materials on light water reactors

    SciTech Connect

    Czajkowski, C.J.

    1985-01-01

    Laboratory experiments performed at BNL have shown that the concentration of boric acid to a moist paste at approximately the boiling point of water can produce corrosion rates of the order of several tenths of an inch per year on bolting and piping materials, which values are consistent with service experience. Other failure evaluation experience has shown that primary coolant/lubricant interaction may lead to stress corrosion cracking (SCC) of steam generator manway studs. An investigation was also performed on eleven lubricants and their effects on A193 B7 and A540 B24 bolting materials. H/sub 2/S generation by the lubricants, coefficient of friction results and transgranular SCC of the bolting materials in steam are discussed. 13 refs.

  2. Investigation of Turn-of-Nut Method for Slip-Critical Joints of Aluminum Using A325 Bolts

    SciTech Connect

    Luttrell, C R

    1998-01-01

    Slip-critical bolted joints will be used to join aluminum bridge deck sections by Reynolds Metals Company (RMC). To help ensure that a joint does not slip the proper bolt clamping force to achieve what is known as a friction connection must be determined.

  3. Thermal conductance measurements of bolted copper joints for SuperCDMS

    SciTech Connect

    Schmitt, R. L.; Tatkowski, G.; Ruschman, M.; Golwala, S.; Kellaris, N.; Daal, M.; Hall, J.; Hoppe, E. W.

    2015-04-28

    Joint thermal conductance testing has been undertaken for bolted copper to copper connections from 60 mK to 26 K. This testing was performed to validate an initial design basis for the SuperCDMS experiment, where a dilution refrigerator will be coupled to a cryostat via multiple bolted connections. Copper used during testing was either gold plated or passivated with citric acid to prevent surface oxidation. Finally, the results we obtained are well fit by a power law regression of joint thermal conductance to temperature and match well with data collected during a literature review.

  4. Nonlinear Analysis of a Bolted Marine Riser Connector Using NASTRAN Substructuring

    NASA Technical Reports Server (NTRS)

    Fox, G. L.

    1984-01-01

    Results of an investigation of the behavior of a bolted, flange type marine riser connector is reported. The method used to account for the nonlinear effect of connector separation due to bolt preload and axial tension load is described. The automated multilevel substructing capability of COSMIC/NASTRAN was employed at considerable savings in computer run time. Simplified formulas for computer resources, i.e., computer run times for modules SDCOMP, FBS, and MPYAD, as well as disk storage space, are presented. Actual run time data on a VAX-11/780 is compared with the formulas presented.

  5. Response of garlic (Allium sativum L.) bolting and bulbing to temperature and photoperiod treatments.

    PubMed

    Wu, Cuinan; Wang, Mengyi; Cheng, Zhihui; Meng, Huanwen

    2016-01-01

    This research was conducted to evaluate the effect of temperature and photoperiod treatments on the bolting and bulb formation of three local garlic cultivars (cvs) in two consecutive years. Naturally vernalized plants of cvs G107, G025 and G064 were transplanted into growth chambers and subjected to various combinations of temperature [T15/10, 15°C/10°C; T20/15, 20°C/15°C and T25/18, 25°C/18°C (day/night)] and photoperiod (L8, 8 h and L14,14 h) treatments. Plant growth, endogenous phytohormone and methyl jasmonate (MeJA) levels, along with the bolting and yield of garlic were evaluated. The experimental results from two consecutive years indicated that higher temperature (20°C or 25°C) and longer photoperiod (14 h) treatments significantly enhanced the garlic bolting, bulbing and cloving with a shorter growth period and a higher bulb weight. Moreover, the endogenous phytohormone and MeJA levels in the test plants were significantly increased by the higher temperature (25°C for the phytohormone level; 20°C for the MeJA level) and longer photoperiod [14 h, except for abscisic acid (ABA), which had the highest level at 8 h] conditions and were decreased by the lowest test temperature (15°C) and shorter photoperiod (8 h, except for ABA) conditions. This response coincided with that of the bulbing index, bolting rate, growth period and bulb weight. In addition, plants treated under the conditions of 20°C/15°C-14 h and 25°C/18°C-14 h produced the highest phytohormone levels (except for ABA) for cvs G025 and G064, respectively, and showed the best bolting and bulbing behavior. It is reasonable to assume that endogenous phytohormone (especially gibberellic acid) and MeJA levels are highly related to garlic bolting and bulbing, which might lead to the different responses of the three studied cultivars to the combination of temperature and photoperiod treatments. Furthermore, cvs G107 and G025 bolt well and have better bulb formation under 20

  6. Thermal conductance measurements of bolted copper joints for SuperCDMS

    SciTech Connect

    Schmitt, R.; Tatkowski, Greg; Ruschman, M.; Golwala, S. R.; Kellaris, N.; Daal, M.; Hall, Jeter C.; Hoppe, Eric W.

    2015-09-01

    Joint thermal conductance testing has been undertaken for bolted copper to copper connections from 60 mK to 26 K. This testing was performed to validate an initial design basis for the SuperCDMS experiment, where a dilution refrigerator will be coupled to a cryostat via multiple bolted connections. Copper used during testing was either gold plated or passivated with citric acid to prevent surface oxidation. Results obtained are well fit by a power law regression of joint thermal conductance to temperature and match well with data collected during a literature review.

  7. Thermal conductance measurements of bolted copper joints for SuperCDMS

    DOE PAGESBeta

    Schmitt, R. L.; Tatkowski, G; Ruschman, M.; Golwala, S.; Kellaris, N.; Daal, M.; Hall, J.; Hoppe, E. W.

    2015-05-22

    Joint thermal conductance testing has been undertaken for bolted copper to copper connections from 60 mK to 26 K. This testing was performed to validate an initial design basis for the SuperCDMS experiment, where a dilution refrigerator will be coupled to a cryostat via multiple bolted connections. Copper used during testing was either gold plated or passivated with citric acid to prevent surface oxidation. Results obtained are well fit by a power law regression of joint thermal conductance to temperature and match well with data collected during a literature review.

  8. Response of garlic (Allium sativum L.) bolting and bulbing to temperature and photoperiod treatments

    PubMed Central

    Wu, Cuinan; Wang, Mengyi; Cheng, Zhihui; Meng, Huanwen

    2016-01-01

    ABSTRACT This research was conducted to evaluate the effect of temperature and photoperiod treatments on the bolting and bulb formation of three local garlic cultivars (cvs) in two consecutive years. Naturally vernalized plants of cvs G107, G025 and G064 were transplanted into growth chambers and subjected to various combinations of temperature [T15/10, 15°C/10°C; T20/15, 20°C/15°C and T25/18, 25°C/18°C (day/night)] and photoperiod (L8, 8 h and L14,14 h) treatments. Plant growth, endogenous phytohormone and methyl jasmonate (MeJA) levels, along with the bolting and yield of garlic were evaluated. The experimental results from two consecutive years indicated that higher temperature (20°C or 25°C) and longer photoperiod (14 h) treatments significantly enhanced the garlic bolting, bulbing and cloving with a shorter growth period and a higher bulb weight. Moreover, the endogenous phytohormone and MeJA levels in the test plants were significantly increased by the higher temperature (25°C for the phytohormone level; 20°C for the MeJA level) and longer photoperiod [14 h, except for abscisic acid (ABA), which had the highest level at 8 h] conditions and were decreased by the lowest test temperature (15°C) and shorter photoperiod (8 h, except for ABA) conditions. This response coincided with that of the bulbing index, bolting rate, growth period and bulb weight. In addition, plants treated under the conditions of 20°C/15°C–14 h and 25°C/18°C–14 h produced the highest phytohormone levels (except for ABA) for cvs G025 and G064, respectively, and showed the best bolting and bulbing behavior. It is reasonable to assume that endogenous phytohormone (especially gibberellic acid) and MeJA levels are highly related to garlic bolting and bulbing, which might lead to the different responses of the three studied cultivars to the combination of temperature and photoperiod treatments. Furthermore, cvs G107 and G025 bolt well and have better bulb

  9. Combined In-Plane and Through-the-Thickness Analysis for Failure Prediction of Bolted Composite Joints

    NASA Technical Reports Server (NTRS)

    Kradinov, V.; Madenci, E.; Ambur, D. R.

    2004-01-01

    Although two-dimensional methods provide accurate predictions of contact stresses and bolt load distribution in bolted composite joints with multiple bolts, they fail to capture the effect of thickness on the strength prediction. Typically, the plies close to the interface of laminates are expected to be the most highly loaded, due to bolt deformation, and they are usually the first to fail. This study presents an analysis method to account for the variation of stresses in the thickness direction by augmenting a two-dimensional analysis with a one-dimensional through the thickness analysis. The two-dimensional in-plane solution method based on the combined complex potential and variational formulation satisfies the equilibrium equations exactly, and satisfies the boundary conditions and constraints by minimizing the total potential. Under general loading conditions, this method addresses multiple bolt configurations without requiring symmetry conditions while accounting for the contact phenomenon and the interaction among the bolts explicitly. The through-the-thickness analysis is based on the model utilizing a beam on an elastic foundation. The bolt, represented as a short beam while accounting for bending and shear deformations, rests on springs, where the spring coefficients represent the resistance of the composite laminate to bolt deformation. The combined in-plane and through-the-thickness analysis produces the bolt/hole displacement in the thickness direction, as well as the stress state in each ply. The initial ply failure predicted by applying the average stress criterion is followed by a simple progressive failure. Application of the model is demonstrated by considering single- and double-lap joints of metal plates bolted to composite laminates.

  10. Experimental Evaluation of the Static Strain on the Clamping Bolt in the Structure of a Bolt-Clamped Langevin-Type Transducer

    NASA Astrophysics Data System (ADS)

    Takahashi, Toru; Adachi, Kazunari

    2008-06-01

    Bolt-clamped Langevin-type transducers (BLTs) used in high-power ultrasonics are required to realize various characteristics depending on the technical field where they are used. Specifically for high amplitude operation, the static prestress or bearing stress imposed on the piezoelectric elements in the transducer by clamping should be large enough to compensate for their low tensile strength. The authors previously calculated prestress by the finite element method (FEM), but the numerical results have not been experimentally confirmed yet because of the difficulty of directly measuring of the prestress. In this study, the authors measured the strain on the surface of the clamping bolt using strain gauges pasted on it and compared the results with those of the numerical analysis by FEM in order to confirm the validity of the calculation. The measurement has been conducted for three BLTs of identical shape. The results of the measurement show reasonable agreement with those of the numerical analysis, and thus the authors have found that the measurement of the strain on the clamping bolt gives us a practical method for indirect evaluation of the prestress actually imposed on the piezoelectric elements that changes with the turning angle of the metal block in the clamping.

  11. STRUCTURAL ANALYSES OF FUEL CASKS SUBJECTED TO BOLT PRELOAD, INTERNAL PRESSURE AND SEQUENTIAL DYNAMIC IMPACTS

    SciTech Connect

    Wu, T

    2009-06-25

    Large fuel casks subjected to the combined loads of closure bolt tightening, internal pressure and sequential dynamic impacts present challenges when evaluating their performance in the Hypothetical Accident Conditions (HAC) specified in the Code of Federal Regulations Title 10 Part 71 (10CFR71). Testing is often limited by cost, difficulty in preparing test units and the limited availability of facilities which can carry out such tests. In the past, many casks were evaluated without testing by using simplified analytical methods. In addition, there are no realistic analyses of closure bolt stresses for HAC conditions reported in the open literature. This paper presents a numerical technique for analyzing the accumulated damages of a large fuel cask caused by the sequential loads of the closure bolt tightening and the internal pressure as well as the drop and crash dynamic loads. The bolt preload and the internal pressure are treated as quasi-static loads so that the finite element method with explicit numerical integration scheme based on the theory of wave propagation can be applied. The dynamic impacts with short durations such as the 30-foot drop and the 40-inch puncture for the hypothetical accident conditions specified in 10CFR71 are also analyzed by using the finite-element method with explicit numerical integration scheme.

  12. Population structure and association analysis of bolting, plant height, and leaf erectness in spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spinach (Spinacia oleracea L.) is an important vegetable worldwide with high nutritional and health-promoting compounds. Bolting is an important trait to consider in order to grow spinach in different seasons and regions. Plant height and leaf erectness are important traits for machine-harvesting. B...

  13. Professor Usain Bolt Welcomes You to the Schoolyard: Physics for Champions

    ERIC Educational Resources Information Center

    Vourlias, Kostas; Seroglou, Fanny

    2016-01-01

    Could Usain Bolt achieve what teachers often fail to do? Could this famous Olympic winner challenge and motivate students to study mechanics and introduce them to the principles of physics in a fun way, outside of the classroom? In order to answer these questions, we "invited" for one semester the world record holder to visit our Greek…

  14. A torque, tension and stress corrosion evaluation of high strength A286 bolts

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1986-01-01

    The problems associated with overtorque applied to the Booster Separation Motor (BSM) Igniter Adapter high strength 200 KSI (1379 Mpa) A286 CRES bolts and the threaded holes of the 7075-T73 aluminum alloy BSM cases are addressed. The evaluation included torque, tensile, and stress corrosion tests incorporating the A286 CRES bolts and the 7075-T73 aluminum alloy BSM cases. The tensile test data includes ultimate tensile load (UTL), Johnson's 2/3 yield load (J2/3YL), proportional limit load (PLL), and total bolt stretch. Torque tension data includes torque, torque induced load, and positive and negative break-away torque. Stress corrosion test data reflect the overtorque and the resulting torque induced loads sustained by the A286 CRES bolts torqued into a 7075-T73 aluminum alloy forged dome with threaded holes. After 60 days of salt fog exposure, the positive and the negative break-away torques, the subsequent mechanical property tensile test results, and the BSM dome threaded hole axial tensile pullout loads are reported.

  15. Secondary skull fractures in head wounds inflicted by captive bolt guns: autopsy findings and experimental simulation.

    PubMed

    Perdekamp, Markus Grosse; Kneubuehl, Beat P; Ishikawa, Takaki; Nadjem, Hadi; Kromeier, Jan; Pollak, Stefan; Thierauf, Annette

    2010-11-01

    Apart from one article published by Rabl and Sigrist in 1992 (Rechtsmedizin 2:156-158), there are no further reports on secondary skull fractures in shots from captive bolt guns. Up to now, the pertinent literature places particular emphasis on the absence of indirect lesions away from the impact point, when dealing with the wounding capacity of slaughterer's guns. The recent observation of two suicidal head injuries accompanied by skull fractures far away from the bolt's path gave occasion to experimental studies using simulants (glycerin soap, balls from gelatin) and skull–brain models. As far as ballistic soap was concerned, the dimensions of the bolt's channel were assessed by multi-slice computed tomography before cutting the blocks open. The test shots to gelatin balls and to skull-brain models were documented by means of a high-speed motion camera. As expected, the typical temporary cavity effect of bullets fired from conventional guns could not be observed when captive bolt stunners were discharged. Nevertheless, the visualized transfer of kinetic energy justifies the assumption that the secondary fractures seen in thin parts of the skull were caused by a hydraulic burst effect. PMID:20393855

  16. Probabilistic Simulation of Progressive Fracture in Bolted-Joint Composite Laminates

    NASA Technical Reports Server (NTRS)

    Minnetyan, L.; Singhal, S. N.; Chamis, C. C.

    1996-01-01

    This report describes computational methods to probabilistically simulate fracture in bolted composite structures. An innovative approach that is independent of stress intensity factors and fracture toughness was used to simulate progressive fracture. The effect of design variable uncertainties on structural damage was also quantified. A fast probability integrator assessed the scatter in the composite structure response before and after damage. Then the sensitivity of the response to design variables was computed. General-purpose methods, which are applicable to bolted joints in all types of structures and in all fracture processes-from damage initiation to unstable propagation and global structure collapse-were used. These methods were demonstrated for a bolted joint of a polymer matrix composite panel under edge loads. The effects of the fabrication process were included in the simulation of damage in the bolted panel. Results showed that the most effective way to reduce end displacement at fracture is to control both the load and the ply thickness. The cumulative probability for longitudinal stress in all plies was most sensitive to the load; in the 0 deg. plies it was very sensitive to ply thickness. The cumulative probability for transverse stress was most sensitive to the matrix coefficient of thermal expansion. In addition, fiber volume ratio and fiber transverse modulus both contributed significantly to the cumulative probability for the transverse stresses in all the plies.

  17. Beware of Nuts and Bolts: Putting Evolution into the Teaching of Biological Classification

    ERIC Educational Resources Information Center

    Nickels, Martin K.; Nelson, Craig E.

    2005-01-01

    Biological classification embodies the most fundamental idea in all of biology, especially evolution. The contrast between biological classifications and those of manufactured objects for instance hardware-based collection of screws, nails and bolts, help illustrate the central biological ideas and induce student interest, however, this could be…

  18. 12. TOOL ROOM SHOWING LANDIS MACHINE CO. BOL/T THREADER (L), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. TOOL ROOM SHOWING LANDIS MACHINE CO. BOL/T THREADER (L), OSTER MANUFACTURING CO. PIPE MASTER (R), AND OLDMAN KINK, A SHOP-MADE WELDING STRENGTH TESTER (L, BACKGROUND). VIEW NORTHEAST - Oldman Boiler Works, Office/Machine Shop, 32 Illinois Street, Buffalo, Erie County, NY

  19. The Speed-Power Study of the USES Basic Occupational Literacy Test (BOLT) Analysis and Report.

    ERIC Educational Resources Information Center

    Utah State Dept. of Employment Security, Salt Lake City. Western Test Development Field Center.

    Research and analysis conducted to determine the effects of reducing the administration time for one or more levels of the Basic Occupational Literacy Test (BOLT) are described. The total usable sample consisted of 2,423 subjects. Data were collected from 23 states from 1978 to 1981. Data came from a variety of sources, including schools and…

  20. The Problem with "Nuts and Bolts:" How the Emphasis on "Highly Qualified Professionals" Is Undermining Education

    ERIC Educational Resources Information Center

    Swain, Amy

    2013-01-01

    Schools of education have seen many changes over the last 100 years (Labaree 2004). More recent modifications have included the slow and steady elimination of the social foundations of education in lieu of a more direct attention to teacher skills and basic training. The increased focus on the so-called "nuts and bolts" of teacher education trumps…

  1. 77 FR 32698 - Proposed Extension of Existing Information Collection; Safety Standards for Roof Bolts in Metal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Mine... for Roof Bolts in Metal and Nonmetal Mines and Underground Coal Mines AGENCY: Mine Safety and Health... requirements on respondents can be properly assessed. Currently, the Mine Safety and Health Administration...

  2. Tethered Space Satellite-1 (TSS-1): Wound About a Bolt

    NASA Technical Reports Server (NTRS)

    O'Connor, Brian; Stevens, Jennifer

    2016-01-01

    integration of the hardware into the Shuttle payload bay. An analysis, called Coupled loads analysis, incorporates any updates to the model due to system level tests of all the different payloads, and any changes that were found during integration. Engineering analysis examines the worst case scenarios for the loads the hardware will see. The two times during the mission where the dynamic loads are the worst were 1) the first 10-second portion of Shuttle lift off, and 2) a 2-second time during landing when the landing gears hit the ground. The coupled loads analysis using the final verification loads showed that a single bolt attaching the deployer reel mechanism to the support structure had a "negative margin" - which is an indication that it might fail - during touch down. Hardware certification rules do not allow for hardware to fly with negative margins. A structural failure of one payload could have serious or catastrophic consequences to other payloads, or may significantly damage the Orbiter. The issue had to be resolved before the flight.

  3. An Investigation on Load Bearing Capacities of Cement and Resin Grouted Rock Bolts Installed in Weak Rocks

    NASA Astrophysics Data System (ADS)

    Kalyoncu Erguler, Guzide; Abiddin Erguler, Zeynal

    2015-04-01

    Rock bolts have been considered one of indispensable support method to improve load bearing capacity of many underground engineering projects, and thus, various types of them have been developed until now for different purposes. Although mechanically anchored rock bolts can be successfully installed to prevent structurally controlled instabilities in hard rocks, in comparison with cement and resin grouted rock bolts, these types of anchors are not so effective in weak rocks characterized by relatively low mechanical properties. In order to investigate the applicability and to measure relative performance of cement and resin grouted rock bolts into weak and heavily jointed rock mass, a research program mainly consisting of pull-out tests was performed in a metal mine in Turkey. The rock materials excavated in this underground mining were described as basalt, tuff, ore dominated volcanic rocks and dacite. To achieve more representative results for rock materials found in this mining and openings excavated in varied dimensions, the pull-out tests were conducted on rock bolts used in many different locations where more convergences were measured and deformation dependent instability was expected to cause greater engineering problems. It is well known that the capacity of rock bolts depends on the length, diameter and density of the bolt pattern, and so considering the thickness of plastic zone in the studied openings, the length and diameter of rock bolts were taken as 2.4 m. and 25 mm., respectively. The spacing between rows changed between 70 and 180 cm. In this study, totally twenty five pull-out tests were performed to have a general understanding about axial load bearing capacity and support reaction curves of cement and resin grouted rock bolts. When pull load-displacement curves belongs to cement and resin grouted rock bolts were compared with each other, it was determined that cement grouted rock bolts carry more load ranging between 115.6 kN and 127.5 kN with

  4. Bolt axial stress measurement based on a mode-converted ultrasound method using an electromagnetic acoustic transducer.

    PubMed

    Ding, Xu; Wu, Xinjun; Wang, Yugang

    2014-03-01

    A method is proposed to measure the stress on a tightened bolt using an electromagnetic acoustic transducer (EMAT). A shear wave is generated by the EMAT, and a longitudinal wave is obtained from the reflection of the shear wave due to the mode conversion. The ray paths of the longitudinal and the shear wave are analyzed, and the relationship between the bolt axial stress and the ratio of time of flight between two mode waves is then formulated. Based on the above outcomes, an EMAT is developed to measure the bolt axial stress without loosening the bolt, which is required in the conventional EMAT test method. The experimental results from the measurement of the bolt tension show that the shear and the mode-converted longitudinal waves can be received successfully, and the ratio of the times of flight of the shear and the mode-converted longitudinal waves is linearly proportional to the bolt axial tension. The non-contact characteristic of EMAT eliminates the effect of the couplant and also makes the measurement more convenient than the measurement performed using the piezoelectric transducer. This method provides a promising way to measure the stress on tightened bolts. PMID:24289900

  5. Higher Accurate Estimation of Axial and Bending Stiffnesses of Plates Clamped by Bolts

    NASA Astrophysics Data System (ADS)

    Naruse, Tomohiro; Shibutani, Yoji

    Equivalent stiffness of clamped plates should be prescribed not only to evaluate the strength of bolted joints by the scheme of “joint diagram” but also to make structural analyses for practical structures with many bolted joints. We estimated the axial stiffness and bending stiffness of clamped plates by using Finite Element (FE) analyses while taking the contact condition on bearing surfaces and between the plates into account. The FE models were constructed for bolted joints tightened with M8, 10, 12 and 16 bolts and plate thicknesses of 3.2, 4.5, 6.0 and 9.0 mm, and the axial and bending compliances were precisely evaluated. These compliances of clamped plates were compared with those from VDI 2230 (2003) code, in which the equivalent conical compressive stress field in the plate has been assumed. The code gives larger axial stiffness for 11% and larger bending stiffness for 22%, and it cannot apply to the clamped plates with different thickness. Thus the code shall give lower bolt stress (unsafe estimation). We modified the vertical angle tangent, tanφ, of the equivalent conical by adding a term of the logarithm of thickness ratio t1/t2 and by fitting to the analysis results. The modified tanφ can estimate the axial compliance with the error from -1.5% to 6.8% and the bending compliance with the error from -6.5% to 10%. Furthermore, the modified tanφ can take the thickness difference into consideration.

  6. Steel bars and forgings, 0.50Cr 0.55Ni 0.25Mo (0.38 0.43C) (SAE 8740), heat treated, 125,000 psi (862 MPa) tensile strength (reaffirmed, Apr 1994). (SAE standard)

    SciTech Connect

    1988-10-01

    This specification covers an aircraft-quality, low-alloy steel in the form of bars and forgings. Primarily for parts, such as nuts, bolts, and screws, 1.50 inch (38.1 mm) and under in section thickness, requiring a minimum tensile strength of 125,000 (862 MPa). Alloy: 8740 UNS Number: G8740.

  7. New high temperature steels for steam power plants

    SciTech Connect

    Hald, J.; Nath, B.

    1998-07-01

    Development of high efficiency ultra supercritical (USC) steam power plant is based on the availability of improved high temperature steels for key components in the steam cycle i.e: Thick section boiler components and steam lines; turbine rotors, casings, valves and bolts; superheaters; furnace panels. New martensitic high creep strength 9--12%Cr steels like the P91, P92 and P122 allow increased steam parameters in steam headers and steam lines, and similar martensitic steels are used for rotors, casings and valves of advanced steam turbines. The development of these steels have included demonstration of fabricability like welding and bending, fabrication of demonstration components built into existing plants, and the validation of long term creep properties with testing times of more than 30,000 hours. The development work has been made in international projects like the EPRI RP1403, COST 501 and ECCC. The first use of the new steels have followed in USC plants in Europe and Japan, leading to plant efficiencies up to 47%. Superheater steels must have high corrosion and oxidation resistance, and a number of new austenitic steels have been developed for this purpose. Tests are currently running to obtain long term corrosion and oxidation data for design of superheaters in the new steels. Steels for furnace panels need to be welded without post weld heat treatment, and also for this purpose new ferritic and martensitic steels are available. With the materials development described above it is today possible to construct a USC plant with steam parameters 325bar/610 C/630 C/630 C and an efficiency approaching 50%. Future developments in the European THERMIE demonstration project ``Advanced (700 C) PF Power Plant'' will address the use of nickel or cobalt base superalloys for boilers, steam lines and turbines. This may lead to efficiencies in the range 52--55%.

  8. PZT-induced Lamb waves and pattern recognitions for on-line health monitoring of jointed steel plates

    NASA Astrophysics Data System (ADS)

    Park, Seung-Hee; Yun, Chung-Bang; Roh, Yongrae

    2005-05-01

    This paper presents a non-destructive evaluation (NDE) technique for detecting damages on a jointed steel plate on the basis of the time of flight and wavelet coefficient, obtained from wavelet transforms of Lamb wave signals. Probabilistic neural networks (PNNs) and support vector machines (SVMs), which are tools for pattern classification problems, were applied to the damage estimation. Two kinds of damages were artificially introduced by loosening bolts located in the path of the Lamb waves and those out of the path. The damage cases were used for the establishment of the optimal decision boundaries which divide each damage class"s region from the intact class. In this study, the applicability of the PNNs and SVMs was investigated for the damages in and out of the Lamb wave path. It has been found that the present methods are very efficient in detecting the damages simulated by loose bolts on the jointed steel plate.

  9. Lightweight structural design of a bolted case joint for the Space Shuttle Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Stein, Peter A.; Bush, Harold G.

    1988-01-01

    This paper presents the structural design of a bolted joint with a static face seal which can be used to join Space Shuttle Solid Rocket Motor (SRM) case segments. Results from numerous finite element parametric studies indicate that the bolted joint meets the design requirement of preventing joint opening at the O-ring locations during SRM pressurization. A final design recommended for further development has the following parameters: 180 1-inch-diameter studs, stud center line offset of .5 inches radially inward from the shell wall center line, flange thickness of 0.75 inches, bearing plate thickness of 0.25 inches, studs prestressed to 70 percent of ultimate load, and the intermediate alcove. The design has a mass penalty of 1096 lbm, which is 164 lbm greater than the currently proposed capture tang redesign.

  10. Lightweight structural design of a bolted case joint for the space shuttle solid rocket motor

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Stein, Peter A.; Bush, Harold G.

    1988-01-01

    The structural design of a bolted joint with a static face seal which can be used to join Space Shuttle Solid Rocket Motor (SRM) case segments is given. Results from numerous finite element parametric studies indicate that the bolted joint meets the design requirement of preventing joint opening at the O-ring locations during SRM pressurization. A final design recommended for further development has the following parameters: 180 one-in.-diam. studs, stud centerline offset of 0.5 in radially inward from the shell wall center line, flange thickness of 0.75 in, bearing plate thickness of 0.25 in, studs prestressed to 70 percent of ultimate load, and the intermediate alcove. The design has a mass penalty of 1096 lbm, which is 164 lbm greater than the currently proposed capture tang redesign.

  11. Thermal Performance Evaluation of Friction Stir Welded and Bolted Cold Plates with Al/Cu Interface

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, A. K.; Suresh, M.; Sibi Varshan, M.

    2015-05-01

    An attempt is made to design and fabricate a cold plate with aluminum-copper dissimilar interface joined by friction stir welding. Optimum welding conditions for obtaining sound-quality corner and T joints with an aluminum-copper interface were established. Welded cross sections of the friction stir welded cold plate were analyzed to understand the bonding characteristics. Computational fluid dynamics (CFD) was used to evaluate the fluid-flow characteristics and thermal resistance of friction stir welded cold plate and the resulted are compared with the conventional bolted cold plate configuration. For CFD modeling of a cold plate with a dissimilar interface, a new methodology is proposed. From the CFD analysis and experimental results, it is observed that friction stir welded cold plate offered better thermal performance compared to the bolted cold plate and it is due to the metallurgical bonding at the aluminum-copper interface with the dispersion of copper particles.

  12. Analysis of a Preloaded Bolted Joint in a Ceramic Composite Combustor

    NASA Technical Reports Server (NTRS)

    Hissam, D. Andy; Bower, Mark V.

    2003-01-01

    This paper presents the detailed analysis of a preloaded bolted joint incorporating ceramic materials. The objective of this analysis is to determine the suitability of a joint design for a ceramic combustor. The analysis addresses critical factors in bolted joint design including preload, preload uncertainty, and load factor. The relationship between key joint variables is also investigated. The analysis is based on four key design criteria, each addressing an anticipated failure mode. The criteria are defined in terms of margin of safety, which must be greater than zero for the design criteria to be satisfied. Since the proposed joint has positive margins of safety, the design criteria are satisfied. Therefore, the joint design is acceptable.

  13. A tension-mode fracture model for bolted joints in laminated composites

    SciTech Connect

    Schulz, K.C.; Packman, P.F.; Eisenmann, J.R.

    1995-06-01

    A failure prediction model for bolted joints in generally orthotropic laminated composite plates that fail in the tension mode under bearing loading conditions has been developed. The plate is analyzed as a bulk orthotropic plate whose material properties are determined through the application of classical lamination theory to facilitate practical application of the model. Ply-by-ply laminated analysis is not required. Fracture mechanics concepts are applied to a pseudo-flaw which is related to the physical cracking of the laminate at the joint. The maximum circumferential stress concept is extended to orthotropic materials where both the fracture toughness and stress intensity vary with orientation. Excellent correlation between experimental tests conducted on single-bolt joints for two laminate layups and analytical prediction was found.

  14. Variables Affecting Probability of Detection in Bolt Hole Eddy Current Inspection

    NASA Astrophysics Data System (ADS)

    Lemire, H.; Krause, T. W.; Bunn, M.; Butcher, D. J.

    2009-03-01

    Physical variables affecting probability of detection (POD) in a bolt-hole eddy current inspection were examined. The POD study involved simulated bolt holes in 7075-T6 aluminum coupons representative of wing areas on CC-130 and CP-140 aircraft. The data were obtained from 24 inspectors who inspected 468 coupons, containing a subset of coupons with 45 electric discharge machined notches and 72 laboratory grown fatigue cracks located at the inner surface corner of the bi-layer structures. A comparison of physical features of cracks and notches in light of skin depth effects and probe geometry was used to identify length rather than depth as the significant variable producing signal variation. Probability of detection based on length produced similar results for the two discontinuity types, except at lengths less than 0.4 mm, where POD for cracks was found to be higher than that of notches.

  15. LANL's near-real-time measurement control bolt-on to LANMAS

    SciTech Connect

    Hicks, Ruel D; Boyle, Caroline M

    2010-01-01

    Los Alamos National Laboratory (LANL) has created a near-real-time Measurement Control Program (MCP) that integrates with Local Area Network Material Accounting System (LANMAS). The program was designed to take the place of an aging accounting system at LANL which incorporated the measurement control. LANL's Material Control and Accountability (MC&A) group developed many bolt-on features to enhance LANMAS called LAM CAS (Los Alamos Material Control and Accounting System), one of those bolt-on enhancements was to develop the MCP to replace the previous version. MCP was developed with the multiple end-user groups in mind by creating a near-real-time system that was user friendly, provided access controls, and account status of the measurement control systems.

  16. On the performance of Usain Bolt in the 100 m sprint

    NASA Astrophysics Data System (ADS)

    Hernández Gómez, J. J.; Marquina, V.; Gómez, R. W.

    2013-09-01

    Many university texts on mechanics consider the effect of air drag force, using the slowing down of a parachute as an example. Very few discuss what happens when the drag force is proportional to both u and u2. In this paper we deal with a real problem to illustrate the effect of both terms on the speed of a runner: a theoretical model of the world-record 100 m sprint of Usain Bolt during the 2009 World Championships in Berlin is developed, assuming a drag force proportional to u and to u2. The resulting equation of motion is solved and fitted to the experimental data obtained from the International Association of Athletics Federations, which recorded Bolt's position with a laser velocity guard device. It is worth noting that our model works only for short sprints.

  17. Hydrogen embrittlement of duplex stainless steel and maraging steel in sea water: Effect of pressure

    SciTech Connect

    Pohjanne, P.; Festy, D.

    1994-12-31

    Hydrogen embrittlement behavior of cast super duplex stainless steel and cast maraging steel was examined as a function of electrode potential and hydrostatic pressure, i.e, the water depth, in synthetic sea water using fracture mechanics bolt-loaded wedge-opening (WOL) specimens. The experimental variables investigated included: (1) Electrode potential: free corrosion potential and cathodic protection; (2) Hydrostatic pressure: ambient and 10 MPa corresponding depth of 1,000 meters. The duplex stainless-,steel was not susceptible to hydrogen embrittlement with initial stress intensity values of 30 MPa{radical}m < K{sub i} < 45 MPa{radical}m at ambient pressure. However, at pressure of 10 MPa slight crack growth was observed at open circuit potential and the crack growth was enhanced by the cathodic protection. The maraging steel was susceptible to hydrogen embrittlement in all tests, with all examined initial stress intensity values, K{sub i} < 36 MPa{radical}m. At the open circuit potential the crack growth rate was almost independent of the pressure. Cathodic protection enhanced crack growth and lowered the threshold stress intensity value at ambient as well as at 10 MPa pressure and the crack growth rate increased clearly as pressure increased from 0.1 MPa to 10 MPa. According to these experimental results the combined effect of cathodic protection and hydrostatic pressure must be taken into consideration when designing new offshore structures and equipment especially for deep sea application.

  18. Experimental evaluation of stress intensity factors for corner cracks in bolted joints

    SciTech Connect

    Guengoer, S.; Patterson, E.A.

    1994-12-31

    Stress freezing photoelasticity was used to measure mode one stress intensity factors of corner cracks in a double shear bolted joint. A model of the joint assembly was manufactured from a photoelastic material and three different corner cracks were introduced using a cutting wheel. After stress freezing process slices along the crack fronts were cut and analyzed using photoelastic procedures. Stress intensity factors of these cracks were found to be larger near the hole.

  19. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2001-04-15

    In this quarter, the research effort is to develop the drill control unit (DCU) that acquire, store drilling parameters and control the drilling operation. The relevant publications have been reviewed and the methodology developed by previous researchers has been evaluated using the collected data in our laboratory and field tests conducted prior to the start of this project. Numerical modeling for exploring roof bolting mechanism has been started.

  20. Forensic applications of metallurgy - Failure analysis of metal screw and bolt products

    NASA Astrophysics Data System (ADS)

    Tiner, Nathan A.

    1993-03-01

    It is often necessary for engineering consultants in liability lawsuits to consider whether a component has a manufacturing and/or design defect, as judged by industry standards, as well as whether the component was strong enough to resist service loads. Attention is presently given to the principles that must be appealed to in order to clarify these two issues in the cases of metal screw and bolt failures, which are subject to fatigue and brittle fractures and ductile dimple rupture.

  1. Thermodynamics of Taub-NUT/bolt-AdS black holes in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Khodam-Mohammadi, A.; Monshizadeh, M.

    2009-02-15

    We give a review of the existence of Taub-NUT/bolt solutions in Einstein Gauss-Bonnet gravity with the parameter {alpha} in six dimensions. Although the spacetime with base space S{sup 2}xS{sup 2} has a curvature singularity at r=N, which does not admit NUT solutions, we may proceed with the same computations as in the CP{sup 2} case. The investigation of thermodynamics of NUT/bolt solutions in six dimensions is carried out. We compute the finite action, mass, entropy, and temperature of the black hole. Then the validity of the first law of thermodynamics is demonstrated. It is shown that in NUT solutions all thermodynamic quantities for both base spaces are related to each other by substituting {alpha}{sup CP{sup k}}=[(k+1)/k]{alpha}{sup S{sup 2}}{sup xS{sup 2}}{sup x...S{sub k}{sup 2}}. So, no further information is given by investigating NUT solutions in the S{sup 2}xS{sup 2} case. This relation is not true for bolt solutions. A generalization of the thermodynamics of black holes to arbitrary even dimensions is made using a new method based on the Gibbs-Duhem relation and Gibbs free energy for NUT solutions. According to this method, the finite action in Einstein Gauss-Bonnet is obtained by considering the generalized finite action in Einstein gravity with an additional term as a function of {alpha}. Stability analysis is done by investigating the heat capacity and entropy in the allowed range of {alpha}, {lambda}, and N. For NUT solutions in d dimensions, there exists a stable phase at a narrow range of {alpha}. In six-dimensional bolt solutions, the metric is completely stable for B=S{sup 2}xS{sup 2} and is completely unstable for the B=CP{sup 2} case.

  2. Preload Analysis of Screw Bolt Joints on the First Wall Graphite Tiles in EAST

    NASA Astrophysics Data System (ADS)

    Cao, Lei; Song, Yuntao

    2012-09-01

    The first wall in the Experimental Advanced Superconducting Tokamak (EAST) used graphite tiles to withstand high thermal energy. The graphite tiles are mounted on the heat sink using screw bolts which have been preloaded to produce a clamp force. The clamp force is very important to keep the graphite tiles tightly on the surface of the heat sink so that the heat flux crosses this contacting surface in a small thermal resistor. Without the clamp force, the small gap between the graphite tiles and the heat sink will make it impossible for thermal power to be carried away by cooling water. Some bolts may even fall off with the loss of clamp force. From the mathematical models, the loss process of the clamp force has been studied. Research results explain how the different thermal expansions of three members of the screw joint makes the clamp force decrease to zero under temperature rise and external force, and how the stiffness affects the relation between the clamp force and temperature. The research also gives the critical temperature at which the clamp force can remain above zero. Analysis results indicate that the current screw joints are almost destined to lose their clamp force during the running time of EAST, so the bolt joints should be redesigned in order to improve its reliability.

  3. The Load Distribution in Bolted or Riveted Joints in Light-Alloy Structures

    NASA Technical Reports Server (NTRS)

    Vogt, F.

    1947-01-01

    This report contains a theoretical discussion of the load distribution in bolted or riveted joints in light-alloy structures which is applicable not only for loads below the limit of proportionality but also for loads above this limit. The theory is developed for double and single shear joints. The methods given are illustrated by numerical examples and the values assumed for the bolt (or rivet) stiffnesses are based partly on theory and partly on known experimental values. It is shown that the load distribution does not vary greatly with the bolt (or rivet) stiffnesses and that for design purposes it is usually sufficient to know their order of magnitude. The theory may also be directly used for spot-welded structures and, with small modifications, for seam-welded structures, The computational work involved in the methods described is simple and may be completed in a reasonable time for most practical problems. A summary of earlier theoretical and experimental investigations on the subject is included in the report.

  4. Parameters affecting resin-anchored cable bolt performance: Results of in situ evaluations

    SciTech Connect

    Zelanko, J.C.; Mucho, T.P.; Compton, C.S.; Long, L.E.; Bailey, P.E.

    1995-11-01

    Cable bolt support techniques, including hardware and anchorage systems, continue to evolve to meet US mining requirements. For cable support systems to be successfully implemented into new ground control areas, the mechanics of this support and the potential range of performance need to be better understood. To contribute to this understanding, a series of 36 pull tests were performed on 10 ft long cable bolts using various combinations of hole diameters, resin formulations, anchor types, and with and without resin dams. These test provided insight as to the influence of these four parameters on cable system performance. Performance was assessed in terms of support capacity (maximum load attained in a pull test), system stiffness (assessed from two intervals of load-deformation), and from the general load-deformation response. Three characteristic load-deformation responses were observed. An Analysis of Variance identified a number of main effects and interactions of significance to support capacity and stiffness. The factorial experiment performed in this study provides insight to the effects of several design parameters associated with resin-anchored cable bolts.

  5. Stress Analysis of Bolted, Segmented Cylindrical Shells Exhibiting Flange Mating-Surface Waviness

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2009-01-01

    Bolted, segmented cylindrical shells are a common structural component in many engineering systems especially for aerospace launch vehicles. Segmented shells are often needed due to limitations of manufacturing capabilities or transportation issues related to very long, large-diameter cylindrical shells. These cylindrical shells typically have a flange or ring welded to opposite ends so that shell segments can be mated together and bolted to form a larger structural system. As the diameter of these shells increases, maintaining strict fabrication tolerances for the flanges to be flat and parallel on a welded structure is an extreme challenge. Local fit-up stresses develop in the structure due to flange mating-surface mismatch (flange waviness). These local stresses need to be considered when predicting a critical initial flaw size. Flange waviness is one contributor to the fit-up stress state. The present paper describes the modeling and analysis effort to simulate fit-up stresses due to flange waviness in a typical bolted, segmented cylindrical shell. Results from parametric studies are presented for various flange mating-surface waviness distributions and amplitudes.

  6. Analysis of screw pitch effects on the performance of bolt-clamped Langevin-type transducers

    NASA Astrophysics Data System (ADS)

    Adachi, Kazunari; Takahashi, Toru; Hasegawa, Hiroshi

    2004-09-01

    Bolt-clamped Langevin-type transducers (BLTs) are common vibration sources in high-power ultrasonic applications such as ultrasonic plastic joining. In this paper, the authors propose a low-aspect-ratio BLT shape based on numerical solutions of a complex elastic contact problem concerning the bearing stress (prestress) imposed on the interfaces between the parts by clamping with the screw bolt. The prestress distribution at the interface has significant influence on the mechanical quality factor (Q) of the BLT. It is found that the screw pitch of the clamping bolt heavily affects the prestress distribution in the simulation using the finite element method. The newly developed BLTs with a high resonance frequency of approximately 80 kHz has a relatively wide radiating face and sufficient volume ratio of the piezoelectric elements that convert electrical energy into mechanical energy. The average of their measured Q values exceeds 1000 despite their high resonance frequency when they are driven at a voltage higher than 17 V rms.

  7. Nonlinear system identification of frictional effects in a beam with a bolted joint connection

    NASA Astrophysics Data System (ADS)

    Eriten, Melih; Kurt, Mehmet; Luo, Guanyang; Michael McFarland, D.; Bergman, Lawrence A.; Vakakis, Alexander F.

    2013-08-01

    We perform nonlinear system identification (NSI) of the effects of frictional connections in the dynamics of a bolted beam assembly. The methodology utilized in this work combines experimental measurements with slow-flow dynamic analysis and empirical mode decomposition, and reconstructs the dynamics through reduced-order models. These are in the form of single-degree-of-freedom linear oscillators (termed intrinsic modal oscillators—IMOs) with forcing terms derived directly from the experimental measurements through slow-flow analysis. The derived reduced order models are capable of reproducing the measured dynamics, whereas the forcing terms provide important information about nonlinear damping effects. The NSI methodology is applied to model nonlinear friction effects in a bolted beam assembly. A 'monolithic' beam with identical geometric and material properties is also tested for comparison. Three different forcing (energy) levels were considered in the tests in order to study the energy-dependencies of the damping nonlinearities induced in the beam from the bolted joint. In all cases, the NSI methodology employed was successful in identifying the damping nonlinearities, their spatial distributions and their effects of the vibration modes of the structural component.

  8. Assessment of nonpenetrating captive bolt stunning followed by electrical induction of cardiac arrest in veal calves.

    PubMed

    Bartz, B; Collins, M; Stoddard, G; Appleton, A; Livingood, R; Sobcynski, H; Vogel, K D

    2015-09-01

    The purpose of this study was to evaluate the impact of nonpenetrating captive bolt stunning followed by electrical induction of cardiac arrest on veal calf welfare, veal quality, and blood yield. Ninety calves from the same farm were randomly assigned to 1 of 2 treatment groups in a balanced unpaired comparison design. The first treatment group (the "head-only" method-application of the pneumatic nonpenetrating stun to the frontal plate of the skull at the intersection of 2 imaginary lines extending from the lateral canthus to the opposite poll [CONTROL]) was stunned with a nonpenetrating captive bolt gun ( = 45). The second group ( = 45) was stunned with a nonpenetrating captive bolt gun followed by secondary electrical induction of cardiac arrest (the "head/heart" method-initial application of the pneumatic nonpenetrating captive bolt stun followed by 1 s application of an electrical stun to the ventral region of the ribcage directly caudal to the junction of the humerus and scapula while the stunned calf was in lateral recumbence [HEAD/HEART]). Stunning efficacy was the indicator of animal welfare used in this study. All calves were instantly rendered insensible by the initial stun and did not display common indicators of return to consciousness. For meat quality evaluation, all samples were collected from the 12th rib region of the longissimus thoracis. Meat samples were evaluated for color, drip loss, ultimate pH, cook loss, and Warner-Bratzler shear force. The L* values (measure of meat color lightness) were darker ( < 0.05) in the HEAD/HEART group (45.08 ± 0.72) than the CONTROL group (47.10 ± 0.72). There were no differences ( > 0.05) observed in a* (redness) and b* (yellowness) values between treatments. No differences ( > 0.05) were observed in drip loss, ultimate pH, cook loss, and Warner-Bratzler shear force. The blood yield from the CONTROL group (7,217.9 ± 143.5 g) was greater ( < 0.05) than that from the HEAD/HEART group (6,656.4 ± 143.5 g

  9. Regulatory analysis for the resolution of Generic Safety Issue 29: Bolting degradation or failure in nuclear power plants

    SciTech Connect

    Chang, T.Y.

    1991-09-01

    Generic Safety Issue (GSI)-29 deals with staff concerns about public risk due to degradation or failure of safety-related bolting in nuclear power plants. The issue was initiated in November 1982. Value-impact studies of a mandatory program on safety-related bolting for operating plants were inconclusive: therefore, additional regulatory requirements for operating plants could not be justified in accordance with provisions of 10 CFR 50.109. In addition, based on operating experience with bolting in both nuclear and conventional power plants, the actions already taken through bulletins, generic letters, and information notices, and the industry-proposed actions, the staff concluded that a sufficient technical basis exists for the resolution of GSI-29. The staff further concluded that leakage of bolted pressure joints is possible but catastrophic failure of a reactor coolant pressure boundary joint that will lead to significant accident sequences is highly unlikely. For future plants, it was concluded that a new Standard Review Plant section should be developed to codify existing bolting requirements and industry-developed initiatives. 9 refs., 1 tab.

  10. Planned complex suicide by penetrating captive-bolt gunshot and hanging: case study and review of the literature.

    PubMed

    Viel, Guido; Schröder, Ann Sophie; Püschel, Klaus; Braun, Christian

    2009-05-30

    Captive-bolt guns or slaughterer's guns are devices widely used in meat industry and private farmer households for slaughtering animal stocks. They consist of a simple cylindrical metal tube (barrel) with a metal bolt placed in their centre (around 9-15cm long and 1-1.5cm wide). The bolt is actuated by a trigger pull and is propelled forward by compressed air or by the discharge of a blank powder gun cartridge. Violent deaths inflicted by captive-bolt guns are rarely encountered in forensic practice and are predominantly suicidal events. We report an unusual complex suicide by hanging and self-shooting with a slaughterer's gun in a 21-year-old boy. The victim after putting a ceiling fixed rope around his neck shot himself in the head (occipital region) with a Kerner captive-bolt gun. He used two mirrors (a cosmetic mirror and a man-sized one) in order to properly visualize his back and to target the occipital region of his head. Radiological data (computed tomography with three dimensional reconstruction) and autopsy findings are discussed according to the clinical and forensic literature. A brief review on planned complex suicides is also given. PMID:19261403

  11. Thermodynamics of Taub-NUT/bolt black holes in Einstein-Maxwell gravity

    SciTech Connect

    Dehghani, M.H.; Khodam-Mohammadi, A.

    2006-06-15

    First, we construct the Taub-NUT/bolt solutions of (2k+2)-dimensional Einstein-Maxwell gravity, when all the factor spaces of 2k-dimensional base space B have positive curvature. These solutions depend on two extra parameters, other than the mass and the NUT charge. These are electric charge q and electric potential at infinity V. We investigate the existence of Taub-NUT solutions and find that in addition to the two conditions of uncharged NUT solutions, there exist two extra conditions. These two extra conditions come from the regularity of vector potential at r=N and the fact that the horizon at r=N should be the outer horizon of the NUT charged black hole. We find that the NUT solutions in 2k+2 dimensions have no curvature singularity at r=N, when the 2k-dimensional base space is chosen to be CP{sup 2k}. For bolt solutions, there exists an upper limit for the NUT parameter which decreases as the potential parameter increases. Second, we study the thermodynamics of these spacetimes. We compute temperature, entropy, charge, electric potential, action and mass of the black hole solutions, and find that these quantities satisfy the first law of thermodynamics. We perform a stability analysis by computing the heat capacity, and show that the NUT solutions are not thermally stable for even k's, while there exists a stable phase for odd k's, which becomes increasingly narrow with increasing dimensionality and wide with increasing V. We also study the phase behavior of the 4 and 6 dimensional bolt solutions in canonical ensemble and find that these solutions have a stable phase, which becomes smaller as V increases.

  12. Experimental observations of scale effects on bonded and bolted joints in composite structures

    NASA Technical Reports Server (NTRS)

    Grimes, Glenn C.

    1994-01-01

    The objective is to observe size (scale) effects in (1) fiber dominated laminates and bolted joints, (2) adhesive (matrix) dominated bonded joints with fiber dominated laminate adherends, and (3) matrix dominated laminates. Selected literature on scale effects is reviewed with comments and test data from one source that is analyzed for predicted and actual scale effects utilizing uniaxial loaded static strength, spectrum fatigue residual strength, and spectrum fatigue lifetime test results. Causes of scale effects are discussed, the results are summarized, and conclusions are made.

  13. Effect of thread pitch and frictional coefficient on the stress concentration in metric nut-bolt connections

    SciTech Connect

    Dragoni, E. . Dept. of Mechanics)

    1994-02-01

    By means of the finite element method, this paper establishes how much the stress state within standard metric nut-bolt connections is affected by variations of the thread pitch and of the frictional coefficient. Following a validated simplified approach, the actual three-dimensional geometry of each connection is replaced by an axisymmetric model which recreates the outline of the joint on an appropriate meridional section. The numerical data prove that, for prescribed nominal thread diameter and bolt load, The peak stress in the screw monotonically increases as the pitch decreases. Further, as far as complete sticking between nut and bolt is not achieved, the stress level linearly increases with the coefficient of friction, the rate of variations being higher at the lowest pitches.

  14. Operational experience with ultrasonic bolt seals for safeguards containment of multielement bottles in THORP spent-fuel storage ponds

    SciTech Connect

    Hatt, C.D.; Reynolds, A.F.; Jeffrey, A.

    1995-12-31

    This paper describes the operational experience gained by British Nuclear Fuels Limited (BNFL) at the THORP spent-fuel storage facility in the application and verification of ultra-sonic bolt seals to light water reactor fuel containers and multielement bottles while in the storage ponds. Additionally, it discusses BNFL`s cooperation with the International Atomic Energy Agency, Euratom, and Joint Research Council-Ispra to facilitate the development and design modifications of the remote-handling tools used. Finally, it summarizes the benefits, from an operator`s point of view, of using the bolt seals as a safeguards/containment device.

  15. Application of electromechanical impedance-based SHM for damage detection in bolted pipeline connection

    NASA Astrophysics Data System (ADS)

    Martowicz, Adam; Sendecki, Arkadiusz; Salamon, Marcin; Rosiek, Mateusz; Uhl, Tadeusz

    2016-01-01

    The work discusses the effectiveness of the electromechanical impedance-based Structural Health Monitoring system for damage detection in a laboratory test stand - a bolted pipeline section. The impedance-based system developed by the authors and equipped with 12 piezoelectric transducers was used to acquire the data. Different damage scenarios related to loosened bolts and measurement configurations are analysed. Both point and transfer frequency response functions are applied to deterministic and stochastic damage metrics, which are used to assess the condition of the monitored structure. The thresholds levels are proposed for different measurement configurations. Moreover, the authors discuss the perspective to determine the size and localisation of a damage. As confirmed in the work, the stochastic damage metric, preferably applied with a transfer frequency response, is found as of the most practical significance for the tested structure. The carried out analyses consider an outlier removal technique, which becomes necessary to prevent from errors due to temporary variation of the acquired characteristics after initialisation of the measurements.

  16. Noise trauma induced by a mousetrap--sound pressure level measurement of vole captive bolt devices.

    PubMed

    Frank, Matthias; Napp, Matthias; Lange, Joern; Grossjohann, Rico; Ekkernkamp, Axel; Beule, Achim G

    2010-05-01

    While ballistic parameters of vole captive bolt devices have been reported, there is no investigation on their hazardous potential to cause noise trauma. The aim of this experimental study was to measure the sound pressure levels of vole captive bolt devices. Two different shooting devices were examined with a modular precision sound level meter on an outdoor firing range. Measurements were taken in a semi-circular configuration with measuring points 0 degrees in front of the muzzle, 90 degrees at right angle of the muzzle, and 180 degrees behind the shooting device. Distances between muzzle and microphone were 0.5, 1, 2, 10, and 20 m. Sound pressure levels exceeded 130 dB(C) at any measuring point within the 20-m area. Highest measurements (more than 172 dB[C]) were taken in the 0 degrees direction at the 0.5-m distance for both shooting devices proving the hazardous potential of these gadgets to cause noise trauma. PMID:20345785

  17. A real-time visual inspection method of fastening bolts in freight car operation

    NASA Astrophysics Data System (ADS)

    Nan, Guo; Yao, JunEn

    2015-10-01

    A real-time inspection of the key components is necessary for ensuring safe operation of freight car. While traditional inspection depends on the trained human inspectors, which is time-consuming and lower efficient. With the development of machine vision, vision-based inspection methods get more railway on-spot applications. The cross rod end fastening bolts are important components on both sides of the train body that fixing locking plates together with the freight car main structure. In our experiment, we get the images containing fastening bolt components, and accurately locate the locking plate position using a linear Support Vector Machine (SVM) locating model trained with Histograms of Oriented Gradients (HOG) features. Then we extract the straight line segment using the Line Segment Detector (LSD) and encoding them in a range, which constitute a straight line segment dataset. Lastly we determine the locking plate's working state by the linear pattern. The experiment result shows that the localization accurate rate is over 99%, the fault detection rate is over 95%, and the module implementation time is 2f/s. The overall performance can completely meet the practical railway safety assurance application.

  18. Design and demonstration of Bolt Retractor Separation system for X-38 Deorbit Propulsion Stage

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Johnston, A. S.; Garrison, J. C.; Gaines, J. L.; Waggoner, J. D.

    2003-09-01

    A separation system was designed for the X-38 experimental crew return vehicle program to allow the Deorbit Propulsion Stage (DPS) to separate from the X-38 lifting body during reentry operations. The configuration chosen was a spring-loaded plunger, known as the Bolt Retractor Subsystem (BRS), that retracts each of the six DPS-to-lifting body attachment bolts across the interface plane after being triggered by a separation nut mechanism. The system was designed to function on the ground in an atmospheric environment as well as in space. The BRS provides the same functionality as that of a completely pyrotechnic shear separation system that would normally be considered ideal for this application, but at a much lower cost. This system also could potentially be applied to future space station crew return vehicles. The design goal of 40 ms retraction time was successfully met in a series of demonstrations performed at the NASA Marshall Space Flight Center's Pyrotechnic Shock Facility (PSF) and Flight Robotics Laboratory (FRL). It must be emphasized that a full-scale test series was not performed on the BRS due to program schedule and cost constraints.

  19. Nondestructive ultrasonic measurement of bolt preload using the pulsed-phase locked-loop interferometer

    NASA Technical Reports Server (NTRS)

    Allison, S. G.; Heyman, J. S.

    1985-01-01

    Achieving accurate preload in threaded fasteners is an important and often critical problem which is encountered in nearly all sectors of government and industry. Conventional tensioning methods which rely on torque carry with them the disadvantage of requiring constant friction in the fastener in order to accurately correlate torque to preload. Since most of the applied torque typically overcomes friction rather than tensioning the fastener, small variations in friction can cause large variations in preload. An instrument called a pulsed phase locked loop interferometer, which was recently developed at NASA Langley, has found widespread use for measurement of stress as well as material properties. When used to measure bolt preload, this system detects changes in the fastener length and sound velocity which are independent of friction. The system is therefore capable of accurately establishing the correct change in bolt tension. This high resolution instrument has been used for precision measurement of preload in critical fasteners for numerous applications such as the space shuttle landing gear and helicopter main rotors.

  20. Professor Usain Bolt Welcomes You to the Schoolyard: Physics for Champions

    NASA Astrophysics Data System (ADS)

    Vourlias, Kostas; Seroglou, Fanny

    2016-01-01

    Could Usain Bolt achieve what teachers often fail to do? Could this famous Olympic winner challenge and motivate students to study mechanics and introduce them to the principles of physics in a fun way, outside of the classroom? In order to answer these questions, we "invited" for one semester the world record holder to visit our Greek high school in Thessaloniki as a guest teacher. For 13 weeks, 27 fifteen-year-olds run (or at least try to run) side by side with this great athlete, intending to learn his secrets. Within 9.58 s or 100 m, students have the chance to study a "phenomenon" of their daily lives and be introduced to a variety of concepts of physics in a pleasant and effective way. Students use simple athletic and innovative biomechanical equipment for their experiments, but mostly their own bodies, as experimental tools in order to study and to "feel" physics. Students have the chance to compare their athletic abilities to Bolt's and confront some of their ideas concerning concepts of physics.

  1. Resonant-type Smooth Impact Drive Mechanism (SIDM) actuator using a bolt-clamped Langevin transducer.

    PubMed

    Nishimura, Takuma; Hosaka, Hiroshi; Morita, Takeshi

    2012-01-01

    The Smooth Impact Drive Mechanism (SIDM) is a linear piezoelectric actuator that has seen practically applied to camera lens modules. Although previous SIDM actuators are easily miniaturized and enable accurate positioning, these actuators cannot actuate at high speed and cannot provide powerful driving because they are driven at an off-resonant frequency using a soft-type PZT. In the present study, we propose a resonant-type SIDM using a bolt-clamped Langevin transducer (BLT) with a hard-type PZT. The resonant-type SIDM overcomes the above-mentioned problems and high-power operation becomes possible with a very simple structure. As a result, we confirmed the operation of resonant-type SIDM by designing a bolt-clamped Langevin transducer. The properties of no-load maximum speed was 0.28m/s at driving voltages of 80V(p-p) for 44.9kHz and 48V(p-p) for 22.45kHz with a pre-load of 3.1N. PMID:21784499

  2. Field evaluation of cable bolts for coal mine roof support. Report of investigations/1995

    SciTech Connect

    McDonnell, J.P.; Tadolini, S.C.; DiGrado, P.E.

    1995-06-01

    Cable supports offer several advantages over traditional secondary support methods by enhancing stress redistribution to pillars and gob areas, minimizing or eliminating timbers and cribs that reduce ventilation, eradicating material-handling injuries related to placement of crib supports, and providing a cost-effective alternative to secondary support. The U.S. Bureau of Mines (USBM), researching alternatives to traditional roof support methods, designed and installed high-strength cable supports to improve the stability of longwall gate road and bleeder entries in a western U.S. coal mine. With the cooperation of industry, methods were developed to install cable supports in a tailgate and bleeder entry test area using traditional resin cartridges. Resin-grouted cable bolts were also installed and evaluated in additional longwall gate road and bleeder entry systems at the mine. The cable-bolted areas successfully maintained roof support throughout the tailgate and bleeder entries. Cable supports have replaced wood cribbing as secondary support in the bleeder entry system and minimized the use of cribbing in the longwall tailgate entries.

  3. Directional Control-Response Compatibility Relationships Assessed by Physical Simulation of an Underground Bolting Machine

    PubMed Central

    Steiner, Lisa; Burgess-Limerick, Robin; Porter, William

    2015-01-01

    Objective The authors examine the pattern of direction errors made during the manipulation of a physical simulation of an underground coal mine bolting machine to assess the directional control-response compatibility relationships associated with the device and to compare these results to data obtained from a virtual simulation of a generic device. Background Directional errors during the manual control of underground coal roof bolting equipment are associated with serious injuries. Directional control-response relationships have previously been examined using a virtual simulation of a generic device; however, the applicability of these results to a specific physical device may be questioned. Method Forty-eight participants randomly assigned to different directional control-response relationships manipulated horizontal or vertical control levers to move a simulated bolter arm in three directions (elevation, slew, and sump) as well as to cause a light to become illuminated and raise or lower a stabilizing jack. Directional errors were recorded during the completion of 240 trials by each participant. Results Directional error rates are increased when the control and response are in opposite directions or if the direction of the control and response are perpendicular. The pattern of direction error rates was consistent with experiments obtained from a generic device in a virtual environment. Conclusion Error rates are increased by incompatible directional control-response relationships. Application Ensuring that the design of equipment controls maintains compatible directional control-response relationships has potential to reduce the errors made in high-risk situations, such as underground coal mining. PMID:24689255

  4. Design and Demonstration of Bolt Retractor Separation System for X-38 Deorbit Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Ahmed, Raf; Johnston, A. S.; Garrison, J. C.; Gaines, J. L.; Waggoner, J. D.

    2003-01-01

    A separation system was designed for the X-38 experimental crew return vehicle program to allow the Deorbit Propulsion Stage (DPS) to separate from the X-38 lifting body during reentry operations. The configuration chosen was a spring-loaded plunger, known as the Bolt Retractor Subsystem (BRS), that retracts each of the six DPS-to-lifting body attachment bolts across the interface plane after being triggered by a separation nut mechanism. The system was designed to function on the ground in an atmospheric environment as well as in space. The BRS provides the same functionality as that of a completely pyrotechnic shear separation system that would normally be considered ideal for this application, but at a much lower cost. This system also could potentially be applied to future space station crew return vehicles. The design goal of 40 ms retraction time was successfully met in a series of demonstrations performed at the NASA Marshall Space Flight Center s Pyrotechnic Shock Facility (PSF) and Flight Robotics Laboratory (FRL). It must be emphasized that a full-scale test series was not performed on the BRS due to program schedule and cost constraints.

  5. Study, Development, and Design of Replaceable Shear Yielding Steel Panel Damper

    SciTech Connect

    Murakami, Katsuhide; Keii, Michio

    2008-07-08

    For middle-high rise buildings, vibration controlled structures to reduce the damage of main frames are recently becoming general in Japan. A steel material damper is low price and excellent in the energy absorption efficiency at a large earthquake. Though the exchange of the dampers are necessary when an excessive accumulation of plasticity deformation occurs, a steel material damping system, which received an excessive accumulation of plasticity deformation after a large earthquake, can recover a seismic-proof performance and property value of the building after the replacement. In the paper, shear yielding steel panel dampers installed in the web of a beam connected with high tension bolt joint is introduced. This damper is made of low-yield point steel, and the advantages of this system are low cost, easy-production and easy-replacement. For this steel panel damper, the finite element method (FEM) analysis using the shell element model adjusted to 1/2 of 6.4 m beam span is executed to make the design most effective. Yielding property of the beam installing this damper, shape of the splice plate and the bolt orientation for the connecting are examined in this analysis. As a result, we found that the plastic strain extends uniformly to the entire damping panel when making the splice plate a trapezoidal shape. The basic performance confirmation examination was also done using the real scale examination model besides the FEM analysis, and the performance of the system was confirmed. In addition, design of a high rise building in which the steel shear-yielding panel dampers and oil dampers were adopted without disturbing an architectural plan is also introduced.

  6. The characteristics of head wounds inflicted by "humane killer" (captive-bolt gun)--a 15-year study.

    PubMed

    Simic, Milan; Draskovic, Dragan; Stojiljkovic, Goran; Vukovic, Radenko; Budimlija, Zoran M

    2007-09-01

    The "humane killer" or captive-bolt gun, is the tool/weapon widely used in meat industry and private farmer households for slaughtering animal stock. Out of 17,250 autopsies performed at the Institute of Forensic Medicine in Novi Sad during the 15-year period (1991-2005), 29 cases of suicides and two homicides were committed by captive-bolt pistols. Wounds inflicted by captive-bolt guns have specific morphological features, distinctive from wounds made by other kinds of hand firearms. Selected features of the captive-bolt wounds (punched round entrance and a double pattern of smoke soiling) depend on distance and angle of instrument at the time of firing. Autopsy findings were compared with an experimental model consisting of 20 domestic pigs. Obtained results confirmed that the appearance of the entrance hole and soot deposits, along with differences in shape, location, extent, and density of soot blackening, could be useful in identification of weapon, direction of discharge, shooting distance, and angle of the muzzle to the frontal and sagittal planes of the head at the moment of fire. PMID:17767661

  7. Mechanical Model of Steel-concrete Composite Joint under Sagging Bending Moment

    NASA Astrophysics Data System (ADS)

    Pisarek, Zdzisław

    2012-06-01

    In buildings with steel-concrete composite floors, joints are designed to transmit mainly hogging bending moment. In case of the large horizontal loads due to wind, earthquake or accidental events, sagging bending moments in a joint can also occur. Additionally, large deformations of the structure cause tying and prying effects. In the paper, a mechanical model based on "component method" for evaluation of characteristics of the composite joint is presented. The influence of tying and prying actions on distribution of the internal forces in a joint is also analyzed. The procedure for calculation of the characteristics of the composite joint with bolted endplate connection is elaborated too.

  8. BOLTS: a BiOphysical Larval Tracking System for Measuring Dispersal Characteristics and Marine Population Connectivity

    NASA Astrophysics Data System (ADS)

    Paris, C. B.; Srinivasan, A.; Kourafalou, V.; Sponaugle, S.; Cowen, R. K.

    2008-12-01

    While metapopulation research with hypothetical dispersal matrices has shown how the scales of larval dispersal, transport processes, local recruitment, and temporal and spatial variability in dispersal influence population persistence, the pattern of demographic connectivity produced by larval dispersal is still a key uncertainty. To address this problem, a coupled bio-physical model has been developed that quantifies the degree of connectivity between populations. Such spatially explicit models, forced by dynamic currents coupled to a realistic seascape and life history traits, produce dispersal kernels for a range of scales over which dispersal is practically unquantifiable by current empirical methods. The BiOphysical Larval Tracking System (BOLTS) presented here allows a Lagrangian stochastic individual-based model (IBM) to be coupled via OPENDAP framework to any 3-dimensional fields of circulation models including to domains of various resolutions through 'Lagrangian nesting'. We demonstrate the capabilities of the software in measuring the characteristics of dispersal and evaluating the variability of larval connectivity through two examples at different scales: 1) Caribbean-scale simulations of BOLTS using the large scale (resolution ~7 km) Hybrid Coordinate Ocean Model (HYCOM) from the Global Data Assimilative Experiment (GODAE) provide us with expected connectivity patterns of a reef building coral. By seeding the model with a large number of active particles, it is possible to assemble dispersal kernels and migration matrices from the start (spawning) and the end point (settlement) of individual particle trajectories. Any single run is a stochastic realization of a probabilistic process, thus the full probability density function (pdf) of the kernel requires averaging over many dispersal events. The model output is further corroborated with empirical measures of gene flow among coral colonies around the Caribbean. 2) Coastal-scale simulations of BOLTS

  9. Thermal conductance measurements of bolted copper to copper joints at sub-Kelvin temperatures

    NASA Astrophysics Data System (ADS)

    Didschuns, I.; Woodcraft, A. L.; Bintley, D.; Hargrave, P. C.

    2004-05-01

    We have measured the thermal contact conductance of several demountable copper joints below 1 K. Joints were made by bolting together either two flat surfaces or a clamp around a rod. Surfaces were gold plated, and no intermediate materials were used. A linear dependence on temperature was seen. Most of the measured conductance values fell into a narrow range: 0.1-0.2 W K -1 at 1 K. Results in the literature for similar joints consist of predictions based on electrical resistance measurements using the Wiedemann-Franz law. There is little evidence of the validity of this law in the case of joints. Nevertheless, our results are in good agreement with the literature predictions, suggesting that such predictions are a reasonable approximation.

  10. ASP (AntiSubmarine Penetrator) base plate redesign and explosive bolt test

    SciTech Connect

    Cole, J.K.; Wolfe, W.P.

    1988-10-01

    This report presents the results of a post-flight investigation of the Rocket Antisubmarine Penetrator (RAP) tests of the AntiSubmarine Penetrator (ASP). It focuses on the cause for the premature deployment of the on-board recovery system and the failure of the base pressure transducers. As a result of the investigation, the base plate of the ASP vehicle was modified to increase its structural stiffness. Also, an instrumented test was conducted to assess the environment that is created when the three explosive bolts are activated to separate the vehicle from the interstage adapter and the rocket booster. The results of this test are presented and discussed. 5 refs., 15 figs.

  11. A photoelastic determination of stress intensity factors for corner cracks in a bolted joint

    SciTech Connect

    Guengoer, S.; Patterson, E.A.

    1997-11-01

    Three-dimensional photoelasticity was used to measure mode I stress intensity factors of corner cracks in a double-shear bolted joint. A model of the joint assembly was manufactured from a photoelastic material and three different corner cracks were introduced using a cutting wheel. After the stress freezing process, slices along the crack fronts were cut and analyzed using three different photoelastic procedures. There was good correlation between the methods of analysis. Stress intensity factors of these cracks were found to vary along the crack front with a maximum at the bore of the hole and a minimum on the surface of the plate. This implies that the cracks are likely to grow more rapidly along the bore.

  12. Improving the transient response of a bolt-clamped Langevin transducer using a parallel resistor.

    PubMed

    Chang, Kuo Tsi

    2003-08-01

    This paper suggests a parallel resistor to reduce DC time constant and DC response time of the transient response, induced immediately after an AC voltage connected to a bolt-clamped Langevin transducer (BLT) is switched off. An equivalent circuit is first expressed. Then, an open-circuit transient response at the terminals induced by initial states is derived and measured, and thus parameters for losses of the BLT device are estimated by DC and AC time constants of the transient response. Moreover, a driving and measuring system is designed to determine transient response and steady-state responses of the BLT device, and a parallel resistor is connected to the BLT device to reduce the DC time constant. Experimental results indicate that the DC time constant greatly exceeds the AC time constant without the parallel resistor, and greatly decreases from 42 to 1 ms by a 100-kOmega parallel resistor. PMID:12853079

  13. Design and fabrication of graphite-epoxy bolted wing skin splice specimens

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Mccarty, J. E.

    1977-01-01

    Graphite-epoxy bolted joint specimens were designed and fabricated. These specimens were to be representative of a side-of-body wing skin splice with a 20-year life expectancy in a commercial transport environment. Preliminary tests were performed to determine design values of bearing and net tension stresses. Based upon the information developed, a three-fastener-wide representative wing skin splice was designed for a load of 2627 KN/m (15,000 lbf/in.). One joint specimen was fabricated and tested at NASA. The wing skin splice failed at 106 percent of design ultimate load. This joint design achieved all static load objectives. Fabrication of six specimens, together with their loading fixtures, was completed, and the specimens were delivered to NASA-LRC.

  14. Monitoring of bolted joints using piezoelectric active-sensing for aerospace applications

    SciTech Connect

    Park, Gyuhae; Farrar, Charles R; Park, Chan - Yik; Jun, Seung - Moon

    2010-01-01

    This paper is a report of an initial investigation into tracking and monitoring the integrity of bolted joints using piezoelectric active-sensors. The target application of this study is a fitting lug assembly of unmanned aerial vehicles (UAVs), where a composite wing is mounted to a UAV fuselage. The SHM methods deployed in this study are impedance-based SHM techniques, time-series analysis, and high-frequency response functions measured by piezoelectric active-sensors. Different types of simulated damage are introduced into the structure, and the capability of each technique is examined and compared. Additional considerations encountered in this initial investigation are made to guide further thorough research required for the successful field deployment of this technology.

  15. Numerical design and test on an assembled structure of a bolted joint with viscoelastic damping

    NASA Astrophysics Data System (ADS)

    Hammami, Chaima; Balmes, Etienne; Guskov, Mikhail

    2016-03-01

    Mechanical assemblies are subjected to many dynamic loads and modifications are often needed to achieve acceptable vibration levels. While modifications on mass and stiffness are well mastered, damping modifications are still considered difficult to design. The paper presents a case study on the design of a bolted connection containing a viscoelastic damping layer. The notion of junction coupling level is introduced to ensure that sufficient energy is present in the joints to allow damping. Static performance is then addressed and it is shown that localization of metallic contact can be used to meet objectives, while allowing the presence of viscoelastic materials. Numerical prediction of damping then illustrates difficulties in optimizing for robustness. Modal test results of three configurations of an assembled structure, inspired by aeronautic fuselages, are then compared to analyze the performance of the design. While validity of the approach is confirmed, the effect of geometric imperfections is shown and stresses the need for robust design.

  16. Torque Limit for Bolted Joint for Composites. Part A; TTTC Properties of Laminated Composites

    NASA Technical Reports Server (NTRS)

    Zhao, Yi

    2003-01-01

    The existing design code for torque limit of bolted joints for composites at Marshall Space Flight Center is MSFC-STD-486B, which was originally developed in 1960s for metallic materials. The theoretical basis for this code was a simplified mechanics analysis, which takes into account only the bolt, nut and washers, but not the structural members to be connected. The assumption was that metallic materials would not fail due to the bearing stress at the contact area between washer and the mechanical member. This is true for metallic materials; but for composite materials the results could be completely different. Unlike most metallic materials, laminated composite materials have superior mechanical properties (such as modulus and strength) in the in-plane direction, but not in the out-of-plane, or through-the-thickness (TTT) direction. During the torquing, TTT properties (particularly compressive modulus and compressive strength) play a dominant role in composite failure. Because of this concern, structural design engineers at Marshall are currently using a compromised empirical approach: using 50% of the torque value for composite members. Companies like Boeing is using a similar approach. An initial study was conducted last summer on this topic to develop theoretical model(s) that takes into consideration of composite members. Two simplified models were developed based on stress failure criterion and strain failure criterion, respective. However, these models could not be used to predict the torque limit because of the unavailability of material data, specifically, through-the-thickness compression (TTTC) modulus and strength. Therefore, the task for this summer is to experimentally determine the TTTC properties. Due to the time limitation, only one material has been tested: IM7/8552 with [0 degrees,plus or minus 45 degrees, 90 degree ] configuration. This report focuses the test results and their significance, while the experimentation will be described in a

  17. Taub-NUT/bolt black holes in Gauss-Bonnet-Maxwell gravity

    SciTech Connect

    Dehghani, M.H.; Hendi, S. H.

    2006-04-15

    We present a class of higher-dimensional solutions to Gauss-Bonnet-Maxwell equations in 2k+2 dimensions with a U(1) fibration over a 2k-dimensional base space B. These solutions depend on two extra parameters, other than the mass and the Newman-Unti-Tamburino charge, which are the electric charge q and the electric potential at infinity V. We find that the form of metric is sensitive to geometry of the base space, while the form of electromagnetic field is independent of B. We investigate the existence of Taub-Newman-Unti-Tamburino/bolt solutions and find that in addition to the two conditions of uncharged Newman-Unti-Tamburino solutions, there exist two other conditions. These two extra conditions come from the regularity of vector potential at r=N and the fact that the horizon at r=N should be the outer horizon of the black hole. We find that for all nonextremal Newman-Unti-Tamburino solutions of Einstein gravity having no curvature singularity at r=N, there exist Newman-Unti-Tamburino solutions in Gauss-Bonnet-Maxwell gravity. Indeed, we have nonextreme Newman-Unti-Tamburino solutions in 2+2k dimensions only when the 2k-dimensional base space is chosen to be CP{sup 2k}. We also find that the Gauss-Bonnet-Maxwell gravity has extremal Newman-Unti-Tamburino solutions whenever the base space is a product of 2-torii with at most a 2-dimensional factor space of positive curvature, even though there a curvature singularity exists at r=N. We also find that one can have bolt solutions in Gauss-Bonnet-Maxwell gravity with any base space. The only case for which one does not have black hole solutions is in the absence of a cosmological term with zero curvature base space.

  18. Failure behavior for composite single-bolted joints in double shear tension

    NASA Astrophysics Data System (ADS)

    Tang, Zhanwen; Liu, Hanyang; Yang, Zhiyong; Shi, Hanqiao; Sun, Baogang

    2016-05-01

    In order to improve the reliability and load carrying capacity of composite laminates structures which were lap jointed by bolt, in this paper, the failure strength and failure mode of laminated composite pinned-joints is investigated. To determine the effects of joint geometry and stacking sequence on the bearing strength and damage mode, the multi-scale numerical model combining with the Generalized Method of Cells (GMC) and considering the failure and the damage of constituent materials was created based on the ABAQUS and its user subroutine (USDFLD). A three-dimensional finite element technique was used for the stress analysis. Based on the three-dimensional state of stress of each element, different failure modes were detected by the failure theories of constituent materials, all of which are applied at the fiber, matrix and fiber-matrix interface constituent level. Numerical simulations have been carried out by which edge distance-to-hole diameter ratio, and plate width-to-hole diameter ratio are varied, The composite laminated plates are stacked with the following four different orientations: [+45/-45]2s, [90/+45/-45]s, and [0/90/0]s, the results show that failure mode and bearing strength are closely related to by stacking sequence of plates and geometrical parameters. Finally, the ultimate strength and failure modes of composite bolted joints in static tension double-shear loading conditions are predicted by using the progressive damage method established and the effects of layup and dimension of laminates on the properties of the connection structure were researched in this paper. An excellent agreement is found between data obtained from this study and the experiment.

  19. Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements

    NASA Astrophysics Data System (ADS)

    Song, Y.; Hartwigsen, C. J.; McFarland, D. M.; Vakakis, A. F.; Bergman, L. A.

    2004-05-01

    Mechanical joints often affect structural response, causing localized non-linear stiffness and damping changes. As many structures are assemblies, incorporating the effects of joints is necessary to produce predictive finite element models. In this paper, we present an adjusted Iwan beam element (AIBE) for dynamic response analysis of beam structures containing joints. The adjusted Iwan model consists of a combination of springs and frictional sliders that exhibits non-linear behavior due to the stick-slip characteristic of the latter. The beam element developed is two-dimensional and consists of two adjusted Iwan models and maintains the usual complement of degrees of freedom: transverse displacement and rotation at each of the two nodes. The resulting element includes six parameters, which must be determined. To circumvent the difficulty arising from the non-linear nature of the inverse problem, a multi-layer feed-forward neural network (MLFF) is employed to extract joint parameters from measured structural acceleration responses. A parameter identification procedure is implemented on a beam structure with a bolted joint. In this procedure, acceleration responses at one location on the beam structure due to one known impulsive forcing function are simulated for sets of combinations of varying joint parameters. A MLFF is developed and trained using the patterns of envelope data corresponding to these acceleration histories. The joint parameters are identified through the trained MLFF applied to the measured acceleration response. Then, using the identified joint parameters, acceleration responses of the jointed beam due to a different impulsive forcing function are predicted. The validity of the identified joint parameters is assessed by comparing simulated acceleration responses with experimental measurements. The capability of the AIBE to capture the effects of bolted joints on the dynamic responses of beam structures, and the efficacy of the MLFF parameter

  20. Supertough Stainless Bearing Steel

    NASA Technical Reports Server (NTRS)

    Olson, Gregory B.

    1995-01-01

    Composition and processing of supertough stainless bearing steel designed with help of computer-aided thermodynamic modeling. Fracture toughness and hardness of steel exceeds those of other bearing steels like 440C stainless bearing steel. Developed for service in fuel and oxidizer turbopumps on Space Shuttle main engine. Because of strength and toughness, also proves useful in other applications like gears and surgical knives.

  1. A clamping force measurement system for monitoring the condition of bolted joints on railway track joints and points

    NASA Astrophysics Data System (ADS)

    Tesfa, B.; Horler, G.; Thobiani, F. Al; Gu, F.; Ball, A. D.

    2012-05-01

    Many industrial structures associated with railway infrastructures rely on a large number of bolted joint connections to ensure safe and reliable operation of the track and trackside furniture. Significant sums of money are spent annually to repair the damage caused by bolt failures and to maintain the integrity of bolted structures. In the UK, Network Rail (the organization responsible for rail network maintenance and safety) conducts corrective and preventive maintenance manually on 26,000 sets of points (each having approximately 30 bolted joints per set), in order to ensure operational success and safety for the travelling public. Such manual maintenance is costly, disruptive, unreliable and prone to human error. The aim of this work is to provide a means of automatically measuring the clamping force of each individual bolted joint, by means of an instrumented washer. This paper describes the development of a sensor means to be used in the washer, which satisfies the following criteria. Sense changes in the clamping force of the joint and report this fact. Provide compatibility with the large dynamic range of clamping force. Satisfy the limitations in terms of physical size. Provide the means to electronically interface with the washer. Provide a means of powering the washer in situ. Provide a solution at an acceptable cost. Specifically the paper focuses on requirements 1, 2 and 3 and presents the results that support further development of the proposed design and the realization of a pre-prototype system. In the paper, various options for the force sensing element (strain gage, capacitor, piezo-resistive) have been compared, using design optimization techniques. As a result of the evaluation, piezo-resistive sensors in concert with a proprietary force attenuation method, have been found to offer the best performance and cost trade-off The performance of the novel clamping force sensor has been evaluated experimentally and the results show that a smart washer

  2. Thermal Stress Cracking of Slide-Gate Plates in Steel Continuous Casting

    NASA Astrophysics Data System (ADS)

    Lee, Hyoung-Jun; Thomas, Brian G.; Kim, Seon-Hyo

    2016-04-01

    The slide-gate plates in a cassette assembly control the steel flow through the tundish nozzle, and may experience through-thickness cracks, caused by thermal expansion and/or mechanical constraint, leading to air aspiration and safety concerns. Different mechanisms for common and rare crack formation are investigated with the aid of a three-dimensional finite-element model of thermal mechanical behavior of the slide-gate plate assembly during bolt pretensioning, preheating, tundish filling, casting, and cooling stages. The model was validated with previous plant temperature measurements of a ladle plate during preheating and casting, and then applied to a typical tundish-nozzle slide-gate assembly. The formation mechanisms of different types of cracks in the slide-gate plates are investigated using the model and evaluated with actual slide-gate plates at POSCO. Common through-thickness radial cracks, found in every plate, are caused during casting by high tensile stress on the outside surfaces of the plates, due to internal thermal expansion. In the upper plate, these cracks may also arise during preheating or tundish filling. Excessive bolt tightening, combined with thermal expansion during casting may cause rare radial cracks in the upper and lower plates. Rare radial and transverse cracks in middle plate appear to be caused during tundish filling by impingement of molten steel on the middle of the middle plate that generates tensile stress in the surrounding refractory. The mechanical properties of the refractory, the bolt tightening conditions, and the cassette/plate design are all important to service life.

  3. Identification of bolting-related microRNAs and their targets reveals complex miRNA-mediated flowering-time regulatory networks in radish (Raphanus sativus L.)

    PubMed Central

    Nie, Shanshan; Xu, Liang; Wang, Yan; Huang, Danqiong; Muleke, Everlyne M.; Sun, Xiaochuan; Wang, Ronghua; Xie, Yang; Gong, Yiqin; Liu, Liwang

    2015-01-01

    MicroRNAs (miRNAs) play vital regulatory roles in plant growth and development. The phase transition from vegetative growth to flowering is crucial in the life cycle of plants. To date, miRNA-mediated flowering regulatory networks remain largely unexplored in radish. In this study, two small RNA libraries from radish leaves at vegetative and reproductive stages were constructed and sequenced by Solexa sequencing. A total of 94 known miRNAs representing 21 conserved and 13 non-conserved miRNA families, and 44 potential novel miRNAs, were identified from the two libraries. In addition, 42 known and 17 novel miRNAs were significantly differentially expressed and identified as bolting-related miRNAs. RT-qPCR analysis revealed that some miRNAs exhibited tissue- or developmental stage-specific expression patterns. Moreover, 154 target transcripts were identified for 50 bolting-related miRNAs, which were predominately involved in plant development, signal transduction and transcriptional regulation. Based on the characterization of bolting-related miRNAs and their target genes, a putative schematic model of miRNA-mediated bolting and flowering regulatory network was proposed. These results could provide insights into bolting and flowering regulatory networks in radish, and facilitate dissecting the molecular mechanisms underlying bolting and flowering time regulation in vegetable crops. PMID:26369897

  4. Identification of bolting-related microRNAs and their targets reveals complex miRNA-mediated flowering-time regulatory networks in radish (Raphanus sativus L.).

    PubMed

    Nie, Shanshan; Xu, Liang; Wang, Yan; Huang, Danqiong; Muleke, Everlyne M; Sun, Xiaochuan; Wang, Ronghua; Xie, Yang; Gong, Yiqin; Liu, Liwang

    2015-01-01

    MicroRNAs (miRNAs) play vital regulatory roles in plant growth and development. The phase transition from vegetative growth to flowering is crucial in the life cycle of plants. To date, miRNA-mediated flowering regulatory networks remain largely unexplored in radish. In this study, two small RNA libraries from radish leaves at vegetative and reproductive stages were constructed and sequenced by Solexa sequencing. A total of 94 known miRNAs representing 21 conserved and 13 non-conserved miRNA families, and 44 potential novel miRNAs, were identified from the two libraries. In addition, 42 known and 17 novel miRNAs were significantly differentially expressed and identified as bolting-related miRNAs. RT-qPCR analysis revealed that some miRNAs exhibited tissue- or developmental stage-specific expression patterns. Moreover, 154 target transcripts were identified for 50 bolting-related miRNAs, which were predominately involved in plant development, signal transduction and transcriptional regulation. Based on the characterization of bolting-related miRNAs and their target genes, a putative schematic model of miRNA-mediated bolting and flowering regulatory network was proposed. These results could provide insights into bolting and flowering regulatory networks in radish, and facilitate dissecting the molecular mechanisms underlying bolting and flowering time regulation in vegetable crops. PMID:26369897

  5. Enhancement of tendon–bone healing via the combination of biodegradable collagen-loaded nanofibrous membranes and a three-dimensional printed bone-anchoring bolt

    PubMed Central

    Chou, Ying-Chao; Yeh, Wen-Lin; Chao, Chien-Lin; Hsu, Yung-Heng; Yu, Yi-Hsun; Chen, Jan-Kan; Liu, Shih-Jung

    2016-01-01

    A composite biodegradable polymeric model was developed to enhance tendon graft healing. This model included a biodegradable polylactide (PLA) bolt as the bone anchor and a poly(D,L-lactide-co-glycolide) (PLGA) nanofibrous membrane embedded with collagen as a biomimic patch to promote tendon–bone interface integration. Degradation rate and compressive strength of the PLA bolt were measured after immersion in a buffer solution for 3 months. In vitro biochemical characteristics and the nanofibrous matrix were assessed using a water contact angle analyzer, pH meter, and tetrazolium reduction assay. In vivo efficacies of PLGA/collagen nanofibers and PLA bolts for tendon–bone healing were investigated on a rabbit bone tunnel model with histological and tendon pullout tests. The PLGA/collagen-blended nanofibrous membrane was a hydrophilic, stable, and biocompatible scaffold. The PLA bolt was durable for tendon–bone anchoring. Histology showed adequate biocompatibility of the PLA bolt on a medial cortex with progressive bone ingrowth and without tissue overreaction. PLGA nanofibers within the bone tunnel also decreased the tunnel enlargement phenomenon and enhanced tendon–bone integration. Composite polymers of the PLA bolt and PLGA/collagen nanofibrous membrane can effectively promote outcomes of tendon reconstruction in a rabbit model. The composite biodegradable polymeric system may be useful in humans for tendon reconstruction. PMID:27601901

  6. Enhancement of tendon-bone healing via the combination of biodegradable collagen-loaded nanofibrous membranes and a three-dimensional printed bone-anchoring bolt.

    PubMed

    Chou, Ying-Chao; Yeh, Wen-Lin; Chao, Chien-Lin; Hsu, Yung-Heng; Yu, Yi-Hsun; Chen, Jan-Kan; Liu, Shih-Jung

    2016-01-01

    A composite biodegradable polymeric model was developed to enhance tendon graft healing. This model included a biodegradable polylactide (PLA) bolt as the bone anchor and a poly(D,L-lactide-co-glycolide) (PLGA) nanofibrous membrane embedded with collagen as a biomimic patch to promote tendon-bone interface integration. Degradation rate and compressive strength of the PLA bolt were measured after immersion in a buffer solution for 3 months. In vitro biochemical characteristics and the nanofibrous matrix were assessed using a water contact angle analyzer, pH meter, and tetrazolium reduction assay. In vivo efficacies of PLGA/collagen nanofibers and PLA bolts for tendon-bone healing were investigated on a rabbit bone tunnel model with histological and tendon pullout tests. The PLGA/collagen-blended nanofibrous membrane was a hydrophilic, stable, and biocompatible scaffold. The PLA bolt was durable for tendon-bone anchoring. Histology showed adequate biocompatibility of the PLA bolt on a medial cortex with progressive bone ingrowth and without tissue overreaction. PLGA nanofibers within the bone tunnel also decreased the tunnel enlargement phenomenon and enhanced tendon-bone integration. Composite polymers of the PLA bolt and PLGA/collagen nanofibrous membrane can effectively promote outcomes of tendon reconstruction in a rabbit model. The composite biodegradable polymeric system may be useful in humans for tendon reconstruction. PMID:27601901

  7. Structural design of an in-line bolted joint for the space shuttle solid rocket motor case segments

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Stein, Peter A.; Bush, Harold G.

    1987-01-01

    Results of a structural design study of an in-line bolted joint concept which can be used to assemble Space Shuttle Solid Rocket Motor (SRM) case segments are presented. Numerous parametric studies are performed to characterize the in-line bolted joint behavior as major design variables are altered, with the primary objective always being to keep the inside of the joint (where the O-rings are located) closed during the SRM firing. The resulting design has 180 1-inch studs, an eccentricity of -0.5 inch, a flange thickness of 3/4 inch, a bearing plate thickness of 1/4 inch, and the studs are subjected to a preload which is 70% of ultimate. The mass penalty per case segment joint for the in-line design is 346 lbm more than the weight penalty for the proposed capture tang fix.

  8. A High Power Ultrasonic Linear Motor Using a Longitudinal and Bending Hybrid Bolt-Clamped Langevin Type Transducer

    NASA Astrophysics Data System (ADS)

    Yun, Cheol-Ho; Ishii, Takaaki; Nakamura, Kentaro; Ueha, Sadayuki; Akashi, Koji

    2001-05-01

    A hybrid transducer type ultrasonic linear motor using the 1st longitudinal and the 2nd bending vibration modes of a bolt-clamped Langevin type transducer has been proposed and studied for accomplishing high mechanical output. The longitudinal vibration generates the mechanical driving force and the bending vibration controls the frictional force. To obtain large vibration amplitude and large mechanical output, a method of tuning the longitudinal resonance frequency to the bending one was investigated using finite element simulations, and demonstrated experimentally. To avoid magnetic interaction, we employed phosphor bronze for the bolt of the transducer. The prototype motor achieved the no-load velocity of 0.47 m/s and the maximum output mechanical force of 92 N.

  9. TEST AND ANALYSIS ON THE PROGRESSIVE COLLAPSE OF STEEL TRUSSES UNDER CYCLIC LOADING

    NASA Astrophysics Data System (ADS)

    Imase, Fumiaki; Usami, Tsutomu; Funayama, Jyunki; Wang, Chun-Lin

    The objective of this study is to examine experimentally and analytically the damage progress of steel truss structures in cyclic loadings. The adequacy of a numerical model developed in the past study for analyzing truss structures under cyclic or dynamic loadings is examined in view of the test results of model truss structures. Seven steel truss specimens whose panel points are rigidly connected through gusset plates by high-tension bolts were tested under constant vertical loads and cyclically increasing horizontal loads. Two truss models equipped with buckling restrained braces as diagonal members were tested. Moreover, elastic-plastic large displacement analysis is executed with appropriate modeling of test truss structures and with initial lateral loads simulating initial imperfections. In many cases, good correlation between test and analysis is observed up to the points where local bolt hole damages appear near the lower panel points of test truss structures. In addition an analytical model that can examine the up-lift effect of a base plate on the hinge-support has been proposed to improve the analytical modeling.

  10. Environmentally-controlled fracture of an overstrained A723 steel thick-walled cylinder

    NASA Astrophysics Data System (ADS)

    Underwood, J. H.; Olmstead, V. J.; Askew, J. C.; Kapusta, A. A.; Young, G. A.

    1992-08-01

    A through-wall, 1.7 m long crack grew suddenly from a notch in a 285 mm outer diameter (OD) of an A723 steel overstrained tube that was undergoing plating operations with no externally applied loads. The fracture mechanics tests and analyses and the fractography performed to characterize the cracking are described. The tube had a yield strength of 1200 MPa, fracture toughness of 150 MPavm, and a tensile residual stress at the OD of about 600 MPa. The composition was typical of an air-melt A723 steel, and the electropolishing bath, consisting of sulfuric and phosphoric acids, was held at 54 C. The bolt-loaded test for the threshold stress intensity factor for environmentally controlled cracking described by Wei and Novak was used here with two significant modifications. Some tests included only a notch with the radius matching that of the tube, and a new expression for K in terms of crack-mouth displacement was developed and used. Scanning electron microscope fractography and energy dispersive x ray spectra were used to identify crack mechanisms. Results of the study include: (1) a measured threshold of hydrogen stress cracking for the material/environment below 20 MPavm; (2) da/dt versus K behavior typical of classic environmental control; and (3) an improved K/v expression for the bolt-loaded specimen and associated criteria for determining plane-strain test conditions in relation to the Irwin plastic zone.

  11. Development of Thread Rolled Anti-Loosening Bolts Based on the Double Thread Mechanism and a Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Takemasu, Teruie; Miyahara, Hiroshi

    It has already been proven that bolt fasteners based on the double thread mechanism have an excellent anti-loosening performance. The purpose of this study is to establish a mass production method for these double thread bolts (DTBs) by thread rolling. The pitch ratio of the coarse thread and the fine thread of the target DTB is set as 2 to 1. A two-die roller with a plunge feed is employed as the rolling method due to its fine processing precision. The roller dies used in the experiments have special grooves on the external surface which follow the same outline as the thread profiles of the DTB. Using these special dies, the DTB can be successfully formed in the same process as single thread bolts. The deformation of a workpiece during rolling is examined, and the examination shows that the formed material smoothly fills the die grooves in each cross section. The rolled DTBs completely pass the loosening test with extremely severe vibration and impact, as specified in NAS3354. The tensile fatigue strength of the rolled DTB is about 100% greater than that of the cutting DTB.

  12. Ultrahigh carbon steels, Damascus steels, and superplasticity

    SciTech Connect

    Sherby, O.D.; Wadsworth, J.

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  13. Effect of flange bolt preload on Space Shuttle main engine high pressure oxidizer turbopump housing analysis

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Johnston, L. M.; Czekalski, B.

    1991-01-01

    Cracks at the seal fillet flange and the strut pilot groove of primary turbine drain passage of the space shuttle main engine (SSME) high pressure oxidizer turbopump (HPOTP) were observed and reported. Stress information for critical structural components in the SSME under actual conditions is necessary for design and life prediction analysis. However, little information is available about the stress distribution at this location under various combinations of loadings and environments. Thus, a stress analysis was conducted to determine an influence of the various operation and installation loads on the stresses of the HPOTP main mounting flange. To do this, a 3-D finite element model of the HPOTP housing was generated. A fairly comfortable margin of stresses at the flange fillet with respect to the yield stress of Inconel 718 is shown. However, it was revealed that the bending stress arising from the housing flange bolt preloads could significantly affect the stress distribution at the strut pilot groove of primary turbine drain passage in the HPOTP housing. Consequently, the information obtained from the present 3-D analysis results should be useful in guiding the development of the SSME HPOTP.

  14. Richard H. Bolt introduced me to acoustics, and I am still engaged

    NASA Astrophysics Data System (ADS)

    Dyer, Ira

    2003-04-01

    I arrived at the MIT Acoustics Laboratory in 1948, and quickly learned from Dick Bolt that U.S. submarines needed coatings to reduce vulnerability via active sonar detection. All who remember Dick will be familiar with his next step: He brought me to Robert Blizzard and A. Wilson Nolle, both then at the Lab, from whom I learned in detail how to measure and then how to understand the dynamic moduli of rubber-like materials. My path, of course, widened to include medical acoustics (under the leadership of Theodore Hueter) and scattering (Phillip Morse and Uno Ingard). Fast-forward to the present. Rubber-like materials are not only in use as submarine coatings to avoid detection by active sonars, but also to reduce noise radiated by submarines. Further, such materials cover submarine acoustic arrays to reduce flow-noise interference with signals received by such arrays. The problem that most engages me today is the stochastic nature of sound propagation in the ocean, a problem that has the practical consequence of degraded sonar performance. In the spirit of Dick, I will present snippets of my current work, with the hope of painting the big picture that he always did so well.

  15. Influence of Static Prestress on the Characteristics of Bolt-Clamped Langevin-Type Transducers

    NASA Astrophysics Data System (ADS)

    Adachi, Kazunari; Ogasawara, Isao; Tamura, Yasutaka; Makino, Munekazu; Kato, Naoyoshi

    1998-05-01

    Bolt-clamped Langevin-type transducers (BLTs) are widely used as powerful vibration sources in high-power ultrasonic applications. In the structure of a BLT, static compressional prestress is imposed on piezoelectric ceramic elements by clamping, to compensate for their weakness to tensile stress. Nevertheless, no report has been made about the clamping effects on the characteristics of a BLT with a reasonable estimation of the prestress. Previous works on material property change of piezoelectric ceramics caused by static compressional stress have always presumed a groundless uniformity of stress distribution in the objects examined. The authors have investigated the effects by some experiments and numerical simulations with the use of the finite-element analysis system to estimate precisely the prestress.As a result of these experiments, the prestress has been found to reduce the electromechanical coupling factor of the BLT. Estimation of the prestress is considered indispensable for designing BLTs, although the microscopic mechanism of the piezoelectricity reduction isnot yet clarified.

  16. Application of viscous and Iwan modal damping models to experimental measurements from bolted structures

    SciTech Connect

    Deaner, Brandon J.; Allen, Matthew S.; Starr, Michael James; Segalman, Daniel J.; Sumali, Hartono

    2015-01-20

    Measurements are presented from a two-beam structure with several bolted interfaces in order to characterize the nonlinear damping introduced by the joints. The measurements (all at force levels below macroslip) reveal that each underlying mode of the structure is well approximated by a single degree-of-freedom (SDOF) system with a nonlinear mechanical joint. At low enough force levels, the measurements show dissipation that scales as the second power of the applied force, agreeing with theory for a linear viscously damped system. This is attributed to linear viscous behavior of the material and/or damping provided by the support structure. At larger force levels, the damping is observed to behave nonlinearly, suggesting that damping from the mechanical joints is dominant. A model is presented that captures these effects, consisting of a spring and viscous damping element in parallel with a four-parameter Iwan model. As a result, the parameters of this model are identified for each mode of the structure and comparisons suggest that the model captures the stiffness and damping accurately over a range of forcing levels.

  17. Underground mining machine having temporary roof support means and roof bolting means associated therewith

    SciTech Connect

    Damron, E.M.; Lipps, J.I.

    1980-04-22

    The mining machine consists of a main frame having a front portion and a rearwardly extending portion, and cutter heads disposed for movement across the front portion for dislodging mineral. A conveyor system is provided which extends across of the front of the main frame and along the rearwardly extending portion thereof for carrying dislodge mineral from the mine face. Forward roof support jacks, which are attached to the main frame for unitary movement therewith, provide temporary roof support as the entry is being formed. Rear roof support jacks, disposed behind the forward roof support jacks, also provide temporary roof support. Sumping cylinders, which are disposed generally parallel to the mine floor, connect the rear roof support jacks to the main frame and are used for moving the mining machine. The sumping cylinders are connected to the main frame with a universal joint connection to permit free movement of each sumping cylinder around its point of connection to the main frame. Steering cylinders, for positioning the sumping cylinders, are connected between each sumping cylinder and the main frame. Pivot jacks are provided on the main frame that extend to provide a pivot point around which the main frame can be moved by extending the sumping cylinders. The mining machine includes roof bolters, attached to the rear roof supports, for installing a series of roof bolts as the machine advances. Rib cleaners are provided for cleaning the mine ribs as the machine forms the entry.

  18. Application of viscous and Iwan modal damping models to experimental measurements from bolted structures

    DOE PAGESBeta

    Deaner, Brandon J.; Allen, Matthew S.; Starr, Michael James; Segalman, Daniel J.; Sumali, Hartono

    2015-01-20

    Measurements are presented from a two-beam structure with several bolted interfaces in order to characterize the nonlinear damping introduced by the joints. The measurements (all at force levels below macroslip) reveal that each underlying mode of the structure is well approximated by a single degree-of-freedom (SDOF) system with a nonlinear mechanical joint. At low enough force levels, the measurements show dissipation that scales as the second power of the applied force, agreeing with theory for a linear viscously damped system. This is attributed to linear viscous behavior of the material and/or damping provided by the support structure. At larger forcemore » levels, the damping is observed to behave nonlinearly, suggesting that damping from the mechanical joints is dominant. A model is presented that captures these effects, consisting of a spring and viscous damping element in parallel with a four-parameter Iwan model. As a result, the parameters of this model are identified for each mode of the structure and comparisons suggest that the model captures the stiffness and damping accurately over a range of forcing levels.« less

  19. Multi-field coupled sensing network for health monitoring of composite bolted joint

    NASA Astrophysics Data System (ADS)

    Wang, Yishou; Qing, Xinlin; Dong, Liang; Banerjee, Sourav

    2016-04-01

    Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and excellent designability. As key components of large composite structures, joints play important roles to ensure the integrity of the composite structures. However, it is very difficult to analyze the strength and failure modes of composite joints due to their complex nonlinear coupling factors. Therefore, there is a need to monitor, diagnose, evaluate and predict the structure state of composite joints. This paper proposes a multi-field coupled sensing network for health monitoring of composite bolted joints. Major work of this paper includes: 1) The concept of multifunctional sensor layer integrated with eddy current sensors, Rogowski coil and arrayed piezoelectric sensors; 2) Development of the process for integrating the eddy current sensor foil, Rogowski coil and piezoelectric sensor array in multifunctional sensor layer; 3) A new concept of smart composite joint with multifunctional sensing capability. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the study.

  20. Corrosion Behavior of Medium Carbon Steel in Simulated Concentrated Yucca Mountain Waters

    SciTech Connect

    Yilmaz, A; Chandra, D; Rebak, R B

    2004-04-09

    Medium carbon steel (MCS) is the candidate material for rock bolts to reinforce the borehole liners and emplacement drifts of the proposed Yucca Mountain (YM) high-level nuclear waste repository. Corrosion performance of this structural steel -AISI 1040- was investigated by techniques such as linear polarization, electrochemical impedance spectroscopy (EIS), and laboratory immersion tests in lab simulated concentrated YM ground waters. Corrosion rates of the steel were determined for the temperatures in the range from 25 C to 85 C, for the ionic concentrations of 1 time (1x), 10 times (10x), and hundred times (100x) ground waters. The MCS corroded uniformly at the penetration rates of 35-200 {micro}m/year in the de-aerated YM waters, and 200-1000 {micro}m/year in the aerated waters. Increasing temperatures in the de-aerated waters increased the corrosion rates of the steel. However, increasing ionic concentrations influenced the corrosion rates only slightly. In the aerated 1x and 10x waters, increasing temperatures increased the rates of MCS significantly. Inhibitive precipitates, which formed in the aerated 100x waters at higher temperatures (65 C and up) decreased the corrosion rates to the values that obtained for the de-aerated YM aqueous environments. The steel suffered pitting corrosion in the both de-aerated and aerated hot YM environments after anodic polarization.

  1. Supporting steel

    SciTech Connect

    Badra, C.

    1995-10-01

    The US Department of Energy (DOE) and the American Iron and Steel Institute (AISI) have just completed a pilot program on the technical and economic viability of direct ironmaking by a process based on bath smelting. In this process, oxygen, prereduced iron ore pellets, coal, and flux are charged into a molten slag bath containing a high percentage of carbon. The carbon removes oxygen from the iron ore and generates carbon monoxide and liquid iron. Oxygen is then injected to burn some of the carbon monoxide gas before it leaves the smelting vessel. The partially combusted gas is sued to preheat and prereduced the ore before it is injected into the bath. There are several competing cokeless ironmaking processes in various stages of development around the world. A brief comparison of these processes provides a useful perspective with which to gauge the progress and objectives of the AISI-DOE research initiative. The principal competing foreign technologies include the Corex process, DIOS, HIsmelt, and Jupiter. The advantages of the direct ironmaking process examined by AISI-DOE were not sufficiently demonstrated to justify commercialization without further research. However, enough knowledge was gained from laboratory and pilot testing to teach researchers how to optimize the direct ironmaking process and to provide the foundation for future research. Researchers now better understand issues such as the dissolution of materials, reduction mechanisms and rates, slag foaming and control, the behavior of sulfur, dust generation, and the entire question of energy efficiency--including post combustion and the role of coal/volatile matter.

  2. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  3. Welding Rustproof Steels

    NASA Technical Reports Server (NTRS)

    Hoffmann, W

    1929-01-01

    The following experimental results will perhaps increase the knowledge of the process of welding rustproof steels. The experiments were made with two chrome-steel sheets and with two chrome-steel-nickel sheets having the composition shown in Table I.

  4. Automated detection of cracks on the faying surface within high-load transfer bolted speciments

    NASA Astrophysics Data System (ADS)

    Wheatley, Gregory; Kollgaard, Jeffrey R.

    2003-07-01

    Boeing is currently conducting evaluation testing of the Comparative Vacuum Monitoring (CVMTM) system offered by Structural Monitoring Systems, Ltd (SMS). Initial testing has been conducted by SMS, with further test lab validations to be performed at Boeing in Seattle. Testing has been conducted on dog bone type specimens that have been cut at the center line. A notch was cut at one of the bolt holes and a CVM sensor installed on both sides of the plate. The doublers were added and a single line of 4 bolts along the longitudinal center line were used to attach the doubler plates to the dog bone type specimen. In this way, a high load transfer situation exists between the two halves of the dog bone specimen and the doubler plates. The CVM sensors are slightly over 0.004" (0.1mm) in thickness and are installed directly upon the faying surface of the dog bone specimen. Testing was conducted on an Instron 8501 Servohydraulic testing machine at the Department of Mechanical and Materials Engineering, University of Western Australia. The standard laboratory equipment offered by Structural Monitoring Systems, Ltd was used for crack detection. This equipment included the Kvac (vacuum supply) and the Sim8 (flow meter). The Sim8 was electrically connected to the Instron machine so that as soon as a crack was detected, fatigue loading was halted. The aim of the experiment was for CVM to detect a crack on the faying surface of the specimens at a length of 0.050" +/- 0.010". This was accomplished successfully. CVM has been developed on the principle that a small volume maintained at a low vacuum is extremely sensitive to any ingress of air. In addition to the load bearing sensors described above, self-adhesive, elastomeric sensors with fine channels on the adhesive face have been developed. When the sensors have been adhered to the structure under test, these fine channels, and the structure itself, form a manifold of galleries alternately at low vacuum and atmospheric pressure

  5. Design of a built-in health monitoring system for bolted thermal protection panels

    NASA Astrophysics Data System (ADS)

    Yang, Jinkyu; Chang, Fu-Kuo; Derriso, Mark M.

    2003-08-01

    Space vehicles require high performance thermal protection systems (TPS) that provide high temperature insulation capability with lower weight, high strength, and reliable integration with the existing system. Carbon-carbon panels mounted with bracket joints are potential future thermal protection systems with light weight, low creep, and high stiffness at high temperatures. However, the thermal protection system experiences a very harsh high-temperature and aerodynamic environment in addition to foreign object impacts. Damage or failure of panels without being detected can lead to catastrophe. Therefore, knowledge of the integrity of the thermal protection system before each launch and reentry is essential to the success of the mission. The objective of the study is to develop a built-in diagnostic system to assess the integrity of TPS panels as well as to lower inspection and maintenance time and costs. An integrated structural health monitoring system is being developed to monitor the TPS panels. The technology includes investigation of the loosening of bolts which connects TPS panels to the supporting structure, and potentially, identifying the location of damage on the panel caused by external impacts from micrometeorites and other objects. The first generation prototype was manufactured and tested in an acoustic chamber which simulated a re-entry environment to investigate the feasibility of the health monitoring system focusing on its survivability and sensitivity. The preliminary results were very promising. Based on the test results, the second generation design was proposed to improve the performance of the first generation design. To put a reliable and accurate decision on the diagnostics of the TPS panels, an advanced algorithm was developed with the aid of a wavelet transform technique.

  6. The steel scrap age.

    PubMed

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-01

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age. PMID:23442209

  7. Methods of forming steel

    DOEpatents

    Branagan, Daniel J.; Burch, Joseph V.

    2001-01-01

    In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.

  8. Ultrasonic Butt Welding of Aluminum, Copper and Steel Plate Specimens

    NASA Astrophysics Data System (ADS)

    Tsujino, Jiromaru; Ueoka, Tetsugi; Fujita, Yuki; Watanabe, Ichiro

    1994-05-01

    Characteristics of ultrasonic butt welding of the same and of different metal plates are studied. The ultrasonic vibration source used has eight 15-kHz bolt-clamped Langevin-type lead-zircon-titanate (PZT) transducers of 60 mm diameter and is driven by a 50-kW static induction thyristor power amplifier. Welding specimens of aluminum, copper and steel plates of 6 mm thickness are successfully joined end-to-end with weld strength almost equal to that of an aluminum specimen. The input power required for aluminum, aluminum and copper, and aluminum and steel plates are about 5 kW/cm2, 5.5 kW/cm2 and 3.5 kW/cm2, respectively. The measured temperature rise at the specimen side surface and elongation of the welded specimen during a tensile test correspond to weld strength. The hardness distributions along the weldment of welded specimens are measured and the maximum temperature rise in an aluminum welding specimen is estimated to be over 480°C from the reduction of hardness at a welding specimen surface.

  9. Regulation of bolting and identification of the α-tubulin gene family in Brassica rapa L. ssp pekinensis.

    PubMed

    Zhang, Y W; Jin, D; Xu, C; Zhang, L; Guo, M H; Fang, Z Y

    2016-01-01

    Microtubules are important components of eukaryotic cells, and they play vital roles in cell morphogenesis, carrying of signaling molecules, transport of materials, and establishing the cell polarity. During bolting of biennial plants, cell division and elongation are involved, and cell elongation inevitably involves the microtubules arrangement and expression of related genes. So we deduce that it is of great significance to figure out the mechanism of bolting and flowering in which TUA genes are involved. In the present study, bioinformatic methods were used to predict and identify the α-tubulin gene family (BrTUAs) in Brassica rapa L. ssp pekinensis (Chinese cabbage) through the alignment of AtTUA gene sequence from Arabidopsis thaliana with the B. rapa genome database (http://brassicadb.org/brad/) using the basic local alignment search tool. The change in the structure and functions of BrTUAs during the process of evolution, cis-acting elements in the promoter sequences of BrTUAs, and the expression of the identified genes was also analyzed. Twelve members of the α-tubulin gene family were identified from Chinese cabbage. The gene length, intron, exon, and promoter regions were determined to have changed significantly during the genome evolution. Only five of the 12 members were encoded completely and were observed to differ in their spatial and temporal expression. The five BrTUA promoter sequences contained different numbers of cis-elements responsive to light and low-temperature response, cis-elements responsive among which hormonal responses were significantly different. We also report that the BrTUAs were involved in the regulation of the bolting in Chinese cabbage, and propose that this process could be controlled by regulating the expression of BrTUAs. PMID:26909938

  10. Development of bolt-clamped Langevin-type transducer with high mechanical quality factor for excitation of large torsional vibration

    NASA Astrophysics Data System (ADS)

    Adachi, Kazunari; Konno, Yuji; Masaki, Shingo

    1994-02-01

    We have identified a crucial point for realization of a high mechanical quality factor (Q) of a bolt-clamped Langevin-type transducer used to excite large torsional vibrations of a cylindrical system. A sufficient margin of the static bearing stress over the vibratory shearing one at the interface between the components has been found necessary for a high Q as a result of some numerical simulations and experiments for two models of the transducers. A hollow cylindrical shape of the transducer is seen to have a great advantage in this respect.

  11. Operational experience of ultrasonic sealing bolts for safeguard containment of multi-element bottles in British Nuclear Fuel`s THORP spent fuel storage ponds

    SciTech Connect

    Hatt, C.D.; Reynolds, A.F.; Jeffrey, A.; DeTourbet, P.; D`Agraives, B.; Toornvliet, J.; Wilt, B.

    1995-12-31

    Following verification of the presence of Light Water Reactor fuel stored in multi-element bottles (MEBs), in British Nuclear Fuel`s (BNFL), Thermal Oxide Reprocessing Plant (THORP) fuel storage pond by Euratom and the IAEA, one lid bolt is replaced by an Ultrasonic Sealing Bolt. This safeguards seal, developed by Euratom`s Joint Research Centre at Ispra, Italy, has been field tested at Sellafield over several years and applied.in volume since 1994. The use of sealing bolts and video surveillance provides dual containment/surveillance on the THORP storage ponds, and brings significant savings in time and hence cost to the operator at the annual inventory verification. Time savings of up to 80% are achievable compared to fuel verification using a collimated gamma detector.

  12. On the separation of internal and boundary damage in slender bars using longitudinal vibration frequencies and equivalent linearization of damaged bolted joint response

    NASA Astrophysics Data System (ADS)

    Argatov, Ivan; Butcher, Eric A.

    2011-06-01

    The problem of detecting localized large-scale internal damage in structures with imperfect bolted joints is considered. The proposed damage detection strategy utilizes the structural damping and an equivalent linearization of the bolted lap joint response to separate the combined boundary damage from localized large-scale internal damage. The frequencies are found approximately using asymptotic analysis and a perturbation technique. The proposed approach is illustrated on an example of longitudinal vibrations in a slender elastic bar with both ends clamped by bolted lap joints with different levels of damage. It is found that while the proposed method allows for the estimation of internal damage severity once the crack location is known, it gives multiple possible crack locations so that other methods (e.g., mode shapes) are required to obtain a unique crack location.

  13. Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.).

    PubMed

    La, Gui-xiao; Fang, Ping; Teng, Yi-bo; Li, Ya-juan; Lin, Xian-yong

    2009-06-01

    The effects of CO(2) enrichment on the growth and glucosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO(2) concentration was elevated from 350 to 800 microl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO(2) concentration, N concentration, and CO(2)xN interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those of indolyl GSs were not affected, by elevated atmospheric CO(2). However, at 20 mmol N/L, elevated CO(2) had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO(2) concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO(2) concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO(2) condition. PMID:19489111

  14. Effect of tree species and end seal on attractiveness and utility of cut bolts to the redbay ambrosia beetle and granulate ambrosia beetle (coleoptera: Curculionidae: Scolytinae).

    PubMed

    Mayfield, A E; Hanula, J L

    2012-04-01

    The redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is a non-native invasive pest and vector of the fungus that causes laurel wilt disease in certain trees of the family Lauraceae. This study assessed the relative attractiveness and suitability of cut bolts of several tree species to X. glabratus. In 2009, female X. glabratus were equally attracted to traps baited with swampbay (Persea palustris (Rafinesque) Sargent) and camphortree (Cinnamomum camphora (L.) J. Presl), which were more attractive than avocado (Persea americana Miller), lancewood (Ocotea coriacea (Swartz) Britton), and sweetbay (Magnolia virginiana L.). These species were more attractive than loblolly bay (Gordonia lasianthus (L.) J. Ellis). X. glabratus entrance hole density and emergence from caged bolts were highest on swampbay and camphortree. In 2010, swampbay was significantly more attractive to X. glabratus than sassafras (Sassafras albidum (Nuttall) Nees), yellow poplar (Liriodendron tulipifera L.), and eastern redbud (Cercis canadensis L.). Sassafras bolts end sealed with a liquid wax-and-water emulsion were more attractive to X. glabratus than end-sealed bolts of yellow poplar and redbud. Relative to unsealed bolts, end seal decreased X. glabratus entrance hole density on swampbay and decreased granulate ambrosia beetle (Xylosandrus crassiusculus (Motschulsky)) trap catch, entrance hole density, and adult emergence from swampbay. X. crassiusculus was not attracted to sassafras, yellow poplar, and redbud and was not more attracted to manuka oil than to unbaited traps. Sassafras was more attractive to X. glabratus than previously reported and supported reproducing populations of the insect. End sealing bolts with a wax-and-water emulsion may not be optimal for attracting and rearing ambrosia beetles in small logs. PMID:22606816

  15. In Situ Measurement and Prediction of Stresses and Strains During Casting of Steel

    NASA Astrophysics Data System (ADS)

    Galles, Daniel; Beckermann, Christoph

    2016-02-01

    Modeling the thermo-mechanical behavior of steel during casting is of great importance for the prediction of distortions and cracks. In this study, an elasto-visco-plastic constitutive law is calibrated with mechanical measurements from casting experiments. A steel bar is solidified in a sand mold and strained by applying a force to bolts that are embedded in the two ends of the bar. The temporal evolutions of the restraint force and the bar's length change are measured in situ. The experiments are simulated by inputting calculated transient temperature fields into a finite element stress analysis that employs the measured forces as boundary conditions. The thermal strain predictions are validated using data from experiments without a restraint. Initial estimates of the constitutive model parameters are obtained from available mechanical test data involving reheated steel specimens. The temperature dependence of the strain rate sensitivity exponent is then adjusted until the measured and predicted length changes of the strained bars agree. The resulting calibrated mechanical property dataset is valid for the high-temperature austenite phase of steel. The data reveal a significantly different mechanical behavior during casting compared to what the stress-strain data from reheated specimens show.

  16. A guide for the ASME code for austenitic stainless steel containment vessels for high-level radioactive materials

    SciTech Connect

    Raske, D.T.

    1995-06-01

    The design and fabrication criteria recommended by the US Department of Energy (DOE) for high-level radioactive materials containment vessels used in packaging is found in Section III, Division 1, Subsection NB of the ASME Boiler and Pressure Vessel Code. This Code provides material, design, fabrication, examination, and testing specifications for nuclear power plant components. However, many of the requirements listed in the Code are not applicable to containment vessels made from austenitic stainless steel with austenitic or ferritic steel bolting. Most packaging designers, engineers, and fabricators are intimidated by the sheer volume of requirements contained in the Code; consequently, the Code is not always followed and many requirements that do apply are often overlooked during preparation of the Safety Analysis Report for Packaging (SARP) that constitutes the basis to evaluate the packaging for certification.

  17. A structural health monitoring fastener for tracking fatigue crack growth in bolted metallic joints

    NASA Astrophysics Data System (ADS)

    Rakow, Alexi Schroder

    sensor, data acquisition hardware, algorithm, and diagnostic display. The AIME sensor design, SHM Fastener, and complete SHM system are presented along with experimental results from a series of single-layer and bolted double lap joint aluminum laboratory specimens to validate the capability of these sensors to monitor metallic joints for fastener hole cracks. Fatigue cracks were successfully tracked to over 0.7 inches from the fastener hole in these tests. Sensor output obtained from single-layer fatigue specimens was compared with analytical predictions for fatigue crack growth versus cycle number showing a good correlation in trend between sensor output and predicted crack size.

  18. Tool steels. 5. edition

    SciTech Connect

    Roberts, G.; Krauss, G.; Kennedy, R.

    1998-12-31

    The revision of this authoritative work contains a significant amount of new information from the past nearly two decades presented in an entirely new outline, making this a must have reference for engineers involved in tool-steel production, as well as in the selection and use of tool steels in metalworking and other materials manufacturing industries. The chapter on tool-steel manufacturing includes new production processes, such as electroslag refining, vacuum arc remelting, spray deposition processes (Osprey and centrifugal spray), and powder metal processing. The seven chapters covering tool-steel types in the 4th Edition have been expanded to 11 chapters covering nine main groups of tool steels as well as other types of ultrahigh strength steels sometimes used for tooling. Each chapter discusses in detail processing, composition, and applications specific to the particular group. In addition, two chapters have been added covering surface modification and trouble shooting production and performance problems.

  19. Magnetic resonance imaging and computer tomography of brain lesions in water buffaloes and cattle stunned with handguns or captive bolts.

    PubMed

    Schwenk, Barbara K; Lechner, Isabel; Ross, Steffen G; Gascho, Dominic; Kneubuehl, Beat P; Glardon, Matthieu; Stoffel, Michael H

    2016-03-01

    Owing to the demand for genuine mozzarella, some 330 water buffaloes are being slaughtered every year in Switzerland albeit a stunning procedure meeting animal welfare and occupational safety requirements remains to be established. To provide a basis for improvements, we sized anatomical specifics in water buffaloes and cattle and we assessed brain lesions after stunning with captive bolts or handguns by diagnostic imaging. In water buffaloes and cattle, the median distance from the frontal skin surface to the inner bone table was 74.0mm (56.0-100.0mm) vs 36.6mm (29.3-44.3mm) and from skin to the thalamus 144.8mm (117.1-172.0mm) vs 102.0 (101.0-121.0mm), respectively. Consequently, customary captive bolt stunners may be inadequate. Free bullets are potentially suitable for stunning buffaloes but involve occupational safety hazards. The results of the present study shall be used to develop a device allowing effective and safe stunning of water buffaloes. PMID:26610289

  20. Structural health monitoring for bolt loosening via a non-invasive vibro-haptics human-machine cooperative interface

    NASA Astrophysics Data System (ADS)

    Pekedis, Mahmut; Mascerañas, David; Turan, Gursoy; Ercan, Emre; Farrar, Charles R.; Yildiz, Hasan

    2015-08-01

    For the last two decades, developments in damage detection algorithms have greatly increased the potential for autonomous decisions about structural health. However, we are still struggling to build autonomous tools that can match the ability of a human to detect and localize the quantity of damage in structures. Therefore, there is a growing interest in merging the computational and cognitive concepts to improve the solution of structural health monitoring (SHM). The main object of this research is to apply the human-machine cooperative approach on a tower structure to detect damage. The cooperation approach includes haptic tools to create an appropriate collaboration between SHM sensor networks, statistical compression techniques and humans. Damage simulation in the structure is conducted by releasing some of the bolt loads. Accelerometers are bonded to various locations of the tower members to acquire the dynamic response of the structure. The obtained accelerometer results are encoded in three different ways to represent them as a haptic stimulus for the human subjects. Then, the participants are subjected to each of these stimuli to detect the bolt loosened damage in the tower. Results obtained from the human-machine cooperation demonstrate that the human subjects were able to recognize the damage with an accuracy of 88 ± 20.21% and response time of 5.87 ± 2.33 s. As a result, it is concluded that the currently developed human-machine cooperation SHM may provide a useful framework to interact with abstract entities such as data from a sensor network.

  1. Panel zone behavior of moment connections between rectangular concrete-filled steel tubes and wide flange beams

    NASA Astrophysics Data System (ADS)

    Koester, Bradley Donald

    2000-10-01

    During the 1990s, guidelines for the detailing of composite joints for seismic safety have been proposed and adopted. Such guidelines were based on the testing of composite joint subassemblies under cyclic loads. The role of the confined concrete core in composite joints has been documented and quantified for systems using steel shapes encased in concrete, as well as for other mixtures of reinforced concrete and structural steel. The need to understand the role of the concrete core in moment connections utilizing concrete-fined tube (CFT) columns still exists. In this research program, the split-tee through-bolted moment connection between wide-flange steel beams and concrete-filled tubes was studied. The aim of the study was to understand the role of the confined concrete core in transferring forces through the joint. Fifteen half-scale panel-zone specimens were designed and tested to model the shear behavior of the split-tee connection. Following an analysis of the results of the panel-zone tests, six fun-scale moment connections were designed and tested. Variables studied were: concrete compressive strength, the b/t ratio (slenderness) of the steel tube walls, and the split-tee contact area against the steel tube. Following an analysis of the test data, design criteria for the concrete contribution to the joint strength are presented, and recommendations are made for the inclusion of CFT systems in the design recommendations for composite joints. Suggestions are made for further research.

  2. Studies of Evaluation of Hydrogen Embrittlement Property of High-Strength Steels with Consideration of the Effect of Atmospheric Corrosion

    NASA Astrophysics Data System (ADS)

    Akiyama, Eiji; Wang, Maoqiu; Li, Songjie; Zhang, Zuogui; Kimura, Yuuji; Uno, Nobuyoshi; Tsuzaki, Kaneaki

    2013-03-01

    Hydrogen embrittlement of high-strength steels was investigated by using slow strain rate test (SSRT) of circumferentially notched round bar specimens after hydrogen precharging. On top of that, cyclic corrosion tests (CCT) and outdoor exposure tests were conducted prior to SSRT to take into account the effect of hydrogen uptake under atmospheric corrosion for the evaluation of the susceptibility of high-strength steels. Our studies of hydrogen embrittle properties of high-strength steels with 1100 to 1500 MPa of tensile strength and a prototype ultrahigh-strength steel with 1760 MPa containing hydrogen traps using those methods are reviewed in this article. A power law relationship between notch tensile strength of hydrogen-precharged specimens and diffusible hydrogen content has been found. It has also been found that the local stress and the local hydrogen concentration are controlling factors of fracture. The results obtained by using SSRT after CCT and outdoor exposure test were in good agreement with the hydrogen embrittlement fracture property obtained by means of long-term exposure tests of bolts made of the high-strength steels.

  3. DROP TESTS RESULTS OF REVISED CLOSURE BOLT CONFIGURATION OF THE STANDARD WASTE BOX, STANDARD LARGE BOX 2, AND TEN DRUM OVERPACK PACKAGINGS

    SciTech Connect

    May, C.; Opperman, E.; Mckeel, C.

    2010-04-15

    The Transuranic (TRU) Disposition Project at Savannah River Site will require numerous transfers of radioactive materials within the site boundaries for sorting and repackaging. The three DOT Type A shipping packagings planned for this work have numerous bolts for securing the lids to the body of the packagings. In an effort to reduce operator time to open and close the packages during onsite transfers, thus reducing personnel exposure and costs, an evaluation was performed to analyze the effects of reducing the number of bolts required to secure the lid to the packaging body. The evaluation showed the reduction to one-third of the original number of bolts had no effect on the packagings capability to sustain vibratory loads, shipping loads, internal pressure loads, and the loads resulting from a 4-ft drop. However, the loads caused by the 4-ft drop are difficult to estimate and the study recommended each of the packages be dropped to show the actual effects on the package closure. Even with reduced bolting, the packagings were still required to meet the 49 CFR 178.350 performance criteria for Type A packaging. This paper discusses the effects and results of the drop testing of the three packagings.

  4. Steel Industry Wastes.

    ERIC Educational Resources Information Center

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  5. Modern Steel Framed Schools.

    ERIC Educational Resources Information Center

    American Inst. of Steel Construction, Inc., New York, NY.

    In view of the cost of structural framing for school buildings, ten steel-framed schools are examined to review the economical advantages of steel for school construction. These schools do not resemble each other in size, shape, arrangement or unit cost; some are original in concept and architecture, and others are conservative. Cost and…

  6. The Steel Band.

    ERIC Educational Resources Information Center

    Weil, Bruce

    1996-01-01

    Describes studying the steel drum, an import from Trinidad, as an instrument of intellectual growth. Describes how developing a steel drum band provided Montessori middle school students the opportunity to experience some important feelings necessary to emotional growth during this difficult age: competence, usefulness, independence, and…

  7. EAST ELEVATION, LTV STEEL (FORMERLY REPUBLIC STEEL), 8" BAR MILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, LTV STEEL (FORMERLY REPUBLIC STEEL), 8" BAR MILL, BUFFALO PLANT. VIEW LOOKING SOUTHWEST FROM ROLL SHOP. 8" BAR MILL DESIGNED AND BUILT BY DONNER STEEL CO. (PREDECESSOR OF REPUBLIC), 1919-1920. FOR DESCRIPTION OF ORIGINAL MILL SEE "IRON AGE", 116\\4 (23 JULY 1925): 201-204. - LTV Steel, 8-inch Bar Mill, Buffalo Plant, Buffalo, Erie County, NY

  8. Ultraprecision XY stage using a hybrid bolt-clamped Langevin-type ultrasonic linear motor for continuous motion

    SciTech Connect

    Lee, Dong-Jin; Lee, Sun-Kyu

    2015-01-15

    This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of a nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.

  9. An Application of Retroduction to Analyzing and Testing the Backing off of Nuts and Bolts During Dynamic Loading

    NASA Technical Reports Server (NTRS)

    Kerley, James J.

    1987-01-01

    The method of retroduction, adapted from the doctoral thesis of Dr. A. Croce, relies on a process of dialectic questioning that begins with the information sought, proceeds to Given items (either in the form of dimensions or limits of research). and to Known mathematical forms of analysis in design or to principles of study in research. Finally, analysis and synthesis are used to abstract the dielectic questions and to arrive at the information desired. This method is used to solve the engineering design problem of a beam and to determine why bolts and nuts vibrate apart. Both mathematical analysis and dialectic logical analysis are utilized. Results are provided of tests conducted to check the retroductive study of why and how nuts back off.

  10. Ultraprecision XY stage using a hybrid bolt-clamped Langevin-type ultrasonic linear motor for continuous motion

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Jin; Lee, Sun-Kyu

    2015-01-01

    This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of a nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.

  11. Evaluation of high-strength Cu-Ni-Mn-Al bolting used in oil and gas service

    SciTech Connect

    Andersen, O.; Joosten, M.W.; Murali, J.; Milliams, D.E.

    1996-08-01

    High strength bolts, nuts, studs and screws manufactured from a precipitation hardening Cu-Ni-Mn-Al alloy have experienced several failures in recent years in oilfield installations with varying degrees of severity and consequence. Such failures have been broadly attributed to Stress Corrosion Cracking (SCC) and Liquid Metal Embrittlement (LME) phenomena. A detailed test program using the Slow Strain Rate Testing (SSRT) method has been conducted to identify the various parameters which could contribute to SCC. Results indicate that the Cu-Ni-Mn-Al alloy is susceptible to SCC in a variety of environments commonly found in oilfield equipment manufacturing and field installations such as amine-containing additives, sulfides and even natural seawater at elevated temperatures. SSRT testing indicated, however, that, in seawater environments, low service temperatures and cathodic protection did not adversely affect the alloy`s performance. Discussion of test program results and qualitative correlations with field failures are presented.

  12. Nuclear transmutation in steels

    NASA Astrophysics Data System (ADS)

    Belozerova, A. R.; Shimanskii, G. A.; Belozerov, S. V.

    2009-05-01

    The investigations of the effects of nuclear transmutation in steels that are widely used in nuclear power and research reactors and in steels that are planned for the application in thermonuclear fusion plants, which are employed under the conditions of a prolonged action of neutron irradiation with different spectra, made it possible to study the effects of changes in the isotopic and chemical composition on the tendency of changes in the structural stability of these steels. For the computations of nuclear transmutation in steels, we used a program complex we have previously developed on the basis of algorithms for constructing branched block-type diagrams of nuclide transformations and for locally and globally optimizing these diagrams with the purpose of minimizing systematic errors in the calculation of nuclear transmutation. The dependences obtained were applied onto a Schaeffler diagram for steels used for structural elements of reactors. For the irradiation in fission reactors, we observed only a weak influence of the effects of nuclear transmutation in steels on their structural stability. On the contrary, in the case of irradiation with fusion neutrons, a strong influence of the effects of nuclear transmutation in steels on their structural stability has been noted.

  13. Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands.

    PubMed

    Chaki, S; Bourse, G

    2009-02-01

    The safety of prestressed civil structures such as bridges, dams, nuclear power plants, etc. directly involves the security of both environment and users. Health monitoring of the tensioning components, such as strands, tendons, bars, anchorage bolts, etc. is an important research topic and a challenging task bringing together the non-destructive evaluation (NDE) and civil engineering communities. This paper deals with a guided ultrasonic wave procedure for monitoring the stress levels in seven-wire steel strands (15.7 mm in diameter). The mechanical and geometrical characteristics of the prestressed strands were taken into account for optimizing the measurement configuration and then the choice of the guided ultrasonic mode at a suitable frequency. Simplified acoustoelastic formulations were derived from the acoustoelasticity theory according to either calibration test or in situ measurement. The results from acoustoelastic measurements on the seven-wire steel strands are presented and discussed in the case of calibration tests and industrially prestressed strands. They show the potential and the suitability of the proposed guided wave method for evaluating the stress levels in the tested seven-wire steel strands. PMID:18804832

  14. Ultrasonic butt welding of aluminum, aluminum alloy and stainless steel plate specimens.

    PubMed

    Tsujino, Jiromaru; Hidai, Kazuaki; Hasegawa, Atsushi; Kanai, Ryoichi; Matsuura, Hisanori; Matsushima, Kaoru; Ueoka, Tetsugi

    2002-05-01

    Welding characteristics of aluminum, aluminum alloy and stainless steel plate specimens of 6.0 mm thickness by a 15 kHz ultrasonic butt welding system were studied. There are no detailed welding condition data of these specimens although the joining of these materials are required due to anticorrosive and high strength characteristics for not only large specimens but small electronic parts especially. These specimens of 6.0 mm thickness were welded end to end using a 15 kHz ultrasonic butt welding equipment with a vibration source using eight bolt-clamped Langevin type PZT transducers and a 50 kW static induction thyristor power amplifier. The stainless steel plate specimens electrolytically polished were joined with welding strength almost equal to the material strength under rather large vibration amplitude of 25 microm (peak-to-zero value), static pressure 70 MPa and welding time of 1.0-3.0 s. The hardness of stainless steel specimen adjacent to a welding surface increased about 20% by ultrasonic vibration. PMID:12159968

  15. Structural Amorphous Steels

    NASA Astrophysics Data System (ADS)

    Lu, Z. P.; Liu, C. T.; Thompson, J. R.; Porter, W. D.

    2004-06-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist’s dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed.

  16. Glass Stronger than Steel

    DOE R&D Accomplishments Database

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  17. Cobalt free maraging steel

    SciTech Connect

    Floreen, S.

    1984-04-17

    The subject invention is directed to ferrous-base alloys, particularly to a cobalt-free maraging steel of novel chemistry characterized by a desired combination of strength and toughness, notwithstanding that cobalt is non-essential.

  18. Life after Steel

    ERIC Educational Resources Information Center

    Mangan, Katherine

    2013-01-01

    Bobby Curran grew up in a working-class neighborhood in Baltimore, finished high school, and followed his grandfather's steel-toed bootprints straight to Sparrows Point, a 3,000-acre sprawl of industry on the Chesapeake Bay. College was not part of the plan. A gritty but well-paying job at the RG Steel plant was Mr. Curran's ticket to a secure…

  19. Evaluation of Stress Corrosion Cracking Susceptibility Using Fracture Mechanics Techniques, Part 1. [environmental tests of aluminum alloys, stainless steels, and titanium alloys

    NASA Technical Reports Server (NTRS)

    Sprowls, D. O.; Shumaker, M. B.; Walsh, J. D.; Coursen, J. W.

    1973-01-01

    Stress corrosion cracking (SSC) tests were performed on 13 aluminum alloys, 13 precipitation hardening stainless steels, and two titanium 6Al-4V alloy forgings to compare fracture mechanics techniques with the conventional smooth specimen procedures. Commercially fabricated plate and rolled or forged bars 2 to 2.5-in. thick were tested. Exposures were conducted outdoors in a seacoast atmosphere and in an inland industrial atmosphere to relate the accelerated tests with service type environments. With the fracture mechanics technique tests were made chiefly on bolt loaded fatigue precracked compact tension specimens of the type used for plane-strain fracture toughness tests. Additional tests of the aluminum alloy were performed on ring loaded compact tension specimens and on bolt loaded double cantilever beams. For the smooth specimen procedure 0.125-in. dia. tensile specimens were loaded axially in constant deformation type frames. For both aluminum and steel alloys comparative SCC growth rates obtained from tests of precracked specimens provide an additional useful characterization of the SCC behavior of an alloy.

  20. Articles comprising ferritic stainless steels

    DOEpatents

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  1. Profiles in garbage: Steel cans

    SciTech Connect

    Miller, C.

    1998-02-01

    Steel mills are the largest market for steel cans. Integrated mills use the basic oxygen process to manufacture tinplate, appliances, car bodies, and steel framing. Electric arc furnaces use 100% scrap to produce steel shapes such as railroad ties and bridge spans. Electric arc furnaces are more geographically diverse and tend to have smaller capacities than basic oxygen furnaces. Detinners remove the tin from steel cans for resale to tin using industries. With less tin use in steel cans, the importance of the detinning market has declined substantially. Foundries use scrap as a raw material in making castings and molds for industrial users.

  2. Engineers Attack the "No. One Killer" in Coal Mining: The Bureau of Mines and the Promotion of Roof Bolting, 1947-1969.

    PubMed

    Aldrich, Mark

    2016-01-01

    In 1948 roof falls were the number one killer of coal miners in America. While the Bureau of Mines had been formed in 1910 to improve coalmine safety, it had largely focused on explosions, for which technological solutions appeared to exist. Roof falls, by contrast, were not amenable to a technical fix. Beginning in 1948, however, the Bureau discovered roof bolting, which it promoted as a safer technology that might yield dramatic benefits. The new approach spread rapidly, yet fatality rates from roof falls failed to decline for nearly two decades. This lag reflected the need for organizational learning, while companies also traded safety for productivity. Finally, only larger mines employed bolting and its impact was masked by a growth in the employment share of small companies. After 1965, as the expansion of small mines ended and organizational learning continued, fatality rates began a long decline. PMID:26971729

  3. Torque vs. induced load of A-286, and MP35N nuts and bolts with cadmium, dry film, and cetyl alcohol lubricants

    NASA Technical Reports Server (NTRS)

    Crispell, C.

    1978-01-01

    Data for specific joint design, utilizing various combinations of bolt, nut and lubricants in typical structure of the shuttle booster rocket is obtained. Requirements of the structure performance criteria were to withstand temperatures of 260 C (500 F) and to provide a nut lubricant which would be compatible with sealants used in the joint. Cadmium plating and dry film lubricant meeting the requirements of MIL-L-8937 were the lubricants specified. In a follow up effort, cadmium plating and cetyl alcohol were further specified The materials for the bolt and nut combinations were MP35N and A-286. These materials demand a lubricant to be used to prevent galling of the thread when tightened and also to help reduce the scatter of clamping load in application.

  4. The crevice corrosion behavior of chromium stainless steel and nickel base alloys in a reverse osmosis plant utilizing seawater

    SciTech Connect

    Al-Odwani, A.; Carew, J.; Al-Hashem, A.

    1999-11-01

    The crevice corrosion tests were performed on UNS S31603, UNS S31703, UNS S31726, UNS S31254, UNS N08904, UNS N625, UNS N825 and UNS N276 was investigated in seawater and neutral brine solution using a multiple crevice washer assembly. PTFE multiple-crevice washers were bolted to both sides of the test specimens with PTFE bolts and nuts. The specimens were exposed to seawater flowing at a rate of 100 L/h for periods of 3,000 h and 6,000 h. Duplicate specimens were immersed in a plexiglass cell containing the flowing seawater at a temperature of 30 C. The results showed that all the tested coupons were susceptible to some degree of crevice corrosion attack. However, the stainless steels were the most severely affected. The degree of crevice corrosion attack for the nickel base alloys decreased as the percentage of molybdenum content in the alloys increased. Destruction of the passive layer by the concentration of chloride or acidity and reduction of hydrogen ions at the crevices is believed to be the cause of the crevice attack.

  5. View northwest, wharf A, sheet steel bulkhead, steel lift tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northwest, wharf A, sheet steel bulkhead, steel lift tower - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  6. Laser Peening--Strengthening Metals to Improve Fatigue Lifetime and Retard Stress-Induced Corrosion Cracking in Gears, Bolts and Cutter

    SciTech Connect

    Hackel, L A; Chen, H-L

    2003-08-20

    Laser peening is an emerging modern process that impresses a compressive stress into the surfaces of metals. Treatment can reduce the rate of fatigue cracking and stress-corrosion-cracking in metals (such as gears, bolts and cutters) needed for tunnel boring and other construction & mining applications. Laser peening could also be used to form metals or alloys into a precise shape without yielding and leaving both sulfates in a crack resistant compressive state.

  7. Oxidation behavior of nickel-base superalloys and High Strength Low Alloy (HSLA) steels at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Talekar, Anjali S.

    Alloy C-22 (UNS N06022) and High Strength Low Alloy (HSLA) steels are candidate materials for use in outer layer of waste storage packages and as rock bolts in the underground roof supports at Yucca Mountain nuclear waste repository respectively. Oxidation kinetics of three Ni-base Superalloys and two HSLA Steels, Split Set Friction Rock Stabilizers (SS-46) and Swellex Mn-24, have been determined by isothermal high temperature continuous measurement thermogravimetry at temperatures ranging between 600°C to 1100°C in pure oxygen atmosphere for predetermined periods of exposures (48 hours for the Superalloys and 100 hours for HSLA steels). The two other Ni-base Superalloys selected were Alloy-263 (UNS N07263) and Alloy-282. These are similar in their Cr composition to Alloy C-22 and have variations in the contents of other alloying elements namely Co and Mo. The alloys were selected for comparison of their oxidation resistance with C-22 as a baseline material. All three Superalloys are known chromia formers. All the superalloys were evaluated for determining their kinetic parameters and the activation energies for the superalloys were also calculated. The activation energy for the parabolic regime of Alloy-282 is found to be 232 kJ/mol. The slope of the curves on a plot of kp as a function of (1/T) show Alloy-282 to have better oxidation resistance up to 980°C and thereafter the rate constants are similar for all three alloys, but when activation energies over the whole temperature range are calculated, Alloy-263 shows the best average oxidation resistance. Surface characterization by means of microscopy as well as X-ray photoelectron spectroscopy showed the nature of oxides formed. Based on the kinetics and the characterization, proposed mechanisms for oxidation of these alloys at high temperatures are put forth. Temperature modulated thermogravimetry was used for studies on HSLA steels. The imposed sinusoidal temperature modulations on the isothermal temperature

  8. Continuous steel production and apparatus

    DOEpatents

    Peaslee, Kent D.; Peter, Jorg J.; Robertson, David G. C.; Thomas, Brian G.; Zhang, Lifeng

    2009-11-17

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  9. Brazing titanium to stainless steel

    NASA Technical Reports Server (NTRS)

    Batista, R. I.

    1980-01-01

    Titanium and stainless-steel members are usually joined mechanically for lack of any other effective method. New approach using different brazing alloy and plating steel member with nickel resolves problem. Process must be carried out in inert atmosphere.

  10. Alloyed steel wastes utilization

    SciTech Connect

    Sokol, I.V.

    1995-12-31

    Alloyed steel chips and swarf formed during metal processing are looked upon as additional raw materials in metallurgical production. This paper presents some new methods for steel waste chips and swarf cleaning. One of them is swarf and steel chips cleaning in tetrachloroethylene with ultrasonic assistance and solvent regeneration. Thermal cleaning of waste chips and swarf provides off gas products utilization. The catalyst influence of the metal surface on the thermal decomposition of liquid hydrocarbons during the cleaning process has been studied. It has been determined that the efficiency of this metal waste cleaning technique depends on the storage time of the swarf. The waste chips and swarf cleaning procedures have been proven to be economically advantageous and environmentally appropriate.

  11. A-3 steel work completed

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Stennis Space Center engineers celebrated a key milestone in construction of the A-3 Test Stand on April 9 - completion of structural steel work. Workers with Lafayette (La.) Steel Erector Inc. placed the last structural steel beam atop the stand during a noon ceremony attended by more than 100 workers and guests.

  12. Design and evaluation of a bolted joint for a discrete carbon-epoxy rod-reinforced hat section

    NASA Technical Reports Server (NTRS)

    Rousseau, Carl Q.; Baker, Donald J.

    1996-01-01

    The use of prefabricated pultruded carbon-epoxy rods has reduced the manufacturing complexity and costs of stiffened composite panels while increasing the damage tolerance of the panels. However, repairability of these highly efficient discrete stiffeners has been a concern. Design, analysis, and test results are presented in this paper for a bolted-joint repair for the pultruded rod concept that is capable of efficiently transferring axial loads in a hat-section stiffener on the upper skin segment of a heavily loaded aircraft wing component. A tension and a compression joint design were evaluated. The tension joint design achieved approximately 1.0% strain in the carbon-epoxy rod-reinforced hat-section and failed in a metal fitting at 166% of the design ultimate load. The compression joint design failed in the carbon-epoxy rod-reinforced hat-section test specimen area at approximately 0.7% strain and at 110% of the design ultimate load. This strain level of 0.7% in compression is similar to the failure strain observed in previously reported carbon-epoxy rod-reinforced hat-section column tests.

  13. Design and Evaluation of a Bolted Joint for a Discrete Carbon-Epoxy Rod-Reinforced Hat Section

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.; Rousseau, Carl Q.

    1996-01-01

    The use of pre-fabricated pultruded carbon-epoxy rods has reduced the manufacturing complexity and costs of stiffened composite panels while increasing the damage tolerance of the panels. However, repairability of these highly efficient discrete stiffeners has been a concern. Design, analysis, and test results are presented in this paper for a bolted-joint repair for the pultruded rod concept that is capable of efficiently transferring axial loads in a hat-section stiffener on the upper skin segment of a heavily loaded aircraft wing component. A tension and a compression joint design were evaluated. The tension joint design achieved approximately 1.0 percent strain in the carbon-epoxy rod-reinforced hat-section and failed in a metal fitting at 166 percent of the design ultimate load. The compression joint design failed in the carbon-epoxy rod-reinforced hat-section test specimen area at approximately 0.7 percent strain and at 110 percent of the design ultimate load. This strain level of 0.7 percent in compression is similar to the failure strain observed in previously reported carbon-epoxy rod-reinforced hat-section column tests.

  14. Mechanical Design and Analysis of a 200 MHz, Bolt-together RFQ forthe Accelerator Driven Neutron Source

    SciTech Connect

    Virostek, Steve; Hoff, Matt; Li, Derun; Staples, John; Wells,Russell

    2007-06-20

    A high-yield neutron source to screen sea-land cargocontainers for shielded Special Nuclear Materials (SNM) has been designedat LBNL [1,2]. The Accelerator-Driven Neutron Source (ADNS) uses theD(d,n)3He reaction to create a forward directed neutron beam. Keycomponents are a high-current radio-frequency quadrupole (RFQ)accelerator and a high-power target capable of producing a neutron fluxof>107 n/(cm2 cdot s) at a distance of 2.5 m. The mechanical designand analysis of the four-module, bolt-together RFQ will be presentedhere. Operating at 200 MHz, the 5.1 m long RFQ will accelerate a 40 mAdeuteron beam to 6 MeV. At a 5 percent duty factor, the time-average d+beam current on target is 1.5 mA. Each of the 1.27 m long RFQ moduleswill consist of four solid OFHC copper vanes. A specially designed 3-DO-ring will provide vacuum sealing between both the vanes and themodules. RF connections are made with canted coil spring contacts. Aseries of 60 water-cooled pi-mode rods provides quadrupole modestabilization. A set of 80 evenly spaced fixed slug tuners is used forfinal frequency adjustment and local field perturbationcorrection.

  15. The Use of the Direct Optimized Probabilistic Calculation Method in Design of Bolt Reinforcement for Underground and Mining Workings

    PubMed Central

    Krejsa, Martin; Janas, Petr; Yilmaz, Işık; Marschalko, Marian; Bouchal, Tomas

    2013-01-01

    The load-carrying system of each construction should fulfill several conditions which represent reliable criteria in the assessment procedure. It is the theory of structural reliability which determines probability of keeping required properties of constructions. Using this theory, it is possible to apply probabilistic computations based on the probability theory and mathematic statistics. Development of those methods has become more and more popular; it is used, in particular, in designs of load-carrying structures with the required level or reliability when at least some input variables in the design are random. The objective of this paper is to indicate the current scope which might be covered by the new method—Direct Optimized Probabilistic Calculation (DOProC) in assessments of reliability of load-carrying structures. DOProC uses a purely numerical approach without any simulation techniques. This provides more accurate solutions to probabilistic tasks, and, in some cases, such approach results in considerably faster completion of computations. DOProC can be used to solve efficiently a number of probabilistic computations. A very good sphere of application for DOProC is the assessment of the bolt reinforcement in the underground and mining workings. For the purposes above, a special software application—“Anchor”—has been developed. PMID:23935412

  16. Assessment and evaluation of noise controls on roof bolting equipment and a method for predicting sound pressure levels in underground coal mining

    NASA Astrophysics Data System (ADS)

    Matetic, Rudy J.

    Over-exposure to noise remains a widespread and serious health hazard in the U.S. mining industries despite 25 years of regulation. Every day, 80% of the nation's miners go to work in an environment where the time weighted average (TWA) noise level exceeds 85 dBA and more than 25% of the miners are exposed to a TWA noise level that exceeds 90 dBA, the permissible exposure limit (PEL). Additionally, MSHA coal noise sample data collected from 2000 to 2002 show that 65% of the equipment whose operators exceeded 100% noise dosage comprise only seven different types of machines; auger miners, bulldozers, continuous miners, front end loaders, roof bolters, shuttle cars (electric), and trucks. In addition, the MSHA data indicate that the roof bolter is third among all the equipment and second among equipment in underground coal whose operators exceed 100% dosage. A research program was implemented to: (1) determine, characterize and to measure sound power levels radiated by a roof bolting machine during differing drilling configurations (thrust, rotational speed, penetration rate, etc.) and utilizing differing types of drilling methods in high compressive strength rock media (>20,000 psi). The research approach characterized the sound power level results from laboratory testing and provided the mining industry with empirical data relative to utilizing differing noise control technologies (drilling configurations and types of drilling methods) in reducing sound power level emissions on a roof bolting machine; (2) distinguish and correlate the empirical data into one, statistically valid, equation, in which, provided the mining industry with a tool to predict overall sound power levels of a roof bolting machine given any type of drilling configuration and drilling method utilized in industry; (3) provided the mining industry with several approaches to predict or determine sound pressure levels in an underground coal mine utilizing laboratory test results from a roof bolting

  17. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  18. Influence of precracked specimen configuration and starting stress intensity on the stress corrosion cracking of 4340 steel

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.

    1984-01-01

    Experimental results are presented from a study of the effects of precracked specimen configuration and initial starting stress intensity on crack growth rate and threshold stress intensity, for both onset of cracking and crack arrest. Attention is given to AISI 4340 steel in a 3.5-percent NaCl solution, for configurations of a single edge-cracked specimen tested in cantilever bending under constant load, and a modified compact specimen bolt loaded to a constant deflection. The threshold stress intensity value determined was independent of specimen configuration, if the stress intensity value associated with the compact specimen is taken where the discontinuous break occurs in the velocity-stress intensity curve.

  19. Braze alloy spreading on steel

    NASA Technical Reports Server (NTRS)

    Siewert, T. A.; Heine, R. W.; Lagally, M. G.

    1978-01-01

    Scanning electron microscopy (SEM) and Auger electron microscopy (AEM) were employed to observe elemental surface decomposition resulting from the brazing of a copper-treated steel. Two types of steel were used for the study, stainless steel (treated with a eutectic silver-copper alloy), and low-carbon steel (treated with pure copper). Attention is given to oxygen partial pressure during the processes; a low enough pressure (8 x 10 to the -5th torr) was found to totally inhibit the spreading of the filler material at a fixed heating cycle. With both types of steel, copper treatment enhanced even spreading at a decreased temperature.

  20. Sensitization of stainless steel

    NASA Technical Reports Server (NTRS)

    Nagy, James P.

    1990-01-01

    The objective of this experiment is to determine the corrosion rates of 18-8 stainless steels that have been sensitized at various temperatures and to show the application of phase diagrams. The laboratory instructor will assign each student a temperature, ranging from 550 C to 1050 C, to which the sample will be heated. Further details of the experimental procedure are detailed.

  1. Damage detection on the joint of steel frame through high-frequency admittance signals

    NASA Astrophysics Data System (ADS)

    Wang, Dansheng; Zhu, Hongping; Zhou, Huaqiang; Yang, Haiping

    2008-11-01

    The basic idea of a piezoelectric admittance (reciprocal of impedance) technique for structural health monitoring is presented in this paper. An experimental study on damage detection of a steel frame structure is operated by the use of the high-frequency piezoelectric admittance signals. In this experiment, three PZT active sensors are bonded to three different components around a joint of the steel frame separately, and the looseness of bolts is identified by monitoring the variations of piezoelectric admittance measurements. From the experimental results it is found that the PZT active sensors hold the ability to detect structural local damage, i.e. they are insensitive to the damage in far fields. Subsequently, two damage indexes, the covariance and the cross correlation coefficient between two real admittance data sets are defined respectively, by which the extent of damage of the frame structure is evaluated. It is found that the cross correlation coefficient index can correctly reflect the damage extent of the frame structure qualitatively in different frequency ranges, but the covariance index can not.

  2. Special steel production on common carbon steel production line

    NASA Astrophysics Data System (ADS)

    Pi, Huachun; Han, Jingtao; Hu, Haiping; Bian, Ruisheng; Kang, Jianjun; Xu, Manlin

    2004-06-01

    The equipment and technology of small bar tandem rolling line of Shijiazhuang Iron & Steel Co. in China has reached the 90's international advanced level in the 20th century, but products on the line are mostly of common carbon steel. Currently there are few steel plants in China to produce 45 steel bars for cold drawing, which is a kind of shortage product. Development of 45 steel for cold drawing has a wide market outlook in China. In this paper, continuous cooling transformation (CCT) curve of 45 steel for cold drawing used for rolling was set out first. According to the CCT curve, we determined some key temperature points such as Ac3 temperature and Ac1 temperature during the cooling procedure and discussed the precipitation microstructure at different cooling rate. Then by studying thermal treatment process of 45 steel bars for cold drawing, the influence of cooling time on microstructure was analyzed and the optimum cooling speed has been found. All results concluded from the above studies are the basis of regulating controlled cooling process of 45 steel bars for cold drawing. Finally, the feasible production process of 45 steel bars for cold drawing on common carbon steel production line combined with the field condition was recommended.

  3. Ferritic steel melt and FLiBe/steel experiment : melting ferritic steel.

    SciTech Connect

    Troncosa, Kenneth P.; Smith, Brandon M.; Tanaka, Tina Joan

    2004-11-01

    In preparation for developing a Z-pinch IFE power plant, the interaction of ferritic steel with the coolant, FLiBe, must be explored. Sandia National Laboratories Fusion Technology Department was asked to drop molten ferritic steel and FLiBe in a vacuum system and determine the gas byproducts and ability to recycle the steel. We tried various methods of resistive heating of ferritic steel using available power supplies and easily obtained heaters. Although we could melt the steel, we could not cause a drop to fall. This report describes the various experiments that were performed and includes some suggestions and materials needed to be successful. Although the steel was easily melted, it was not possible to drip the molten steel into a FLiBe pool Levitation melting of the drop is likely to be more successful.

  4. 77 FR 30589 - SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... Surface Transportation Board SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver Infrastructure Fund North America LP, and Patriot Funding LLC--Control Exemption--Patriot Rail Corp., et al. SteelRiver Infrastructure Partners LP (SRIP LP), SteelRiver...

  5. Numerical modelling as a cost-reduction tool for probability of detection of bolt hole eddy current testing

    NASA Astrophysics Data System (ADS)

    Mandache, C.; Khan, M.; Fahr, A.; Yanishevsky, M.

    2011-03-01

    Probability of detection (PoD) studies are broadly used to determine the reliability of specific nondestructive inspection procedures, as well as to provide data for damage tolerance life estimations and calculation of inspection intervals for critical components. They require inspections on a large set of samples, a fact that makes these statistical assessments time- and cost-consuming. Physics-based numerical simulations of nondestructive testing inspections could be used as a cost-effective alternative to empirical investigations. They realistically predict the inspection outputs as functions of the input characteristics related to the test piece, transducer and instrument settings, which are subsequently used to partially substitute and/or complement inspection data in PoD analysis. This work focuses on the numerical modelling aspects of eddy current testing for the bolt hole inspections of wing box structures typical of the Lockheed Martin C-130 Hercules and P-3 Orion aircraft, found in the air force inventory of many countries. Boundary element-based numerical modelling software was employed to predict the eddy current signal responses when varying inspection parameters related to probe characteristics, crack geometry and test piece properties. Two demonstrator exercises were used for eddy current signal prediction when lowering the driver probe frequency and changing the material's electrical conductivity, followed by subsequent discussions and examination of the implications on using simulated data in the PoD analysis. Despite some simplifying assumptions, the modelled eddy current signals were found to provide similar results to the actual inspections. It is concluded that physics-based numerical simulations have the potential to partially substitute or complement inspection data required for PoD studies, reducing the cost, time, effort and resources necessary for a full empirical PoD assessment.

  6. History of ultrahigh carbon steels

    SciTech Connect

    Wadsworth, J.; Sherby, O.D.

    1997-06-20

    The history and development of ultrahigh carbon steels (i.e., steels containing between 1 and 2.l percent C and now known as UHCS) are described. The early use of steel compositions containing carbon contents above the eutectoid level is found in ancient weapons from around the world. For example, both Damascus and Japanese sword steels are hypereutectoid steels. Their manufacture and processing is of interest in understanding the role of carbon content in the development of modern steels. Although sporadic examples of UHCS compositions are found in steels examined in the early part of this century, it was not until the mid-1970s that the modern study began. This study had its origin in the development of superplastic behavior in steels and the recognition that increasing the carbon content was of importance in developing that property. The compositions that were optimal for superplasticity involved the development of steels that contained higher carbon contents than conventional modern steels. It was discovered, however, that the room temperature properties of these compositions were of interest in their own right. Following this discovery, a period of intense work began on understanding their manufacture, processing, and properties for both superplastic forming and room temperature applications. The development of superplastic cast irons and iron carbides, as well as those of laminated composites containing UHCS, was an important part of this history.

  7. Impact of Different Standard Type A7A Drum Closure-Ring Practices on Gasket Contraction and Bolt Closure Distance– 15621

    SciTech Connect

    Ketusky, Edward; Blanton, Paul; Bobbitt, John H.

    2015-03-11

    The Department of Energy, the Savannah River National Laboratory, several manufacturers of specification drums, and the United States Department of Transportation (DOT) are collaborating in the development of a guidance document for DOE contractors and vendors who wish to qualify containers to DOT 7A Type A requirements. Currently, the effort is focused on DOT 7A Type A 208-liter (55-gallons) drums with a standard 12-gauge bolted closure ring. The U.S. requirements, contained in Title 49, Part 178.350 “Specification 7A; general packaging, Type A specifies a competent authority review of the packaging is not required for the transport of (Class 7) radioactive material containing less than Type A quantities of radioactive material. For Type AF drums, a 4 ft. regulatory free drop must be performed, such that the drum “suffers maximum damage.” Although the actual orientation is not defined by the specification, recent studies suggest that maximum damage would result from a shallow angle top impact, where kinetic energy is transferred to the lid, ultimately causing heavy damage to the lid, or even worse, causing the lid to come off. Since each vendor develops closure recommendations/procedures for the drums they manufacture, key parameters applied to drums during closing vary based on vendor. As part of the initial phase of the collaboration, the impact of the closure variants on the ability of the drum to suffer maximum damage is investigated. Specifically, closure testing is performed varying: 1) the amount of torque applied to the closure ring bolt; and, 2) stress relief protocol, including: a) weight of hammer; and, b) orientation that the hammer hits the closure ring. After closure, the amount of drum lid gasket contraction and the distance that the closure bolt moves through the closure ring is measured.

  8. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  9. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  10. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  11. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  12. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  13. Nanoprecipitates in Steels

    SciTech Connect

    Schneibel, Joachim H; Lu, Zhao Ping; Shim, Sang Hoon

    2007-01-01

    The creep strength of ferritic steels can be substantially improved by the incorporation of a high number density of nano-scale dispersoids. Examples for such alloys are the oxide dispersion strengthened steels MA956, MA957, and PM2000. The dispersoids in these steels contain Y and Ti, or Y and Al. They can be as small as a few nanometers in size. Processing is traditionally carried out by mechanical alloying of elemental or pre-alloyed powders mixed with Y{sub 2}O{sub 3} powder. The goal of the present research is to identify alternative ways of producing ultrafine dispersoids. One possible way is internal oxidation, in which reactive elements dissolved in a metallic matrix are selectively oxidized. Internal oxidation experiments were carried out with Fe-Y, Fe-Ti-Y, and Fe-Al-Y precursors. Microstructural analysis showed that dispersoid dimensions as small as 10 nm could be achieved. Atomized Fe-0.25 at% Y powder was internally oxidized and consolidated by hot forging. An increase in the high-temperature creep strength by {approx} 20% was observed. Since it is likely that the composition of the precursor alloys is crucial for maximizing the number density and thermal stability of the oxides, experiments allowing the rapid screening of different compositions have been initiated.

  14. Nanoprecipitates in Steels

    SciTech Connect

    Schneibel, Joachim H; Kad, Bimal

    2008-01-01

    The creep strength of ferritic steels can be substantially improved by the incorporation of a high number density of nano-scale dispersoids. Examples for such alloys are the oxide dispersion strengthened steels MA956, MA957, and PM2000. The dispersoids in these steels contain Y and Ti, or Y and Al. They can be as small as a few nanometers in size. Processing is traditionally carried out by mechanical alloying of elemental or pre-alloyed powders mixed with Y{sub 2}O{sub 3} powder. The goal of the present research is to identify alternative ways of producing ultrafine dispersoids. One possible way is internal oxidation, in which reactive elements dissolved in a metallic matrix are selectively oxidized. Internal oxidation experiments were carried out with Fe-Y, Fe-Ti-Y, and Fe-Al-Y precursors. Microstructural analysis showed that dispersoid dimensions as small as 10 nm could be achieved. Atomized Fe-0.25 at% Y powder was internally oxidized and consolidated by hot forging. An increase in the high-temperature creep strength by {approx} 20% was observed. Since it is likely that the composition of the precursor alloys is crucial for maximizing the number density and thermal stability of the oxides, experiments allowing the rapid screening of different compositions have been initiated.

  15. Stainless Steel Permeability

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  16. Sonidegib for the treatment of advanced basal cell carcinoma: a comprehensive review of sonidegib and the BOLT trial with 12-month update.

    PubMed

    Chen, Leon; Silapunt, Sirunya; Migden, Michael R

    2016-09-01

    The Hedgehog inhibitors are promising alternative for patients with advanced basal cell carcinoma that are not amenable to radiotherapy or surgery. Sonidegib, also known as LDE225, is an orally available SMO antagonist that was recently approved by the US FDA for the treatment of patients with locally advanced basal cell carcinoma. This article will provide an overview of the pharmacology and pharmacokinetics of sonidegib and in-depth analysis of the BOLT trial with additional data from the 12-month update. The present challenges associated with Hedgehog inhibitors will also be discussed. PMID:27189494

  17. Use of two-dimensional transmission photoelastic models to study stresses in double-lap bolted joints: Load transfer and stresses in the inner lap

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    1980-01-01

    The determination of the stress distribution in the inner lap of double-lap, double-bolt joints using photoelastic models of the joint is discussed. The principal idea is to fabricate the inner lap of a photoelastic material and to use a photoelastically sensitive material for the two outer laps. With this setup, polarized light transmitted through the stressed model responds principally to the stressed inner lap. The model geometry, the procedures for making and testing the model, and test results are described.

  18. Process for dezincing galvanized steel

    DOEpatents

    Morgan, William A.; Dudek, Frederick J.; Daniels, Edward J.

    1998-01-01

    A process for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75.degree. C. and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (i) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (ii) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (iii) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (iv) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte.

  19. High strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  20. Process for dezincing galvanized steel

    DOEpatents

    Morgan, W.A.; Dudek, F.J.; Daniels, E.J.

    1998-07-14

    A process is described for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75 C and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (1) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (2) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (3) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (4) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte. 1 fig.

  1. Induction heat treatment of steel

    SciTech Connect

    Semiatin, S.L.; Stutz, D.E.

    1985-01-01

    This book discusses the induction heating. After reviewing heat treating operations for steel and the principles of the heat treatment of steel, an overview of induction heat treating is provided. Next, consideration is given to equipment and equipment selection, coil design, power requirements and temperature control. A discussion of surface and through hardening of steel is provided, including information on frequency and power selection and quenching apparatus. Tempering is considered, followed by information on control of residual stresses, cracking, temper brittleness and the important metallurgical and hardness differences between induction and furnace treated steel.

  2. Activation response of martensitic steels

    SciTech Connect

    Forty, C.B.A.

    1997-09-01

    A hypothetical martensitic steel has been compositionally designed in order to optimize both metallurgical and reduced activation properties. When compared with two other martensitic steels, its activation characteristics are shown to be superior for all activation indices examined. However, these excellent properties are found to be due to the assumed absence of deleterious tramp impurities. When limiting impurity concentrations are determined for the hypothetical steel, they are found to be extremely stringent, and wholly unachievable using industrial scale production methods. It is concluded that only slight improvements can be made to currently available low activation martensitic steels to reduce residual activity responses further. 26 refs., 1 fig., 2 tabs.

  3. Activation Response of Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Forty, C. B. A.

    1997-09-01

    A hypothetical martensitic steel has been compositionally designed in order to optimize both metallurgical and reduced activation properties. When compared with two other martensitic steels, its activation characteristics are shown to be superior for all activation indices examined. However, these excellent properties are found to be due to the assumed absence of deleterious tramp impurities. When limiting impurity concentrations are determined for the hypothetical steel, they are found to be extremely stringent, and wholly unachievable using industrial scale production methods. It is concluded that only slight improvements can be made to currently available low activation martensitic steels to reduce residual activity responses further.

  4. Elevation, looking SE. Concrete and steel bridge with exposed steel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation, looking SE. Concrete and steel bridge with exposed steel frame is the central of three bridges crossing Brush Street between east Baltimore and Piquette. The bridge links Old Lake Shore and Michigan Central Main Line on the western side to a New York Central siding on the eastern side - Railroad Overpass, East Milwaukee & Hastings Avenues, Detroit, MI

  5. Bubble resorption in rhyolitic melts: Insight from open-system vesiculation experiments using bolt/nut cells

    NASA Astrophysics Data System (ADS)

    Yoshimura, S.; Nakamura, M.

    2006-12-01

    The open-system degassing is an essential process in non-explosive eruption of hydrous silicic magmas. Permeable flow degassing through interconnected bubble networks is considered to be the main mode that enables rapid removal of bubbles, but additional processes are required for the formation of bubble-free magmas, as the networks become disconnected and bubbles get isolated when vesicularity decreases below the percolation threshold via progressive permeable flow. To investigate the behavior of bubbles in the late stage of permeable flow degassing, we conducted a series of vesiculation experiments on rhyolitic melts in a newly designed semipermeable bolt/nut cell. The starting material was natural rhyolitic obsidian with ca. 0.67 wt.% initial water content. The obsidian cores, which were typically 10 vol.% smaller than the sample chamber, were heated in the cell at 1000 ° C for 7 periods ranging from 1 to 288 hours. As the cell is strong enough to resist the inner pressure associated with the vesiculation of the obsidian, the volume of sample chamber is kept constant, while the vapor can escape the cell through a narrow interspace. The run charges generally show a zonal structure composed of two contrasting regions: a central region within which bubbles are concentrated (bubble-rich core; BC) and a bubble-free melt region surrounding the BC (bubble-free margin; BFM). With increasing duration of heating, the thickness of the BFM and vesicularity of the BC increased, while the water content of the BC decreased. The outermost bubbles (i.e., bubbles on the BFM-BC boundary) were significantly smaller than inner bubbles. Water content of melt was nearly uniform throughout the BC, whereas an outward-decreasing gradient was observed in the BFM. These observations can be explained by (1) uniform vesiculation of the starting obsidian with filling the sample chamber, (2) dehydration of melt at the sample surface via diffusion of water, (3) bubble resorption into the

  6. Arts-inspired students sync their assets to a nuts and bolts world: A career mentoring pilot progam

    NASA Astrophysics Data System (ADS)

    Hudson, Lynn

    This research examined how students who are arts-inspired feel about their futures in a STEM-based work climate. Science, Technology, Engineering, and Math are the nuts and bolts, and in education today, the only avenue touted for our country and our students' success in this 21st century economy. This can be disconcerting to those interested in other fields, like the arts. This study was guided by the following questions in an effort to understand if our artists and arts-inspired students realize their options and importance in this 21st century climate. The pilot study was designed to help improve the students' perception of their abilities or self-efficacy in the STEM areas by introducing STEM professionals as mentors who designed hands-on activities that simulate work in the STEM fields. Research Questions: 1. Do arts-inspired students have an interest in a STEM career area prior to participating in the career mentoring program? 2. Does participation in a STEM career mentoring program improve student's self-efficacy in STEM fields? 3. Does participation in STEM career mentoring program increase student's interest in pursuing STEM-related careers? Lent, Brown and Hackett's Social Cognitive Career Theory and Daniel Pink's, "A Whole New Mind: Why Left-Brainers Will Rule the Future" were used as the theoretical framework for this study. Seventeen African-American girls who were enrolled in the "I AM COMPLETE" summer program participated in the pilot study. Data was collected from the College Foundation of North Carolina Career Interest Explorer and the STEM Career Interest Survey, which served as a pre and post-test. This pilot offered limited support for the hypothesis, however, career mentoring and opportunities for young people to experience careers, especially in the STEM areas must continue to grow. The role that the arts play in this process is pivotal in galvanizing females and minorities to join these professions. It is the hope of this researcher that the

  7. Testing and evaluation of Vespel up to 450 deg F when used in nuts and bolts as a self-locking element

    NASA Technical Reports Server (NTRS)

    Wood, C. M.

    1984-01-01

    The object of this investigation was to evaluate Vespel for potential application on the Solid Rocket Booster to replace all-metal deformed self-locking nuts and anchor nuts and be used as self-locking elements for bolts and screws. The Vespel self-locking elements were tested for prevailing torque retention at room temperature, after heating to 450 F and exposure for 3 hr, breakaway torque at 450 F and for vibration at a level consistent with the maximum expected on the SRB at lift-off and reentry. The investigation revealed Vespel has properties that can provide a self-locking capability for threaded fasteners up to 450 F and it can be used in nuts and anchor nuts for installation on the SRB. Vespel elements in bolts did not meet all our SRB requirements for reuse, however, we have defined a design for Vespel elements in nuts/anchor nuts that fully meets all requirements. It is recommended that No. 1, 1/4 in. and 5/16 in. nuts/anchor nuts be procured for use on the SRB. This system will eliminate the galling problems now encountered and achieve a much higher reuse life than the present deformed nut design.

  8. High cycles fatigue damage of CFRP plates clamped by bolts for axial coupling joint with off-set angle during rotation

    NASA Astrophysics Data System (ADS)

    Ooka, Kazuaki; Okubo, Kazuya; Fujii, Toru; Umeda, Shinichi; Fujii, Masayuki; Sugiyama, Tetsuya

    2014-03-01

    This study discussed the change of residual fracture torque and the fatigue damage process of thin CFRP plates clamped by bolts for axial coupling joint, in which flexible deformation was allowed in the direction of off-set angle by the deflection of the CFRP plates while effective stiffness was obtained in rotational direction. Mechanically laminated 4 layers of the CFRP plates were repeatedly deflected during the rotation of axial coupling, when two axes were jointed with 3 degree of off-set angle, in which number of revolution was 1,800 rpm (30Hz of loading frequency). At first, the fracture morphology of specimen and the residual fracture torque was investigated after 1.0×107 cycles of repeated revolutions. The reduction ratio of spring constant was also determined by simple bending test after the fatigue. The residual fracture torque of the joint was determined on the rotational test machine after 1.0×107 cycles of fatigue. After rotations of cyclic fatigue, fiber breaking and wear of matrix were observed around the fixed parts compressed by washers for setting bolts. The reduction of spring constant of the CFRP plates was caused by the initiation of cyclic fatigue damages around the fixed parts, when the axial coupling joint was rotated with off-set angle. It was found that residual fracture torque of the joint was related with the specific fatigue damage of the CFRP observed in this study.

  9. Strength of graphite/epoxy bolted wing-skin splice specimens subjected to outdoor exposure under constant load and yearly fatigue loading

    NASA Technical Reports Server (NTRS)

    Wichorek, G. R.; Crews, J. H., Jr.

    1986-01-01

    The results of an experimental study to provide long-term durability data on detailed full-scale graphite/epoxy wing-skin joint designs under environmental exposure and cyclic loading associated with commercial transport aircraft are reported. The specimens consisted of a single-row bolt configuration fabricated from T300/5208 and a double-row bolt configuration fabricated from T300/5209. The unpainted specimens were exposed to the outdoor environment under a sustained tensile load, and at yearly intervals, they were subjected to fatigue loading. Experimental results showed a slight reduction in residual tensile strength for both graphite/epoxy joints under the exposure times and fatigue loadings reported. A 7.5-percent decrease in residual strength was observed for the T300/5208 single-row joint after 5 years exposure and two lifetimes of fatigue loading. A 5.3-percent decrease in residual strength was observed for the T300/5209 double-row joint after 7 years exposure and 2.8 lifetimes of fatigue loading. The 5208 epoxy material was more susceptible to degradation by ultraviolet radiation than the 5209 epoxy material.

  10. Photodesorption from stainless steels

    NASA Technical Reports Server (NTRS)

    Mesarwi, A.; Ignatiev, A.

    1988-01-01

    The photodesorption by low-energy photons from three types of stainless steels is examined. For all these systems both CO and CO2 were observed to photodesorb with high yields: about 0.001 molecules/photon for CO2 and about 0.0001 molecules/photon for CO at 250 nm. The observed threshold energies were found to be the same for all systems at E0 = 2.92 eV for CO2 and E0 = 2.92-3.10 eV for CO.

  11. Switch to duplex stainless steels

    SciTech Connect

    Quik, J.M.A.; Geudeke, M.

    1994-11-01

    Duplex stainless steels contain approximately equal proportions of ferrite and austenite. These stainless steels have become an established material of construction in the chemical process industries (CPI). Duplexes offer benefits over austenitic stainless steels and carbon steels because of their higher strength, and good toughness and ductility, in combination with equivalent resistance to general corrosion, as well as better resistance to localized corrosion and stress corrosion cracking. Additionally, duplex materials have thermal-conductivity and thermal-expansion coefficients similar to those of ferritic materials, are tough at low (sub-zero) temperatures, and have a high resistance to erosion and abrasion. In some of the highly corrosive environments encountered in the CPI, the super duplex stainless steels offer cost-effective options not possible with the standard austenitic stainless steels. The initial applications were almost exclusively as heat exchanger tubing in water-cooled service. In recent times, duplex stainless steels have been used in the oil, gas, and chemical industries. Examples include service in sweet and mildly sour corrosive environments, on offshore platforms where weight savings can be realized, and as a replacement for standard austenitic stainless steel in chemical-processing plants.

  12. The industrial ecology of steel

    SciTech Connect

    Considine, Timothy J.; Jablonowski, Christopher; Considine, Donita M.M.; Rao, Prasad G.

    2001-03-26

    This study performs an integrated assessment of new technology adoption in the steel industry. New coke, iron, and steel production technologies are discussed, and their economic and environmental characteristics are compared. Based upon detailed plant level data on cost and physical input-output relations by process, this study develops a simple mathematical optimization model of steel process choice. This model is then expanded to a life cycle context, accounting for environmental emissions generated during the production and transportation of energy and material inputs into steelmaking. This life-cycle optimization model provides a basis for evaluating the environmental impacts of existing and new iron and steel technologies. Five different plant configurations are examined, from conventional integrated steel production to completely scrap-based operations. Two cost criteria are used to evaluate technology choice: private and social cost, with the latter including the environmental damages associated with emissions. While scrap-based technologies clearly generate lower emissions in mass terms, their emissions of sulfur dioxide and nitrogen oxides are significantly higher. Using conventional damage cost estimates reported in the literature suggests that the social costs associated with scrap-based steel production are slightly higher than with integrated steel production. This suggests that adopting a life-cycle viewpoint can substantially affect environmental assessment of new technologies. Finally, this study also examines the impacts of carbon taxes on steel production costs and technology choice.

  13. Magnetoacoustic stress measurements in steel

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Utrata, D.; Allison, S. G.; Heyman, J. S.

    1985-01-01

    Uniaxial stress effects on the low-field magnetoacoustic interaction have been studied using bulk compressional waves and Rayleigh surface waves in numerous steel samples having various impurity concentrations (Namkung et al., 1984). The results invariably showed that the initial slope of acoustic natural velocity variations, with respect to net induced magnetization parallel to the stress axis, is positive under tension and negative under compression. The results of current measurements in railroad rail steel having about 0.68 wt percent carbon content are typical for medium range carbon steels. The low-field natural velocity slope in this particular type of steel, which is almost zero when unstressed, becomes steeper with increased magnitude of stress in both directions. Hence, the nondestructive determination of the sign of residual stress in railroad wheels and rails is possible using this technique. This paper discusses the basic physical mechanism underlying the experimental observations and presents the results obtained in railroad rail steel.

  14. Why stainless steel corrodes.

    PubMed

    Ryan, Mary P; Williams, David E; Chater, Richard J; Hutton, Bernie M; McPhail, David S

    2002-02-14

    Stainless steels are used in countless diverse applications for their corrosion resistance. Although they have extremely good general resistance, they are nevertheless susceptible to pitting corrosion. This localized dissolution of an oxide-covered metal in specific aggressive environments is one of the most common and catastrophic causes of failure of metallic structures. The pitting process has been described as random, sporadic and stochastic and the prediction of the time and location of events remains extremely difficult. Many contested models of pitting corrosion exist, but one undisputed aspect is that manganese sulphide inclusions play a critical role. Indeed, the vast majority of pitting events are found to occur at, or adjacent to, such second-phase particles. Chemical changes in and around sulphide inclusions have been postulated as a mechanism for pit initiation but such variations have never been measured. Here we use nanometre-scale secondary ion mass spectroscopy to demonstrate a significant reduction in the Cr:Fe ratio of the steel matrix around MnS particles. These chromium-depleted zones are susceptible to high-rate dissolution that 'triggers' pitting. The implications of these results are that materials processing conditions control the likelihood of corrosion failures, and these data provide a basis for optimizing such conditions. PMID:11845203

  15. 2169 Steel Waveform Experiments

    NASA Astrophysics Data System (ADS)

    Furnish, M.; Alexander, C.; Reinhart, W.; Brown, J.

    2013-06-01

    In support of efforts to develop multiscale models of materials, we performed eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn). These experiments provided shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were used, with samples 1 to 5 mm thick. The study focused on dynamic strength determination via the release/reshock paths. Reshock tests with explosively welded impactors produced clean results. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allowed release information to be determined from these free surface samples as well. The sample strength appears to increase with stress from ~1 GPa to ~3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Tamper indicating bolt

    DOEpatents

    Blagin, Sergei V.; Barkanov, Boris P.

    2004-09-14

    A tamper-indicating fastener has a cylindrical body with threads extending from one end along a portion of the body, and a tamper indicating having a transducer for converting physical properties of the body into electronic data; electronics for recording the electronic data; and means for communicating the recorded information to a remote location from said fastener. The electronics includes a capacitor that varies as a function of force applied by the fastener, and non-volatile memory for recording instances when the capacitance varies, providing an indication of unauthorized access.

  17. Development of an impact-reduction device by applying ultrasonic vibrations to a high-strength steel plate using a downsized transducer

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsuyuki; Ikeoka, Shota; Tsujino, Jiromaru

    2016-07-01

    In this study, we attempted to downsize an ultrasonic impact-reduction device and studied its use in vehicles because the use of large devices increases the overall vehicle weight and size and reduces fuel economy. We downsized the ultrasonic transducer to 195 mm from 435 mm and measured the vibration, deformation, and impact-reduction characteristics. The resonant frequency changed after a bolt-clamped Langevin-type transducer was connected with the horn, and the motional admittance decreased. Upon application of ultrasonic vibrations to a high-strength steel plate, the deformation magnitude increased, the springback magnitude decreased by up to 25%, and the impact force decreased by 18%. While the downsized impact reduction system was found to be less effective, it still showed an impact reduction effect.

  18. Assessment of void swelling in austenitic stainless steel PWR core internals.

    SciTech Connect

    Chung, H. M.; Energy Technology

    2006-01-31

    As many pressurized water reactors (PWRs) age and life extension of the aged plants is considered, void swelling behavior of austenitic stainless steel (SS) core internals has become the subject of increasing attention. In this report, the available database on void swelling and density change of austenitic SSs was critically reviewed. Irradiation conditions, test procedures, and microstructural characteristics were carefully examined, and key factors that are important to determine the relevance of the database to PWR conditions were evaluated. Most swelling data were obtained from steels irradiated in fast breeder reactors at temperatures >385 C and at dose rates that are orders of magnitude higher than PWR dose rates. Even for a given irradiation temperature and given steel, the integral effects of dose and dose rate on void swelling should not be separated. It is incorrect to extrapolate swelling data on the basis of 'progressive compounded multiplication' of separate effects of factors such as dose, dose rate, temperature, steel composition, and fabrication procedure. Therefore, the fast reactor data should not be extrapolated to determine credible void swelling behavior for PWR end-of-life (EOL) or life-extension conditions. Although the void swelling data extracted from fast reactor studies is extensive and conclusive, only limited amounts of swelling data and information have been obtained on microstructural characteristics from discharged PWR internals or steels irradiated at temperatures and at dose rates comparable to those of a PWR. Based on this relatively small amount of information, swelling in thin-walled tubes and baffle bolts in a PWR is not considered a concern. As additional data and relevant research becomes available, the newer results should be integrated with existing data, and the worthiness of this conclusion should continue to be scrutinized. PWR baffle reentrant corners are the most likely location to experience high swelling rates, and

  19. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  20. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  1. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  2. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  3. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  4. Occupational Profiles in the European Steel Industry.

    ERIC Educational Resources Information Center

    Franz, Hans-Werner; And Others

    The steel industry in Europe has faced great changes, with resulting layoffs and restructuring. Now that the most basic changes seem to be over, it has become evident that the remaining steel industry requires more highly trained workers than was the case previously. Although steel maintenance employees were always highly skilled, steel production…

  5. Improving the toughness of ultrahigh strength steel

    SciTech Connect

    Soto, Koji

    2002-08-15

    The ideal structural steel combines high strength with high fracture toughness. This dissertation discusses the toughening mechanism of the Fe/Co/Ni/Cr/Mo/C steel, AerMet 100, which has the highest toughness/strength combination among all commercial ultrahigh strength steels. The possibility of improving the toughness of this steel was examined by considering several relevant factors.

  6. Irradiation effects in ferritic steels

    NASA Astrophysics Data System (ADS)

    Lechtenberg, Thomas

    1985-08-01

    Since 1979 the Alloy Development for Irradiation Performance (ADIP) task funded by the US Department of Energy has been studying the 2-12Cr class of ferritic steels to establish the feasibility of using them in fusion reactor first wall/breeding blanket (FW/B) applications. The advantages of ferritic steels include superior swelling resistance, low thermal stresses compared to austenitic stainless steels, attractive mechanical properties up to 600°C. and service histories exceeding 100 000 h. These steels are commonly used in a range of microstructural conditions which include ferritic, martensitic. tempered martensitic, bainitic etc. Throughout this paper where the term "ferritic" is used it should be taken to mean any of these microstructures. The ADIP task is studying several candidate alloy systems including 12Cr-1MoWV (HT-9), modified 9Cr-1MoVNb, and dual-phased steels such as EM-12 and 2 {1}/{4}Cr-Mo. These materials are ferromagnetic (FM), body centered cubic (bcc), and contain chromium additions between 2 and 12 wt% and molybdenum additions usually below 2%. The perceived issues associated with the application of this class of steel to fusion reactors are the increase in the ductile-brittle transition temperature (DBTT) with neutron damage, the compatibility of these steels with liquid metals and solid breeding materials, and their weldability. The ferromagnetic character of these steels can also be important in reactor design. It is the purpose of this paper to review the current understanding of these bcc steels and the effects of irradiation. The major points of discussion will be irradiation-induced or -enhanced dimensional changes such as swelling and creep, mechanical properties such as tensile strength and various measurements of toughness, and activation by neutron interactions with structural materials.

  7. High-strength, low-alloy steels.

    PubMed

    Rashid, M S

    1980-05-23

    High-strength, low-alloy (HSLA) steels have nearly the same composition as plain carbon steels. However, they are up to twice as strong and their greater load-bearing capacity allows engineering use in lighter sections. Their high strength is derived from a combination of grain refinement; precipitation strengthening due to minor additions of vanadium, niobium, or titanium; and modifications of manufacturing processes, such as controlled rolling and controlled cooling of otherwise essentially plain carbon steel. HSLA steels are less formable than lower strength steels, but dualphase steels, which evolved from HSLA steels, have ferrite-martensite microstructures and better formability than HSLA steels of similar strength. This improved formability has substantially increased the utilization potential of high-strength steels in the manufacture of complex components. This article reviews the development of HSLA and dual-phase steels and discusses the effects of variations in microstructure and chemistry on their mechanical properties. PMID:17772810

  8. Welding tritium exposed stainless steel

    SciTech Connect

    Kanne, W.R. Jr.

    1994-11-01

    Stainless steels that are exposed to tritium become unweldable by conventional methods due to buildup of decay helium within the metal matrix. With longer service lives expected for tritium containment systems, methods for welding on tritium exposed material will become important for repair or modification of the systems. Solid-state resistance welding and low-penetration overlay welding have been shown to mitigate helium embrittlement cracking in tritium exposed 304 stainless steel. These processes can also be used on stainless steel containing helium from neutron irradiation, such as occurs in nuclear reactors.

  9. Stainless steel display evaluation

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.; Meyer, Frederick M.; Longo, Sam J.; Trissell, Terry L.

    2007-04-01

    Active matrix organic light emitting diode (AMOLED) technology is one candidate to become a low power alternative in some applications to the currently dominant, active matrix liquid crystal display (AMLCD), technology. Furthermore, fabrication of the AMOLED on stainless steel (SS) foil rather than the traditional glass substrate, while presenting a set of severe technical challenges, opens up the potential for displays that are both lighter and less breakable. Also, transition to an SS foil substrate may enable rollable displays - large when used but small for stowage within gear already worn or carried or installed. Research has been initiated on AMOLED/SS technology and the first 320 x 240 color pixel 4-in. demonstration device has been evaluated in the AFRL Display Test and Evaluation Laboratory. Results of this evaluation are reported along with a research roadmap.

  10. 2169 steel waveform experiments.

    SciTech Connect

    Furnish, Michael David; Alexander, C. Scott; Reinhart, William Dodd; Brown, Justin L.

    2012-11-01

    In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included the elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe - phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mm-thick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.

  11. JPDR vessel steel examination

    SciTech Connect

    Corwin, W.R.; Broadhead, B.L.; Sokolov, M.A.

    1995-10-01

    There is a need to validate the results of irradiation effects research by the examination of material taken directly from the wall of a pressure vessel which has been irradiated during normal service. This task has been included with the HSSI Program to provide just such an evaluation of material from the wall of the pressure vessel from the JPDR. The JPDR was a small BWR that began operation in 1963. It operated until 1976, accumulating {approximately}17,000 h of operation, of which a little over 14,000 h were with the original 45-MWTh core, and the remaining fraction, late in life, with an upgraded 90-MWTh core. The pressure vessel of the JPDR, fabricated from A 302, grade B, modified steel with an internal weld overlay cladding of 304 stainless steel, is approximately 2 m ID and 73 mm thick. It was fabricated from two shell halves joined by longitudinal seam welds located 180{degrees} from each other. The rolling direction of the shell plates is parallel to the axis of the vessel. It operated at 273{degrees}C and reached a maximum fluence of about 2.3 x 10{sup 18} n/cm{sup 2} (> 1 MeV). The impurity contents in the base metal are 0.10 to 0.11% Cu and 0.010 to 0.017% P with a nickel content of 0.63 to 0.65%. Impurity contents of the weld metal are 0.11 to 0.14% Cu and 0.025 to 0.039% P with a nickel content of 0.59%.

  12. Fabrication of stainless steel foil utilizing chromized steel strip

    NASA Astrophysics Data System (ADS)

    Loria, Edward A.

    1980-10-01

    Stainless steel foil has properties which are, in many respects, unmatched by alternative thin films. The high strength to weight ratio and resistance to corrosion and oxidation at elevated temperatures are generally advantageous. The aerospace and automotive industries have used Type 430 and 304 foil in turbine engine applications. Foil around 2 mils (5.1 × 10-3 cm) thick has been appropriate for the recuperator or heat exchanger and this product has also been used in honeycomb and truss-core structures. Further, such foil has been employed as a wrap to protect tool steel parts from contamination during heat treating. A large part of the high cost of producing stainless steel foil by rolling is due to the complicated and expensive rolling mill and annealing equipment involved. A method will be described which produces (solid) stainless steel foil from chromized (coated) steel which can be cheaper than the conventional processing stainless steel, such as Type 430, from ingot to foil. Also, the material is more ductile and less work hardenable during processing to foil and consequently intermediate annealing treatments are eliminated and scrap losses minimized.

  13. Corrosion of Steels in Steel Reinforced Concrete in Cassava Juice

    NASA Astrophysics Data System (ADS)

    Oluwadare, G. O.; Agbaje, O.

    The corrosion of two types of construction steels, ST60Mn and RST37-2♦, in a low cyanide concentration environment (cassava juice) and embedded in concrete had been studied. The ST60 Mn was found to be more corrosion resistant in both ordinary water and the cassava juice environment. The cyanide in cassava juice does not attack the steel but it provides an environment of lower pH around the steel in the concrete which leads to breakdown of the passivating film provided by hydroxyl ions from cement. Other factors such as the curing time of the concrete also affect the corrosion rates of the steel in the concrete. The corrosion rate of the steel directly exposed to cassava juice i.e., steel not embedded in concrete is about twice that in concrete. Long exposure of concrete structure to cassava processing effluent might result in deterioration of such structures. Careful attention should therefore be paid to disposal of cassava processing effluents, especially in a country like Nigeria where such processing is now on the increase.

  14. Great Lakes Steel -- PCI facility

    SciTech Connect

    Eichinger, F.T.; Dake, S.H.; Wagner, E.D.; Brown, G.S.

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

  15. Corrosion resistance of stainless steels

    SciTech Connect

    Dillon, C.P.

    1995-12-31

    This book reviews the mechanisms and forms of corrosion and examines the corrosion of stainless steels and similar chromium-bearing nickel containing higher alloys, detailing various corrosive environments including atmospheric and fire-side corrosion, corrosion by water and soil, and corrosion caused by particular industrial processes. It provides information on specific groups and grades of stainless steels; summarizes typical applications for specific stainless alloys; describes common corrosion problems associated with stainless steels; presents the acceptable isocorrosion parameters of concentration and temperature for over 250 chemicals for which stainless steels are the preferred materials of construction; discusses product forms and their availability; elucidates fabrication, welding, and joining techniques; and covers the effects of pickling and passivation.

  16. Construction of Torsional-Vibration Systems with a Hollow Cylindrical Bolt-Clamped Langevin-Type Transducer and Their Application to Ultrasonic Plastic Welding

    NASA Astrophysics Data System (ADS)

    Adachi, Kazunari; Saito, Masanaka

    1995-05-01

    We have previously developed a hollow cylindrical bolt-clamped Langevin-type transducer with a high mechanical quality factor (Q) for excitation of high-amplitude torsional vibrations. In this paper, we propose a construction of vibrating systems that comprise a `stepped horn' (a mechanical transformer of torsional vibration) and the stumpy `twisting' transducer developed by us. The distinctive feature of the construction is that it achieves compactness without sacrificing the volume of piezoelectric ceramics that is important for high-power ultrasonic applications. Through experiments, we have found some crucial points in the procedure for constructing torsional-vibration systems that can be operated at a relatively high frequency. In addition, we have conducted some experiments of ultrasonic plastic welding using one of the vibrating systems for evaluation of the feasibility of the construction in this manufacturing technique

  17. Hydrogen embrittlement of structural steels.

    SciTech Connect

    Somerday, Brian P.

    2010-06-01

    Carbon-manganese steels are candidates for the structural materials in hydrogen gas pipelines, however it is well known that these steels are susceptible to hydrogen embrittlement. Decades of research and industrial experience have established that hydrogen embrittlement compromises the structural integrity of steel components. This experience has also helped identify the failure modes that can operate in hydrogen containment structures. As a result, there are tangible ideas for managing hydrogen embrittement in steels and quantifying safety margins for steel hydrogen containment structures. For example, fatigue crack growth aided by hydrogen embrittlement is a key failure mode for steel hydrogen containment structures subjected to pressure cycling. Applying appropriate structural integrity models coupled with measurement of relevant material properties allows quantification of safety margins against fatigue crack growth in hydrogen containment structures. Furthermore, application of these structural integrity models is aided by the development of micromechanics models, which provide important insights such as the hydrogen distribution near defects in steel structures. The principal objective of this project is to enable application of structural integrity models to steel hydrogen pipelines. The new American Society of Mechanical Engineers (ASME) B31.12 design code for hydrogen pipelines includes a fracture mechanics-based design option, which requires material property inputs such as the threshold for rapid cracking and fatigue crack growth rate under cyclic loading. Thus, one focus of this project is to measure the rapid-cracking thresholds and fatigue crack growth rates of line pipe steels in high-pressure hydrogen gas. These properties must be measured for the base materials but more importantly for the welds, which are likely to be most vulnerable to hydrogen embrittlement. The measured properties can be evaluated by predicting the performance of the pipeline

  18. Process Hood Stand Support Steel

    SciTech Connect

    VAN KATWIJK, C.

    2000-04-03

    This package is written to comply with EN-6-035-00 for upgrade dedication of commercial grade items (CGI). The SNF-5953 CGI package provides the Technical evaluation to identify the critical characteristics and the acceptance criteria associated with the safety function of the Hood Stand Support Steel. Completion of the technical and quality requirements identified in the dedication package will provide enough data to be reasonably assured that CGI Hood Stand Support Steel will perform its SC function.

  19. Fatigue handbook: Offshore steel structures

    SciTech Connect

    Almarnaess, A.

    1985-01-01

    The contents of this book are: Overview of Offshore Steel Structures; Loads on Ocean Structures; Fracture Mechanics As a Tool in Fatigue Analysis; Basic Fatigue Properties of Welded Joints; Significance of Defects; Improving the Fatigue Strength of Welded Joints; Effects of Marine Environment and Cathodic Protection on Fatigue of Structural Steels Fatigue of Tubular Joints; Unstable Fracture; Fatigue Life Calculations; and Fatigue in Building Codes Background and Applications.

  20. Analysis of plasma nitrided steels

    NASA Technical Reports Server (NTRS)

    Salik, J.; Ferrante, J.; Honecy, F.; Hoffman, R., Jr.

    1987-01-01

    The analysis of plasma nitrided steels can be divided to two main categories - structural and chemical. Structural analysis can provide information not only on the hardening mechanisms but also on the fundamental processes involved. Chemical analysis can be used to study the kinetics for the nitriding process and its mechanisms. In this paper preliminary results obtained by several techniques of both categories are presented and the applicability of those techniques to the analysis of plasma-nitrided steels is discussed.

  1. Wear of steel by rubber

    NASA Technical Reports Server (NTRS)

    Gent, A. N.; Pulford, C. T. R.

    1978-01-01

    Wear of a steel blade used as a scraper to abrade rubber surfaces has been found to take place much more rapidly on a cis-polyisoprene (natural rubber) surface than on a cis-polybutadiene surface, and much more rapidly in an inert atmosphere than in air. These observations are attributed to the direct attack upon steel of free-radical species generated by mechanical rupture of elastomer molecules during abrasion.

  2. Performance evaluation of a cable bolted yield-abutment gate road system at the Crandall Canyon No. 1 Mine, Genwal Resources, Inc., Huntington, Utah

    SciTech Connect

    Koehler, J.R.; DeMarco, M.J.; Marshall, R.J.; Fielder, J.

    1996-12-01

    Although two-entry yield pillar-based gate roads supported by wooden cribs have been commonly used throughout longwalling in the Wasatch Plateau/Roan Cliffs coalfield of central Utah, a three-entry yield-abutment gate road configuration was recently trialed in the Hiawatha Seam at the Genwal Resources (GRI) Crandall Canyon No. 1 Mine, near Huntington, UT. Pillar, entry, and cable bolt performance were monitored through second panel mining using a fairly extensive array of geomechanical instruments installed over a span of four crosscuts. Ground pressure and entry closure measurements confirmed that the 9.1-m-wide (30-ft) yield pillar was partially shielded from first panel longwall loads by the 36.6-m-wide (120-ft) abutment pillar, and consequently, experienced only minor yielding until the approach of the second panel face. Complete yielding of the 9.1-m-wide (30-ft) pillar occurred when the second panel was approximately 6.1 m (20 ft) in by the instrumentation site. Average cable bolt loads and differential roof sag remained low through second panel mining and tailgate entry ground conditions were excellent; however, very high ground pressures in the abutment and yield pillars, and second panel rib strongly suggest a high potential for coal bumps utilizing this gate road configuration at mining cover depths in excess of 396 to 457 m (1300 to 1500 ft). This conclusion is supported by the suspected occurrence of small coal bumps along the abutment pillar ribs, observed indirectly as fresh debris in the middle entry just behind the second face. This paper presents a case history developed from the geotechnical measurements and on-site observations of this unique application of a yield-abutment gate road configuration and cable support system in the Hiawatha Seam.

  3. Hydrogen Permeation in Nanostructured Bainitic Steel

    NASA Astrophysics Data System (ADS)

    Kazum, Oluwole; Beladi, Hossein; Timokhina, Ilana B.; He, Yinghe; Bobby Kannan, M.

    2016-07-01

    Hydrogen permeation of nanostructured bainitic steel, produced at two different transformation temperatures, i.e., 473.15 K (200 °C) BS-200 and 623.15 K (350 °C) BS-350, was determined using Devanathan-Stachurski hydrogen permeation cell and compared with that of mild steel. Nanostructured bainitic steel showed lower effective diffusivity of hydrogen as compared to the mild steel. The BS-200 steel, which exhibited higher volume fraction of bainitic ferrite phase, showed lower effective diffusivity than BS-350 steel. The finer microstructural constituents (bainitic ferrite laths and retained austenite films) and higher dislocation density in the bainitic ferrite phase of BS-200 steel can be attributed to its lower effective diffusivity as compared to BS-350 steel and mild steel.

  4. Crack propagation in stainless steels and nickel base alloys in a commercial operating BWR

    SciTech Connect

    Jenssen, A.; Morin, U.; Bengtsson, B.; Jansson, C.

    1995-12-31

    Crack propagation was investigated to study critical stress intensity factors for intergranular stress corrosion cracking (IGSCC), and crack growth rates in various materials. Modified bolt loaded compact tension (CT) specimens were exposed to BWR normal water chemistry (NWC) in a commercially operating BWR. The test facility was a pressure vessel, originally designed for high temperature magnetite filters. Stainless steels (SS) of Types 304 SS and 316 SS were included in the test matrix, as well as the Ni base weld materials alloys 82 and 182. The SS were investigated both in sensitized and in cold worked condition. For alloy 182 various parameters were studied, such as the effect of the carbon stabilization parameter, and the as-welded condition versus a post weld heat treatment (PWHT). Crack growth was measured annually, during the normal outages, by an optical microscope. The results were evaluated as crack growth rate as a function of stress intensity. A few specimens have been removed from testing for fractographic examination. Most of the specimens were exposed to NWC for more than 30,000 hours. Alloy 82 in as welded condition was found to be susceptible to IGSCC, at least at stress intensities above 30 MPa{radical}m. For alloy 182, in as welded condition, significant crack growth was detected in all specimens. No beneficial effect of the carbon stabilization parameter could be found. PWHT had a beneficial effect on the IGSCC susceptibility of alloy 182, and at stress intensities below 30 MPa{radical}m the crack growth rates were one to two orders of magnitude lower, compared to alloy 182 in as welded condition. As expected, an increasing susceptibility to IGSCC with increasing degree of cold work was found for stainless steel. At 5% cold work Type 304 SS cracked at a higher rate than Type 316NG with the same degree of cold work. At 20% cold work Type 304 SS and Type 316NG cracked at essentially the same rate.

  5. Microbial corrosion of stainless steel.

    PubMed

    Ibars, J R; Moreno, D A; Ranninger, C

    1992-11-01

    Stainless steel, developed because of their greater resistance to corrosion in different aggressive environments, have proved to be affected, however, by various processes and types of corrosion. Some of these types of corrosion, mainly pitting, is activated and developed in the presence of microorganisms, which acting in an isolated or symbiotic way, according to their adaptation to the environment, create a favorable situation for the corrosion of these steel. The microorganisms that are involved, mainly bacteria of both the aerobic and anaerobic type, modify the environment where the stainless steel is found, creating crevices, differential aeration zones or a more aggressive environment with the presence of metabolites. In these circumstances, a local break of the passive and passivating layer is produced, which is proper to these types of steel and impedes the repassivation that is more favorable to corrosion. In the study and research of these types of microbiologically influenced corrosion are found electrochemical techniques, since corrosion is fundamentally an electrochemical process, and microbiological techniques for the identification, culture, and evaluation of the microorganisms involved in the process, as well as in the laboratory or field study of microorganism-metal pairs. Microstructural characterization studies of stainless steel have also been considered important, since it is known that the microstructure of steel can substantially modify their behavior when faced with corrosion. As for surface analysis studies, it is known that corrosion is a process that is generated on and progresses from the surface. The ways of dealing with microbiologically influenced corrosion must necessarily include biocides, which are not always usable or successful, the design of industrial equipment or components that do not favor the adherence of microorganisms, using microstructures in steel less sensitive to corrosion, or protecting the materials. PMID:1492953

  6. 38. Photocopy of photograph. STEEL PLANT, BOILERS UNDER CONSTRUCTION IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Photocopy of photograph. STEEL PLANT, BOILERS UNDER CONSTRUCTION IN BOILER PLANT LOCATED EAST OF MAIN STEEL PLANT, 1909. (From the Bethlehem Steel Corporation collection, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  7. Multiphysics modeling of the steel continuous casting process

    NASA Astrophysics Data System (ADS)

    Hibbeler, Lance C.

    This work develops a macroscale, multiphysics model of the continuous casting of steel. The complete model accounts for the turbulent flow and nonuniform distribution of superheat in the molten steel, the elastic-viscoplastic thermal shrinkage of the solidifying shell, the heat transfer through the shell-mold interface with variable gap size, and the thermal distortion of the mold. These models are coupled together with carefully constructed boundary conditions with the aid of reduced-order models into a single tool to investigate behavior in the mold region, for practical applications such as predicting ideal tapers for a beam-blank mold. The thermal and mechanical behaviors of the mold are explored as part of the overall modeling effort, for funnel molds and for beam-blank molds. These models include high geometric detail and reveal temperature variations on the mold-shell interface that may be responsible for cracks in the shell. Specifically, the funnel mold has a column of mold bolts in the middle of the inside-curve region of the funnel that disturbs the uniformity of the hot face temperatures, which combined with the bending effect of the mold on the shell, can lead to longitudinal facial cracks. The shoulder region of the beam-blank mold shows a local hot spot that can be reduced with additional cooling in this region. The distorted shape of the funnel mold narrow face is validated with recent inclinometer measurements from an operating caster. The calculated hot face temperatures and distorted shapes of the mold are transferred into the multiphysics model of the solidifying shell. The boundary conditions for the first iteration of the multiphysics model come from reduced-order models of the process; one such model is derived in this work for mold heat transfer. The reduced-order model relies on the physics of the solution to the one-dimensional heat-conduction equation to maintain the relationships between inputs and outputs of the model. The geometric

  8. Anodized Steel Electrodes for Supercapacitors.

    PubMed

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-01

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime. PMID:26891093

  9. Carbide transformations in constructional steels

    SciTech Connect

    Vinokur, B.B.

    1986-01-01

    In connection with the type of carbides formed in general purpose constructional steels or on the mechanisms of carbide transformations and the influence of carbide formation on the properties, this work presents an investigation that was made of medium-carbon chrome-nickel and chrome-manganese steels with 1, 2, and 3% Cr, 1% Ni, and 1% Mn additionally alloyed with 0.25-2% Mo or W (every 0.25%). All of the steels were hardened from temperatures providing the fullest solution of carbides in austenite and were tempered at 400-650/sup 0/C every 25-50/sup 0/C. The composition of the carbides and their type were established by chemical, x-ray diffraction, and microdiffraction methods and the mechanism of the carbide transformations was determined on the basis of the changes in distortions of the second and third order of the matrix electrical resistance, and coercive force of the steel. All of the carbideforming elements present in steel participate in saturation of the carbides, as a result of which the formation of a special carbide is eased and the degree of alloying of the matrix increases. In the carbide transformation with a certain share of carbide phase an increase or retarding of the reduction in strength with an increase in tempering temperature with constant plasticity and impact strength is possible.

  10. Steel erected at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Workers erect the first fabricated steel girders to arrive at the A-3 Test Stand at Stennis Space Center. Steel work began at the construction site Oct. 29 and is scheduled to continue into next spring.

  11. High-temperature brazing of stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.; Mitchell, M. J.

    1978-01-01

    Prevention of iron contamination of platens is eliminated by placing alumina/silica ceramic-fiber blankets between platens and carbon-steel plate. Carbon-steel plates provide rigidity and improve heat transfer.

  12. ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS

    SciTech Connect

    T. Misiak

    1996-06-26

    The purpose and objective of this analysis are to expand the level of detail and confirm member sizes for steel sets included in the Ground Support Design Analysis, Reference 5.20. This analysis also provides bounding values and details and defines critical design attributes for alternative configurations of the steel set. One possible configuration for the steel set is presented. This analysis covers the steel set design for the Exploratory Studies Facility (ESF) entire Main Loop 25-foot diameter tunnel.

  13. Metallography of maraging 350 steel

    SciTech Connect

    Hutson, S.M.; Merten, C.W.

    1987-01-01

    A technique for etching maraging 350 steel with Glyceregia is described. Surface activation procedures are integral to this technique. Microstructural features revealed by this technique are compared with those obtained with Kalling's reagent, Fry's reagent, and 5% Nital, three etchants commonly used to reveal microstructures of maraging steels. Features which may be simultaneously revealed using Glyceregia include prior austenite grain boundaries, martensitic structure, precipitates, titanium carbo-nitrides, and reverted austenite. The other etchants examined in this investigation typically reveal only a few of the microstructural features detailed above at any one time. 11 refs., 10 figs., 2 tabs.

  14. Steel industry wastes. [Wastewater treatment

    SciTech Connect

    Vachon, D.T.; Schmidt, J.W.; Schmidtke, N.W.

    1982-06-01

    A literature review dealing with waste processing of steel industry wastes is presented. The costs for the U.S. steel industry to comply with environmental standards are such that water reuse and recycling may be necessary. The review examines conventional coke plant wastewater treatments such as flotation, phenol extraction, ammonia stripping, and biological nitrification, and alternative treatment processes for blast furnace scrubber blowdown such as alkaline chlorination, ozonation, and reverse osmosis. A review of pickling operations and finishing processes is also included with their appropriate waste methods highlighted.

  15. Plating on stainless steel alloys

    SciTech Connect

    Dini, J.W.; Johnson, H.R.

    1981-09-11

    Quantitative adhesion data are presented for a variety of electroplated stainless steel type alloys. Results show that excellent adhesion can be obtained by using a Wood's nickel strike or a sulfamate nickel strike prior to final plating. Specimens plated after Wood's nickel striking failed in the deposit rather than at the interface between the substrate and the coating. Flyer plate quantitative tests showed that use of anodic treatment in sulfuric acid prior to Wood's nickel striking even further improved adhesion. In contrast activation of stainless steels by immersion or cathodic treatment in hydrochloric acid resulted in very reduced bond strengths with failure always occurring at the interface between the coating and substrate.

  16. Susceptibility of irradiated steels to hydrogen embrittlement

    NASA Technical Reports Server (NTRS)

    Rossin, A. D.

    1968-01-01

    Investigation determined whether irradiated pressure-vessel steels 4340 and 212-B are susceptible to hydrogen embrittlement and to catastrophic failure. Hydrogen-charging conditions which completely embrittled 4340 steel had negligible effect on 212-B steel in tensile and delayed-failure tests.

  17. Steel erected at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Fabricated steel began arriving by truck Oct. 24 for construction of the A-3 Test Stand that will be used to test the engine for the nation's next generation of moon rockets. Within days workers from Lafayette Steel Erector Inc. began assembling the 16 steel stages needed on the foundation and footings poured in the previous year.

  18. Steeling and Resilience in Art Education

    ERIC Educational Resources Information Center

    Heise, Donalyn

    2014-01-01

    Steel is an incredibly strong alloy of iron and carbon. Due to its incredible strength and durability, this resilient material is commonly used for constructing buildings. The transitive verb "steeling" is defined in Miriam-Webster dictionary as "to fill with resolution or determination, as in, she 'steeled herself to face the…

  19. Teaching Steel Connections Using an Interactive Virtual Steel Sculpture

    ERIC Educational Resources Information Center

    Moaveni, Saeed; Chou, Karen C.

    2015-01-01

    Steel connections play important roles in the integrity of a structure, and many structural failures are attributed to connection failures. Connections are the glue that holds a structure together. The failures of the Hartford Coliseum in 1977, the Hyatt Regency Hotel in Kansas City in 1980, and the I-35W Bridge in Minneapolis in 2007 are all…

  20. Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings

    NASA Technical Reports Server (NTRS)

    Tobin, Eric J.; Hafley, R. (Technical Monitor)

    2002-01-01

    The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.