Science.gov

Sample records for 64-m radio telescope

  1. The new 64m Sardinia Radio Telescope and VLBI facilities in Italy

    NASA Astrophysics Data System (ADS)

    Giovannini, Gabriele; Feretti, Luigina; Prandoni, Isabella; Giroletti, Marcello

    2015-08-01

    The Sardinia Radio Telescope (SRT) is a new major radio astronomical facility available in Italy for single dish and interferometric observations. It represents a flexible instrument for Radio Astronomy, Geodynamical studies and Space Science, either in single dish or VLBI mode. The SRT combines a 64m steerable collecting area, one of the largest all over the World with state-of-the-art technology (including an active surface) to enable high efficiency observations up to the 3-mm band.This new radio telescope together with the two 32m antennas in Noto and Medicina can be used for VLBI observations on a national basis (VLBIT). Data can be correlated in a short time (in real time soon) thanks to fiber-optics connection among the radio telescopes and the software correlator installed at the Radio Astronomy Institute in Bologna (IRA/INAF). In the poster I will present capabilities of the SRT telescope as well as the VLBIT project and I will shortly discuss the scientific prospects of the VLBIT.

  2. Testing a modified ASKAP Mark II phased array feed on the 64 m Parkes radio telescope

    NASA Astrophysics Data System (ADS)

    Chippendale, A. P.; Beresford, R. J.; Deng, X.; Leach, M.; Reynolds, J. E.; Kramer, M.; Tzioumis, T.

    2016-09-01

    We present the first installation and characterization of a phased array feed (PAF) on the 64 m Parkes radio telescope. The combined system operates best between 0.8 GHz and 1.74 GHz where the beamformed noise temperature is between 45 K and 60 K, the aperture efficiency ranges from 70% to 80%, and the effective field of view is 1.4 deg^2 at 1310 MHz. After a 6-month trial observing program at Parkes, the PAF will be installed on the 100 m antenna at Effelsberg. This is the first time a PAF has been installed on a large single-antenna radio telescope and made available to astronomers.

  3. Sardinia Radio Telescope: the new Italian project

    NASA Astrophysics Data System (ADS)

    Grueff, Gavril; Alvito, Giovanni; Ambrosini, Roberto; Bolli, Pietro; Maccaferri, Andrea; Maccaferri, Giuseppe; Morsiani, Marco; Mureddu, Leonardo; Natale, Vincenzo; Olmi, Luca; Orfei, Alessandro; Pernechele, Claudio; Poma, Angelo; Porceddu, Ignazio; Rossi, Lucio; Zacchiroli, Gianpaolo

    2004-10-01

    This contribution gives a description of the Sardinia Radio Telescope (SRT), a new general purpose, fully steerable antenna proposed by the Institute of Radio Astronomy (IRA) of the National Institute for Astrophysics. The radio telescope is under construction near Cagliari (Sardinia) and it will join the two existing antennas of Medicina (Bologna) and Noto (Siracusa) both operated by the IRA. With its large antenna size (64m diameter) and its active surface, SRT, capable of operations up to about 100GHz, will contribute significantly to VLBI networks and will represent a powerful single-dish radio telescope for many science fields. The radio telescope has a Gregorian optical configuration with a supplementary beam-waveguide (BWG), which provides additional focal points. The Gregorian surfaces are shaped to minimize the spill-over and the standing wave between secondary mirror and feed. After the start of the contract for the radio telescope structural and mechanical fabrication in 2003, in the present year the foundation construction will be completed. The schedule foresees the radio telescope inauguration in late 2006.

  4. Uzaybimer Radio Telescope Control System

    NASA Astrophysics Data System (ADS)

    Balbay, R.; Öz, G. K.; Arslan, Ö.; Özeren, F. F.; Küçük, İ.

    2016-12-01

    A 13 meters former NATO radar is being converted into a radio telescope. The radio telescope is controlled by a system which has been developed at UZAYBİMER. The Telescope Control System(TCS) has been designed using modern industrial systems. TCS has been developed in LabView platform in which works Windows embedded OS. The position feedback used on radio telescopes is an industrial EtherCAT standard. ASCOM library is used for astronomical calculations.

  5. Prism beamswitch for radio telescopes.

    PubMed

    Payne, J M; Ulich, B L

    1978-12-01

    A dielectric prism and switching mechanism have been constructed for beamswitching a Cassegrain radio telescope. Spatially extended radio sources may be mapped without significant confusion utilizing the sensitivity and stability inherent in the conventional Dicke radiometer.

  6. Kashima 34-m Radio Telescope

    NASA Technical Reports Server (NTRS)

    Sekido, Mamoru; Kawai, Eiji

    2013-01-01

    The Kashima 34-m radio telescope has been continuously operated and maintained by the National Institute of Information and Communications Technology (NICT) as a facility of the Kashima Space Technology Center (KSTC) in Japan. This brief report summarizes the status of this telescope, the staff, and activities during 2012.

  7. Proposed Integrated Radio-Telescope Network

    NASA Technical Reports Server (NTRS)

    Cohen, M. H.; Ewing, M. S.; Levy, G. S.; Mallis, R. K.; Readhead, A. C. S.; Smith, J. R.; Backer, D. C.

    1982-01-01

    Proposed network of radio telescopes, controlled by a central computer and managed by a single organization, offer potential for research on a scale that could not be matched by present privately and publicly-owned radio telescopes. With 10 antenna sites, network would establish base lines thousands of miles long. Antennas will be linked to computer center by telephone circuits.

  8. Brown University Radio Student Telescope (BURST)

    NASA Astrophysics Data System (ADS)

    Miller, Michelle

    2017-01-01

    The Brown University Radio Student Telescope (BURST) is a rooftop low frequency radio interferometer that we hope to potentially use to observe radio transients, non-thermal radio emission from Galactic synchrotron and supernova remnants, and extragalactic radio sources. It was built by a group of Brown undergraduates this past summer. An overview of the design, ultimate installation, challenges in implementation and data acquisition will be covered in the poster.

  9. Geodetic Observatory Wettzell - 20-m Radio Telescope and Twin Telescope

    NASA Technical Reports Server (NTRS)

    Neidhardt, Alexander; Kronschnabl, Gerhard; Schatz, Raimund

    2013-01-01

    In the year 2012, the 20-m radio telescope at the Geodetic Observatory Wettzell, Germany again contributed very successfully to the International VLBI Service for Geodesy and Astrometry observing program. Technical changes, developments, improvements, and upgrades were made to increase the reliability of the entire VLBI observing system. In parallel, the new Twin radio telescope Wettzell (TTW) got the first feedhorn, while the construction of the HF-receiving and the controlling system was continued.

  10. The microwave holography system for the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Serra, G.; Bolli, P.; Busonera, G.; Pisanu, T.; Poppi, S.; Gaudiomonte, F.; Zacchiroli, G.; Roda, J.; Morsiani, M.; López-Pérez, J. A.

    2012-09-01

    Microwave holography is a well-established technique for mapping surface errors of large reflector antennas, particularly those designed to operate at high frequencies. We present here a holography system based on the interferometric method for mapping the primary reflector surface of the Sardinia Radio Telescope (SRT). SRT is a new 64-m-diameter antenna located in Sardinia, Italy, equipped with an active surface and designed to operate up to 115 GHz. The system consists mainly of two radio frequency low-noise coherent channels, designed to receive Ku-band digital TV signals from geostationary satellites. Two commercial prime focus low-noise block converters are installed on the radio telescope under test and on a small reference antenna, respectively. Then the signals are amplified, filtered and downconverted to baseband. An innovative digital back-end based on FPGA technology has been implemented to digitize two 5 MHz-band signals and calculate their cross-correlation in real-time. This is carried out by using a 16-bit resolution ADCs and a FPGA reaching very large amplitude dynamic range and reducing post-processing time. The final holography data analysis is performed by CLIC data reduction software developed within the Institut de Radioastronomie Millimétrique (IRAM, Grenoble, France). The system was successfully tested during several holography measurement campaigns, recently performed at the Medicina 32-m radio telescope. Two 65-by-65 maps, using an on-the-fly raster scan with on-source phase calibration, were performed pointing the radio telescope at 38 degrees elevation towards EUTELSAT 7A satellite. The high SNR (greater than 60 dB) and the good phase stability led to get an accuracy on the surface error maps better than 150 μm RMS.

  11. Goldstone Apple Valley Radio Telescope Project.

    ERIC Educational Resources Information Center

    Ibe, Mary; MacLaren, Dave

    2003-01-01

    Describes the Goldstone Apple Valley Radio Telescope (GAVRT) project as a way of teaching astronomy concepts to middle school students. The project provides students opportunities to work with professional scientists. (SOE)

  12. Undergraduate Research with a Small Radio Telescope

    NASA Astrophysics Data System (ADS)

    Fisher, P. L.; Williams, G. J.

    2001-11-01

    We describe the construction of a small radio telescope system at ULM and the role of radio astronomy in undergraduate education. The heart of the system is the Small Radio Telescope (SRT), which is a modified satellite TV antenna and custom receiver purchased from MIT Haystack Observatory. This telescope measures the brightness of many celestial objects at wavelengths near 21 cm. The system consists of various components to control dish movement, as well as perform analog to digital conversions allowing analysis of collected data. Undergraduate students have participated in the construction of the hardware and the task of interfacing the hardware to software on two GNU/Linux computer systems. The construction of the telescope and analysis of data allow the students to employ key concepts from mechanics, optics, electrodynamics, and thermodynamics, as well as computer and electronics skills. We will report preliminary results of solar observations conducted with this instrument and with the MIT Haystack Observatory 37m radio telescope. This work was supported by Louisiana Board of Regents grant LEQSF-ENH-UG-16, NASA/LaSPACE LURA R109139 and ULM Development Foundation Grant 97317.

  13. Antarctic radio Askaryan neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Connolly, Amy

    2012-03-01

    There are strong motivations for a detectable flux of ultra-high energy (UHE) cosmic neutrinos above 10^17-18 eV. Neutrinos in this regime are expected from interactions between the highest energy cosmic rays and cosmic microwave background photons, and can also originate from the UHE sources themselves. Radio Cerenkov technique is the most promising technique for instrumenting a detection volume large enough to detect the low expected fluxes. The RICE experiment pioneered the radio Cerenkov technique with antennas deployed along strings of the AMANDA experiment deep in the South Pole ice. New radio arrays being deployed in the Antarctic ice are designed to measure dozens of these unique cosmic messengers to exploit the rich particle physics and astrophysical information that they carry. I will discuss the status and results from initial deployments of the Askaryan Radio Array (ARA) near the South Pole, and the ARIANNA array on the Ross Ice Shelf. I will also describe how these experiments could measure neutrino-nucleon cross sections at energies that exceed those probed by the LHC.

  14. The radio telescope RATAN 600

    NASA Technical Reports Server (NTRS)

    Schwartz, R.

    1978-01-01

    A six-meter radio antenna having 900 reflector elements arranged on a 579 -meter diameter circle and located in the northern part of the Caucasian Mountains is described. The elements are about 7.4 m by 2 m resulting in a total reflector surface of about 10,000 sq m. Individual elements can be adjusted by changing 260 screws and can be rotated both horizontally and vertically as well as being moved translationally in the radial direction. The circular area is equipped with a grid of tracks where four asymmetric cylindrical paraboloids serving as subreflectors are located. The directional profile or observational direction of the antenna is achieved by shifting the subreflectors and changing the position of the reflecting elements with respect to the subreflectors. Different radio sources can be observed at the same time by using different subreflectors and their associated reflector sectors. Each subreflector is connected to a receiving station. Capabilities for spectroscopic observation are discussed.

  15. South African Student Constructed Indlebe Radio Telescope

    NASA Astrophysics Data System (ADS)

    McGruder, Charles H.; MacPherson, Stuart; Janse Van Vuuren, Gary Peter

    2017-01-01

    The Indlebe Radio Telescope (IRT) is a small transit telescope with a 5 m diameter parabolic reflector working at 21 cm. It was completely constructed by South African (SA) students from the Durban University of Technology (DUT), where it is located. First light occurred on 28 July 2008, when the galactic center, Sagittarius A, was detected. As a contribution to the International Year of Astronomy in 2009, staff members in the Department of Electronic Engineering at DUT in 2006 decided to have their students create a fully functional radio telescope by 2009. The specific project aims are to provide a visible project that could generate interest in science and technology in high school students and to provide a real world system for research in radio astronomy in general and an optimization of low noise radio frequency receiver systems in particular. These aims must be understood in terms of the SA’s government interests in radio astronomy. SA is a partner in the Square Kilometer Array (SKA) project, has constructed the Karoo Array Telescope (KAT) and MeerKat, which is the largest and most sensitive radio telescope in the southern hemisphere. SA and its partners in Africa are investing in the construction of the African Very Long Baseline Interferometry Network (AVN), an array of radio telescopes throughout Africa as an extension of the existing global Very Long Baseline Interferometry Network (VLBI). These projects will allow SA to make significant contributions to astronomy and enable astronomy to contribute to the scientific education and development goals of the country. The IRT sees on a daily basis the transit of Sag A. The transit time is influenced by precession, nutation, polar motion, aberration, celestial pole offset, proper motion, length of the terrestrial day and variable ionospheric refraction. Of these eight factors six are either predictable or measureable. To date neither celestial pole offset nor variable ionospheric refraction are predicable

  16. Design of a Wideband Radio Telescope

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Weinreb, Sander; Mani, Handi

    2007-01-01

    A wideband Radio Telescope is being designed for use in the Goldstone Apple Valley Radio Telescope program. It uses an existing 34-meter antenna retrofitted with a tertiary offset mirror placed at the apex of the main reflector. It can be rotated to use two feeds that cover the 1.2 to 14 GHz band. The feed for 4.0 to 14.0 GHz is a cryogenically cooled commercially available open boundary quadridge horn from ETS-Lindgren. Coverage from 1.2 to 4.0 GHz is provided by an un-cooled scaled version of the same feed. The performance is greater than 40% over most of the band and greater than 55%from 6 to 13.5 GHz.

  17. Astrophysical results of the Mauritius radio telescope

    NASA Astrophysics Data System (ADS)

    Somanah, R.; Issur, N.; Oozeer, N.

    2013-04-01

    One of the first scientific justifications of building the Mauritius Radio Telescope (hereafter referred to as MRT) was to complement the Cambridge 6C survey, which is a radio map of most of the northern sky at 150 MHz [1]; the MRT would then be the equivalent of the 6C survey for the southern sky and together we would obtain a whole sky radio map at 150 MHz. When the MRT was built, there were no radio surveys of the southern sky at frequencies less than 408 MHz; the frequency of 150 MHz was also chosen to complement the other radio surveys of the southern sky, which have been done at higher frequencies. Furthermore low radio frequencies like 150 MHz are bound to see new sources that would have been missed at higher frequencies due to the form of their spectra. Interesting features of resolved objects can also be studied in more details. In this paper, a brief description of the MRT will be made as well as the observations and imaging with the MRT data, and some astrophysical results obtained since its commissioning in 1992 (20 years of existence this year 2012).

  18. Instrument for Setting Radio Telescope Surfaces

    NASA Astrophysics Data System (ADS)

    Parker, David H.; Payne, John M.; Shelton, John W.; Weadon, Timothy Lee

    The Green Bank Telescope (GBT) [1] is a 100-meter radio telescope under construction by The National Radio Astronomy Observatory in Green Bank, WV. The GBT incorporates a first-of-its-kind active surface that will be adjusted under a closed-loop laser metrology system [2] to correct surface deflections. The goal is to maintain a reflector surface accuracy of 0.220-mm rms in order to operate down to 3-mm wavelengths (100 GHz). The reflector is made up of 2004 individual panels, each of which is manufactured to a section of a 60-meter focal length paraboloid surface to an accuracy of 0.075-mm rms. The panels rest on 2209 motor-driven actuators that adjust the surface to correct for deflections in the telescope backup structure. A bracket on each actuator joins the corners of four panels, so each actuator moves the four adjacent panel corners as a single unit and thus the relative location of the four corners remains fixed. Each panel is measured in a 4" X 6" grid on a coordinate measurement machine (CMM) before painting. A cardinal point, near each corner of the panel, is masked before painting in order to retain a reference to the CMM measurements. The CMM data is best-fit to the design surface, and the relative height of the "as built" cardinal points are calculated. Radio telescope panels are traditionally adjusted to the fixed paraboloid shape, using conventional surveying techniques or photogrammetry. Fine adjustments are later made using a microwave holography technique. For the GBT holography, the goal is an accuracy of 0.100 mm on a 0.5 X 0.4 meter pixel spacing, i.e., holography can not resolve the step discontinuity between panels. Due to the unique architecture of the GBT, the panels do not have to be adjusted to the design paraboloid as accurately (since the final adjustments can be made by the actuators) as a fixed-surface telescope. However, the relative heights of the four panels is of greater concern. Laser rangers are used to measure retroreflectors

  19. Determination of the Effective Areas of the Decameter Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Rashkovskiy, S. L.; Shepelev, V. A.; Inyutin, G. A.; Vashchshin, R. V.

    A method of a calibration of arrays of the URAN radio telescopes is presented. A number of powerful discrete radio sources located on different declinations were observed with the radio telescopes to obtain dependence of their normalized affective area from a beam orientation. Absolute value of the effective area of each antenna was found by observations of the calibrator 3C405.

  20. Radio Telescopes Reveal Unseen Galactic Cannibalism

    NASA Astrophysics Data System (ADS)

    2008-06-01

    Radio-telescope images have revealed previously-unseen galactic cannibalism -- a triggering event that leads to feeding frenzies by gigantic black holes at the cores of galaxies. Astronomers have long suspected that the extra-bright cores of spiral galaxies called Seyfert galaxies are powered by supermassive black holes consuming material. However, they could not see how the material is started on its journey toward the black hole. Optical/Radio Comparison Visible-light (left) and radio (right) image of galaxy pair: Radio image shows gas streaming between galaxies. CREDIT: Kuo et al., NRAO/AUI/NSF Click on image for more graphics. One leading theory said that Seyfert galaxies have been disturbed by close encounters with neighboring galaxies, thus stirring up their gas and bringing more of it within the gravitational reach of the black hole. However, when astronomers looked at Seyferts with visible-light telescopes, only a small fraction showed any evidence of such an encounter. Now, new images of hydrogen gas in Seyferts made using the National Science Foundation's Very Large Array (VLA) radio telescope show the majority of them are, in fact, disturbed by ongoing encounters with neighbor galaxies. "The VLA lifted the veil on what's really happening with these galaxies," said Cheng-Yu Kuo, a graduate student at the University of Virginia. "Looking at the gas in these galaxies clearly showed that they are snacking on their neighbors. This is a dramatic contrast with their appearance in visible starlight," he added. The effect of the galactic encounters is to send gas and dust toward the black hole and produce energy as the material ultimately is consumed. Black holes, concentrations of matter so dense that not even light can escape their gravitational pull, reside at the cores of many galaxies. Depending on how rapidly the black hole is eating, the galaxy can show a wide range of energetic activity. Seyfert galaxies have the mildest version of this activity, while

  1. Goldstone-Apple Valley Radio Telescope System Theory of Operation

    NASA Technical Reports Server (NTRS)

    Stephan, George R.

    1997-01-01

    The purpose of this learning module is to enable learners to describe how the Goldstone-Apple Valley Radio Telescope (GAVRT) system functions in support of Apple Valley Science and Technology Center's (AVSTC) client schools' radio astronomy activities.

  2. Beam Calibration of Radio Telescopes with Drones

    NASA Astrophysics Data System (ADS)

    Chang, Chihway; Monstein, Christian; Refregier, Alexandre; Amara, Adam; Glauser, Adrian; Casura, Sarah

    2015-11-01

    We present a multi-frequency far-field beam map for the 5m dish telescope at the Bleien Observatory measured using a commercially available drone. We describe the hexacopter drone used in this experiment, the design of the flight pattern, and the data analysis scheme. This is the first application of this calibration method to a single dish radio telescope in the far-field. The high signal-to-noise data allows us to characterise the beam pattern with high accuracy out to at least the 4th side-lobe. The resulting 2D beam pattern is compared with that derived from a more traditional calibration approach using an astronomical calibration source. We discuss the advantages of this method compared to other beam calibration methods. Our results show that this drone-based technique is very promising for ongoing and future radio experiments, where the knowledge of the beam pattern is key to obtaining high-accuracy cosmological and astronomical measurements.

  3. Radio Telescopes Reveal Youngest Stellar Corpse

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Astronomers using a global combination of radio telescopes to study a stellar explosion some 30 million light-years from Earth have likely discovered either the youngest black hole or the youngest neutron star known in the Universe. Their discovery also marks the first time that a black hole or neutron star has been found associated with a supernova that has been seen to explode since the invention of the telescope nearly 400 years ago. M51 An artist's impression of Supernova 1986J. The newly discovered nebula around the black hole or neutron star in the center is shown in blue, and is in the center of the expanding, fragmented shell of material thrown off in the supernova explosion, which is shown in red. CREDIT: Norbert Bartel and Michael F. Bietenholz, York University; Artist: G. Arguner (Click on image for larger version) Image Files Artist's Conception (above image, 836K) Galaxy and Supernova (47K) A VLA image (left) of the galaxy NGC 891, showing the bright supernova explosion below the galaxy's center. At right, a closer view of the supernova, made with a global array of radio telescopes. CREDIT: Miguel A. Perez-Torres, Antxon Alberdi and Lucas Lara, Instituto de Astrofisica de Andalucia - CSIC, Spain, Jon Marcaide and Jose C. Guirado, Universidad de Valencia, Spain Franco Mantovani, IRA-CNR, Italy, Eduardo Ros, MPIfR, Germany, and Kurt W. Weiler, Naval Research Laboratory, USA Multi-Frequency Closeup View (201K) Blue and white area shows the nebula surrounding the black hole or neutron star lurking in the center of the supernova. This nebula is apparent at a higher radio frequency (15 GHz). The red and also the contours show the distorted, expanding shell of material thrown off in the supernova explosion. This shell is seen at a lower radio frequency (5 GHz). CREDIT: Michael F. Bietenholz and Norbert Bartel, York University, Michael Rupen, NRAO, NRAO/AUI/NSF A supernova is the explosion of a massive star after it exhausts its supply of nuclear fuel and

  4. Measuring the Polar Mesosphere With Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Martin, C. L.; Burrows, S. M.

    2004-12-01

    The 1957 IGY launched a program of upper atmosphere observations that continues to this day. However in 1957, observations of the upper atmosphere were limited to the tools available at the time. As we head toward the 2007 IPY we can take advantage of the tools developed in the past 50 years to continue and expand upon this extensive dataset, as well as consider novel uses for the tools already available on the continent. Over the past ten years, the polar plateau has been established as one of the preeminent sites on Earth from which to perform radio astronomy observations at frequencies ranging from 100 to 2000 GHz. As a by-product of their astronomical observations, these telescopes often collect high quality aeronomy data that is frequently overlooked. By using data from a radio telescope located at the Amundsen-Scott South Pole Station, we have measured the J=2 -> 1 (230 GHz), J=4-> 3 (461 GHz), and J=7 -> 6 (807 GHz) rotational transitions of carbon monoxide (CO) at altitudes from 50 to 90 km above the Earth's surface. These high frequency data provide a surprisingly high resolution window into the dynamics and structure of the mesosphere. With a time series extending over multiple years, these data allow us to study the dynamics of an altitude range difficult to access with other methods. The IPY provides us with an opportunity to expand these interdisciplinary collaborations and use the resources invested in the Antarctic continent to further the scientific aims of a broad range of researchers.

  5. A decametric wavelength radio telescope for interplanetary scintillation observations

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.

    1975-01-01

    A phased array, electrically steerable radio telescope (with a total collecting area of 18 acres), constructed for the purpose of remotely sensing electron density irregularity structure in the solar wind, is presented. The radio telescope is able to locate, map, and track large scale features of the solar wind, such as streams and blast waves, by monitoring a large grid of natural radio sources subject to rapid intensity fluctuation (interplanetary scintillation) caused by the irregularity structure. Observations verify the performance of the array, the receiver, and the scintillation signal processing circuitry of the telescope.

  6. Interplanetary scintillation observations with the Cocoa Cross radio telescope

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.; Erskine, F. T.; Huneke, A. H.; Mitchell, D. G.

    1976-01-01

    Physical and electrical parameters for the 34.3-MHz Cocoa Cross radio telescope are given. The telescope is dedicated to the determination of solar-wind characteristics in and out of the ecliptic plane through measurement of electron-density irregularity structure as determined from IPS (interplanetary scintillation) of natural radio sources. The collecting area (72,000 sq m), angular resolution (0.4 deg EW by 0.6 deg NS), and spatial extent (1.3 km EW by 0.8 km NS) make the telescope well suited for measurements of IPS index and frequency scale for hundreds of weak radio sources without serious confusion effects.

  7. Radio Telescope Data Path for Single Dish and Interferometers

    NASA Astrophysics Data System (ADS)

    Kesteven, M.; Murdin, P.

    2000-11-01

    Radioastronomers derive all their observational data from the ELECTROMAGNETIC RADIATION which arrives at the RADIO TELESCOPE from the region of interest. The subset of parameter space of interest to the astronomer is modest: what part of the spectrum; what polarization; which direction; when and where the observations are made. The telescope is the filter which determines the actual subset, and ...

  8. A School Radio Telescope for Two Metres

    ERIC Educational Resources Information Center

    Codling, J. C.

    1973-01-01

    Discusses the arrangement, specifications, and operation of a setup designed for use as a student project to record radio storms, continuous level of the quiet sun, and scientific satellites operating near the amateur 2-m band. Included is an example of records of solar activity during 1968-73. (CC)

  9. The Five-hundred-meter Aperture Spherical Radio Telescope Project

    NASA Astrophysics Data System (ADS)

    Li, Di; Pan, Zhichen

    2016-07-01

    The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) is a Chinese megascience project funded by the National Development and Reform Commission (NDRC) of the People's Republic of China. The National Astronomical Observatories of China (NAOC) is in charge of its construction and subsequent operation. Upon its expected completion in September 2016, FAST will surpass the 305 m Arecibo Telescope and the 100 m Green Bank Telescope in terms of absolute sensitivity in the 70 MHz to 3 GHz bands. In this paper, we report on the project, its current status, the key science goals, and plans for early science.

  10. Modal vibration testing of the DVA-1 radio telescope

    NASA Astrophysics Data System (ADS)

    Byrnes, Peter W. G.; Lacy, Gordon

    2016-07-01

    The Dish Verification Antenna 1 (DVA-1) is a 15m aperture offset Gregorian radio telescope featuring a rim-supported single piece molded composite primary reflector on an altitude-azimuth pedestal mount. Vibration measurements of the DVA-1 telescope were conducted over three days in October 2014 by NSI Herzberg engineers. The purpose of these tests was to measure the first several natural frequencies of the DVA-1 telescope. This paper describes the experimental approach, in particular the step-release method, and summarizes some interesting results, including unexpectedly high damping of the first mode over a narrow range of zenith angles.

  11. Solar system radio emissions studies with the largest low-frequency radio telescopes

    NASA Astrophysics Data System (ADS)

    Zakharenko, V.; Konovalenko, A.; Litvinenko, G.; Kolyadin, V.; Zarka, P.; Mylostna, K.; Vasylieva, I.; Griessmeier, J.-M.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Shevchenko, V.; Nikolaenko, V.

    2014-04-01

    We describe the trends and tasks in the field of lowfrequency studies of radio emission from the Solar system's objects. The world's largest decameter radio telescopes UTR-2 and URAN have a unique combination of sensitivity and time/frequency resolution parameters, providing the capability of the most detailed studies of various types of solar and planetary emissions.

  12. Observations of cometary parent molecules with the IRAM radio telescope

    NASA Technical Reports Server (NTRS)

    Colom, P.; Despois, D.; Paubert, G.; Bockelee-Morvan, D.; Crovisier, Jacques

    1992-01-01

    Several rotational transitions of HCN, H2S, H2CO, and CH3OH were detected in comets P/Brorsen-Metcalf 1989 X, Austin (1989c1) and Levy (1990c) with the Institute for Millimeter Radioastronomy (IRAM) 30-m radio telescope. This allows us to determine the production rates of these molecules and to probe the physical conditions of the coma.

  13. Radio and Optical Telescopes for School Students and Professional Astronomers

    NASA Astrophysics Data System (ADS)

    Hosmer, Laura; Langston, G.; Heatherly, S.; Towner, A. P.; Ford, J.; Simon, R. S.; White, S.; O'Neil, K. L.; Haipslip, J.; Reichart, D.

    2013-01-01

    The NRAO 20m telescope is now on-line as a part of UNC's Skynet worldwide telescope network. The NRAO is completing integration of radio astronomy tools with the Skynet web interface. We present the web interface and astronomy projects that allow students and astronomers from all over the country to become Radio Astronomers. The 20 meter radio telescope at NRAO in Green Bank, WV is dedicated to public education and also is part of an experiment in public funding for astronomy. The telescope has a fantastic new web-based interface, with priority queuing, accommodating priority for paying customers and enabling free use of otherwise unused time. This revival included many software and hardware improvements including automatic calibration and improved time integration resulting in improved data processing, and a new ultra high resolution spectrometer. This new spectrometer is optimized for very narrow spectral lines, which will allow astronomers to study complex molecules and very cold regions of space in remarkable detail. In accordance with focusing on broader impacts, many public outreach and high school education activities have been completed with many confirmed future activities. The 20 meter is now a fully automated, powerful tool capable of professional grade results available to anyone in the world. Drop by our poster and try out real-time telescope control!

  14. Status of the radio receiver system of the Sardina Radio Telescope

    NASA Astrophysics Data System (ADS)

    Valente, G.; Orfei, A.; Nesti, R.; Navarrini, A.; Mariotti, S.; Bolli, P.; Pisanu, T.; Roda, J.; Cresci, L.; Marongiu, P.; Scalambra, A.; Panella, D.; Ladu, A.; Cattani, A.; Carbonaro, L.; Urru, E.; Cremonini, A.; Fiocchi, F.; Maccaferri, A.; Morsiani, M.; Poloni, M.

    2016-07-01

    In this article, we present the design and performances of the radio receiver system installed at the Sardinia Radio Telescope (SRT). The three radio receivers planned for the first light of the Sardinian Telescope have been installed in three of the four possible focus positions. A dual linear polarization coaxial receiver that covers two frequency bands, the P-band (305-410 MHz) and the L-band (1.3-1.8 GHz) is installed at the primary focus. A mono-feed that covers the High C-band (5.7-7.7 GHz) is installed at the beam waveguide foci. A multi-beam (seven beams) K-band receiver (18- 26.5 GHz) is installed at the Gregorian focus. Finally, we give an overview about the radio receivers, which under test and under construction and which are needed for expanding the telescope observing capabilities.

  15. High-precision pointing with the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Poppi, Sergio; Pernechele, Claudio; Pisanu, Tonino; Morsiani, Marco

    2010-07-01

    We present here the systems aimed to measure and minimize the pointing errors for the Sardinia Radio Telescope: they consist of an optical telescope to measure errors due to the mechanical structure deformations and a lasers system for the errors due to the subreflector displacement. We show here the results of the tests that we have done on the Medicina 32 meters VLBI radio telescope. The measurements demonstrate we can measure the pointing errors of the mechanical structure, with an accuracy of about ~1 arcsec. Moreover, we show the technique to measure the displacement of the subreflector, placed in the SRT at 22 meters from the main mirror, within +/-0.1 mm from its optimal position. These measurements show that we can obtain the needed accuracy to correct also the non repeatable pointing errors, which arise on time scale varying from seconds to minutes.

  16. Launch Will Create a Radio Telescope Larger than Earth

    NASA Astrophysics Data System (ADS)

    NASA and the National Radio Astronomy Observatory are joining with an international consortium of space agencies to support the launch of a Japanese satellite next week that will create the largest astronomical "instrument" ever built -- a radio telescope more than two-and-a-half times the diameter of the Earth that will give astronomers their sharpest view yet of the universe. The launch of the Very Long Baseline Interferometry (VLBI) Space Observatory Program (VSOP) satellite by Japan's Institute of Space and Astronautical Science (ISAS) is scheduled for Feb. 10 at 11:50 p.m. EST (1:50 p.m. Feb. 11, Japan time.) The satellite is part of an international collaboration led by ISAS and backed by Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA; the National Science Foundation's National Radio Astronomy Observatory (NRAO), Socorro, NM; the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. Very long baseline interferometry is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance between telescopes, the greater the resolving power. By taking this technique into space for the first time, astronomers will approximately triple the resolving power previously available with only ground-based telescopes. The satellite system will have resolving power almost 1,000 times greater than the Hubble Space Telescope at optical wavelengths. The satellite's resolving power is equivalent to being able to see a grain of rice in Tokyo from Los Angeles. "Using space VLBI, we can probe the cores of quasars and active galaxies, believed to be powered by super massive black holes," said Dr. Robert Preston, project scientist for the U.S. Space Very Long

  17. Radio Telescopes Will Add to Cassini-Huygens Discoveries

    NASA Astrophysics Data System (ADS)

    2004-12-01

    When the European Space Agency's Huygens spacecraft makes its plunge into the atmosphere of Saturn's moon Titan on January 14, radio telescopes of the National Science Foundation's National Radio Astronomy Observatory (NRAO) will help international teams of scientists extract the maximum possible amount of irreplaceable information from an experiment unique in human history. Huygens is the 700-pound probe that has accompanied the larger Cassini spacecraft on a mission to thoroughly explore Saturn, its rings and its numerous moons. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) The Robert C. Byrd Green Bank Telescope (GBT) in West Virginia and eight of the ten telescopes of the continent-wide Very Long Baseline Array (VLBA), located at Pie Town and Los Alamos, NM, Fort Davis, TX, North Liberty, IA, Kitt Peak, AZ, Brewster, WA, Owens Valley, CA, and Mauna Kea, HI, will directly receive the faint signal from Huygens during its descent. Along with other radio telescopes in Australia, Japan, and China, the NRAO facilities will add significantly to the information about Titan and its atmosphere that will be gained from the Huygens mission. A European-led team will use the radio telescopes to make extremely precise measurements of the probe's position during its descent, while a U.S.-led team will concentrate on gathering measurements of the probe's descent speed and the direction of its motion. The radio-telescope measurements will provide data vital to gaining a full understanding of the winds that Huygens encounters in Titan's atmosphere. Currently, scientists know little about Titan's winds. Data from the Voyager I spacecraft's 1980 flyby indicated that east-west winds may reach 225 mph or more. North-south winds and possible vertical winds, while probably much weaker, may still be significant. There are competing theoretical models of Titan's winds, and the overall picture is best summarized as

  18. Radio Telescopes "Save the Day," Produce Data on Titan's Winds

    NASA Astrophysics Data System (ADS)

    2005-02-01

    In what some scientists termed "a surprising, almost miraculous turnabout," radio telescopes, including major facilities of the National Science Foundation's National Radio Astronomy Observatory (NRAO), have provided data needed to measure the winds encountered by the Huygens spacecraft as it descended through the atmosphere of Saturn's moon Titan last month -- measurements feared lost because of a communication error between Huygens and its "mother ship" Cassini. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) A global network of radio telescopes, including the NRAO's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia and eight of the ten antennas of the Very Long Baseline Array (VLBA), recorded the radio signal from Huygens during its descent on January 14. Measurements of the frequency shift caused by the craft's motion, called Doppler shift, are giving planetary scientists their first direct information about Titan's winds. "When we began working with our international partners on this project, we thought our telescopes would be adding to the wind data produced by the two spacecraft themselves. Now, with the ground-based telescopes providing the only information about Titan's winds, we are extremely proud that our facilities are making such a key contribution to our understanding of this fascinating planetary body," said Dr. Fred K.Y. Lo, Director of the National Radio Astronomy Observatory (NRAO). Early analysis of the radio-telescope data shows that Titan's wind flows from west to east, in the direction of the moon's rotation, at all altitudes. The highest wind speed, nearly 270 mph, was measured at an altitude of about 75 miles. Winds are weak near Titan's surface and increase in speed slowly up to an altitude of about 37 miles, where the spacecraft encountered highly-variable winds that scientists think indicate a region of vertical wind shear. The ground-based Doppler

  19. Astronomers Make First Images With Space Radio Telescope

    NASA Astrophysics Data System (ADS)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  20. Beyond Southern Skies: Radio Astronomy and the Parkes Telescope

    NASA Astrophysics Data System (ADS)

    Robertson, Peter

    1992-11-01

    Beyond Southern Skies tells the story of the planning and construction of the Parkes Telescope in rural New South Wales, Australia and surveys its achievements over the past thirty years. Around this central theme Peter Robertson presents a broader history of radio astronomy, describing its rapid rise to become the respected partner of traditional optical astronomy. The opening up of the radio window on the universe has been one of the most exciting developments in modern science. The technical achievements of the telescope outlined in Peter Robertson's very readable book will be accessible to a general audience. Readers will be fascinated by the lively account of the personalities, politics and controversy that lay behind the decision to build the Parkes Telescope. Since its completion in 1961, the telescope has contributed much to our knowledge of quasars, pulsars, masers, supernova remnants and molecular clouds, as well as the other unusual objects discovered in recent years. During the 1990s the telescope will continue to play a part in our quest to understand the origin and nature of the universe, and our place in it.

  1. The history of radio telescopes, 1945-1990

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T.

    2009-08-01

    Forged by the development of radar during World War II, radio astronomy revolutionized astronomy during the decade after the war. A new universe was revealed, centered not on stars and planets, but on the gas between the stars, on explosive sources of unprecedented luminosity, and on hundreds of mysterious discrete sources with no optical identifications. Using “radio telescopes” that looked nothing like traditional (optical) telescopes, radio astronomers were a very different breed from traditional (optical) astronomers. This pathbreaking of radio astronomy also made it much easier for later “astronomies” and their “telescopes” (X-ray, ultraviolet, infrared, gamma-ray) to become integrated into astronomy after the launch of the space age in the 1960s. This paper traces the history of radio telescopes from 1945 through about 1990, from the era of converted small-sized, military radar antennas to that of large interferometric arrays connected by complex electronics and computers; from the era of strip-chart recordings measured by rulers to powerful computers and display graphics; from the era of individuals and small groups building their own equipment to that of Big Science, large collaborations and national observatories.

  2. K-ART (Korea Array Radio Telescope) and Monitoring of Radio Transients

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Sook; Lim, Soon-Wook; Park, Yong-Sun

    2010-12-01

    Korea Array Radio Telescope (K-ART), a proto-type radio array telescope, is designed for 300-450 MHz wavebands. The system is located in the Jeju Island of the South Korea, and is currently in its testing mode since last mid-October 2010. It is primarily designed for monitoring solar activity and radio transients. K-ART has a capacity to monitor transients for about 2 hours per day, with a spatial resolution of about 10 minutes and a timing resolution of milliseconds. The sensitivity is expected to be a few mJy or less. We propose to monitor radio transients such as X-ray binaries, cataclysmic variables and quasars, on the target-of-opportunity mode, in addition to the scheduled observation.

  3. A Tour of the Goldstone-Apple Valley Radio Telescope

    NASA Technical Reports Server (NTRS)

    Ardenski, Brooke; Stephan, George R.

    1997-01-01

    Goldstone-Apple Valley Radio Telescope (GAVRT) is located in a remote area of the Mojave Desert, 40 miles north of Barstow, California. The antenna, identified as DSS-12, is a 34-meter diameter dish, 11 times the diameter of a ten foot microwave dish used for satellite television. DSS-12 has been used by NASA to communicate with robotic space probes for more than thirty years.

  4. Control of active reflector system for radio telescope

    NASA Astrophysics Data System (ADS)

    Zhou, Guo-hua; Li, Guo-ping; Zhang, Yong; Zhang, Zhen-chao

    2016-10-01

    According to the control requirements of the active reflector surface in the 110 m radio telescope at QiTai(QTT) Xinjiang, a new displacement actuator and a new displacement control system were designed and manufactured and then their characteristics were tested by a dual-frequency laser interferometer in the micro-displacement laboratory. The displacement actuator was designed by a scheme of high precision worm and roller screw structures, and the displacement control system was based on a ARM micro-processor. Finally, the S curve acceleration control methods were used to design the hardware platform and software algorithm for the active reflection surface of the control system. The test experiments were performed based on the laser metrology system on an active reflector close-loop antenna prototype for large radio telescope. Experimental results indicate that it achieves a 30 mm working stroke and 5 μm RMS motion resolution. The accuracy (standard deviation) is 3.67 mm, and the error between the determined and theoretical values is 0.04% when the rated load is 300 kg, the step is 2 mm and the stroke is 30mm. Furthermore, the active reflector integrated system was tested by the laser sensors with the accuracy of 0.25 μm RMS on 4-panel radio telescope prototype, the measurement results show that the integrated precision of the active reflector closed-loop control system is less than 5 μm RMS, and well satisfies the technical requirements of active reflector control system of the QTT radio telescope in 3 mm wavelength.

  5. The Five-Hundred Aperture Spherical Radio Telescope (fast) Project

    NASA Astrophysics Data System (ADS)

    Nan, Rendong; Li, Di; Jin, Chengjin; Wang, Qiming; Zhu, Lichun; Zhu, Wenbai; Zhang, Haiyan; Yue, Youling; Qian, Lei

    Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese mega-science project to build the largest single dish radio telescope in the world. Its innovative engineering concept and design pave a new road to realize a huge single dish in the most effective way. FAST also represents Chinese contribution in the international efforts to build the square kilometer array (SKA). Being the most sensitive single dish radio telescope, FAST will enable astronomers to jump-start many science goals, such as surveying the neutral hydrogen in the Milky Way and other galaxies, detecting faint pulsars, looking for the first shining stars, hearing the possible signals from other civilizations, etc. The idea of sitting a large spherical dish in a karst depression is rooted in Arecibo telescope. FAST is an Arecibo-type antenna with three outstanding aspects: the karst depression used as the site, which is large to host the 500-meter telescope and deep to allow a zenith angle of 40 degrees; the active main reflector correcting for spherical aberration on the ground to achieve a full polarization and a wide band without involving complex feed systems; and the light-weight feed cabin driven by cables and servomechanism plus a parallel robot as a secondary adjustable system to move with high precision. The feasibility studies for FAST have been carried out for 14 years, supported by Chinese and world astronomical communities. Funding for FAST has been approved by the National Development and Reform Commission in July of 2007 with a capital budget ~ 700 million RMB. The project time is 5.5 years from the commencement of work in March of 2011 and the first light is expected to be in 2016. This review intends to introduce the project of FAST with emphasis on the recent progress since 2006. In this paper, the subsystems of FAST are described in modest details followed by discussions of the fundamental science goals and examples of early science projects.

  6. SETI reloaded: Next generation radio telescopes, transients and cognitive computing

    NASA Astrophysics Data System (ADS)

    Garrett, Michael A.

    2015-08-01

    The Search for Extra-terrestrial Intelligence (SETI) using radio telescopes is an area of research that is now more than 50 years old. Thus far, both targeted and wide-area surveys have yet to detect artificial signals from intelligent civilisations. In this paper, I argue that the incidence of co-existing intelligent and communicating civilisations is probably small in the Milky Way. While this makes successful SETI searches a very difficult pursuit indeed, the huge impact of even a single detection requires us to continue the search. A substantial increase in the overall performance of radio telescopes (and in particular future wide-field instruments such as the Square Kilometre Array - SKA), provide renewed optimism in the field. Evidence for this is already to be seen in the success of SETI researchers in acquiring observations on some of the world's most sensitive radio telescope facilities via open, peer-reviewed processes. The increasing interest in the dynamic radio sky, and our ability to detect new and rapid transient phenomena such as Fast Radio Bursts (FRB) is also greatly encouraging. While the nature of FRBs is not yet fully understood, I argue they are unlikely to be the signature of distant extra-terrestrial civilisations. As astronomers face a data avalanche on all sides, advances made in related areas such as advanced Big Data analytics, and cognitive computing are crucial to enable serendipitous discoveries to be made. In any case, as the era of the SKA fast approaches, the prospects of a SETI detection have never been better.

  7. An atmosphere monitoring system for the Sardinia radio telescope

    NASA Astrophysics Data System (ADS)

    Buffa, F.; Bolli, P.; Sanna, G.; Serra, G.

    2017-01-01

    The Sardinia radio telescope (SRT) is a new facility managed by the Italian National Institute for Astrophysics (INAF). SRT will detect the extremely faint radio wave signals emitted by astronomical objects in a wide frequency range from decimeter to millimeter wavelengths. Especially at high frequencies (>10 GHz), specific weather conditions and interactions between signal and atmospheric constituents (mainly water and oxygen molecules) affect the radio astronomic observation reducing the antenna performances. Thus, modern ground-based telescopes are usually equipped with systems able to examine in real-time several atmospheric parameters (opacity, integrated water vapor, etc.), and in some cases to forecast the weather conditions (wind, rain, snow, etc.), in order to ensure the antenna safety and support the schedule of the telescope observations. Here, we describe the atmosphere monitoring system (AMS) realized with the aim to improve the SRT operative efficiency. It consists of a network of different sensors such as radiometers, radiosondes, weather stations, GPS and some well-established weather models. After a validation of the scheme, we successfully tested the AMS in two real practical scenarios, comparing the AMS outcomes with those of independent techniques. In the first one we were able to detect an incoming storm front applying different techniques (GPS, radiometer and the weather forecast model), while in the last one we modeled the SRT antenna system temperature at 22 GHz processing the AMS data set.

  8. Phase Retrieval for Radio Telescope and Antenna Control

    NASA Technical Reports Server (NTRS)

    Dean, Bruce

    2011-01-01

    Phase-retrieval is a general term used in optics to describe the estimation of optical imperfections or "aberrations." The purpose of this innovation is to develop the application of phase retrieval to radio telescope and antenna control in the millimeter wave band. Earlier techniques do not approximate the incoherent subtraction process as a coherent propagation. This approximation reduces the noise in the data and allows a straightforward application of conventional phase retrieval techniques for radio telescope and antenna control. The application of iterative-transform phase retrieval to radio telescope and antenna control is made by approximating the incoherent subtraction process as a coherent propagation. Thus, for systems utilizing both positive and negative polarity feeds, this approximation allows both surface and alignment errors to be assessed without the use of additional hardware or laser metrology. Knowledge of the antenna surface profile allows errors to be corrected at a given surface temperature and observing angle. In addition to imperfections of the antenna surface figure, the misalignment of multiple antennas operating in unison can reduce or degrade the signal-to-noise ratio of the received or broadcast signals. This technique also has application to the alignment of antenna array configurations.

  9. Youngest Radio Pulsar Revealed with Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    2002-04-01

    Astronomers using the National Science Foundation's (NSF) newly commissioned Robert C. Byrd Green Bank Telescope (GBT) have detected remarkably faint radio signals from an 820 year-old pulsar, making it the youngest radio-emitting pulsar known. This discovery pushes the boundaries of radio telescope sensitivity for discovering pulsars, and will enable scientists to conduct observations that could lead to a better understanding of how these stars evolve. The Robert C. Byrd Green Bank Telescope Robert C. Byrd Green Bank Telescope "Important questions about pulsars may be answered by long-term monitoring of objects such as the one we just detected," said Fernando Camilo of Columbia University in New York City. "Young pulsars are particularly rare, and being able to study such a young one at radio wavelengths provides an outstanding opportunity to learn critical facts about their evolution and workings." The results of this research, based on observations conducted on February 22-23, 2002, were accepted for publication in the Astrophysical Journal Letters. Scientists have long suspected that a pulsar - a rapidly spinning, superdense neutron star - was born when a giant star ended its life in a cataclysmic supernova explosion observed in late summer of 1181, as suggested by Japanese and Chinese historical records. For the past 20 years, astronomers have searched this supernova remnant (3C58), located 10,000 light-years away in the constellation Cassiopeia, for the telltale pulsations of a newly born pulsar. Late in 2001, data from NASA's Chandra X-ray satellite confirmed its existence, but it remained an elusive quarry for radio telescopes. "We believed from historical records and certainly knew from recent X-ray observations that this star was there," Camilo remarked, "but despite many attempts, no one had been able to find any radio pulsations from it because the signals are, it turns out, incredibly weak." For comparison, this pulsar's radio emission is some 250

  10. Ideas for future large single dish radio telescopes

    NASA Astrophysics Data System (ADS)

    Kärcher, Hans J.; Baars, Jacob W. M.

    2014-07-01

    The existing large single dish radio telescopes of the 100m class (Effelsberg, Green Bank) were built in the 1970s and 1990s. With some active optics they work now down to 3 millimeter wavelength where the atmospheric quality of the site is also a limiting factor. Other smaller single dish telescopes (50m LMT Mexico, 30m IRAM Spain) are located higher and reach sub-millimeter quality, and the much smaller 12m antennas of the ALMA array reach at a very high site the Terahertz region. They use advanced technologies as carbon fiber structures and flexible body control. We review natural limits to telescope design and use the examples of a number of telescopes for an overview of the available state-of-the-art in design, engineering and technologies. Without considering the scientific justification we then offer suggestions to realize ultimate performance of huge single dish telescopes (up to 160m). We provide an outlook on design options, technological frontiers and cost estimates.

  11. Development of a Low Cost Spectrometer for the Small Radio Telescope (SRT), Very Small Radio Telescope (VSRT), and Ozone spectrometer

    NASA Astrophysics Data System (ADS)

    Higginson-Rollins, Marc; Rogers, A. E.

    2014-01-01

    Several instruments used for education, outreach and scientific investigations could benefit from a low cost spectrometer. These include the Small Radio Telescope known as the "SRT", a very small radio telescope known as the "VSRT", and an 11 GHz Ozone spectrometer. The SRT is used to observe the Sun and the 21-cm hydrogen line. The SRTs, which until recently were available commercially, are still in operation at many universities and are used for student projects including measuring the Galactic rotation curve of our Galaxy. These instruments, which were initially primarily used to help teach students how to analyze scientific data, are now used for scientific investigations that have resulted in publications in science journals. Recently a low cost USB "dongle" for digital TV has become available. It has been adapted for use as a software defined radio by amateur radio groups. Linux-based software was developed to adapt the device to form a low cost digital spectrometer for the SRT by integrating open source code into the existing C code written for the SRT. Some challenges faced when trying to integrate the USB TV dongle into the SRT system and software will be discussed. To test the effectiveness of the USB TV Dongle based SRT several astronomical observations were made and compared to the older SRT system. These observations show promise for the device replacing older SRT systems at a fraction of the cost and effort and as a possible replacement for the VSRT and Ozone spectrometer.

  12. Engineering and science highlights of the KAT-7 radio telescope

    NASA Astrophysics Data System (ADS)

    Foley, A. R.; Alberts, T.; Armstrong, R. P.; Barta, A.; Bauermeister, E. F.; Bester, H.; Blose, S.; Booth, R. S.; Botha, D. H.; Buchner, S. J.; Carignan, C.; Cheetham, T.; Cloete, K.; Coreejes, G.; Crida, R. C.; Cross, S. D.; Curtolo, F.; Dikgale, A.; de Villiers, M. S.; du Toit, L. J.; Esterhuyse, S. W. P.; Fanaroff, B.; Fender, R. P.; Fijalkowski, M.; Fourie, D.; Frank, B.; George, D.; Gibbs, P.; Goedhart, S.; Grobbelaar, J.; Gumede, S. C.; Herselman, P.; Hess, K. M.; Hoek, N.; Horrell, J.; Jonas, J. L.; Jordaan, J. D. B.; Julie, R.; Kapp, F.; Kotzé, P.; Kusel, T.; Langman, A.; Lehmensiek, R.; Liebenberg, D.; Liebenberg, I. J. V.; Loots, A.; Lord, R. T.; Lucero, D. M.; Ludick, J.; Macfarlane, P.; Madlavana, M.; Magnus, L.; Magozore, C.; Malan, J. A.; Manley, J. R.; Marais, L.; Marais, N.; Marais, S. J.; Maree, M.; Martens, A.; Mokone, O.; Moss, V.; Mthembu, S.; New, W.; Nicholson, G. D.; van Niekerk, P. C.; Oozeer, N.; Passmoor, S. S.; Peens-Hough, A.; Pińska, A. B.; Prozesky, P.; Rajan, S.; Ratcliffe, S.; Renil, R.; Richter, L. L.; Rosekrans, D.; Rust, A.; Schröder, A. C.; Schwardt, L. C.; Seranyane, S.; Serylak, M.; Shepherd, D. S.; Siebrits, R.; Sofeya, L.; Spann, R.; Springbok, R.; Swart, P. S.; Thondikulam, Venkatasubramani L.; Theron, I. P.; Tiplady, A.; Toruvanda, O.; Tshongweni, S.; van den Heever, L.; van der Merwe, C.; van Rooyen, R.; Wakhaba, S.; Walker, A. L.; Welz, M.; Williams, L.; Wolleben, M.; Woudt, P. A.; Young, N. J.; Zwart, J. T. L.

    2016-08-01

    The construction of the seven-dish Karoo Array Telescope (KAT-7) array in the Karoo region of the Northern Cape in South Africa was intended primarily as an engineering prototype for technologies and techniques applicable to the MeerKAT telescope. This paper looks at the main engineering and scientific highlights from this effort, and discusses their applicability to both MeerKAT and other next-generation radio telescopes. In particular, we found that the composite dish surface works well, but it becomes complicated to fabricate for a dish lacking circular symmetry; the Stirling cycle cryogenic system with ion pump to achieve vacuum works but demands much higher maintenance than an equivalent Gifford-McMahon cycle system; the ROACH (Reconfigurable Open Architecture Computing Hardware)-based correlator with SPEAD (Streaming Protocol for Exchanging Astronomical Data) protocol data transfer works very well and KATCP (Karoo Array Telescope Control Protocol) control protocol has proven very flexible and convenient. KAT-7 has also been used for scientific observations where it has a niche in mapping low surface-brightness continuum sources, some extended H I haloes and OH masers in star-forming regions. It can also be used to monitor continuum source variability, observe pulsars, and make Very Long Baseline Interferometry observations.

  13. Short History of Fixed-Reflector Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Strom, R. G.

    2016-02-01

    From the 66 m parabolic reflector built in 1947 at Jodrell Bank to the 305 m Arecibo dish completed nearly two decades later, radio astronomers in the early days experimented with fixed reflecting mirrors to achieve large collecting areas. In this brief history I will consider the over half-dozen such instruments (of which I am aware) built by 1970, and their main achievements. I will discuss the likely reasons for the success of some of these telescopes, as well as their short-comings, and the lessons for future instruments like FAST.

  14. Computer-aided structural design of a lunar radio telescope

    NASA Technical Reports Server (NTRS)

    Akgul, Ferhat; Gerstle, Walter H.; Johnson, Stewart W.

    1990-01-01

    This paper describes a computer-aided structural design of the main reflector of a fully steerable radio telescope to be located (in the 21st century) on the moon, and presents the results of the structural analysis of the reflector. The reflector is a paraboloid with a surface area of 12,660 sq m and a focal ratio of 0.42. The reflector's surface will be covered by a 5.08 cm-thick sandwich panel made of thin-walled aluminum cells filled with low-density foam. The low weight of the design will be achieved by using graphite-epoxy as the structural material.

  15. Foundation design for a radio telescope on the moon

    NASA Technical Reports Server (NTRS)

    Chua, Koon Meng; Johnson, Stewart W.; Yuan, Zehong

    1990-01-01

    A foundation design for a 122 m diameter dish-type radio telescope on the moon is presented. The 1.2 m wide and 43 m diameter circular strip footing was analyzed for settlement due to compaction during installation and also for total and differential settlement under in-service laods. An axisymmetrical finite element code of the uppdated Lagrangian formulation was used. Interface slip elements were also used. The nonlinear hyperbolic stress-strain model parameters for the regolith were derived from load-deflection characteristics of astronauts' bootprints and the Rover tracks.

  16. A METHOD TO IMPROVE THE SENSITIVITY OF RADIO TELESCOPES

    SciTech Connect

    Lieu, Richard; Duan, Lingze; Kibble, T. W. B.

    2015-01-10

    As an extension of the ideas of Hanbury-Brown and Twiss, a method is proposed to eliminate the phase noise of white chaotic light in the regime where it is dominant, and to measure the much smaller Poisson fluctuations from which the incoming flux can be reconstructed. The best effect is achieved when the timing resolution is finer than the inverse bandwidth of the spectral filter. There may be applications to radio astronomy at the phase noise dominated frequencies of 1-10 GHz, in terms of potentially increasing the sensitivity of telescopes by an order of magnitude.

  17. A refracting radio telescope. [using ionosphere as lens

    NASA Technical Reports Server (NTRS)

    Bernhardt, P.; Da Rosa, A. V.

    1977-01-01

    Observations of extraterrestrial radio sources at the lower end of the radio frequency spectrum are limited by reflection of waves from the topside ionosphere and by the large size of antenna apertures necessary for the realization of narrow beamwidths. The use of the ionosphere as a lens is considered. The lens is formed by the release of chemicals such as H2 and H2O at the F2-layer peak. These chemicals promote dissociative recombination of O(+) in the ionosphere resulting in a local reduction in plasma density. Gradients in electron density in the vicinity of the gas release tend to focus rays propagating through the depleted region. Preliminary calculations indicate that a lens capable of focusing cosmic radio waves in the 1 to 10 MHz frequency range may be produced by the release of 100 kg of H2 at the peak of the nighttime F layer. The beamwidth of a refracting radio telescope using this lens may be less than 1/5 degree.

  18. Polarization properties of reflector antennas used as radio telescopes

    NASA Astrophysics Data System (ADS)

    Ng, T.; Landecker, T. L.; Cazzolato, F.; Routledge, D.; Gray, A. D.; Reid, R. I.; Veidt, B. G.

    2005-10-01

    The distribution of cross polarization across the main beam and near sidelobes of a reflector antenna is calculated. Results are expressed in terms relevant to imaging in radio astronomy, using Stokes parameters, as plots of instrumental polarization Q/I, U/I, and V/I, showing conversion of total intensity of a signal which is unpolarized into apparent linear and circular polarization. The calculations use GRASP8, software that is based on physical optics and the physical theory of diffraction. For purposes of calculation, the symmetrical paraboloidal reflector (diameter ~40 wavelengths) is fed at the prime focus with a linearly polarized signal. Computed radiation patterns at a number of feed orientations are averaged to establish the antenna response to an unpolarized radio astronomy signal. The results of the computations are consistent with measurements of instrumental polarization of the Dominion Radio Astrophysical Observatory Synthesis Telescope at 1420 MHz made using unpolarized radio sources. For this telescope, the dominant source of instrumental polarization across the field is the cross polarization of the feed. The next most significant effect is scattering by the feed struts; both three-strut and four-strut configurations are examined. Struts affect performance in linear polarization but also introduce some instrumental circular polarization. The contribution to instrumental polarization from the reflector itself is comparatively small. Roughness of the reflector surface has relatively little effect in the main beam in Q and U but introduces V and also randomizes the polarization of the sidelobes. In all cases considered, the computations show that the first and subsequent sidelobes are highly polarized, with levels of instrumental polarization up to 50%.

  19. A Small-Radio-Telescope Network for VLBI

    NASA Astrophysics Data System (ADS)

    Shaffer, D. B.; Cobb, M. L.

    2004-12-01

    In the last several years, high schools, colleges, universities, and even some private amateur radio astronomers have put some 120 copies of the commercially-available Haystack Small Radio Telescope (SRT) into operation. Haystack Observatory is now working on a new version of the SRT, designed to be used in an interferometer (see paper by Vats and Rogers, this conference). We show how the new SRT, or other similar small radio telescopes, could be adapted for educational and scientific VLBI observations of continuum and OH line sources, with a relatively small additional investment. We propose that one or more large radio telescopes join a network of the small antennas, so that fringes would be readily detected between the large antenna(s) and the small antennas. An 85-foot antenna such as those at PARI or the 40-meter antenna of the Owens Valley Radio Observatory would serve nicely as a base station. Eventually, as data storage and transmission capacity continue to improve, the small antennas should be able to operate on their own. Our emphasis is on a simple, inexpensive VLBI system. The most critical item is good frequency standard. For observations at 21 or 18 cm, a rubidium standard is good enough. (Inexpensive Rb standards can be found on E-bay!) Local time at each station would come from GPS receivers which readily provide sub-microsecond timing accuracy. One-bit data sampling at rates on the order of 10 megasamples per second could be performed with a simple box interfaced to a PC via USB. Sampled data would first be recorded to the PC hard drive, and then sent on CD-ROM or DVD through the mail or by internet to a central correlation facility. Correlation and data analysis for the network would be performed on PCs as well. We suggest an observing scenario comprised of scans that are several minutes long and taken several times per hour during the apparition of a compact source. The total data for the 10-12 hours that a source is "up" for a USA network would

  20. Fine spectral structures in Jovian decametric radio emission observed by ground-based radio telescope.

    NASA Astrophysics Data System (ADS)

    Panchenko, M.; Brazhenko, A. I.; Shaposhnikov, V. E.; Konovalenko, A. A.; Rucker, H. O.

    2014-04-01

    Jupiter with the largest planetary magnetosphere in the solar system emits intense coherent non-thermal radio emission in a wide frequency range. This emission is a result of a complicated interaction between the dynamic Jovian magnetosphere and energetic particles supplying the free energy from planetary rotation and the interaction between Jupiter and the Galilean moons. Decametric radio emission (DAM) is the strongest component of Jovian radiation observed in a frequency range from few MHz up to 40 MHz. This emission is generated via cyclotron maser mechanism in sources located along Jovian magnetic field lines. Depending on the time scales the Jovian DAMexhibits different complex spectral structures. We present the observations of the Jovian decametric radio emission using the large ground-based radio telescope URAN- 2 (Poltava, Ukraine) operated in the decametric frequency range. This telescope is one of the largest low frequency telescopes in Europe equipped with high performance digital radio spectrometers. The antenna array of URAN-2 consists of 512 crossed dipoles with an effective area of 28 000m2 and beam pattern size of 3.5 x 7 deg. (at 25 MHz). The instrument enables continuous observations of the Jovian radio during long period of times. Jovian DAM was observed continuously since Sep. 2012 (depending on Jupiter visibility) with relatively high time-frequency resolution (4 kHz - 100ms) in the broad frequency range (8-32MHz). We have detected a big amount of the fine spectral structures in the dynamic spectra of DAM such as trains of S-bursts, quasi-continuous narrowband emission, narrow-band splitting events and zebra stripe-like patterns. We analyzed mainly the fine structures associated with non-Io controlled DAM. We discuss how the observed narrowband structures which most probably are related to the propagation of the decametric radiation in the Jupiter's ionosphere can be used to study the plasma parameters in the inner Jovian magnetosphere.

  1. A database of phase calibration sources and their radio spectra for the Giant Metrewave Radio Telescope

    NASA Astrophysics Data System (ADS)

    Lal, Dharam V.; Dubal, Shilpa S.; Sherkar, Sachin S.

    2016-12-01

    We are pursuing a project to build a database of phase calibration sources suitable for Giant Metrewave Radio Telescope (GMRT). Here we present the first release of 45 low frequency calibration sources at 235 MHz and 610 MHz. These calibration sources are broadly divided into quasars, radio galaxies and unidentified sources. We provide their flux densities, models for calibration sources, ( u, v) plots, final deconvolved restored maps and clean-component lists/files for use in the Astronomical Image Processing System ( aips) and the Common Astronomy Software Applications ( casa). We also assign a quality factor to each of the calibration sources. These data products are made available online through the GMRT observatory website. In addition we find that (i) these 45 low frequency calibration sources are uniformly distributed in the sky and future efforts to increase the size of the database should populate the sky further, (ii) spectra of these calibration sources are about equally divided between straight, curved and complex shapes, (iii) quasars tend to exhibit flatter radio spectra as compared to the radio galaxies or the unidentified sources, (iv) quasars are also known to be radio variable and hence possibly show complex spectra more frequently, and (v) radio galaxies tend to have steeper spectra, which are possibly due to the large redshifts of distant galaxies causing the shift of spectrum to lower frequencies.

  2. A radio telescope for the calibration of radio sources at 32 gigahertz

    NASA Technical Reports Server (NTRS)

    Gatti, M. S.; Stewart, S. R.; Bowen, J. G.; Paulsen, E. B.

    1994-01-01

    A 1.5-m-diameter radio telescope has been designed, developed, and assembled to directly measure the flux density of radio sources in the 32-GHz (Ka-band) frequency band. The main goal of the design and development was to provide a system that could yield the greatest absolute accuracy yet possible with such a system. The accuracy of the measurements have a heritage that is traceable to the National Institute of Standards and Technology. At the present time, the absolute accuracy of flux density measurements provided by this telescope system, during Venus observations at nearly closest approach to Earth, is plus or minus 5 percent, with an associated precision of plus or minus 2 percent. Combining a cooled high-electron mobility transistor low-noise amplifier, twin-beam Dicke switching antenna, and accurate positioning system resulted in a state-of-the-art system at 32 GHz. This article describes the design and performance of the system as it was delivered to the Owens Valley Radio Observatory to support direct calibrations of the strongest radio sources at Ka-band.

  3. a Simulation Tool Assisting the Design of a Close Range Photogrammetry System for the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Buffa, F.; Pinna, A.; Sanna, G.

    2016-06-01

    The Sardinia Radio Telescope (SRT) is a 64 m diameter antenna, whose primary mirror is equipped with an active surface capable to correct its deformations by means of a thick network of actuators. Close range photogrammetry (CRP) was used to measure the self-load deformations of the SRT primary reflector from its optimal shape, which are requested to be minimized for the radio telescope to operate at full efficiency. In the attempt to achieve such performance, we conceived a near real-time CRP system which requires the cameras to be installed in fixed positions and at the same time to avoid any interference with the antenna operativeness. The design of such system is not a trivial task, and to assist our decision we therefore developed a simulation pipeline to realistically reproduce and evaluate photogrammetric surveys of large structures. The described simulation environment consists of (i) a detailed description of the SRT model, included the measurement points and the camera parameters, (ii) a tool capable of generating realistic images accordingly to the above model, and (iii) a self-calibrating bundle adjustment to evaluate the performance in terms of RMSE of the camera configurations.

  4. Radio Telescopes Provide Key Clue on Black Hole Growth

    NASA Astrophysics Data System (ADS)

    2007-01-01

    Astronomers have discovered the strongest evidence yet found indicating that matter is being ejected by a medium-sized black hole, providing valuable insight on a process that may have been key to the development of larger black holes in the early Universe. The scientists combined the power of all the operational telescopes of the National Science Foundation's National Radio Astronomy Observatory (NRAO) to peer deep into the heart of the galaxy NGC 4395, 14 million light-years from Earth in the direction of the constellation Canes Venatici. NGC 4395 Core VLBI image of extended radio emission from core of NGC 4395, indicating suspected outflow powered by black hole CREDIT: Wrobel & Ho, NRAO/AUI/NSF Click on image for larger file Optical (visible light) image of NGC 4395 See here for detail and credit information for optical image. "We are seeing in this relatively nearby galaxy a process that may have been responsible for building intermediate-mass black holes into supermassive ones in the early Universe," said Joan Wrobel, an NRAO scientist in Socorro, NM. Wrobel and Luis Ho of the Observatories of the Carnegie Institution of Washington in Pasadena, CA, presented their findings to the American Astronomical Society's meeting in Seattle, WA. Black holes are concentrations of matter so dense that not even light can escape their powerful gravitational pull. The black hole in NGC 4395 is about 400,000 times more massive than the Sun. This puts it in a rarely-seen intermediate range between the supermassive black holes at the cores of many galaxies, which have masses millions to billions of times that of the Sun, and stellar-mass black holes only a few times more massive than the Sun. Energetic outflows of matter are common to both the supermassive and the stellar-mass black holes, but the new radio observations of NGC 4395 provided the first direct image of such a suspected outflow from an intermediate-mass black hole. The outflows presumably are generated by little

  5. Coordinated observations using the world largest low-frequency radio telescopes and space misiions

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Zarka, Ph.; Kolyadin, V. L.; Zakharenko, V. V.; Stepkin, S. V.; Panchenko, M.; Lecacheux, A.; Rucker, H. O.; Fischer, G.; Ulyanov, O. M.; Melnik, V. N.; Litvinenko, G. V.; Sidorchuk, M. A.; Bubnov, I. N.; Vasilyeva, Ya. Yu.; Bojko, A. I.; Shaposhnikov, V.; Mann, G.; Kalinichenko, N. N.; Falkovich, I. S.; Koval, A. A.; Mylostna, K.; Pylaev, O. S.; Shepelev, V. A.; Reznik, A. P.

    2013-09-01

    The positive possibilities of astrophysical objects studies(including the Solar system investigations) using coordinated observations with the largest existing and coming low frequency radio telescopes are shown. The observations of the Sun, Jupiter, Saturn, ant others with UTR-2, URAN, NDA radio telescopes, and WIND, Cassini and STEREO space missions at frequencies lower than 40 MHz have been carried out.

  6. Radio Telescopes to Keep Sharp Eye on Mars Lander

    NASA Astrophysics Data System (ADS)

    2008-05-01

    As NASA's Phoenix Mars Lander descends through the Red Planet's atmosphere toward its landing on May 25, its progress will be scrutinized by radio telescopes from the National Radio Astronomy Observatory (NRAO). At NRAO control rooms in Green Bank, West Virginia, and Socorro, New Mexico, scientists, engineers and technicians will be tracking the faint signal from the lander, 171 million miles from Earth. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF To make a safe landing, Phoenix must make a risky descent, slowing down from nearly 13,000 mph at the top of the Martian atmosphere to only 5 mph in the final seconds before touchdown. NASA officials point out that fewer than half of all Mars landing missions have been successful, but the scientific rewards of success are worth the risk. Major events in the spacecraft's atmospheric entry, descent and landing will be marked by changes in the Doppler Shift in the frequency of the vehicle's radio signal. Doppler Shift is the change in frequency caused by relative motion between the transmitter and receiver. At Green Bank, NRAO and NASA personnel will use the giant Robert C. Byrd Green Bank Telescope (GBT) to follow the Doppler changes and verify that the descent is going as planned. The radio signal from Phoenix is designed to be received by other spacecraft in Mars orbit, then relayed to Earth. However, the GBT, a dish antenna with more than two acres of collecting surface and highly-sensitive receivers, can directly receive the transmissions from Phoenix. "We'll see the frequency change as Phoenix slows down in the Martian atmosphere, then there will be a big change when the parachute deploys," said NRAO astronomer Frank Ghigo. When the spacecraft's rocket thrusters slow it down for its final, gentle touchdown, its radio frequency will stabilize, Ghigo said. "We'll have confirmation of these major events through our direct reception several seconds earlier than the controllers at NASA's Jet Propulsion

  7. Lunar Radio Telescopes: A Staged Approach for Lunar Science, Heliophysics, Astrobiology, Cosmology, and Exploration

    NASA Technical Reports Server (NTRS)

    Lazio, Joseph; Bowman, Judd D.; Burns, Jack O.; Farrell, W. M.; Jones, D. L.; Kasper, J. C.; MacDowall, R. J.; Stewart, K. P.; Weiler, K.

    2012-01-01

    Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. The instrument packages and infrastructure needed for radio telescopes can be transported and deployed as part of Exploration activities, and the resulting science measurements may inform Exploration (e.g., measurements of lunar surface charging). An illustrative roadmap for the staged deployment of lunar radio telescopes

  8. Thermal behavior of the Medicina 32-meter radio telescope

    NASA Astrophysics Data System (ADS)

    Pisanu, Tonino; Buffa, Franco; Morsiani, Marco; Pernechele, Claudio; Poppi, Sergio

    2010-07-01

    We studied the thermal effects on the 32 m diameter radio-telescope managed by the Institute of Radio Astronomy (IRA), Medicina, Bologna, Italy. The preliminary results show that thermal gradients deteriorate the pointing performance of the antenna. Data has been collected by using: a) two inclinometers mounted near the elevation bearing and on the central part of the alidade structure; b) a non contact laser alignment optical system capable of measuring the secondary mirror position; c) twenty thermal sensors mounted on the alidade trusses. Two series of measurements were made, the first series was performed by placing the antenna in stow position, the second series was performed while tracking a circumpolar astronomical source. When the antenna was in stow position we observed a strong correlation between the inclinometer measurements and the differential temperature. The latter was measured with the sensors located on the South and North sides of the alidade, thus indicating that the inclinometers track well the thermal deformation of the alidade. When the antenna pointed at the source we measured: pointing errors, the inclination of the alidade, the temperature of the alidade components and the subreflector position. The pointing errors measured on-source were 15-20 arcsec greater than those measured with the inclinometer.

  9. Identifying the source of perytons at the Parkes radio telescope

    NASA Astrophysics Data System (ADS)

    Petroff, E.; Keane, E. F.; Barr, E. D.; Reynolds, J. E.; Sarkissian, J.; Edwards, P. G.; Stevens, J.; Brem, C.; Jameson, A.; Burke-Spolaor, S.; Johnston, S.; Bhat, N. D. R.; Kudale, P. Chandra S.; Bhandari, S.

    2015-08-01

    `Perytons' are millisecond-duration transients of terrestrial origin, whose frequency-swept emission mimics the dispersion of an astrophysical pulse that has propagated through tenuous cold plasma. In fact, their similarity to FRB 010724 had previously cast a shadow over the interpretation of `fast radio bursts' (FRBs), which otherwise appear to be of extragalactic origin. Until now, the physical origin of the dispersion-mimicking perytons had remained a mystery. We have identified strong out-of-band emission at 2.3-2.5 GHz associated with several peryton events. Subsequent tests revealed that a peryton can be generated at 1.4 GHz when a microwave oven door is opened prematurely and the telescope is at an appropriate relative angle. Radio emission escaping from microwave ovens during the magnetron shut-down phase neatly explains all of the observed properties of the peryton signals. Now that the peryton source has been identified, we furthermore demonstrate that the microwave ovens on site could not have caused FRB 010724. This and other distinct observational differences show that FRBs are excellent candidates for genuine extragalactic transients.

  10. Magnetism in galaxies - Observational overview and next generation radio telescopes

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    2011-06-01

    The strength and structure of cosmic magnetic fields is best studied by observations of radio continuum emission, its polarization and its Faraday rotation. Fields with a well-ordered spiral structure exist in many types of galaxies. Total field strengths in spiral arms and bars are 20-30 μG and dynamically important. Strong fields in central regions can drive gas inflows towards an active nucleus. The strongest regular fields (10-15 μG) are found in interarm regions, sometimes forming ``magnetic spiral arms'' between the optical arms. The typical degree of polarization is a few % in spiral arms, but high (up to 50%) in interarm regions. The detailed field structures suggest interaction with gas flows. Faraday rotation measures of the polarization vectors reveals large-scale patterns in several spiral galaxies which are regarded as signatures of large-scale (coherent) fields generated by dynamos. - Polarization observations with the forthcoming large radio telescopes will open a new era in the observation of magnetic fields and should help to understand their origin. Low-frequency radio synchrotron emission traces low-energy cosmic ray electrons which can propagate further away from their origin. LOFAR (30-240 MHz) will allow us to map the structure of weak magnetic fields in the outer regions and halos of galaxies, in galaxy clusters and in the Milky Way. Polarization at higher frequencies (1-10 GHz), to be observed with the EVLA, MeerKAT, APERTIF and the SKA, will trace magnetic fields in the disks and central regions of galaxies in unprecedented detail. All-sky surveys of Faraday rotation measures towards a dense grid of polarized background sources with ASKAP and the SKA are dedicated to measure magnetic fields in distant intervening galaxies and clusters, and will be used to model the overall structure and strength of the magnetic field in the Milky Way.

  11. Development of 32-m Radio Telescopes for Monitoring Observations of Methanol Masers, H2O Masers, and Radio Continuum

    NASA Astrophysics Data System (ADS)

    Yonekura, Y.; Saito, Y.; Saito, T.; Mori, T.; Soon, K. L.; Momose, M.; Yokosawa, M.; Ogawa, H.; Fujisawa, K.; Sugiyama, K.; Motogi, K.; Takaba, H.; Sorai, K.; Nakai, N.; Kameno, S.; Kobayashi, H.; Kawaguchi, N.; Hachisuka, K.

    2013-10-01

    We report the renovation of two satellite-communication antennas, named Takahagi and Hitachi 32-m antennas, into cm-wave radio telescopes. Both antennas have been successfully renovated into radio telescopes until 2012. VLBI observations at 6.7, 8, and 22 GHz have been successful since 2010. We have started single-dish observations of methanol masers at 6.7 GHz and H2O masers at 22 GHz from 2013.

  12. Saving a Radio Telescope...or...Kids Can Make a Difference.

    ERIC Educational Resources Information Center

    Leach, Susan

    1985-01-01

    Students at Jones Middle School (Upper Arlington, Ohio) became involved when a nearby radio telescope was threatened by a land sale. Students not only learned about the basics of telescope use but also wrote to various local and national officials to "save the telescope." (DH)

  13. Observations of the power cosmic radio sources on the radio telescope URAN-4 during 1998 2004

    NASA Astrophysics Data System (ADS)

    Derevyagin, V. G.; Isaeva, E. A.; Kravetz, R. O.; Litvinenko, O. A.; Panishko, S. K.

    2005-10-01

    To investigate the variability of the flux density, observations of four power radio sources (3C144, 3C274, 3C405 and 3C461) were carried out on the radio telescope URAN-4 at two frequencies, 20 and 25MHz, during 1998 2005. The automatic procedure for obtaining the observations is considered briefly in this paper. The results of previous procedures are presented in the tables. They contained information that allows the vast amount of material that has been gathered to be analysed in more detail as follows: estimation of the source flux densities, study of ionospheric scintillations, investigation of the dependence of the direction pattern on the hour angle and the solving of other tasks. The dependence of the URAN-4 direction pattern on the hour angle is cited as an example of the mean procedure using many observation data. Long-time observation series allowed the cycle year dependence of the ionospheric scintillation index to be obtained.

  14. Radio Telescope Reveals Secrets of Massive Black Hole

    NASA Astrophysics Data System (ADS)

    2008-04-01

    . As the material moves from the outer edge of the disk inward, magnetic field lines perpendicular to the disk are twisted, forming a tightly-coiled bundle that, astronomers believe, propels and confines the ejected particles. Closer to the black hole, space itself, including the magnetic fields, is twisted by the strong gravitational pull and rotation of the black hole. Theorists predicted that material moving outward in this close-in acceleration region would follow a corkscrew-shaped path inside the bundle of twisted magnetic fields. They also predicted that light and other radiation emitted by the moving material would brighten when its rotating path was aimed most directly toward Earth. Marscher and his colleagues predicted there would also be a flare later when the material hits a stationary shock wave called the "core" some time after it has emerged from the acceleration region. "That behavior is exactly what we saw," Marscher said, when his team followed an outburst from BL Lac. In late 2005 and early 2006, the astronomers watched BL Lac with an international collection of telescopes as a knot of material was ejected outward through the jet. As the material sped out from the neighborhood of the black hole, the VLBA could pinpoint its location, while other telescopes measured the properties of the radiation emitted from the knot. Bright bursts of light, X-rays, and gamma rays came when the knot was precisely at locations where the theories said such bursts would be seen. In addition, the alignment of the radio and light waves -- a property called polarization -- rotated as the knot wound its corkscrew path inside the tight throat of twisted magnetic fields. "We got an unprecedented view of the inner portion of one of these jets and gained information that's very important to understanding how these tremendous particle accelerators work," Marscher said. In addition to the continent-wide VLBA, an array of 10 radio telescopes spread from Hawaii to the Virgin

  15. Observation on the Radio Telescope Uran-4 Of Radio Sources, Connected with the Coronal Mass Ejection on the Sun

    NASA Astrophysics Data System (ADS)

    Galanin, V. V.; Derevjagin, V. G.; Kravetz, R. O.

    In 2012 and 2013 the observations of radio sources covering by the solar corona was conducted on the radio telescope URAN-4. In obtained data there was fixed the records of the strong radio sources, which had flow level comparable with the 3c461 source. As a result of information analysis from miscellaneous observatories about the solar activity conditions there is done the conclusion that they are connected with the coronal mass ejections which was took place that time.

  16. A Distributed Datacube Analysis Service for Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Mahadevan, V.; Rosolowsky, E.

    2011-07-01

    Current- and next-generation radio telescopes are poised to produce data at an unprecedented rate. We are developing the cyberinfrastructure to enable distributed processing and storage of FITS data cubes from these telescopes. In this contribution, we will present the data storage and network infrastructure that enables efficient searching, extraction and transfer of FITS datacubes. The infrastructure combines the iRODS distributed data management with a custom spatially-enabled PostgreSQL database. The data management system ingests FITS cubes, automatically populating the metadata database using FITS header data. Queries to the metadata service return matching records using VOTable format. The iRODS system allows for a distributed network of fileservers to store large data sets redundantly with a minimum of upkeep. Transfers between iRODS data sites use parallel I/O streams for maximum speed. Files are staged to the optimal host for download by an end user. The service can automatically extract subregions of individual or adjacent cubes registered to user-defined astrometric grids using the Montage package. The data system can query multiple surveys and return spatially registered data cubes to the user. Future development will allow the data system to utilize distributed processing environment to analyze datasets, returning only the calculation results to the end user. This cyberinfrastructure project combines many existing, open-source packages into a single deployment of a data system. The codebase can also function on two-dimensional images. The project is funded by CANARIE under the Network-Enabled Platforms 2 program.

  17. System performance testing of the DVA1 radio telescope

    NASA Astrophysics Data System (ADS)

    Knee, Lewis B. G.; Baker, Lynn A.; Gray, Andrew D.; Hovey, Gary J.; Kesteven, Michael J.; Lacy, Gordon; Robishaw, Timothy

    2016-07-01

    DVA1 (Dish Verification Antenna 1) is a highly innovative rim-supported single-piece composite-material dish radio telescope developed at the National Research Council Canada (NRC). It has a feed-high offset Gregorian optical design with a primary effective diameter of 15 m. DVA1 has been undergoing mechanical and astronomical system tests since 2014. Astronomical measurements were made in L band using a prototype front end developed for MeerKAT by EMSS Antennas (South Africa), including aperture efficiency, beam profiles, sensitivity, and tipping curves. The clean shaped optics, careful attention to feed design, and high sensitivity of the L band receiver (Trx 6 K) yield a system with high aperture efficiency ( 0.8), excellent sensitivity ( 9 m2/K), and low spillover ( 4 K). Observations of 21 cm atomic hydrogen lines towards standard sources demonstrate the low stray radiation pickup of the antenna. Ku band holography has measured the effective surface accuracy and stability of the dual-reflector antenna. The effective RMS of 0.85 mm implies a Ruze efficiency of 0.88 at 10 GHz and 0.60 at 20 GHz. The surface is stable ( 10% variation in surface RMS) over the limited range of environmental conditions tested. Testing continues for characterization of pointing, low frequency performance (< 1 GHz), and polarimetric performance. NRC is developing a successor antenna, DVA3, which will have a more accurate surface and be usable at frequencies at least up to Q band (30 - 50 GHz).

  18. Observations of pulsar microstructure with the Giant Metrewave Radio Telescope

    NASA Astrophysics Data System (ADS)

    de, Kishalay; Gupta, Yashwant; Sharma, Prateek

    2017-01-01

    Microstructure emission, involving short time scale intensity fluctuations in subpulse emission, is well known in normal pulsars. However, the high time resolution and sensitivity required to detect these features has limited such studies to only few pulsars, mostly in the northern sky. The Giant Metrewave Radio Telescope (GMRT), owing to its high sensitivity, extensive sky coverage and frequency coverage at low frequencies is an attractive prospect for high time resolution single pulse studies of pulsars. In this paper, we present results from an extensive statistical analysis of the polarization (with single frequency observations) and spectral (with simultaneous dual-frequency observations) properties of microstructure emission in pulsars observed with the GMRT. We further present the first detections of quasi-periodic microstructure emission from millisecond pulsars (MSPs), in GMRT observations of two MSPs at 325 and 610 MHz. We thus extend the microstructure timescale - rotation period relationship by more than an order of magnitude, down to a rotation period of 5 ms. We discuss the physical implications of our results, pointing to a radial / temporal modulation origin of microstructure emission as a likely explanation for the observed characteristics.

  19. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT

    NASA Astrophysics Data System (ADS)

    Zakharenko, V.; Konovalenko, A.; Zarka, P.; Ulyanov, O.; Sidorchuk, M.; Stepkin, S.; Koliadin, V.; Kalinichenko, N.; Stanislavsky, A.; Dorovskyy, V.; Shepelev, V.; Bubnov, I.; Yerin, S.; Melnik, V.; Koval, A.; Shevchuk, N.; Vasylieva, I.; Mylostna, K.; Shevtsova, A.; Skoryk, A.; Kravtsov, I.; Volvach, Y.; Plakhov, M.; Vasilenko, N.; Vasylkivskyi, Y.; Vavriv, D.; Vinogradov, V.; Kozhin, R.; Kravtsov, A.; Bulakh, E.; Kuzin, A.; Vasilyev, A.; Ryabov, V.; Reznichenko, A.; Bortsov, V.; Lisachenko, V.; Kvasov, G.; Mukha, D.; Litvinenko, G.; Brazhenko, A.; Vashchishin, R.; Pylaev, O.; Koshovyy, V.; Lozinsky, A.; Ivantyshyn, O.; Rucker, H. O.; Panchenko, M.; Fischer, G.; Lecacheux, A.; Denis, L.; Coffre, A.; Grießmeier, J.-M.

    This paper describes digital radio astronomical receivers used for decameter and meter wavelength observations. Since 1998, digital receivers performing on-the-fly dynamic spectrum calculations or waveform data recording without data loss have been used at the UTR-2 radio telescope, the URAN VLBI system, and the GURT new generation radio telescope. Here, we detail these receivers developed for operation in the strong interference environment that prevails in the decameter wavelength range. Data collected with these receivers allowed us to discover numerous radio astronomical objects and phenomena at low frequencies, a summary of which is also presented.

  20. Initial Results Obtained with the First TWIN VLBI Radio Telescope at the Geodetic Observatory Wettzell.

    PubMed

    Schüler, Torben; Kronschnabl, Gerhard; Plötz, Christian; Neidhardt, Alexander; Bertarini, Alessandra; Bernhart, Simone; la Porta, Laura; Halsig, Sebastian; Nothnagel, Axel

    2015-07-30

    Geodetic Very Long Baseline Interferometry (VLBI) uses radio telescopes as sensor networks to determine Earth orientation parameters and baseline vectors between the telescopes. The TWIN Telescope Wettzell 1 (TTW1), the first of the new 13.2 m diameter telescope pair at the Geodetic Observatory Wettzell, Germany, is currently in its commissioning phase. The technology behind this radio telescope including the receiving system and the tri-band feed horn is depicted. Since VLBI telescopes must operate at least in pairs, the existing 20 m diameter Radio Telescope Wettzell (RTW) is used together with TTW1 for practical tests. In addition, selected long baseline setups are investigated. Correlation results portraying the data quality achieved during first initial experiments are discussed. Finally, the local 123 m baseline between the old RTW telescope and the new TTW1 is analyzed and compared with an existing high-precision local survey. Our initial results are very satisfactory for X-band group delays featuring a 3D distance agreement between VLBI data analysis and local ties of 1 to 2 mm in the majority of the experiments. However, S-band data, which suffer much from local radio interference due to WiFi and mobile communications, are about 10 times less precise than X-band data and require further analysis, but evidence is provided that S-band data are well-usable over long baselines where local radio interference patterns decorrelate.

  1. Initial Results Obtained with the First TWIN VLBI Radio Telescope at the Geodetic Observatory Wettzell

    PubMed Central

    Schüler, Torben; Kronschnabl, Gerhard; Plötz, Christian; Neidhardt, Alexander; Bertarini, Alessandra; Bernhart, Simone; la Porta, Laura; Halsig, Sebastian; Nothnagel, Axel

    2015-01-01

    Geodetic Very Long Baseline Interferometry (VLBI) uses radio telescopes as sensor networks to determine Earth orientation parameters and baseline vectors between the telescopes. The TWIN Telescope Wettzell 1 (TTW1), the first of the new 13.2 m diameter telescope pair at the Geodetic Observatory Wettzell, Germany, is currently in its commissioning phase. The technology behind this radio telescope including the receiving system and the tri-band feed horn is depicted. Since VLBI telescopes must operate at least in pairs, the existing 20 m diameter Radio Telescope Wettzell (RTW) is used together with TTW1 for practical tests. In addition, selected long baseline setups are investigated. Correlation results portraying the data quality achieved during first initial experiments are discussed. Finally, the local 123 m baseline between the old RTW telescope and the new TTW1 is analyzed and compared with an existing high-precision local survey. Our initial results are very satisfactory for X-band group delays featuring a 3D distance agreement between VLBI data analysis and local ties of 1 to 2 mm in the majority of the experiments. However, S-band data, which suffer much from local radio interference due to WiFi and mobile communications, are about 10 times less precise than X-band data and require further analysis, but evidence is provided that S-band data are well-usable over long baselines where local radio interference patterns decorrelate. PMID:26263991

  2. Development of precision structure of a large-size space radio telescope

    NASA Astrophysics Data System (ADS)

    Astavin, A. S.; Kovalev, V. S.; Komaev, R. V.; Moisheev, A. A.; Tsvelev, V. M.; Serebrennikov, V. A.

    2015-12-01

    The paper presents methods for the design and engineering concepts, which made it possible to develop and manufacture the space radio telescope with a large size and high accuracy of the effective reflector area and focal assembly position.

  3. Design and Performance of a Wideband Radio Telescope

    NASA Technical Reports Server (NTRS)

    Weinreb, Sander; Imbriale, William A.; Jones, Glenn; Mani, Handi

    2012-01-01

    The Goldstone Apple Valley Radio Telescope (GAVRT) is an outreach project, a partnership involving NASA's Jet Propulsion Laboratory (JPL), the Lewis Center for Educational Research (LCER), and the Apple Valley Unified School District near the NASA Goldstone deep space communication complex. This educational program currently uses a 34-meter antenna, DSS12, at Goldstone for classroom radio astronomy observations via the Internet. The current program utilizes DSS12 in two narrow frequency bands around S-band (2.3 GHz) and X-band (8.45 GHz), and is used by a training program involving a large number of secondary school teachers and their classrooms. To expand the program, a joint JPL/LCER project was started in mid-2006 to retrofit an additional existing 34-meter beam-waveguide antenna, DSS28, with wideband feeds and receivers to cover the 0.5-to- 14-GHz frequency bands. The DSS28 antenna has a 34-meter diameter main reflector, a 2.54-meter subreflector, and a set of beam waveguide mirrors surrounded by a 2.43-meter tube. The antenna was designed for high power and a narrow frequency band around 7.2 GHz. The performance at the low end of the frequency band desired for the educational program would be extremely poor if the beam waveguide system was used as part of the feed system. Consequently, the 34-meter antenna was retrofitted with a tertiary offset mirror placed at the vertex of the main reflector. The tertiary mirror can be rotated to use two wideband feeds that cover the 0.5-to-14-GHz band. The earlier designs for both GAVRT and the DSN only used narrow band feeds and consequently, only covered a small part of the S- and X-band frequencies. By using both a wideband feed and wideband amplifiers, the entire band from 0.5 to 14 GHz is covered, expanding significantly the science activities that can be studied using this system.

  4. An intercontinental array--a next-generation radio telescope.

    PubMed

    Swenson, G W; Kellermann, K I

    1975-06-27

    It is difficult to estimate accurately the cost of constructing a large scientific instrument that involves many techniques. On the other hand, most of the component parts of the VLBA consist of antennas and electronic systems that already exist or are being fabricated. The kind of 25-m antennas being constructed for the VLA will cost about $900,000 each and will work at wavelengths as short as 1 cm. A multifrequency radiometer, hydrogen maser frequency standard, small control computer, control building, and wide-band instrumentation recorder bring the cost to about $1.5 million per element, or $15 million for a ten-element array using tape recorders. A multistation playback facility, with ten recorders and enough correlators to handle all interferometer pairs simultaneously, together with the necessary computers to control the processor and reduce the data, may add $5 million. The total cost is thus about $20 million at current prices, including an adequate supply of magnetic tape. This is comparable to the cost of existing large radio telescopes and arrays. An array that used a geostationary communication satellite to transmit the data to a real-time correlator would cost $30 million to $50 million more, but this is still within the price range of other space astronomy projects. It is thus feasible to construct at reasonable cost an intercontinental very long baseline array which has sub-milliarcsecond resolution. This would complement the Very Large Array now being constructed (4), which is much more sensitive to objects of low surface brightness. This next step would permit the study of the universe with unprecedented angular resolution.

  5. Observation of two coronal mass ejections on April 7, 2011 by radio telescope URAN-2

    NASA Astrophysics Data System (ADS)

    Brazhenko, A.; Melnik, V.; Konovalenko, A.; Dorovskyy, V.; Vashchishin, V.; Franzusenko, A.; Rucker, H.

    2012-09-01

    Two CME's (coronal mass ejection) were registered by SOHO and STEREO on April 7, 2011. The results of observations obtained by radio telescope URAN-2 of different CME manifestations in radio emission at decameter wavelengths are discussed in this paper. Particularly we report about registration of new type of fine structure of type II bursts.

  6. The 30-m radio telescope for millimeter astronomy - A new large instrument for German astronomy

    NASA Astrophysics Data System (ADS)

    Baars, J. W. M.; Mezger, P. G.; de Jonge, M. J.; Hooghoudt, B. G.

    1986-08-01

    The instrument considered represents currently the radio telescope with the best performance for astronomical studies involving the wavelength range in the vicinity of 1 mm. For a time of approximately one year, the telescope has been employed in astronomical observational programs. The time period between the planning stage and the beginning of the operational phase is considered. In connection with the opportunities for astronomical studies in the millimeter wavelength range, the new instrument was designed especially for observations involving the range from 0.8 mm to 3 mm. Planning operations for this telescope began already in 1972. Attention is given to discussions with French and British scientists, the selection of a location for the instrument in southern Spain, aspects of European cooperation regarding the instrument, the design of radio telescopes for millimeter astronomy, the characteristic features of the new instrument, data processing and evaluation, and the first results obtained with the telescope.

  7. Correlation of Fermi Large Area Telescope sources with the 20-GHz Australia Telescope Compact Array radio survey

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Ghisellini, G.; Tavecchio, F.; Foschini, L.

    2010-09-01

    We cross-correlate the Fermi 11-month survey (1FGL) catalogue with the 20-GHz Australia Telescope Compact Array (AT20G) radio survey catalogue composed of 5890 sources at declination < 0°. Among the 738 Fermi sources distributed in the southern sky, we find 230 highly probable candidate counterparts in the AT20G survey. Of these, 222 are already classified in the Fermi one-year Large Area Telescope (LAT) active galactic nucleus (AGN) catalogue (1LAC) as blazars [either flat spectrum radio quasars (FSRQs) or BL Lacertae objects (BL Lacs)], AGNs or sources of unknown class but with an associated counterpart, while eight are new associations. By studying the γ-ray and radio properties of these associations, we find a correlation between the γ-ray flux (above 100 MeV) and the 20-GHz flux density. This correlation is more than 3σ statistically significant, both for the population of BL Lacs and for FSRQs considered separately. We also find that the radio counterparts associated with the Fermi sources have, on average, flat radio spectra between 5 and 20 GHz and that Fermi γ-ray sources are not preferentially associated with `ultra-inverted spectrum' radio sources. For two of the eight new associations, we build the broad-band spectral energy distribution combining Fermi, Swift and radio observations. One of these two sources is identified with the high-redshift FSRQ Swift J1656.3-3302 (z = 2.4) and we classify the other source as a candidate new FSRQ. We also study the brightest radio source of the 46 associations without an optical classification and classify it as a new BL Lac candidate `twin' of the prototypical BL Lac OJ 287 if its redshift is larger, z ~ 0.4.

  8. Solar observations with a low frequency radio telescope

    NASA Astrophysics Data System (ADS)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  9. Surface figure measurements of radio telescopes with a shearing interferometer.

    PubMed

    Serabyn, E; Phillips, T G; Masson, C R

    1991-04-01

    A new technique for determining the surface figure of large submillimeter wavelength telescopes is presented, which is based on measuring the telescope's focal plane diffraction pattern with a shearing interferometer. In addition to the instrumental theory, results obtained using such an interferometer on the 10.4-m diam telescope of the Caltech Submillimeter Observatory are discussed. Using wavelengths near 1 mm, a measurement accuracy of 9 microm, or lambda/115, has been achieved, and the rms surface accuracy has been determined to be just under 30 microm. The distortions of the primary reflector with changing elevation angle have also been measured and agree well with theoretical predictions of the dish deformation.

  10. Reconstruction of Radio Images of the Sun Obtained by the Siberian Solar Radio Telescope

    NASA Astrophysics Data System (ADS)

    Lesovoy, S. V.

    2002-11-01

    Reconstruction of radio images of the Sun obtained by the Siberian Solar Radio Telescope (SSRT) encounters two main problems. First, since the solar radio images at a wavelength of 5.2 cm have a high contrast, the amplitude-phase distribution in the antenna-feeder section should be known with a very high accuracy. Second, since such images comprise not only bright compact components but also low-contrast diffuse areas, there is a problem of deconvolution of these diffuse sources, which is inherent to the CLEAN algorithm. To solve the first problem, we determine the amplitude-phase distortions by an iterative analysis of the image itself, in which the opposite sidelobes of the point-source response are compared. To suppress the influence of other sources on the response, we analyze several compact sources. The phase distortions are determined from the asymmetry of the sidelobes, and the amplitude distortions, from sidelobe values. The image is corrected in the spatial-spectrum domain after each iteration. On the one hand, the problems encountered when reconstructing extended sources are related to the fact that the CLEAN algorithm requires significant computer resources. On the other hand, reconstructing images of extended areas requires that the number of cycles of this algorithm should be increased. Another problem consists in the fact that the use of the same ``clean'' antenna pattern for reconstructing compact and extended sources results in appearance of high-frequency distortions of the latter sources. If the CLEAN algorithm is applied, then the computer resources are mainly spent to shift the pattern and to find the maximum of the initial image. We decrease the time necessary for shifting the pattern by excluding the points near the zero value from the antenna-pattern data set and by sorting the remaining data points. The time of finding the maximum was decreased by using a local search window. In addition, we use a number of cutoff levels and search the next

  11. Synchronized observations by using the STEREO and the largest ground-based decametre radio telescope

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Stanislavsky, A. A.; Rucker, H. O.; Lecacheux, A.; Mann, G.; Bougeret, J.-L.; Kaiser, M. L.; Briand, C.; Zarka, P.; Abranin, E. P.; Dorovsky, V. V.; Koval, A. A.; Mel'nik, V. N.; Mukha, D. V.; Panchenko, M.

    2013-08-01

    We consider the approach to simultaneous (synchronous) solar observations of radio emission by using the STEREO-WAVES instruments (frequency range 0.125-16 MHz) and the largest ground-based low-frequency radio telescope. We illustrate it by the UTR-2 radio telescope implementation (10-30 MHz). The antenna system of the radio telescope is a T-shape-like array of broadband dipoles and is located near the village Grakovo in the Kharkiv region (Ukraine). The third observation point on the ground in addition to two space-based ones improves the space-mission performance capabilities for the determination of radio-emission source directivity. The observational results from the high sensitivity antenna UTR-2 are particularly useful for analysis of STEREO data in the condition of weak event appearances during solar activity minima. In order to improve the accuracy of flux density measurements, we also provide simultaneous observations with a large part of the UTR-2 radio telescope array and its single dipole close to the STEREO-WAVES antennas in sensitivity. This concept has been studied by comparing the STEREO data with ground-based records from 2007-2011 and shown to be effective. The capabilities will be useful in the implementation of new instruments (LOFAR, LWA, MWA, etc.) and during the future Solar Orbiter mission.

  12. Prototype 10-meter radio telescope antenna and mount design

    NASA Technical Reports Server (NTRS)

    Leighton, R. B.

    1976-01-01

    A prototype radio antenna of 10.4 meters diameter and 0.41 meter focal length, intended for use at the shortest radio wavelengths transmitted by the atmosphere, was successfully completed. The surface accuracy is at least four times better than that of any existing antenna in this size class: 50 micrometer rms. A prototype mount is being constructed and will be ready by early 1976. The development of an improved antenna of identical size, but heavier weight has been continued.

  13. Design and Construction of a New 1420 MHz Receiver System for a 12-meter Radio Telescope

    NASA Astrophysics Data System (ADS)

    Lemley, Cameron; Castelaz, M. W.

    2014-01-01

    During the summer of 2013, a new 1420 MHz receiver system was designed and constructed for the 12-meter radio telescope at the Pisgah Astronomical Research Institute (PARI). The new radio receiver system consists of a feedhorn (which is a duplicate of the feedhorn that is currently installed on PARI’s 4.6-meter radio telescope), a low-noise amplifier, a bandpass filter, a downconverter, a SpectraCyber 1420 MHz Hydrogen Line Spectrometer, CommScope CNT-600 braided coaxial cable, and a power supply. Each component was individually tested on the preexisting 4.6-meter radio telescope receiver system before being installed on the 12-meter telescope. This testing process revealed that the spectrometer that was intended for use in the new 12-meter receiver system would require 12-bit software, which was acquired soon thereafter. The new receiver system was then assembled on a rolling cart for further testing. After the 1420 MHz receiver system was moved outside, it successfully detected its first extraterrestrial radio signal. The next step of this project was the installation of the feedhorn at the focus of the 12-meter parabolic reflector and the mounting of the additional receiver system components inside the radio frequency (RF) room of the 12-meter telescope. Following its installation on the 12-meter telescope, the new receiver system was connected to the PARI network via ethernet using a device called a SitePlayer Telnet. The 12-meter telescope was focused by taking continuum scans of Virgo A during its meridian crossing. The positioning of the feedhorn had to be adjusted several times before the new radio receiver system was precisely focused. After focusing the 12-meter telescope, spectra were taken of both the Orion Nebula and the Crab Nebula to test the abilities of the new 1420 MHz receiver system. As a final test of both the angular resolution and time resolution of the new radio receiver system, the 12-meter telescope was used to observe the pulsar PSR J

  14. System of the optic-electronic sensors for control position of the radio telescope elements

    NASA Astrophysics Data System (ADS)

    Konyakhin, Igor; Stepashkin, Ivan; Petrochenko, Andrey

    2016-04-01

    A promising area of modern astronomy is the study of the field of millimeter waves. The use of this band is due to a large extent the spectrum characteristics of the propagation of waves in the atmosphere, short wavelength. Currently, Russia jointly with Uzbekistan is implementing a project to build a radio astronomy observatory on the Suffa plateau (Uzbekistan). The main instrument of the observatory is fully steerable radio telescope RT-70 type. Main mirror telescope is a fragment of an axisymmetric parabolic with a focal length of 21 m, consisting of 1200 reflecting panels; main mirror diameter - 70 m; diameter of counter reflector - 3 m. A feature of the radio telescope as a means of research in the millimeter wavelength range are high for the quality requirements parabolic surface of the primary mirror (standard deviation of points on the surface of the theoretical parabolic is not more than 0.05 mm), to the stability of the mutual arrangement of the primary mirror and the counter reflector (not more than 0, 07 mm) for precision guidance in the corners of the mirror system azimuth and elevation (margin of error 1.5-2"). Weight of structure, temperature changes and air shock result in significant deformation elements radio telescope construction (progressive linear displacements of points of the surface of the main mirror), reaching in the marginal zone of 30 mm; counter reflector shift of up to 60 mm; Unlike the angular position of the axis of the beam pattern of the radio telescope of the measured angle transducers can reach 10 ". Therefore, to ensure the required quality of the reflective elements RT-70 systems, as well as the implementation of precision-guided munitions needs complex measuring deformation elements telescope design. This article deals with the construction of opto-electronic system of remote optoelectronic displacement sensor control elements mirror telescope system.

  15. Adding Context to James Webb Space Telescope Surveys with Current and Future 21 cm Radio Observations

    NASA Astrophysics Data System (ADS)

    Beardsley, A. P.; Morales, M. F.; Lidz, A.; Malloy, M.; Sutter, P. M.

    2015-02-01

    Infrared and radio observations of the Epoch of Reionization promise to revolutionize our understanding of the cosmic dawn, and major efforts with the JWST, MWA, and HERA are underway. While measurements of the ionizing sources with infrared telescopes and the effect of these sources on the intergalactic medium with radio telescopes should be complementary, to date the wildly disparate angular resolutions and survey speeds have made connecting proposed observations difficult. In this paper we develop a method to bridge the gap between radio and infrared studies. While the radio images may not have the sensitivity and resolution to identify individual bubbles with high fidelity, by leveraging knowledge of the measured power spectrum we are able to separate regions that are likely ionized from largely neutral, providing context for the JWST observations of galaxy counts and properties in each. By providing the ionization context for infrared galaxy observations, this method can significantly enhance the science returns of JWST and other infrared observations.

  16. Some requirements for the future giant low frequency ground based radio telescopes

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Falkovich, I. S.; Gridin, A. A.; Lecheux, A.; Rosolen, C.; Rucker, H.

    2003-04-01

    During last years the interest to the low frequency radio astronomy is growing considerably. The projects of space-borne and ground-based new generation giant radio telescope (i.e. LOFAR) are discussed actively. The largest existing low frequency systems, at first, UTR-2 and URAN Ukraine) and NDA (France) are useful for the probing of new astrophysical ideas as well as of new technical approaches and requirements including future giant radio telescopes and solar system radio astronomy purposes. The 30 elements array with active dipoles was created on UTR-2 observatory for the test of some principal requirements. The investigations of the array confirmed the sensitivity, frequency range, interference immunity and low cost what need for the future instruments.

  17. The Position and Attitude of Sub-reflector Modeling for TM65 m Radio Telescope

    NASA Astrophysics Data System (ADS)

    Sun, Z. X.; Chen, L.; Wang, J. Q.

    2016-01-01

    In the course of astronomical observations, with changes in angle of pitch, the large radio telescope will have different degrees of deformation in the sub-reflector support, back frame, main reflector etc, which will lead to the dramatic decline of antenna efficiency in both high and low elevation. A sub-reflector system of the Tian Ma 65 m radio telescope has been installed in order to compensate for the gravitational deformations of the sub-reflector support and the main reflector. The position and attitude of the sub-reflector are variable in order to improve the pointing performance and the efficiency at different elevations. In this paper, it is studied that the changes of position and attitude of the sub-reflector have influence on the efficiency of antenna in the X band and Ku band. A model has been constructed to determine the position and attitude of the sub-reflector with elevation, as well as the point compensation model, by observing the radio source. In addition, antenna efficiency was tested with sub-reflector position adjusted and fixed. The results show that the model of sub-reflector can effectively improve the efficiency of the 65 m radio telescope. In X band, the aperture efficiency of the radio telescope reaches more than 60% over the entire elevation range.

  18. Observations of OH in comet Levy with the Nancay radio telescope

    NASA Technical Reports Server (NTRS)

    Bockelee-Morvan, Dominique; Colom, P.; Crovisier, Jacques; Gerard, E.; Bourgois, G.

    1992-01-01

    Due to extremely favorable excitation conditions, comet Levy (1990c) exhibited in August-September 1990 the strongest OH 18-cm signal ever recorded in a comet at the Nancay radio telescope. This unique opportunity was used to measure the OH satellite lines at 1612 and 1721 MHz, to perform extensive mapping of the OH radio emission and to make a sensitive evaluation of the cometary magnetic field, of the H2O outflow velocity and of the OH production rate.

  19. RFI profiles of prime candidate sites for the first radio astronomical telescope in Malaysia

    NASA Astrophysics Data System (ADS)

    Abidin, Zamri Zainal; Bahari Ramadzan Syed Adnan, Syed; Ibrahim, Zainol Abidin

    2010-03-01

    Radio astronomy is a very young research field in South East Asia. There has not been a research-grade radio telescope built in this part of the world yet. A plan has been proposed by the University of Malaya's Radio Cosmology Research Laboratory to build a medium-sized radio telescope in order to eventually join the global projects of the Very Long Baseline Interferometry (VLBI) Network and Square Kilometer Array (SKA). Main parameters taken into consideration in finding the main prime candidate sites involves features that produce Radio Frequency Interference (RFI). These features are mainly telecommunication and satellite navigation signals and population density. Other important features considered are rainfall level, land contour and availability for future collaboration with institutions at the chosen sites. In this paper we described the experimental procedure and the RFI measurement on our five prime candidate's sites in Malaysia, covering frequency band from 1 MHz to 2000 MHz. The levels and sources of RFI on these sites were monitored and analyzed. The RFI level in Langkawi showed the lowest average of -100.33dBm(4.4×106Jy). These RFI have been found to fluctuate relatively lowly (between 1 dB m and 2 dB m). This site is also ideally located close to the Langkawi National Observatory and we recommend that this site as the best site to build the first research-grade radio telescope in this region.

  20. Temperature deformations of the mirror of a radio telescope antenna

    NASA Technical Reports Server (NTRS)

    Avdeyev, V. I.; Grach, S. A.; Kozhakhmetov, K. K.; Kostenko, F. I.

    1979-01-01

    The stress informed state of the mirror of an antenna, with a diameter of 3 m, for a radio interferometer used in space, and located in a temperature field is examined. The mirror represents a parabolic shell, consisting of 19 identical parts. The problem is based on representations of the thermoelasticity of thin shells.

  1. The Role of the Goldstone Apple Valley Radio Telescope Project in Promoting Scientific Efficacy among Middle and High School Students.

    ERIC Educational Resources Information Center

    Ibe, Mary; Deutscher, Rebecca

    This study investigated the effects on student scientific efficacy after participation in the Goldstone Apple Valley Radio Telescope (GAVRT) project. In the GAVRT program, students use computers to record extremely faint radio waves collected by the telescope and analyze real data. Scientific efficacy is a type of self-knowledge a person uses to…

  2. Gain and Polarization Properties of a Large Radio Telescope from Calculation and Measurement: The John A. Galt Telescope

    NASA Astrophysics Data System (ADS)

    Du, X.; Landecker, T. L.; Robishaw, T.; Gray, A. D.; Douglas, K. A.; Wolleben, M.

    2016-11-01

    Measurement of the brightness temperature of extended radio emission demands knowledge of the gain (or aperture efficiency) of the telescope and measurement of the polarized component of the emission requires correction for the conversion of unpolarized emission from sky and ground to apparently polarized signal. Radiation properties of the John A. Galt Telescope at the Dominion Radio Astrophysical Observatory were studied through analysis and measurement in order to provide absolute calibration of a survey of polarized emission from the entire northern sky from 1280 to 1750 MHz, and to understand the polarization performance of the telescope. Electromagnetic simulation packages CST and GRASP-10 were used to compute complete radiation patterns of the telescope in all Stokes parameters, and thereby to establish gain and aperture efficiency. Aperture efficiency was also evaluated using geometrical optics and ray tracing analysis and was measured based on the known flux density of Cyg A. Measured aperture efficiency varied smoothly with frequency between values of 0.49 and 0.54; GRASP-10 yielded values 6.5% higher but with closely similar variation with frequency. Overall error across the frequency band is 3%, but values at any two frequencies are relatively correct to ∼1%. Dominant influences on aperture efficiency are the illumination taper of the feed radiation pattern and the shadowing of the reflector from the feed by the feed-support struts. A model of emission from the ground was developed based on measurements and on empirical data obtained from remote sensing of the Earth from satellite-borne telescopes. This model was convolved with the computed antenna response to estimate conversion of ground emission into spurious polarized signal. The computed spurious signal is comparable to measured values, but is not accurate enough to be used to correct observations. A simpler model, in which the ground is considered as an unpolarized emitter with a brightness

  3. Revealing the Hidden Wave: Using the Very Small Radio Telescope to Teach High School Physics

    ERIC Educational Resources Information Center

    Doherty, Michael; Fish, Vincent L.; Needles, Madeleine

    2011-01-01

    Scientists and teachers have worked together to produce teaching materials for the Very Small Radio Telescope (VSRT), an easy-to-use, low-cost apparatus that can be used in multiple laboratory experiments in high school and university physics and astronomy classes. In this article, we describe the motivation for the VSRT and several of the…

  4. Communicating astronomy in a small island state: The unique role of the Mauritius Radio Telescope

    NASA Astrophysics Data System (ADS)

    Saddul-Hauzaree, S.

    2008-06-01

    The Mauritius Radio Telescope (MRT) is a 2 km x 1 km T-shaped aperture synthesis array that can generate radio images of the southern sky at 151.6 MHz. The sky surveyed can be in the declination range of -70o to -10o. It is located at Bras d'Eau, northeast of Mauritius at latitude 20oS and longitude 60oE. The MRT is a joint project of the University of Mauritius, the Indian Institute of Astrophysics and the Raman Research Institute. One of the main objectives of the MRT is to generate public interest in astronomy. Thus, it is involved in a wide range of onsite outreach activities for young school children. More mature students visiting the telescope learn about sky observation with a radio telescope, get to explore some sets of data, interact with the scientific personnel, get the opportunity to have hands-on experience with image manipulation and can ask a lot of questions on astronomy. This poster gives an overview of the Mauritius Radio Telescope and the attempts of MRT ito communicate astronomy to students as a process and not just as a vast expanse of knowledge. The challenges and dilemmas faced by MRT in conveying astronomy to the general public in a small island state are investigated and presented.

  5. Modelling, simulation and testing of an optomechatronics design of a large radio telescope

    NASA Astrophysics Data System (ADS)

    Duan, B. Y.; Qiu, Y. Y.; Su, Y. X.; Wang, W. L.; Nan, R. D.; Peng, B.

    An innovative design for a feed support structure for the next generation large radio telescope, based on the idea of integrating mechanical, electronic and optical technologies (OPTOMECHATRONICS), is considered. Theoretical analyses and simulations are carried out. A 5 m experimental model is built to demonstrate the idea.

  6. Very long baseline interferometry using a radio telescope in Earth orbit

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.; Edwards, C. D.; Linfield, R. P.

    1987-01-01

    Successful Very Long Baseline Interferometry (VLBI) observations at 2.3 GHz were made using an antenna aboard an Earth-orbiting spacecraft as one of the receiving telescopes. These observations employed the first deployed satellite (TDRSE-E for East) of the NASA Tracking and Data Relay Satellite System (TDRSS). Fringes were found for 3 radio sources on baselines between TDRSE and telescopes in Australia and Japan. The purpose of this experiment and the characteristics of the spacecraft that are related to the VLBI observations are described. The technical obstacles to maintaining phase coherence between the orbiting antenna and the ground stations, as well as the calibration schemes for the communication link between TDRSE and its ground station at White Sands, New Mexico are explored. System coherence results and scientific results for the radio source observations are presented. Using all available calibrations, a coherence of 84% over 700 seconds was achieved for baselines to the orbiting telescope.

  7. A performance assessment of the Green Bank Radio Telescope

    NASA Astrophysics Data System (ADS)

    Terada, M. A. B.; Stutzman, W. L.

    1997-08-01

    This paper briefly summarizes the results of a computational study performed to evaluate the electrical performance of the Green Bank Telescope reflector antenna. All computed patterns were obtained with the program PRAC (Parabolic Reflector Analysis Code), developed by the authors, and with the commercial code GRASP7. The patterns and performance values, not published anywhere else as far as the authors know, indicate that low cross polarization (XPOL) performance can be achieved with a dual offset configuration, provided that a low XPOL feed is employed.

  8. Radio Telescope Focal Container for the Russian VLBI Network of New Generation

    NASA Technical Reports Server (NTRS)

    Ipatov, Alexander; Mardyshkin, Vyacheslav; Cherepanov, Andrey; Chernov, Vitaly; Diky, Dmitry; Khvostov, Evgeny; Yevstigneyev, Alexander

    2010-01-01

    This article considers the development of the structure of receivers for Russian radio telescopes. The development of these radio telescopes is undertaken within the project for creating a Russian small-antenna-based radio interferometer of new generation. It is shown that for small antennas (10. 12 meter) the principal unit, which provides the best SNR, is the so-called focal container placed at primary focus. It includes the primary feed, HEMT LNA, and cryogenic cooling system down to 20. K. A new multi-band feed based on traveling wave resonators is used. It has small dimensions, low weight, and allows working with circular polarizations. Thus it can be placed into focal container and cooled with the LNA. A sketch of the focal container, with traveling-wave-resonator feed, and calculations of the expected parameters of the multi-band receiver are presented.

  9. A synthetic aperture radio telescope for ICME observations as a potential payload of SPORT

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Sun, W.; Liu, H.; Xiong, M.; Liu, Y. D.; Wu, J.

    2013-12-01

    We introduce a potential payload for the Solar Polar ORbit Telescope (SPORT), a space weather mission proposed by the National Space Science Center, Chinese Academy of Sciences. This is a synthetic aperture radio imager designed to detect radio emissions from interplanetary coronal mass ejections (ICMEs), which is expected to be an important instrument to monitor the propagation and evolution of ICMEs. The radio telescope applies a synthetic aperture interferometric technique to measure the brightness temperature of ICMEs. Theoretical calculations of the brightness temperature utilizing statistical properties of ICMEs and the background solar wind indicate that ICMEs within 0.35 AU from the Sun are detectable by a radio telescope at a frequency <= 150 MHz with a sensitivity of <=1 K. The telescope employs a time shared double rotation scan (also called a clock scan), where two coplanar antennas revolve around a fixed axis at different radius and speed, to fulfill sampling of the brightness temperature. An array of 4+4 elements with opposite scanning directions are developed for the radio telescope to achieve the required sensitivity (<=1K) within the imaging refreshing time (~30 minutes). This scan scheme is appropriate for a three-axis stabilized spacecraft platform while keeping a good sampling pattern. We also discuss how we select the operating frequency, which involves a trade-off between the engineering feasibility and the scientific goal. Our preliminary results indicate that the central frequency of 150 MHz with a bandwidth of 20 MHz, which requires arm lengths of the two groups of 14m and 16m, respectively, gives an angular resolution of 2°, a field of view of ×25° around the Sun, and a time resolution of 30 minutes.

  10. Reducing Effects of Cross-Talk in a Radio Telescope Using Walsh Modulation

    NASA Astrophysics Data System (ADS)

    Chaudhari, Sandeep C.; Gupta, Yashwant; Kumar, Ajith; Shinde, Navnath D.; Gupta, Sweta; Vishwakarma, Ajay

    Traditional Walsh technique is used to eliminate cross-talk in a array of radio telescope where achieving synchronization between modulator and demodulator without compromising sensitivity is a real challenge. The paper describes a novel approach named Walsh Delay Hunting (WDH) to synchronize independently running modulator and demodulator with no additional hardware. This approach is unique and can easily be implemented in any existing radio telescope with minimal changes, thus by putting Walsh modulator at telescope and demodulation can be done in digital back-end. The scheme greatly reduces antenna electronics and overhead of sending synchronizing Walsh start pulse back to center station and vice versa. The paper describes WDH method and its feasibility study for Giant Meterwave Radio Telescope (GMRT) along with test results. The modulator is a low cost CPLD-based module and demodulation is done in a Reconfigurable Open Architecture Computing Hardware (ROACH)-based digitizer and packetizer. The scheme requires noise injection facility before modulator, which GMRT has for antenna calibration.

  11. A symbiotic approach to SETI observations: use of maps from the Westerbork Synthesis Radio Telescope.

    PubMed

    Tarter, J C; Israel, F P

    1982-01-01

    High spatial resolution continuum radio maps produced by the Westerbork Synthesis Radio Telescope (WSRT) of The Netherlands at frequencies near the 21 cm HI line have been examined for anomalous sources of emmission coincident with the locations of nearby bright stars. From a total of 542 stellar positions investigated, no candidates for radio stars or ETI signals were discovered to formal limits on the minimum detectable signal ranging from 7.7 x 10(-22) W/m2 to 6.4 x 10(-24) W/m2. This preliminary study has verified that data collected by radio astronomers at large synthesis arrays can profitably be analysed for SETI signals (in a non-interfering manner) provided only that the data are available in the form of a more or less standard two dimensional map format.

  12. A symbiotic approach to SETI observations: use of maps from the Westerbork Synthesis Radio Telescope

    NASA Technical Reports Server (NTRS)

    Tarter, J. C.; Israel, F. P.

    1982-01-01

    High spatial resolution continuum radio maps produced by the Westerbork Synthesis Radio Telescope (WSRT) of The Netherlands at frequencies near the 21 cm HI line have been examined for anomalous sources of emmission coincident with the locations of nearby bright stars. From a total of 542 stellar positions investigated, no candidates for radio stars or ETI signals were discovered to formal limits on the minimum detectable signal ranging from 7.7 x 10(-22) W/m2 to 6.4 x 10(-24) W/m2. This preliminary study has verified that data collected by radio astronomers at large synthesis arrays can profitably be analysed for SETI signals (in a non-interfering manner) provided only that the data are available in the form of a more or less standard two dimensional map format.

  13. Simultaneous observations of periodic non-Io decametric radio emission by ground radio telescope URAN-2 and STEREO/WAVES

    NASA Astrophysics Data System (ADS)

    Panchenko, M.; Brazhenko, A. I.; Rucker, H. O.; Frantzusenko, A.; Shaposhnikov, V. E.; Konovalenko, A. A.

    2013-09-01

    Periodic bursts of the non-Io component of Jovian decametric radio emission (non-Io DAM) is observed as (1) series of arc-like radio bursts with negative frequency drift which reoccur with 1.5% longer period than the Jovian magnetosphere rotation rate, (2) series of bursts with positive frequency drift which reoccur with Jupiter's rotation period and (3) periodic non-arc like radio features [1, 2]. These bursts are typically detected during several Jupiter rotations in decametric frequency range from 4 MHz to 12 - 16 MHz between 300° and 60° of CML. We present simultaneous observations of the periodic non-Io controlled DAM performed by the WAVES radio experiment onboard the two STEREO spacecraft and the groundbased radio telescope URAN-2 (Poltava, Ukraine) operated in the decametric frequency range. URAN-2 with an effective area of about 30000 m2 consists of 512 broadband crossed dipoles and equipped with the high performance digital radio spectrometer with polarization measurement capability. During the observation campaign Sep., 2012 - Apr., 2013 URAN-2 recorded a large amount of Jovian DAM events with the high time-frequency resolution (4 kHz - 100 ms) in a frequency range 8-32 MHz. In the same time the two spatially separated STEREO spacecraft was able to observe DAM in the frequency range up to 16 MHz. The first analysis of the acquired stereoscopic observations is presented. In particular, we show one episode when the periodic non-arc DAM was recorded together with long lasting Jovian narrow band (NB) emissions. These NB emission was observed at the high frequency cutoff of DAM and can be interpreted as propagation of the decametric radiation in the Jovian ionosphere [3]. We discuss the possible relations between the observed NB events and the periodic non-Io controlled Jovian decametric radio emission.

  14. Conical-scan tracking with the 64-m-diameter antenna at goldstone

    NASA Technical Reports Server (NTRS)

    Ohlson, J. E.; Reid, M. S.

    1976-01-01

    The theory and experimental work which demonstrated the feasibility of conical-scan tracking with a 64 m diameter paraboloid antenna is documented. The purpose of this scheme is to actively track spacecraft and radio sources continuously with an accuracy superior to that obtained by manual correction of the computer driven pointing. The conical-scan implementation gives increased tracking accuracy with X-band spacecraft signals, as demonstrated in the Mariner Venus/Mercury 1973 mission. Also, the high accuracy and ease of measurement with conical-scan tracking allow evaluation of systematic and random antenna tracking errors.

  15. Modeling the rail surface unevenness of a high-precision radio telescope

    NASA Astrophysics Data System (ADS)

    Li, Na; Li, Peng; Wu, Jiang; Duan, Bao-Yan

    2017-02-01

    This study proposed a coarse-fine mixed model for describing the rail surface unevenness of an ultra-large fully steerable radio telescope (Qi Tai Telescope) with a diameter of 110 meters. The rail surface unevenness includes information on error arising from two different scales, i.e., the long-period-short-change and the short-period-long-change. Consequently, in this study an idea of a mixed model was proposed, in which trigonometric and fractal functions were, respectively, used to describe information on error from two scales. Key parameters were determined by using the least squares method and the wavelet transform method, and finally, a specific mathematical expression of the model was obtained by optimization. To validate the effectiveness of the new modeling method, the mixed model was then used to describe the rails of the Green Bank Telescope, the Large Millimeter Telescope, and a radio telescope in Miyun, Beijing. A comparative study revealed that the maximum error was less than 15%, thus the result was superior to those of existing modeling methods.

  16. Radio telescopes as the detectors of super-high-energy neutrinos

    NASA Technical Reports Server (NTRS)

    Dagkesamansky, R. D.; Zheleznykh, I. M.

    1991-01-01

    The registration of super high energy neutrinos is a very difficult and also very important problem that requires construction of detectors with large effective target masses. Askaryan pointed out the possibility of registering cascades in dense media by the Cherenkov radio emission of an excess of negative charges in the cascades which arose in interaction between high energy particles and the atoms of medium. The telescopes for cosmic high energy neutrino detection by radioemission of cascades induced underground, but whose development continues in the atmosphere were proposed by others. The effective target masses of such detectors could be approx. 10(exp 9) tons and more. The properties of Cherenkov radio emission of cascades and the properties of ice in the Antarctic Region make it possible to propose Radio Antarctic Muon and Neutrino Detection (RAMAND): antennas should be placed on the ice surface of approx. 10 sq km to search for radio signals for neutrino (muon) cascades of energy. It is evident from data given that the largest radio telescopes gives the opportunity for registration of the cascades induced by neutrinos with the energies E is greater than or = 10(exp 20) eV.

  17. Constraints on the flux of ultra-high energy neutrinos from Westerbork Synthesis Radio Telescope observations

    NASA Astrophysics Data System (ADS)

    Buitink, S.; Scholten, O.; Bacelar, J.; Braun, R.; de Bruyn, A. G.; Falcke, H.; Singh, K.; Stappers, B.; Strom, R. G.; Yahyaoui, R. Al

    2010-10-01

    Context. Ultra-high energy (UHE) neutrinos and cosmic rays initiate particle cascades underneath the Moon's surface. These cascades have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequency window for observation of these pulses with radio telescopes on the Earth is around 150 MHz. Aims: By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHE neutrino flux. Methods: The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a sampling frequency of 40 MHz. The narrowband radio interference is digitally filtered out and the dispersive effect of the Earth's ionosphere is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, the detection efficiency for pulses of various strength is calculated. Results: With 47.6 hours of observation time, we are able to set a limit on the UHE neutrino flux. This new limit is an order of magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit.

  18. The likelihood ratio as a tool for radio continuum surveys with Square Kilometre Array precursor telescopes

    NASA Astrophysics Data System (ADS)

    McAlpine, K.; Smith, D. J. B.; Jarvis, M. J.; Bonfield, D. G.; Fleuren, S.

    2012-06-01

    In this paper we investigate the performance of the likelihood ratio method as a tool for identifying optical and infrared counterparts to proposed radio continuum surveys with Square Kilometre Array (SKA) precursor and pathfinder telescopes. We present a comparison of the infrared counterparts identified by the likelihood ratio in the VISTA Deep Extragalactic Observations (VIDEO) survey to radio observations with 6, 10 and 15 arcsec resolution. We cross-match a deep radio catalogue consisting of radio sources with peak flux density >60 ?Jy with deep near-infrared data limited to Ks≲ 22.6. Comparing the infrared counterparts from this procedure to those obtained when cross-matching a set of simulated lower resolution radio catalogues indicates that degrading the resolution from 6 arcsec to 10 and 15 arcsec decreases the completeness of the cross-matched catalogue by approximately 3 and 7 per cent respectively. When matching against shallower infrared data, comparable to that achieved by the VISTA Hemisphere Survey, the fraction of radio sources with reliably identified counterparts drops from ˜89 per cent, at Ks≲ 22.6, to 47 per cent with Ks≲ 20.0. Decreasing the resolution at this shallower infrared limit does not result in any further decrease in the completeness produced by the likelihood ratio matching procedure. However, we note that radio continuum surveys with the MeerKAT and eventually the SKA, will require long baselines in order to ensure that the resulting maps are not limited by instrumental confusion noise.

  19. Intra-day Variability Observations at 5 GHz with the Urumqi 25-meter Radio Telescope

    NASA Astrophysics Data System (ADS)

    Song, H.-G.; Liu, X.

    2007-10-01

    Radio intra-day variability (IDV) in compact flat-spectrum quasars and BL Lac objects has proven to be an important tool to investigate the emission of AGN and the propagation effect in the interstellar medium. We present the preliminary results of Urumqi 25 meter radio telescope IDV searches around some scintillation pulsars. The targets are from JVAS and CLASS samples around five pulsars, J0332+5434, J0826+2637, J1932+1059, J2022+2854, and J2022+5154.

  20. Single-Dish Radio Polarimetry in the F-GAMMA Program with the Effelsberg 100-m Radio Telescope

    NASA Astrophysics Data System (ADS)

    Beuchert, Tobias; Kadler, Matthias; Wilms, Jörn; Angelakis, Emmanouil; Fuhrmann, Lars; Myserlis, Ioannis; Nestoras, Ioannis; Kraus, Alex; Bach, Uwe; Ros, Eduardo; Grossberger, Christoph; Schulz, Robert

    2013-12-01

    Studying the variability of polarized AGN jet emission in the radio band is crucial for understanding the dynamics of moving shocks as well as the structure of the underlying magnetic field. The 100-m Effelsberg Telescope is a high-quality instrument for studying the long-term variability of both total and polarized intensity as well as the electric-vector position angle. Since 2007, the F-GAMMA program has been monitoring the linear polarized emission of roughly 60 blazars at 11 frequencies between 2.7 and 43 GHz. Here, we describe the calibration of the polarimetric data at 5 and 10 GHz and the resulting F-GAMMA full-Stokes light curves for the exemplary case of the radio galaxy 3C 111.

  1. HUBBLE SPACE TELESCOPE Imaging of the Host Galaxies of High-RedshiftRadio-loud Quasars

    NASA Astrophysics Data System (ADS)

    Lehnert, Matthew D.; van Breugel, Wil J. M.; Heckman, Timothy M.; Miley, George K.

    1999-09-01

    We present rest-frame UV and Lyα images of spatially resolved structures (``hosts'') around five high-redshift radio-loud quasars obtained with the WFPC2 camera on the Hubble Space Telescope (HST). The quasars were imaged with the PC1 through the F555W (``V''-band) filter, which at the redshifts of the quasars (2.1radio-loud quasars at high redshift have prominent host galaxies that appeared to have properties similar to those of high-redshift radio galaxies. Our HST observations allow a more detailed investigation of quasar host morphologies and a comparison with similar HST studies of radio galaxies by others. Using several methods to measure and quantify the host properties we find that all five quasars are extended and that this ``fuzz'' contains ~5%-40% of the total continuum flux and 15%-65% of the Lyα flux within a radius of about 1.5". The rest-frame UV luminosities of the hosts are log λPλ~11.9-12.5 Lsolar (assuming no internal dust extinction), comparable to the luminous radio galaxies at similar redshifts and a factor 10 higher than both radio-quiet field galaxies at z~2-3 and the most UV-luminous low-redshift starburst galaxies. The Lyα luminosities of the hosts are log LLyα~44.3-44.9 ergs s-1, which are also similar to the those of luminous high-redshift radio galaxies and considerably larger than the Lyα luminosities of high-redshift field galaxies. To generate the Lyα luminosities of the hosts would require roughly a few percent of the total observed ionizing luminosity of the quasar. The UV continuum morphologies of the hosts appear complex and knotty at the relatively high surface brightness levels of our exposures (about 24 V mag arcsec-2). In two quasars we find evidence for foreground galaxies that confuse the

  2. Performance of a Quad-Ridged Feed in a Wideband Radio Telescope

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Akgiray, Ahmed

    2011-01-01

    A new quad-ridged, flared horn achieving nearly constant beamwidth and excellent return loss over a 6:1 frequency bandwidth is described. The system performance in two Radio Telescopes: 1) A 12-meter symmetric dual shaped reflector system intended for geodetic very long baseline interferometry and 2) A 15-meter offset dual shaped reflector intended for the SKA is presented showing it to be excellent wideband feed choice.

  3. Cassegrainian/Gregorian-type null correctors for surface measurements of radio telescope reflectors.

    PubMed

    Greve, A

    1997-08-01

    The (sub)millimeter wavelength radio observatory of the next generation will probably be an interferometer array of some 50 telescopes with parabolic reflectors 10-15 m in diameter. At this scale of mass production it is convenient to have at hand for workshop assembly a reflector surface measurement technique that is precise and easy to operate. We discuss the possibility of reflector measurements based on 10.6-microm CO2 laser interferometry using Cassegrainian/Gregorian-type null correctors.

  4. Simultaneous observations of solar sporadic radio emission by the radio telescopes UTR-2, URAN-2 and NDA within the frequency range 8-42 MHz

    NASA Astrophysics Data System (ADS)

    Melnik, V.; Konovalenko, A.; Brazhenko, A.; Briand, C.; Dorovskyy, V.; Zarka, P.; Denis, L.; Bulatzen, V.; Frantzusenko, A.; Rucker, H.; Stanislavskyy, A.

    2012-09-01

    From 25 June till 12 August 2011 sporadic solar radio emission was observed simultaneously by three separate radio telescopes: UTR-2 (Kharkov, Ukraine), URAN-2 (Poltava, Ukraine) and NDA (Nancay, France). During these observations some interesting phenomena were observed. Some of them are discussed in this paper.

  5. Reoptimization of the Ohio State University radio telescope for the NASA SETI program

    NASA Technical Reports Server (NTRS)

    Dixon, R. S.

    1991-01-01

    The Ohio State University radiotelescope is the second largest radio telescope in the United States, equivalent in collecting area (2200 sq m) to a 175-foot diameter dish. For the past 17 years it has been dedicated fulltime to SETI, and it is now being considered by NASA for selection as the NASA dedicated SETI observatory. The telescope was originally designed, optimized, and used as an all-sky survey instrument to create detailed maps and catalogs of the radio astronomical sky. For the SETI Program, some re-optimizations are required. Right ascension tracking for one to two hours (depending on the declination) was achieved by exploiting the exceptionally large f/d ratio of the telescope. The feed horns were mounted on a large moveable, rubber-tired cart which is capable of a total motion of 100 feet. The cart can carry many horns, making possible simultaneous observations at many sky directions and frequency ranges. Rapid declination movement and its automation will be accomplished through simplification of the existing braking system, and replacement of older mechanical sensors by modern electronic inclinometers and proximity detectors. Circular polarization capability will be achieved through an increase in the number of horizontal wires in the reflector mesh, or addition of a finer mesh on top of the existing one. The telescope has great inherent resistance to radio frequency interference, due to its ground-mounted feed horns and shielding by the large reflectors of half the horizon. The resistance was recently increased further by installation of rolled-edges and diffraction-trapping gratings on the feed horns. If further shielding should be required, inexpensive side shields could be added to the telescope, making it a totally closed structure on all four sides.

  6. Subreflector model depending on elevation for the Tianma 65m Radio Telescope

    NASA Astrophysics Data System (ADS)

    Sun, Zheng-Xiong; Wang, Jin-Qing; Chen, Lan

    2016-08-01

    A subreflector adjustment system for the Tianma 65 m radio telescope, administered by Shanghai Astronomical Observatory, has been installed to compensate for gravitational deformation of the main reflector and the structure supporting the subreflector. The position and attitude of the subreflector are variable in order to improve the efficiency at different elevations. The subreflector model has the goal of improving the antenna's performance. A new fitting formulation which is different from the traditional formulation is proposed to reduce the fitting error in the Y direction. The only difference in the subreflector models of the 65m radio telescope is the bias of a constant term in the Z direction. We have investigated the effect of movements of the subreflector on the pointing of the antenna. The results of these performance measurements made by moving the antenna in elevation show that the subreflector model can effectively improve the efficiency of the 65 m radio telescope at each elevation. An antenna efficiency of about 60% at the Ku band is reached in the whole angular range of elevation.

  7. Reliability-centered maintenance for ground-based large optical telescopes and radio antenna arrays

    NASA Astrophysics Data System (ADS)

    Marchiori, G.; Formentin, F.; Rampini, F.

    2014-07-01

    In the last years, EIE GROUP has been more and more involved in large optical telescopes and radio antennas array projects. In this frame, the paper describes a fundamental aspect of the Logistic Support Analysis (LSA) process, that is the application of the Reliability-Centered Maintenance (RCM) methodology for the generation of maintenance plans for ground-based large optical telescopes and radio antennas arrays. This helps maintenance engineers to make sure that the telescopes continue to work properly, doing what their users require them to do in their present operating conditions. The main objective of the RCM process is to establish the complete maintenance regime, with the safe minimum required maintenance, carried out without any risk to personnel, telescope and subsystems. At the same time, a correct application of the RCM allows to increase the cost effectiveness, telescope uptime and items availability, and to provide greater understanding of the level of risk that the organization is managing. At the same time, engineers shall make a great effort since the initial phase of the project to obtain a telescope requiring easy maintenance activities and simple replacement of the major assemblies, taking special care on the accesses design and items location, implementation and design of special lifting equipment and handling devices for the heavy items. This maintenance engineering framework is based on seven points, which lead to the main steps of the RCM program. The initial steps of the RCM process consist of: system selection and data collection (MTBF, MTTR, etc.), definition of system boundaries and operating context, telescope description with the use of functional block diagrams, and the running of a FMECA to address the dominant causes of equipment failure and to lay down the Critical Items List. In the second part of the process the RCM logic is applied, which helps to determine the appropriate maintenance tasks for each identified failure mode. Once

  8. DISCOVERY OF TWO MILLISECOND PULSARS IN FERMI SOURCES WITH THE NANCAY RADIO TELESCOPE

    SciTech Connect

    Cognard, I.; Johnson, T. J.; Harding, A. K.; Ferrara, E. C.; Smith, D. A.; Dumora, D.; Wolff, M. T.; Grove, J. E.; Cheung, C. C.; Abdo, A. A.; Donato, D.; Ballet, J.; Desvignes, G.; Johnston, S.; Keith, M. E-mail: guillemo@mpifr-bonn.mpg.de

    2011-05-01

    We report the discovery of two millisecond pulsars in a search for radio pulsations at the positions of Fermi-Large Area Telescope sources with no previously known counterparts, using the Nancay Radio Telescope. The two millisecond pulsars, PSRs J2017+0603 and J2302+4442, have rotational periods of 2.896 and 5.192 ms and are both in binary systems with low-eccentricity orbits and orbital periods of 2.2 and 125.9 days, respectively, suggesting long recycling processes. Gamma-ray pulsations were subsequently detected for both objects, indicating that they power the associated Fermi sources in which they were found. The gamma-ray light curves and spectral properties are similar to those of previously detected gamma-ray millisecond pulsars. Detailed modeling of the observed radio and gamma-ray light curves shows that the gamma-ray emission seems to originate at high altitudes in their magnetospheres. Additionally, X-ray observations revealed the presence of an X-ray source at the position of PSR J2302+4442, consistent with thermal emission from a neutron star. These discoveries along with the numerous detections of radio-loud millisecond pulsars in gamma rays suggest that many Fermi sources with no known counterpart could be unknown millisecond pulsars.

  9. A SURVEY OF RADIO RECOMBINATION LINES USING THE OOTY RADIO TELESCOPE AT 328 MHz IN THE INNER GALAXY

    SciTech Connect

    Baddi, Raju

    2012-02-15

    A survey of radio recombination lines in the Galactic plane with longitude -32 Degree-Sign < l < +80 Degree-Sign and latitude b < {+-}3 Degree-Sign using Ooty Radio Telescope (ORT) at 328 MHz is reported. ORT observations were made using a New Digital Backend (NDB) recently added to the telescope. With the NDB ORT had a beam of 2.{sup 0}3 Multiplication-Sign 2.{sup 0}2 sec({delta}) and a passband of {approx}1 MHz in the spectral line mode. The above-mentioned Galactic region was divided into {approx}2 Degree-Sign Multiplication-Sign 2 Degree-Sign patches with the ORT beam pointed to the center. The ORT observations form a study of the distribution of extended low-density warm-ionized medium (ELDWIM) in the inner Galaxy using H271{alpha} RLs. By obtaining kinematical distances using V{sub LSR} of the H271{alpha} RLs, the distribution of ELDWIM clouds within the inner Galaxy has been deduced for the region given above.

  10. Using a Satellite Swarm for building a Space-based Radio Telescope for Low Frequencies

    NASA Astrophysics Data System (ADS)

    Bentum, Mark; Boonstra, A. J.; Verhoeven, C. J. M.; van der Veen, A. J.; Gill, E. K. A.; Saks, N.; Falcke, H.; Klein-Wolt, M.; Rajan, R. T.; Wijnholds, S. J.; Arts, M.; van't Klooster, K.; Beliün, F.; Meijerink, A.; Monna, B.; Rotteveel, J.; Boer, M. A.; Bongers, E.; Boom, E.; van Tuijl, E.; van Staveren, A.

    In radio astronomy, as in astronomy in general, a wide range of frequencies is observed as each spectral band offers a unique window to study astrophysical phenomena. In the recent years, new observatories have been designed and built at the extreme limits of the radio spectrum. For the low frequencies several Earth-based radio telescopes are constructed at this moment. In the Netherlands, the Low Frequency Array (LOFAR) is being constructed at this moment and will be operational later this year. LOFAR observes the sky between 30 and 240 MHz. Observing at even lower frequencies is very interesting, but, due to the influence of the Earth's ionosphere this is not possible from Earth. Thus, the only option to observe low frequencies is a telescope in space. In the past several studies have been conducted on a low-frequency space-based radio tele-scope. In the recent ESA project Distributed Aperture Array for Radio Astronomy in Space (DARIS), such a mission was studied in detail. The study focused on a moderate-size three-dimensional satellite constellation operating as a coherent large-aperture synthesis array. The DARIS project is presented in a separate conference contribution. In the DARIS project the focus was on technology available at this moment, with an outlook and technological development plan/roadmap to be exploited for the future. Using current-day technologies, a space-based low-frequency array would be bulky and, thus, costly. A logical next step would be to investigate possibilities to miniaturize the electronics and use very small satellites, perhaps even nano satellites with masses between 1-10 kg to build the radio tele-scope. The approach is to use a swarm of satellites to establish a virtual telescope to perform the astronomical task. This is investigated in the NWO/STW-funded OLFAR (Orbiting Low Frequency Array) project. The OLFAR radio telescope will be composed of an antenna array based on satellites deployed at a location where the Earth

  11. A dynamic thermal model for design and control of an 800-element open-air radio telescope

    NASA Astrophysics Data System (ADS)

    Bremer, Michael; Greve, Albert

    2011-09-01

    In earlier work we have described the thermal modelling for design and control of a fully insulated, and sometimes ventilated, high precision radio telescope. For such an insulated telescope the modelling of the time-variable dynamic influence of the thermal environment (air, sky and ground radiation, insolation) is relatively simple. The modelling becomes however quite complex for an open-air radio telescope where each individual member of the reflector backup structure (BUS) and the support structure (fork or yoke) is exposed under a different and time-dependent aspect angle to the thermal environment, which applies in particular to solar radiation. We present a time-dependent 800-element thermal model of an open-air telescope. Using the IRAM 30-m radio telescope as the basic mechanical structure, we explain how the temperature induced, real-time pointing and reflector surface deformations can be derived when using as input the day of the year, the thermal environment, and the geographic position of the telescope and its changing pointing direction. Thermal modelling and results similar to those reported here can be used for radio telescope design and real-time control of pointing and surface adjustment of a telescope with active panels.

  12. The Goldstone Apple Valley Radio Telescope Program-Students Partner with Scientists

    NASA Astrophysics Data System (ADS)

    MacLaren, David; Hofstadter, M.; GAVRT Team

    2007-10-01

    The Goldstone Apple Valley Radio Telescope (GAVRT) Project provides students an opportunity to experience real science. It is also an opportunity for scientists to obtain time on a radio telescope. Via the Internet, students use a 34-meter dish retired from NASA's Deep Space Network to collect data. Approximately 3,500 students participate per year, located in 29 states, 13 countries, and 3 U.S. territories. Students have collaborated with scientists to study a variety of objects and in support of several spacecraft. GAVRT students helped calibrate Cassini's passive radiometer during its 2000-2001 flyby of Jupiter. Students participated in radar observations to help characterize the landing sites for the Opportunity and Spirit rovers. In December 2007 students will participate in radar measurements of possible future landing sites for the Mars Science Laboratory. From 2003 to the present students have been collecting quasar data as part of a study of the interstellar medium. Short-term fluctuations in quasar brightness are thought to be caused by scintillations due to scattering in interstellar plasmas rather than being intrinsic to the quasars themselves. In 2007 students and teachers submitted a proposal to investigate how the mass of black holes at the center of Active Galactic Nuclei (AGN) might correlate to their radio and infrared emissions. This proposal was awarded Director's Discretionary Time on the Spitzer Space Telescope. Students are conducting ground-based observations of the jovian magnetosphere. These data will be valuable to the Juno mission, helping it find clues about the formation of our solar system and adding to the 40 plus year record of the jovian synchrotron emission. GAVRT students also monitor the radio brightness of Uranus, searching for predicted seasonal variability. GAVRT is a partnership involving NASA, the Jet Propulsion Laboratory, and the Lewis Center for Education Research in Apple Valley, California.

  13. Using the Very Large Array (VLA) and other radio telescopes to perform a parasitic Search for Extraterrestrial Intelligence (SETI).

    PubMed

    Tarter, J

    1985-01-01

    This paper describes several attempts to utilize various radio telescopes in a manner that we term "parasitic," that is in a manner that does not interrupt or seriously impact the standard astronomical observing programs in progress at the radio observatories. In the extreme case, only recorded astronomical data are accessed off-line, after the fact, without any burden on the observatory at all.

  14. Using the Very Large Array (VLA) and other radio telescopes to perform a parasitic search for extraterrestrial intelligence (SETI)

    NASA Technical Reports Server (NTRS)

    Tarter, J. C.

    1984-01-01

    This paper describes several attempts to utilize various radio telescopes in a manner that is termed 'parasitic', that is in a manner that does not interrupt or seriously impact the standard astronomical observing programs in progress at the radio observatories. In the extreme case, only recorded astronomical data are accessed off-line, after the fact, without any burden on the observatory at all.

  15. Using the Very Large Array (VLA) and other radio telescopes to perform a parasitic Search for Extraterrestrial Intelligence (SETI)

    NASA Technical Reports Server (NTRS)

    Tarter, J.

    1985-01-01

    This paper describes several attempts to utilize various radio telescopes in a manner that we term "parasitic," that is in a manner that does not interrupt or seriously impact the standard astronomical observing programs in progress at the radio observatories. In the extreme case, only recorded astronomical data are accessed off-line, after the fact, without any burden on the observatory at all.

  16. Protecting the Moon Farside Radio-Telescopes from RFI Produced at the Future Lagrangian-Points

    NASA Astrophysics Data System (ADS)

    Pluchino, S.; Antonietti, N.; Maccone, C.

    The coming space colonization will involve the possibility of establishing Space Stations (Gateways in the NASA jargon) at some Lagrangian Points in the vicinity of the Earth (5 points in the Earth-Moon system plus 2 more in the Sun-Earth system). Independently of this, the Moon's farside is the only place around the Earth that man-made radio frequency interferences (RFI) clearly cannot reach. In other words, a radio telescope or an array of antennas located in the centre of the Moon's farside would be able to achieve radio observations enormously clean and sensitive. In this paper we study the problems of radio wave diffraction that arise from the future RFI produced at the Lagrangian Points with particular regard to the frequency bands that are important in radio astronomical research. It is hoped that the future exploitation of the Moon's farside by several space- faring nations will take into account the “ecological” need to preserve at least the central part of the Moon's farside. This is understood to mean the creation of an official RFI-Free Zone within a circle centered at crater Daedalus (i.e. at around the antipode of the Earth) and extending 30 degrees in both latitude and longitude.

  17. A multi-layered thermal model of backup structures for mm-wavelength radio telescopes

    NASA Astrophysics Data System (ADS)

    Greve, A.; Smith, D. R.; Bremer, M.

    2006-06-01

    An unfavourable influence that degrades the performance of any millimeter wavelength radio telescope is the deformation of the reflector surface due to temperature differences in the supporting backup structure. To avoid, or at least reduce this influence, the backup structures are typically protected by a rear side cladding, insulation at the panel inner side, and ventilation or climatization of the air inside the backup structure. During the design of a mm-wavelength telescope, the layout of a thermal protection system is made, based on experience gained on other telescopes, and on thermal model calculations of the complete backup structure. The available thermal programs allow today the construction of a multi-layered backup structure model, consisting of the backup structure tube network, without and with ventilation/climatization, the panels, insulation behind the panels, and the rear side cladding. We provide a guideline for the construction of such a multi-layered thermal model, and demonstrate that realistic temperature gradients across and through a backup structure can be calculated. These gradients can be used in a finite element model to calculate the reflector surface deformations, which can be used in a diffraction program to calculate the radio beam pattern.

  18. A Low-cost 21 cm Horn-antenna Radio Telescope for Education and Outreach

    NASA Astrophysics Data System (ADS)

    Patel, Nimesh A.; Patel, Rishi N; Kimberk, Robert S; Test, John H; Krolewski, Alex; Ryan, James; Karkare, Kirit S; Kovac, John M; Dame, Thomas M.

    2014-06-01

    Small radio telescopes (1-3m) for observations of the 21 cm hydrogen line are widely used for education and outreach. A pyramidal horn was used by Ewen & Purcell (1951) to first detect the 21cm line at Harvard. Such a horn is simple to design and build, compared to a parabolic antenna which is usually purchased ready-made. Here we present a design of a horn antenna radio telescope that can be built entirely by students, using simple components costing less than $300. The horn has an aperture of 75 cm along the H-plane, 59 cm along the E-plane, and gain of about 20 dB. The receiver system consists of low noise amplifiers, band-pass filters and a software-defined-radio USB receiver that provides digitized samples for spectral processing in a computer. Starting from construction of the horn antenna, and ending with the measurement of the Galactic rotation curve, took about 6 weeks, as part of an undergraduate course at Harvard University. The project can also grow towards building a two-element interferometer for follow-up studies.

  19. "RadioAstron"-A telescope with a size of 300 000 km: Main parameters and first observational results

    NASA Astrophysics Data System (ADS)

    Kardashev, N. S.; Khartov, V. V.; Abramov, V. V.; Avdeev, V. Yu.; Alakoz, A. V.; Aleksandrov, Yu. A.; Ananthakrishnan, S.; Andreyanov, V. V.; Andrianov, A. S.; Antonov, N. M.; Artyukhov, M. I.; Arkhipov, M. Yu.; Baan, W.; Babakin, N. G.; Babyshkin, V. E.; Bartel', N.; Belousov, K. G.; Belyaev, A. A.; Berulis, J. J.; Burke, B. F.; Biryukov, A. V.; Bubnov, A. E.; Burgin, M. S.; Busca, G.; Bykadorov, A. A.; Bychkova, V. S.; Vasil'kov, V. I.; Wellington, K. J.; Vinogradov, I. S.; Wietfeldt, R.; Voitsik, P. A.; Gvamichava, A. S.; Girin, I. A.; Gurvits, L. I.; Dagkesamanskii, R. D.; D'Addario, L.; Giovannini, G.; Jauncey, D. L.; Dewdney, P. E.; D'yakov, A. A.; Zharov, V. E.; Zhuravlev, V. I.; Zaslavskii, G. S.; Zakhvatkin, M. V.; Zinov'ev, A. N.; Ilinen, Yu.; Ipatov, A. V.; Kanevskii, B. Z.; Knorin, I. A.; Casse, J. L.; Kellermann, K. I.; Kovalev, Yu. A.; Kovalev, Yu. Yu.; Kovalenko, A. V.; Kogan, B. L.; Komaev, R. V.; Konovalenko, A. A.; Kopelyanskii, G. D.; Korneev, Yu. A.; Kostenko, V. I.; Kotik, A. N.; Kreisman, B. B.; Kukushkin, A. Yu.; Kulishenko, V. F.; Cooper, D. N.; Kut'kin, A. M.; Cannon, W. H.; Larionov, M. G.; Lisakov, M. M.; Litvinenko, L. N.; Likhachev, S. F.; Likhacheva, L. N.; Lobanov, A. P.; Logvinenko, S. V.; Langston, G.; McCracken, K.; Medvedev, S. Yu.; Melekhin, M. V.; Menderov, A. V.; Murphy, D. W.; Mizyakina, T. A.; Mozgovoi, Yu. V.; Nikolaev, N. Ya.; Novikov, B. S.; Novikov, I. D.; Oreshko, V. V.; Pavlenko, Yu. K.; Pashchenko, I. N.; Ponomarev, Yu. N.; Popov, M. V.; Pravin-Kumar, A.; Preston, R. A.; Pyshnov, V. N.; Rakhimov, I. A.; Rozhkov, V. M.; Romney, J. D.; Rocha, P.; Rudakov, V. A.; Räisänen, A.; Sazankov, S. V.; Sakharov, B. A.; Semenov, S. K.; Serebrennikov, V. A.; Schilizzi, R. T.; Skulachev, D. P.; Slysh, V. I.; Smirnov, A. I.; Smith, J. G.; Soglasnov, V. A.; Sokolovskii, K. V.; Sondaar, L. H.; Stepan'yants, V. A.; Turygin, M. S.; Turygin, S. Yu.; Tuchin, A. G.; Urpo, S.; Fedorchuk, S. D.; Finkel'shtein, A. M.; Fomalont, E. B.; Fejes, I.; Fomina, A. N.; Khapin, Yu. B.; Tsarevskii, G. S.; Zensus, J. A.; Chuprikov, A. A.; Shatskaya, M. V.; Shapirovskaya, N. Ya.; Sheikhet, A. I.; Shirshakov, A. E.; Schmidt, A.; Shnyreva, L. A.; Shpilevskii, V. V.; Ekers, R. D.; Yakimov, V. E.

    2013-03-01

    The Russian Academy of Sciences and Federal Space Agency, together with the participation of many international organizations, worked toward the launch of the RadioAstron orbiting space observatory with its onboard 10-m reflector radio telescope from the Baikonur cosmodrome on July 18, 2011. Together with some of the largest ground-based radio telescopes and a set of stations for tracking, collecting, and reducing the data obtained, this space radio telescope forms a multi-antenna ground-space radio interferometer with extremely long baselines, making it possible for the first time to study various objects in the Universe with angular resolutions a million times better than is possible with the human eye. The project is targeted at systematic studies of compact radio-emitting sources and their dynamics. Objects to be studied include supermassive black holes, accretion disks, and relativistic jets in active galactic nuclei, stellar-mass black holes, neutron stars and hypothetical quark stars, regions of formation of stars and planetary systems in our and other galaxies, interplanetary and interstellar plasma, and the gravitational field of the Earth. The results of ground-based and inflight tests of the space radio telescope carried out in both autonomous and ground-space interferometric regimes are reported. The derived characteristics are in agreement with the main requirements of the project. The astrophysical science program has begun.

  20. GREEN BANK TELESCOPE AND SWIFT X-RAY TELESCOPE OBSERVATIONS OF THE GALACTIC CENTER RADIO MAGNETAR SGR J1745–2900

    SciTech Connect

    Lynch, Ryan S.; Archibald, Robert F.; Kaspi, Victoria M.; Scholz, Paul

    2015-06-20

    We present results from eight months of Green Bank Telescope 8.7 GHz observations and nearly 18 months of Swift X-ray telescope observations of the radio magnetar SGR J1745–2900. We tracked the radio and X-ray flux density, polarization properties, profile evolution, rotation, and single-pulse behavior. We identified two main periods of activity. The first is characterized by approximately 5.5 months of relatively stable evolution in radio flux density, rotation, and profile shape, while in the second these properties varied substantially. Specifically, a third profile component emerged and the radio flux also became more variable. The single pulse properties also changed, most notably with a larger fraction of pulses with pulse widths ∼5–20 ms in the erratic state. Bright single pulses are well described by a log-normal energy distribution at low energies, but with an excess at high energies. The 2–10 keV flux decayed steadily since the initial X-ray outburst, while the radio flux remained stable to within ∼20% during the stable state. A joint pulsar timing analysis of the radio and X-ray data shows a level of timing noise unprecedented in a radio magnetar, though during the time covered by the radio data alone the timing noise was at a level similar to that observed in other radio magnetars. While SGR J1745–2900 is similar to other radio magnetars in many regards, it differs by having experienced a period of relative stability in the radio that now appears to have ended, while the X-ray properties evolved independently.

  1. Very long baseline interferometric observations made with an orbiting radio telescope

    NASA Technical Reports Server (NTRS)

    Levy, G. S.; Linfield, R. P.; Ulvestad, J. S.; Edwards, C. D.; Jordan, J. F., Jr.; Di Nardo, J.; Christensen, C. S.; Preston, R. A.; Skjerve, L. J.; Blaney, K. B.

    1986-01-01

    An orbiting spacecraft and ground observatories have been used to obtain interferometric observations of cosmic radio sources. The Tracking and Data Relay Satellite System (TDRSS) was used as the orbiting observatory in conjunction with two 64-meter radio telescopes at ground observatories, one in Australia and one in Japan. The quasars 1730-130 (NRAO 530), 1510-089, and 1741-038 were observed at a frequency of 2.3 gigahertz, and a maximum projected baseline of 1.4 earth diameters was achieved. All quasar observations for which valid data were acquired resulted in detected fringes. Many of the techniques proposed for a dedicated very long baseline interferometry observatory in space were used successfully in this experiment.

  2. Spectral observations of active region sources with RATAN-600 and WSRT. [Westerbork Synthesis Radio Telescope

    NASA Technical Reports Server (NTRS)

    Alissandrakis, C. E.; Gel'frejkh, G. B.; Borovik, V. N.; Korzhavin, A. N.; Bogod, V. M.; Nindos, A.; Kundu, M. R.

    1993-01-01

    We present spectral observations of neutral line and sunspot associated sources obtained with the RATAN-600 radio telescope and the WSRT in the wavelength range of 2 to 6 cm. Sources associated with large sunspots have flat spectra, while neutral line sources have very steep spectra. In the case of a large spot we estimated the magnetic field to be at least 2700 G at the base of the transition region and 1800 G in the low corona. We consider possible interpretations of the radio emission above the neutral lines. Gyroresonance emission at the fourth harmonic is inadequate, whereas emission from a small population of nonthermal electrons (total number 10 exp 30 to 10 exp 31) with a delta = 3 power law distribution seems to be sufficient.

  3. Very long baseline interferometric observations made with an orbiting radio telescope.

    PubMed

    Levy, G S; Linfield, R P; Ulvestad, J S; Edwards, C D; Jordan, J F; DI Nardo, S J; Christensen, C S; Preston, R A; Skjerve, L J; Stavert, L R; Burke, B F; Whitney, A R; Cappallo, R J; Rogers, A E; Blaney, K B; Maher, M J; Ottenhoff, C H; Jauncey, D L; Peters, W L; Nishimura, T; Hayashi, T; Takano, T; Yamada, T; Hirabayashi, H; Morimoto, M; Inoue, M; Shiomi, T; Kawaguchi, N; Kunimori, H

    1986-10-10

    An orbiting spacecraft and ground observatories have been used to obtain interferometric observations of cosmic radio sources. The Tracking and Data Relay Satellite System (TDRSS) was used as the orbiting observatory in conjunction with two 64- meter radio telescopes at ground observatories, one in Australia and one in Japan. The quasars 1730-130 (NRAO 530), 1510-089, and 1741-038 were observed at a frequency of 2.3 gigahertz, and a maximum projected baseline of 1.4 earth diameters was achieved. All quasar observations for which valid data were acquired resulted in detected fringes. Many of the techniques proposed for a dedicated very long baseline interferometry observatory in space were used successfully in this experiment.

  4. Searching For Fast Radio Burst Counterparts with Swift's Burst Alert Telescope

    NASA Astrophysics Data System (ADS)

    Delaunay, James; Fox, Derek; AMON Team

    2017-01-01

    Fast Radio Bursts (FRBs) are millisecond-long bursts of GHz-frequency emission with Dispersion Measures large enough to be of a cosmological origin. There has yet to be a non-radio counterpart or high-confidence host galaxy detected for any FRB, leaving their true nature to be very mysterious. Using sub-threshold archival data from Swift's Burst Alert Telescope (BAT;) we searched for evidence of a gamma-ray counterpart to any of the FRBs. In this talk I will present the details and results of our search. If real-time FRB alerts are integrated into the Astrophysical Multimessenger Observatory Network (AMON;), sub-threshold FRBs can be detected through real-time spatial and temporal coincidences with other messengers. I will also talk about the real-time AMON analysis that's currently running. We gratfully acknowledge support from the Penn State Institute for Gravitation and Cosmos

  5. Biggest Radio-Telescope in Northern Europe, the RT-32 in Latvia

    NASA Astrophysics Data System (ADS)

    Monstein, Christian

    2014-08-01

    Hidden in the dense coastal forests of Slítere a mysterious ex-Soviet spy center is now used for science. Almost everyone including me who entered the site of the two large radio telescopes called Irbene, are amazed by the surrealistic atmosphere of the abandoned ghost town and two large radio dish antennas in the middle of nowhere. This article will tell more about this site; see also [1]. As the Cold War between the US and USSR entered the space age, the need for Space espionage led to the Soviets designing ways to track and decode signals from US satellites. The project began in 1967 when the remote areas of the Ventspils district were allocated for secret buildup of a site codenamed "Starlet". The location was chosen because of low population and dense forest areas of Slí;tere that also were part of the Soviet border zone - ensuring that no strangers could ever discover it.

  6. Rayleigh beacon for measuring the surface profile of a radio telescope.

    PubMed

    Padin, S

    2014-12-01

    Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A λ=3  mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds.

  7. The control system of the 3 mm band SIS receiver for the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Ladu, A.; Ortu, P.; Saba, A.; Pili, M.; Guadiomonte, F.; Navarrini, A.; Urru, E.; Pisanu, T.; Valente, G.; Marongiu, P.; Mazzarella, G.

    2016-07-01

    We present the control system of the 84-116 GHz (3 mm band) Superconductor-Insulator-Superconductor (SIS) heterodyne receiver to be installed at the Gregorian focus of the Sardinia Radio Telescope (SRT). The control system is based on a single-board computer from Raspberry, on microcontrollers from Arduino, and on a Python program for communication between the receiver and the SRT antenna control software, which remotely controls the backshorttuned SIS mixer, the receiver calibration system and the Local Oscillator (LO) system.

  8. Development of a Multi-frequency Interferometer Telescope for Radio Astronomy (MITRA)

    NASA Astrophysics Data System (ADS)

    Ingala, Dominique Guelord Kumamputu

    2015-03-01

    This dissertation describes the development and construction of the Multi-frequency Interferometer Telescope for Radio Astronomy (MITRA) at the Durban University of Technology. The MITRA station consists of 2 antenna arrays separated by a baseline distance of 8 m. Each array consists of 8 Log-Periodic Dipole Antennas (LPDAs) operating from 200 MHz to 800 MHz. The design and construction of the LPDA antenna and receiver system is described. The receiver topology provides an equivalent noise temperature of 113.1 K and 55.1 dB of gain. The Intermediate Frequency (IF) stage was designed to produce a fixed IF frequency of 800 MHz. The digital Back-End and correlator were implemented using a low cost Software Defined Radio (SDR) platform and Gnu-Radio software. Gnu-Octave was used for data analysis to generate the relevant received signal parameters including total power, real, and imaginary, magnitude and phase components. Measured results show that interference fringes were successfully detected within the bandwidth of the receiver using a Radio Frequency (RF) generator as a simulated source. This research was presented at the IEEE Africon 2013 / URSI Session Mauritius, and published in the proceedings.

  9. A year of operation of Melibea e-Callisto Solar Radio Telescope

    NASA Astrophysics Data System (ADS)

    Russu, A.; Gómez-Herrero, R.; Prieto, M.; Monstein, C.; Ivanov, H.; Rodríguez-Pacheco, J.; Blanco, J. J.

    2015-08-01

    The e-CALLISTO (Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory) is a worldwide radio-spectrograph network with 24 hours a day solar radio burst monitoring. The e-CALLISTO network is led by the Swiss Federal Institute of Technology Zurich (ETHZ Zurich), which work up collaborations with local host institutions. In 2013 the University of Alcalá joined the e-CALLISTO network with the installation of two Solar Radio Telescopes (SRT): the EA4RKU-SRT that was located at the University of Alcalá from January 2013 till June 2013 and the Melibea-SRT that is located at Peralejos de las Truchas (Guadalajara) in operation from June 2013. The Spanish e-Callisto SRTs provide routine data to the network. We present examples of type III and type II radio-bursts observed by Melibea during its first year of operation and study their relation with soft X-ray flares observed by GOES and Coronal Mass Ejections (CMEs) and Solar Energetic Particle (SEP) events observed by space-borne instrumentation.

  10. Giving High School Students a Research Grade Radio Telescope to Control; Motivational Results from Access to Real Scientific Tools

    NASA Astrophysics Data System (ADS)

    Kohrs, Russell; Langston, G.; Heatherly, S.

    2013-01-01

    Have you ever wondered what it might be like to place control of a six-story building in the hands of eager high school students? This past summer, the USNO 20m telescope at the National Radio Astronomy Observatory, Green Bank, WV was brought back online for just such a purpose. This telescope is equipped with an X-band receiver, capable of observing center frequencies from 8-10 GHz and is the first radio telescope accessible by students and observers through the SKYNET telescope network. Operated remotely with a queue-based system, students can now collect real radio data for any range of projects. This past summer, five lessons were written that were tailor-made for student exploration of radio astronomy. Each lesson explores various radio objects in the context of an action-packed sci-fi adventure. Some of the work required to bring the 20m online for student use will be discussed here, but the main focus of this presentation will be how this work has been received by the author’s own students in its first classroom application. Topics that are normally difficult to discuss with students in an inquiry-based classroom setting, such as HII regions, synchrotron radiation, lunar temperature profiles, and galactic supermassive black holes were addressed in the classroom using the lessons developed by the author for the 20m as well as data collected by students using the telescope via SKYNET.

  11. National Radio Astronomy Observatory Announces Closure of Millimeter-Wave Telescope

    NASA Astrophysics Data System (ADS)

    2000-02-01

    The National Radio Astronomy Observatory (NRAO) will close down its millimeter-wavelength telescope on Kitt Peak, Arizona, in July 2000, Director Paul Vanden Bout announced today. The closure will affect the activities of 24 NRAO employees. The Arizona telescope, known as the 12 Meter Telescope because of the diameter of its dish antenna, is the only millimeter-wavelength instrument in the U.S. that is operated full-time as a national facility, open to all scientists. The action was made necessary by the current and anticipated budget for the Observatory, Vanden Bout said. "We are forced to reduce the scope of our activities," Vanden Bout said. The NRAO also operates the Very Large Array and Very Long Baseline Array from its facilities in New Mexico and is completing construction of the Green Bank Telescope in West Virginia. The 12 Meter Telescope is used to observe electromagnetic radiation with wavelengths of a few millimeters down to one millimeter, a region that lies between what is traditionally considered radio waves and infrared radiation. The NRAO is currently participating in an international partnership to develop the Atacama Large Millimeter Array (ALMA), an array of 64 antennas to observe at millimeter wavelengths from a 16,500-foot-high location in northern Chile. "We understood that ALMA eventually would replace the 12 Meter Telescope, but we had hoped to continue operating the 12 Meter until ALMA began interim operations, probably sometime in 2005. That is not possible, and we are forced to close the 12 Meter this year," Vanden Bout said. More than 150 scientists use the 12 Meter Telescope for their research every year. The NRAO's Tucson-based employees have been notified of the Observatory's decision. Some of the NRAO employees in Tucson already are working on the ALMA project. Over the next few months, the NRAO will seek to transfer 12 Meter staff to the ALMA project or to other positions within the Observatory, where that is possible. Where

  12. An innovative, highly sensitive receiver system for the Square Kilometre Array Mid Radio Telescope

    NASA Astrophysics Data System (ADS)

    Tan, Gie Han; Lehmensiek, Robert; Billade, Bhushan; Caputa, Krzysztof; Gauffre, Stéphane; Theron, Isak P.; Pantaleev, Miroslav; Ljusic, Zoran; Quertier, Benjamin; Peens-Hough, Adriaan

    2016-07-01

    The Square Kilometre Array (SKA) Project is a global science and engineering project realizing the next-generation radio telescopes operating in the metre and centimetre wavelengths regions. This paper addresses design concepts of the broadband, exceptionally sensitive receivers and reflector antennas deployed in the SKA1-Mid radio telescope to be located in South Africa. SKA1-Mid (350 MHz - 13.8 GHz with an option for an upper limit of 24 GHz) will consist of 133 reflector antennas using an unblocked aperture, offset Gregorian configuration with an effective diameter of 15 m. Details on the unblocked aperture Gregorian antennas, low noise front ends and advanced direct digitization receivers, are provided from a system design perspective. The unblocked aperture results in increased aperture efficiency and lower side-lobe levels compared to a traditional on-axis configuration. The low side-lobe level reduces the noise contribution due to ground pick-up but also makes the antenna less susceptible to ground-based RFI sources. The addition of extra shielding on the sub-reflector provides a further reduction of ground pick-up. The optical design of the SKA1-Mid reflector antenna has been tweaked using advanced EM simulation tools in combination with sophisticated models for sky, atmospheric and ground noise contributions. This optimal antenna design in combination with very low noise, partially cryogenic, receivers and wide instantaneous bandwidth provide excellent receiving sensitivity in combination with instrumental flexibility to accommodate a wide range of astronomical observation modes.

  13. Deep 610-MHz Giant Metrewave Radio Telescope observations of the Spitzer extragalactic First Look Survey field - III. The radio properties of infrared-faint radio sources

    NASA Astrophysics Data System (ADS)

    Garn, Timothy; Alexander, Paul

    2008-12-01

    Infrared-faint radio sources (IFRSs) are a class of source which are bright at radio frequencies, but do not appear in deep infrared images. We report the detection of 14 IFRSs within the Spitzer extragalactic First Look Survey field, eight of which are detected near to the limiting magnitude of a deep R-band image of the region, at R ~ 24.5. Sensitive Spitzer Space Telescope images are stacked in order to place upper limits on their mid-infrared flux densities, and using recent 610-MHz and 1.4-GHz observations we find that they have spectral indices which vary between α = 0.05 and 1.38, where we define α such that Sν = S0ν-α, and should not be thought of as a single source population. We place constraints on the luminosity and linear size of these sources, and through comparison with well-studied local objects in the Revised Revised Third Cambridge catalogue demonstrate that they can be modelled as being compact (<20 kpc) Fanaroff-Riley type II (FRII) radio galaxies located at high redshift (z ~ 4).

  14. A COMBINED LOW-RADIO FREQUENCY/X-RAY STUDY OF GALAXY GROUPS. I. GIANT METREWAVE RADIO TELESCOPE OBSERVATIONS AT 235 MHz AND 610 MHz

    SciTech Connect

    Giacintucci, Simona; O'Sullivan, Ewan; Vrtilek, Jan; David, Laurence P.; Mazzotta, Pasquale; Gitti, Myriam; Jones, Christine; Forman, William R.; Raychaudhury, Somak; Ponman, Trevor; Venturi, Tiziana; Athreya, Ramana M.; Clarke, Tracy E.; Murgia, Matteo; Ishwara-Chandra, C. H.

    2011-05-10

    We present new Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz of 18 X-ray bright galaxy groups. These observations are part of an extended project, presented here and in future papers, which combines low-frequency radio and X-ray data to investigate the interaction between central active galactic nuclei (AGNs) and the intra-group medium (IGM). The radio images show a very diverse population of group-central radio sources, varying widely in size, power, morphology, and spectral index. Comparison of the radio images with Chandra and XMM-Newton X-ray images shows that groups with significant substructure in the X-ray band and marginal radio emission at {approx}>1 GHz host low-frequency radio structures that correlate with substructures in IGM. Radio-filled X-ray cavities, the most evident form of AGN/IGM interaction in our sample, are found in half of the systems and are typically associated with small, low-, or mid-power double radio sources. Two systems, NGC5044 and NGC4636, possess multiple cavities, which are isotropically distributed around the group center, possibly due to group weather. In other systems the radio/X-ray correlations are less evident. However, the AGN/IGM interaction can manifest itself through the effects of the high-pressure medium on the morphology, spectral properties, and evolution of the radio-emitting plasma. In particular, the IGM can confine fading radio lobes in old/dying radio galaxies and prevent them from dissipating quickly. Evidence for radio emission produced by former outbursts that co-exist with current activity is found in six groups of the sample.

  15. Design of a radio telescope surface segment actuator based on a form-closed eccentric cam

    NASA Astrophysics Data System (ADS)

    Smith, David R.

    2014-07-01

    As radio telescopes have reached larger diameters and higher frequencies, it is typically not possible to meet their surface accuracy specifications using passive homology-based designs. The most common solution to this problem in the current generation of large, high-frequency radio telescopes is to employ a system of linear actuators to correct the surface shape of the primary reflector. The exact specifications of active surface actuators vary with the telescope. However, they have many common features, some of which drive their design. In general, these actuators must provide precise and repeatable positioning under significant loads during operation and they must withstand even higher loads for survival conditions. For general safety, they typically must hold position in the event of a power failure and must incorporate position limits, whether electrical, mechanical, or both. Because the number of actuators is generally high for large active surfaces (hundreds or even thousands of actuators), they must also be reliable and of reasonable individual cost. Finally, for maximum flexibility in their installation, they must be compact. This paper presents a concept for an active surface actuator based on a form-closed eccentric cam (kinematically, a Scotch Yoke mechanism). Such a design is limited in stroke, but offers potential advantages in terms of manufacture, compactness, measurement, and survival loading. The paper demonstrates that some of the expected advantages cannot be practically realized, due to dimensions that are driven by survival loading conditions. As a result, this concept is likely to offer an advantage over conventional screw-type actuators only for cases where actuator runaway and stall are the driving considerations.

  16. Novel technology for the the Effelsberg 100-m Radio Telescope and MeerKAT

    NASA Astrophysics Data System (ADS)

    Kramer, Michael; Kraus, Alex; Wieching, Gundolf

    2015-08-01

    The 100-m radio telescope of the Max-Planck-Institut für Radioastronomie (MPIfR) is a unique European astronomical facility that combines superb sensitivity and wide frequency coverage (300 MHz - 95 GHz) with distinct versatility, making the telescope not only a cutting edge instrument for front-line research but also a testbed for emerging and future technology.Even more than 40 years old, the telescope has been continuously modernized and is heavily involved in various kinds of astronomical research as stand-alone instrument as well as in several VLBI networks. Currently, a large upgrade of the receiver suite at the telescope is ongoing. Several new, state-of-the-are broad-band receivers have been installed recently or are under constructions. Along with the new receivers, modern digital backends are being designed. We report on the current status of these upgrades by presenting some „highlights" and giving an outlook on the activities planned for the future.The technology developed and tested during these upgrades also finds application in the MeerKAT observatory in South Africa. MeerKAT is a fully funded radio observatory under construction in the Northern Cape of South Africa. When complete, MeerKAT’s 64 13.5-m dishes will form the - by far - most sensitive telescope in the Southern hemisphere, being equivalent to a 110 m dish. Due to the dish design with an offset Gregorian feed it will be 60%more sensitive than large center feed single dishes of comparable size.MPIfR is designing and constructing a 1.75- 3.44 GHz Receiver system for MeerKAT. The receiver will allow observations at a frequency range at currently unavailable sensitivity and spatial resolution in the Southern hemisphere. Combined with its powerful MPIfR Pulsar search backend it is expected to detect more than 1600 normal and 270 millisecond pulsars. In addition MeerKat will open up science that stays for its own but also prepares future observations with SKA and complements future SKA

  17. ADDING CONTEXT TO JAMES WEBB SPACE TELESCOPE SURVEYS WITH CURRENT AND FUTURE 21 cm RADIO OBSERVATIONS

    SciTech Connect

    Beardsley, A. P.; Morales, M. F.; Lidz, A.; Malloy, M.; Sutter, P. M.

    2015-02-20

    Infrared and radio observations of the Epoch of Reionization promise to revolutionize our understanding of the cosmic dawn, and major efforts with the JWST, MWA, and HERA are underway. While measurements of the ionizing sources with infrared telescopes and the effect of these sources on the intergalactic medium with radio telescopes should be complementary, to date the wildly disparate angular resolutions and survey speeds have made connecting proposed observations difficult. In this paper we develop a method to bridge the gap between radio and infrared studies. While the radio images may not have the sensitivity and resolution to identify individual bubbles with high fidelity, by leveraging knowledge of the measured power spectrum we are able to separate regions that are likely ionized from largely neutral, providing context for the JWST observations of galaxy counts and properties in each. By providing the ionization context for infrared galaxy observations, this method can significantly enhance the science returns of JWST and other infrared observations.

  18. Power spectra of ionospheric scintillations obtained from observations of Cygnus A on the radio telescope URAN-4

    NASA Astrophysics Data System (ADS)

    Panishko, S. K.; Litvinenko, O. A.; Kravetz, R. O.

    2006-10-01

    There are many records of Cygnus A passages through the direction pattern obtained on the radio telescope URAN-4 during 1998-2004. Most of these show fluctuations in the flux density caused by ionospheric scintillations. The power spectrum is an important characteristic of the stochastic process and such processes are the main reason for the nature of scintillations. In this paper, estimations of the power spectra of ionospheric scintillations are made from the observations of Cyg A on the radio telescope URAN-4. Examples of the spectra are presented for observations under different circumstances and for several scintillation activity levels.

  19. Discovery of millisecond pulsars in radio searches of southern Fermi Large Area Telescope sources

    NASA Astrophysics Data System (ADS)

    Keith, M. J.; Johnston, S.; Ray, P. S.; Ferrara, E. C.; Saz Parkinson, P. M.; Çelik, Ö.; Belfiore, A.; Donato, D.; Cheung, C. C.; Abdo, A. A.; Camilo, F.; Freire, P. C. C.; Guillemot, L.; Harding, A. K.; Kramer, M.; Michelson, P. F.; Ransom, S. M.; Romani, R. W.; Smith, D. A.; Thompson, D. J.; Weltevrede, P.; Wood, K. S.

    2011-06-01

    Using the Parkes Radio Telescope, we have carried out deep observations of 11 unassociated gamma-ray sources. Periodicity searches of these data have discovered two millisecond pulsars, PSR J1103-5403 (1FGL J1103.9-5355) and PSR J2241-5236 (1FGL J2241.9-5236), and a long-period pulsar, PSR J1604-44 (1FGL J1604.7-4443). In addition, we searched for but did not detect any radio pulsations from six gamma-ray pulsars discovered by the Fermi satellite to a level of ˜0.04 mJy (for pulsars with a 10 per cent duty cycle). The timing of the millisecond pulsar PSR J1103-5403 has shown that its position is 9 arcmin from the centroid of the gamma-ray source. Since these observations were carried out, independent evidence has shown that 1FGL J1103.9-5355 is associated with the flat spectrum radio source PKS 1101-536. It appears certain that the pulsar is not associated with the gamma-ray source, despite the seemingly low probability of a chance detection of a radio millisecond pulsar. We consider that PSR J1604-44 is a chance discovery of a weak, long-period pulsar and is unlikely to be associated with 1FGL J1604.7-4443. PSR J2241-5236 has a spin period of 2.2 ms and orbits a very low mass companion with a 3.5-h orbital period. The relatively high flux density and low dispersion measure of PSR J2241-5236 make it an excellent candidate for high precision timing experiments. The gamma rays of 1FGL J2241.9-5236 have a spectrum that is well modelled by a power law with an exponential cut-off, and phase binning with the radio ephemeris results in a multipeaked gamma-ray pulse profile. Observations with Chandra have identified a coincident X-ray source within 0.1 arcsec of the position of the pulsar obtained by radio timing.

  20. The Hitachi and Takahagi 32 m radio telescopes: Upgrade of the antennas from satellite communication to radio astronomy

    NASA Astrophysics Data System (ADS)

    Yonekura, Yoshinori; Saito, Yu; Sugiyama, Koichiro; Soon, Kang Lou; Momose, Munetake; Yokosawa, Masayoshi; Ogawa, Hideo; Kimura, Kimihiro; Abe, Yasuhiro; Nishimura, Atsushi; Hasegawa, Yutaka; Fujisawa, Kenta; Ohyama, Tomoaki; Kono, Yusuke; Miyamoto, Yusuke; Sawada-Satoh, Satoko; Kobayashi, Hideyuki; Kawaguchi, Noriyuki; Honma, Mareki; Shibata, Katsunori M.; Sato, Katsuhisa; Ueno, Yuji; Jike, Takaaki; Tamura, Yoshiaki; Hirota, Tomoya; Miyazaki, Atsushi; Niinuma, Kotaro; Sorai, Kazuo; Takaba, Hiroshi; Hachisuka, Kazuya; Kondo, Tetsuro; Sekido, Mamoru; Murata, Yasuhiro; Nakai, Naomasa; Omodaka, Toshihiro

    2016-10-01

    The Hitachi and Takahagi 32 m radio telescopes (former satellite communication antennas) were so upgraded as to work at 6, 8, and 22 GHz. We developed the receiver systems, IF systems, back-end systems (including samplers and recorders), and reference systems. We measured the performance of the antennas. The system temperature including the atmosphere toward the zenith, T_sys^{ast }, is measured to be ˜30-40 K for 6 GHz and ˜25-35 K for 8 GHz. T_sys^{ast } for 22 GHz is measured to be ˜40-100 K in winter and ˜150-500 K in summer seasons, respectively. The aperture efficiency is 55%-75% for Hitachi at 6 GHz and 8 GHz, and 55%-65% for Takahagi at 8 GHz. The beam sizes at 6 GHz and 8 GHz are ˜4.6° and ˜3.8°, respectively. The side-lobe level is less than 3%-4% at 6 and 8 GHz. Pointing accuracy was measured to be better than ˜0.3° for Hitachi and ˜0.6° for Takahagi. We succeeded in VLBI observations in 2010 August, indicating good performance of the antenna. We started single-dish monitoring observations of 6.7 GHz methanol maser sources in 2012 December, and found several new sources showing short-term periodic variation of the flux density.

  1. Technical considerations on using the large Nancay radio telescope for SETI

    NASA Technical Reports Server (NTRS)

    Gulkis, S.; Biraud, F.; Heidmann, J.; Tarter, J.

    1990-01-01

    The Nancay decimetric Radio Telescope (NRT) in Nancay, France, is described, and its potential use for Search for Extraterrestrial Intelligence (SETI) observations is discussed. The conclusion reached is that the NRT is well suited for SETI observations because of its large collecting area, its large sky coverage, and its wideband frequency capability. However, a number of improvements are necessary in order to take full advantage of the system in carrying out an efficient SETI program. In particular, system sensitivity should be increased. This can be achieved through a series of improvements to the system, including lowering the ground pickup noise through the use of ground reflectors and more efficient feed design, and by using low-noise amplifier front ends.

  2. NGC 1976 in the Radio Range with the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas L.; Bania, Thomas M.; Balser, Dana S.

    2015-01-01

    NGC 1976 (Orion A) is the best studied HII region in the Milky Way and therefore it is often used to test models of HII regions. In particular, the radial dependence of the electron temperature is able to distinguish between different models. Optical determinations of electron temperature in the outer regions are affected by scattered light from the center. We have observed the radio recombination line (RRL) and continuum emission near 5 GHz at 4 arc minutes East, West and South of the peak HII region emission in NGC 1976 using the Green Bank Telescope (GBT). The Full Width to Half Power at the observing frequency, 5 GHz, was 2 arc minutes. The result is that the average electron temperature for these offset positions is = 7200 ± 300 K, significantly lower than the electron temperature of the peak position = 8200 ± 300 K, consistent with the HII region model of Wilson et al. (2012).

  3. Frequency Calibration of Spectral Observation System of the TM65m Radio Telescope

    NASA Astrophysics Data System (ADS)

    Juan, Li; Ya-jun, Wu; Hai-hua, Qiao; Jun-zhi, Wang; Xiu-ting, Zuo

    2016-10-01

    In order to carry out the spectral observation with the TM65m radio telescope, the frequency calibration and test of DIBAS (Digital Backend System) are performed, it is found that it has a good performance. First, by injecting the PCAL signals, the frequency resolution, frequency drift and the stability of frequency interval between two spectral lines of the DIBAS backend are measured. It is found that in one hour, the maximum frequency drift of a single spike is 0.03 channel, the maximum fluctuation of spike interval is 0.05 channel. Then, by the observations on the H2CO maser and absorbtion lines of massive star formation regions, and the comparison with the results observed by the GBT (Robert C. Byrd Green Bank Telescope), it is shown that the results of frequency calibration are correct. Finally, by the OH maser observations in more than one hour toward W3(OH), and the methanol maser observations in more than 5 hours, it is found that the spectral profiles keep consistent, and the observational noise is consistent with the theoretical value, indicating the stability and reliability of the frequency calibration program.

  4. Permanent Monitoring of the Reference Point of the 20m Radio Telescope Wettzell

    NASA Technical Reports Server (NTRS)

    Neidhardt, Alexander; Losler, Michael; Eschelbach, Cornelia; Schenk, Andreas

    2010-01-01

    To achieve the goals of the VLBI2010 project and the Global Geodetic Observing System (GGOS), an automated monitoring of the reference points of the various geodetic space techniques, including Very Long Baseline Interferometry (VLBI), is desirable. The resulting permanent monitoring of the local-tie vectors at co-location stations is essential to obtain the sub-millimeter level in the combinations. For this reason a monitoring system was installed at the Geodetic Observatory Wettzell by the Geodetic Institute of the University of Karlsruhe (GIK) to observe the 20m VLBI radio telescope from May to August 2009. A specially developed software from GIK collected data from automated total station measurements, meteorological sensors, and sensors in the telescope monument (e.g., Invar cable data). A real-time visualization directly offered a live view of the measurements during the regular observation operations. Additional scintillometer measurements allowed refraction corrections during the post-processing. This project is one of the first feasibility studies aimed at determining significant deformations of the VLBI antenna due to, for instance, changes in temperature.

  5. The discovery of strong extragalactic polarization using the Parkes Radio Telescope

    NASA Astrophysics Data System (ADS)

    Bracewell, Ronald N.

    2002-12-01

    By the end of 1961, interferometry to arc-minute precision in the East-West direction had resolved the compact source at the centre of Centaurus A into two equal components spaced about 5‧ in right ascension and with measured widths. Were they on the dark bar of the associated extragalactic nebula, NGC 5128, and perhaps indicatios of a toroidal source, or were they in the perpendicular direction and on their way out to feed the extended radio source Centaurus A? The 6‧.7 pencil beam of the Parkes Radio Telescope, employed in an unusual scanning mode, was capable of just separating the peaks and resolving the ambiguity in declination. In 1962 April, I carried out the first observations of linear polarization in Centaurus A using the Parkes antenna, and these were soon followed by other observations made by Brian Cooper and Marcus Price and then by Frank Gardner and John Whiteoak. Because the research papers reporting these pioneering observations were not published in chronological order and the dates of the observations and submission of the manuscripts ware not mentioned in them there has been considerable confusion surrounding the discovery history of Centaurus A polarization at Parkes, and this has been compounded by a misleading contemporary newspaper report, uninformed folklore, and conflicting recollectioms printed 30 years after the event. This paper clarifies the situation by presenting a first-hand account of the original observations and associated publications.

  6. Coordinated Radio and High-Energy Observations of Cygnus X-3 with the Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Williams, Peter K. G.; Bower, G. C.; Tomsick, J. A.; Allen Telescope Array Team

    2011-01-01

    The microquasar Cygnus X-3 is one of the few Galactic sources known to produce relativistic jets and can be one of the brightest radio sources in the Galaxy when flaring. In late 2009 it became the first such system to be seen in the gamma-ray regime with detections by both AGILE and Fermi. We have observed Cyg X-3 at 3 GHz every 5 days for the past six months with the Allen Telescope Array in conjunction with space-based X-ray (INTEGRAL, RXTE) and gamma-ray (Fermi) observations. We present results from both the long-term dataset and intensive observing sessions in which we obtain the radio lightcurve of Cyg X-3 on 10-minute timescales. We focus particularly on a May 2010 minor flare event for which we have coverage in all three bands.The first phase of the ATA was funded through generous grants from the Paul G. Allen Family Foundation. UC Berkeley, the SETI Institute, the National Science Foundation (Grant No. 0540599), Sun Microsystems, Xilinx, Nathan Myhrvold, Greg Papadopoulos, and other corporations and individual donors contributed additional funding.

  7. Jet Emission in Young Radio Sources: A Fermi Large Area Telescope Gamma-Ray View

    NASA Astrophysics Data System (ADS)

    Migliori, G.; Siemiginowska, A.; Kelly, B. C.; Stawarz, Ł.; Celotti, A.; Begelman, M. C.

    2014-01-01

    We investigate the contribution of the beamed jet component to the high-energy emission in young and compact extragalactic radio sources, focusing for the first time on the γ-ray band. We derive predictions on the γ-ray luminosities associated with the relativistic jet assuming a leptonic radiative model. The high-energy emission is produced via Compton scattering by the relativistic electrons in a spherical region at the considered scales (lsim10 kpc). Simulations show a wide range of γ-ray luminosities, with intensities up to ~1046-1048 erg s-1 depending on the assumed jet parameters. We find a highly linear relation between the simulated X-ray and γ-ray luminosities that can be used to select candidates for γ-ray detection. We compare the simulated luminosity distributions in the radio, X-ray, and γ-ray regimes with observations for the largest sample of X-ray-detected young radio quasars. Our analysis of ~4-yr Fermi Large Area Telescope (LAT) data does not yield any statistically significant detections. However, the majority of the model-predicted γ-ray fluxes for the sample are near or below the current Fermi-LAT flux threshold and compatible with the derived upper limits. Our study gives constraints on the minimum jet power (L jet, kin/L disk > 0.01) of a potential jet contribution to the X-ray emission in the most compact sources (lsim 1 kpc) and on the particle-to-magnetic field energy density ratio that are in broad agreement with equipartition assumptions.

  8. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  9. The Expanded Very Large Array: A Radio Telescope for the 21st Century

    NASA Astrophysics Data System (ADS)

    2000-06-01

    The world's most productive and widely-used radio telescope, the National Science Foundation's Very Large Array (VLA), can be improved tenfold with an expansion project proposed by the National Radio Astronomy Observatory (NRAO). "This project will ensure that the scientific community has a state-of-the-art research tool to meet the astronomical research challenges of the 21st Century," said Paul Vanden Bout, NRAO Director. Aerial View of the VLA Plans for the Expanded VLA (EVLA) and its potential for new scientific contributions were described today in a series of presentations at the American Astronomical Society's meeting in Rochester, NY. The EVLA project plans to replace dated equipment left over from the VLA's original construction in the 1970s and add eight new radio- telescope dish antennas to the current, 27-dish system. It received a strong endorsement last month when the Astronomy and Astrophysics Survey Committee of the National Academy of Sciences gave the project one of its highest ratings as a priority for the next decade in its report entitled "Astronomy and Astrophysics in the New Millennium." "The Survey Committee's endorsement shows that the astronomical research community strongly supports the Expanded VLA," said NRAO astronomer Jim Ulvestad, who spoke to reporters at the AAS meeting. "The VLA has long been a unique and critical resource for all of astronomy, and we look forward to turning it into a dramatic, new research tool." The VLA Expansion Project will use modern electronics and computer technology to greatly improve the VLA's ability to observe faint celestial objects and to analyze their radio emissions. A set of eight new dish antennas, added to the current 27-antenna system, will allow the VLA to produce images with ten times greater detail. The project will build on the VLA's current infrastructure, including its 230-ton dish antennas, the railroad tracks for moving those antennas, and the existing buildings and access roads. The

  10. An active surface upgrade for the Delingha 13.7-m Radio Telescope

    NASA Astrophysics Data System (ADS)

    Yang, Dehua; Zhang, Yong; Zhou, Guohua; Li, Aihua; Chen, Kunxin; Zhang, Zhenchao; Li, Guoping; Zuo, Yingxi; Xu, Ye

    2012-09-01

    An upgrade program is proposed for the Delingha 13.7-m radio telescope to implement active surface for multi-beam observation at 3 mm wavelength. The upgrade involves three critical development aspects. One is the displacement actuator, which must fit the existing position, space and connections of the panels and backup structure, meanwhile, must be as compact and lightweighted as possible. The second is that a new sub-reflector is necessitated by the multi-beam observation, where a new hyperbolic surface figure is optimized. The third, more crucial and difficult, is to realize active control of the actuators and real-time closed-loop of the full active surface. This paper is to present the progress of the development work, test and experiments associated with the three areas. With one of the spare panels of the telescope, an experiment system is carried out with six sets of actuator and control electronics. Another experiment system of a novel laser-based closed-loop measurement concept is also conducted with four smaller dummy panels. Both experiment setups have output expected results and further experiments are going on with them. In this paper, based on the two experiments, we will describe the special design and test of the actuator, including the design of its special mounting and connecting mechanisms. The design and manufacture and measurement of the new hyperbolic sub-reflector will be detailed as well as the principle, simulation and realization of the laser-based measurement system. Besides, the control strategy of the large scale use of the hundreds of actuators and EMI suppression are also covered.

  11. Materials Testing for a Lunar Radio Telescope with the LUNAR Simulant Thermal-Vacuum Chamber

    NASA Astrophysics Data System (ADS)

    Davis, Kristina; Kruger, L.; Yarrish, C.; Burns, J.

    2012-05-01

    The LUNAR (Lunar University Network for Astrophysics Research) team has proposed a revolutionary new telescope design that will make observations from the lunar farside. In order to withstand the harsh conditions on the lunar surface, the telescope must be extremely durable, and lightweight to save on launch costs. The LUNAR Radio Array will thus be made of long Kapton arms to that hold the photon-collecting dipoles. The LUNAR Simulation Laboratory team at the University of Colorado has designed and constructed a vacuum chamber to measure the durability of these antennae materials, as well as test deployment scenarios. The chamber replicates the vacuum, thermal, and UV radiation environment on the lunar surface. Additionally, the chamber houses a lunar simulant bed upon which the experiments are performed. The simulant temperature is controlled by a thermal plate underneath the bed. In the early summer of 2012, the team will run an experiment within the chamber to test the thermal properties of a sheet of Kapton film that has been coated with copper to simulate the dipole array. Several thermocouples will be placed on top of the film to monitor the temperature swings between daytime and nighttime conditions. A video camera will monitor the thermal expansion and contraction of the film. This experiment will follow up on previous testing where the film was placed directly on the thermal plate. The team will determine the difference in temperature transition time since the contact area between a solid plate and a bed of particulates is significant.This will be the pilot experiment that the team has done on top of lunar simulant. The team will be testing the thermal properties of the simulant itself, as well as testing the filtration system that guards the vacuum pumps against contamination. Subsequent experiments will use this data as a baseline.

  12. Radio Telescopes Extend Astronomy's Best "Yardstick," Provide Vital Tool for Unraveling Dark Energy Mystery

    NASA Astrophysics Data System (ADS)

    2009-06-01

    Radio astronomers have directly measured the distance to a faraway galaxy, providing a valuable "yardstick" for calibrating large astronomical distances and demonstrating a vital method that could help determine the elusive nature of the mysterious Dark Energy that pervades the Universe. Galaxy UGC 3789 Visible-light image of UGC 3789 CREDIT: STScI "We measured a direct, geometric distance to the galaxy, independent of the complications and assumptions inherent in other techniques. The measurement highlights a valuable method that can be used to determine the local expansion rate of the Universe, which is essential in our quest to find the nature of Dark Energy," said James Braatz, of the National Radio Astronomy Observatory (NRAO), who presented the work to the American Astronomical Society's meeting in Pasadena, California. Braatz and his colleagues used the National Science Foundation's Very Long Baseline Array (VLBA) and Robert C. Byrd Green Bank Telescope (GBT), and the Effelsberg Radio Telescope of the Max Planck Institute for Radioastronomy (MPIfR) in Germany to determine that a galaxy dubbed UGC 3789 is 160 million light-years from Earth. To do this, they precisely measured both the linear and angular size of a disk of material orbiting the galaxy's central black hole. Water molecules in the disk act as masers to amplify, or strengthen, radio waves the way lasers amplify light waves. The observation is a key element of a major effort to measure the expansion rate of the Universe, known as the Hubble Constant, with greatly improved precision. That effort, cosmologists say, is the best way to narrow down possible explanations for the nature of Dark Energy. "The new measurement is important because it demonstrates a one-step, geometric technique for measuring distances to galaxies far enough to infer the expansion rate of the Universe," said Braatz. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF The VLBA Very Long Baseline Array CREDIT: NRAO

  13. A Generic and Efficient E-field Parallel Imaging Correlator for Next-Generation Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan; Beardsley, Adam P.; Bowman, Judd D.; Morales, Miguel F.

    2017-01-01

    Modern radio telescopes are favouring densely packed array layouts with large numbers of antennas (NA ≳ 1000). Since the complexity of traditional correlators scales as O(N_{A}^2), there will be a steep cost for realizing the full imaging potential of these powerful instruments. Through our generic and efficient E-field Parallel Imaging Correlator (EPIC), we present the first software demonstration of a generalized direct imaging algorithm, namely, the Modular Optimal Frequency Fourier (MOFF) imager. Not only does it bring down the cost for dense layouts to O(N_{A} log _2N_{A}) but can also image from irregular layouts and heterogeneous arrays of antennas. EPIC is highly modular, parallelizable, implemented in object-oriented Python, and publicly available. We have verified the images produced to be equivalent to those from traditional techniques to within a precision set by gridding coarseness. We have also validated our implementation on data observed with the Long Wavelength Array (LWA1). We provide a detailed framework for imaging with heterogeneous arrays and show that EPIC robustly estimates the input sky model for such arrays. Antenna layouts with dense filling factors consisting of a large number of antennas such as LWA, the Square Kilometre Array, Hydrogen Epoch of Reionization Array, and Canadian Hydrogen Intensity Mapping Experiment will gain significant computational advantage by deploying an optimized version of EPIC. The algorithm is a strong candidate for instruments targeting transient searches of Fast Radio Bursts (FRB) as well as planetary and exoplanetary phenomena due to the availability of high-speed calibrated time-domain images and low output bandwidth relative to visibility-based systems.

  14. Concept design of an 80-dual polarization element cryogenic phased array camera for the Arecibo Radio Telescope

    NASA Astrophysics Data System (ADS)

    Cortes-Medellin, German; Parshley, Stephen; Campbell, Donald B.; Warnick, Karl F.; Jeffs, Brian D.; Ganesh, Rajagopalan

    2016-08-01

    This paper presents the current concept design for ALPACA (Advanced L-Band Phased Array Camera for Arecibo) an L-Band cryo-phased array instrument proposed for the 305 m radio telescope of Arecibo. It includes the cryogenically cooled front-end with 160 low noise amplifiers, a RF-over-fiber signal transport and a digital beam former with an instantaneous bandwidth of 312.5 MHz per channel. The camera will digitally form 40 simultaneous beams inside the available field of view of the Arecibo telescope optics, with an expected system temperature goal of 30 K.

  15. Efficient Multi-Beaming for the Next Generation of Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Hampson, G. A.; de Wild, R.; Smolders, A. B.

    The next generation of astronomical radio telescopes will have the possibility of generating multiple beams on sky, unlike existing single beam systems. This can occur as the problem of obtaining sufficient sensitivity has been simplified by distributing the collecting area over a hierarchy of collecting elements. Technology, in the form of computing power, can take advantage of this hierarchy to form efficient multiple simultaneous beams on the sky. The theoretical foundation of the multi-beam beamformer is introduced in this paper and simulation results presented. The technique is based on the Fast Fourier Transform (FFT) which results in an efficient implementation. The twiddle factors of the FFT reduce to simple 900 rotations in the case of a four point FFT. The resulting design for THEA is shown to produce nine simultaneous beams and can be implemented on a relatively small FPGA. Additional phase control is required to steer the beams across the sky and implemented using complex multipliers. It will be shown that for particular array sizes the implementation results in nine beams for the cost of one.

  16. Foregrounds for redshifted 21-cm studies of reionization: Giant Meter Wave Radio Telescope 153-MHz observations

    NASA Astrophysics Data System (ADS)

    Ali, Sk. Saiyad; Bharadwaj, Somnath; Chengalur, Jayaram N.

    2008-04-01

    Foreground subtraction is the biggest challenge for future redshifted 21-cm observations to probe reionization. We use a short Giant Meter Wave Radio Telescope (GMRT) observation at 153MHz to characterize the statistical properties of the background radiation across ~1° to subarcmin angular scales, and across a frequency band of 5MHz with 62.5kHz resolution. The statistic we use is the visibility correlation function, or equivalently the angular power spectrum Cl. We present the results obtained from using relatively unsophisticated, conventional data calibration procedures. We find that even fairly simple-minded calibration allows one to estimate the visibility correlation function at a given frequency V2(U, 0). From our observations, we find that V2(U, 0) is consistent with foreground model predictions at all angular scales except the largest ones probed by our observations where the model predictions are somewhat in excess. On the other hand, the visibility correlation between different frequencies κ(U, Δν) seems to be much more sensitive to calibration errors. We find a rapid decline in κ(U, Δν), in contrast with the prediction of less than 1 per cent variation across 2.5MHz. In this case, however, it seems likely that a substantial part of the discrepancy may be due to limitations of data reduction procedures.

  17. The New ALMA Prototype 12 M Telescope of the Arizona Radio Observatory

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.; Folkers, Thomas W.; Emerson, Nicholas J.; Freund, Robert; Lauria, Eugene F.; Forbes, David; Reiland, George P.; McColl, Martin

    2016-06-01

    The Arizona Radio Observatory (ARO) recently acquired the European 12 m prototype antenna of the Atacama Large Millimeter Array (ALMA) project from the European Southern Observatory (ESO). The antenna was located at the Very Large Array (VLA) site near Socorro, New Mexico. In November 2013, the 97 ton antenna was transported to Kitt Peak, Arizona in two major parts: the 40 ft. reflector and the base/receiver cabin. The antenna, which replaced the former NRAO 12 m telescope, was reassembled in the dome at Kitt Peak. Recommissioning began in January 2014, and scientific observations commenced in early 2015. The instrument is now fully operational with a measured surface accuracy of 53 microns, rms, and a pointing accuracy of 2 arc seconds. Further antenna improvements are in progress. The new 12 m currently supports a dual polarization, 3 mm receiver (84-116 GHz) with ALMA Band 3 sideband-separating mixers. A multiband receiver also covering the 4 mm (67 - 90 GHz), 2 mm (130-180 GHz) and 1 mm (210-280 GHz) regions with dual polarization, sideband-separating mixers is currently under construction. A new digital backend, the ARO Wideband Spectrometer (AROWS: 4 x 4 GHz total bandwidth ), is also in the development stage.

  18. PuMa-II: A Wide Band Pulsar Machine for the Westerbork Synthesis Radio Telescope

    NASA Astrophysics Data System (ADS)

    Karuppusamy, Ramesh; Stappers, Ben; van Straten, Willem

    2008-02-01

    The Pulsar Machine II (PuMa-II) is the new flexible pulsar processing back-end system at the Westerbork Synthesis Radio Telescope (WSRT), specifically designed to take advantage of the upgraded WSRT. The instrument is based on a computer cluster running the Linux operating system, with minimal custom hardware. A maximum of 160 MHz analog bandwidth sampled as 8 × 20 MHz subbands with 8-bit resolution can be recorded on disks attached to separate computer nodes. Processing of the data is done in the additional 32 nodes allowing near real time coherent dedispersion for most pulsars observed at the WSRT. This has doubled the bandwidth for pulsar observations in general, and has enabled the use of coherent dedispersion over a bandwidth 8 times larger than was previously possible at the WSRT. PuMa-II is one of the widest bandwidth coherent dedispersion machines currently in use and has a maximum time resolution of 50 ns. The system is now routinely used for high-precision pulsar timing studies, polarization studies, single pulse work, and a variety of other observational work.

  19. Timing Results for the Binary Millisecond Pulsar J1640+2224 Obtained on the RT-64 Radio Telescope in Kalyazin

    NASA Astrophysics Data System (ADS)

    Potapov, V. A.; Ilyasov, Yu. P.; Oreshko, V. V.; Rodin, A. E.

    2003-04-01

    We present the timing results for the binary millisecond pulsar J1640+2224 obtained with the RT-64 radio telescope (TNA-1500, Special Design Bureau, Moscow Power Engineering Institute) at the Kalyazin Observatory (Astrospace Center of the Lebedev Institute of Physics) in 1997-2002. We obtained Keplerian and post-Keplerian parameters of the binary system, which allowed us to estimate an upper limit for the energy density of the stochastic gravitational-wave background radiation at very low frequencies.

  20. Radio Follow-up on All Unassociated Gamma-Ray Sources from the Third Fermi Large Area Telescope Source Catalog

    NASA Astrophysics Data System (ADS)

    Schinzel, Frank K.; Petrov, Leonid; Taylor, Gregory B.; Edwards, Philip G.

    2017-04-01

    The third Fermi Large Area Telescope γ-ray source catalog (3FGL) contains over 1000 objects for which there is no known counterpart at other wavelengths. The physical origin of the γ-ray emission from those objects is unknown. Such objects are commonly referred to as unassociated and mostly do not exhibit significant γ-ray flux variability. We performed a survey of all unassociated γ-ray sources found in 3FGL using the Australia Telescope Compact Array and Very Large Array in the range 4.0–10.0 GHz. We found 2097 radio candidates for association with γ-ray sources. The follow-up with very long baseline interferometry for a subset of those candidates yielded 142 new associations with active galactic nuclei that are γ-ray sources, provided alternative associations for seven objects, and improved positions for another 144 known associations to the milliarcsecond level of accuracy. In addition, for 245 unassociated γ-ray sources we did not find a single compact radio source above 2 mJy within 3σ of their γ-ray localization. A significant fraction of these empty fields, 39%, are located away from the Galactic plane. We also found 36 extended radio sources that are candidates for association with a corresponding γ-ray object, 19 of which are most likely supernova remnants or H ii regions, whereas 17 could be radio galaxies.

  1. Tracking of Mars Express and Venus Express spacecraft with VLBI radio telescopes

    NASA Astrophysics Data System (ADS)

    Molera Calvés, G.; Pogrebenko, S. V.; Wagner, J.; Cimò, G.; Gurvits, L.; Duev, D.

    2010-12-01

    The ESA Mars Express and Venus Express spacecraft (S/C) have been observed for the last two years with the European VLBI radio telescopes of Metsähovi (FI), Wettzell (GE), Yebes (SP), Medicina, Matera, Noto (IT), Puschino (RU) and Onsala (SW). The campaign is in the framework of the assessment study and preparation of the European VLBI Network to the upcoming ESA and other deep space missions. It also offers new opportunities for applications of radio astronomy techniques to planetary science, geophysics and geodesy. Observations are carried out either in single- or multi-dish modes when S/C is locked to the ESA’s ESTRACK ground stations (Cebreros or New Nortia) observing the two way link. Data are recorded locally at the stations using standard VLBI equipment and transferred to the Metsähovi for processing. Further on, the data are transferred from Metsähovi to Joint Institute for VLBI in Europe for further post-analysis. High dynamic range of the S/C signal detections allowed us to determine the apparent topocentric frequency of the S/C carrier line and accompanying ranging tones down to milli-Hz spectral accuracy and to extract the phase of the S/C signal carrier line. With multi-station observations, the respective phases can be calibrated on the per-baseline basis using VLBI phase referencing technique and observations of background quasars close to S/C in their celestial position using far-field VLBI delay model for quasars and near-field model for S/C. The post-analysis of the S/C tracking data enables us to study several parameters of the S/C signals. Of these, the phase fluctuations of the signal can be used for characterization of the interplanetary plasma density fluctuations along the signal propagation line at different spatial and temporal scales and different solar elongations. These fluctuations are well represented by a near-Kolmogorov spectrum. Multi-station observations can distinguish the contributions of propagation effects in the plasma

  2. Detection of Solar Wind Disturbances: Mexican Array Radio Telescope IPS Observations at 140 MHz

    NASA Astrophysics Data System (ADS)

    Romero-Hernandez, E.; Gonzalez-Esparza, J. A.; Aguilar-Rodriguez, E.; Ontiveros-Hernandez, V.; Villanueva-Hernandez, P.

    2015-09-01

    The interplanetary scintillation (IPS) technique is a remote-sensing method for monitoring solar-wind perturbations. The Mexican Array Radio Telescope (MEXART) is a single-station instrument operating at 140 MHz, fully dedicated to performing solar-wind studies employing the IPS technique. We report MEXART solar-wind measurements (scintillation indices and solar-wind velocities) using data obtained during the 2013 and 2014 campaigns. These solar-wind measurements were calculated employing a new methodology based on the wavelet transform (WT) function. We report the variation of the scintillation indices versus the heliocentric distance for two IPS sources (3C48 and 3C147). We found different average conditions of the solar-wind density fluctuations in 2013 and 2014. We used the fittings of the radial dependence of the scintillation index to calculate g-indices. Based on the g-index value, we identified 17 events that could be associated with strong compression regions in the solar wind. We present the first ICME identifications in our data. We associated 14 IPS events with preceding CME counterparts by employing white-light observations from the Large Angle and Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) spacecraft. We found that most of the IPS events, detected during the solar maximum of Cycle 24 were associated with complex CME events. For the IPS events associated with single CME counterparts, we found a deceleration tendency of the CMEs as they propagate in the interplanetary medium. These results show that the instrument detects solar-wind disturbances, and the WT methodology provides solar-wind information with good accuracy. The MEXART observations will complement solar-wind IPS studies using other frequencies, and the tracking of solar-wind disturbances by other stations located at different longitudes.

  3. The Architecture of an LWA Station - A New Phased-array Radio Telescope

    NASA Astrophysics Data System (ADS)

    Craig, Joseph; Rickard, L.; Ellingson, S.; Taylor, G.; Pihlstrom, Y.; Kassim, N.; Ray, P.; Clarke, T.; D'Addario, L.; Navarro, R.; Cohen, A.; Crane, P.; Hicks, B.; Polisensky, E.; Schmitt, H.; Cox, L.

    2009-05-01

    The Long Wavelength Array (LWA) is part of a new class of large low-frequency interferometric telescopes. The complete LWA will consist of more than 50 phased array "stations" distributed over a roughly 400 km diameter region in New Mexico. Each station will consist of 256 pairs of dipole-type antennas whose signals are formed into beams, with outputs transported to a central location for high-resolution aperture synthesis imaging. The resulting image sensitivity is estimated to be a few mJy with a resolution of 8" to 2" (20 to 80 MHz). Phase I of the LWA is nearly complete, with completion of PDR, construction of the first full station (LWA-1) in 2009-10, and operation as a stand-alone instrument in 2010. Utilizing modern FPGA computing, LWA-1 will form four independent (in both frequency and pointing) beams on the sky, and provide instantaneous bandwidths of 8 MHz per beam, spectral resolutions down to 100 Hz, and temporal resolutions down to 0.1 ms in the range of 10 to 88 MHz. Signals from 512 dipole antennas will be digitized without frequency conversion (a homodyne receiver architecture), allowing direct beam-formation of the entire LWA bandwidth. As the station will operate as a fully electronic phased array, very little repointing time is required. This will allow the beams to be cycled rapidly among many calibration sources on millisecond timescales. This scheme could provide real-time calibration of the turbulent ionospheric conditions, which limit both resolution and sensitivity at low-frequencies. The LWA Project is funded through a contract from the Office of Naval Research to the University of New Mexico. Partnering with UNM are the Naval Research Laboratory, Virginia Tech, the Jet Propulsion Laboratory, Los Alamos National Laboratory, and the University of Iowa. Basic research in radio astronomy at the Naval Research Laboratory is supported by 6.1 base funding.

  4. Two studies of diffuse gas interactions in the Magellanic System and instrumentation for suppressing satellite signal interference in radio telescopes

    NASA Astrophysics Data System (ADS)

    Nigra, Lou Michael

    2012-05-01

    I present observational evidence of processes taking place in two diffuse environments of the Magellanic System important to the ultimate fate of accreting material in general and its impact on a host galaxy. Using optical and radio data, I show that initial formation of NGC 602's massive stars and subsequent chain of triggered star formation in a diffuse environment likely resulted from colliding structures of expanding remnants of supernova- or wind-driven shells. The process could take place in any gaseous interaction remnant of sufficient density as a result of large scale turbulence energized by the interaction itself. The young stars produced in an accreting remnant in this fashion would eventually contribute to the diversity of the host galaxy's stellar population. I also provide all unprecedented, direct observational glimpse into the ablation processes acting on the periphery of an accreting gaseous remnant that ultimately will determine its fate, consumption by the host's halo or reaching the disk as star-formation fuel. Using novel spatial averaging methods I found that in the interaction zone between warm MS gas and hot Halo gas, a Turbulent Mixing Layer is strongly indicated. Such an interaction can significantly moderate the ablation rate of the cloud into the Halo. Finally, I describe a Radio Frequency Interference (RFI) Suppression subsystem for insertion into radio telescope hardware systems that is capable of reconstructing and directly subtracting replicas of multiple interfering signals of Global Positioning System (GPS) and other navigation satellites, including the unique and troublesome GPS L3 signal. The subsystem provides important enhancements over prior approaches and allows handling of the complex signaling of L3. The subsystem is designed to easily "plug in" to virtually any radio telescope system and operate autonomously. Its essential function has been simulated, demonstrating its ability to identify and characterize actual

  5. Exploring Systems Engineering (and the Universe) Through the RadioJOVE telescope

    NASA Astrophysics Data System (ADS)

    Aditi Raj, Anya

    2017-01-01

    Amateur projects in radio astronomy are popular methods to engage in what often seems to be an inaccessible field, and pre-made kits are becoming increasingly available to hobbyists and educators. One such kit is the RadioJOVE, which is attractive due to its simplicity, accessibility and its extensive support network and community of users. When coupled with an education in project management, building the RadioJOVE provides a perfect framework to learn about best practices in completing a project. We will primarily discuss the use of the RadioJOVE project to enhance study in project management and systems engineering. We also intend to discuss the importance of amateur projects such as the RadioJOVE in gaining a holistic understanding of radio astronomy and the project’s potential to spark interest in radio astronomy in students of various disciplines.

  6. Gamma-ray Bursts: Radio Afterglow and Host Galaxy Study with The FAST Telescope

    NASA Astrophysics Data System (ADS)

    Li, L. B.; Huang, Y. F.; Kong, S. W.; Zhang, Z. B.; Li, D.; Luo, J. J.

    2016-02-01

    For four types of GRBs, namely high-luminosity, low-luminosity, standard and failed GRBs, we calculated their radio afterglow light curves. Meanwhile, considering contributions from host galaxies in radio bands, we statistically investigated the effect of hosts on radio afterglows. It is found that a tight anti-correlation exists between the ratio of radio flux (RRF) of host galaxy to the total radio afterglow peak flux and the observed frequency. Using this method, the host flux densities of those bursts without host measurements can be estimated at low or medium frequencies. We predicted that almost all types of radio afterglows, except that of low-luminosity GRBs, can be observed by FAST up to z = 15 or even more. FAST is expected to significantly expand the samples of GRB radio afterglows and host galaxies.

  7. Sardinia Radio Telescope wide-band spectral-polarimetric observations of the galaxy cluster 3C 129

    NASA Astrophysics Data System (ADS)

    Murgia, M.; Govoni, F.; Carretti, E.; Melis, A.; Concu, R.; Trois, A.; Loi, F.; Vacca, V.; Tarchi, A.; Castangia, P.; Possenti, A.; Bocchinu, A.; Burgay, M.; Casu, S.; Pellizzoni, A.; Pisanu, T.; Poddighe, A.; Poppi, S.; D'Amico, N.; Bachetti, M.; Corongiu, A.; Egron, E.; Iacolina, N.; Ladu, A.; Marongiu, P.; Migoni, C.; Perrodin, D.; Pilia, M.; Valente, G.; Vargiu, G.

    2016-10-01

    We present new observations of the galaxy cluster 3C 129 obtained with the Sardinia Radio Telescope in the frequency range 6000-7200 MHz, with the aim to image the large-angular-scale emission at high-frequency of the radio sources located in this cluster of galaxies. The data were acquired using the recently commissioned ROACH2-based backend to produce full-Stokes image cubes of an area of 1°×1° centred on the radio source 3C 129. We modelled and deconvolved the telescope beam pattern from the data. We also measured the instrumental polarization beam patterns to correct the polarization images for off-axis instrumental polarization. Total intensity images at an angular resolution of 2.9 arcmin were obtained for the tailed radio galaxy 3C 129 and for 13 more sources in the field, including 3C 129.1 at the galaxy cluster centre. These data were used, in combination with literature data at lower frequencies, to derive the variation of the synchrotron spectrum of 3C 129 along the tail of the radio source. If the magnetic field is at the equipartition value, we showed that the lifetimes of radiating electrons result in a radiative age for 3C 129 of tsyn ≃ 267 ± 26 Myr. Assuming a linear projected length of 488 kpc for the tail, we deduced that 3C 129 is moving supersonically with a Mach number of M = vgal/cs = 1.47. Linearly polarized emission was clearly detected for both 3C 129 and 3C 129.1. The linear polarization measured for 3C 129 reaches levels as high as 70 per cent in the faintest region of the source where the magnetic field is aligned with the direction of the tail.

  8. A SEARCH FOR RAPIDLY SPINNING PULSARS AND FAST TRANSIENTS IN UNIDENTIFIED RADIO SOURCES WITH THE NRAO 43 METER TELESCOPE

    SciTech Connect

    Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire; Langston, Glen

    2013-04-15

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications for models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.

  9. A Search for Rapidly Spinning Pulsars and Fast Transients in Unidentified Radio Sources with the NRAO 43 Meter Telescope

    NASA Astrophysics Data System (ADS)

    Schmidt, Deborah; Crawford, Fronefield; Langston, Glen; Gilpin, Claire

    2013-04-01

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications for models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.

  10. Study on the temperature field effect analysis and test of the five-hundred-meter aperture spherical radio telescope

    NASA Astrophysics Data System (ADS)

    Song, Li-qiang; Wang, Qi-ming

    2016-10-01

    The thermal problem is one of the important research contents of the design and operation about giant radio antenna. This kind of influence to the antenna has been concerned in the astronomy field. Due to the instantaneous temperature load and uncertainty, it is difficult to accurately analysis and effectively control about its effect. It has important significance to analyze the thermal problem of giant radio antenna to its design and operation. The research of solar cookers and temperature field on Five-hundred-meter Aperture Spherical radio Telescope (FAST) were preceded in detail. The tests of temperature distribute about 30 meters antenna in Mi-yun observatory station were performed. The research work including the parameters related to the sun, the flow algorithm of telescope site, mathematical model of solar cooker, analysis results of temperature field and corresponding control strategy, the temperature distribution test of 30 meters model. The results showed that: solar cookers could be weakened and controlled effectively of FAST. This work will provide a reference to design and operation of the FAST and same big antenna. It has certain theory significance, engineering significance and application value.

  11. Analysis of Tracking Measuring Method of Focus Cabin of Five-hundred-meter Aperture Spherical radio Telescope(FAST)

    NASA Astrophysics Data System (ADS)

    Yuan, Hui; Zhu, Lichun

    2015-08-01

    FAST (Five-hundred-meter Aperture Spherical radio Telescope) project is one of the Chinese mega-Science Projects to build the largest single dish radio telescope in the world. FAST has three outstanding innovation aspects: in the karst depression which is large to host the 500-meter telescope, an active main reflector correcting for spherical aberration on the ground to achieve a full polarization is being built, the light-weight feed focus cabin in which a parallel robot as a secondary adjustable system to move with high precision is driven by cables and servomechanism plus. The part of main reflector which is illuminated by the feed is continually adjusted to fit the paraboloid of revolution in real time when tracking the radio source. How to get high precise real-time feedback data of moving focus cabin’s position when tracking the source is one of the crucial problems for the astronomical observation.At present 24 steady basis pillars for measurement whose position coordinates are already known, have been built in the construction field of FAST. Total stations will be installed on one of those pillars, and prisms will be installed on focus cabin. The purpose of this study was to assess the accuracy and reliability of two measuring method: the space distance intersection calculation method and polar measuring method. The space distance intersection calculation method is only using multiple measuring distances between three pillars and prism and known coordinates of pillars to calculate the prism’s coordinates, the polar measurement is using the measuring distance and angles to get the prism’s coordinate.

  12. Europe, Japan and North America Prepare for Joint Construction of the Giant Radio Telescope "ALMA" in Chile

    NASA Astrophysics Data System (ADS)

    2001-04-01

    Caption : PR Photo 14/01 shows how the ALMA facility may look like when it is ready at Chajnantor. Courtesy NAOJ . Representatives from Europe, Japan, and North America met in Tokyo today and signed a Resolution affirming their mutual intent to construct and operate a giant radio telescope in co-operation with the Republic of Chile, where the telescope will be located. The Atacama Large Millimeter/Submillimeter Array (ALMA) is conceived as a radio telescope comprised of sixty-four transportable 12-meter diameter antennas distributed over an area 14 km in extent. Japanese participation will allow enhanced imaging and spectroscopy, especially at submillimeter wavelengths. By pointing all the antennas in unison toward a single astronomical object, and combining the signals detected by all the antennas with a super-fast digital signal processor, this gigantic radio telescope achieves an imaging detail 10 times better than that of the Hubble Space Telescope. The combined area of all 64 antennas used to collect signals from celestial objects is more than 40 times larger than that available to astronomers using existing submillimeter telescopes. ALMA will be built on the Andean plateau at 5,000 meters altitude near the Atacama Desert of northern Chile. This site provides the exceptionally dry atmospheric conditions necessary for astronomical observations at millimeter and submillimeter wavelengths (wavelengths between the radio and far-infrared spectral regions). Observations with this telescope will have a profound impact on virtually all fields of astrophysical research. The most important targets include the most distant (i.e., the youngest) galaxies as they emerged in the early Universe. These are expected to have become rapidly enshrouded in the dust produced by the first stars; the dust absorbs much of the starlight making the galaxies difficult to see in the optical wavebands, but these same galaxies shine brightly at millimeter and submillimeter wavelengths. In

  13. Review of overall parameters of giant radio pulses from the Crab pulsar and B1937+21

    NASA Astrophysics Data System (ADS)

    Bilous, A. V.; Kondratiev, V. I.; Popov, M. V.; Soglasnov, V. A.

    2008-02-01

    We present a review of observed parameters of giant radio pulses, based on the observations conducted by our group during recent years. The observations cover a broad frequency range of about 3 octaves, concentrating between 600 and 4850 MHz. Giant pulses of both the Crab pulsar and the millisecond pulsar B1937+21 were studied with the 70-m Tidbinbilla, the 100-m GBT, 64-m Kalyazin and Westerbork radio telescopes. We discuss pulse energy distribution, dependence of peak flux density from the pulse width, peculiarities of radio spectra, and polarization properties of giant radio pulses.

  14. Very Long Baseline Interferometry Experiment on Giant Radio Pulses of Crab Pulsar toward Fast Radio Burst Detection

    NASA Astrophysics Data System (ADS)

    Takefuji, K.; Terasawa, T.; Kondo, T.; Mikami, R.; Takeuchi, H.; Misawa, H.; Tsuchiya, F.; Kita, H.; Sekido, M.

    2016-08-01

    We report on a very long baseline interferometry (VLBI) experiment on giant radio pulses (GPs) from the Crab pulsar in the radio 1.4-1.7 GHz range to demonstrate a VLBI technique for searching for fast radio bursts (FRBs). We carried out the experiment on 2014 July 26 using the Kashima 34 m and Usuda 64 m radio telescopes of the Japanese VLBI Network (JVN) with a baseline of about 200 km. During the approximately 1 hr observation, we could detect 35 GPs by high-time-resolution VLBI. Moreover, we determined the dispersion measure (DM) to be 56.7585 ± 0.0025 on the basis of the mean DM of the 35 GPs detected by VLBI. We confirmed that the sensitivity of a detection of GPs using our technique is superior to that of a single-dish mode detection using the same telescope.

  15. Terrestrial monitoring of a radio telescope reference point using comprehensive uncertainty budgeting. Investigations during CONT14 at the Onsala Space Observatory

    NASA Astrophysics Data System (ADS)

    Lösler, Michael; Haas, Rüdiger; Eschelbach, Cornelia

    2016-05-01

    During the 15-day-long global very long baseline interferometry campaign CONT14, a terrestrial monitoring campaign was carried out at the Onsala Space Observatory. The goal of these efforts was to monitor the reference point of the Onsala 20 m radio telescope during normal telescope operations. Parts of the local site network as well as a number of reflectors that were mounted on the 20 m radio telescope were observed in an automated and continual way using the in-house-developed software package HEIMDALL. The analysis of the observed data was performed using a new concept for a coordinate-based network adjustment to allow the full adjustment process in a true Cartesian global reference frame. The Akaike Information Criterion was used to select the preferable functional model for the network adjustment. The comprehensive stochastic model of this network adjustment process considers over 25 parameters, and, to describe the persistence of the observations performed during the monitoring with a very high measurement frequency, includes also time-dependent covariances. In total 15 individual solutions for the radio telescope reference point were derived, based on monitoring observations during the normal operation of the radio telescope. Since the radio telescope was moving continually, the influence of timing errors was studied and considered in the adjustment process. Finally, recursive filter techniques were introduced to combine the 15 individual solutions. Accuracies at the sub-millimeter level could be achieved for the radio telescope reference point. Thus, the presented monitoring concept fulfills the requirement proposed by the global geodetic observing system.

  16. A return to strong radio flaring by Circinus X-1 observed with the Karoo Array Telescope test array KAT-7

    NASA Astrophysics Data System (ADS)

    Armstrong, R. P.; Fender, R. P.; Nicolson, G. D.; Ratcliffe, S.; Linares, M.; Horrell, J.; Richter, L.; Schurch, M. P. E.; Coriat, M.; Woudt, P.; Jonas, J.; Booth, R.; Fanaroff, B.

    2013-08-01

    Circinus X-1 is a bright and highly variable X-ray binary which displays strong and rapid evolution in all wavebands. Radio flaring, associated with the production of a relativistic jet, occurs periodically on a ˜17-d time-scale. A longer term envelope modulates the peak radio fluxes in flares, ranging from peaks in excess of a Jansky in the 1970s to a historic low of milliJanskys during the years 1994-2006. Here, we report first observations of this source with the MeerKAT (Karoo Array Telescope) test array, KAT-7, part of the pathfinder development for the African dish component of the Square Kilometre Array, demonstrating successful scientific operation for variable and transient sources with the test array. The KAT-7 observations at 1.9 GHz during the period 2011 December 13 to 2012 January 16 reveal in temporal detail the return to the Jansky-level events observed in the 1970s. We compare these data to contemporaneous single-dish measurements at 4.8 and 8.5 GHz with the HartRAO 26-m telescope and X-ray monitoring from MAXI. We discuss whether the overall modulation and recent dramatic brightening is likely to be due to an increase in the power of the jet due to changes in accretion rate or changing Doppler boosting associated with a varying angle to the line of sight.

  17. Simultaneous oberservations of magnetospheric HF radio emission after Solar flare X1/3B at November 4, 2001 by use of different radio telescopes

    NASA Astrophysics Data System (ADS)

    Dudnik, O.; Yurovsky, Y.

    It is shown that the number of short-term (~1s) sporadic bursts of the near Earth space is changing at frequencies 100 - 500 MHz and depending on the time of the day as well as on the solar activity. The number of radio bursts of similar amplitude is increasing at the frequency 150 MHz when the proton density of high-speed solar wind streams is increasing. The level of radio noises was simultaneously registered during the high solar activity on November, 2001, at frequencies 280, 300, 150 and 500 MHz by radio telescopes, situated on the distance 700 km from each other. In spite of the slight differences of radio technical features of the receiving channels the simultaneous series of bursts have been observed after 3-4 hours from beginning of the strong 3B flare that took place on November 4, 2001. The comparative analysis of the fine structure of bursts registered in both places has been carried out. The obtained experimental data were compared with dynamics of electrons and protons fluxes of different energetic ranges in the interplanetary space by use the data of the ACE satellite as well as on the geostationary orbit by use the data of satellites of GOES series. The supposition was made on the basis of the carried out analyses that the source of HF radio bursts does not have long life space localization but it emerges sporadically for a short time from part of the second to several decades of seconds under the influence of the external factors. Such factors can be represented by fluxes of electrons and ions with energies 50 - 500 keV in the interplanetary space, that were generated in the powerful solar flare, or by ion-cyclotron waves of the outer part of the Earth's magnetosphere. The fine structure of bursts mostly does not coincide at different frequencies that testifies either the narrow band emission feature or the imposi g of local conditions on the radio waves propagation over the place of then bursts' receiving.

  18. System and method for phase retrieval for radio telescope and antenna control

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2013-01-01

    Disclosed herein are systems, methods, and non-transitory computer-readable storage media for radio phase retrieval. A system practicing the method gathers first data from radio waves associated with an object observed via a first aperture, gathers second data from radio waves associated with the object observed via an introduced second aperture associated with the first aperture, generates reduced noise data by incoherently subtracting the second data from the first data, and performs phase retrieval for the radio waves by modeling the reduced noise data using a single Fourier transform. The first and second apertures are at different positions, such as side by side. This approach can include determining a value Q which represents a ratio of wavelength times a focal ratio divided by pixel spacing. This information can be used to accurately measure and correct alignment errors or other optical system flaws in the apertures.

  19. Infrared-faint radio sources are at high redshifts. Spectroscopic redshift determination of infrared-faint radio sources using the Very Large Telescope

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Sharp, R.; Spitler, L. R.; Parker, Q. A.

    2014-07-01

    Context. Infrared-faint radio sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for high-redshift radio galaxies (HzRGs), suggesting a link between the two classes of object. However, the optical and infrared faintness of IFRS makes their study difficult. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Furthermore, we test the hypothesis that IFRS are similar to HzRGs, that they are higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted from the final spectra, where possible. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts and the resulting luminosities show IFRS to be similar to HzRGs, supporting our hypothesis. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of active galactic nuclei in the early universe and adds to the problems of explaining the formation of

  20. Discovery of the Millisecond Pulsar PSR J2043+1711 in a Fermi Source with the Nancay Radio Telescope

    NASA Technical Reports Server (NTRS)

    Guillemot, L.; Freire, P. C. C.; Cognard, I.; Johnson, T. J.; Takahashi, Y.; Kataoka, J.; Desvignes, G.; Camilo, F.; Ferrara, E. C.; Harding, A. K.; Janssen, G. H.; Keith, M.; Kerr, M.; Kramer, M.; Parent, D.; Ransom, S. M.; Ray, P. S.; Saz Parkinson, P. M.; Smith, D. A.; Stappers, W.; Theureau, G.

    2012-01-01

    We report the discovery of the millisecond pulsar PSR J2043+1711 in a search of a Fermi Large Area Telescope (LAT) source with no known associations, with the Nancay Radio Telescope. The new pulsar, confirmed with the Green Bank Telescope, has a spin period of 2.38 ms, is relatively nearby (d approx. < 2 kpc) and is in a 1.48-d orbit around a low-mass companion, probably an He-type white dwarf. Using an ephemeris based on Arecibo, Nancay and Westerbork timing measurements, pulsed gamma-ray emission was detected in the data recorded by the Fermi LAT. The gamma-ray light curve and spectral properties are typical of other gamma-ray millisecond pulsars seen with Fermi. X-ray observations of the pulsar with Suzaku and the Swift X-ray Telescope yielded no detection. At 1.4 GHz, we observe strong flux density variations because of interstellar diffractive scintillation; however, a sharp peak can be observed at this frequency during bright scintillation states. At 327 MHz, the pulsar is detected with a much higher signal-to-noise ratio and its flux density is far more steady. However, at that frequency the Arecibo instrumentation cannot yet fully resolve the pulse profile. Despite that, our pulse time-of-arrival measurements have a post-fit residual rms of 2 micro s. This and the expected stability of this system have made PSR J2043+1711 one of the first new Fermi-selected millisecond pulsars to be added to pulsar gravitational wave timing arrays. It has also allowed a significant measurement of relativistic delays in the times of arrival of the pulses due to the curvature of space-time near the companion, but not yet with enough precision to derive useful masses for the pulsar and the companion. Nevertheless, a mass for the pulsar between 1.7 and 2.0 solar Mass can be derived if a standard millisecond pulsar formation model is assumed. In this paper, we also present a comprehensive summary of pulsar searches in Fermi LAT sources with the Nancay Radio Telescope to date.

  1. Effect of the rail unevenness on the pointing accuracy of large radio telescope

    NASA Astrophysics Data System (ADS)

    Li, Na; Wu, Jiang; Duan, Bao-Yan; Wang, Cong-Si

    2017-03-01

    Considering the stringent requirement of the pointing accuracy up to 2.5″ of the World largest full steerable telescope, this paper presents a coarse-fine mixed model to describe the azimuth rail unevenness. First, the coarse-fine mixed model is proposed. In the model, the trigonometric function is utilized to describe the error with long wavelength whilst the fractal function is used for the short wavelength errors, separately. Then the mathematic model of the pointing accuracy is developed mathematically. Finally, the coarse-fine model and point accuracy model are applied to Green Bank Telescope with valuable result. This paved the way for predicting point error of Qi Tai Telescope.

  2. Improved flux limits for neutrinos with energies above 10(22) eV from observations with the Westerbork Synthesis Radio Telescope.

    PubMed

    Scholten, O; Buitink, S; Bacelar, J; Braun, R; de Bruyn, A G; Falcke, H; Singh, K; Stappers, B; Strom, R G; al Yahyaoui, R

    2009-11-06

    Particle cascades initiated by ultrahigh energy neutrinos in the lunar regolith will emit an electromagnetic pulse with a time duration of the order of nanoseconds through a process known as the Askaryan effect. It has been shown that in an observing window around 150 MHz there is a maximum chance for detecting this radiation with radio telescopes commonly used in astronomy. In 50 h of observation time with the Westerbork Synthesis Radio Telescope array we have set a new limit on the flux of neutrinos, summed over all flavors, with energies in excess of 4x10(22) eV.

  3. Simultaneous observations of solar sporadic radio emission by the radio telescopes UTR-2, URAN-2 and NDA within the frequency range 8-41MHz

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.; Konovalenko, A. A.; Rucker, H. O.; Brazhenko, A. I.; Briand, C.; Dorovskyy, V. V.; Zarka, P.; Denis, L.; Bulatzen, V. G.; Frantzusenko, A. V.; Stanislavskyy, A. A.

    2012-04-01

    From 25 June till 12 August 2011 sporadic solar radio emission was observed simultaneously by three separate radio telescopes: UTR-2 (Kharkov, Ukraine), URAN-2 (Poltava, Ukraine) and NDA (Nancay, France). During these observations several type II bursts with double and triple harmonics were registered, as well as type II bursts with complex herringbone structure. The events of particular interest were type II bursts registered on 9 and 11 August 2011. These bursts had opposite sign of circular polarization at different parts of their dynamic spectra. In our opinion we registered the emissions, which came from the different parts of the shock propagating through the solar corona. We have observed also groups of type III bursts merged into one burst, type III bursts with triple harmonics and type III bursts with "split" polarization. In addition some unusual solar bursts were registered: storms of strange narrow-band (up to 500kHz) bursts with high polarization degree (about 80%), decameter spikes of extremely short durations (200-300ms), "tadpole-like" bursts with durations of 1-2s and polarization degree up to 60%.

  4. Study of Solar-Terrestrial Connections in the Highlight of Simultaneous Observations with STEREO and UTR-2, URAN, NDA Ground-Based Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.; Rucker, H. O.; Konovalenko, A. A.; Lecacheux, A.; Falkovich, I. S.

    In the present paper new opportunities, which will be appeared at simultaneous observations by STEREO and ground-based radio telescopes (UTR-2, URAN, NDA), in study of solar sporadic phenomena, having essential effects on the Earth, are discussed. CMEs, which manifest themselves in radio emission as Type II and Type IY bursts, are the most important of them. Studying of these bursts during simultaneous observations with the help of STEREO and ground-based radio telescopes will allow to find the direction of CME movement, 3D images of CME, its beaming pattern, bulk energy of both CME and shock before it, particle acceleration sites and directions of propagation of accelerated particles. Analyses of radio observations of active and quiet Sun will allow to understand pre-CME conditions in the solar corona and will give an opportunity to forecast CME appearance. Observations of different types of sporadic radio emissions (Type III bursts, drift pairs, s-bursts, bursts in absorption etc.) with high sensitivity, high frequency and time resolutions in decameter range by ground-based radio telescopes and detection of regions, where this radio emission goes out from (using STEREO results), will allow to diagnose the coronal plasmas (to define their density, magnetic fields, parameters of inhomogenieties) at altitudes 0.5-2Rs and to build adequate model of CME formation and its evolution. Using of interplanetary scintillation methods tested on UTR-2 and URAN radio telescope as well as in situ measurements on STEREO will give the information about both CME structure and shock associated with it, about spectra of density fluctuations and turbulences connected with CME at distances about 1a.u. from the Sun.

  5. GIANT METREWAVE RADIO TELESCOPE DETECTION OF TWO NEW H I 21 cm ABSORBERS AT z ≈ 2

    SciTech Connect

    Kanekar, N.

    2014-12-20

    I report the detection of H I 21 cm absorption in two high column density damped Lyα absorbers (DLAs) at z ≈ 2 using new wide-band 250-500 MHz receivers on board the Giant Metrewave Radio Telescope. The integrated H I 21 cm optical depths are 0.85 ± 0.16 km s{sup –1} (TXS1755+578) and 2.95 ± 0.15 km s{sup –1} (TXS1850+402). For the z = 1.9698 DLA toward TXS1755+578, the difference in H I 21 cm and C I profiles and the weakness of the radio core suggest that the H I 21cm absorption arises toward radio components in the jet, and that the optical and radio sightlines are not the same. This precludes an estimate of the DLA spin temperature. For the z = 1.9888 DLA toward TXS1850+402, the absorber covering factor is likely to be close to unity, as the background source is extremely compact, with the entire 5 GHz emission arising from a region of ≤ 1.4 mas in size. This yields a DLA spin temperature of T{sub s} = (372 ± 18) × (f/1.0) K, lower than typical T{sub s} values in high-z DLAs. This low spin temperature and the relatively high metallicity of the z = 1.9888 DLA ([Zn/H] =(– 0.68 ± 0.04)) are consistent with the anti-correlation between metallicity and spin temperature that has been found earlier in damped Lyα systems.

  6. Optical properties of high-frequency radio sources from the Australia Telescope 20 GHz (AT20G) Survey

    NASA Astrophysics Data System (ADS)

    Mahony, Elizabeth K.; Sadler, Elaine M.; Croom, Scott M.; Ekers, Ronald D.; Bannister, Keith W.; Chhetri, Rajan; Hancock, Paul J.; Johnston, Helen M.; Massardi, Marcella; Murphy, Tara

    2011-11-01

    Our current understanding of radio-loud active galactic nuclei (AGN) comes predominantly from studies at frequencies of 5 GHz and below. With the recent completion of the Australia Telescope 20 GHz (AT20G) survey, we can now gain insight into the high-frequency radio properties of AGN. This paper presents supplementary information on the AT20G sources in the form of optical counterparts and redshifts. Optical counterparts were identified using the SuperCOSMOS data base and redshifts were found from either the 6dF Galaxy Survey or the literature. We also report 144 new redshifts. For AT20G sources outside the Galactic plane, 78.5 per cent have optical identifications and 30.9 per cent have redshift information. The optical identification rate also increases with increasing flux density. Targets which had optical spectra available were examined to obtain a spectral classification. There appear to be two distinct AT20G populations; the high luminosity quasars that are generally associated with point-source optical counterparts and exhibit strong emission lines in the optical spectrum, and the lower luminosity radio galaxies that are generally associated with passive galaxies in both the optical images and spectroscopic properties. It is suggested that these different populations can be associated with different accretion modes (cold-mode or hot-mode). We find that the cold-mode sources have a steeper spectral index and produce more luminous radio lobes, but generally reside in smaller host galaxies than their hot-mode counterparts. This can be attributed to the fact that they are accreting material more efficiently. Lastly, we compare the AT20G survey with the S-cubed semi-empirical (S3-SEX) models and conclude that the S3-SEX models need refining to correctly model the compact cores of AGN. The AT20G survey provides the ideal sample to do this.

  7. No Radio Flaring Detected from Cygnus X-3 at 3 GHz by Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Williams, P. K. G.; Bower, G. C.; Tomsick, J. A.; Bodaghee, A.; Corbet, R. H. D.

    2011-01-01

    Following the announcement of a 98 GHz flare from the microquasar Cygnus X-3 (ATel #3130), we observed it with the Allen Telescope Array (Welch et al., 2009 Proc. IEEE 97 1438 for 2.5 hours beginning at 2011 January 28.848 UT (MJD 55589.848), about 4.0 hours after the 98 GHz observations concluded.

  8. Ray-tracing and physical-optics analysis of the aperture efficiency in a radio telescope.

    PubMed

    Olmi, Luca; Bolli, Pietro

    2007-07-01

    The performance of telescope systems working at microwave or visible-IR wavelengths is typically described in terms of different parameters according to the wavelength range. Most commercial ray-tracing packages have been specifically designed for use with visible-IR systems and thus, though very flexible and sophisticated, do not provide the appropriate parameters to fully describe microwave antennas and to compare with specifications. We demonstrate that the Strehl ratio is equal to the phase efficiency when the apodization factor is taken into account. The phase efficiency is the most critical contribution to the aperture efficiency of an antenna and the most difficult parameter to optimize during the telescope design. The equivalence between the Strehl ratio and the phase efficiency gives the designer/user of the telescope the opportunity to use the faster commercial ray-tracing software to optimize the design. We also discuss the results of several tests performed to check the validity of this relationship that we carried out using a ray-tracing software, ZEMAX, and a full Physical Optics software, GRASP9.3, applied to three different telescope designs that span a factor of approximately 10 in terms of D/lambda. The maximum measured discrepancy between phase efficiency and Strehl ratio varies between approximately 0.4% and 1.9% up to an offset angle of >40 beams, depending on the optical configuration, but it is always less than 0.5% where the Strehl ratio is >0.95.

  9. Ray-tracing and physical-optics analysis of the aperture efficiency in a radio telescope

    NASA Astrophysics Data System (ADS)

    Olmi, Luca; Bolli, Pietro

    2007-07-01

    The performance of telescope systems working at microwave or visible-IR wavelengths is typically described in terms of different parameters according to the wavelength range. Most commercial ray-tracing packages have been specifically designed for use with visible-IR systems and thus, though very flexible and sophisticated, do not provide the appropriate parameters to fully describe microwave antennas and to compare with specifications. We demonstrate that the Strehl ratio is equal to the phase efficiency when the apodization factor is taken into account. The phase efficiency is the most critical contribution to the aperture efficiency of an antenna and the most difficult parameter to optimize during the telescope design. The equivalence between the Strehl ratio and the phase efficiency gives the designer/user of the telescope the opportunity to use the faster commercial ray-tracing software to optimize the design. We also discuss the results of several tests performed to check the validity of this relationship that we carried out using a ray-tracing software, ZEMAX, and a full Physical Optics software, GRASP9.3, applied to three different telescope designs that span a factor of ≃10 in terms of D/λ. The maximum measured discrepancy between phase efficiency and Strehl ratio varies between ≃0.4% and 1.9% up to an offset angle of >40 beams, depending on the optical configuration, but it is always less than 0.5% where the Strehl ratio is >0.95.

  10. Monitoring of Cyg X-3 giant flare with Medicina and the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Egron, E.; Pellizzoni, A.; Giroletti, M.; Righini, S.; Orlati, A.; Iacolina, M. N.; Navarrini, A.; Buttu, M.; Migoni, C.; Melis, A.; Concu, R.; Vargiu, G. P.; Bachetti, M.; Pilia, M.; Trois, A.; Loru, S.; Marongiu, M.

    2016-09-01

    Following the detection of Cyg X-3 entering in an ultra soft X-ray state, a forthcoming giant flare was predicted by Trushkin et al. (ATel #9416). In fact, a significant radio flux increase was detected three weeks later, on 14-16 September 2016 (ATel #9502).

  11. Big-Data Perspective to Operating an SKA-Type Synthesis Array Radio Telescope

    NASA Astrophysics Data System (ADS)

    Shanmugha Sundaram, GA

    2015-08-01

    Of the two forerunner sites, viz. Australia and South Africa, where pioneering advancements to state-of-the-art in synthesis array radio astronomy instrumentation are being attempted in the form of pathfinders to the Square Kilometer Array (SKA), for its eventual deployment, a diversity of site-dependent topology and design metrics exists. Towards addressing some of the fundamental mysteries in physics at the micro- and macro-cosm levels, that form the Key Science Projects (KSPs) for the SKA, and interfacing them to an optimally designed array conguration, a critical evaluation of their radio imaging capabilities and metrics becomes paramount. Here, the various KSPs and instrument design specifications are discussed, for relative merits and adaptability to either site, from invoking well-founded and established array-design and optimization principles designed into a customized software tool. Since the problem of array design is one that encompasses variables on several scales such as separation distances between the radio interferometric pair (termed the baseline), factors such as redundancy, flux and phase calibration, bandwidth, integration time, clock synchronization for the correlation process at the detector, and many other ambient-defined parameters, there is a significant component of big data involved in the complex visibilities that are to be Fourier transformed from the spatial to the radio-sky domain (to generate a radio sky map) using vast computational infrastructure, with robust data connectivity and data handling facilities to support this. A crucial requirement exists to make the general public aware of the implications of such a massive scale scientific and technological venture, which shall be the focus of this presentation.

  12. Low-noise room-temperature and cryogenic mixers for 80-120 GHz. [design for use on radio telescope

    NASA Technical Reports Server (NTRS)

    Kerr, A. R.

    1975-01-01

    A description is given of two new mixers designed to operate in the 80-120-GHz range on 36-ft radio telescope. It is shown that for a hard-driven diode the parasitic resistance and capacitance are the primary factors influencing the design of the diode mount. A room-temperature mixer is described which achieves a single-sideband (SSB) conversion loss (L) of 5.5 dB, and a SSB noise temperature (Tm) of 500 K (excluding the IF contribution) with a 1.4-GHz IF. A cryogenically cooled version, using a quartz structure to support the diode chip and contact whisker, achieves values of L = 5.8 dB and Tm = 300 K with a 4.75-GHz IF. The mixers use high-quality Schottky-barrier diodes in a one-quarter-height waveguide mount.

  13. Development of the remote diagnosis system of the solar radio telescope

    NASA Astrophysics Data System (ADS)

    Kawashima, Susumu; Shinohara, Noriyuki; Sekiguchi, Hideaki

    2005-04-01

    "The remote diagnosis system" which we have developed is the one to monitor the operation conditions of two systems of solar radio observation (Nobeyama Radioheliograph and Nobeyama Radio Polarimeters) from the remote place. Under the condition of very limited human power, it is necessary to minimize the load of observers without degrading data quality. Thereupon, we have mulled measures to alleviate the load of observers, and worked out "the remote diagnosis system" which enables us to monitor the operation conditions and detect troubles, if any, in early stages, even if we are away from the observatory building where control system are concentrated. The plan was materialized by adopting an access through the INTERNET to the section where needed information for diagnosis is gathered.

  14. Analysis of the GPS Observations of the Site Survey at Sheshan 25-m Radio Telescope in August 2008

    NASA Technical Reports Server (NTRS)

    Liu, L.; Cheng, Z. Y.; Li, J. L.

    2010-01-01

    The processing of the GPS observations of the site survey at Sheshan 25-m radio telescope in August 2008 is reported. Because each session in this survey is only about six hours, not allowing the subdaily high frequency variations in the station coordinates to be reasonably smoothed, and because there are serious cycle slips in the observations and a large volume of data would be rejected during the software automatic adjustment of slips, the ordinary solution settings of GAMIT needed to be adjusted by loosening the constraints in the a priori coordinates to 10 m, adopting the "quick" mode in the solution iteration, and combining Cview manual operation with GAMIT automatic fixing of cycle slips. The resulting coordinates of the local control polygon in ITRF2005 are then compared with conventional geodetic results. Due to large rotations and translations in the two sets of coordinates (geocentric versus quasi-topocentric), the seven transformation parameters cannot be solved for directly. With various trial solutions it is shown that with a partial pre-removal of the large parameters, high precision transformation parameters can be obtained with post-fit residuals at the millimeter level. This analysis is necessary to prepare the follow-on site and transformation survey of the VLBI and SLR telescopes at Sheshan

  15. The Comparative Characteristic of Components in the Iiib-Iii Pairs According to the Observation Data Obtained by Radio Telescope URAN-2

    NASA Astrophysics Data System (ADS)

    Brazhenko, A. I.; Melnik, V. N.; Konovalenko, A. A.; Dorovskiy, V. V.; Vashchishin, R. V.; Frantsuzenko, A. V.; Rucker, G.

    In this paper we analyze the properties of type IIIb and type III bursts in IIIb-III pairs observed by radio telescope URAN-2 at frequencies 16-32 MHz. We discuss pro and contra of harmonic phenomenon of decameter IIIb-III pairs.

  16. Bent-tailed radio sources in the australia telescope large area survey of the Chandra deep field south

    SciTech Connect

    Dehghan, S.; Johnston-Hollitt, M.; Franzen, T. M. O.; Norris, R. P.; Miller, N. A.

    2014-11-01

    Using the 1.4 GHz Australia Telescope Large Area Survey, supplemented by the 1.4 GHz Very Large Array images, we undertook a search for bent-tailed (BT) radio galaxies in the Chandra Deep Field South. Here we present a catalog of 56 detections, which include 45 BT sources, 4 diffuse low-surface-brightness objects (1 relic, 2 halos, and 1 unclassified object), and a further 7 complex, multi-component sources. We report BT sources with rest-frame powers in the range 10{sup 22} ≤ P {sub 1.4} {sub GHz} ≤ 10{sup 26} W Hz{sup –1}, with redshifts up to 2 and linear extents from tens of kiloparsecs up to about 1 Mpc. This is the first systematic study of such sources down to such low powers and high redshifts and demonstrates the complementary nature of searches in deep, limited area surveys as compared to shallower, large surveys. Of the sources presented here, one is the most distant BT source yet detected at a redshift of 2.1688. Two of the sources are found to be associated with known clusters: a wide-angle tail source in A3141 and a putative radio relic which appears at the infall region between the galaxy group MZ 00108 and the galaxy cluster AMPCC 40. Further observations are required to confirm the relic detection, which, if successful, would demonstrate this to be the least powerful relic yet seen with P {sub 1.4} {sub GHz} = 9 × 10{sup 22} W Hz{sup –1}. Using these data, we predict future 1.4 GHz all-sky surveys with a resolution of ∼10 arcsec and a sensitivity of 10 μJy will detect of the order of 560,000 extended low-surface-brightness radio sources of which 440,000 will have a BT morphology.

  17. Providing hydrogen maser timing stability to orbiting VLBI radio telescope observations by post-measurement compensation of linked frequency standard imperfections

    NASA Technical Reports Server (NTRS)

    Springett, James C.

    1994-01-01

    Orbiting VLBI (OVLBI) astronomical observations are based upon measurements acquired simultaneously from ground-based and earth-orbiting radio telescopes. By the mid-1990s, two orbiting VLBI observatories, Russia's Radioastron and Japan's VSOP, will augment the worldwide VLBI network, providing baselines to earth radio telescopes as large as 80,000 km. The challenge for OVLBI is to effectuate space to ground radio telescope data cross-correlation (the observation) to a level of integrity currently achieved between ground radio telescopes. VLBI radio telescopes require ultrastable frequency and timing references in order that long term observations may be made without serious cross-correlation loss due to frequency source drift and phase noise. For this reason, such instruments make use of hydrogen maser frequency standards. Unfortunately, space-qualified hydrogen maser oscillators are currently not available for use on OVLBI satellites. Thus, the necessary long-term stability needed by the orbiting radio telescope may only be obtained by microwave uplinking a ground-based hydrogen maser derived frequency to the satellite. Although the idea of uplinking the frequency standard intrinsically seems simple, there are many 'contaminations' which degrade both the long and short term stability of the transmitted reference. Factors which corrupt frequency and timing accuracy include additive radio and electronic circuit thermal noise, slow or systematic phase migration due to changes of electronic circuit temporal operating conditions (especially temperature), ionosphere and troposphere induced scintillations, residual Doppler-incited components, and microwave signal multipath propagation. What is important, though, is to realize that ultimate stability does not have to be achieved in real-time. Instead, information needed to produce a high degree of coherence in the subsequent cross-correlation operation may be derived from a two-way coherent radio link, recorded and later

  18. Direct imaging of planetary systems with a ground-based radio telescope array

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.

    1994-01-01

    The National Radio Astronomy Observatory's proposed Millimeter Array (MMA) will bring unprecedented sensitivity, angular resolution, and image dynamic range to the millimeter wavelength region of the spectrum. An obvious question is whether such an instrument could be used to detect planets orbiting nearby stars. The techniques of aperture synthesis imaging developed for centimeter wavelength radio arrays are capable of producing images whose dynamic ranges greatly exceed the brightness ratio of a solar-type star and a Jupiter-like planet at sub-millimeter or millimeter wavelengths. The angular resolution required to separate a star and planet at a few pc distance can be obtained with baselines of several km. The greatest challenge is sensitivity. At the highest possible observing frequencies (approximately 300 GHz for typical high, dry sites, and approximately 900 GHz from the Antarctic plateau), the proposed MMA will be unable to detect the thermal emission from a Jupiter-like planet a few pc away. An upgraded MMA operating near 300 GHz with twice the currently proposed number of antennas, a 20% fractional bandwidth, and improved receivers could detect Jupiter at 4 pc in a few months. Building such an array on the Antarctic plateau and operating at approximately 900 GHz would allow Jupiter at 4 pc to be detected in approximately one day of observing time.

  19. Computer-aided design of reflector antennas - The Green Bank Radio Telescope

    NASA Astrophysics Data System (ADS)

    Terada, Marco A. B.; Stutzman, Warren L.

    1998-03-01

    This paper presents an evaluation of the electrical performance of the Green Bank Telescope (GBT) reflector antenna, operating as single- and dual-offset configurations, as well as a general overview of the GBT system. The GBT dual-offset Gregorian configuration is designed for low cross polarization (XPOL) using the dual-offset reflector antenna (DORA) synthesis package code. The procedure implemented in DORA to upgrade an existing main reflector to a low cross-polarized dual-offset Gregorian reflector antenna is also described. All computed patterns were obtained with the parabolic reflector analysis code (PRAC) program, and with the commercial code GRASP7. The GBT radiation patterns and performance values indicate that low XPOL performance can be achieved with a dual-offset configuration, provided that a low XPOL feed is used. The GBT configuration is employed as a case example for the aforementioned procedure.

  20. The low-noise 115-GHz receiver on the Columbia-GISS 4-ft radio telescope

    NASA Technical Reports Server (NTRS)

    Cong, H.-I.; Kerr, A. R.; Mattauch, R. J.

    1979-01-01

    The superheterodyne millimeter-wave radiometer on the Columbia-GISS 4-ft telescope is described. This receiver uses a room-temperature Schottky diode mixer, with a resonant-ring filter as LO diplexer. The diplexer has low signal loss, efficient LO power coupling, and suppresses most of the LO noise at both sidebands. The receiver IF section has a parametric amplifier as its first stage with sufficient gain to overcome the second-stage amplifier noise. A broad-banded quarter-wave impedance transformer minimizes the mismatch between mixer and paramp. At 115 GHz, the SSB receiver noise temperature is 860 K, which is believed to be the lowest figure so far reported for a room-temperature receiver at this frequency.

  1. LQG controller design using GUI: application to antennas and radio-telescopes

    PubMed

    Maneri; Gawronski

    2000-01-01

    The Linear Quadratic Gaussian (LQG) algorithm has been used to control the JPL's beam wave-guide, and 70-m antennas. This algorithm significantly improves tracking precision in a wind disturbed environment. Based on this algorithm and the implementation experience a Matlab based Graphical User Interface (GUI) was developed to design the LQG controllers applicable to antennas and radiotelescopes. The GUI is described in this paper. It consists of two parts the basic LQG design and the fine-tuning of the basic design using a constrained optimization algorithm. The presented GUI was developed to simplify the design process, to make the design process user-friendly, and to enable design of an LQG controller for one with a limited control engineering background. The user is asked to manipulate the GUI sliders and radio buttons to watch the antenna performance. Simple rules are given at the GUI display.

  2. The Progress of Science Preparation for the Five-hundred-meter Aperture Spherical radio Telescope

    NASA Astrophysics Data System (ADS)

    Li, Di

    2015-08-01

    By early 2015, the FAST project has reached a major landmark-finishing laying its cable-mesh system.The primary panels, actuators, and the first receiver platform will be in place by early 2016. We expect an intense period of system testing followed by the first light toward the end of 2016. The early science focus will be to explore opportunities provided by two main receivers, the L-band system and the ultra-wide band receiver covering 280 MHz to 1.6 GHz.I will report here the progress being made in early science project definition, including a pathfinding pulsar search, quasar absorption studies, radio-band line surveys, and megamaser surveys.

  3. Radio continuum observations of local star-forming galaxies using the Caltech Continuum Backend on the green bank telescope

    SciTech Connect

    Rabidoux, Katie; Pisano, D. J.; Kepley, Amanda A.; Johnson, Kelsey E.; Balser, Dana S.

    2014-01-01

    We observed radio continuum emission in 27 local (D < 70 Mpc) star-forming galaxies with the Robert C. Byrd Green Bank Telescope between 26 GHz and 40 GHz using the Caltech Continuum Backend. We obtained detections for 22 of these galaxies at all four sub-bands and four more marginal detections by taking the average flux across the entire bandwidth. This is the first detection (full or marginal) at these frequencies for 22 of these galaxies. We fit spectral energy distributions (SEDs) for all of the four sub-band detections. For 14 of the galaxies, SEDs were best fit by a combination of thermal free-free and nonthermal synchrotron components. Eight galaxies with four sub-band detections had steep spectra that were only fit by a single nonthermal component. Using these fits, we calculated supernova rates, total number of equivalent O stars, and star formation rates within each ∼23'' beam. For unresolved galaxies, these physical properties characterize the galaxies' recent star formation on a global scale. We confirm that the radio-far-infrared correlation holds for the unresolved galaxies' total 33 GHz flux regardless of their thermal fractions, though the scatter on this correlation is larger than that at 1.4 GHz. In addition, we found that for the unresolved galaxies, there is an inverse relationship between the ratio of 33 GHz flux to total far-infrared flux and the steepness of the galaxy's spectral index between 1.4 GHz and 33 GHz. This relationship could be an indicator of the timescale of the observed episode of star formation.

  4. Power-efficient ultra wideband LNAs for the world's largest radio telescope

    NASA Astrophysics Data System (ADS)

    Panahi, M.; Bhaumik, S.; George, D.

    2014-12-01

    This paper reports two Low Noise Amplifiers (LNA) for Aperture Array system of the international Square Kilometre Array (SKA) project. LNA design for SKA is a step change in traditional LNA design approach for radio astronomy applications as the defining aspects of performance are low noise along with low power consumption and adequate gain. The LNAs are designed, fabricated and characterised for frequency range of 20 -1000 MHz. One LNA has single ended input to single ended output configuration (LNA1) while the other LNA has balanced input to single ended output (LNA2). The S-parameter, noise figure (NF) and large signal response of the LNAs are measured at room temperature. Both LNAs show flat gain of higher than 30 dB over specified frequency range. Average NF values of LNA1 and LNA2 are 0.55 dB and 0.75 dB respectively. Mixed mode S-parameter response based on theoretical analysis of differential configuration is presented. The LNAs have exceptionally low power consumption of less than 25 mW; 20 times lower than the other reported LNAs available for the SKA and also covering complete frequency band with less than 1 dB NF. Therefore implication of these LNAs is a significant step forward as the projected number of LNAs required for the lower frequency band of SKA Aperture Array system is 5,600,000 (Dewdney et al., Proc. IEEE 97(8), 1482-1496, 2009; Faulkner et al. 2010).

  5. Design of broadband antenna elements for a low-frequency radio telescope using Pareto genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Kerkhoff, A.; Ling, H.

    2009-12-01

    We apply Pareto genetic algorithm (GA) optimization to the design of antenna elements for use in the Long Wavelength Array (LWA), a large, low-frequency radio telescope currently under development. By manipulating antenna geometry, the Pareto GA simultaneously optimizes the received Galactic background or “sky” noise level and radiation patterns of the antenna over all frequencies. Geometrical constraints are handled explicitly in the GA in order to guarantee the realizability, and to impart control over the monetary cost of the generated designs. The antenna elements considered are broadband planar dipoles arranged horizontally over the ground. It is demonstrated that the Pareto GA approach generates a set of designs, which exhibit a wide range of trade-offs between the two design objectives, and satisfy all constraints. Multiple GA executions are performed to determine how antenna performance trade-offs are affected by different geometrical constraint values, feed impedance values, radiating element shapes and orientations, and ground conditions. Two different planar dipole antenna designs are constructed, and antenna input impedance and sky noise drift scan measurements are performed to validate the results of the GA.

  6. Bounds on dark matter properties from radio observations of Ursa Major II using the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Natarajan, Aravind; Peterson, Jeffrey B.; Voytek, Tabitha C.; Spekkens, Kristine; Mason, Brian; Aguirre, James; Willman, Beth

    2013-10-01

    Radio observations of the Ursa Major II dwarf spheroidal galaxy obtained using the Green Bank Telescope are used to place bounds on weakly interacting massive particle (WIMP) dark matter properties. Dark matter annihilation releases energy in the form of charged particles which emit synchrotron radiation in the magnetic field of the dwarf galaxy. We compute the expected synchrotron radiation intensity from WIMP annihilation to various primary channels. The predicted synchrotron radiation is sensitive to the distribution of dark matter in the halo, the diffusion coefficient D0, the magnetic field strength B, the particle mass mχ, the annihilation rate ⟨σav⟩, and the annihilation channel. Limits on ⟨σav⟩, mχ, B, and D0 are obtained for the e+e-, μ+μ-, τ+τ-, and bb¯ channels. Constraints on these parameters are sensitive to uncertainties in the measurement of the dark matter density profile. For the best fit halo parameters derived from stellar kinematics, we exclude 10 GeV WIMPs annihilating directly to e+e- at the thermal rate ⟨σav⟩=2.18×10-26cm3/s at the 2σ level, for B>0.6μG (1.6μG) and D0=0.1(1.0)× the Milky Way diffusion value.

  7. From FERMI-LAT observations to the blind pulsar survey SPAN512 with the Nançay Radio Telescope

    NASA Astrophysics Data System (ADS)

    Octau, F.; Desvignes, G.; Cognard, I.; Champion, D.; Lazarus, P.; Smith, D.; Theureau, G.

    2016-12-01

    Since the discovery of the first pulsar in 1967, we know over 2500 pulsars today. Pulsars offer a broad range of studies: from the study of the properties of interstellar medium and of pulsar magnetospheres up to test of gravity in the strong-field regime and the characterisation of the cosmological Gravitation Wave Background. This explains why we keep searching for pulsars nowadays. Such focus was initiated at the Nançay Radio Telescope (NRT) with the observation of unidentified Fermi-LAT sources, which led to the quick discovery of three new millisecond pulsars. In 2012, a blind pulsar survey called SPAN512 (in reference to the large bandwidth of 512 MHz) was initiated and the NRT began to observe the low galactic latitude sky at 1.4 GHz. This survey is still in progress (≈90% of the observations have been made) and, up to now, it has led to the discovery of three pulsars, two of them with millisecond spin periods.

  8. The initial characterization of a revised 10-Gsps analog-to-digital converter board for radio telescopes

    NASA Astrophysics Data System (ADS)

    Jiango, Homin; Liuo, Howard; Guzzino, Kim

    2016-07-01

    In this study, the design of a 4 bit, 10-gigasamples-per-second analog-to-digital converter (ADC) printed circuit board assembly (PCBA) was revised, manufactured, and tested. It is used for digitizing radio telescopes. An Adsantec ANST7120-KMA flash ADC chip was used, as in the original design. Associated with the field-programmable gate array platform developed by the Collaboration for Astronomy Signal Processing and Electronics Research community, the developed PCBA provides data acquisition systems with a wider bandwidth and simplifies the intermediate frequency section. The current version of the PCBA exhibits an analog bandwidth of up to 10 GHz (3 dB loss), and the chip exhibits an analog bandwidth of up to 18 GHz. This facilitates second and third Nyquist sampling. The following worstcase performance parameters were obtained from the revised PCBA at over 5 GHz: spurious-free dynamic range of 12 dB, signal-to-noise and distortion ratio of 2 dB, and effective number of bits of 0.7. The design bugs in the ADC chip caused the poor performance. The vendor created a new batch run and confirmed that the ADC chips of the new batch will meet the specifications addressed in its data sheet.

  9. Europe and US to Collaborate on the Design and Development of a Giant Radio Telescope Project in Chile

    NASA Astrophysics Data System (ADS)

    1999-06-01

    High Goals for the Atacama Large Millimeter Array (ALMA) Representatives from the U.S. and Europe signed an agreement today in Washington to continue collaboration on the first phase of a giant new telescope project. The telescope will image the Universe with unprecedented sensitivity and sharpness at millimeter wavelengths (between the radio and infrared spectral regions). It will be a major step for astronomy, making it possible to study the origins of galaxies, stars and planets. This project is a prime example of a truly global project, an essential development in view of the ever-increasing complexity and cost of front-line astronomical facilities. The U.S. side of the project is run by the National Radio Astronomy Observatory (NRAO) , operated by Associated Universities, Inc. (AUI) under a cooperative agreement with the National Science Foundation (NSF). The European side of the project is a collaboration between the European Southern Observatory (ESO) , the Centre National de la Recherche Scientifique (CNRS) , the Max-Planck-Gesellschaft (MPG) , the Netherlands Foundation for Research in Astronomy (NFRA) and Nederlandse Onderzoekschool Voor Astronomie (NOVA) , and the United Kingdom Particle Physics and Astronomy Research Council (PPARC). The Europe-U.S. agreement signed today may be formally extended in the very near future to include Japan, following an already existing tripartite declaration of intent. Dr. Robert Eisenstein, NSF's Assistant Director Mathematical and Physical Sciences, called the project "a path-breaking international partnership that will open far-reaching opportunities for astronomical observations. This array would enable astronomers to explore the detailed processes through which the stars and planets form and give us a vastly improved understanding of the formation of the first galaxies in the very early universe." Eisenstein welcomed the collaboration with Europe and Japan's interest in becoming a major partner. Speaking on behalf of

  10. Practical Limits in the Sensitivity-Linearity Trade-off for Radio Telescope Front Ends in the HF and VHF-low Bands

    NASA Astrophysics Data System (ADS)

    Tillman, R. H.; Ellingson, S. W.; Brendler, J.

    2016-03-01

    Radio telescope front ends must have simultaneously low noise and sufficiently-high linearity to accommodate interfering signals. Typically these are opposing design goals. For modern radio telescopes operating in the HF (3-30MHz) and VHF-low (30-88MHz) bands, the problem is more nuanced in that front end noise temperature may be a relatively small component of the system temperature, and increased linearity may be required due to the particular interference problems associated with this spectrum. In this paper, we present an analysis of the sensitivity-linearity trade-off at these frequencies, applicable to existing commercially-available monolithic microwave integrated circuit (MMIC) amplifiers in single-ended, differential, and parallelized configurations. This analysis and associated findings should be useful in the design and upgrade of front ends for low frequency radio telescopes. The analysis is demonstrated explicitly for one of the better-performing amplifiers encountered in this study, the Mini-Circuits PGA-103, and is confirmed by hardware measurements. We also present a design based on the Mini-Circuits HELA-10 amplifier, which is better-suited for applications where linearity is a primary concern.

  11. A Continuing Campaign of Radio Monitoring Observations of Blazars with the Morehead State University 21-Meter Space Tracking Antenna and Radio Telescope

    NASA Astrophysics Data System (ADS)

    Pannuti, Thomas; Grimes, C. K.; Fite, N. D.; Spence, A. C.

    2010-01-01

    We present the latest results from our on-going campaign of radio monitoring observations of radio-loud blazars with the Morehead State University 21-Meter Space Tracking Antenna (STA). With its medium aperture and location in a radio-quiet rural environment, the STA is a unique research instrument suitable for undergraduate research projects in radio astrophysics. One project which lends itself easily to participation by undergraduate students is monitoring observations of radio-loud blazars: with this goal in mind, we have been conducting such observations at the frequencies of KU band and L-band of a sample of approximately five radio-loud blazars. We illustrate this work with a discussion of our observations made of the blazar 3C 454.3 during the 2009 calendar year: initial results will be presented and discussed.

  12. Z45: A new 45-GHz band dual-polarization HEMT receiver for the NRO 45-m radio telescope

    NASA Astrophysics Data System (ADS)

    Nakamura, Fumitaka; Ogawa, Hideo; Yonekura, Yoshinori; Kimura, Kimihiko; Okada, Nozomi; Kozu, Minato; Hasegawa, Yutaka; Tokuda, Kazuki; Ochiai, Tetsu; Mizuno, Izumi; Dobashi, Kazuhito; Shimoikura, Tomomi; Kameno, Seiji; Taniguchi, Kotomi; Shinnaga, Hiroko; Takano, Shuro; Kawabe, Ryohei; Nakajima, Taku; Iono, Daisuke; Kuno, Nario; Onishi, Toshikazu; Momose, Munetake; Yamamoto, Satoshi

    2015-12-01

    We developed a dual-linear-polarization HEMT (High Electron Mobility Transistor) amplifier receiver system of the 45-GHz band (hereafter Z45), and installed it in the Nobeyama 45-m radio telescope. The receiver system is designed to conduct polarization observations by taking the cross-correlation of two linearly polarized components, from which we process full Stokes spectroscopy. We aim to measure the magnetic field strength through the Zeeman effect of the emission line of CCS (JN = 43-32) toward pre-protostellar cores. A linear-polarization receiver system has a smaller contribution of instrumental polarization components to the Stokes V spectra than that of the circular polarization system, so that it is easier to obtain the Stokes V spectra. The receiver has an RF frequency of 42-46 GHz and an intermediate frequency (IF) band of 4-8 GHz. The typical noise temperature is about 50 K, and the system noise temperature ranges from 100 to 150 K over the frequency of 42-46 GHz. The receiver system is connected to two spectrometers, SAM45 and PolariS. SAM45 is a highly flexible FX-type digital spectrometer with a finest frequency resolution of 3.81 kHz. PolariS is a newly developed digital spectrometer with a finest frequency resolution of 60 Hz, and which has a capability to process the full-Stokes spectroscopy. The half-power beam width (HPBW) was measured to be 37″ at 43 GHz. The main beam efficiency of the Gaussian main beam was derived to be 0.72 at 43 GHz. The SiO maser observations show that the beam pattern is reasonably round at about 10% of the peak intensity and the side-lobe level was less than 3% of the peak intensity. Finally, we present some examples of astronomical observations using Z45.

  13. Upper limit on the radio emission from the soft gamma-ray repeater SGR 1833-0832

    NASA Astrophysics Data System (ADS)

    Burgay, M.; Possenti, A.; Esposito, P.; Israel, G. L.; Rea, N.; Sarkissian, J.; Tiengo, A.; Turolla, R.; Zane, S.; Gotz, D.; Stella, L.; Mereghetti, S.

    2010-03-01

    The soft gamma-ray repeater J1833-0832 has been discovered on 2010 March 19 thanks to the detection of a short burst by Swift (GCN #10526). Prompted by the detection of a radio outburst following the X-ray transient activity of two other magnetars, the anomalous X-ray pulsars XTE J1810-197 and 1E 1547.0-5408 (Camilo et al. 2006, Nature, 442, 892; 2007, ApJ, 666, L93), we observed the source with the 64-m Parkes radio telescope.

  14. Research Experience for Teachers at NRAO-Green Bank: Calibration of Data from the Green Bank Telescope and Classroom Activities in Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Johnson, C. H.; Maddalena, R. J.

    2002-12-01

    The NSF-funded "Research Experience for Teachers" project provides teachers an opportunity to work on a current scientific or engineering research project. This paper will present the results of research conducted with the Robert C. Byrd Green Bank Telescope (GBT) as well as classroom activities that will use GBT data. In order to determine the accuracy of the calibration of receivers on cm-wave radio telescopes, engineers must periodically determine the equivalent temperature of a receiver's calibration noise diode. The traditional methods utilize hot-cold loads and usually achieve an accuracy of no better than 5%, have a very coarse frequency resolution, and require days of labor. Using observations with the GBT of standard astronomical flux calibrators, we measured the noise diode temperatures for four receivers that cover 1 to 10 GHz. By comparing the detected power from the calibrators to that generated by the noise diodes we were able to determine the temperature of the noise diodes to an accuracy of 1% with very good frequency resolution (1 MHz). The astronomically determined values agree, with few exceptions, to the less accurate values generated by the receiver engineer. In contrast to the methods employed by engineers, the astronomical determinations took only a few hours. Using data collected from the GBT and the NRAO 140-foot telescope, high-school students at Breck School in Golden Valley, MN will use the Hands-On Universe (HOU) software to analyze fits files containing data from a 100 square-degree region of the Orion Nebula. Instead of always relying on optical images from personal observations or the HOU groups at Lawrence Hall of Science or Yerkes, students can now use radio images. Comparing radio images with those derived at optical wavelengths should prove enlightening for students, many of whom have misconceptions concerning radio astronomy.

  15. Discovery of Radio Pulsations from the X-ray Pulsar JO205+6449 in Supernova Remnant 3C58 with the Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Camilo, F.; Stairs, I. H.; Lorimer, D. R.; Backer, D. C.; Ransom, S. M.; Klein, B.; Wielebinski, R.; Kramer, M.; McLaughlin, M. A.; Arzoumanian, Z.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report the discovery with the 100m Green Bank Telescope of 65 ms radio pulsations from the X-ray pulsar J0205+6449 at the center of supernova remnant 3C58, making this possibly the youngest radio pulsar known. From our observations at frequencies of 820 and 1375 MHz, the free electron column density to USSR J0205+6449 is found to be 140.7 +/- 0.3/cc pc. The barycentric pulsar period P and P(dot) determined from a phase-coherent timing solution are consistent with the values previously measured from X-ray observations. The averaged radio profile of USSR J0205+6449 consists of one sharp pulse of width = 3 ms = 0.05 P. The pulsar is an exceedingly weak radio source, with pulse-averaged flux density in the 1400 MHz band of approximately 45 micro-Jy and a spectral index of approximately -2.1. Its radio luminosity of approximately 0.5 may kpc(exp 2) at 1400 MHz is lower than that of approximately 99% of known pulsar and is the lowest among known young pulsars.

  16. Discovery of Pulsed Gamma Rays from the Young Radio Pulsar PSR J1028-5819 with the Fermi Large Area Telescope

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, Guido; Baring, Matthew G.; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, Thompson H.; Caliandro, G.A.; /more authors..

    2009-05-15

    Radio pulsar PSR J1028-5819 was recently discovered in a high-frequency search (at 3.1 GHz) in the error circle of the Energetic Gamma-Ray Experiment Telescope (EGRET) source 3EG J1027-5817. The spin-down power of this young pulsar is great enough to make it very likely the counterpart for the EGRET source. We report here the discovery of {gamma}-ray pulsations from PSR J1028-5819 in early observations by the Large Area Telescope (LAT) on the Fermi Gamma-Ray Space Telescope. The {gamma}-ray light curve shows two sharp peaks having phase separation of 0.460 {+-} 0.004, trailing the very narrow radio pulse by 0.200 {+-} 0.003 in phase, very similar to that of other known {gamma}-ray pulsars. The measured {gamma}-ray flux gives an efficiency for the pulsar of {approx}10-20% (for outer magnetosphere beam models). No evidence of a surrounding pulsar wind nebula is seen in the current Fermi data but limits on associated emission are weak because the source lies in a crowded region with high background emission. However, the improved angular resolution afforded by the LAT enables the disentanglement of the previous COS-B and EGRET source detections into at least two distinct sources, one of which is now identified as PSR J1028-5819.

  17. Giant Metrewave Radio Telescope observations of neutral atomic hydrogen gas in the COSMOS field at z ˜ 0.37

    NASA Astrophysics Data System (ADS)

    Rhee, Jonghwan; Lah, Philip; Chengalur, Jayaram N.; Briggs, Frank H.; Colless, Matthew

    2016-08-01

    We present the results of H I spectral stacking analysis of Giant Metrewave Radio Telescope (GMRT) observations targeting the Cosmological Evolution Survey (COSMOS) field. The GMRT data cube contains 474 field galaxies with redshifts known from the zCOSMOS-bright 10 k catalogue. Spectra for the galaxies are co-added and the stacked spectrum allows us to make a ˜3σ measurement of the average H I mass. Using this average H I mass, along with the integral optical B-band luminosity of the galaxies and the luminosity density of the COSMOS field, a volume normalization is applied to obtain the cosmic H I mass density (ΩH I). We find a cosmic H I mass density of ΩH I = (0.42 ± 0.16) × 10-3 at z ˜ 0.37, which is the highest redshift measurement of ΩH I ever made using H I spectral stacking. The value we obtained for ΩH I at z ˜ 0.37 is consistent with that measured from large blind 21-cm surveys at z = 0, as well as measurements from other H I stacking experiments at lower redshifts. Our measurement, in conjunction with earlier measurements, indicates that there has been no significant evolution of H I gas abundance over the last 4 Gyr. A weighted mean of ΩH I from all 21-cm measurements at redshifts z ≲ 0.4 gives ΩH I = (0.35 ± 0.01) × 10-3. The ΩH I measured (from H I 21-cm emission measurements) at z ≲ 0.4 is, however, approximately half that measured from damped Lyman-α absorption (DLA) systems at z ≳ 2. Deeper surveys with existing and upcoming instruments will be critical to understand the evolution of ΩH I in the redshift range intermediate between z ˜ 0.4 and the range probed by DLA observations.

  18. Application of Digital Industrial Photogrammetric Technology to Measure the Surface Accuracy of 13.7 m Millimeter-wave Radio Telescope Antenna

    NASA Astrophysics Data System (ADS)

    Fan, Q. H.; Fang, S. H.; Zuo, Y. X.; Li, Y.; Sun, J. X.; Yang, J.; Li, J. J.; Xu, Y.; He, D. Y.

    2010-04-01

    In this paper, the surface accuracy of 13.7 m millimeter-wave radio telescope antenna is measured by digital industrial photogrammetric technology. In order to overcome the inconvenience introduced by local conditions, the circular orbits are used to transport the camera and wireless transmission is used to take on-line photos. Measuring targets are made of retro-reflective material. All camera stations are orientated and the homologous image points are matched automatically by the coded targets. The 3D point coordinates are calculated by the bundle adjustment method. Using the methods of CAD surface conversion algorithm and best fitting to calculate the deviation value of the surface, the RMS of the 480 points gotten from CAD best fitting algorithm is adjusted to 0.083 mm. The feasibility and superiority of photogrammetric technology, which is used to measure the radio astronomy antenna's surface, is demonstrated.

  19. OH radio observations of comets P/Brorsen-Metcalf (1989o), Okazaki-Levy-Rudenko (1989r), Aarseth-Brewington (1989a1), and Austin (1989c1) at the Nancay radio telescope

    NASA Technical Reports Server (NTRS)

    Bockelee-Morvan, D.; Crovisier, J.; Gerard, E.; Bourgois, G.

    1990-01-01

    The 1667 MHz and 1665 MHz transitions of the OH radical were recently monitored in several comets with the Nancay radio telescope: P/Brorsen-Metcalf (1989o) (August 4 to October 31, 1989), Okazaki-Levy-Rudenko (1989r) (October 3 to December 2, 1989), Aarseth-Brewington (1989a1) (December 8 to 30, 1989), and Austin (1989c1) (February 15 to June 14, 1990). Present gas expansion measurements obtained from the analysis of the line shapes are presented and the long term variations of the water production rate, as measured from the OH radio lines. On October 13, 1989, the occultation of a background source by comet Okazaki-Levy-Rudenko (1989r) was fortuitously observed. A preliminary report of this observation is given. Further analysis of the data is continuing.

  20. A FEM coupling model for properties prediction during the curing of an epoxy adhesive for a novel assembly of radio telescope panel

    NASA Astrophysics Data System (ADS)

    Hu, Shouwei; Chen, Yi

    2014-07-01

    The curing of epoxy adhesives is a complex phenomenon where the thermal, the chemistry and the mechanics are coupled. Corresponding material properties such as mechanical and physics properties are evolving with the curing. This paper focuses on their predictions by a multiphisics FEM approach of the thermal, chemical and mechanical couplings involved by the curing for a novel assembly of radio telescope panel. The first part presents the constitutive model of an epoxy adhesive that is considered for the curing. The numerical solving, performed with a specific user subroutine of Ansys, is detailed and allows the study of real three-dimensional structure parts. Residual stresses and strains of different metallic membranes and internal adhesives in the interconnect during the assembly of radio telescope panel are investigated. The mechanical response of the interconnect is analyzed with respect to the poisson's ratio, relaxation time and adhesive thickness. It is shown that, although the overall residual stresses at the interconnect increase with the adhesive curing, the local strains have different evolving trends, indicating the possibility of damage and decohesion that might compromise mechanical integrity and interrupt the component processing precision.

  1. The Beaming Structures of Jupiter’s Decametric Common S-bursts Observed from the LWA1, NDA, and URAN2 Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Imai, Masafumi; Lecacheux, Alain; Clarke, Tracy E.; Higgins, Charles A.; Panchenko, Mykhaylo; Dowell, Jayce; Imai, Kazumasa; Brazhenko, Anatolii I.; Frantsuzenko, Anatolii V.; Konovalenko, Alexandr A.

    2016-08-01

    On 2015 February 21, simultaneous observations of Jupiter's decametric radio emission between 10 and 33 MHz were carried out using three powerful low-frequency radio telescopes: the Long Wavelength Array Station One in the USA, the Nançay Decameter Array in France, and the URAN2 telescope in Ukraine. We measured the lag times of short-bursts (S-bursts) for 105 minutes of data over effective baselines of up to 8460 km by using cross-correlation analysis of the spectrograms from each instrument. Of particular interest is the measurement of the beaming thickness of S-bursts, testing if either flashlight- or beacon-like beaming is emanating from Jupiter. We find that the lag times for all pairs drift slightly as time elapses, in agreement with expectations from the flashlight-like beaming model. This leads to a new constraint of the minimum beaming thickness of 2.″66. Also, we find that most of the analyzed data abound with S-bursts, whose occurrence probability peaks at 17-18 MHz.

  2. Robust constraint on a drifting proton-to-electron mass ratio at z=0.89 from methanol observation at three radio telescopes.

    PubMed

    Bagdonaite, J; Daprà, M; Jansen, P; Bethlem, H L; Ubachs, W; Muller, S; Henkel, C; Menten, K M

    2013-12-06

    A limit on a possible cosmological variation of the proton-to-electron mass ratio μ is derived from methanol (CH3OH) absorption lines in the benchmark PKS1830-211 lensing galaxy at redshift z=0.89 observed with the Effelsberg 100-m radio telescope, the Institute de Radio Astronomie Millimétrique 30-m telescope, and the Atacama Large Millimeter/submillimeter Array. Ten different absorption lines of CH3OH covering a wide range of sensitivity coefficients K(μ) are used to derive a purely statistical 1σ constraint of Δμ/μ=(1.5±1.5)×10(-7) for a lookback time of 7.5 billion years. Systematic effects of chemical segregation, excitation temperature, frequency dependence, and time variability of the background source are quantified. A multidimensional linear regression analysis leads to a robust constraint of Δμ/μ=(-1.0±0.8(stat)±1.0(sys))×10(-7).

  3. Simultaneous Observations of Giant Pulses from the Crab Pulsar, with the Murchison Widefield Array and Parkes Radio Telescope: Implications for the Giant Pulse Emission Mechanism.

    NASA Astrophysics Data System (ADS)

    Oronsaye, S. I.; Ord, S. M.; Bhat, N. D. R.; Tremblay, S. E.; McSweeney, S. J.; Tingay, S. J.; van Straten, W.; Jameson, A.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.

    2015-08-01

    We report on observations of giant pulses from the Crab pulsar performed simultaneously with the Parkes radio telescope and the incoherent combination of the Murchison Widefield Array (MWA) antenna tiles. The observations were performed over a duration of approximately one hour at a center frequency of 1382 MHz with 340 MHz bandwidth at Parkes, and at a center frequency of 193 MHz with 15 MHz bandwidth at the MWA. Our analysis has led to the detection of 55 giant pulses at the MWA and 2075 at Parkes above a threshold of 3.5σ and 6.5σ, respectively. We detected 51% of the MWA giant pulses at the Parkes radio telescope, with spectral indices in the range of -3.6\\gt α \\gt -4.9 ({S}ν \\propto {ν }α ). We present a Monte Carlo analysis supporting the conjecture that the giant pulse emission in the Crab is intrinsically broadband, the less than 100% correlation being due to the relative sensitivities of the two instruments and the width of the spectral index distribution. Our observations are consistent with the hypothesis that the spectral index of giant pulses is drawn from normal distribution of standard deviation 0.6, but with a mean that displays an evolution with frequency from -3.00 at 1382 MHz, to -2.85 at 192 MHz.

  4. Giant Metrewave Radio Telescope detection of associated H I 21-cm absorption at z = 1.2230 towards TXS 1954+513

    NASA Astrophysics Data System (ADS)

    Aditya, J. N. H. S.; Kanekar, Nissim; Prochaska, J. Xavier; Day, Brandon; Lynam, Paul; Cruz, Jocelyn

    2017-03-01

    We have used the 610-MHz receivers of the Giant Metrewave Radio Telescope (GMRT) to detect associated H I 21-cm absorption from the z = 1.2230 blazar TXS 1954+513. The GMRT H I 21-cm absorption is likely to arise against either the milliarcsecond-scale core or the one-sided milliarcsecond-scale radio jet, and is blueshifted by ≈328 km s-1 from the blazar redshift. This is consistent with a scenario in which the H I cloud giving rise to the absorption is being driven outwards by the radio jet. The integrated H I 21-cm optical depth is (0.716 ± 0.037) km s-1, implying a high H I column density, N_{H I} = (1.305 ± 0.067) × ({ T_s/100 K}) × 10^{20} cm-2, for an assumed H I spin temperature of 100 K. We use Nickel Telescope photometry of TXS 1954+513 to infer a high rest-frame 1216 Å luminosity of (4.1 ± 1.2) × 1023 W Hz-1. The z = 1.2230 absorber towards TXS 1954+513 is only the fifth case of a detection of associated H I 21-cm absorption at z > 1, and is also the first case of such a detection towards an active galactic nucleus (AGN) with a rest-frame ultraviolet (UV) luminosity ≫1023 W Hz-1, demonstrating that neutral hydrogen can survive in AGN environments in the presence of high UV luminosities.

  5. The Radio JOVE Project - Shoestring Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  6. A K-band spectroscopic focal plane array for the Robert C. Byrd Green Bank radio telescope

    NASA Astrophysics Data System (ADS)

    Morgan, Matthew; White, Steve; Lockman, Jay; Bryerton, Eric; Saini, Kamaljeet; Norrod, Rorger; Simon, Bob; Srikanth, Sivasankaran; Anderson, Gary; Pisano, Daniel

    2008-08-01

    This paper presents the design and current status of a K-Band Focal Plane Array (KFPA) for the Green Bank Telescope (GBT). The prototype array will go online with 7 independent dual-polarized beams, but the design target is a fully-populated instrument with approximately 60 beams on the sky. This project presents a number of technical challenges, including the architecture of a cryostat capable of supporting 60 independent receivers, design of high- performance components that fit behind the aperture of a compact feedhorn, and stable transmission of the large-volume of receiver data from the telescope to a remote building for back-end processing.

  7. Dominion Radio Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Dominion Radio Astrophysical Observatory began operating in 1959, and joined the NATIONAL RESEARCH COUNCIL in 1970. It became part of the Herzberg Institute of Astrophysics in 1975. The site near Penticton, BC has a 26 m radio telescope, a seven-antenna synthesis telescope on a 600 m baseline and two telescopes dedicated to monitoring the solar radio flux at 10.7 cm. This part of the Institu...

  8. The Radio/Gamma-Ray Connection in Active Galactic Nuclei in the Era of the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Angelakis, E.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Gehrels, N.; Hays, E.; MeEnery, J. E.; Scargle, J. D.; Thompson, D. J.

    2011-01-01

    We present a detailed statistical analysis of the correlation between radio and gamma-ray emission of the active galactic nuclei (AGNs) detected by Fermi during its first year of operation, with the largest data sets ever used for this purpose.We use both archival interferometric 8.4 GHz data (from the Very Large Array and ATCA, for the full sample of 599 sources) and concurrent single-dish 15 GHz measurements from the OwensValley RadioObservatory (OVRO, for a sub sample of 199 objects). Our unprecedentedly large sample permits us to assess with high accuracy the statistical significance of the correlation, using a surrogate data method designed to simultaneously account for common-distance bias and the effect of a limited dynamical range in the observed quantities. We find that the statistical significance of a positive correlation between the centimeter radio and the broadband (E > 100 MeV) gamma-ray energy flux is very high for the whole AGN sample, with a probability of <10(exp -7) for the correlation appearing by chance. Using the OVRO data, we find that concurrent data improve the significance of the correlation from 1.6 10(exp -6) to 9.0 10(exp -8). Our large sample size allows us to study the dependence of correlation strength and significance on specific source types and gamma-ray energy band. We find that the correlation is very significant (chance probability < 10(exp -7)) for both flat spectrum radio quasars and BL Lac objects separately; a dependence of the correlation strength on the considered gamma-ray energy band is also present, but additional data will be necessary to constrain its significance.

  9. H I observations of galaxies in the southern filament of the Virgo Cluster with the Square Kilometre Array Pathfinder KAT-7 and the Westerbork Synthesis Radio Telescope

    NASA Astrophysics Data System (ADS)

    Sorgho, A.; Hess, K.; Carignan, C.; Oosterloo, T. A.

    2017-01-01

    We map the H I distribution of galaxies in a ˜1.5 × 2.5° region located at the virial radius south of the Virgo Cluster using the KAT-7 and the Westerbork Synthesis Radio Telescope interferometers. Because of the different beam sizes of the two telescopes, a similar column density sensitivity of NH I ˜ 1 × 1018 atoms cm- 2 was reached with the two observations over 16.5 km s-1. We pioneer a new approach to combine the observations and take advantage of their sensitivity to both the large- and small-scale structures. Out to an unprecedented extent, we detect an H I tail of ˜60 kpc being stripped off NGC 4424, a peculiar spiral galaxy. The properties of the galaxy, together with the shape of the tail, suggest that NGC 4424 is a post-merger galaxy undergoing ram pressure stripping as it falls towards the centre of the Virgo Cluster. We detect a total of 14 galaxies and three H I clouds lacking optical counterparts. One of the clouds is a new detection with an H I mass of 7 × 107 M⊙ and a strong H I profile with W50 = 73 km s-1. We find that 10 out of the 14 galaxies present H I deficiencies not higher than those of the cluster's late spirals, suggesting that the environmental effects are not more pronounced in the region than elsewhere in the cluster.

  10. A deep Giant Metre-wave Radio Telescope 610-MHz survey of the 1H XMM-Newton/Chandra survey field

    NASA Astrophysics Data System (ADS)

    Moss, D.; Seymour, N.; McHardy, I. M.; Dwelly, T.; Page, M. J.; Loaring, N. S.

    2007-07-01

    We present the results of a deep 610-MHz survey of the 1H XMM-Newton/Chandra survey area with the Giant Metre-wave Radio Telescope. The resulting maps have a resolution of ~7 arcsec and an rms noise limit of 60 μJy. To a 5σ detection limit of 300 μJy, we detect 223 sources within a survey area of 64 arcmin in diameter. We compute the 610-MHz source counts and compare them to those measured at other radio wavelengths. The well-known flattening of the Euclidean-normalized 1.4-GHz source counts below ~2 mJy, usually explained by a population of starburst galaxies undergoing luminosity evolution, is seen at 610 MHz. The 610-MHz source counts can be modelled by the same populations that explain the 1.4-GHz source counts, assuming a spectral index of -0.7 for the starburst galaxies and the steep spectrum active galactic nucleus (AGN) population. We find a similar dependence of luminosity evolution on redshift for the starburst galaxies at 610 MHz as is found at 1.4 GHz (i.e. `Q' = 2.45+0.3-0.4).

  11. HUBBLE SPACE TELESCOPE Near-infrared and Optical Imaging of Faint Radio Sources in the Distant Cluster CL 0939+4713

    NASA Astrophysics Data System (ADS)

    Smail, Ian; Morrison, G.; Gray, M. E.; Owen, F. N.; Ivison, R. J.; Kneib, J.-P.; Ellis, R. S.

    1999-11-01

    We present deep Hubble Space Telescope Near-Infrared Camera and Multiobject Spectrograph (NICMOS) and Wide Field and Planetary Camera 2 (WFPC2) optical imaging of a small region in the core of the distant rich cluster Cl 0939+4713 (z=0.41). We compare the optical and near-infrared morphologies of cluster members and find apparent small-scale optical structures within the galaxies that are absent in the near-infrared. We conclude that strong dust obscuration is a common feature in the late-type galaxies in distant clusters. We then concentrate on a sample of 10 faint radio galaxies lying within our NICMOS field and selected from a very deep 1.4 GHz VLA map of the cluster with a 1 σ flux limit of 9 μJy. Using published data we focus on the spectral properties of the eight radio-selected cluster members and show that these comprise a large fraction of the poststarburst population in the cluster. The simplest interpretation of the radio emission from these galaxies is that they are currently forming massive stars, contradicting their classification as poststarburst systems based on the optical spectra. We suggest that this star formation is hidden from view in the optical by the same obscuring dust that is apparent in our comparison on the optical and near-infrared morphologies of these galaxies. We caution that even in the rest-frame optical the effects of dust cannot be ignored when comparing samples of distant galaxies to low-redshift systems, particularly if dust is as prevalent in distant galaxies as appears to be the case in our study.

  12. A 4mm spectroscopic dual-beam receiver for the Robert C. Byrd green bank radio telescope

    NASA Astrophysics Data System (ADS)

    White, Steven; Frayer, David; Stennes, Mike; Simon, Robert; Watts, Galen; Norrod, Roger; Bryerton, Eric; Srikanth, Sivasankaran; Pospieszalski, Marian

    2012-09-01

    With a 100-meter aperture, and recent improvements to its surface accuracy and servo system upgrades, the Robert C. Byrd Green Bank Telescope is the most sensitive telescope operating at 90 GHz. A dual-feed heterodyne receiver is developed for observations at the lower frequency end of the 3-4mm atmospheric window (67 to 93 GHz). The science goals are primarily molecular spectroscopic studies of star formation and astrochemistry both internal and external to the Milky Way galaxy. Studies of the structural and physical properties of star-forming, cold-cloud cores will be revolutionized with molecular spectroscopy of the deuterium and other important species within the band. Essential for spectroscopy is the ability to remove slow gain and atmospheric variations. An optical table external to the cooled components rotates into the path of either beam an ambient temperature load, an offset mirror for viewing an internal cold load, or a quarter-wave plate that produces circular polarization for VLBI observations. A composite waveguide window comprised of HDPE, Zitex, and z-cut quartz provides a high-strength, low-loss medium for transmission of the signal to the cooled corrugated feed horn. An orthomode transducer separates the polarization components which are amplified by low noise HEMT amplifiers. Warm W-band MMIC amplifiers are required to compensate a negative gain slope and to reduce noise contributions from the down conversion to the GBT IF frequencies. Initial science results and receiver performance during commissioning observations will be presented along with details of the component design.

  13. A RADIO-LOUD MAGNETAR IN X-RAY QUIESCENCE

    SciTech Connect

    Levin, Lina; Bailes, Matthew; Bhat, N. D. Ramesh; Burke-Spolaor, Sarah; Van Straten, Willem; Bates, Samuel; Kramer, Michael; Stappers, Ben; Burgay, Marta; D'Amico, Nichi; Milia, Sabrina; Possenti, Andrea; Rea, Nanda

    2010-09-20

    As part of a survey for radio pulsars with the Parkes 64 m telescope, we have discovered PSR J1622-4950, a pulsar with a 4.3 s rotation period. Follow-up observations show that the pulsar has the highest inferred surface magnetic field of the known radio pulsars (B {approx}3 x 10{sup 14} G), and it exhibits significant timing noise and appears to have an inverted spectrum. Unlike the vast majority of the known pulsar population, PSR J1622-4950 appears to switch off for many hundreds of days and even in its on-state exhibits extreme variability in its flux density. Furthermore, the integrated pulse profile changes shape with epoch. All of these properties are remarkably similar to the only two magnetars previously known to emit radio pulsations. The position of PSR J1622-4950 is coincident with an X-ray source that, unlike the other radio pulsating magnetars, was found to be in quiescence. We conclude that our newly discovered pulsar is a magnetar-the first to be discovered via its radio emission.

  14. Simultaneous radio and X-ray observations of the X-ray burst source MXB 1636-53

    NASA Technical Reports Server (NTRS)

    Thomas, R. M.; Duldig, M. L.; Haynes, R. F.; Simons, L. W.; Murdin, P.; Hoffman, J. A.; Lewin, W. H. G.; Wheaton, W. A.; Doty, J.

    1979-01-01

    On June 17, 1977, the X-ray burst source MXB 1636-53 was simultaneously monitored for about 4 hr with the Parkes 64-m radio telescope at a frequency of 14.7 GHz and the SAS 3 X-ray satellite (1.3-12 keV). One X-ray burst was observed; an upper limit (2 sigmas) of 200 mJy is reported for any radio burst coincident with the X-ray event. During the X-ray burst the radio/X-ray time-integrated flux ratio was no more than 375 with a 90 percent confidence. An upper limit (2 sigmas) of 22 mJy was determined for any steady 14.7-GHz source coincident with the X-ray position.

  15. Bistatic Sounding of High-Latitude Ionospheric Irregularities Using a Decameter EKB Radar and an UTR-2 Radio Telescope: First Results

    NASA Astrophysics Data System (ADS)

    Berngardt, O. I.; Kutelev, K. A.; Kurkin, V. I.; Grkovich, K. V.; Yampolsky, Yu. M.; Kashcheyev, A. S.; Kashcheyev, S. B.; Galushko, V. G.; Grigorieva, S. A.; Kusonsky, O. A.

    2015-11-01

    We present the first results of the joint Russian-Ukrainian experiments for recording of signals from the EKB radar of the Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences (Arti observatory of the Institute of Geophysics of the Ural Branch of the Russian Academy of Sciences, Sverdlovsk region, Russia) at a distance of over 1600 km by using a coherent receiving system and a high-gain phased array of the UTR-2 radio telescope (S.Ya. Braude Radioastronomical Observatory (RAO) of the Institute of Radio Astronomy of the Ukrainian National Academy of Sciences (IRA UNAS), Kharkov region, Ukraine). It is shown that two pulse sequences that are identical to the transmitted EKB radar signal, but arrive with different delays were observed at the reception point. The sequence which was received first corresponded to the direct-signal propagation along the great-circle arc. The second sequence was received with delays corresponding to a path length of 2800 to 3400 km and was the result of scattering of the transmitted radar signal by high-latitude ionospheric irregularities. The Doppler frequency shift of the scattered signal was range-dependent and varied from -3 to +4 Hz, which corresponded to the radial component of the ionospheric irregularity velocity from -43 to +58 m/s. To interpret the results of the experiments, we numerically simulated the signal propagation based on the actual ionospheric conditions at an appropriate time. Ionospheric characteristics were retrieved by the vertical ionospheric sounding technique, with the ionosonde located in close proximity to the EKB radar. Comparison between monostatic radar diagnostic results and bistatic sounding results has shown a good agreement of the retrieved parameters of the high-latitude ionospheric irregularities.

  16. A Giant Metrewave Radio Telescope search for associated H I 21 cm absorption in high-redshift flat-spectrum sources

    NASA Astrophysics Data System (ADS)

    Aditya, J. N. H. S.; Kanekar, Nissim; Kurapati, Sushma

    2016-02-01

    We report results from a Giant Metrewave Radio Telescope search for `associated' redshifted H I 21 cm absorption from 24 active galactic nuclei (AGNs), at 1.1 < z < 3.6, selected from the Caltech-Jodrell Bank Flat-spectrum (CJF) sample. 22 out of 23 sources with usable data showed no evidence of absorption, with typical 3σ optical depth detection limits of ≈0.01 at a velocity resolution of ≈30 km s-1. A single tentative absorption detection was obtained at z ≈ 3.530 towards TXS 0604+728. If confirmed, this would be the highest redshift at which H I 21 cm absorption has ever been detected. Including 29 CJF sources with searches for redshifted H I 21 cm absorption in the literature, mostly at z < 1, we construct a sample of 52 uniformly selected flat-spectrum sources. A Peto-Prentice two-sample test for censored data finds (at ≈3σ significance) that the strength of H I 21 cm absorption is weaker in the high-z sample than in the low-z sample; this is the first statistically significant evidence for redshift evolution in the strength of H I 21 cm absorption in a uniformly selected AGN sample. However, the two-sample test also finds that the H I 21 cm absorption strength is higher in AGNs with low ultraviolet or radio luminosities, at ≈3.4σ significance. The fact that the higher luminosity AGNs of the sample typically lie at high redshifts implies that it is currently not possible to break the degeneracy between AGN luminosity and redshift evolution as the primary cause of the low H I 21 cm opacities in high-redshift, high-luminosity AGNs.

  17. Learning radio astronomy by doing radio astronomy

    NASA Astrophysics Data System (ADS)

    Vaquerizo Gallego, J. A.

    2011-11-01

    PARTNeR (Proyecto Académico con el Radio Telescopio de NASA en Robledo, Academic Project with the NASA Radio Telescope at Robledo) is an educational program that allows high school and undergraduate students to control a 34 meter radio telescope and conduct radio astronomical observations via the internet. High-school teachers who join the project take a course to learn about the science of radio astronomy and how to use the antenna as an educational resource. Also, teachers are provided with learning activities they can do with their students and focused on the classroom implementation of the project within an interdisciplinary framework. PARTNeR provides students with firsthand experience in radio astronomy science. Thus, remote radio astronomical observations allow students to learn with a first rate scientific equipment the basics of radio astronomy research, aiming to arouse scientific careers and positive attitudes toward science. In this contribution we show the current observational programs and some recent results.

  18. VizieR Online Data Catalog: S-PASS & NVSS bright extragalactic radio sources (Lamee+, 2016)

    NASA Astrophysics Data System (ADS)

    Lamee, M.; Rudnick, L.; Farnes, J. S.; Carretti, E.; Gaensler, B. M.; Haverkorn, M.; Poppi, S.

    2016-11-01

    The S-band Polarization All Sky Survey (S-PASS) is a project to map the southern sky at decl. <-1.0° in total intensity and linear polarization. The observations were conducted with the 64m Parkes Radio Telescope, NSW Australia at 2.3GHz. A description of S-PASS is given in Carretti+ (2013Natur.493...66C) and Carretti (2010ASPC..438..276C). We cross-match the S-PASS data with the 1.4GHz NRAO VLA Sky Survey (NVSS) catalog (Condon+, 1998, VIII/65) and generate a new independent depolarization catalog of bright extragalactic radio sources. We matched our catalog to the Wide-field Infrared Survey Explorer, WISE, catalog, Wright+ (2010AJ....140.1868W), with a search radius of five arcseconds. See section 4.7. (1 data file).

  19. Extragalactic Radio Sources

    ERIC Educational Resources Information Center

    Kellerman, Kenneth I.

    1973-01-01

    Discusses new problems arising from the growing observational data through radio telescope arrays, involving the origin of radio sources, apparent superluminal velocities, conversion of radio sources to relativistic particles, and the nature of compact opaque and extended transparent sources. New physics may be needed to answer these cosmological…

  20. Multi-epoch Measurements of the Galactic Center 6667 MHz) and the Blazar 0716+714 (1 & 3 MHz) taken from the Allen Telescope Array at Hat Creek Radio Observatory in 2013

    NASA Astrophysics Data System (ADS)

    Castellanos, Aaron; Harp, G.

    2014-01-01

    The Allen Telescope Array (ATA) is a 42 radio dish array located in Hat Creek, CA and is used to search for traces of Extraterrestrial Intelligence (SETI) and to study the interstellar medium. The ATA has taken multi-epoch measurements of the Galactic Center 6667 MHz) and the intraday variable Blazar 0716+714 (1 & 3MHz) and are imaged on 10 second timescales to search for intensity fluctuations on timescales 10s and beyond. We utilize software developed and focused on antenna system temperatures to minimize Radio Frequency Interference (RFI) in order to enhance calibration and signal variability. We will discuss potential radio bursts from the Galactic Center, possibly originating from the descent of the gas cloud G2 into the Galactic Center.

  1. Single-Dish Performance of KVN 21 m Radio Telescopes: Simultaneous Observations at 22 and 43 GHz

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Sung; Byun, Do-Young; Oh, Chung Sik; Han, Seog-Tae; Je, Do-Heung; Kim, Kee-Tae; Wi, Seog-Oh; Cho, Se-Hyung; Sohn, Bong Won; Kim, Jaeheon; Lee, Jeewon; Oh, Se-Jin; Song, Min-Gyu; Kang, Jiman; Chung, Moon-Hee; Lee, Jeong Ae; Oh, Junghwan; Bae, Jae-Han; Yun, So-Young; Lee, Jung-Won; Kim, Bong Gyu; Chung, Hyunsoo; Roh, Duk-Gyoo; Lee, Chang Hoon; Kim, Hyun Goo; Ryoung Kim, Hyo; Yeom, Jae-Hwan; Kurayama, Tomoharu; Jung, Taehyun; Park, Pulun; Kim, Min Joong; Yoon, Dong-Hwan; Kim, Won-Ju

    2011-12-01

    We report simultaneous multifrequency observing performance at 22 and 43 GHz of the 21 m shaped-Cassegrain radio telescopes of the Korean VLBI Network (KVN). KVN is the first millimeter-dedicated VLBI network in Korea having a maximum baseline length of 480 km. It currently operates at 22 and 43 GHz and is planned to operate in four frequency bands: 22, 43, 86, and 129 GHz. The unique quasi optics of KVN enable simultaneous multifrequency observations based on efficient beam filtering and accurate antenna-beam alignment at 22 and 43 GHz. We found that the offset of the beams is within less than 5‧‧ over all pointing directions of the antenna. The dual-polarization, cooled, high electron mobility transistor (HEMT) receivers at 22 and 43 GHz result in receiver noise temperatures less than 40 K at 21.25–23.25 GHz and 80 K at 42.11–44.11 GHz. The pointing accuracies have been measured to be 3‧‧ in azimuth and elevation for all antennas. The measured aperture efficiencies are 65%(K)/67%(Q), 62%(K)/59%(Q), and 66%(K)/60%(Q) for the three KVN antennas, KVNYS, KVNUS, and KVNTN, respectively. The main-beam efficiencies are measured to be 50%(K)/52%(Q), 48%(K)/50%(Q), and 50%(K)/47%(Q) for KVNYS, KVNUS, and KVNTN, respectively. The estimated Moon efficiencies are 77%(K)/90%(Q), 74%(K)/79%(Q), and 80%(K)/86%(Q) for KVNYS, KVNUS, and KVNTN, respectively. The elevation dependence of the aperture efficiencies is quite flat for elevations greater than 20°.

  2. Study of galaxies in the Lynx-Cancer void. VI. H I-observations with Nançay Radio Telescope

    NASA Astrophysics Data System (ADS)

    Pustilnik, S. A.; Martin, J.-M.

    2016-12-01

    Context. Void population consists mainly of late-type and low surface brightness (LSB) dwarf galaxies, whose atomic hydrogen is the main component of their baryonic matter. Therefore observations of void galaxy Hi are mandatory to understand both their evolution and dynamics. Aims: Our aim was to obtain integrated Hi parameters for a fainter part of the nearby Lynx-Cancer void galaxy sample (total of 45 objects) with the Nançay Radio Telescope (NRT) and to conduct the comparative analysis of the whole 103 void galaxies with known Hi data with a sample of similar galaxies residing in denser environments of the Local Volume. Methods: For Hi observations we used the NRT with its sensitive antenna/receiver system FORT and standard processing. The comparison of the void and "control" samples on the parameter M(HI)/LB is conducted with the non-parametric method "The 2 × 2 Contingency Table test". Results: We obtained new Hi data for about 40% of the Lynx-Cancer galaxy sample. Along with data from the literature, we use for further analysis data for 103 void objects. The proxy of the evolutional parameter M(HI)/LB of the void sample is compared with that of 82 galaxies of morphological types 8-10 residing in the Local Volume groups and aggregates. Conclusions: At the confidence level of P = 0.988, we conclude that for the same luminosity, these void galaxies are systematically gas-richer, in average by 39%. This result is consistent with the authors' earlier conclusion on the smaller gas metallicities and evidences for the slower low-mass galaxy evolution in voids. The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A86

  3. The 26 December 2001 Solar Event Responsible for GLE63. I. Observations of a Major Long-Duration Flare with the Siberian Solar Radio Telescope

    NASA Astrophysics Data System (ADS)

    Grechnev, V. V.; Kochanov, A. A.

    2016-12-01

    Ground level enhancements (GLEs) of cosmic-ray intensity occur, on average, once a year. Because they are rare, studying the solar sources of GLEs is especially important to approach understanding their origin. The SOL2001-12-26 eruptive-flare event responsible for GLE63 seems to be challenging in some aspects. Deficient observations limited our understanding of it. Analysis of additional observations found for this event provided new results that shed light on the flare configuration and evolution. This article addresses the observations of this flare with the Siberian Solar Radio Telescope (SSRT). Taking advantage of its instrumental characteristics, we analyze the detailed SSRT observations of a major long-duration flare at 5.7 GHz without cleaning the images. The analysis confirms that the source of GLE63 was associated with an event in active region 9742 that comprised two flares. The first flare (04:30 - 05:03 UT) reached a GOES importance of about M1.6. Two microwave sources were observed, whose brightness temperatures at 5.7 GHz exceeded 10 MK. The main flare, up to an importance of M7.1, started at 05:04 UT and occurred in strong magnetic fields. The observed microwave sources reached a brightness temperature of about 250 MK. They were not static. After appearing on the weaker-field periphery of the active region, the microwave sources moved toward each other nearly along the magnetic neutral line, approaching the stronger-field core of the active region, and then moved away from the neutral line like expanding ribbons. These motions rule out an association of the non-thermal microwave sources with a single flaring loop.

  4. THE ALLEN TELESCOPE ARRAY TWENTY-CENTIMETER SURVEY-A 690 DEG{sup 2}, 12 EPOCH RADIO DATA SET. I. CATALOG AND LONG-DURATION TRANSIENT STATISTICS

    SciTech Connect

    Croft, Steve; Bower, Geoffrey C.; Backer, Don; Bauermeister, Amber; Blitz, Leo; Bock, Douglas; Cheng, Calvin; Dexter, Matt; Engargiola, Greg; Fields, Ed; Ackermann, Rob; Atkinson, Shannon; Backus, Peter; Bradford, Tucker; Davis, Mike; Dreher, John; Barott, William C.; Cork, Chris; Fleming, Matt; DeBoer, Dave

    2010-08-10

    We present the Allen Telescope Array Twenty-centimeter Survey (ATATS), a multi-epoch (12 visits), 690 deg{sup 2} radio image and catalog at 1.4 GHz. The survey is designed to detect rare, very bright transients as well as to verify the capabilities of the ATA to form large mosaics. The combined image using data from all 12 ATATS epochs has rms noise {sigma} = 3.94 mJy beam{sup -1} and dynamic range 180, with a circular beam of 150'' FWHM. It contains 4408 sources to a limiting sensitivity of 5{sigma} = 20 mJy beam{sup -1}. We compare the catalog generated from this 12 epoch combined image to the NRAO VLA Sky Survey (NVSS), a legacy survey at the same frequency, and find that we can measure source positions to better than {approx}20''. For sources above the ATATS completeness limit, the median flux density is 97% of the median value for matched NVSS sources, indicative of an accurate overall flux calibration. We examine the effects of source confusion due to the effects of differing resolution between ATATS and NVSS on our ability to compare flux densities. We detect no transients at flux densities greater than 40 mJy in comparison with NVSS and place a 2{sigma} upper limit of 0.004 deg{sup -2} on the transient rate for such sources. These results suggest that the {approx}>1 Jy transients reported by Matsumara et al. may not be true transients, but rather variable sources at their flux density threshold.

  5. Radio Jove: Jupiter Radio Astronomy for Citizens

    NASA Astrophysics Data System (ADS)

    Higgins, Charles; Thieman, J. R.; Flagg, R.; Reyes, F. J.; Sky, J.; Greenman, W.; Brown, J.; Typinski, D.; Ashcraft, T.; Mount, A.

    2014-01-01

    Radio JOVE is a hands-on educational activity that brings the radio sounds of the Sun, Jupiter, the Milky Way Galaxy, and terrestrial radio noise to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with professional radio observatories in real-time over the Internet. Our website (http://radiojove.gsfc.nasa.gov) includes science information, construction manuals, observing guides, and education resources for teachers and students. Radio Jove is continually expanding its participants with over 1800 kits sold to more than 70 countries worldwide. Recently some of our most dedicated observers have upgraded their Radio Jove antennas to semi-professional observatories. We have spectrographs and wide band antennas, some with 8 MHz bandwidth and some with dual polarization capabilities. In an effort to add to the science literature, these observers are coordinating their efforts to pursue some basic questions about Jupiter’s radio emissions (radio source locations, spectral structure, long term changes, etc.). We can compare signal and ionosphere variations using the many Radio Jove observers at different locations. Observers are also working with members of the Long Wavelength Array Station 1 (LWA1) radio telescope to coordinate observations of Jupiter; Radio Jove is planning to make coordinated observations while the Juno Mission is active beginning in 2015. The Radio Jove program is overviewed, its hardware and software are highlighted, recent sample observations are shown, and we demonstrate that we are capable of real citizen science.

  6. PARTNeR: Radio astromony for students

    NASA Astrophysics Data System (ADS)

    Blasco, C.; Vaquerizo, J. A.

    2008-06-01

    PARTNeR stands for Proyecto Academico con el Radiotelescopio de NASA en Robledo (the Academic Project with NASA's radio telescope at Robledo), and allows students to perform radio astronomy observations. High school and university students can access the PARTNeR radio telescope via the internet. The students can operate the antenna from their own school or university and perform radio astronomy observations.

  7. A Multi-Feed Receiver in the 18 to 26.5 GHz Band for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Orfei, A.; Carbonaro, L.; Cattani, A.; Cremonini, A.; Cresci, L.; Fiocchi, F.; Maccaferri, A.; Maccaferri, G.; Mariotti, S.; Monari, J.; Morsiani, M.; Natale, V.; Nesti, R.; Panella, D.; Poloni, M.; Roda, J.; Scalambra, A.; Tofani, G.

    2010-08-01

    A large-bandwidth, state-of-the-art multi-feed receiver has been constructed to be used on the new 64 m Sardinia Radio Telescope (SRT) (http://www.srt.inaf.itl), an antenna aiming to work from 300 MHz to 100 GHz with an almost continuous frequency coverage. The goal of this new receiver is to speed up the survey of the sky with high sensitivity in a frequency band that is very interesting to radio astronomers. In the meantime, the antenna erection has been finalized, and the receiver has been mounted on the Medicina 32 m antenna to be tested (http://www.med.ira.inaf.itl). We present a complete description of the system, including a dedicated backend, and the results of the tests.

  8. Kinematics of the Local Universe. XIV. Measurements from the 21 cm line and the HI mass function from a homogeneous catalog gathered with the Nançay radio telescope

    NASA Astrophysics Data System (ADS)

    Theureau, G.; Coudreau, N.; Hallet, N.; Hanski, M. O.; Poulain, M.

    2017-03-01

    Aims: This paper presents 828 new 21 cm neutral hydrogen line measurements carried out with the FORT receiver of the meridian transit Nançay radio telescope (NRT) in the years 2000-2007. Methods: This observational program was part of a larger project aimed at collecting an exhaustive and magnitude-complete HI extragalactic catalog for Tully-Fisher applications. Through five massive data releases, the KLUN series has collected a homogeneous sample of 4876 HI-spectra of spiral galaxies, complete down to a flux of 5 Jy km s-1 and with declination δ > -40°. Results: We publish here the last release of the KLUN HI observational program, corresponding to the faint end of the survey, with HI masses ranging from 5 × 108 to 5 × 1010 solar masses. The size of this final sample is comparable to the catalogs based on the Arecibo and Parkes radio telescope campaigns, and it allows general HI mass distribution studies from a set of homogeneous radio measurements. Full Tables 2 and 3, together with HI profiles in ascii format, are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A104

  9. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller

    1991-01-01

    The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.

  10. PSR B0329+54: substructure in the scatter-broadened image discovered with RadioAstron on baselines up to 330 000 km

    NASA Astrophysics Data System (ADS)

    Popov, Mikhail V.; Bartel, Norbert; Gwinn, Carl R.; Johnson, Michael D.; Andrianov, Andrey; Fadeev, Evgeny; Joshi, Bhal Chandra; Kardashev, Nikolay; Karuppusamy, Ramesh; Kovalev, Yuri Y.; Kramer, Michael; Rudnitskiy, Alexey; Shishov, Vladimir; Smirnova, Tatiana; Soglasnov, Vladimir A.; Zensus, J. Anton

    2017-02-01

    We have resolved the scatter-broadened image of PSR B0329+54 and detected a substructure within it. These results are not influenced by any extended structure of a source but instead are directly attributed to the interstellar medium. We obtained these results at 324 MHz with the ground-space interferometer RadioAstron, which included the Space Radio Telescope, ground-based Westerbork Synthesis Radio Telescope and 64-m Kalyazin Radio Telescope on baseline projections up to 330 000 km in 2013 November 22 and 2014 January 1 to 2. At short 15 000 to 35 000 km ground-space baseline projections, the visibility amplitude decreases with baseline length, providing a direct measurement of the size of the scattering disc of 4.8 ± 0.8 mas. At longer baselines, no visibility detections from the scattering disc would be expected. However, significant detections were obtained with visibility amplitudes of 3 to 5 per cent of the maximum scattered around a mean and approximately constant up to 330 000 km. These visibilities reflect a substructure from scattering in the interstellar medium and offer a new probe of ionized interstellar material. The size of the diffraction spot near Earth is 17 000 ± 3 000 km. With the assumption of turbulent irregularities in the plasma of the interstellar medium, we estimate that the effective scattering screen is located 0.6 ± 0.1 of the distance from the Earth towards the pulsar.

  11. Present-day radio-astronomical systems of aperture synthesis (Review)

    NASA Astrophysics Data System (ADS)

    Tseitlin, N. M.

    The characteristics of a number of synthetic-aperture radio telescopes are presented. Particular consideration is given to cruciform and T-shaped radio telescopes consisting of 'linear' antennas (Mills crosses); multielement radio telescopes with immobile antennas; multielement radio telescopes with immobile and moving elements; and millimeter-wave interferometers.

  12. Simulations of cm-wavelength Sunyaev-Zel'dovich galaxy cluster and point source blind sky surveys and predictions for the RT32/OCRA-f and the Hevelius 100-m radio telescope

    SciTech Connect

    Lew, Bartosz; Kus, Andrzej; Birkinshaw, Mark; Wilkinson, Peter E-mail: Mark.Birkinshaw@bristol.ac.uk E-mail: ajk@astro.uni.torun.pl

    2015-02-01

    We investigate the effectiveness of blind surveys for radio sources and galaxy cluster thermal Sunyaev-Zel'dovich effects (TSZEs) using the four-pair, beam-switched OCRA-f radiometer on the 32-m radio telescope in Poland. The predictions are based on mock maps that include the cosmic microwave background, TSZEs from hydrodynamical simulations of large scale structure formation, and unresolved radio sources. We validate the mock maps against observational data, and examine the limitations imposed by simplified physics. We estimate the effects of source clustering towards galaxy clusters from NVSS source counts around Planck-selected cluster candidates, and include appropriate correlations in our mock maps. The study allows us to quantify the effects of halo line-of-sight alignments, source confusion, and telescope angular resolution on the detections of TSZEs. We perform a similar analysis for the planned 100-m Hevelius radio telescope (RTH) equipped with a 49-beam radio camera and operating at frequencies up to 22 GHz.We find that RT32/OCRA-f will be suitable for small-field blind radio source surveys, and will detect 33{sup +17}{sub −11} new radio sources brighter than 0.87 mJy at 30 GHz in a 1 deg{sup 2} field at > 5σ CL during a one-year, non-continuous, observing campaign, taking account of Polish weather conditions. It is unlikely that any galaxy cluster will be detected at 3σ CL in such a survey. A 60-deg{sup 2} survey, with field coverage of 2{sup 2} beams per pixel, at 15 GHz with the RTH, would find <1.5 galaxy clusters per year brighter than 60 μJy (at 3σ CL), and would detect about 3.4 × 10{sup 4} point sources brighter than 1 mJy at 5σ CL, with confusion causing flux density errors ∼< 2% (20%) in 68% (95%) of the detected sources.A primary goal of the planned RTH will be a wide-area (π sr) radio source survey at 15 GHz. This survey will detect nearly 3 × 10{sup 5} radio sources at 5σ CL down to 1.3 mJy, and tens of galaxy clusters

  13. Unveiling the radio cosmos

    NASA Astrophysics Data System (ADS)

    Vanderlinde, Keith

    2017-02-01

    Using a radio telescope with no moving parts, the dark energy speeding up the expansion of the Universe can be probed in unprecedented detail, says Keith Vanderlinde, on behalf of the CHIME collaboration.

  14. DISCOVERY OF PULSED gamma-RAYS FROM PSR J0034-0534 WITH THE FERMI LARGE AREA TELESCOPE: A CASE FOR CO-LOCATED RADIO AND gamma-RAY EMISSION REGIONS

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Bastieri, D.; Bonamente, E.; Brigida, M.; Bruel, P. E-mail: Tyrel.J.Johnson@nasa.go E-mail: Christo.Venter@nwu.ac.z

    2010-04-01

    Millisecond pulsars (MSPs) have been firmly established as a class of gamma-ray emitters via the detection of pulsations above 0.1 GeV from eight MSPs by the Fermi Large Area Telescope (LAT). Using 13 months of LAT data, significant gamma-ray pulsations at the radio period have been detected from the MSP PSR J0034-0534, making it the ninth clear MSP detection by the LAT. The gamma-ray light curve shows two peaks separated by 0.274 +- 0.015 in phase which are very nearly aligned with the radio peaks, a phenomenon seen only in the Crab pulsar until now. The >=0.1 GeV spectrum of this pulsar is well fit by an exponentially cutoff power law with a cutoff energy of 1.8 +- 0.6 +- 0.1 GeV and a photon index of 1.5 +- 0.2 +- 0.1, first errors are statistical and second are systematic. The near-alignment of the radio and gamma-ray peaks strongly suggests that the radio and gamma-ray emission regions are co-located and both are the result of caustic formation.

  15. Observatories and Telescopes of Modern Times

    NASA Astrophysics Data System (ADS)

    Leverington, David

    2016-11-01

    Preface; Part I. Optical Observatories: 1. Palomar Mountain Observatory; 2. The United States Optical Observatory; 3. From the Next Generation Telescope to Gemini and SOAR; 4. Competing primary mirror designs; 5. Active optics, adaptive optics and other technical innovations; 6. European Northern Observatory and Calar Alto; 7. European Southern Observatory; 8. Mauna Kea Observatory; 9. Australian optical observatories; 10. Mount Hopkins' Whipple Observatory and the MMT; 11. Apache Point Observatory; 12. Carnegie Southern Observatory (Las Campanas); 13. Mount Graham International Optical Observatory; 14. Modern optical interferometers; 15. Solar observatories; Part II. Radio Observatories: 16. Australian radio observatories; 17. Cambridge Mullard Radio Observatory; 18. Jodrell Bank; 19. Early radio observatories away from the Australian-British axis; 20. The American National Radio Astronomy Observatory; 21. Owens Valley and Mauna Kea; 22. Further North and Central American observatories; 23. Further European and Asian radio observatories; 24. ALMA and the South Pole; Name index; Optical observatory and telescope index; Radio observatory and telescope index; General index.

  16. Space Telescope.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  17. The Radio Jove Project

    NASA Technical Reports Server (NTRS)

    Thieman, J. R.

    2010-01-01

    The Radio love Project is a hands-on education and outreach project in which students, or any other interested individuals or groups build a radio telescope from a kit, operate the radio telescope, transmit the resulting signals through the internet if desired, analyze the results, and share the results with others through archives or general discussions among the observers. Radio love is intended to provide an introduction to radio astronomy for the observer. The equipment allows the user to observe radio signals from Jupiter, the Sun, the galaxy, and Earth-based radiation both natural and man-made. The project was started through a NASA Director's Discretionary Fund grant more than ten years ago. it has continued to be carried out through the dedicated efforts of a group of mainly volunteers. Dearly 1500 kits have been distributed throughout the world. Participation can also be done without building a kit. Pre-built kits are available. Users can also monitor remote radio telescopes through the internet using free downloadable software available through the radiosky.com website. There have been many stories of prize-winning projects, inspirational results, collaborative efforts, etc. We continue to build the community of observers and are always open to new thoughts about how to inspire the observers to still greater involvement in the science and technology associated with Radio Jove.

  18. The High Time Resolution Radio Sky

    NASA Astrophysics Data System (ADS)

    Thornton, D.

    2013-11-01

    Pulsars are laboratories for extreme physics unachievable on Earth. As individual sources and possible orbital companions can be used to study magnetospheric, emission, and superfluid physics, general relativistic effects, and stellar and binary evolution. As populations they exhibit a wide range of sub-types, with parameters varying by many orders of magnitude signifying fundamental differences in their evolutionary history and potential uses. There are currently around 2200 known pulsars in the Milky Way, the Magellanic clouds, and globular clusters, most of which have been discovered with radio survey observations. These observations, as well as being suitable for detecting the repeating signals from pulsars, are well suited for identifying other transient astronomical radio bursts that last just a few milliseconds that either singular in nature, or rarely repeating. Prior to the work of this thesis non-repeating radio transients at extragalactic distances had possibly been discovered, however with just one example status a real astronomical sources was in doubt. Finding more of these sources was a vital to proving they were real and to open up the universe for millisecond-duration radio astronomy. The High Time Resolution Universe survey uses the multibeam receiver on the 64-m Parkes radio telescope to search the whole visible sky for pulsars and transients. The temporal and spectral resolution of the receiver and the digital back-end enable the detection of relatively faint, and distant radio sources. From the Parkes telescope a large portion of the Galactic plane can be seen, a rich hunting ground for radio pulsars of all types, while previously poorly surveyed regions away from the Galactic plane are also covered. I have made a number of pulsar discoveries in the survey, including some rare systems. These include PSR J1226-6208, a possible double neutron star system in a remarkably circular orbit, PSR J1431-471 which is being eclipsed by its companion with

  19. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Flanagan, Kathryn A.

    2012-01-01

    Space telescopes have been a dominant force in astrophysics and astronomy over the last two decades. As Lyman Spitzer predicted in 1946, space telescopes have opened up much of the electromagnetic spectrum to astronomers, and provided the opportunity to exploit the optical performance of telescopes uncompromised by the turbulent atmosphere. This special section of Optical Engineering is devoted to space telescopes. It focuses on the design and implementation of major space observatories from the gamma-ray to far-infrared, and highlights the scientific and technical breakthroughs enabled by these telescopes. The papers accepted for publication include reviews of major space telescopes spanning the last two decades, in-depth discussions of the design considerations for visible and x-ray telescopes, and papers discussing concepts and technical challenges for future space telescopes.

  20. Heinrich Hertz Telescope

    NASA Astrophysics Data System (ADS)

    Baars, Jacob W.; Martin, Robert N.

    1998-07-01

    The Heinrich Hertz Telescope is a radio telescope dedicated to the observation of submillimeter wavelength radiation from celestial sources. It is a Cassegrain telescope with a diameter of 10 m and a reflector accuracy of about 17 micrometer, yielding an excellent performance at 350 micrometer, the shortest wavelength transmitted through the atmosphere. The reflector panels and the backup structure employ carbon-fiber reinforced plastic as basic material to achieve a lightweight, stiff construction with a very small coefficient of thermal expansion. This enables us to maintain full performance of the telescope in day time under solar illumination of the structure. In this paper, we describe the structural and material characteristics of the telescope. We also describe the holographic method which enables a measurement and setting of the reflector panels to an accuracy of 10 micrometer. The telescope is located on Mt. Graham in Eastern Arizona at an altitude of 3250 m, providing good submillimeter observing conditions, especially in the winter months. This is a collaborative effort of the Max-Planck- Institut fur Radioastronomie, Bonn, Germany and Steward Observatory, University of Arizona, Tucson, AZ.

  1. Surface measurements of radio antenna panels with white-light interferometry

    NASA Astrophysics Data System (ADS)

    Chinellato, S.; Pernechele, C.; Carmignato, S.; Manzan, F.

    2010-07-01

    Typical radio telescopes have the primary reflector surface which is composed of several single panels that have dimensions of a meter a side. The manufacturing of these radio panels yield a micrometric precision over the volume on the single panel, hence the surface roughness of the panels can be measured with very high accuracy by means of the low coherence interferometry (LCI) technique which reaches micrometric spatial and depth resolution and has the advantage of being contact-less. We have developed a multi-channel partially coherent light interferometer to realize non contact 3D surface topography. The technique is based on the LCI principle, for which a bi-dimensional sensor - a CMOS - has been developed to directly acquire images. Tri-dimensional measures are recovered with a single scanning along the depth direction in a millimetric range, and every single pixel of the bi-dimensional sensor measures a point on the object, this allows a fast analysis in real time on square centimeter areas. In this paper we show the results obtained by applying the LCI technique method to analyze the surface roughness of the panels of a large radio antenna of 64 m of width and used for astronomical observations at 100 GHz; by measuring their 3D structure at micrometric resolution it is possible to verify their fabrication errors.

  2. National Centre for Radio Astrophysics

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    India's National Centre for Radio Astrophysics (NCRA), located on the Pune University Campus, is part of the TATA INSTITUTE OF FUNDAMENTAL RESEARCH. At Khodad, 80 km from Pune, NCRA has set up the Giant Metrewave Radio Telescope (GMRT), the world's largest telescope operating at meter wavelengths. GMRT consists of 30 fully steerable dishes of 45 m diameter, spread over a 25 km area. Another meter...

  3. An Accurate and Efficient Algorithm for Detection of Radio Bursts with an Unknown Dispersion Measure, for Single-dish Telescopes and Interferometers

    NASA Astrophysics Data System (ADS)

    Zackay, Barak; Ofek, Eran O.

    2017-01-01

    Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the unknown pulse dispersion, which is a computationally demanding task. We present the “fast dispersion measure transform” algorithm for optimal detection of such signals. Our algorithm has a low theoretical complexity of 2{N}f{N}t+{N}t{N}{{Δ }}{{log}}2({N}f), where Nf, Nt, and NΔ are the numbers of frequency bins, time bins, and dispersion measure bins, respectively. Unlike previously suggested fast algorithms, our algorithm conserves the sensitivity of brute-force dedispersion. Our tests indicate that this algorithm, running on a standard desktop computer and implemented in a high-level programming language, is already faster than the state-of-the-art dedispersion codes running on graphical processing units (GPUs). We also present a variant of the algorithm that can be efficiently implemented on GPUs. The latter algorithm’s computation and data-transport requirements are similar to those of a two-dimensional fast Fourier transform, indicating that incoherent dedispersion can now be considered a nonissue while planning future surveys. We further present a fast algorithm for sensitive detection of pulses shorter than the dispersive smearing limits of incoherent dedispersion. In typical cases, this algorithm is orders of magnitude faster than enumerating dispersion measures and coherently dedispersing by convolution. We analyze the computational complexity of pulsed signal searches by radio interferometers. We conclude that, using our suggested algorithms, maximally sensitive blind searches for dispersed pulses are feasible using existing facilities. We provide an implementation of these algorithms in Python and MATLAB.

  4. The Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, Dave; McEnery, Julie

    2011-01-01

    This slide presentation reviews the Gamma Ray Astronomy as enhanced by the Fermi Gamma Ray Space Telescope and Radio Astronomy as a synergistic relationship. Gamma rays often represent a significant part of the energy budget of a source; therefore, gamma-ray studies can be critical to understanding physical processes in such sources. Radio observations offer timing and spatial resolutions vastly superior to anything possible with gamma-ray telescopes; therefore radio is often the key to understanding source structure. Gamma-ray and radio observations can complement each other, making a great team. It reviews the Fermi Guest Investigator (GI) program, and calls for more cooperative work that involves Fermi and the Very Long Baseline Array (VLBA), a system of ten radio telescopes.

  5. Millimetre observations of comets P/Brorsen-Metcalf (1989o) and Austin (1989c1) with the IRAM 30-m radio telescope

    NASA Technical Reports Server (NTRS)

    Colom, P.; Despois, D.; Bockelee-Morvan, D.; Crovisier, J.; Paubert, G.

    1990-01-01

    Millimeter observations with the IRAM 30 m telescope were conducted in comet P/Brorsen-Metcalf (1989o) on September 1989 and Austin (1989c1) on April and May 1990. The HCN J(1-0) and J(3-2) lines were detected in both comets. The HCN production rate relative to water in P/Brorsen-Metcalf is comparable to that previously measured in comet P/Halley, while that inferred in comet Austin might be smaller by a factor of two. The H2CO(3 sub 12 - 2 sub 11) transition, marginally observed in comet P/Brorsen-Metcalf, was firmly detected in May 1990 in comet Austin. Observations performed at offset positions suggest that the source of H2CO might be distributed. The H2CO abundance is on the order of 0.5 percent that of water for both comets, assuming a scalelength of 10(exp 4) km at 1 AU from the Sun for the distributed source. During the May observing period of comet Austin, two new species were detected for the first time in a comet: hydrogen sulfide (H2S) through its 1(sub 10) - 1(sub 01) ortho line at 169 GHz, and methanol (CH3OH) through J(3-2) delta K = 0 transitions at 145 GHz. Preliminary estimates of their abundances are 1.5 x 10(exp -3) for H2S and 8 x 10(exp -3) for CH3OH.

  6. The future for radio astronomy

    NASA Astrophysics Data System (ADS)

    Breton, Rene P.; Hassall, Tom

    2013-12-01

    THE TRANSIENT UNIVERSE Rene P Breton and Tom Hassall argue that, while radio astronomy has always involved transient phenomena, exploration of this part of the electromagnetic spectrum has been falling behind because of the lack of data. But the advent of a new generation of radio telescopes such as LOFAR, could change that.

  7. Radio Emission from Binary Stars

    NASA Astrophysics Data System (ADS)

    Hjellming, R.; Murdin, P.

    2000-11-01

    Stellar radio emission is most common in double star systems where each star provides something essential in producing the large amounts of radio radiation needed for it to be detectable by RADIO TELESCOPES. They transfer mass, supply energy or, when one of the stars is a NEUTRON STAR or BLACK HOLE, have the strong gravitational fields needed for the energetic particles and magnetic fields needed...

  8. Telescope Equipment

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Renaissance Telescope for high resolution and visual astronomy has five 82-degree Field Tele-Vue Nagler Eyepieces, some of the accessories that contribute to high image quality. Telescopes and eyepieces are representative of a family of optical equipment manufactured by Tele-Vue Optics, Inc.

  9. Radio astronomy - The next decade

    NASA Astrophysics Data System (ADS)

    Kellermann, Kenneth I.

    1991-09-01

    Discoveries made over the past several decades by radio astronomers include radio galaxies, quasars, pulsars, gravitational lenses, energetic bursts from the sun and Jupiter, the greenhouse effect on Venus, the rotation of Mercury, giant molecular clouds, violent activity in galactic nuclei, and cosmic background radiation. This paper discusses the development of ever more powerful radio telescopes, which include the VLA operated by NRAO near Socorro (New Mexico); the new NRAO's 100-m Green Bank Telescope being constructed in Green Bank (West Virginia); and the proposed Millimeter Array, which will consist of 40 antennas, each 8-m across, arranged in any of four different ways depending on the size of the region under study. Consideration is also given to methods for increasing the resolving power and image quality of radio telescopes, with special attention given to very-long-baseline interferometry.

  10. SNAP Telescope

    NASA Astrophysics Data System (ADS)

    Lampton, Michael L.; Akerlof, Carl W.; Aldering, Greg; Amanullah, R.; Astier, Pierre; Barrelet, E.; Bebek, Christopher; Bergstrom, Lars; Bercovitz, John; Bernstein, G.; Bester, Manfred; Bonissent, Alain; Bower, C. R.; Carithers, William C., Jr.; Commins, Eugene D.; Day, C.; Deustua, Susana E.; DiGennaro, Richard S.; Ealet, Anne; Ellis, Richard S.; Eriksson, Mikael; Fruchter, Andrew; Genat, Jean-Francois; Goldhaber, Gerson; Goobar, Ariel; Groom, Donald E.; Harris, Stewart E.; Harvey, Peter R.; Heetderks, Henry D.; Holland, Steven E.; Huterer, Dragan; Karcher, Armin; Kim, Alex G.; Kolbe, William F.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, Michael E.; Levin, Daniel S.; Linder, Eric V.; Loken, Stewart C.; Malina, Roger; Massey, R.; McKay, Timothy; McKee, Shawn P.; Miquel, Ramon; Mortsell, E.; Mostek, N.; Mufson, Stuart; Musser, J. A.; Nugent, Peter E.; Oluseyi, Hakeem M.; Pain, Reynald; Palaio, Nicholas P.; Pankow, David H.; Perlmutter, Saul; Pratt, R.; Prieto, Eric; Refregier, Alexandre; Rhodes, J.; Robinson, Kem E.; Roe, N.; Sholl, Michael; Schubnell, Michael S.; Smadja, G.; Smoot, George F.; Spadafora, A.; Tarle, Gregory; Tomasch, Andrew D.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, Guobin

    2002-12-01

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  11. SNAP telescope

    SciTech Connect

    Lampton, Michael L.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro, R.; Ealet, A.; Ellis,R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar,A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland,S.E.; Huterer, D.; Karcher, A.; Kim, A.G.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder, E.V.; Loken,S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi,H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto,E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  12. Teaching Telescopes

    ERIC Educational Resources Information Center

    Reid, John S.

    1974-01-01

    Discusses experience of teaching optical experiments with emphasis upon the student's design and construction of refracting and reflecting telescopes. Concludes that the student's interest and acquired knowledge are greatly enhanced through the use of realistic experiments. (CC)

  13. Radio outburst of BL Lacertae

    NASA Astrophysics Data System (ADS)

    Buemi, C. S.; Leto, P.; Trigilio, C.; Umana, G.; Giroletti, M.; Orienti, M.; Raiteri, C. M.; Villata, M.; Bach, U.

    2013-04-01

    We report on extremely high radio flux of BL Lacertae at 43 and 8 GHz. Observations at 43 GHz with the 32 m radio telescope in Noto (Italy) revealed a flux density of 10.5 +/- 0.2 Jy on 2013 April 10.65, while observations at 8 GHz with the 32 m radio telescope in Medicina (Italy) detected a flux density of 8.2 +/- 0.7 Jy on April 12.22. These extremely high radio fluxes show that the radio activity likely correlated to the strong optical, near-infrared, and gamma-ray activity of 2011-2012 (see ATels #4028, #4031, #4155, #4271, #4277, #4349, #4565, #4600), and X-ray activity of late 2012 (ATels #4557, #4627), is far to be exhausted.

  14. Space Telescopes

    DTIC Science & Technology

    2010-01-01

    the Kirkpatrick–Baez type systems and the focussing colli- mator or ‘ lobster -eye’ systems. 1http://henke.lbl.gov/optical constants/ 176 9. Space...mirror requires a longer telescope. Focussing collimator or ‘ lobster -eye’ telescopes The Wolter and the Kirkpatrick–Baez systems have in common a...9.13: Flat-mirror two-dimensional focussing collimator or detached lobster - eye configuration (Schmidt 1975). within one tube but from adjacent walls a

  15. Observations of Solar Radio Transients

    NASA Astrophysics Data System (ADS)

    Paige, Giorla

    2011-05-01

    A low frequency radio telescope has been recently been constructed on the campus of the The College of New Jersey (TCNJ) and has begun conducting observations at 20MHz as part of NASA'a Radio Jove program. This instrument is capable of observations of solar radio emission including strong prompt radio emission associated with solar burst events. We will discuss solar observations conducted with this instrument as well as an effort to conduct coincident observations with the Eight-meter-wavelength Transient Array (ETA) and the Long Wavelength Array (LWA).

  16. Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria M.

    2017-01-01

    Fast Radio Bursts (FRBs) are a recently discovered phenomenon consisting of short (few ms) bursts of radio waves that have dispersion measures that strongly suggest an extragalactic and possibly cosmological origin. Current best estimates for the rate of FRBs is several thousand per sky per day at radio frequencies near 1.4 GHz. Even with so high a rate, to date, fewer than 20 FRBs have been reported, with one source showing repeated bursts. In this talk I will describe known FRB properties including what is known about the lone repeating source, as well as models for the origin of these mysterious events. I will also describe the CHIME radio telescope, currently under construction in Canada. Thanks to its great sensitivity and unprecedented field-of-view, CHIME promises major progress on FRBs.

  17. The Radio JOVE Project

    NASA Astrophysics Data System (ADS)

    Garcia, L.; Thieman, J.; Higgins, C.

    1999-09-01

    Radio JOVE is an interactive educational activity which brings the radio sounds of Jupiter and the Sun to students, teachers, and the general public. This is accomplished through the construction of a simple radio telescope kit and the use of a real-time radio observatory on the Internet. Our website (http://radiojove.gsfc.nasa.gov/) will contain science information, instruction manuals, observing guides, and education resources for students and teachers. Our target audience is high school science classes, but subjects can be tailored to college undergraduate physics and astronomy courses or even to middle school science classes. The goals of the project are: 1) Educate people about planetary and solar radio astronomy, space physics, and the scientific method 2) Provide teachers and students with a hands-on radio astronomy exercise as a science curriculum support activity by building and using a simple radio telescope receiver/antenna kit 3) Create the first ever online radio observatory which provides real-time data for those with internet access 4) Allow interactions among participating schools by facilitating exchanges of ideas, data, and observing experiences. Our current funding will allow us to impact 100 schools by partially subsidizing their participation in the program. We expect to expand well beyond this number as publicity and general interest increase. Additional schools are welcome to fully participate, but we will not be able to subsidize their kit purchases. We hope to make a wide impact among the schools by advertising through appropriate newsletters, space grant consortia, the INSPIRE project (http://image.gsfc.nasa.gov/poetry/inspire/), electronic links, and science and education meetings. We would like to acknoledge support from the NASA/GSFC Director's Discretionary Fund, the STScI IDEAS grant program and the NASA/GSFC Space Science Data Operations Office.

  18. Radio data archiving system

    NASA Astrophysics Data System (ADS)

    Knapic, C.; Zanichelli, A.; Dovgan, E.; Nanni, M.; Stagni, M.; Righini, S.; Sponza, M.; Bedosti, F.; Orlati, A.; Smareglia, R.

    2016-07-01

    Radio Astronomical Data models are becoming very complex since the huge possible range of instrumental configurations available with the modern Radio Telescopes. What in the past was the last frontiers of data formats in terms of efficiency and flexibility is now evolving with new strategies and methodologies enabling the persistence of a very complex, hierarchical and multi-purpose information. Such an evolution of data models and data formats require new data archiving techniques in order to guarantee data preservation following the directives of Open Archival Information System and the International Virtual Observatory Alliance for data sharing and publication. Currently, various formats (FITS, MBFITS, VLBI's XML description files and ancillary files) of data acquired with the Medicina and Noto Radio Telescopes can be stored and handled by a common Radio Archive, that is planned to be released to the (inter)national community by the end of 2016. This state-of-the-art archiving system for radio astronomical data aims at delegating as much as possible to the software setting how and where the descriptors (metadata) are saved, while the users perform user-friendly queries translated by the web interface into complex interrogations on the database to retrieve data. In such a way, the Archive is ready to be Virtual Observatory compliant and as much as possible user-friendly.

  19. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    NASA Astrophysics Data System (ADS)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  20. Analysis of Reflector Antennas in Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Yeap, K. H.; Loh, M. C.; Tham, C. Y.; Yiam, C. Y.; Yeong, K. C.; Lai, K. C.

    2016-11-01

    We present an analysis on the performance of the Cassegrain and Gregorian on-axis, off-axis and offset antennas. In our study, we have adopted the design parameters for the Cassegrain configuration used in the Atacama Large Millimeter Array (ALMA) project. Modifications on the original parameters are made so as to meet the design requirement for the off-axis and offset configurations. To reduce spillover loss in the offset antennas, we have adjusted the angle between the axis of the primary reflector and that of the sub-reflector, so that the feed horn is placed right next to the edge of the primary reflector. This is to allow the offset antennas to receive the highest power at the feed horn. The results obtained from the physical optics simulation show that the radiation characteristics of both Cassegrain and Gregorian antennas are similar. The offset designs exhibit the best performance, followed by the on-axis, and, finally, the off-axis designs. Our analysis also shows that the performance of both offset Cassegrain and Gregorian antennas are comparable to each other.

  1. Telescopic hindsight

    NASA Astrophysics Data System (ADS)

    Cox, Laurence

    2014-08-01

    In reply to the physicsworld.com blog post "Cosmic blunders that have held back science" (2 June, http://ow.ly/xwC7C), about an essay by the astronomer Avi Loeb in which he criticized, among others, his Harvard University predecessor Edward Pickering, who claimed in 1909 that telescopes had reached their optimal size.

  2. Infrared telescope

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Hendricks, J. B.

    1985-01-01

    The development of the Infrared Telescope for Spacelab 2 is discussed. The design, development, and testing required to interface a stationary superfluid helium dewar with a scanning cryostate capable of operating in the zero-g environment in the space shuttle bay is described.

  3. Selecting Your First Telescope.

    ERIC Educational Resources Information Center

    Harrington, Sherwood

    1982-01-01

    Designed for first-time telescope purchasers, provides information on how a telescope works; major telescope types (refractors, reflectors, compound telescopes); tripod, pier, altazimuth, and equatorial mounts; selecting a telescope; visiting an astronomy club; applications/limitations of telescope use; and tips on buying a telescope. Includes a…

  4. Optical aperture synthesis with electronically connected telescopes.

    PubMed

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D

    2015-04-16

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths.

  5. Comets at radio wavelengths

    NASA Astrophysics Data System (ADS)

    Crovisier, Jacques; Bockelée-Morvan, Dominique; Colom, Pierre; Biver, Nicolas

    2016-11-01

    Comets are considered as the most primitive objects in the Solar System. Their composition provides information on the composition of the primitive solar nebula, 4.6 Gyr ago. The radio domain is a privileged tool to study the composition of cometary ices. Observations of the OH radical at 18 cm wavelength allow us to measure the water production rate. A wealth of molecules (and some of their isotopologues) coming from the sublimation of ices in the nucleus have been identified by observations in the millimetre and submillimetre domains. We present an historical review on radio observations of comets, focusing on the results from our group, and including recent observations with the Nançay radio telescope, the IRAM antennas, the Odin satellite, the Herschel space observatory, ALMA, and the MIRO instrument aboard the Rosetta space probe.

  6. A Teaching Lab in Radio Astronomy

    ERIC Educational Resources Information Center

    Smith, Kirk R.; Cudaback, David D.

    1976-01-01

    Describes a study in which participants in a summer institute for secondary science teachers performed a series of experiments with a radio telescope. Concludes that a radio astronomy teaching facility would encourage students to use their own initiative and strategy in working with the scientific concepts involved. (MLH)

  7. The Golden Years of Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Kellermann, Kenneth I.

    2016-01-01

    The 1960s were the Golden Years of Radio Astronomy. During this decade a new generation of young scientists discovered quasars, pulsars, the cosmic microwave background, cosmic masers, giant molecular clouds, radio source variability, superluminal motion, radio recombination lines, the rotation of Mercury and Venus, the Venus Greenhouse effect, Jupiter's radiation belts, and opened up the high redshift Universe. On the technical side, the 1960s saw the completion of the NRAO 140-ft and 300-ft radio telescopes, the Haystack, Arecibo and Parkes antennas, the Owens Valley Interferometer, the first practical demonstrations of aperture synthesis, VLBI, and CLEAN, the Cambridge 1-mile radio telescope, the most precise tests of GR light bending, and the introduction of the 4th test of GR. Following sessions at the recent IAU 29th General Assembly on the "Golden Years of Radio Astronomy," we will discuss the circumstances surrounding these transformational discoveries which changed the course of modern astronomy.

  8. Accurate radio positions with the Tidbinbilla interferometer

    NASA Technical Reports Server (NTRS)

    Batty, M. J.; Gulkis, S.; Jauncey, D. L.; Rayner, P. T.

    1979-01-01

    The Tidbinbilla interferometer (Batty et al., 1977) is designed specifically to provide accurate radio position measurements of compact radio sources in the Southern Hemisphere with high sensitivity. The interferometer uses the 26-m and 64-m antennas of the Deep Space Network at Tidbinbilla, near Canberra. The two antennas are separated by 200 m on a north-south baseline. By utilizing the existing antennas and the low-noise traveling-wave masers at 2.29 GHz, it has been possible to produce a high-sensitivity instrument with a minimum of capital expenditure. The north-south baseline ensures that a good range of UV coverage is obtained, so that sources lying in the declination range between about -80 and +30 deg may be observed with nearly orthogonal projected baselines of no less than about 1000 lambda. The instrument also provides high-accuracy flux density measurements for compact radio sources.

  9. Detection of Radio Transients from Supernovae

    NASA Astrophysics Data System (ADS)

    Schmitt, Christian

    2011-05-01

    A core-collapse supernova (SN) would produce an expanding shell of charged particles which interact with the surrounding magnetic field of the progenitor star producing a transient radio pulse. Approximately one supernova event per century is expected in a galaxy. The radio waves emitted are detectable by a new generation of low-frequency radio telescope arrays. We present details of an ongoing search for such events by the Eight-meter-wavelength Transient Array (ETA) and the Long Wavelength Array (LWA).

  10. Radio quiet, please! - protecting radio astronomy from interference

    NASA Astrophysics Data System (ADS)

    van Driel, W.

    2011-06-01

    The radio spectrum is a finite and increasingly precious resource for astronomical research, as well as for other spectrum users. Keeping the frequency bands used for radio astronomy as free as possible of unwanted Radio Frequency Interference (RFI) is crucial. The aim of spectrum management, one of the tools used towards achieving this goal, includes setting regulatory limits on RFI levels emitted by other spectrum users into the radio astronomy frequency bands. This involves discussions with regulatory bodies and other spectrum users at several levels - national, regional and worldwide. The global framework for spectrum management is set by the Radio Regulations of the International Telecommunication Union, which has defined that interference is detrimental to radio astronomy if it increases the uncertainty of a measurement by 10%. The Radio Regulations are revised every three to four years, a process in which four organisations representing the interests of the radio astronomical community in matters of spectrum management (IUCAF, CORF, CRAF and RAFCAP) participate actively. The current interests and activities of these four organisations range from preserving what has been achieved through regulatory measures, to looking far into the future of high frequency use and giant radio telescope use.

  11. The Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Jewell, P. R.

    1999-12-01

    The Green Bank Telescope The 100-m NRAO Green Bank Telescope will be completed in early 2000. The GBT has a large number of unique design and performance features that will give it unprecedented scientific capability. This poster display will review those features, which include an offset feed (clear aperture) design, an active surface, a closed-loop laser metrology system for surface figure and pointing control, broad frequency coverage from 100 MHz to 115 GHz, a versatile receiver selection mechanism, and a new multi-input, 256k-channel autocorrelation spectrometer. The status of the project, the commissioning schedule, plans for early operations, the initial instrumentation suite, and plans for future instrumentation will be reviewed. Scientific areas for which the GBT will have a large impact will be discussed, including observations of young galaxies at extreme redshifts, pulsars, HI and molecular spectroscopy, VLBI work, and millimeter-wave spectroscopy and continuum studies. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  12. Robotic Telescopes

    NASA Astrophysics Data System (ADS)

    Akerlof, C. W.

    2001-05-01

    Since the discovery of gamma-ray bursts, a number of groups have attempted to detect correlated optical transients from these elusive objects. Following the flight of the BATSE instrument on the Compton Gamma-Ray Observatory in 1991, a prompt burst coordinate alert service, BACODINE (now GCN) became available to ground-based telescopes. Several instruments were built to take advantage of this facility, culminating in the discovery of a bright optical flash associated with GRB990123. To date, that single observation remains unique - no other prompt flashes have been seen for a dozen or so other bursts observed with comparably short response times. Thus, GRB prompt optical luminosities may be considerably dimmer than observed for the GRB990123 event or even absent altogether. A new generation of instruments is prepared to explore these possibilties using burst coordinates provided by HETE-2, Swift, Ballerina, Agile and other satellite missions. These telescopes have response times as short as a few seconds and reach limiting magnitudes, m_v 20, guaranteeing a sensitivity sufficient to detect the afterglow many hours later. Results from these experiments should provide important new data about the dynamics and locale of GRBs.

  13. Exploring the Dynamic Radio Sky

    NASA Astrophysics Data System (ADS)

    Mooley, Kunal P.; Hallinan, Gregg; Frail, Dale A.; Myers, Steven T.; Kulkarni, Shrinivas R.; Bourke, Stephen; Horesh, Assaf

    2015-01-01

    Most of what is currently known about slow radio transients (supernovae, gamma-ray bursts, tidal disruption events, stellar flares, etc.) has come via radio follow-up of objects identified by synoptic telescopes at optical, X-ray or gamma-ray wavelengths. However, with the ability to capture obscured, unbeamed and magnetically-driven phenomena, radio surveys offer unique discovery strong diagnostic for cosmic transients. For the first time, we are systematically exploring the dynamic radio sky on timescales between one day to several years using multi-epoch large surveys with the Karl G. Jansky Array (VLA). We have carried out surveys in the COSMOS deep field as well as wide fields like Stripe 82. I have developed a unique infrastructure for near-real-time calibration, imaging, transient search, transient vetting, rapid multiwavelength follow-up, and contemporaneous optical surveys to better characterize radio transient phenomena. A large part of my thesis includes the commissioning of a new observing mode at the VLA: On-The-Fly Mosaicking. This mode has significantly improved the survey efficiency of the VLA, and it is a driver for VLASS, the future all-sky survey planned with this telescope. Through our radio surveys we have discovered several fascinating transients that are unique to the radio. These surveys have established the VLA as an efficient transient discovery machine. My thesis has enormous implications for how to design efficient transient surveys for the next generation of radio interferometer facilities like ASKAP, MeerKAT, WSRT/Apertif and LOFAR. My work has also provided answers to key problems such as the rates of transients, demographics of variability of radio sources including AGN, and false-positive foreground for future searches for the radio counterparts of gravitational-wave (GW) sources.

  14. Internet Resources for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Andernach, H.

    A subjective overview of Internet resources for radio-astronomical information is presented. Basic observing techniques and their implications for the interpretation of publicly available radio data are described, followed by a discussion of existing radio surveys, their level of optical identification, and nomenclature of radio sources. Various collections of source catalogues and databases for integrated radio source parameters are reviewed and compared, as well as the web interfaces to interrogate the current and ongoing large-area surveys. Links to radio observatories with archives of raw (uv-) data are presented, as well as services providing images, both of individual objects or extracts (``cutouts'') from large-scale surveys. While the emphasis is on radio continuum data, a brief list of sites providing spectral line data, and atomic or molecular information is included. The major radio telescopes and surveys under construction or planning are outlined. A summary is given of a search for previously unknown optically bright radio sources, as performed by the students as an exercise, using Internet resources only. Over 200 different links are mentioned and were verified, but despite the attempt to make this report up-to-date, it can only provide a snapshot of the situation as of mid-1998.

  15. Highlighting the history of Japanese radio astronomy. 3: Early solar radio research at the Tokyo Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Nakajima, Hiroshi; Ishiguro, Masato; Orchiston, Wayne; Akabane, Kenji; Enome, Shinzo; Hayashi, Masa; Kaifu, Norio; Nakamura, Tsuko; Tsuchiya, Atsushi

    2014-03-01

    The radio astronomy group at the Tokyo Astronomical Observatory was founded in 1948 immediately after WWII, and decided to put its main research efforts into solar radio astronomy. The first radio telescope was completed in 1949 and started routine observations at 200 MHz. Since then, the group has placed its emphasis on observations at meter and decimeter wavelengths, and has constructed various kinds of radio telescopes and arrays operating at frequencies ranging from 60 to 800 MHz. In addition, radio telescopes operating at 3, 9.5 and 17 GMHz were constructed. In parallel with the observationally-based research, theoretical research on solar radio emission also was pursued. In this paper, we review the instrumental, observational and theoretical developments in solar radio astronomy at the Tokyo Astronomical Observatory in the important period from 1949 through to the 1960s.

  16. Construction Milestone Announced on Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    2000-04-01

    The National Radio Astronomy Observatory announces completion of a major construction milestone on the world's largest fully steerable radio telescope - the National Science Foundation's Green Bank Telescope (GBT). The last of 2,004 aluminum surface panels was recently installed on the GBT's two-acre (100 m x 110 m) collecting dish. The telescope is located at NRAO's Green Bank site, in rural Pocahontas County, West Virginia. The GBT will be used to study everything from the formation of galaxies in the early universe, to the chemical make-up of the dust and gas inside galaxies and in the voids that separate them, to the birth processes of stars. In conjunction with other instruments, it will help make highly accurate radar maps of some familiar objects in our own solar system. The GBT is an engineering marvel. At 485 feet tall, it is comparable in height to the Washington Monument. It weighs 16 million pounds, yet by swiveling the dish in both azimuth and elevation, it can be pointed to any point in the sky with exquisite accuracy. Additionally, the telescope's two-acre collecting dish has many novel features. Most radio telescopes in use today use receivers suspended above the dish by four struts. These struts block some of the surface of the dish, scattering some of the incoming radio waves from celestial objects under study. The GBT's offset feedarm has no struts to block incoming radio waves. The GBT also boasts an active surface. The surface of the dish is composed of 2,004 panels. On the underside of the dish, actuators are located at each corner (i.e., intersection of four panels). These actuators are motors that move the surface panels up and down, keeping the (paraboloid) shape of the dish precisely adjusted, no matter what the tilt of the telescope. The combination of its unblocked aperture and active surface promise that the GBT will display extremely high sensitivity to faint radio signals. The GBT itself is not the only precious national resource in

  17. Contemporaneous VLBA 5 GHz Observations of Large Area Telescope Detected Blazars

    DTIC Science & Technology

    2012-01-10

    blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma - ray Space Telescope have been observed contemporaneously by the Very Long...galaxies: jets – galaxies: nuclei – gamma rays : galaxies – radio continuum: galaxies 1. INTRODUCTION The Large Area Telescope (LAT; Atwood et al. 2009...on board the Fermi Gamma - ray Space Telescope is a wide-field telescope covering the energy range from about 20 MeV to more than 300 GeV. It has been

  18. Radio Days.

    ERIC Educational Resources Information Center

    Sanderson, Neil

    1998-01-01

    Thousands of today's high school students run FM radio stations at school, carrying on a tradition that began 50 years ago. Radio helps students learn to work with others and develop a strong sense of responsibility. A sidebar gives advice on starting a high school radio station. (MLF)

  19. Holographic telescope

    NASA Astrophysics Data System (ADS)

    Odhner, Jefferson E.

    2016-07-01

    Holographic optical elements (HOEs) work on the principal of diffraction and can in some cases replace conventional optical elements that work on the principal of refraction. An HOE can be thinner, lighter, can have more functionality, and can be lower cost than conventional optics. An HOE can serve as a beam splitter, spectral filter, mirror, and lens all at the same time. For a single wavelength system, an HOE can be an ideal solution but they have not been widely accepted for multispectral systems because they suffer from severe chromatic aberration. A refractive optical system also suffers from chromatic aberration but it is generally not as severe. To color correct a conventional refractive optical system, a flint glass and a crown glass are placed together such that the color dispersion of the flint and the crown cancel each other out making an achromatic lens (achromat) and the wavelengths all focus to the same point. The color dispersion of refractive lenses and holographic lenses are opposite from each other. In a diffractive optical system, long wavelengths focus closer (remember for HOEs: RBM "red bends more") than nominal focus while shorter wavelengths focus further out. In a refractive optical system, it is just the opposite. For this reason, diffractives can be incorporated into a refractive system to do the color correction and often cut down on the number of optical elements used [1.]. Color correction can also be achieved with an all-diffractive system by combining a holographic optical element with its conjugate. In this way the color dispersion of the first holographic optical element can be cancelled by the color dispersion of the second holographic optic. It is this technique that will be exploited in this paper to design a telescope made entirely of holographic optical elements. This telescope could be more portable (for field operations) the same technique could be used to make optics light enough for incorporation into a UAV.

  20. Building the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Kellermann, Kenneth I.

    2017-01-01

    In a previous presentation, I reported on how the freak collapse of the NRAO 300-ft transit radio telescope led to the inclusion of $75 million for a new radio telescope in the 1989 Congressional Emergency Supplemental Appropriations Act. But, this was only the beginning. NRAO was faced with challenging specifications and an unworkable schedule, but there was no design and no project team. Only one bid was even close to the Congressional appropriation. In an attempt to meet the unrealistic antenna delivery date, the contractor started construction of the foundation and fabrication of antenna members before the design was finished, leading to retrofits, redesign, and multiple delays. The antenna contractor was twice sold to other companies leading to further delays and cost escalation. In order to recoup their mounting losses, the new owners sued NRAO for $29 million for claimed design changes, and NRAO countersued demanding to be reimbursed for added project management costs and lost scientific data resulting from the seven-year delay in the completion of the telescope. Legal fees and a small net award in favor of the contractor left NRAO and the NSF with a nine million dollar bill which NSF handled by an innovative accounting adjustment.

  1. Firefighters' Radios

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Public Technology Inc. asked for NASA assistance to devise the original firefighter's radio. Good short-range radio communications are essential during a fire to coordinate hose lines, rescue victims, and otherwise increase efficiency. Useful firefighting tool is lower cost, more rugged short range two-way radio. Inductorless electronic circuit replaced inductances and coils in radio circuits with combination of transistors and other low-cost components. Substitution promises reduced circuit size and cost. Enhanced electrical performance made radio more durable and improved maintainability by incorporating modular construction.

  2. High-School Solar Radio Astronomy Project in Mexico Based on Radio Jove

    NASA Astrophysics Data System (ADS)

    Garcia Cole, A.; Gonzalez-Esparza, J. A.; Andrade, E.; Carrillo, A.

    2007-05-01

    Inspired by the RADIO JOVE project (http:radiojove.gsfc.nasa.gov) we propose a curse in solar radio astronomy for the high school system (CCH) at UNAM. The aim of this curse is to introduce solar radio astronomy to students and teachers, building their own radio telescope, and participating in radio astronomical measurements becoming familiar with the emissions of the Sun and Jupiter. The project is also based on the observations from the Mexican Array Radio Telescope(www.mexart.unam.mx) and the real time data from the Virtual Earth Sun Observatory (www.veso.unam.mx) at the Instituto de Geofisica-UNAM. The aim of this Project is to adapt the materials to the high school system in Mexico.

  3. Radio Galaxy Zoo: host galaxies and radio morphologies derived from visual inspection

    NASA Astrophysics Data System (ADS)

    Banfield, J. K.; Wong, O. I.; Willett, K. W.; Norris, R. P.; Rudnick, L.; Shabala, S. S.; Simmons, B. D.; Snyder, C.; Garon, A.; Seymour, N.; Middelberg, E.; Andernach, H.; Lintott, C. J.; Jacob, K.; Kapińska, A. D.; Mao, M. Y.; Masters, K. L.; Jarvis, M. J.; Schawinski, K.; Paget, E.; Simpson, R.; Klöckner, H.-R.; Bamford, S.; Burchell, T.; Chow, K. E.; Cotter, G.; Fortson, L.; Heywood, I.; Jones, T. W.; Kaviraj, S.; López-Sánchez, Á. R.; Maksym, W. P.; Polsterer, K.; Borden, K.; Hollow, R. P.; Whyte, L.

    2015-11-01

    We present results from the first 12 months of operation of Radio Galaxy Zoo, which upon completion will enable visual inspection of over 170 000 radio sources to determine the host galaxy of the radio emission and the radio morphology. Radio Galaxy Zoo uses 1.4 GHz radio images from both the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) and the Australia Telescope Large Area Survey (ATLAS) in combination with mid-infrared images at 3.4 μm from the Wide-field Infrared Survey Explorer (WISE) and at 3.6 μm from the Spitzer Space Telescope. We present the early analysis of the WISE mid-infrared colours of the host galaxies. For images in which there is >75 per cent consensus among the Radio Galaxy Zoo cross-identifications, the project participants are as effective as the science experts at identifying the host galaxies. The majority of the identified host galaxies reside in the mid-infrared colour space dominated by elliptical galaxies, quasi-stellar objects and luminous infrared radio galaxies. We also find a distinct population of Radio Galaxy Zoo host galaxies residing in a redder mid-infrared colour space consisting of star-forming galaxies and/or dust-enhanced non-star-forming galaxies consistent with a scenario of merger-driven active galactic nuclei (AGN) formation. The completion of the full Radio Galaxy Zoo project will measure the relative populations of these hosts as a function of radio morphology and power while providing an avenue for the identification of rare and extreme radio structures. Currently, we are investigating candidates for radio galaxies with extreme morphologies, such as giant radio galaxies, late-type host galaxies with extended radio emission and hybrid morphology radio sources.

  4. VARIABILITY OF THE PULSED RADIO EMISSION FROM THE LARGE MAGELLANIC CLOUD PULSAR PSR J0529-6652

    SciTech Connect

    Crawford, F.; Altemose, D.; Li, H.; Lorimer, D. R.

    2013-01-10

    We have studied the variability of PSR J0529-6652, a radio pulsar in the Large Magellanic Cloud (LMC), using observations conducted at 1390 MHz with the Parkes 64 m telescope. PSR J0529-6652 is detectable as a single pulse emitter, with amplitudes that classify the pulses as giant pulses. This makes PSR J0529-6652 the second known giant pulse emitter in the LMC, after PSR B0540-69. The fraction of the emitted pulses detectable from PSR J0529-6652 at this frequency is roughly two orders of magnitude greater than it is for either PSR B0540-69 or the Crab pulsar (if the latter were located in the LMC). We have measured a pulse nulling fraction of 83.3% {+-} 1.5% and an intrinsic modulation index of 4.07 {+-} 0.29 for PSR J0529-6652. The modulation index is significantly larger than values previously measured for typical radio pulsars but is comparable to values reported for members of several other neutron star classes. The large modulation index, giant pulses, and large nulling fraction suggest that this pulsar is phenomenologically more similar to these other, more variable sources, despite having spin and physical characteristics that are typical of the unrecycled radio pulsar population. The large modulation index also does not appear to be consistent with the small value predicted for this pulsar by a model of polar cap emission outlined by Gil and Sendyk. This conclusion depends to some extent on the assumption that PSR J0529-6652 is exhibiting core emission, as suggested by its simple profile morphology, narrow profile width, and previously measured profile polarization characteristics.

  5. Radio communications with extra-terrestrial civilizations

    NASA Technical Reports Server (NTRS)

    Kotelnikov, V. A.

    1974-01-01

    Communications between civilizations within our galaxy at the present level of radio engineering is possible, although civilizations must begin to search for each other to achieve this. If an extra-terrestrial civilization possessing a technology at our level wishes to make itself known and will transmit special radio signals to do this, then it can be picked up by us at a distance of several hundreds of light years using already existing radio telescopes and specially built radio receivers. If it wishes, this civilization can also send us information without awaiting our answer.

  6. Observing Solar and Jovian Radio Bursts

    NASA Astrophysics Data System (ADS)

    Grippaldi, Joseph

    2011-05-01

    A recently constructed low frequency radio telescope has been constructed on the campus of the The College of New Jersey (TCNJ) has recently begun conducting observations at 20MHz as part of NASA'a Radio Jove program. This instrument is capable of observations of Jovian radio emission including strong prompt radio emission associated with the Jovian moon Io. We will discuss Jovian observations conducted with this instrument as an effort to conduct coincident observation with the Eight-meter-wavelength Transient Array (ETA) and the Long Wavelength Array (LWA).

  7. Nanotube Radio

    NASA Astrophysics Data System (ADS)

    Jensen, Kenneth; Weldon, Jeff; Garcia, Henry; Zettl, Alex

    2008-03-01

    We have constructed a fully functional, fully integrated radio receiver from a single carbon nanotube. The nanotube serves simultaneously as all essential components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A direct current voltage source, as supplied by a battery, powers the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, we demonstrate successful music and voice reception.

  8. Radio Science

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Radio science experiments use electromagnetic waves to probe or study the solar system. Three major research areas were identified within this discipline: radio astronomy, radar astronomy, and celestial mechanics. Radio astronomy (or radiometry) is the detection and measurement of naturally produced radio frequency emissions. Sources include surfaces, atmospheres, rings, and plasmas. Radar astronomy is the observation of man-made signals after their interaction with a target. Both imaging and non-imaging results. Celestial mechanics includes all studies related to the motions of (and gravity fields of) bodies within the solar system. These should not be considered rigid separations, but aid in the discussion of the data sets.

  9. Are the infrared-faint radio sources pulsars?

    NASA Astrophysics Data System (ADS)

    Cameron, A. D.; Keith, M.; Hobbs, G.; Norris, R. P.; Mao, M. Y.; Middelberg, E.

    2011-07-01

    Infrared-faint radio sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50 per cent duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  10. Angular structure of extragalactic radio sources at low frequencies

    NASA Astrophysics Data System (ADS)

    Brazhenko, A. I.; Koshovy, V. V.; Lozynsky, A. R.; Megn, A. V.; Rashkovsky, S. L.; Shepelev, V. A.

    2005-06-01

    The low frequency VLBI of URAN network operated in the decameter range has been designed in Ukraine to study cosmic radio sources. The network consists of five radio telescopes making up of four interferometers with baselines range from 42 to 913 km with UTR-2 radio telescope operated as the main antenna of the interferometers. The angular resolution of the network amount to 1 arcsec at the highest frequency of the range, and its sensitivity is about 20 Jy. Regular observations of galactic and extragalactic radio sources are performed with the network. Some results of studies are presented here.

  11. Radio studies of extragalactic supernovae.

    PubMed

    Weiler, K W; Sramek, R A; Panagia, N

    1986-03-14

    Some exploding stars (supernovae) are powerful emitters of centimeter radio radiation. Detailed observations have shown that these supernovae quickly become detectable in the radio range, first at shorter wavelengths (higher frequencies) and later at progressively longer and longer wavelengths (lower frequencies). This part of the phenomenon appears to be well explained by a monotonic decrease in the amount of ionized material surrounding the radio-emitting regions as the shock from the explosion travels outward. The radio emission itself is of a nonthermal, synchrotron origin, as is the case in most bright cosmic radio sources. Once the absorption effects become negligible, the radio intensity declines with time until reaching the detection limit of the telescope. Models suggest that the absorbing material originates in a dense wind of matter lost by the supernova progenitor star, or by its companion if it is in a binary system, in the last stages of evolution before the explosion. The synchrotron radio emission can be generated either externally by the shock wave from the explosion propagating through this same high density stellar wind or internally by a rapidly rotating neutron star, which is the collapsed core of the exploded star. Present results appear to favor the former model for at least the first several years after the supernova explosion, although the latter model remains viable.

  12. Arrays vs. single telescopes

    NASA Astrophysics Data System (ADS)

    Johnson, H. L.

    The question of the relative efficiencies of telescope arrays versus an equivalent mirror-area very large telescope is re-examined and summarized. Four separate investigations by Bowen, Johnson and Richards, Code, and Disney all came to the same conclusion: that an array of telescopes is superior, both scientifically and economically, to a single very large telescope. The costs of recently completed telescopes are compared. The costs of arrays of telescopes are shown to be significantly lower than that of a single, very large telescope, with the further advantage that because existing, proven, designs can be used, no engineering 'break-throughs' are needed.

  13. College Radio.

    ERIC Educational Resources Information Center

    Sauls, Samuel J.

    As with commercial stations, the underlying premise of the college radio station is to serve the community, whether it be the campus community or the community at large, but in unique ways often geared to underserved niches of the population. Much of college radio's charm lies in its unpredictable nature and constant mutations. The stations give…

  14. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.; Manchester, R. N.

    1980-01-01

    The activities of the Deep Space Network in support of radio and radar astronomy operations during July and August 1980 are reported. A brief update on the OSS-sponsored planetary radio astronomy experiment is provided. Also included are two updates, one each from Spain and Australia on current host country activities.

  15. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars.

  16. SKA Telescope Manager (TM): status and architecture overview

    NASA Astrophysics Data System (ADS)

    Natarajan, Swaminathan; Barbosa, Domingos; Barraca, Joao P.; Bridger, Alan; Choudhury, Subhrojyoti R.; Di Carlo, Matteo; Dolci, Mauro; Gupta, Yashwant; Guzman, Juan; Van den Heever, Lize; Le Roux, Gerhard; Nicol, Mark; Patil, Mangesh; Smareglia, Riccardo; Swart, Paul; Thompson, Roger; Vrcic, Sonja; Williams, Stewart

    2016-07-01

    The SKA radio telescope project is building two telescopes, SKA-Low in Australia and SKA-Mid in South Africa respectively. The Telescope Manager is responsible for the observations lifecycle and for monitoring and control of each instrument, and is being developed by an international consortium. The project is currently in the design phase, with the Preliminary Design Review having been successfully completed, along with re-baselining to match project scope to available budget. This report presents the status of the Telescope Manager work, key architectural challenges and our approach to addressing them.

  17. Localizing the Fast Radio Burst 121102

    NASA Astrophysics Data System (ADS)

    Chatterjee, Shami; Wharton, Robert; Law, Casey J.; Hessels, Jason; Burke-Spolaor, Sarah; Bower, Geoffrey C.; Abruzzo, Matthew W.; Bassa, Cees; Butler, Bryan J.; Cordes, James M.; Paul, Demorest; Kaspi, Victoria M.; McLaughlin, Maura; Ransom, Scott M.; Scholz, Paul; Seymour, Andrew; Spitler, Laura; Tendulkar, Shriharsh P.; PALFA Survey Team; VLA+AO FRB121102 Simultaneous Campaign Team; EVN FRB121102 Campaign Team

    2017-01-01

    The precise localization of a fast radio burst and the identification of its host counterpart would allow constraints on their distances and energetics, and enable us to discriminate between various origin scenarios, from the local and mundane to the cosmological and exotic. Here we report on the results of an ongoing localization campaign on the repeating fast radio burst source, FRB 121102, with the VLA, Arecibo, and other telescopes.

  18. Statistical radio astronomy of the 21st century

    NASA Astrophysics Data System (ADS)

    Pariiskii, Yu. N.; Berlin, A. B.; Bursov, N. N.; Nizhel'skii, N. A.; Semenova, T. A.; Temirova, A. V.; Tsybulev, P. G.

    2015-06-01

    The exponential development of radio-astronomy methods (sensitivity, resolution, depth of surveys, etc) has led to the need for new methods aimed at distinguishing weak signals in the midst of numerous background signals, as has long been the case for radio astronomy at meter wavelengths. Centimeter-wavelength data accumulated with existing radio telescopes (such as the RATAN-600 reflector—the largest radio telescope in Russia) are presented, and expected problems for major new radio telescopes of the 21st century, such as the Square Kilometer Array, are discussed. The effectiveness of using certain tested methods to derive astrophysically important results through reasonable statistical processing of large datasets is shown. In experiments conducted with RATAN-600, these methods lead to an enhancement in sensitivity by an order of magnitude compared with the sensitivity of a resolving element.

  19. Workshop on Radio Transients

    NASA Astrophysics Data System (ADS)

    Croft, Steve; Gaensler, Bryan

    2012-04-01

    abstract-type="normal">SummaryWe are entering a new era in the study of variable and transient radio sources. This workshop discussed the instruments and the strategies employed to study those sources, how they are identified and classified, how results from different surveys can be compared, and how radio observations tie in with those at other wavelengths. The emphasis was on learning what common ground there is between the plethora of on-going projects, how methods and code can be shared, and how best practices regarding survey strategy could be adopted. The workshop featured the four topics below. Each topic commenced with a fairly brief introductory talk, which then developed into discussion. By way of preparation, participants had been invited to upload and discuss one slide per topic to a wiki ahead of the workshop. 1. Telescopes, instrumentation and survey strategy. New radio facilities and on-going projects (including upgrades) are both studying the variability of the radio sky, and searching for transients. The discussion first centred on the status of those facilities, and on projects with a time-domain focus, both ongoing and planned, before turning to factors driving choices of instrumentation, such as phased array versus single pixel feeds, the field of view, spatial and time resolution, frequency and bandwidth, depth, area, and cadence of the surveys. 2. Detection, pipelines, and classification. The workshop debated (a) the factors that influence decisions to study variability in the (u,v) plane, in images, or in catalogues, (b) whether, and how much, pipeline code could potentially be shared between one project and another, and which software packages are best for different approaches, (c) how data are stored and later accessed, and (d) how transients and variables are defined and classified. 3. Statistics, interpretation, and synthesis. It then discussed how (i) the choice of facility and strategy and (ii) detection and classification schemes

  20. Expanding radio astronomy in Africa

    NASA Astrophysics Data System (ADS)

    Gaylard, M. J.

    2013-04-01

    The Square Kilometre Array (SKA) Organisation announced in May 2012 that its members had agreed on a dual site solution for the SKA [1]. South Africa's bid for hosting the SKA has caused a ramp up of radio astronomy in Africa. To develop technology towards the SKA, the South African SKA Project (SKA SA) built a protoype radio telescope in 2007, followed in 2010 the seven antenna Karoo Array Telescope (KAT-7). Next is the 64 antenna MeerKAT, which will merge into SKA Phase 1 in Africa. As SKA Phase 2 is intended to add a high resolution capability with baselines out to 3000 km, the SKA SA brought in partner countries in Africa to host outstations. South Africa has been working with the partners to build capacity to operate the SKA and to benefit from it. The SA Department of Science and Technology (DST) developed a proposal to establish radio telescopes in the partner countries to provide hands-on learning and a capability for Very Long Baseline Interferometry (VLBI) research. Redundant 30 m class satellite antennas are being incorporated in this project.

  1. Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Chernov, S. V.; Gwinn, C. R.; Tchekhovskoy, A. A.

    2015-10-01

    Almost 50 years after radio pulsars were discovered in 1967, our understanding of these objects remains incomplete. On the one hand, within a few years it became clear that neutron star rotation gives rise to the extremely stable sequence of radio pulses, that the kinetic energy of rotation provides the reservoir of energy, and that electromagnetic fields are the braking mechanism. On the other hand, no consensus regarding the mechanism of coherent radio emission or the conversion of electromagnetic energy to particle energy yet exists. In this review, we report on three aspects of pulsar structure that have seen recent progress: the self-consistent theory of the magnetosphere of an oblique magnetic rotator; the location, geometry, and optics of radio emission; and evolution of the angle between spin and magnetic axes. These allow us to take the next step in understanding the physical nature of the pulsar activity.

  2. GLAST Large Area Telescope Multiwavelength Planning

    SciTech Connect

    Reimer, O.; Michelson, P.F.; Cameron, R.A.; Digel, S.W.; Thompson, D.J.; Wood, K.S.

    2007-01-03

    Gamma-ray astrophysics depends in many ways on multiwavelength studies. The Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) Collaboration has started multiwavelength planning well before the scheduled 2007 launch of the observatory. Some of the high-priority multiwavelength needs include: (1) availability of contemporaneous radio and X-ray timing of pulsars; (2) expansion of blazar catalogs, including redshift measurements; (3) improved observations of molecular clouds, especially at high galactic latitudes; (4) simultaneous broad-band blazar monitoring; (5) characterization of gamma-ray transients, including gamma ray bursts; (6) radio, optical, X-ray and TeV counterpart searches for reliable and effective sources identification and characterization. Several of these activities are needed to be in place before launch.

  3. GLAST Large Area Telescope Multiwavelength Planning

    NASA Technical Reports Server (NTRS)

    Reimer, O.; Michelson, P. F.; Cameron, R. A.; Digel, S. W.; Thompson, D. J.; Wood, K. S.

    2007-01-01

    Gamma-ray astrophysics depends in many ways on multiwavelength studies. The Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) Collaboration has started multiwavelength planning well before the scheduled 2007 launch of the observatory. Some of the high-priority multiwavelength needs include: (1) availability of contemporaneous radio and X-ray timing of pulsars; (2) expansion of blazar catalogs, including redshift measurements; (3) improved observations of molecular clouds, especially at high galactic latitudes; (4) simultaneous broad-spectrum blazar monitoring; (5) characterization of gamma-ray transients, including gamma ray bursts; (6) radio, optical, X-ray and TeV counterpart searches for reliable and effective sources identification and characterization. Several of these activities are needed to be in place before launch.

  4. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Shaffer, R. D.

    1983-01-01

    Deep Space Network (DSN) 26- and 64-meter antenna stations were utilized in support of Radio Astronomy Experiment Selection Panel experiments. Within a time span of 10 days, in May 1983 (267.75 hours total), nine RAES experiments were supported. Most of these experiments involved multifacility interferometry using Mark 3 data recording terminals and as many as six non-DSN observatories. Investigations of black holes, quasars, galaxies, and radio sources are discussed.

  5. Telescope performance at the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Hill, John M.; Rothberg, Barry; Christou, Julian C.; Summers, Kellee R.; Summers, Douglas M.

    2016-07-01

    The Large Binocular Telescope Observatory is a collaboration between institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio and Virginia. The telescope uses two 8.4-m diameter primary mirrors mounted sideby- side on the same AZ-EL mount to produce a collecting area equivalent to an 11.8-meter aperture. Adaptive optics loops are routinely closed with natural stars on both sides for sided and combined beam observations. Rayleigh laser guide stars provide GLAO seeing improvement. With the telescope now in operation for 10 years, we report on various statistics of telescope performance and seeing-limited image quality. Statistics of telescope performance are reported in the areas of off-axis guiding, open-loop mount tracking, active optics and vibration. Delivered image quality is reported as measured by the DIMM and several guide cameras as a function of other parameters such as temperature and wind velocity. Projects to improve image quality and dome seeing are underway.

  6. Optimization of 100-meter Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Strain, Douglas

    1994-01-01

    Candidate designs for NRAO's 100-m clear-aperture radio telescope were evaluated and optimized by JPL using JPL-developed structural optimization and analysis software. The weight of a non-optimum design was reduced from 9.4 million pounds to 9.2 million pounds. The half-pathlength error due to gravity deformations was reduced from 0.041-inch rms to 0.034-inch rms.

  7. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III.

    NASA Astrophysics Data System (ADS)

    Titov, O.; Pursimo, T.; Johnston, Helen M.; Stanford, Laura M.; Hunstead, Richard W.; Jauncey, David L.; Zenere, Katrina A.

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  8. Optical aperture synthesis with electronically connected telescopes

    PubMed Central

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.

    2015-01-01

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705

  9. SCIENTIFIC EFFICIENCY OF GROUND-BASED TELESCOPES

    SciTech Connect

    Abt, Helmut A.

    2012-10-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to <4 m, this represents a small return for a factor of four difference in operating costs. Among the 17 papers that have received {>=}100 citations in 3+ years, only half come from the large (>7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  10. Scientific Efficiency of Ground-based Telescopes

    NASA Astrophysics Data System (ADS)

    Abt, Helmut A.

    2012-10-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to <4 m, this represents a small return for a factor of four difference in operating costs. Among the 17 papers that have received >=100 citations in 3+ years, only half come from the large (>7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  11. Amateur Planetary Radio Data Archived for Science and Education: Radio Jove

    NASA Astrophysics Data System (ADS)

    Thieman, J.; Cecconi, B.; Sky, J.; Garcia, L. N.; King, T. A.; Higgins, C. A.; Fung, S. F.

    2015-12-01

    The Radio Jove Project is a hands-on educational activity in which students, teachers, and the general public build simple radio telescopes, usually from a kit, to observe single frequency decameter wavelength radio emissions from Jupiter, the Sun, the galaxy, and the Earth usually with simple dipole antennas. Some of the amateur observers have upgraded their receivers to spectrographs and their antennas have become more sophisticated as well. The data records compare favorably to more sophisticated professional radio telescopes such as the Long Wavelength Array (LWA) and the Nancay Decametric Array. Since these data are often carefully calibrated and recorded around the clock in widely scattered locations they represent a valuable database useful not only to amateur radio astronomers but to the professional science community as well. Some interesting phenomena have been noted in the data that are of interest to the professionals familiar with such records. The continuous monitoring of radio emissions from Jupiter could serve as useful "ground truth" data during the coming Juno mission's radio observations of Jupiter. Radio Jove has long maintained an archive for thousands of Radio Jove observations, but the database was intended for use by the Radio Jove participants only. Now, increased scientific interest in the use of these data has resulted in several proposals to translate the data into a science community data format standard and store the data in professional archives. Progress is being made in translating Radio Jove data to the Common Data Format (CDF) and also in generating new observations in that format as well. Metadata describing the Radio Jove data would follow the Space Physics Archive Search and Extract (SPASE) standard. The proposed archive to be used for long term preservation would be the Planetary Data System (PDS). Data sharing would be achieved through the PDS and the Paris Astronomical Data Centre (PADC) and the Virtual Wave Observatory (VWO

  12. The space telescope

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers concerning the development of the Space Telescope which were presented at the Twenty-first Annual Meeting of the American Astronautical Society in August, 1975 are included. Mission planning, telescope performance, optical detectors, mirror construction, pointing and control systems, data management, and maintenance of the telescope are discussed.

  13. Telescopes and space exploration

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Maran, S. P.

    1976-01-01

    The necessity for different types of telescopes for astronomical investigations is discussed. Major findings in modern astronomy by ground-based and spaceborne telescopes are presented. Observations of the Crab Nebula, solar flares, interstellar gas, and the Black Hole are described. The theory of the oscillating universe is explored. Operating and planned telescopes are described.

  14. PULSE@Parkes, Engaging Students through Hands-On Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Hollow, Robert; Hobbs, George; Shannon, Ryan M.; Kerr, Matthew

    2015-08-01

    PULSE@Parkes is an innovative, free educational program run by CSIRO Astronomy and Space Science (CASS) in which high school students use the 64m Parkes radio telescope remotely in real time to observe pulsars then analyse their data. The program caters for a range of student ability and introduces students to hands-on observing and radio astronomy. Students are guided by professional astronomers, educators and PhD students during an observing session. They have ample time to interact with the scientists and discuss astronomy, careers and general scientific questions. Students use a web-based module to analyse pulsar properties. All data from the program are streamed via a web browser and are freely available from the online archive and may be used for open-ended student investigations. The data are also used by the team for ongoing pulsar studies with two scientific papers published to date.Over 100 sessions have been held so far. Most sessions are held at CASS headquarters in Sydney, Australia but other sessions are regularly held in other states with partner institutions. The flexibility of the program means that it is also possible to run sessions in other countries. This aspect of the program is useful for demonstrating capability, engaging students in diverse settings and fostering collaborations. The use of Twitter (@pulseatparkes) during allows followers worldwide to participate and ask questions.Two tours of Japan plus sessions in the UK, Netherlands and Canada have reached a wide audience. Plans for collaborations in China are well underway with the possibility of use with other countries also being explored. The program has also been successfully used in helping to train international graduate students via the International Pulsar Timing Array Schools. We have identified strong demand and need for programs such as this for training undergraduate students in Asia and the North America in observing and data analysis techniques so one area of planned

  15. ATST telescope mount: telescope of machine tool

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  16. Radio emission from supernova remnants

    NASA Astrophysics Data System (ADS)

    Dubner, Gloria; Giacani, Elsa

    2015-09-01

    The explosion of a supernova releases almost instantaneously about 10^{51} ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from an SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critically discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analysis of the prospects for future research with the latest-generation radio telescopes.

  17. Voyager spacecraft radio observations of Jupiter: Initial cruise results

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Riddle, A. C.; Lecacheux, A.; Pearce, J. B.; Alexander, J. K.; Warwick, J. W.; Thieman, J. R.

    1979-01-01

    Jupiter's low-frequency radio emission were detected by the planetary radio astronomy instruments onboard the two Voyager spacecraft. The emission is surprisingly similar in morphology but opposite in polarization to the high-frequency Jovian radio noise that were observed with ground-based telescopes for more than two decades. Several possible explanations for the behavior of the low-frequency emission are examined, but none of them is completely satisfactory.

  18. Are all radio galaxies genuine ellipticals?

    NASA Astrophysics Data System (ADS)

    Véron-Cetty, M. P.; Véron, P.

    2001-09-01

    Classical double radio sources are believed to be powered by a strong relativistic jet due to the presence of a rapidly spinning black hole in the center of a giant E galaxy formed by the merging of two galaxies. If this is true, no radio source should have been found in spiral or S0 galaxies. A number of radio S0s have been reported, but most of them are probably misclassified Es. However, our own observations confirm that NGC 612 is an S0 although it is associated with the FR II radio source PKS 0131-36. We conclude that S0s can be classical radio sources, but that such occurences are extremely rare. Partly based on observations obtained with the ESO 3.6 m telescope, La Silla, Chile.

  19. Optical spectroscopy of four young radio sources

    NASA Astrophysics Data System (ADS)

    Fan, Xu-Liang; Bai, Jin-Ming; Hu, Chen; Wang, Jian-Guo

    2017-01-01

    We report the optical spectroscopy of four young radio sources which are observed with the Lijiang 2.4 m telescope. The Eddington ratios of these sources are similar with those of narrow-line Seyfert 1 galaxies (NLS1s). Their Fe II emission is strong while [O III] strength is weak. These results confirm the NLS1 features of young radio sources, except that the width of broad Hβ of young radio sources is larger than that of NLS1s. We thus suggest that the young radio sources are the high black hole mass counterparts of steep-spectrum radio-loud NLS1s. In addition, the broad Hβ component of 4C 12.50 is the blue wing of the narrow component, but not from the broad line region.

  20. "First Light" for the Newly Christened Robert C. Byrd Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    2000-08-01

    Strip Chart Recording of the Pulsar Signals Received During the Robert C. Byrd Green Bank Telescope's First Observation of a Celestial Radio Source At a ceremony last Friday (Aug. 25) in which the National Science Foundation's Green Bank Telescope (GBT) was formally dedicated, U.S. Senator Robert C. Byrd (D - WV) announced that the gigantic telescope had successfully opened its two-acre 'eye' on the Universe earlier that week. The telescope was christened the "Robert C. Byrd Green Bank Telescope" at the ceremony, which was held at the National Radio Astronomy Observatory (NRAO) site in Green Bank, West Virginia. The event also featured remarks from Dr. Rita R Colwell, Director of the National Science Foundation. First light details: The Robert C. Byrd Green Bank Telescope saw 'first light' (that is, detected its first radio waves from space) at 7:00 p.m. EDT, Tuesday, August 22, 2000. Earlier that day, a 403-megahertz radio-wave receiver had been installed on the telescope. In its first simple observation, the GBT tracked a radio galaxy called 1140+223 across the sky. The telescope then locked onto a pulsar called PSR B1133+16 and a chart recorder scratched out the regular pattern of its radio pulses, which reach Earth every 1 2 seconds. (A pulsar is a rotating neutron star that shines a beam of radio waves like a cosmic lighthouse; these radio pulses sweep across the Earth at regular intervals.) Dr. Mark McKinnon, Deputy Site Director at NRAO's Green Bank site, led the team that conducted the observations. "This first-light event is the most significant milestone in the construction of the GBT. It is the first step in commissioning this telescope," McKinnon said. "This shows that the receivers we built for the GBT work, and that the telescope is properly aligned. We have a working telescope." "The next phase is the telescope commissioning," McKinnon continued. "That means we measure the telescope's performance, and make detailed refinements of its pointing and

  1. Space Infrared Telescope Facility (SIRTF) telescope overview

    NASA Technical Reports Server (NTRS)

    Schember, Helene; Manhart, Paul; Guiar, Cecilia; Stevens, James H.

    1991-01-01

    The Space Infrared Telescope Facility (SIRTF) will be the first true infrared observatory in space, building upon the technical and scientific experience gained through its two NASA survey-oriented predecessors: the Infrared Astronomical Satellite and the Cosmic Background Explorer. During its minimum five year lifetime, the SIRTF will perform pointed scientific observations at wavelengths from 1.8 to 1200 microns with an increase in sensitivity over previous missions of several orders of magnitude. This paper discusses a candidate design for the SIRTF telescope, encompassing optics, cryostat, and instrument accommodation, which has been undertaken to provide a fulcrum for the development of functional requirements, interface definition, risk assessment and cost. The telescope optics employ a baffled Ritchey-Chretien Cassegrain system with a 1-m class primary mirror, an active secondary mirror, and a stationary facetted tertiary mirror. The optics are embedded in a large superfluid He cryostat designed to maintain the entire telescope-instrument system at temperatures below 3 K.

  2. Hartebeesthoek Radio Astronomy Observatory (HartRAO)

    NASA Technical Reports Server (NTRS)

    Nickola, Marisa; Gaylard, Mike; Quick, Jonathan; Combrinck, Ludwig

    2013-01-01

    HartRAO provides the only fiducial geodetic site in Africa, and it participates in global networks for VLBI, GNSS, SLR, and DORIS. This report provides an overview of geodetic VLBI activities at HartRAO during 2012, including the conversion of a 15-m alt-az radio telescope to an operational geodetic VLBI antenna.

  3. Hubble Space Telescope Optical Telescope Assembly

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This image illustrates the Hubble Space Telescope's (HST's) Optical Telescope Assembly (OTA). One of the three major elements of the HST, the OTA consists of two mirrors (a primary mirror and a secondary mirror), support trusses, and the focal plane structure. The mirrors collect and focus light from selected celestial objects and are housed near the center of the telescope. The primary mirror captures light from objects in space and focuses it toward the secondary mirror. The secondary mirror redirects the light to a focal plane where the Scientific Instruments are located. The primary mirror is 94.5 inches (2.4 meters) in diameter and the secondary mirror is 12.2 inches (0.3 meters) in diameter. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth Orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from the Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5 feet (13 meters) long and weighs 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  4. Liverpool Telescope and Liverpool Telescope 2

    NASA Astrophysics Data System (ADS)

    Copperwheat, C. M.; Steele, I. A.; Barnsley, R. M.; Bates, S. D.; Clay, N. R.; Jermak, H.; Marchant, J. M.; Mottram, C. J.; Piascik, A.; Smith, R. J.

    2016-12-01

    The Liverpool Telescope is a fully robotic optical/near-infrared telescope with a 2-metre clear aperture, located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope is owned and operated by Liverpool John Moores University, with financial support from the UK's Science and Technology Facilities Council. The telescope began routine science operations in 2004 and is a common-user facility with time available through a variety of committees via an open, peer reviewed process. Seven simultaneously mounted instruments support a broad science programme, with a focus on transient follow-up and other time domain topics well suited to the characteristics of robotic observing. Development has also begun on a successor facility, with the working title `Liverpool Telescope 2', to capitalise on the new era of time domain astronomy which will be brought about by the next generation of survey facilities such as LSST. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time. In this paper we provide an overview of the current status of both facilities.

  5. SkyView Virtual Telescope:

    NASA Astrophysics Data System (ADS)

    McGlynn, Thomas A.; McDonald, Laura M.; Scollick, Keith A.

    2015-11-01

    The SkyView Virtual telescope provides access to survey datasets ranging from radio through the gamma-ray regimes. Over 100 survey datasets are currently available. The SkyView library referenced here is used as the basis for the SkyView web site (at http://skvyiew.gsfc.nasa.gov) but is designed for individual use by researchers as well. SkyView's approach to access surveys is distinct from most other toolkits. Rather than providing links to the original data, SkyView attempts to immediately re-render the source data in the user-requested reference frame, projection, scaling, orientation, etc. The library includes a set of geometry transformation and mosaicking tools that may be integrated into other applications independent of SkyView.

  6. Radio Seeing Monitor Interferometer

    NASA Astrophysics Data System (ADS)

    Hiriart, David; Valdez, Jorge; Zaca, Placido; Medina, José L.

    2002-10-01

    A two-element interferometer for monitoring atmospheric phase fluctuations (radio seeing) is presented; this uses the unmodulated beacon signal at 11.715 GHz from a geostationary satellite. The system measures phase differences on the signal received by two small antennas separated by 50 m. The system incorporates the best features from previous designs: a heterodyne phase-lock receiver and an IQ demodulator system. Phase fluctuations measured at this frequency may be extrapolated to millimetric and submillimetric wavelengths since the atmosphere is not dispersive at these frequencies. The instrument has been tested at the Observatory San Pedro Martir (Mexico) at 2800 m above sea level. The final destination of the instrument is Cerro la Negra (Mexico), where the Large Millimeter Telescope is under construction, at an altitude of 4600 m.

  7. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Mahoney, M. J.; Jacobson, A. R.; Knowles, S. H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities.

  8. Radio observations in the fields of COS-B gamma ray sources. IV - First quadrant sources

    NASA Technical Reports Server (NTRS)

    Ozel, M. E.; Schlickeiser, R.; Sieber, W.; Younis, S.

    1988-01-01

    The field of five COS-B gamma-ray sources in the first galactic quadrant have been mapped using the Effelsberg radio telescope at several frequencies. Candidate objects as potential radio counterparts of gamma-ray sources are discussed in the light of current observations; however, mostly being due to the crowded nature of the radio fields, no clear identification has been possible.

  9. The radio properties of infrared-faint radio sources

    NASA Astrophysics Data System (ADS)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.

    2011-02-01

    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  10. THE VOLATILE COMPOSITION OF COMET C/2003 K4 (LINEAR) AT NEAR-IR WAVELENGTHS—COMPARISONS WITH RESULTS FROM THE NANÇAY RADIO TELESCOPE AND FROM THE ODIN, SPITZER, AND SOHO SPACE OBSERVATORIES

    SciTech Connect

    Paganini, L.; Mumma, M. J.; Villanueva, G. L.; DiSanti, M. A.; Bonev, B. P.

    2015-07-20

    We observed comet C/2003 K4 (LINEAR) using NIRSPEC at the Keck Observatory on UT 2004 November 28, when the comet was at 1.28 AU from the Sun (post-perihelion) and 1.38 AU from Earth. We detected six gaseous species (H{sub 2}O, OH*, C{sub 2}H{sub 6}, CH{sub 3}OH, CH{sub 4}, and HCN) and obtained upper limits for three others (H{sub 2}CO, C{sub 2}H{sub 2}, and NH{sub 3}). Our results indicate a water production rate of (1.72 ± 0.18) × 10{sup 29} molecules s{sup −1}, in reasonable agreement with production rates from SOHO (on the same day), Odin (one day earlier), and Nançay (about two weeks earlier). We also report abundances (relative to water) for seven trace species: CH{sub 3}OH (∼1.8%), CH{sub 4} (∼0.9%), and C{sub 2}H{sub 6} (∼0.4%) that were consistent with mean values among Oort cloud (OC) comets, while NH{sub 3} (<0.55%), HCN (∼0.07%), H{sub 2}CO (<0.07%), and C{sub 2}H{sub 2} (<0.04%) were “lower” than the mean values in other OC comets. We extracted inner-coma rotational temperatures for four species (H{sub 2}O, C{sub 2}H{sub 6}, CH{sub 3}OH, and CH{sub 4}), all of which are consistent with 70 K (within 1σ). The extracted ortho-para ratio for water was 3.0 ± 0.15, corresponding to spin temperatures larger than 39 K (at the 1σ level) and agreeing with those obtained with the Spitzer Space Telescope at the 2σ level.

  11. Twin-Telescope Wettzell (TTW)

    NASA Astrophysics Data System (ADS)

    Hase, H.; Dassing, R.; Kronschnabl, G.; Schlüter, W.; Schwarz, W.; Lauber, P.; Kilger, R.

    2007-07-01

    Following the recommendations made by the VLBI2010 vision report of the IVS, a proposal has been made to construct a Twin Telescope for the Fundamental Station Wettzell in order to meet the future requirements of the next VLBI generation. The Twin Telescope consists of two identical radiotelescopes. It is a project of the Federal Agency for Cartography and Geodesy (BKG). This article summarizes the project and some design ideas for the Twin-Telescope. %ZALMA (2005). Technical Specification for Design, Manufacturing, Transport and Integration on Site of the ALMA ANTENNAS, Doc. ALMA-34.00.00.00.006-BSPE. Behrend, D. (2006). VLBI2010 Antenna Specs, Data sheet. DeBoer, D. (2001). The ATA Offset Gregorian Antenna, ATA Memo #16, February 10. Imbriale, W.A. (2006). Design of a Wideband Radio Telescope, Jet Propulsion Laboratory and S. Weinreb and H. Mandi, California Institute of Technology. Kilger, R. (2007). TWIN-Design studies, Presentation for the IVS board members (internal document),Wettzell. Kronschnabl, G. (2006). Subject: Memo from Bill Petrachenko, E-mail to the Twin-Working Group (in German), July. Lindgren, ETS-Lindgren (2005). The Model 3164-05 Open Boundary Quadridge Horn, Data Sheet. Niell, A., A. Whitney, W. Petrachenko, W. Schlüter, N. Vandenberg, H.Hase, Y. Koyama, C. Ma, H. Schuh, G. Tucari (2006). in: IVS Annual Report 2005, pg. 13-40, NASA/TP-2006-214136, April. Olsson, R., Kildal, P.-S., and Weinreb, S. (2006). IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, February. Petrachenko, B. (2006). The Case For and Against Multiple Antennas at a Site, IVS Memorandum, 2006-019v01. Petrachenko, B. (2006). IVS Memorandum, 2006-016v01. RFSpin (2004). Double Ridged Waveguide Horn-Model DRH20, Antenna Specifications, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Crossed Log- Periodic Antennas HL024A1/S1, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Log-Periodic Antennas HL050/HL050S1, Data Sheet. Rogers, A.E.E. (2006). Simulations of broadband

  12. The SKA1 LOW telescope: system architecture and design performance

    NASA Astrophysics Data System (ADS)

    Waterson, Mark F.; Labate, Maria Grazia; Schnetler, Hermine; Wagg, Jeff; Turner, Wallace; Dewdney, Peter

    2016-07-01

    The SKA1-LOW radio telescope will be a low-frequency (50-350 MHz) aperture array located in Western Australia. Its scientific objectives will prioritize studies of the Epoch of Reionization and pulsar physics. Development of the telescope has been allocated to consortia responsible for the aperture array front end, timing distribution, signal and data transport, correlation and beamforming signal processors, infrastructure, monitor and control systems, and science data processing. This paper will describe the system architectural design and key performance parameters of the telescope and summarize the high-level sub-system designs of the consortia.

  13. Bayesian inference for radio observations

    NASA Astrophysics Data System (ADS)

    Lochner, Michelle; Natarajan, Iniyan; Zwart, Jonathan T. L.; Smirnov, Oleg; Bassett, Bruce A.; Oozeer, Nadeem; Kunz, Martin

    2015-06-01

    New telescopes like the Square Kilometre Array (SKA) will push into a new sensitivity regime and expose systematics, such as direction-dependent effects, that could previously be ignored. Current methods for handling such systematics rely on alternating best estimates of instrumental calibration and models of the underlying sky, which can lead to inadequate uncertainty estimates and biased results because any correlations between parameters are ignored. These deconvolution algorithms produce a single image that is assumed to be a true representation of the sky, when in fact it is just one realization of an infinite ensemble of images compatible with the noise in the data. In contrast, here we report a Bayesian formalism that simultaneously infers both systematics and science. Our technique, Bayesian Inference for Radio Observations (BIRO), determines all parameters directly from the raw data, bypassing image-making entirely, by sampling from the joint posterior probability distribution. This enables it to derive both correlations and accurate uncertainties, making use of the flexible software MEQTREES to model the sky and telescope simultaneously. We demonstrate BIRO with two simulated sets of Westerbork Synthesis Radio Telescope data sets. In the first, we perform joint estimates of 103 scientific (flux densities of sources) and instrumental (pointing errors, beamwidth and noise) parameters. In the second example, we perform source separation with BIRO. Using the Bayesian evidence, we can accurately select between a single point source, two point sources and an extended Gaussian source, allowing for `super-resolution' on scales much smaller than the synthesized beam.

  14. JWST Pathfinder Telescope Integration

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-01-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  15. The Solar Telescope GREGOR

    NASA Astrophysics Data System (ADS)

    Volkmer, R.

    2008-09-01

    During the last years the new 1.5m solar telescope GREGOR was assembled at Izania on Tenerife, Spain. The telescope is designed for high-precision measurements of the magnetic field in the solar photosphere and chromosphere with a resolution of 70km on the Sun. The telescope concept offers also high resolution stellar spectroscopy. The telescope is build by a consortium of the Kiepenheuer-Institut für Sonnenphysik, the Astrophysikalische Institut Potsdam, the Institut für Astrophysik Göttingen, Max-Plank-Institut für Sonnensystemforschung and additional international Partners. The telescope is a complete open structure with active cooled main mirror. High performance post-focus instruments in the visible and near IR wavelength acquire high resolution spectra with 2 dimensional spatial resolution and polarimetric information. The commissioning of the telescope will start in 2008 to allow first science observations at the end of 2009.

  16. Automated telescope scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1988-01-01

    With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.

  17. Airborne Infrared Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2017-01-01

    A unique program of infrared astronomical observations from aircraft evolved at NASA’s Ames Research Center, beginning in the 1960s. Telescopes were flown on a Convair 990, a Lear Jet, and a Lockheed C-141 - the Kuiper Airborne Observatory (KAO) - leading to the planning and development of SOFIA: a 2.7 m telescope now flying on a Boeing 747SP. The poster describes these telescopes and highlights of some of the scientific results obtained from them.

  18. The School of Galactic Radio Astronomy: An Internet Classroom

    NASA Astrophysics Data System (ADS)

    Castelaz, M. W.; Cline, J. D.; Osborne, C. S.; Moffett, D. A.; Case, J.

    2001-12-01

    The School of Galactic Radio Astronomy (SGRA) takes its name from the source SGR-A, the center of the Milky Way Galaxy. SGRA is based at the Pisgah Astronomical Research Institute (PARI) as an experience-based school room for use by middle and high school teachers and their students. Their scientific educational experience at SGRA relies on Internet access to PARI's remote-controlled 4.6-m radio telescope which is equipped with a 1420 MHz receiver. The 1420 MHz signal may either be recorded as a spectrum over a 4 MHz bandpass, or mapped over extended regions. Teachers, classes, and Independent Study students access the 4.6-m radio telescope via the SGRA webpage. The SGRA webpage has four components: Radio Astronomy Basics, Observing, Guides, and Logbook. The Radio Astronomy Basics section summarizes the concepts of electromagnetic waves, detection of electromagnetic waves, sources of astronomical radio waves, and how astronomers use radio telescopes. The Observing section is the link to controlling the radio telescope and receiver. The Observing page is designed in the same way a control room at an observatory is designed. Controls include options of source selection, coordinate entry, slew, set, and guide selection, and tracking. Also within the Observing section is the curriculum which presents eight modules based on relevant radio astronomy topics and objects. The Guides webpage contains atlases of the astronomical sky, catalogs, examples of observing sessions, and data reduction software that can be downloaded for analysis offline. The LOGBOOK page is primarily a guestbook, and evaluation form. We acknowledge support from the Space Telescope Science Institute IDEAS Program, and the South Carolina State University PAIR Program.

  19. A Radio-Frequency-over-Fiber link for large-array radio astronomy applications

    NASA Astrophysics Data System (ADS)

    Mena, J.; Bandura, K.; Cliche, J.-F.; Dobbs, M.; Gilbert, A.; Tang, Q. Y.

    2013-10-01

    A prototype 425-850 MHz Radio-Frequency-over-Fiber (RFoF) link for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) is presented. The design is based on a directly modulated Fabry-Perot (FP) laser, operating at ambient temperature, and a single-mode fiber. The dynamic performance, gain stability, and phase stability of the RFoF link are characterized. Tests on a two-element interferometer built at the Dominion Radio Astrophysical Observatory for CHIME prototyping demonstrate that RFoF can be successfully used as a cost-effective solution for analog signal transport on the CHIME telescope and other large-array radio astronomy applications.

  20. The Giotto radio-science experiment

    NASA Technical Reports Server (NTRS)

    Edenhofer, P.; Bird, M. K.; Buschert, H.; Esposito, P. B.; Porsche, H.; Volland, H.

    1986-01-01

    The scientific objectives of the Giotto Radio Science Experiment (GRE) are to determine the columnar electron content of Comet Halley/s ionosphere and the cometary mass fluence from atmospheric drag by using the radio signals from Giotto during the Halley encounter. The radio science data (S and X-band Doppler and range measurements) will be collected at NASA/s deep-space 64 m tracking antenna at Tidbinbilla near Canberra, in Australia. In order to separate the effects of the terrestrial ionosphere and the interplanetary plasma, S-band Doppler measurements will also be taken at Tidbinbilla along the line-of-sight of Japan/s cometary probe Sakigake during the Giotto-Halley Encounter. The measurements of cometary electron content and mass fluence will be inverted to derive the spatial distribution of the electron and mass (dust and gas) density within Halley/s coma. The GRE is the only experiment on Giotto capable of measuring the low-energy (10 eV) electron bulk population of Halley/s ionosphere and the total cometary mass flow impacting upon the spacecraft.

  1. Three revolutions in cosmical science from the telescope to the Sputnik

    SciTech Connect

    Alfven, H. )

    1989-01-01

    The changes in astronomy brought about by the telescope, the radio telescope, and the Sputnik are discussed. The concept of the plasma universe introduced by the development of the Sputnik is explained and compared to previous concepts of the universe. The possibility of a fourth revolution in our concept of the universe is addressed. 17 refs.

  2. Sensivity studies for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Collado, Tarek Hassan

    2015-06-01

    Since the creation of the first telescope in the 17th century, every major discovery in astrophysics has been the direct consequence of the development of novel observation techniques, opening new windows in the electromagnetic spectrum. After Karl Jansky discovered serendipitously the first radio source in 1933, Grote Reber built the first parabolic radio telescope in his backyard, planting the seed of a whole new field in astronomy. Similarly, new technologies in the 1950s allowed the establishment of other fields, such as the infrared, ultraviolet or the X-rays. The highest energy end of the electromagnetic spectrum, the γ-ray range, represents the last unexplored window for astronomers and should reveal the most extreme phenomena that take place in the Universe. Given the technical complexity of γ-ray detection and the extremely relative low fluxes, γ-ray astronomy has undergone a slower development compared to other wavelengths. Nowadays, the great success of consecutive space missions together with the development and refinement of new detection techniques from the ground, has allowed outstanding scientific results and has brought gamma-ray astronomy to a worthy level in par with other astronomy fields. This work is devoted to the study and improvement of the future Cherenkov Telescope Array (CTA), the next generation of ground based γ-ray detectors, designed to observe photons with the highest energies ever observed from cosmic sources.

  3. Millisecond solar radio spikes observed at 1420 MHz

    NASA Astrophysics Data System (ADS)

    Dabrowski, B. P.; Kus, A. J.

    We present results from observations of narrowband solar millisecond radio spikes at 1420 MHz. Observing data were collected between February 2000 and December 2001 with the 15-m radio telescope at the Centre for Astronomy Nicolaus Copernicus University in Torun, Poland, equipped with a radio spectrograph that covered the 1352-1490 MHz frequency band. The radio spectrograph has 3 MHz frequency resolution and 80 microsecond time resolution. We analyzed the individual radio spike duration, bandwidth and rate of frequency drift. A part of the observed spikes showed well-outlined subtle structures. On dynamic radio spectrograms of the investigated events we notice complex structures formed by numerous individual spikes known as chains of spikes and distinctly different structure of columns. Positions of active regions connected with radio spikes emission were investigated. It turns out that most of them are located near the center of the solar disk, suggesting strong beaming of the spikes emission.

  4. Space Telecommunications Radio System STRS Cognitive Radio

    NASA Technical Reports Server (NTRS)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  5. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  6. Video Telescope Operating Microscopy.

    PubMed

    Divers, Stephen J

    2015-09-01

    Exotic pet veterinarians frequently have to operate on small animals, and magnification is commonly used. Existing endoscopy equipment can be used with a mechanical arm and telescope to enable video telescope operating microscopy. The additional equipment items and their specifics are described, and several case examples are provided.

  7. Goddard Robotic Telescope

    SciTech Connect

    Sakamoto, Takanori; Donato, Davide; Gehrels, Neil; Okajima, Takashi; Ukwatta, Tilan N.

    2009-05-25

    We are constructing the 14'' fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up the Swift/Fermi Gamma-Ray Bursts (GRBs) and 2) to perform the coordinated optical observations of the Fermi/Large Area Telescope (LAT) Active Galactic Nuclei (AGN). Our telescope system consists of the 14'' Celestron Optical Telescope Assembly (OTA), the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JMI's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R and I filters. With the focal reducer, 20'x20' field of view has been achieved. The observatory dome is the Astro Haven's 7 ft clam-shell dome. We started the scientific observations on mid-November 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  8. Two VLT 8.2-m Unit Telescopes in Action

    NASA Astrophysics Data System (ADS)

    1999-04-01

    telescope that was tilted towards the horizon to accommodate nearly 300 persons on the observing floor. Astronomical observations with ANTU have started On April 1, 1999, the first 8.2-m VLT Unit Telescope, ANTU , was "handed over" to the astronomers. Last year, about 270 observing proposals competed about the first, precious observing time at Europe's largest optical telescope and more than 100 of these were accommodated within the six-month period until the end of September 1999. The complete observing schedule is available on the web. These observations will be carried out in two different modes. During the Visitor Mode , the astronomers will be present at the telescope, while in the Service Mode , ESO observers perform the observations. The latter procedure allows a greater degree of flexibility and the possibility to assign periods of particularly good observing conditions to programmes whose success is critically dependent on this. The first ten nights at ANTU were allocated to service mode observations. After some initial technical problems with the instruments, these have now started. Already in the first night, programmes at ISAAC requiring 0.4 arcsec conditions could be satisfied, and some images better than 0.3 arcsec were obtained in the near-infrared . The first astronomers to use the telescope in visitors mode will be Professors Immo Appenzeller (Heidelberg, Germany; "Photo-polarimetry of pulsars") and George Miley (Leiden, The Netherlands; "Distant radio galaxies") with their respective team colleagues. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory. Note also the dedicated webarea with VLT Information.

  9. Fiber-linked telescope array: description and laboratory tests of a two-channel prototype.

    PubMed

    Alleman, J J; Reynaud, F; Connes, P

    1995-05-01

    We present a complete two-telescope version of a fiber-linked coherent array that is meant to be used for mounting on the dish of a radio telescope. This was built with 20-cm amateur telescopes and includes three different servo subsystems for guiding, nulling of the air path difference, and fiber length control. Laboratory tests of the fully integrated system in front of a star simulator are described.

  10. Telescope Adaptive Optics Code

    SciTech Connect

    Phillion, D.

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The default parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST

  11. The solar optical telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Objectives of the Solar Optical Telescope are to study the physics of the Sun on the scale at which many of the important physical processes occur and to attain a resolution of 73km on the Sun or 0.1 arc seconds of angular resolution. Topics discussed in this overview of the Solar Optical Telescope include: why is the Solar Optical Telescope needed; current picture of the Sun's atmosphere and convection zone; scientific problems for the Solar Optical Telescope; a description of the telescope; the facility - science management, contamination control, and accessibility to the instruments; the scientific instruments - a coordinated instrument package for unlocking the Sun's secrets; parameters of the coordinated instrument package; science operations from the Space Shuttle; and the dynamic solar atmosphere.

  12. VizieR Online Data Catalog: Radio continuum and gas reservoir in NGC 3998 (Frank+, 2016)

    NASA Astrophysics Data System (ADS)

    Frank, B. S.; Morganti, R.; Oosterloo, T.; Nyland, K.; Serra, P.

    2016-06-01

    The study of the radio continuum and HI emission of NGC 3998 was done with deep radio observations at L-band using the WSRT telescope. Here we provide the radio continuum image and spectral line cube as presented in the paper. The radio continuum was imaged using uniform (robust=-2) weighting, and is at a resolution of roughly 15". The HI data cube was imaged using a robustness of 0.4, with a taper of 30". (2 data files).

  13. The Influence of Wind Turbines on Radio Astronomical Observations in Irbene

    NASA Astrophysics Data System (ADS)

    Bezrukovs, D.

    2016-04-01

    The reflection and diffraction of external communication and navigational transmitters from tall constructions and moving blades of wind turbines produce some short-pulse additional electromagnetic interference strong enough to fully disturb radio astronomical observations. The problem of short-pulse electromagnetic interference is distinctive to all radio telescopes surrounded by wind turbines. This problem became significant for Ventspils International Radio Astronomy Centre (VIRAC) after new wind park "Platene" of Winergy Ltd. was built in 2012 and radio telescopes RT-16 and RT-32 renovated and equipped with cryogenic high sensitive receivers. The paper deals with the analysis and evaluation of intensities and probabilities of short-pulse interferences produced by wind park "Platene" and its possible impact on radio astronomical observations at VIRAC radio telescopes.

  14. Variable low-frequency radio emission of the solar system and galactic objects

    NASA Astrophysics Data System (ADS)

    Konovalenko, Alexander; Kolyadin, Vladimir; Rucker, Helmut; Zakharenko, Vyacheslav; Zarka, Philippe; Griessmeier, Jean-M.; Denis, Loran; Melnik, Valentin; Litvinenko, Galina; Zaitsev, Valerij; Falkovich, Igor; Ulyanov, Oleg; Sidorchuk, Mikhail; Stepkin, Sergej; Stanislavskij, Alexander; Kalinichenko, Nikolaj; Boiko, Nastja; Vasiljiva, Iaroslavna; Mukha, Dmytro; Koval, Artem

    2013-04-01

    There are many physical processes and propagation effects for the producing the time variable radio emission just at the low frequencies (at the decameter wavelength). The study of this radio emission is the important part of the modern radio astronomy. Strong progress in the development of the radio telescopes, methods and instrumentation allowed to start the corresponding investigations at new quality and quantity levels. It related to the implementation of the world largest UTR-2 radio telescope (effective area is more than 100 000 sq.m) more high sensitive at frequencies less than 30 MHz. During last years many new observations were carried out with this radio telescope and many new effects have been detected for the Sun, planets, interplanetary medium, exoplanets as well as various kinds of the stars.

  15. Millimeter and submillimeter observations of nearby radio galaxies

    NASA Technical Reports Server (NTRS)

    Knapp, G. R.; Patten, Brian M.

    1991-01-01

    Radio galaxies are often observed to be strong long wavelength infrared sources. Twenty-six radio galaxies with strong compact cores were observed at wavelengths near 1 mm with the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The detections and upper limits establish the presence of excess infrared emission for almost all of the galaxies in the sample. The exceptions are the BL Lac objects, which have smooth continuous spectra from radio to infrared wavelengths. The spectral energy distributions of the infrared emission from the radio galaxies favor a thermal origin due to emission from cool interstellar dust. The amounts of dust inferred to be present approach those observed in large spirals.

  16. Interpretation of Tadpole Structures in the Solar Radio Radiation

    NASA Astrophysics Data System (ADS)

    Mann, Gottfried; Melnik, Valentin; Rucker, Helmut; Konovalenko, Alexander

    2016-04-01

    The new spectrometer on the Ukrainian radio telescope UTR-2 allows to observe the solar radio radiation at low frequencies (10-30 MHz) with a high spectral and temporal resolution. Tadpole structures were observed as special fine structures in the solar radio radiation. They show a fast drift (-2.13 MHz/s) in the dynamic radio spectrum. They appear as an ensemble of tadpoles drifting slowly (-8.3 kHz/s) from high to low frequencies. The tadpoles are interpreted as electron beams accelerated at shocks in the high corona.

  17. Networked Automatic Optical Telescopes

    NASA Astrophysics Data System (ADS)

    Mattox, J. R.

    2000-05-01

    Many groups around the world are developing automated or robotic optical observatories. The coordinated operation of automated optical telescopes at diverse sites could provide observing prospects which are not otherwise available, e.g., continuous optical photometry without diurnal interruption. Computer control and scheduling also offers the prospect of effective response to transient events such as γ -ray bursts. These telescopes could also serve science education by providing high-quality CCD data for educators and students. The Automatic Telescope Network (ATN) project has been undertaken to promote networking of automated telescopes. A web site is maintained at http://gamma.bu.edu/atn/. The development of such networks will be facilitated by the existence of standards. A set of standard commands for instrument and telescope control systems will allow for the creation of software for an ``observatory control system'' which can be used at any facility which complies with the TCS and ICS standards. Also, there is a strong need for standards for the specification of observations to be done, and reports on the results and status of observations. A proposed standard for this is the Remote Telescope Markup Language (RTML), which is expected to be described in another poster in this session. It may thus be feasible for amateur-astronomers to soon buy all necessary equipment and software to field an automatic telescope. The owner/operator could make otherwise unused telescope time available to the network in exchange for the utilization of other telescopes in the network --- including occasional utilization of meter-class telescopes with research-grade CCD detectors at good sites.

  18. Radio VLBI and the quantum interference paradox

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-12-01

    We address here the question of interference of radio signals from astronomical sources like distant quasars, in a very long baseline interferometer (VLBI), where two (or more) distantly located radio telescopes (apertures), receive a simultaneous signal from the sky. In an equivalent optical two-slit experiment, it is generally argued that for the photons involved in the interference pattern on the screen, it is not possible, even in principle, to know which of the two slits a particular photon went through and that any procedure to ascertain this destroys the interference pattern. But in the case of the modern radio VLBI, it is a routine matter to record the phase and amplitude of the voltage outputs from the two radio antennas on a recording media separately and then do the correlation between the two recorded signals later in an off-line manner. Does this not violate the quantum interference principle? We provide a resolution of this problem here.

  19. Coordinated observations of PHEMU at radio wavelengths.

    NASA Astrophysics Data System (ADS)

    Pluchino, S.; Schillirò, F.; Salerno, E.; Pupillo, G.; Kraus, A.; Mack, K.-H.

    We present preliminary results for our study of mutual phenomena of the Galilean satellites performed at radio wavelengths with the Medicina and Noto antennas of the Istituto di Radioastronomia \\textendash{} INAF, and with the Effelsberg 100-m radio telescope of the Max-Planck-Institute for Radioastronomy. Measurements of the radio flux density variation occurred during the mutual occultations of Io by Europa and Ganymede were carried out during the PHEMU09 campaign at K- and Q-band. Flux density variations observed for the first time at radio wavelengths are consistent with the typical optical patterns measured when partial occultations occurred. The flux density drops indicate a non-linear dependence with the percentage of overlapped area.

  20. Simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822-09

    NASA Astrophysics Data System (ADS)

    Hermsen, W.; Kuiper, L.; Hessels, J. W. T.; Mitra, D.; Rankin, J. M.; Stappers, B. W.; Wright, G. A. E.; Basu, R.; Szary, A.; van Leeuwen, J.

    2017-04-01

    We report on simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822-09 with ESA's XMM-Newton and the Westerbork Synthesis Radio Telescope, Giant Metrewave Radio Telescope and Lovell radio telescopes. PSR B1822-09 switches between a radio-bright and radio-quiet mode, and we discovered a relationship between the durations of its modes and a known underlying radio-modulation time-scale within the modes. We discovered X-ray (energies 0.2-1.4 keV) pulsations with a broad sinusoidal pulse, slightly lagging the radio main pulse in phase by 0.094 ± 0.017, with an energy-dependent pulsed fraction varying from ∼0.15 at 0.3 keV to ∼0.6 at 1 keV. No evidence is found for simultaneous X-ray and radio mode switching. The total X-ray spectrum consists of a cool component (T ∼0.96 × 106 K, hotspot radius R ∼2.0 km) and a hot component (T ∼2.2 × 106 K, R ∼100 m). The hot component can be ascribed to the pulsed emission and the cool component to the unpulsed emission. The high-energy characteristics of PSR B1822-09 resemble those of middle-aged pulsars such as PSR B0656+14, PSR B1055-52 and Geminga, including an indication for pulsed high-energy gamma-ray emission in Fermi Large Area Telescope data. Explanations for the high pulsed fraction seem to require different temperatures at the two poles of this orthogonal rotator, or magnetic anisotropic beaming effects in its strong magnetic field. In our X-ray skymap, we found a harder source at only 5.1 ± 0.5 arcsec from PSR B1822-09, which might be a pulsar wind nebula.

  1. Radio Monitoring of Protoplanetary Discs

    NASA Astrophysics Data System (ADS)

    Ubach, C.; Maddison, S. T.; Wright, C. M.; Wilner, D. J.; Lommen, D. J. P.; Koribalski, B.

    2017-01-01

    Protoplanetary disc systems observed at radio wavelengths often show excess emission above that expected from a simple extrapolation of thermal dust emission observed at short millimetre wavelengths. Monitoring the emission at radio wavelengths can be used to help disentangle the physical mechanisms responsible for this excess, including free-free emission from a wind or jet, and chromospheric emission associated with stellar activity. We present new results from a radio monitoring survey conducted with Australia Telescope Compact Array over the course of several years with observation intervals spanning days, months and years, where the flux variability of 11 T Tauri stars in the Chamaeleon and Lupus star forming regions was measured at 7 and 15 mm and 3 and 6 cm. Results show that for most sources are variable to some degree at 7 mm, indicating the presence of emission mechanisms other than thermal dust in some sources. Additionally, evidence of grain growth to cm-sized pebbles was found for some sources that also have signs of variable flux at 7 mm. We conclude that multiple processes contributing to the emission are common in T Tauri stars at 7 mm and beyond, and that a detection at a single epoch at radio wavelengths should not be used to determine all processes contributing to the emission.

  2. Low Frequency Radio Experiment (LORE)

    NASA Astrophysics Data System (ADS)

    Manoharan, P. K.; Naidu, Arun; Joshi, B. C.; Roy, Jayashree; Kate, G.; Pethe, Kaiwalya; Galande, Shridhar; Jamadar, Sachin; Mahajan, S. P.; Patil, R. A.

    2016-03-01

    In this paper, we present a case study of Low Frequency Radio Experiment (LORE) payload to probe the corona and the solar disturbances at solar offsets greater than 2 solar radii, i.e., at frequencies below 30 MHz. The LORE can be complimentary to the planned Indian solar mission, “Aditya-L1” and its other payloads as well as synergistic to ground-based interplanetary scintillation (IPS) observations, which are routinely carried out by the Ooty Radio Telescope. We discuss the baseline design and technical details of the proposed LORE and its particular suitability for providing measurements on the detailed time and frequency structure of fast drifting type-III and slow drifting type-II radio bursts with unprecedented time and frequency resolutions. We also brief the gonio-polarimetry, which is possible with better-designed antennas and state-of-the-art electronics, employing FPGAs and an intelligent data management system. These would enable us to make a wide range of studies, such as nonlinear plasma processes in the Sun-Earth distance, in-situ radio emission from coronal mass ejections (CMEs), interplanetary CME driven shocks, nature of ICMEs driving decelerating IP shocks and space weather effects of solar wind interaction regions.

  3. A repeating fast radio burst

    NASA Astrophysics Data System (ADS)

    Spitler, L. G.; Scholz, P.; Hessels, J. W. T.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J.; Ferdman, R. D.; Freire, P. C. C.; Kaspi, V. M.; Lazarus, P.; Lynch, R.; Madsen, E. C.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Seymour, A.; Stairs, I. H.; Stappers, B. W.; van Leeuwen, J.; Zhu, W. W.

    2016-03-01

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  4. A repeating fast radio burst.

    PubMed

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  5. RADIO ALTIMETERS

    DOEpatents

    Bogle, R.W.

    1960-11-22

    A radio ranging device is described which utilizes a superregenerative oscillator having alternate sending and receiving phases with an intervening ranging interval between said phases, means for varying said ranging interval, means responsive to an on-range noise reduction condition for stopping said means for varying the ranging interval and indicating means coupled to the ranging interval varying means and calibrated in accordance with one-half the product of the ranging interval times the velocity of light whereby the range is indicated.

  6. Two Easily Made Astronomical Telescopes.

    ERIC Educational Resources Information Center

    Hill, M.; Jacobs, D. J.

    1991-01-01

    The directions and diagrams for making a reflecting telescope and a refracting telescope are presented. These telescopes can be made by students out of plumbing parts and easily obtainable, inexpensive, optical components. (KR)

  7. The large binocular telescope.

    PubMed

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010.

  8. The GREGOR Solar Telescope

    NASA Astrophysics Data System (ADS)

    Denker, C.; Lagg, A.; Puschmann, K. G.; Schmidt, D.; Schmidt, W.; Sobotka, M.; Soltau, D.; Strassmeier, K. G.; Volkmer, R.; von der Luehe, O.; Solanki, S. K.; Balthasar, H.; Bello Gonzalez, N.; Berkefeld, T.; Collados Vera, M.; Hofmann, A.; Kneer, F.

    2012-12-01

    The 1.5-meter GREGOR solar telescope is a new facility for high-resolution observations of the Sun. The telescope is located at the Spanish Observatorio del Teide on Tenerife. The telescope incorporates advanced designs for a foldable-tent dome, an open steel-truss telescope structure, and active and passive means to minimize telescope and mirror seeing. Solar fine structure can be observed with a dedicated suite of instruments: a broad-band imaging system, the "GREGOR Fabry-Perot Interferometer", and the "Grating Infrared Spectrograph". All post-focus instruments benefit from a high-order (multi-conjugate) adaptive optics system, which enables observations close to the diffraction limit of the telescope. The inclusion of a spectrograph for stellar activity studies and the search for solar twins expands the scientific usage of the GREGOR to the nighttime domain. We report on the successful commissioning of the telescope until the end of 2011 and the first steps towards science verification in 2012.

  9. Gemini telescope structure design

    NASA Astrophysics Data System (ADS)

    Raybould, Keith; Gillett, Paul E.; Hatton, Peter; Pentland, Gordon; Sheehan, Mike; Warner, Mark

    1994-06-01

    The Gemini project is an international collaboration to design, fabricate, and assemble two 8 M telescopes, one on Mauna Kea in Hawaii, the other on Cerro Pachon in Chile. The telescopes will be national facilities designed to meet the Gemini Science Requirements (GSR), a document developed by the Gemini Science Committee (GSC) and the national project scientists. The Gemini telescope group, based on Tucson, has developed a telescope structure to meet the GSR. This paper describes the science requirements that have technically driven the design, and the features that have been incorporated to meet these requirements. This is followed by a brief description of the telescope design. Finally, analyses that have been performed and development programs that have been undertaken are described briefly. Only the designs that have been performed by the Gemini Telescope Structure, Building and Enclosure Group are presented here; control, optical systems, acquisition and guiding, active and adaptive optics, Cassegrain rotator and instrumentation issues are designed and managed by others and will not be discussed here, except for a brief description of the telescope configurations to aid subsequent discussions.

  10. Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An overview of the mission of the Hubble Space Telescope, a joint project between NASA and the European Space Agency which will be used to study deep space, as well as our solar system is presented. The video contains animations depicting the Hubble Space Telescope in orbit, as well as footage of scientists at the Space Telescope Science Institute making real time observations. The images Hubble acquires will be downloaded into a database that contains images of over 19,000,000 celestial objects called the Star Catalog.

  11. Telescopic vision contact lens

    NASA Astrophysics Data System (ADS)

    Tremblay, Eric J.; Beer, R. Dirk; Arianpour, Ashkan; Ford, Joseph E.

    2011-03-01

    We present the concept, optical design, and first proof of principle experimental results for a telescopic contact lens intended to become a visual aid for age-related macular degeneration (AMD), providing magnification to the user without surgery or external head-mounted optics. Our contact lens optical system can provide a combination of telescopic and non-magnified vision through two independent optical paths through the contact lens. The magnified optical path incorporates a telescopic arrangement of positive and negative annular concentric reflectors to achieve 2.8x - 3x magnification on the eye, while light passing through a central clear aperture provides unmagnified vision.

  12. Multi-use lunar telescopes

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Hine, Butler; Genet, Russell; Genet, David; Talent, David; Boyd, Louis; Trueblood, Mark; Filippenko, Alexei V. (Editor)

    1991-01-01

    The objective of multi-use telescopes is to reduce the initial and operational costs of space telescopes to the point where a fair number of telescopes, a dozen or so, would be affordable. The basic approach is to develop a common telescope, control system, and power and communications subsystem that can be used with a wide variety of instrument payloads, i.e., imaging CCD cameras, photometers, spectrographs, etc. By having such a multi-use and multi-user telescope, a common practice for earth-based telescopes, development cost can be shared across many telescopes, and the telescopes can be produced in economical batches.

  13. Multi-use lunar telescopes

    NASA Technical Reports Server (NTRS)

    Genet, Russell M.; Genet, David R.; Talent, David L.; Drummond, Mark; Hine, Butler P.; Boyd, Louis J.; Trueblood, Mark

    1992-01-01

    The objective of multi-use telescopes is to reduce the initial and operational costs of space telescopes to the point where a fair number of telescopes, a dozen or so, would be affordable. The basic approach is to develop a common telescope, control system, and power and communications subsystem that can be used with a wide variety of instrument payloads, i.e., imaging CCD cameras, photometers, spectrographs, etc. By having such a multi-use and multi-user telescope, a common practice for earth-based telescopes, development cost can be shared across many telescopes, and the telescopes can be produced in economical batches.

  14. Detecting axionlike particles with gamma ray telescopes.

    PubMed

    Hooper, Dan; Serpico, Pasquale D

    2007-12-07

    We propose that axionlike particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma-ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the "Hillas criterion", such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1-100 GeV range and by ground-based gamma-ray telescopes in the TeV range.

  15. 3C 236: Radio Source, Interrupted?

    NASA Astrophysics Data System (ADS)

    O'Dea, Christopher P.; Koekemoer, Anton M.; Baum, Stefi A.; Sparks, William B.; Martel, André R.; Allen, Mark G.; Macchetto, Ferdinando D.; Miley, George K.

    2001-04-01

    We present new Hubble Space Telescope Space Telescope Imaging Spectrograph MAMA near-UV images and archival Wide Field Planetary Camera 2 (WFPC2) V- and R-band images that reveal the presence of four star-forming regions in an arc along the edge of the dust lane in the giant (4 Mpc) radio galaxy 3C 236. Two of the star-forming regions are relatively young, with ages of order ~107 yr, while the other two are older, with ages of order ~108-109 yr, which is comparable to the estimated age of the giant radio source. Based on dynamical and spectral aging arguments, we suggest that the fuel supply to the active galactic nucleus (AGN) was interrupted for ~107 yr and has now been restored, resulting in the formation of the inner 2 kpc-scale radio source. This timescale is similar to that of the age of the youngest of the star-forming regions. We suggest that the transport of gas in the disk is nonsteady and that this produces the multiple episodes of star formation in the disk, as well as the multiple epochs of radio source activity. If the inner radio source and the youngest star-forming region are related by the same event of gas transport, the gas must be transported from the hundreds of parsec scale to the subparsec scale on a timescale of ~107 yr, which is similar to the dynamical timescale of the gas on the hundreds of parsec scale.

  16. CFRP solutions for the innovative telescopes design

    NASA Astrophysics Data System (ADS)

    Rampini, Francesco; Marchiori, Gianpietro

    2006-02-01

    The new frontiers of the research in the astronomic field require the use of more and more advanced high-performance structures. Only an adequate technological innovation of conventional telescopes and radio-telescopes allow to obtain structures able to meet the new specification of the projects. Besides, technological innovation is founded not only on the identification of more and more sophisticated mechanisms and optical instruments, but also on the development of new materials and manufacturing processes for the entire structure that constitute an instrument such as a telescope or a radio-telescope. Among these materials, the use of the carbon fibre is highly important. This material, which is already widely used in the aerospace and automotive fields, shall join also the astronomic field for ground instruments. Thanks to the experience acquired with instruments like ALMA, the industry of composites is now able to guarantee different solutions at relatively low costs that allow the instruments of new generation to move extremely important steps in the development of scientific research. Not just materials, but also processes, through which the materials are worked and manufactured, are extremely important. The use of technologies, such as hand lay-up vacuum bag, compression moulding, table rolling of composite tubes, filament winding, poltrusion and Resin Transfer Moulding (RTM), allow to identify the ideal solution both for big dimension objects, such as backup structure, main mirror structure of quadripod legs, and relatively small objects, such as actuators, adjusters system, etc. The wide choice, concerning the use of composite materials, and their techniques of production, allow the technicians to satisfy the exigencies of astronomers be they addressed to simple control of the weights or of the stiffness of the structures, or to specific thermal behaviour of the piece itself.

  17. Monitoring Radio Frequency Interference in Southwest Virginia

    NASA Astrophysics Data System (ADS)

    Rapp, Steve

    2010-01-01

    The radio signals received from astronomical objects are extremely weak. Because of this, radio sources are easily shrouded by interference from devices such as satellites and cell phone towers. Radio astronomy is very susceptible to this radio frequency interference (RFI). Possibly even worse than complete veiling, weaker interfering signals can contaminate the data collected by radio telescopes, possibly leading astronomers to mistaken interpretations. To help promote student awareness of the connection between radio astronomy and RFI, an inquiry-based science curriculum was developed to allow high school students to determine RFI levels in their communities. The Quiet Skies Project_the result of a collaboration between the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the National Radio Astronomy Observatory (NRAO)_encourages students to collect and analyze RFI data and develop conclusions as a team. Because the project focuses on electromagnetic radiation, it is appropriate for physics, physical science, chemistry, or general science classes. My class-about 50 students from 15 southwest Virginia high schools-participated in the Quiet Skies Project and were pioneers in the use of the beta version of the Quiet Skies Detector (QSD), which is used to detect RFI. Students have been involved with the project since 2005 and have collected and shared data with NRAO. In analyzing the data they have noted some trends in RFI in Southwest Virginia.

  18. Radio Supernovae in the Great Survey Era

    NASA Astrophysics Data System (ADS)

    Lien, Amy; Chakraborty, Nachiketa; Fields, Brian D.; Kemball, Athol

    2011-10-01

    Radio properties of supernova outbursts remain poorly understood despite longstanding campaigns following events discovered at other wavelengths. After ~30 years of observations, only ~50 supernovae have been detected at radio wavelengths, none of which are Type Ia. Even the most radio-loud events are ~104 fainter in the radio than in the optical; to date, such intrinsically dim objects have only been visible in the very local universe. The detection and study of radio supernovae (RSNe) will be fundamentally altered and dramatically improved as the next generation of radio telescopes comes online, including EVLA, ASKAP, and MeerKAT, and culminating in the Square Kilometer Array (SKA); the latter should be >~ 50 times more sensitive than present facilities. SKA can repeatedly scan large (gsim 1 deg2) areas of the sky, and thus will discover RSNe and other transient sources in a new, automatic, untargeted, and unbiased way. We estimate that SKA will be able to detect core-collapse RSNe out to redshift z ~ 5, with an all-redshift rate of ~620 events yr-1 deg-2, assuming a survey sensitivity of 50 nJy and radio light curves like those of SN 1993J. Hence, SKA should provide a complete core-collapse RSN sample that is sufficient for statistical studies of radio properties of core-collapse supernovae. EVLA should find ~160 events yr-1 deg-2 out to redshift z ~ 3, and other SKA precursors should have similar detection rates. We also provided recommendations of the survey strategy to maximize the RSN detections of SKA. This new radio core-collapse supernova sample will complement the detections from the optical searches, such as the LSST, and together provide crucial information on massive star evolution, supernova physics, and the circumstellar medium, out to high redshift. Additionally, SKA may yield the first radio Type Ia detection via follow-up of nearby events discovered at other wavelengths.

  19. The Onsala Twin Telescope Project

    NASA Astrophysics Data System (ADS)

    Haas, R.

    2013-08-01

    This paper described the Onsala Twin Telescope project. The project aims at the construction of two new radio telescopes at the Onsala Space Observatory, following the VLBI2010 concept. The project starts in 2013 and is expected to be finalized within 4 years. Z% O. Rydbeck. Chalmers Tekniska Högskola, Göteborg, ISBN 91-7032-621-5, 407-823, 1991. B. Petrachenko, A. Niell, D. Behrend, B. Corey, J. Böhm, P. Charlot, A. Collioud, J. Gipson, R. Haas, Th. Hobiger, Y. Koyama, D. MacMillan, Z. Malkin, T. Nilsson, A. Pany, G. Tuccari, A. Whitney, and J. Wresnik. Design Aspects of the VLBI2010 System. NASA/TM-2009-214180, 58 pp., 2009. R. Haas, G. Elgered, J. Löfgren, T. Ning, and H.-G. Scherneck. Onsala Space Observatory - IVS Network Station. In K. D. Baver and D. Behrend, editors, International VLBI Service for Geodesy and Astrometry 2011 Annual Report, NASA/TP-2012-217505, 88-91, 2012. H.-G. Scherneck, G. Elgered, J. M. Johansson, and B. O. Rönnäng. Phys. Chem. Earth, Vol. 23, No. 7-8, 811-823, 1998. A. R. Whitney. Ph.D. thesis, Dept. of Electrical engineering, MIT Cambridge, MA., 1974. B. A. Harper, J. D. Kepert, and J. D. Ginger. Guidelines for converting between various wind averaging periods in tropical cyclone conditions. WMO/TD-No. 1555, 64 pp., 2010 (available at \\url{http://www.wmo.int/pages/prog/www/tcp/documents/WMO_TD_1555_en.pdf})

  20. Webb Telescope: Planetary Evolution

    NASA Video Gallery

    Stars and planets form in the dark, inside vast, cold clouds of gas and dust. The James Webb Space Telescope's large mirror and infrared sensitivity will let astronomers peer inside dusty knots whe...

  1. Holographic telescope arrays.

    PubMed

    Lohmann, A W; Sauer, F

    1988-07-15

    A typical job in optical computing is to illuminate an array of small nonlinear optical components, separated by wide gaps to avoid crosstalk. We do this by letting a wide uniform beam fall onto a densely packed array of minifying telescopes. Each telescope produces a narrow bundle of parallel rays which illuminates one of the nonlinear optical components. The holographic telescopes can do more than change the width of the bundles of parallel rays. Their image forming capability allows the transmission of many pixels per channel in parallel. The pair of lenslets of a single holographic telescope (Kepler or Galilean) is produced in rigid coupling. The monolithic production avoids adjusting the two lenslets later on.

  2. Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John; Stockman, H. S.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    The Next Generation Space Telescope (NGST), planned for launch in 2009, will be an 8-m class radiatively cooled infrared telescope at the Lagrange point L2. It will cover the wavelength range from 0.6 to 28 microns with cameras and spectrometers, to observe the first luminous objects after the Big Bang, and the formation, growth, clustering, and evolution of galaxies, stars, and protoplanetary clouds, leading to better understanding of our own Origins. It will seek evidence of the cosmic dark matter through its gravitational effects. With an aperture three times greater than the Hubble Space Telescope, it will provide extraordinary advances in capabilities and enable the discovery of many new phenomena. It is a joint project of the NASA, ESA, and CSA, and scientific operations will be provided by the Space Telescope Science Institute.

  3. Telescopes and space exploration

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Maran, S. P.

    1982-01-01

    Progress in contemporary astronomy and astrophysics is shown to depend on complementary investigations with sensitive telescopes operating in several wavelength regions, some of which can be on the Earth's surface and others of which must be in space.

  4. Hubble Space Telescope Assembly

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This photograph shows the Hubble Space Telescope (HST) flight article assembly with multilayer insulation, high gain anterna, and solar arrays in a clean room of the Lockheed Missile and Space Company. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  5. Composite Space Telescope Truss

    NASA Video Gallery

    NASA engineers are recycling an idea for a lightweight, compact space telescope structure from the early 1990s. The 315 struts and 84 nodes were originally designed to enable spacewalking astronaut...

  6. New catadioptric telescope

    NASA Astrophysics Data System (ADS)

    Richter, J. L.

    1981-01-01

    The Acme telescope is a compound telescope that resembles the familiar Cassegrain type except that the main mirror is spherical and the secondary is an achromatic doublet mangin mirror. Three 6-in. aperture f/15 telescope designs are described. With a cemented, all spherical surface achromangin mirror, there is a small amount of coma which can be eliminated by redesigning with an air space between the crown and flint elements of the achromangin mirror, or by cementing them with one of the concave external surfaces of achromangin figured to an hyperboloid. In the examples, the spherical aberration is nil and the chromatic residual is roughly half that of an achromatic objective of the same speed, aperture, and glass types. Readily available crown and flint glasses such as Schott BK-7 and F-2 are entirely satisfactory for the achromangin mirror. Also considered are two examples of Acme-like telescopes with paraboloidal instead of spherical main mirrors.

  7. Large Binocular Telescope Project

    NASA Astrophysics Data System (ADS)

    Hill, John M.

    1997-03-01

    The large binocular telescope (LBT) project have evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 by 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astrofisico di Arcetri and the Research Corporation based in Tucson, Arizona. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train -- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in the fall of 1996 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximum flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximum stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1996 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson), EIE and ADS Italia

  8. Wide field imaging problems in radio astronomy

    NASA Astrophysics Data System (ADS)

    Cornwell, T. J.; Golap, K.; Bhatnagar, S.

    2005-03-01

    The new generation of synthesis radio telescopes now being proposed, designed, and constructed face substantial problems in making images over wide fields of view. Such observations are required either to achieve the full sensitivity limit in crowded fields or for surveys. The Square Kilometre Array (SKA Consortium, Tech. Rep., 2004), now being developed by an international consortium of 15 countries, will require advances well beyond the current state of the art. We review the theory of synthesis radio telescopes for large fields of view. We describe a new algorithm, W projection, for correcting the non-coplanar baselines aberration. This algorithm has improved performance over those previously used (typically an order of magnitude in speed). Despite the advent of W projection, the computing hardware required for SKA wide field imaging is estimated to cost up to $500M (2015 dollars). This is about half the target cost of the SKA. Reconfigurable computing is one way in which the costs can be decreased dramatically.

  9. The Ohio SETI program and the ARGUS telescope

    NASA Astrophysics Data System (ADS)

    Dixon, Robert S.

    1997-01-01

    The Ohio State SETI program has been in operation since 1974, making it the longest-running search. The Ohio State radio telescope is equivalent in size to a 175-foot circular dish. The latest and best all-sky meridian-transit survey searching in the Water Hole (1.4 to 1.7 GHz) is about 60 percent complete. Signals detected are automatically examined at greater resolution and then tracked for up to 1 h. A dual-beam pattern-matching system is used for real-time signal detection and RFI rejection. A new 4 million channel receiver built at UC Berkeley is now being installed. A simultaneous broadband continuum survey at 1415 MHz is in progress, searching for natural radio sources that have changed since the previous OSU continuum survey was made 20 years ago. A new radio telescope called Argus is being designed that will look in all directions simultaneously, allow usage by everyone simultaneously, and have no moving or machined parts. It is a large timed array which is based on computers rather than steel. All possible beams are formed all the time, so there is no scanning or need to 'point' the telescope. This approach has many advantages over dish-type telescopes, such as RFI rejection and retroactive observations.

  10. The Multiple-Mirror Telescope

    ERIC Educational Resources Information Center

    Carleton, Nathaniel P.; Hoffmann, William F.

    1978-01-01

    Describes the basic design and principle of operating an optical-infrared telescope, the MMT. This third largest telescope in the world represents a new stage in telescope design; it uses a cluster of six reflecting telescopes, and relies on an automatic sensing and control system. (GA)

  11. MULTI-WAVELENGTH AFTERGLOWS OF FAST RADIO BURSTS

    SciTech Connect

    Yi, Shuang-Xi; Gao, He; Zhang, Bing

    2014-09-01

    The physical origin of fast radio bursts (FRBs) is unknown. Detecting electromagnetic counterparts to FRBs in other wavelengths is essential to measure their distances and to determine their physical origin. Assuming that at least some of them are of cosmological origin, we calculate their afterglow light curves in multiple wavelengths (X-rays, optical, and radio) by assuming a range of total kinetic energies and redshifts. We focus on forward shock emission, but also consider the possibility that some of the FRBs might have bright reverse shock emission. In general, FRB afterglows are too faint to be detected by current detectors. Only if an FRB has a very low radiative efficiency in radio (hence, a very large kinetic energy), and when it is close enough to observe can its afterglow be detected in the optical and radio bands. We discuss observational strategies for detecting these faint afterglows using future telescopes such as Large Synoptic Survey Telescope and Expanded Very Large Array.

  12. Cyclostationary approaches for spatial RFI mitigation in radio astronomy

    NASA Astrophysics Data System (ADS)

    Hellbourg, Grégory; Weber, Rodolphe; Capdessus, Cécile; Boonstra, Albert-Jan

    2012-01-01

    Radio astronomical observations are increasingly corrupted by radio frequency interferences (RFIs), and real time filtering algorithms are becoming essential. In this article, it is shown how spatial processing techniques can limit the impact of the incoming RFIs for phased array radio telescopes. The proposed approaches are based on estimation of the RFI spatial signature. It requires the diagonalization of either the classic correlation matrix or the cyclic correlation matrix of the array. Different diagonalization techniques are compared. Then, RFI detection and RFI filtering techniques are illustrated through simulations on data acquired with the Low Frequency Array Radio telescope, LOFAR. The originality of the study is the use of the cyclostationarity property, in order to improve the spatial separation between cosmic sources and RFIs.

  13. GRB 030329: 3 years of radio afterglow monitoring.

    PubMed

    van der Horst, A J; Kamble, A; Wijers, R A M J; Resmi, L; Bhattacharya, D; Rol, E; Strom, R; Kouveliotou, C; Oosterloo, T; Ishwara-Chandra, C H

    2007-05-15

    Radio observations of gamma-ray burst (GRB) afterglows are essential for our understanding of the physics of relativistic blast waves, as they enable us to follow the evolution of GRB explosions much longer than the afterglows in any other wave band. We have performed a 3-year monitoring campaign of GRB 030329 with the Westerbork Synthesis Radio Telescopes and the Giant Metrewave Radio Telescope. Our observations, combined with observations at other wavelengths, have allowed us to determine the GRB blast wave physical parameters, such as the total burst energy and the ambient medium density, as well as to investigate the jet nature of the relativistic outflow. Further, by modelling the late-time radio light curve of GRB 030329, we predict that the Low-Frequency Array (30-240 MHz) will be able to observe afterglows of similar GRBs, and constrain the physics of the blast wave during its non-relativistic phase.

  14. Radio frequency interference mitigation using deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Akeret, J.; Chang, C.; Lucchi, A.; Refregier, A.

    2017-01-01

    We propose a novel approach for mitigating radio frequency interference (RFI) signals in radio data using the latest advances in deep learning. We employ a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. We train and assess the performance of this network using the HIDE &SEEK radio data simulation and processing packages, as well as early Science Verification data acquired with the 7m single-dish telescope at the Bleien Observatory. We find that our U-Net implementation is showing competitive accuracy to classical RFI mitigation algorithms such as SEEK's SUMTHRESHOLD implementation. We publish our U-Net software package on GitHub under GPLv3 license.

  15. Telescopes in education

    NASA Astrophysics Data System (ADS)

    Yessayian, Rick

    Imagine sitting in your classroom with your students and controlling a Research Grade 24 inch telescope. You control where it points, you control the duration of the exposure of a high grade CCD camera, and you control all of this within your school day, on a camera half way around the globe, in real time. You can hear the telescope moving, talk to the operator sitting atop historic Mt. Wilson Observatory in California. You might be looking at comets, asteroids, galaxies, nebulas or a host of other interesting celestial objects. Perhaps you have students that are up to a real challenge -- doing real science! Students in our program have contributed the discovery of a new variable star, to the Pluto Express project, to the search for supernovas, and the collection of images of intersecting galaxies. These are among the many possible projects you might choose from. The age and ability of your students are taken into account when you choose your project. Students from Kindergarten through Grade 12 have participated in this free program. A new robotic telescope was added at Mount Wilson in 1999. The telescope is a Celestron 14" SCT mounted on a Bisque Paramount GT-1100 with an Apogee AP-7 CCD camera (512X512 pixels). In the Spring of 2001, we duplicated the 14" robotic telescope configuration and placed it at the Las Campanas Observatory, Chile (operated by the Carnegie Observatories). I installed the system in late September, 2001, and we began testing. The system requires one more upgrade and some hardware adjustments, which I will complete in June, 2002. We duplicated another 14" robotic telescope, and sent it to Brisbane Australia in January, 2002. The grand opening of the telescope will be in August 2002.

  16. Grote Reber, Radio Astronomy Pioneer, Dies

    NASA Astrophysics Data System (ADS)

    2002-12-01

    Grote Reber, one of the earliest pioneers of radio astronomy, died in Tasmania on December 20, just two days shy of his 91st birthday. Reber was the first person to build a radio telescope dedicated to astronomy, opening up a whole new "window" on the Universe that eventually produced such landmark discoveries as quasars, pulsars and the remnant "afterglow" of the Big Bang. His self- financed experiments laid the foundation for today's advanced radio-astronomy facilities. Grote Reber Grote Reber NRAO/AUI photo "Radio astronomy has changed profoundly our understanding of the Universe and has earned the Nobel Prize for several major contributions. All radio astronomers who have followed him owe Grote Reber a deep debt for his pioneering work," said Dr. Fred Lo, director of the National Radio Astronomy Observatory (NRAO). "Reber was the first to systematically study the sky by observing something other than visible light. This gave astronomy a whole new view of the Universe. The continuing importance of new ways of looking at the Universe is emphasized by this year's Nobel Prizes in physics, which recognized scientists who pioneered X-ray and neutrino observations," Lo added. Reber was a radio engineer and avid amateur "ham" radio operator in Wheaton, Illinois, in the 1930s when he read about Karl Jansky's 1932 discovery of natural radio emissions coming from outer space. As an amateur operator, Reber had won awards and communicated with other amateurs around the world, and later wrote that he had concluded "there were no more worlds to conquer" in radio. Learning of Jansky's discovery gave Reber a whole new challenge that he attacked with vigor. Analyzing the problem as an engineer, Reber concluded that what he needed was a parabolic-dish antenna, something quite uncommon in the 1930s. In 1937, using his own funds, he constructed a 31.4-foot-diameter dish antenna in his back yard. The strange contraption attracted curious attention from his neighbors and became

  17. Cygnus X-2 in a radio quiet state

    NASA Astrophysics Data System (ADS)

    Rushton, A.; Bach, U.; Spencer, R.; Kadler, M.; Church, M.; Balucinska-Church, M.; Wilms, J.; Hanke, M.; Zola, S.; Schulz, N.

    2009-05-01

    The neutron star X-ray binary Cygnus X-2 was observed using the e- EVN (European VLBI Network) on May 12/13th 2009 between 23:00-13:00 UT at 5 GHz. The radio telescopes participating with the e-EVN at 5 GHz were Effelsberg, Medicina, Onsala 25m, Torun, Sheshan, Yebes, Jodrell Bank MKII, Cambridge and Knockin. A maximum data rate of 1024 Mbps were achieved from four telescopes (Effelsberg, Onsala, Torun and Jodrell Bank MKII).

  18. The Radio/Optical Morphology of Micro-Jansky Radio Sources

    NASA Astrophysics Data System (ADS)

    Fomalont, E. B.; Kellermann, K. I.; Cowie, L. L.; Barger, A. J.

    2002-12-01

    We have observed the SSA13 field (RA=13 23, DEC=42 38) using the VLA. At 1.4 GHz the rms noise is 5.0 μ Jy with resolution 1.8'', at 8.4 GHz the rms noise is 1.5 μ Jy with a resolution of 3.0''. Optical images at R-band and Z-band with 1.1'' seeing were obtained from the Subaru telescope. Over 900 radio sources were detected (528 in the complete sample) and the optical/radio registration <0.2'' permitted identification of >95% of the radio sources. The radio/optical morphological properties of the sources are sorted into a small number of classifications and these properties are compared. Our main conclusions are: (1) About half of the radio sources are associated with a relatively isolated galaxy; most other identifications are with binary systems. (2) Only 7 extended AGN (>5'') are found. (3) At Z-band, 8% of the sources are fainter than 26 mag. (4) The slope of the differential radio count is -2.3 with a density of 2.0 sources (amin)-2 with a flux density >27.5 μ Jy. (5) The average radio angular size is 1.35'', but very few sources are larger than 5''. (6) The radio orientation is often correlated with the galaxy identification or binary system orientation. Two correlations in these data suggest that most sources are associated with distant galaxies dominated by starburst activity. (1) The radio sources with angular size >1'' show an Infrared/radio correlation, whereas smaller-diameter sources do not; and (2) The radio spectral index steepens for sources weak then 100 μ Jy, suggesting an even lower proportion of AGN at the fainter observed levels.

  19. Radio Telescopes Zoom into a Black Hole's Jets

    NASA Video Gallery

    Centaurus A is a giant elliptical active galaxy 12 million light-years away. At its heart lies a black hole with a mass of 55 million suns. Now, the TANAMI project has provided the best-ever image ...

  20. Hierarchical RFI Mitigation System at the Mauritius Radio Telescope

    NASA Astrophysics Data System (ADS)

    Udaya Shankar, N.; Pandey, V. N.

    2006-08-01

    In this paper, we present salient features of the hierarchical RFI mitigation system developed and implemented for offline processing of the visibilities recorded at MRT. Its aim is to achieve effective, reliable and non-toxic automatic RFI mitigation with minimal human intervention. RFI poses a serious problem at MRT due to its low frequency of operation, wide primary beam  (EWxNS~2°x56°) and large amount of data collected for a low frequency survey. Even though several signal processing methods are used to handle RFI, in practice there is no universal foolproof technique. The developed system uses a conjunction of a variety of techniques involving linear and non-linear methods in the visibility as well as in the image domain. These include Thresholding, Fourier filtering, Hampel filtering, Model fitting, Visual inspection, multi-parameter decision based algorithm which uses cumulative interference statistics, and the fact that the sky signal is correlated in each day's images but interference is most likely not. More than 99.7% of the interference is detected automatically, the remaining is detected by semi-automatic methods. The images obtained after applying the RFI mitigation system are free from any perceivable interference and demonstrate its effectiveness. The principles and techniques used in the RFI mitigation system are of general nature. We believe that such an approach based on a conjunction of techniques exploiting their natural strengths and judiciously applying them at various stages of data processing is an important step in the future direction of research to accomplish the ultimate goal of achieving completely automatic data flagging. Use of an RFI database is valuable to investigate the nature of interference at an observatory site and develop appropriate techniques based on its statistics for its mitigation. The 20,000 hours of astronomical observations for the MRT survey have been used for such an analysis. The interesting aspects of interference statistics are highlighted in the second part of the paper.

  1. Telescopes for the 1980s

    NASA Astrophysics Data System (ADS)

    Neugebauer, G.

    In the last decades, astronomy has been changed in a number of significant ways. The number of large optical telescopes with diameters on the order of or larger than 2.3 m has increased from 3 shortly after World War II to about 20 at the present time. Whereas prewar astronomy was largely devoted to the visual wavelengths (0.3-0.8 μm), astronomical observations currently span the range from γ ray wavelengths to the longest radio wavelengths. Most significantly, astronomy outside conventional optical astronomy has developed into sophisticated disciplines rather than experimental explorations. Many of the observational advances at the forefront of astronomy now come from other than visual observations. Along with these changes have come fundamental changes in visual astronomy itself. Observations with photographic plates are the exception rather than the rule at most large observatories. Instead, electronic cameras are in common use. A second change, especially in the United States, is that the funding has gone from largely private funding (e.g., the Carnegie Institution of Washington) to funding with the government providing a main share of the support. Indeed, the government has provided the total funding for those disciplines, like X ray astronomy, which use space-borne platforms. These changes have also affected the character of doing astronomy, and astronomers have become much more politically active on the national science scene.

  2. Radio Astronomers Get Their First Glimpse of Powerful Solar Storm

    NASA Astrophysics Data System (ADS)

    2001-08-01

    Astronomers have made the first radio-telescope images of a powerful coronal mass ejection on the Sun, giving them a long-sought glimpse of hitherto unseen aspects of these potentially dangerous events. "These observations are going to provide us with a new and unique tool for deciphering the mechanisms of coronal mass ejections and how they are related to other solar events," said Tim Bastian, an astronomer at the National Science Foundation's National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia. Radio image of coronal mass ejection; circle indicates the size and location of the Sun. White dots are where radio spectral measurements were made. Bastian, along with Monique Pick, Alain Kerdraon and Dalmiro Maia of the Paris Observatory, and Angelos Vourlidas of the Naval Research Laboratory in Washington, D.C., used a solar radio telescope in Nancay, France, to study a coronal mass ejection that occurred on April 20, 1998. Their results will be published in the September 1 edition of the Astrophysical Journal Letters. Coronal mass ejections are powerful magnetic explosions in the Sun's corona, or outer atmosphere, that can blast billions of tons of charged particles into interplanetary space at tremendous speeds. If the ejection is aimed in the direction of Earth, the speeding particles interact with our planet's magnetic field to cause auroral displays, radio-communication blackouts, and potentially damage satellites and electric-power systems. "Coronal mass ejections have been observed for many years, but only with visible-light telescopes, usually in space. While previous radio observations have provided us with powerful diagnostics of mass ejections and associated phenomena in the corona, this is the first time that one has been directly imaged in wavelengths other than visible light," Bastian said. "These new data from the radio observations give us important clues about how these very energetic events work," he added. The radio images show an

  3. The cosmic population of extended radio sources: A Radio-Optical study

    NASA Astrophysics Data System (ADS)

    Thorat, K.

    2014-03-01

    This thesis presents studies of cosmic populations of extragalactic radio sources. The problems selected for this thesis are 1) the derivation of constraints on the emergence of new sub-mJy populations at flux density below about 1 mJy (at 1.4 GHz) paying careful attention to including sources with low surface brightness and counting sources rather than components 2) development of a new method to estimate the asymmetry in the large scale galaxy environment with respect to the axes of extended radio sources and use this to examine for evidence of impact of the environment on the morphology of radio sources. The studies presented herein have been carried out using the Australia Telescope Low Brightness Survey (ATLBS), which is a sensitive radio survey at 1.4 GHz, imaging 8.42 square degrees of the sky along with accompanying optical observations of the same region.

  4. Radio observations of nearby moderately luminous IRAS galaxies

    NASA Astrophysics Data System (ADS)

    Li, Yong-sheng; Su, Bu-mei

    Six nearby moderately luminous IRAS galaxies have been observed at two wavelengths with the Australia Telescope Compact Array. Radio emission was detected in two of them, IRAS 20272-4738 and IRAS 23156-4238, and their parameters including flux, peak position, size and spectral index, obtained. These sources were confirmed with infrared, radio and optical data. Combining with previous results we discuss their emission characteristics.

  5. Radio SETI Observations of the Anomalous Star KIC 8462852

    NASA Astrophysics Data System (ADS)

    Harp, G. R.; Richards, Jon; Shostak, Seth; Tarter, J. C.; Vakoch, Douglas A.; Munson, Chris

    2016-07-01

    We report on a search for the presence of signals from extraterrestrial intelligence in the direction of the star system KIC 8462852. Observations were made at radio frequencies between 1 and 10 GHz using the Allen Telescope Array. No narrowband radio signals were found at a level of 180-300 Jy in a 1 Hz channel, or medium band signals above 10 Jy in a 100 kHz channel.

  6. Transit telescope designs optimized for multiple object spectroscopy with fibers

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.

    1982-01-01

    Instruments to simultaneously study the spectra of many objects in the field of view of a telescope can be made using fused silica fibers. The spectrograph at the 2.3m telescope of the University of Arizona has been modified for such operation, and is used routinely to study the dynamics of galaxy clusters. Consideration has been given to how the multifiber technique can best be used to obtain spectra of the many faint objects identified by deep transit survey instruments and new space and radio telescopes. A transit survey such as that planned by McGraw et al. (1980), with CCDs at the focus of a 2m transit telescope, will identify objects down to 24th magnitude, and down to 22nd magnitude will give very complete data on variability and optical energy distribution. A telescope with much larger aperture is required for spectroscopic follow up. It is suggested that large telescopes dedicated to this type of work can be made and operated for only a fraction of the cost of a general-purpose telescope.

  7. The Zadko Telescope: Exploring the Transient Universe

    NASA Astrophysics Data System (ADS)

    Coward, D. M.; Gendre, B.; Tanga, P.; Turpin, D.; Zadko, J.; Dodson, R.; Devogéle, M.; Howell, E. J.; Kennewell, J. A.; Boër, M.; Klotz, A.; Dornic, D.; Moore, J. A.; Heary, A.

    2017-01-01

    The Zadko telescope is a 1 m f/4 Cassegrain telescope, situated in the state of Western Australia about 80-km north of Perth. The facility plays a niche role in Australian astronomy, as it is the only meter class facility in Australia dedicated to automated follow-up imaging of alerts or triggers received from different external instruments/detectors spanning the entire electromagnetic spectrum. Furthermore, the location of the facility at a longitude not covered by other meter class facilities provides an important resource for time critical projects. This paper reviews the status of the Zadko facility and science projects since it began robotic operations in March 2010. We report on major upgrades to the infrastructure and equipment (2012-2014) that has resulted in significantly improved robotic operations. Second, we review the core science projects, which include automated rapid follow-up of gamma ray burst (GRB) optical afterglows, imaging of neutrino counterpart candidates from the ANTARES neutrino observatory, photometry of rare (Barbarian) asteroids, supernovae searches in nearby galaxies. Finally, we discuss participation in newly commencing international projects, including the optical follow-up of gravitational wave (GW) candidates from the United States and European GW observatory network and present first tests for very low latency follow-up of fast radio bursts. In the context of these projects, we outline plans for a future upgrade that will optimise the facility for alert triggered imaging from the radio, optical, high-energy, neutrino, and GW bands.

  8. Monolithic afocal telescope

    NASA Technical Reports Server (NTRS)

    Roberts, William T. (Inventor)

    2010-01-01

    An afocal monolithic optical element formed of a shallow cylinder of optical material (glass, polymer, etc.) with fast aspheric surfaces, nominally confocal paraboloids, configured on the front and back surfaces. The front surface is substantially planar, and this lends itself to deposition of multi-layer stacks of thin dielectric and metal films to create a filter for rejecting out-of-band light. However, an aspheric section (for example, a paraboloid) can either be ground into a small area of this surface (for a Cassegrain-type telescope) or attached to the planar surface (for a Gregorian-type telescope). This aspheric section of the surface is then silvered to create the telescope's secondary mirror. The rear surface of the cylinder is figured into a steep, convex asphere (again, a paraboloid in the examples), and also made reflective to form the telescope's primary mirror. A small section of the rear surface (approximately the size of the secondary obscuration, depending on the required field of the telescope) is ground flat to provide an unpowered surface through which the collimated light beam can exit the optical element. This portion of the rear surface is made to transmit the light concentrated by the reflective surfaces, and can support the deposition of a spectral filter.

  9. Spectroradiometry with space telescopes

    NASA Astrophysics Data System (ADS)

    Pauluhn, Anuschka; Huber, Martin C. E.; Smith, Peter L.; Colina, Luis

    2015-12-01

    Radiometry, i.e. measuring the power of electromagnetic radiation—hitherto often referred to as "photometry"—is of fundamental importance in astronomy. We provide an overview of how to achieve a valid laboratory calibration of space telescopes and discuss ways to reliably extend this calibration to the spectroscopic telescope's performance in space. A lot of effort has been, and still is going into radiometric "calibration" of telescopes once they are in space; these methods use celestial primary and transfer standards and are based in part on stellar models. The history of the calibration of the Hubble Space Telescope serves as a platform to review these methods. However, we insist that a true calibration of spectroscopic space telescopes must directly be based on and traceable to laboratory standards, and thus be independent of the observations. This has recently become a well-supported aim, following the discovery of the acceleration of the cosmic expansion by use of type-Ia supernovae, and has led to plans for launching calibration rockets for the visible and infrared spectral range. This is timely, too, because an adequate exploitation of data from present space missions, such as Gaia, and from many current astronomical projects like Euclid and WFIRST demands higher radiometric accuracy than is generally available today. A survey of the calibration of instruments observing from the X-ray to the infrared spectral domains that include instrument- or mission-specific estimates of radiometric accuracies rounds off this review.

  10. Towers for Antarctic Telescopes

    NASA Astrophysics Data System (ADS)

    Hammerschlag, R. H.; Bettonvil, F. C. M.; Jägers, A. P. L.; Nielsen, G.

    To take advantage of the exceptional seeing above the boundary layer on Antarctic sites, a high-resolution telescope must be mounted on a support tower. An open transparent tower of framework minimizes the upward temperature-disturbed airflow. A typical minimum height is 30m. The tower platform has to be extremely stable against wind-induced rotational motions, which have to be less than fractions of an arc second, unusually small from a mechanical engineering viewpoint. In a traditional structure, structural deflections result in angular deflections of the telescope platform, which introduce tip and tilt motions in the telescope. However, a structure that is designed to deflect with parallel motion relative to the horizontal plane will undergo solely translation deflections in the telescope platform and thus will not degrade the image. The use of a parallel motion structure has been effectively demonstrated in the design of the 15-m tower for the Dutch Open Telescope (DOT) on La Palma. Special framework geometries are developed, which make it possible to construct high towers in stories having platforms with extreme stability against wind-induced tilt. These geometric solutions lead to constructions, being no more massive than a normal steel framework carrying the same load. Consequently, these lightweight towers are well suited to difficult sites as on Antarctica. A geometry with 4 stories has been worked out.

  11. The Travelling Telescope

    NASA Astrophysics Data System (ADS)

    Murabona Oduori, Susan

    2015-08-01

    The telescope has been around for more than 400 years, and through good use of it scientists have made many astonishing discoveries and begun to understand our place in the universe. Most people, however, have never looked through one. Yet it is a great tool for cool science and observation especially in a continent and country with beautifully dark skies. The Travelling Telescope project aims to invite people outside under the stars to learn about those curious lights in the sky.The Travelling Telescope aims to promote science learning to a wide range of Kenyan schools in various locations exchanging knowledge about the sky through direct observations of celestial bodies using state of the art telescopes. In addition to direct observing we also teach science using various hands-on activities and astronomy software, ideal for explaining concepts which are hard to understand, and for a better grasp of the sights visible through the telescope. We are dedicated to promoting science using astronomy especially in schools, targeting children from as young as 3 years to the youth, teachers, their parents and members of the public. Our presentation focuses on the OAD funded project in rural coastal Kenya.

  12. Robotic and Survey Telescopes

    NASA Astrophysics Data System (ADS)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  13. The South Pole Telescope

    SciTech Connect

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  14. The Radio Amateur's Handbook.

    ERIC Educational Resources Information Center

    Blakeslee, Douglas, Ed.

    The objectives of this basic reference work for the radio amateur are to present radio theory and practice in terms of application and to reflect both the fundamentals and the rapidly-advancing technology of radio communications so that the radio amateur will have a guide to what is practical, meaningful, proven, and useful. Twenty-three chapters…

  15. The Frequency Spectrum Radio.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1979-01-01

    This journal issue focuses on the frequency spectrum used in radio communication and on the World Administrative Radio Conference, sponsored by the International Telecommunication Union, held in Geneva, Switzerland, in the fall of 1979. Articles describe the World Administrative Radio Conference as the most important radio communication conference…

  16. A Search for Fast Radio Bursts in GALFACTS data

    NASA Astrophysics Data System (ADS)

    Cohen, Tyler; Salter, Christopher J.; Ghosh, Tapasi

    2016-01-01

    Fast Radio Bursts (FRBs) are transient radio sources whose high dispersion measures suggest they are of extra-galactic origin. They are particularly difficult to detect because, unlike other fast radio transients, they are non-recurring events. At present, 11 such bursts have been detected, 10 by the Parkes Radio Telescope and one by Arecibo Observatory. The G-ALFA Continuum Transit Survey (GALFACTS) is the highest resolution, full-Stokes, radio-continuum survey of the foreground sky. The Arecibo radio telescope is the largest single-aperture telescope in the world, offering the superior point-source sensitivity necessary to detect additional FRBs. GALFACTS utilizes Arecibo's ALFA receiver, an L-band 7-beam feed array, to produce a high-time (1 ms), low-spectral (MHz) resolution (HTLS) data stream between 1225 and 1525 MHz. We used ``Red_Transient", a robust search pipeline developed by A.A. Deshpande, to de-disperse the HTLS data with the intention of detecting FRBs in the ~30% of the total sky surveyed by GALFACTS. Concurrently, the student produced a similar search pipeline to calibrate HTLS data and validate detections by ``Red_Transient". Here, we present the results of initial processing runs on the first several days of GALFACTS observations. Currently, no FRB detections have been found. However, the detection of pulses from the known pulsar J1916+1312 indicates that ``Red_Transient" is capable of detecting fast transient signals present in the data stream.

  17. The Nuclear Compton Telescope

    NASA Astrophysics Data System (ADS)

    Boggs, Steven E.; NCT Collaboration

    2011-09-01

    The Nuclear Compton Telescope (NCT) is a balloon-borne soft gamma-ray (0.2-10 MeV) telescope designed to perform wide-field imaging, high-resolution spectroscopy, and novel polarization analysis of astrophysical sources. NCT employs a novel Compton telescope design, utilizing 12 high spectral resolution germanium detectors, with the ability to localize photon interaction in three dimensions. NCT underwent its first science flight from Fort Sumner, NM in Spring 2009, and was partially destroyed during a second launch attempt from Alice Spring, Australia in Spring 2010. We will present an overview of the NCT program, including results from the Spring 2009 flight, as well as status and plans for the NCT program.

  18. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Vassigh, Kenny; Bendek, Selman; Young, Zion W; Lynch, Dana H.

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide strawman mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible andor UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST.

  19. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  20. LSST telescope modeling overview

    NASA Astrophysics Data System (ADS)

    Sebag, J.; Andrew, J.; Angeli, G.; Araujo, C.; Barr, J.; Callahan, S.; Cho, M.; Claver, C.; Daruich, F.; Gressler, W.; Hileman, E.; Liang, M.; Muller, G.; Neill, D.; Schoening, W.; Warner, M.; Wiecha, O.; Xin, B.; Orden Martinez, Alfredo; Perezagua Aguado, Manuel; García Marchena, Luis; Ruiz de Argandoña, Ismael

    2016-08-01

    During this early stage of construction of the Large Synoptic Survey Telescope (LSST), modeling has become a crucial system engineering process to ensure that the final detailed design of all the sub-systems that compose the telescope meet requirements and interfaces. Modeling includes multiple tools and types of analyses that are performed to address specific technical issues. Three-dimensional (3D) Computeraided Design (CAD) modeling has become central for controlling interfaces between subsystems and identifying potential interferences. The LSST Telescope dynamic requirements are challenging because of the nature of the LSST survey which requires a high cadence of rapid slews and short settling times. The combination of finite element methods (FEM), coupled with control system dynamic analysis, provides a method to validate these specifications. An overview of these modeling activities is reported in this paper including specific cases that illustrate its impact.

  1. Ultrathin zoom telescopic objective.

    PubMed

    Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua

    2016-08-08

    We report an ultrathin zoom telescopic objective that can achieve continuous zoom change and has reduced compact volume. The objective consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens undertakes the main part of the focal power of the lens system. Due to a multiple-fold design, the optical path is folded in a lens with the thickness of ~1.98mm. The electrowetting liquid lenses constitute a zoom part. Based on the proposed objective, an ultrathin zoom telescopic camera is demonstrated. We analyze the properties of the proposed objective. The aperture of the proposed objective is ~15mm. The total length of the system is ~18mm with a tunable focal length ~48mm to ~65mm. Compared with the conventional zoom telescopic objective, the total length has been largely reduced.

  2. HI absorption in nearby compact radio galaxies

    NASA Astrophysics Data System (ADS)

    Glowacki, M.; Allison, J. R.; Sadler, E. M.; Moss, V. A.; Curran, S. J.; Musaeva, A.; Deng, C.; Parry, R.; Sligo, M. C.

    2017-01-01

    HI absorption studies yield information on both AGN feeding and feedback processes. This AGN activity interacts with the neutral gas in compact radio sources, which are believed to represent the young or recently re-triggered AGN population. We present the results of a survey for HI absorption in a sample of 66 compact radio sources at 0.040 < z < 0.096 with the Australia Telescope Compact Array. In total, we obtained seven detections, five of which are new, with a large range of peak optical depths (3% to 87%). Of the detections, 71% exhibit asymmetric, broad (ΔvFWHM > 100 km s-1) features, indicative of disturbed gas kinematics. Such broad, shallow and offset features are also found within low-excitation radio galaxies which is attributed to disturbed circumnuclear gas, consistent with early-type galaxies typically devoid of a gas-rich disk. Comparing mid-infrared colours of our galaxies with HI detections indicates that narrow and deep absorption features are preferentially found in late-type and high-excitation radio galaxies in our sample. These features are attributed to gas in galactic disks. By combining XMM-Newton archival data with 21-cm data, we find support that absorbed X-ray sources may be good tracers of HI content within the host galaxy. This sample extends previous HI surveys in compact radio galaxies to lower radio luminosities and provides a basis for future work exploring the higher redshift universe.

  3. The Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Millis, R. L.; Dunham, E. W.; Sebring, T. A.; Smith, B. W.; de Kock, M.; Wiecha, O.

    2004-11-01

    The Discovery Channel Telescope (DCT) is a 4.2-m telescope to be built at a new site near Happy Jack, Arizona. The DCT features a large prime focus mosaic CCD camera with a 2-degree-diameter field of view especially designed for surveys of KBOs, Centaurs, NEAs and other moving or time-variable targets. The telescope can be switched quickly to a Ritchey-Chretien configuration for optical/IR spectroscopy or near-IR imaging. This flexibility allows timely follow-up physical studies of high priority objects discovered in survey mode. The ULE (ultra-low-expansion) meniscus primary and secondary mirror blanks for the telescope are currently in fabrication by Corning Glass. Goodrich Aerospace, Vertex RSI, M3 Engineering and Technology Corp., and e2v Technologies have recently completed in-depth conceptual design studies of the optics, mount, enclosure, and mosaic focal plane, respectively. The results of these studies were subjected to a formal design review in July, 2004. Site testing at the 7760-ft altitude Happy Jack site began in 2001. Differential image motion observations from 117 nights since January 1, 2003 gave median seeing of 0.84 arcsec FWHM, and the average of the first quartile was 0.62 arcsec. The National Environmental Policy Act (NEPA) process for securing long-term access to this site on the Coconino National Forest is nearing completion and ground breaking is expected in the spring of 2005. The Discovery Channel Telescope is a project of the Lowell Observatory with major financial support from Discovery Communications, Inc. (DCI). DCI plans ongoing television programming featuring the construction of the telescope and the research ultimately undertaken with the DCT. An additional partner can be accommodated in the project. Interested parties should contact the lead author.

  4. ALMA telescope reaches new heights

    NASA Astrophysics Data System (ADS)

    2009-09-01

    of the Array Operations Site. This means surviving strong winds and temperatures between +20 and -20 Celsius whilst being able to point precisely enough that they could pick out a golf ball at a distance of 15 km, and to keep their smooth reflecting surfaces accurate to better than 25 micrometres (less than the typical thickness of a human hair). Once the transporter reached the high plateau it carried the antenna to a concrete pad - a docking station with connections for power and fibre optics - and positioned it with an accuracy of a few millimetres. The transporter is guided by a laser steering system and, just like some cars today, also has ultrasonic collision detectors. These sensors ensure the safety of the state-of-the-art antennas as the transporter drives them across what will soon be a rather crowded plateau. Ultimately, ALMA will have at least 66 antennas distributed over about 200 pads, spread over distances of up to 18.5 km and operating as a single, giant telescope. Even when ALMA is fully operational, the transporters will be used to move the antennas between pads to reconfigure the telescope for different kinds of observations. "Transporting our first antenna to the Chajnantor plateau is a epic feat which exemplifies the exciting times in which ALMA is living. Day after day, our global collaboration brings us closer to the birth of the most ambitious ground-based astronomical observatory in the world", said Thijs de Graauw, ALMA Director. This first ALMA antenna at the high site will soon be joined by others and the ALMA team looks forward to making their first observations from the Chajnantor plateau. They plan to link three antennas by early 2010, and to make the first scientific observations with ALMA in the second half of 2011. ALMA will help astronomers answer important questions about our cosmic origins. The telescope will observe the Universe using light with millimetre and submillimetre wavelengths, between infrared light and radio waves in

  5. How many radio relics await discovery?

    NASA Astrophysics Data System (ADS)

    Nuza, S. E.; Hoeft, M.; van Weeren, R. J.; Gottlöber, S.; Yepes, G.

    2012-03-01

    Upcoming radio telescopes will allow us to study the radio sky at low frequencies with unprecedented sensitivity and resolution. New surveys are expected to discover a large number of new radio sources, in particular those with a steep radio spectrum. Here we investigate the abundance of radio relics, i.e. steep-spectrum diffuse radio emission coming from the periphery of galaxy clusters, which is believed to trace shock waves induced by cluster mergers. With the advent of comprehensive relic samples, a framework is needed to analyse the relic abundance statistically. To this end, we introduce the probability of finding a relic located in a galaxy cluster with given mass and redshift, which allows us to relate the halo mass function of the Universe to radio-relic number counts. To date, about 45 relics have been reported in the literature and we compile the resulting counts, N(>S1.4). In principle, the parameters of the distribution could be determined using a sufficiently large relic sample. However, since the number of known relics is still small, for that purpose we use the MARENOSTRUM UNIVERSE simulation to determine the relic radio-power scaling with cluster mass and redshift. Our model is able to reproduce the recently found tentative evidence for an increase in the fraction of clusters hosting relics, both with X-ray luminosity and redshift, using an X-ray flux-limited cluster sample. Moreover, we find that a considerable fraction of faint relics (S1.4≲ 10 mJy) reside in clusters with an X-ray flux below ≲ 3 × 10-12 erg s-1 cm-2. Finally, we estimate the number of radio relics that await discovery by future low-frequency surveys proposed for the Low Frequency Array (LOFAR) and the Westerbork Synthesis Radio Telescope (WSRT). We estimate that the Westerbork Observations of the Deep APERTIF Northern-Sky (WODAN) survey proposed for WSRT may discover 900 relics and that the LOFAR-Tier 1-120 MHz survey may discover about 2500 relics. However, the actual

  6. The ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Distefano, Carla

    The ANTARES collaboration has completed in 2008 the construction of an underwater high-energy neutrino telescope in the Mediterranean Sea, located 40 km off the French coast at a depth of 2500 m. The detector consists of 885 optical modules, which are distributed in 12 detector lines, various calibration systems and devices for environmental measurements. With an instrumented volume of about 0.05 km3, ANTARES is the largest Cherenkov neutrino detector currently operating in the Northern hemisphere. A general overview on the ANTARES telescope is given. The preliminary results from the various physics analyses on the collected data will be presented.

  7. The Portable Radio Science Receiver (RSR)

    NASA Astrophysics Data System (ADS)

    Rogstad, S.; Navarro, R.; Finley, S.; Goodhart, C.; Proctor, R.; Asmar, S.

    2009-08-01

    The radio science receiver (RSR) is an open-loop receiver that has been used in NASA's Deep Space Network (DSN) facilities for almost a decade and is a valuable resource used to record data for radio science experiments, radio astronomy observations, and very long baseline interferometry. In the last few years, NASA has needed to send RSRs to non-DSN facilities such as the Greenbank Telescope and Australia's Parkes and Narrabri antenna array for special events such as the Mars Exploration Rover entry, descent, and landing maneuver and the Huygens probe landing on Titan. The need to quickly and cost effectively ship and set up an RSR without taking away valuable existing DSN resources has led to the development of a prototype portable RSR (PRSR). The PRSR maintains most of the capabilities of a full RSR and greatly exceeds it in many ways while only a fraction of the cost and weight.

  8. ALMA and the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Jewell, P. R.

    1999-10-01

    The 100 m Green Bank Telescope will be completed in early 2000. The GBT is the most ambitious, single radio telescope ever constructed. It has a large number of unique design and performance features including an offset feed (clear aperture), an active surface, a closed-loop laser metrology system for surface figure and telescope pointing control, a feed turret for ready selection of numerous receivers, and a multi-input, 256k-channel spectrometer. The GBT will operate over a frequency range of 100 MHz to 115 GHz. The GBT and ALMA have great potential for complementary observations. The GBT will cover millimeter wavelengths longward of 2.6 mm and thus has a significant overlap with ALMA. The total physical collecting areas of 7854 m2 for the GBT and 7238 m2 for the 64x12-m ALMA configuration will give the facilities comparable flux sensitivities. The GBT has a wide field of view at its Gregorian focus that extends > 5 arcmin at 90 GHz with minimal aberrations. When equipped with focal plane array receivers, the GBT will be able to image large fields with high sensitivity very quickly. Such images will provide the astrophysical context of regions studied at high angular resolution with ALMA. The clean beam response and accurate absolute calibration of GBT data will make it ideal for combination with ALMA images. These, and other areas in which the GBT and ALMA will work in concert will be described in this poster.

  9. The Green Bank Telescope: User Interfaces

    NASA Astrophysics Data System (ADS)

    Maddalena, R. J.; Fisher, J. R.

    1999-12-01

    The NRAO-Green Bank Telescope is composed of a unique, versatile, and complex suite of instrumentation. Observers and staff members will require intuitive user interfaces that can exploit the full capabilities of the instrument. The object-oriented monitor and control system which underlies all of the GBT user interfaces provides a uniform software interface to each GBT device, from receivers to detectors. The control system allows the creation of high-level user interfaces in a wide range of programming languages with less effort than normally encountered in the creation of such interfaces. We will present at least two of the graphical user interfaces astronomers will encounter when observing with the GBT. One interface, written in Glish/Tk, is designed for astronomers and used for specifying observations. A demonstration will be given of another interface, written in Tcl/Tk, designed for the monitoring and debugging of telescope component and which will be used predominantly by telescope operators, engineers, and other staff members. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  10. Scientific Program of the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Lockman, F. J.; Balser, D. S.

    1999-12-01

    The Green Bank Telescope (GBT) is a 100 meter diameter unblocked aperture radio telescope that will begin operations in the next year at the Green Bank, WV, Observatory of the NRAO. This presentation will describe some of the general categories of experiment that the GBT will be capable of doing, and illustrate its sensitivity and frequency coverage. The GBT will operate at frequencies from a few hundred MHz to about 100 GHz. This range encompasses quite a number of phenomenon, including: emission from pulsars; studies of HI in both galactic and highly redshifted systems; thermal and nonthermal emission from planets; molecules in comets, and planetary and stellar atmospheres; continuum emission from supernova remnants and normal galaxies; astrochemistry of heavy interstellar molecules; atomic and molecular spectroscopy of star-forming regions; redshifted CO and other molecules from the early universe, and continuum studies of highly redshifted dust. The GBT has an entirely new suite of receivers and detectors which will bring unprecedented sensitivity and sky coverage to many of these investigations. The telescope will be scheduled competitively, and we are interested in talking to anyone who plans to use it, so that the instrumental and software configuration can be the best possible match to planned projects. The NRAO is operated under a cooperative agreement with the National Science Foundation.

  11. Current Status of the Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Chavez, M.; LMT Team

    2014-03-01

    I will briefly describe the current status of the Large Millimeter Telescope (LMT), the near-term plans for the telescope and the initial suite of instrumentation. I will also summarize some of the results of the Early Science Phase that took place in the summer of 2013. The LMT is a bi-national collaboration between Mexico and the USA, led by the Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50m-diameter millimeter-wave radio telescope. Construction activities are complete at the 4600m LMT site on the summit of Volcan Sierra Negra, an extinct volcano in the Mexican state of Puebla. First light with the LMT (inner 32mdiameter) was successfully conducted in June and July of 2011, as well as the Early Science Phase in May-July 2013 with observations at both the 3 and 1.1mm wave-bands. The LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  12. The radio spectral energy distribution of infrared-faint radio sources

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Seymour, N.; Spitler, L. R.; Emonts, B. H. C.; Franzen, T. M. O.; Hunstead, R.; Intema, H. T.; Marvil, J.; Parker, Q. A.; Sirothia, S. K.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Oberoi, D.; Offringa, A.; Ord, S. M.; Prabu, T.; Procopio, P.; Udaya Shankar, N.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.; Bannister, K. W.; Chippendale, A. P.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B.; Popping, A.; Sault, R. J.; Whiting, M. T.

    2016-10-01

    Context. Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims: Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods: We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results: We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α < -0.8; %), but we also find ultra-steep SEDs (α < -1.3; %). In particular, IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least % of IFRS contain young AGN, although the fraction might be significantly higher as suggested by

  13. The Far-Infrared Emission of Radio Loud and Radio Quiet Quasars

    NASA Technical Reports Server (NTRS)

    Polletta, M.; Courvoisier, T. J.-L.; Wilkes, B. J.; Hooper, E. J.

    2000-01-01

    Continuum observations at radio, millimeter, infrared and soft X-ray energies are presented for a sample of 22 quasars, consisting of flat and steep spectrum radio loud, radio intermediate and radio quiet objects. The primary observational distinctions, among the different kinds of quasars in the radio and IR energy domains are studied using large observational datasets provided by ISOPHOT on board the Infrared Space Observatory, by the IRAM interferometer, by the sub-millimetre array SCUBA on JCMT, and by the European Southern Observatory (ESO) facilities IRAC1 on the 2.2 m telescope and SEST. The spectral energy distributions of all quasars from radio to IR energies are analyzed and modeled with non-thermal and thermal spectral components. The dominant mechanism emitting in the far/mid-IR is thermal dust emission in all quasars, with the exception of flat spectrum radio loud quasars for which the presence of thermal IR emission remains rather uncertain, since it is difficult to separate it from the bright non-thermal component. The dust is predominantly heated by the optical/ultraviolet radiation emitted from the external components of the AGN. A starburst contributes to the IR emission at different levels, but always less than the AGN (<= 27%). The distribution of temperatures, sizes, masses, and luminosities of the emitting dust are independent of the quasar type.

  14. Evidence for Infrared-faint Radio Sources as z > 1 Radio-loud Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 μm) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z >~ 1) active galactic nuclei.

  15. Low Frequency Radio Experiment (LORE)

    NASA Astrophysics Data System (ADS)

    Manoharan, Periasamy K.; Joshi, Bhal Chandra; Naidu, Arun Kumar

    High temporal and frequency resolution observations of solar generated disturbances below 15 MHz in the near-Sun region and at Sun-Earth distances in conjunction with optical and high energy observations of Sun are essential to understand the structure and evolution of eruptions, such as, flares, coronal mass ejections (CMEs), and their associated solar wind disturbances at heights above the photosphere and their consequences in the interplanetary medium. This talk presents a case study of Low Frequency Radio Experiment (LORE) payload to probe the corona and the solar disturbances at solar offsets greater than 2 solar radii below 30 MHz. The LORE, although not part of Aditya-L1 mission, can be complimentary to planned Aditya-L1 coronagraph and its other on-board payloads as well as synergistic to ground based observations, which are routinely carried out by Ooty Radio Telescope. We discuss the baseline design and technical details of the proposed LORE and it is particularly suitable for providing data on the detailed time and frequency structure of fast drifting Type-III and slow drifting Type-II radio bursts with unprecedented time and frequency resolution as well as goniopolarimetry, made possible with better designed antennas and state-of-art electronics, employing FPGAs and an intelligent data management system. This would enable wide ranging studies such as studies of nonlinear plasma processes, CME in-situ radio emission, CME driven phenomena, interplanetary CME driven shocks, ICMEs driven by decelerating IP shocks and space weather effects of Solar Wind interaction regions. The talk will highlight the science objectives as well as the proposed technical design features.

  16. Apollo Telescope Mount Illustration

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo Telescope Mount (ATM) served as the first marned astronomical observatory in space. It was designed for solar research from Earth orbit aboard the Skylab. This image is a cutaway illustration of the ATM canister with callouts and characteristics. The ATM was designed and developed by the Marshall Space Flight Center.

  17. Apollo Telescope Mount Illustration

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Apollo Telescope Mount (ATM) served as the first marned astronomical observatory in space. It was designed for solar research from Earth orbit aboard the Skylab. This image is a cutaway illustration of the ATM canister. The ATM was designed and developed by the Marshall Space Flight Center.

  18. Apollo Telescope Mount Illustration

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Apollo Telescope Mount (ATM) served as the first marned astronomical observatory in space. It was designed for solar research from Earth orbit aboard the Skylab. This image is a cutaway illustration of the ATM canister with callouts. The ATM was designed and developed by the Marshall Space Flight Center.

  19. A Simple "Tubeless" Telescope

    ERIC Educational Resources Information Center

    Straulino, S.; Bonechi, L.

    2010-01-01

    Two lenses make it possible to create a simple telescope with quite large magnification. The set-up is very simple and can be reproduced in schools, provided the laboratory has a range of lenses with different focal lengths. In this article, the authors adopt the Keplerian configuration, which is composed of two converging lenses. This instrument,…

  20. The Falcon Telescope Network

    NASA Astrophysics Data System (ADS)

    Chun, F.; Tippets, R.; Dearborn, M.; Gresham, K.; Freckleton, R.; Douglas, M.

    2014-09-01

    The Falcon Telescope Network (FTN) is a global network of small aperture telescopes developed by the Center for Space Situational Awareness Research in the Department of Physics at the United States Air Force Academy (USAFA). Consisting of commercially available equipment, the FTN is a collaborative effort between USAFA and other educational institutions ranging from two- and four-year colleges to major research universities. USAFA provides the equipment (e.g. telescope, mount, camera, filter wheel, dome, weather station, computers and storage devices) while the educational partners provide the building and infrastructure to support an observatory. The user base includes USAFA along with K-12 and higher education faculty and students. Since the FTN has a general use purpose, objects of interest include satellites, astronomical research, and STEM support images. The raw imagery, all in the public domain, will be accessible to FTN partners and will be archived at USAFA in the Cadet Space Operations Center. FTN users will be able to submit observational requests via a web interface. The requests will then be prioritized based on the type of user, the object of interest, and a user-defined priority. A network wide schedule will be developed every 24 hours and each FTN site will autonomously execute its portion of the schedule. After an observational request is completed, the FTN user will receive notification of collection and a link to the data. The Falcon Telescope Network is an ambitious endeavor, but demonstrates the cooperation that can be achieved by multiple educational institutions.

  1. Exploring Galileo's Telescope

    ERIC Educational Resources Information Center

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  2. The Liverpool Telescope

    NASA Astrophysics Data System (ADS)

    Smith, Robert J.; Bates, S. D.; Clay, Neil R.; Fraser, Stephen N.; Marchant, J. M.; Mottram, C. J.; Steele, I. A.; Tomlinson, M. D.

    2011-03-01

    The Liverpool Telescope (LT) is a fully robotic 2m optical telescope at a world-class observatory site. It runs autonomously without direct human control either on site or remotely. It is not operated primarily for a single science project, but rather is a common-user facility, time allocated by an open, peer-review process and conducting a variety of optical and IR imaging, spectroscopic and polarimetric programs. This paper describes some of aspects of the site infrastructure and instrument suite designed specifically to support robust and reliable unsupervised operations. Aside from the telescope hardware, the other aspect of robotic operations is the mechanisms whereby users interact with the telescope and its automated scheduler. We describe how these have been implemented for the LT. Observing routinely since 2004, the LT has demonstrated it is possible to operate a large, common-user robotic observatory. Making the most of the flexibility afforded by fully robotic operations, development continues in collaboration with both observers and other observatories to develop observing modes to enable new science across the broad discipline of time-domain astrophysics.

  3. Wearable telescopic contact lens.

    PubMed

    Arianpour, Ashkan; Schuster, Glenn M; Tremblay, Eric J; Stamenov, Igor; Groisman, Alex; Legerton, Jerry; Meyers, William; Amigo, Goretty Alonso; Ford, Joseph E

    2015-08-20

    We describe the design, fabrication, and testing of a 1.6 mm thick scleral contact lens providing both 1× and 2.8× magnified vision paths, intended for use as a switchable eye-borne telescopic low-vision aid. The F/9.7 telescopic vision path uses an 8.2 mm diameter annular entrance pupil and 4 internal reflections in a polymethyl methacrylate precision optic. This gas-impermeable insert is contained inside a smooth outer casing of rigid gas-permeable polymer, which also provides achromatic correction for refraction at the curved lens face. The unmagnified F/4.1 vision path is through the central aperture of the lens, with additional transmission between the annular telescope rings to enable peripheral vision. We discuss potential solutions for providing oxygenation for an extended wear version of the lens. The prototype lenses were characterized using a scale-model human eye, and telescope functionality was confirmed in a small-scale clinical (nondispensed) demonstration.

  4. Hubble Space Telescope Assembly

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Engineers and technicians conduct a fit check of the Hubble Space Telescope (HST) Solar Array flight article in a clean room of the Lockheed Missile and Space Company. The Solar Array is 40- feet (12.1-meters) long and 8.2-feet (2.5-meters) wide, and provides power to the spacecraft. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  5. Membrane photon sieve telescopes.

    PubMed

    Andersen, Geoff

    2010-11-20

    We present results of research into the design and construction of membrane photon sieves as primaries for next-generation lightweight space telescopes. We have created prototypes in electroformed nickel as well as diazo and CP-1 polymer films. In two such cases, diffraction-limited imaging performance was demonstrated over a narrow bandwidth.

  6. Radio frequency detection assembly and method for detecting radio frequencies

    SciTech Connect

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  7. Highest redshift radio galaxy known in the Southern Hemisphere

    SciTech Connect

    De Breuck, C., LLNL

    1997-12-01

    We present the discovery of a z = 4 13 galaxy TN J1338-1942, the most distant radio galaxy in the southern hemisphere known to date The source was selected from a sample of Ultra Steep Spectrum (USS; {alpha}<-1 3; S {proportional_to} {nu}{sup {alpha}}) radio sauces using the Texas and NVSS catalogs The discovery spectrum, obtained with the ES0 3 6m telescope, shows bright extended Ly-{alpha} emission The radio source has a very asymmetric morphology, suggesting a strong interaction with an inhomogeneous surrounding medium

  8. Observations of the Solar Continuum Radio Emission at Decameter Wavelengths

    NASA Astrophysics Data System (ADS)

    Brazhenko, Anatoliy I.; Mel'Nik, Valentin N.; Konovalenko, Alexander A.; Abranin, Edward P.; Dorovskyy, Vladimir V.; Vashchishin, Rostislav V.; Frantzusenko, Anatoly V.; Rucker, Helmut O.

    2010-01-01

    Results of study of the continuum radio emission of the Sun in the decameter range are presented. Observations were carried out with radio telescope URAN-2 in summer months in 2008-2009. Radio fluxes at frequencies 20 MHz and 25 MHz in frequency band 250 kHz were obtained during the time, when there were no active regions on the solar disk. Their average values for two years were 670 Jy and 850 Jy at frequencies 20 MHz and 25 MHz correspondingly. These fluxes are in agreement with high frequency values.

  9. High Redshift Radio Galaxies: Laboratories for Massive Galaxy and Cluster Formation in the Early Universe

    DTIC Science & Technology

    2010-01-01

    Lyα (blue, resolution ∼1”) obtained with ESO’s very Large Telescope (VLT), delineating the gaseous nebula and radio 8 GHz contours (red, resolution...0.3”) obtained with NRAO’s VLA, delineating the non-thermal radio emission. The gaseous nebula extends for >200 kpc and is comparable in size with the

  10. A 1.6 MHz survey of the galactic background radio emission

    NASA Technical Reports Server (NTRS)

    Ellis, G. R. A.; Mendillo, M.

    1987-01-01

    Observations of the galactic radio emission at 1.6 MHz have been made during the current solar activity minimum using a radio telescope with a beamwidth of 25 deg. The radiation intensity was mapped for six declinations between -12 and -72 degrees and from 1000 to 0500 hours R.A.

  11. Analysis of the flare stars radio bursts parameters at the decameter wavelengths

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Koliadin, V. L.; Boiko, A. I.; Zarka, Ph.; Griessmeier, J.-M.; Denis, L.; Coffre, A.; Rucker, H. O.; Zaitsev, V. V.; Litvinenko, G. V.; Melnik, V. N.; Stanislavsky, A. A.; Stepkin, S. V.; Mukha, D. V.; Brazhenko, A.; Leitzinger, M.; Odret, P.; Scherf, M.

    2012-09-01

    Detection of decameter sporadic radio emission from flare stars AD Leonis and EV Lacertae were carried out with UTR-2 radio telescope in the range of 16.5- 33 MHz during 2011 observational campaign. Criterion to discriminate particular events from stars and continuous sources in the main beam (ON) and two diverted beams (OFF), where true events should not appear, are discussed.

  12. A Novel Dust Telescope

    NASA Astrophysics Data System (ADS)

    Grün, E.; Srama, R.; Krüger, H.; Kempf, S.; Harris, D.; Conlon, T.; Auer, S.

    2001-11-01

    Dust particles in space, like photons, are born at remote sites in space and time. From knowledge of the dust particles' birthplace and the particles' bulk properties, we can learn about the remote environment out of which the particles were formed. This approach is carried out by means of a dust telescope on a dust observatory in space. A dust telescope is a combination of a dust trajectory sensor together with a chemical composition analyzer for dust particles. A novel dust telescope is described. It consists of a highly sensitive dust trajectory sensor, and a large area chemical dust analyzer. It can provide valuable information about the particles' birthplace which may not be accessible by other techniques. Dust particles' trajectories are determined by the measurement of the electric signals that are induced when a charged grain flies through an appropriately configured electrode systems. After the successful identification of a few charged micron-sized dust grains in space by the Cassini Cosmic Dust Analyzer, this dust telescope has a ten fold increased sensitivity of charge detection (10-16 Coulombs) and will be able to obtain trajectories for sub-micron sized dust grains. State-of-the art dust chemical analyzers have sufficient mass resolution to resolve ions with atomic mass numbers above 100. However, since their impact areas are small they can analyze statistically meaningful numbers of grains only in the dust-rich environments of comets or ringed planets. Therefore, this dust telescope includes a large area (0.1 m2) chemical dust analyzer of mass resolution > 100 that will allow us to obtain statistically significant measurements of interplanetary and interstellar dust grains in space.

  13. Giant Magellan Telescope: overview

    NASA Astrophysics Data System (ADS)

    Johns, Matt; McCarthy, Patrick; Raybould, Keith; Bouchez, Antonin; Farahani, Arash; Filgueira, Jose; Jacoby, George; Shectman, Steve; Sheehan, Michael

    2012-09-01

    The Giant Magellan Telescope (GMT) is a 25-meter optical/infrared extremely large telescope that is being built by an international consortium of universities and research institutions. It will be located at the Las Campanas Observatory, Chile. The GMT primary mirror consists of seven 8.4-m borosilicate honeycomb mirror segments made at the Steward Observatory Mirror Lab (SOML). Six identical off-axis segments and one on-axis segment are arranged on a single nearly-paraboloidal parent surface having an overall focal ratio of f/0.7. The fabrication, testing and verification procedures required to produce the closely-matched off-axis mirror segments were developed during the production of the first mirror. Production of the second and third off-axis segments is underway. GMT incorporates a seven-segment Gregorian adaptive secondary to implement three modes of adaptive-optics operation: natural-guide star AO, laser-tomography AO, and ground-layer AO. A wide-field corrector/ADC is available for use in seeing-limited mode over a 20-arcmin diameter field of view. Up to seven instruments can be mounted simultaneously on the telescope in a large Gregorian Instrument Rotator. Conceptual design studies were completed for six AO and seeing-limited instruments, plus a multi-object fiber feed, and a roadmap for phased deployment of the GMT instrument suite is being developed. The partner institutions have made firm commitments for approximately 45% of the funds required to build the telescope. Project Office efforts are currently focused on advancing the telescope and enclosure design in preparation for subsystem- and system-level preliminary design reviews which are scheduled to be completed in the first half of 2013.

  14. ALMA Telescope Reaches New Heights

    NASA Astrophysics Data System (ADS)

    2009-09-01

    ball at a distance of nine miles, and to keep their smooth reflecting surfaces accurate to less than the thickness of a human hair. Once the transporter reached the high plateau it carried the antenna to a concrete pad -- a docking station with connections for power and fiber optics -- and positioned it with an accuracy of a small fraction of an inch. The transporter is guided by a laser steering system and, just like some cars, also has ultrasonic collision detectors. These sensors ensure the safety of the state-of-the-art antennas as the transporter drives them across what will soon be a rather crowded plateau. Ultimately, ALMA will have at least 66 antennas distributed over about 200 pads, spread over distances of up to 11.5 miles and operating as a single, giant telescope. Even when ALMA is fully operational, the transporters will be used to move the antennas between pads to reconfigure the telescope for different kinds of observations. This first ALMA antenna at the high site will soon be joined by others, and the ALMA team looks forward to making their first observations from the Chajnantor plateau. They plan to link three antennas by early 2010, and to make the first scientific observations with ALMA in the second half of 2011. ALMA will help astronomers answer important questions about our cosmic origins. The telescope will observe the Universe using light with millimeter and submillimeter wavelengths, between infrared light and radio waves in the electromagnetic spectrum. Light at these wavelengths comes from some of the coldest, and from some of the most distant objects in the cosmos. These include cold clouds of gas and dust where new stars are being born, or remote galaxies towards the edge of the observable universe. The Universe is relatively unexplored at submillimeter wavelengths, as the telescopes need extremely dry atmospheric conditions, such as those at Chajnantor, and advanced detector technology. The Atacama Large Millimeter/submillimeter Array

  15. The radio-emission spectra of some extragalactic radio sources in the 11.6-36.8 GHz range

    NASA Astrophysics Data System (ADS)

    Valtaoja, E.; Valtonen, M.; Lekhto, Kh.; Efanov, V. A.; Moiseev, I. G.

    Results are presented of coordinated observations of 20 extragalactic radio sources in the 11.6-3.8 GHz range. The measurements were carried out in 1980-1982 using the RT-22 and RT-14 radio telescopes at the Crimean Astrophysical Observatory and the Radio Laboratory of the Helsinki University of Technology, respectively. Quasi-simultaneous radiation spectra are presented for 12 sources and the magnetic field strength (MFS) is estimated for 0235+16, OH 471, OJ 287, and BL Lac. The MFS turns out to be in the 0.001-0.002 G range.

  16. Radio-interferometric Neutrino Reconstruction for the Askaryan Radio Array

    NASA Astrophysics Data System (ADS)

    Lu, Ming-Yuan

    2017-03-01

    The Askaryan Radio Array (ARA) is a neutrino telescope array under phased deployment near the South Pole. The array aims to discover and determine the ultra-high energy neutrino flux via detection of the Askaryan signal from neutrino-induced showers. This novel detection channel makes ARA the most cost-effective neutrino observatory in probing the neutrino flux from 1017eV - 1019eV. This contribution will discuss an interferometric vertex reconstruction technique developed for ARA, taking into account the curved paths traveled by EM radiation in inhomogeneous ice. Preliminary results on the directional reconstruction of an in situ calibration pulser as well as simulated neutrino vertices will be presented.

  17. Wavefront Analysis of Adaptive Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Hillman, Lloyd

    1997-01-01

    The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. The development of telescope optical requirements and potential optical design configurations is reported.

  18. The GBT precision telescope control system

    NASA Astrophysics Data System (ADS)

    Prestage, Richard M.; Constantikes, Kim T.; Balser, Dana S.; Condon, James J.

    2004-10-01

    The NRAO Robert C. Byrd Green Bank Telescope (GBT) is a 100m diameter advanced single dish radio telescope designed for a wide range of astronomical projects with special emphasis on precision imaging. Open-loop adjustments of the active surface, and real-time corrections to pointing and focus on the basis of structural temperatures already allow observations at frequencies up to 50GHz. Our ultimate goal is to extend the observing frequency limit up to 115GHz; this will require a two dimensional tracking error better than 1.3", and an rms surface accuracy better than 210μm. The Precision Telescope Control System project has two main components. One aspect is the continued deployment of appropriate metrology systems, including temperature sensors, inclinometers, laser rangefinders and other devices. An improved control system architecture will harness this measurement capability with the existing servo systems, to deliver the precision operation required. The second aspect is the execution of a series of experiments to identify, understand and correct the residual pointing and surface accuracy errors. These can have multiple causes, many of which depend on variable environmental conditions. A particularly novel approach is to solve simultaneously for gravitational, thermal and wind effects in the development of the telescope pointing and focus tracking models. Our precision temperature sensor system has already allowed us to compensate for thermal gradients in the antenna, which were previously responsible for the largest "non-repeatable" pointing and focus tracking errors. We are currently targetting the effects of wind as the next, currently uncompensated, source of error.

  19. The Primeval Structure Telescope

    NASA Astrophysics Data System (ADS)

    Peterson, J. B.; Pen, U. L.; Wu, X. P.

    2004-12-01

    The Primeval Structure Telescope (PaST) will be used to study early ionization of the universe. The telescope will image and spectrally resolve hyperfine emission of neutral hydrogen at redshifts from about 6 to 20. Recently released data, obtained with the WMAP satellite, indicate that the universe was ionized very early, at around redshift 15. Right now, there is very little information on this ionization, since the WMAP data do not tell us the ionization history or the energy source. If the energy source was emission from collapsed objects, perhaps ultraviolet radiation from the first stars, the ionization did not occur homogenously. Earlier star formation in high-density regions causes these to be ionized first. Just when the ionization was half complete, the large-scale structure of the universe became visible in the ionization pattern. We will use redshifted 21 cm brightness to image the largest of the ionized bubbles in three dimensions, allowing us to determine the redshift of the early ionization. In addition, we will be able to study the evolution and merging of the ionized bubbles. PAST will be a sparse array telescope consisting of 10,000 log periodic antennas, providing over 50,000 square meters of effective collecting area. These antennas will be grouped into 80 phased arrays of 127 antennas. Current plans have these phased arrays fixed, pointed at the North Celestial Pole. Later, we can add electronic beam steering. Signals from the 80 phased arrays will be processed using a correlator built from a network of about 100 PC computers. The telescope will occupy ten square kilometers in the Ulastai Valley, Xin Jiang, China. The telescope will be built almost entirely of inexpensive commercially available off-the-shelf components. A series of tests of prototypes, made on-site, have allowed us to study the performance of the telescope and its components. We will present these results and show sky images obtained with the prototypes. We anticipate that one

  20. Radio emission and the forbidden line region of Seyfert galaxies

    SciTech Connect

    Ulvestad, J.S.

    1981-01-01

    The results of an extensive program of mapping Seyfert galaxies using the Very Large Array radio telescope are presented. Unlike the majority of radio galaxies, the radio emission in most Seyferts is confined to the inner few kiloparsecs (or less) of the galaxy. This scale is similar to the size of the region in which optical forbidden line emission occurs. Six double (or triple) radio sources have been mapped now in Seyfert galaxies. Approximately ten more galaxies shown more diffuse emission or are resolved only slightly. In almost all galaxies, the central radio peak, when present, coincides with the optical continuum peak. In every double or triple radio source, the outer radio lobes straddle that optical peak. The major axes of the double and triple radio sources may be correlated with the directions of greatest elongation of the optical line-emitting cloud complexes. However, the radio source axes do not appear to be related to the major or minor axes of the outer optical continuum isophotes of the Seyfert galaxies. Synchrotron emission is the dominant source of radio photons in all the galaxies observed. Thermal processes contribute, on the average, no more than about 6% of the total radio emission at 4.885 GHz. Using standard assumptions, radio luminosities, magnetic fields, and total energy contents have been calculated for the observed galaxies. The triple radio source in NGC 5548 has been studied in detail. The properties of NGC 5548 have been used to investigate some theoretical aspects of the double and triple sources and their relationship to the forbidden line region (FLR).